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APPLICATION OF THE MINIMAX APPROXIMATION TO THE REDUCED 
PARTITION FUNCTION OF ISOTOPIC MOLECULES

G. Németh, В. Gellai, G. Jancsó 
Centrál Research Institute for Physics, Budapest

1. Introduction

The reduced partition function ratio of isotopic molecules introduced 
by Bigeleisen and Mayer [l] in the statistical mechanics of isotopic systems 
has the form

3N-6Пi=l -u
e

T--i/2
1
1

/ 1 . 1/

where u^ = hcun/kT, is the i-th normal vibrational frequency /in cm *7,
3N-6 is the number of internal degrees of freedom for a molecule with N 
atoms /3N-5 for a linear molecule/, while u' and u^ stand for light and 
heavy isotopic species, respectively.

The logarithm of the reduced partition function ratio

where

ln s/s'f = l £ln b(u') - In b(ui)J /1.2/

In b(u) = -In u + u/2 + ln(l - e-u) /1.3/

can be expanded into appropriate power series which permit the quick numerical 
evaluation or the estimation of the equilibrium constants of isotopic exchange
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reactions, the isotope effect on rate constants and the thermodynamic quantities 
of the isotopic systems. The approximation to In s/s'f in terms of an even 
power series helped in the understanding of the nature of isotope effects.

The reduced partition function ratio and the isotope effect on the
thermodynamic properties can be evaluated without actually solving the
secular equation by using the method of moments [2,3] and an expansion in the
even powers of u^ [2,4,5]. Bigeleisen and his coworkers used Chebyshev and
Jacobi polynomials [4,5], which are interpolating polynomials, and yield a
better approximation than the Bernoulli series [2] based on the Taylor
expansion, while the covergence is not subject to the restriction u' < 2x.\ max

In the present work the different methods used for the expansion of 
Eq. /1.2/ are briefly reviewed and then a method which gives the best /mini­
max [б]/ approximation to In b(u) will be described. The error curve of 
this approximation has as many extrema as possible at any given order of t-he 
expansion and the maxima and minima of the error curve have the smallest possible 
values. This high frequency and small amplitude oscillation of the absolute 
error is precisely the feature needed for a good approximation to In s/s'f.

2. The polynomial expansions of s/s'f or In s/s'f

Usually it is not the reduced partition function ratio s/s'f itself, 
but its logarithm In s/s'f which is expanded into a power series [7].

Let us see first the expansions methods which permit the quick 
numerical evaluation or estimation of In s/s'f.

The expansion developed and used by Urey for the evaluation of the 
equilibrium constants of a number of isotopic exchange reactions [в] reads as

In s/s'f=£ln 
i IК coth x. + J_ ,3

12 6i coth x.̂  (coth2x^ - l) + . . .̂j / 2 . 1 /

where
+ u,

/2 .2 /

This expansion converge rapidly /see Appendix I/ and can be used in most3cases without the term in 6 .̂ A similar expansion was formulated by Waldmann 
already in 1943 [9].
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For the numerical evaluation of In s/s'f the most succesful seems 
to be the G(u) expansion introduced by Bigeleisen and Mayer [l] . The result 
of the expansion which to first order has the form

In s/s'f = £ G (ui) /2.3/

was extended to third order [2j as

In s/s'f
С(и±) - 23(4^)

/2.4/

where

G(u±) /2.5/

and

/ 2. 6 /

/2.7/

The functions G (u^), s(u^) and с(и^) have been tabulated for different 
values of u^ [10,1]. The convergence restriction on this series is that 
Au^/u^ < 1 , thus it converges for all the physically possible values of u^ 
and Au^ /see Appendix II/. The G(u") expansion was extended by Vojta to 
order n [7,11] as

ln s/s'f = I I (-l)k Gk(u )(Au )} 
i k=l

/ 2 . 8 /

Gl K )
1 _1_
2 u ,

e - 1
-G(ui) /2.9/

Gk<uP  - A  - FT Í "ku n-1
k-i ~nui e >к = 2 / 2 . 10 /
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An approximation in the form

-hc(o£/2kT
e_________________r —-hcw^/2kT 
e

-hco)i /кТ \
/ _

-hcu)| /кт'у w  ni I / 2. 11/

was introduced by Tatevskii [12,13]. This approximation works well at higher 
temperatures and the equilibrium constant of an isotopic exchange reaction can 
be evaluated in a simple manner from the ratios of the symmetry numbers of the 
participating isotopic molecules. If the zero point energy cannot be ignored 
the author used instead of Eq. /2.11/ the expression

-hcw|/2kT / -hcu)^/kT
e______ V 1 - e____ '
-hcw^/2kT / -hccoj /кТ

e ( 1 - e

The function y^ has been evaluated and tabulated for various values of 
«i/»i and <Dj/Т. Since the exact meaning of the function y^ is not clear 
and the expressions are fairly complicated, the Bigeleisen-Mayer G(u) 
approximation is preferably used for the calculations.

At lower temperatures the isotopic difference in the zero point 
energies plays an important role. The zero point energy difference was 
approximated by Bigeleisen and Goldstein []l4j in terms of a Taylor series o) 
even powers of the frequencies around an arbitrarily chosen point A as

T / 2 . 12/

о iI O í " wi) li
6 A , (-1)P+1 (2p-2)i

i p=2 22p 1 (p-l)l
/2.13/

Py1 ( - Q 3 6Xi~J
jio AP-jJ о

where

>. = 4n2c 2 /2.14/
J. I

ЛА^ = >{П - /2.15/

The value of A must be selected from the frequency spectrum by considering 
that the condition of the convergence is that
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/2.16/

This expression was used for studying the relations between the zero point 
energies of isotopic homologues [l5] .

In the formulation of the relationships between the reduced partition 
function ratios of multiple isotope substituted molecules the Bernoulli series 
[2]

In s/s'f = l  l C-l) ^ 1 ~2i o 'TVf. 6Cui^) /2.17/i j=l J v J >

where B2j-i are the Bernoulli numbers [l6] , б(и2^) = u^2  ̂ - u2  ̂ , proved 
to be useful. Because of the convergence restriction u^ax < 2тг on the 
Bernoulli series, this expansion can be applied only at higher temperatures 
and to molecules with not too high frequencies. Vojta [17] has given two new 
proofs of the Bernoulli series expansion. The first term in Eq./2.17/ is the 
first quantum correction to the reduced partition function ratio of isotopic 
molecules from which a fundamental expression for the description of the 
isotope effects of equilibrium systems can be obtained [2] as

£ ( й У  I N ' 1 -  ' 2 -w

rfhere m^ is the mass of the i-th atom in the light, пк that in the heavy 
isotopic molecule and a ^  is the Cartesian force constant of the i-th atom 
in the molecule.

In the у method [2] proposed for extending the validity of the 
Bernoulli expansion is defined as

Yĵ  = 12G(u^)/u  ̂ /2.19/

which, introduced into Eq./2.3/ yields

u.
ln s/s'f = I i 2 Äui /2.20/

Since y  ̂ does not decrease very rapidly with u^, an average value у can 
be defined if the frequencies of the molecule lie within a narrow range and 
we can write
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ln s/s'f = J 6uJ . /2.21/

The applicability of Eq. /2.21/ has been investigated by several authors 
[18,19,20,21,22].

The restriction u' < 2v to the convergence of the Bernoullimax
series was removed by Bigeleisen and Ishida [4] who vised shifted Chebyshev 
polynomials of the first kind for the expansion into even powers of u| and 
u^. They started from the expression of In b(u)[23] as

°° Г , \2
In b(u) = ]  In 1 + • /2.22/

This infinite series converges for all values of u. Applying the т method 
proposed by Lanczos [24] Bigeleisen and Ishida obtained

n (-l')m+1 В u2m
In b(u) - ------2m(> y  T(n '1" ' V 1x) '2-23'

where

Tfn,m,u ^ =  ̂ 9 ' max s 1 (-l)P CP/rP / Í (-i)p cP/rPp=m J p=o

R - ( “»ax'2’)2
and

cn = С-1)П+Р 22p n(n+p - l)l/(n-p)l (2p)!

Then

In s/s'f ( - 1) m+1 B,2 m-1
2m (2m)!

6u2m
Tfn,m,u ] \ ' ' max/

/2.24/

/2.25/

/2.26/

/2.27/

The expansion /2.27/ differs from the Bernoulli series /2.17/ essentially 
only by that each term is multiplied by the modulating coefficient 
T(n,m,umax] and this causes the new series to converge much faster than the 
Bernoulli series.
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The method was extended to the group of the Jacobi polynomials [5]

p(V^)n (X ) 1 +
nIm=l mx

m-1 (-п+к)(п+у+6-1+к) 
(Y+k)(1+k) /2.28/

The expansion of the logarithmic terms in Eq. /2.22/ applying the т method 
and usinq a common range R = (u ' /2ttV ,  with u' being the hiqhest
frequency of the light isotopic molecule, leads to the expression

In s/s'f =
n
lm=l

( - 1)m+l J2m-1 I
2m (2m)!

2m

т1,'5(п'” 'им х ) "  /2-29/

The approximation to In b(u) could be improved by subdividing the range of 
the expansion variable. On dividing the summation of Eq. /2.22/ into two parts 
they obtained

L
In b(u) = \ In

k=l
00

+ У In 
k=L+l

/2.30/

where L is a finite, positive integer. It was shown that the approximation 
to In b(u) improves with increasing values of L, but the use of higher 
values than 5 does not seem to be worth while.

A search was made Q>] for the "best" Jacobi polynomial by minink -' -
the weighted root-mean-square-error /RMSE/ expressed as

RMSE

mav
j w(u) [e (u) - ё] 2 du

max$ “ (u ) du /2.31/

where w(u) is the weighting function and e is the mean of the absolute 
errors of the expansion of In b(u) expressed as

umax
w (u-) e(u) du

£ =
max

w(u) du

/2.32/
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With the assumption of w(u) <* u the RMSE was numerically evaluated for the
systematically varied two parameters у and 6 of the Jacoby polynomial.
By comparing the results the "best" Jacobi polynomial was obtained for every
combination of the fixed range um=v = Itt, 2tt,...,8tt, and order n = 1,2,3,4max
for both L = 0 and L = 5. The parameters у and 6 of the "best" Jacobi 
polynomials were listed in tabulated form. Since the weighting function w(u) 
depends on the frequency distribution in the molecule and on the values of 
the isotopic shifts on the frequencies in order to find the "best" Jacobi 
polynomial for a given molecule it might be necessary to establish a suitable 
weighting function in each case.

In the method to be described in the following for the approximation
to In b(u) polynomials in terms of the even powers of u^ are used, the
convergence restriction u' < 2tt on the Bernoulli series is removed andmax
the amplitude of the error curve is as small as possible.

3. The mlnimax approximation to In b(u)

definitions and theorems which will be briefly recalled before showing its 
use for the function In b(u). The aim is to expand the function In b(u) 
into a series of even powers of u. Let H be a set of the polynomials

pn (ui = l ak u2k /3.1/k=o

and Qn (u) 6 H be the polynomial for which the expression

The so-called minimax approximation method [б] is based on some

max
0<u<u

I In b(u) - Pn (u ) I /3.2/
max

hcto
has a minimum value /u = ---, ™ax—  /. The polynomial Q (u ) is theГПЭ. X К i n
minimax approximation to the function In b(u). Using the notation

En = max I In b(u) - Qn(u)| 0 < u < umax /3.3/

the error function obtained by the Qn(u) polynomial in the form

E ^ u 4) = In b(u) - Qn(u) /3.4/
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takes by the Chebyshev theorem [25j its extreme values -E at n+2 distinct 
points, with alternating sign in the interval [o,u x] , that is

En (û ) = cxÊ  , — -ctEn , En (u^ ) — uE^ , ... /3.5/

0 i ui < u2 < u 3 ... £ umax ; a = ± 1

Conversely, if there is a polynomial which approximates the function with a 
deviation having its extreme values at n+2 distinct points, with alternating 
sign in the interval of the approximation, then this polynomial is the minimax 
approximation of the function in question. Unfortunately, no explicit formula 
can be given for the coefficients of the minimax approximation to a function, 
but there are some numerical processes by which they can be evaluated to a 
desired accuracy. By using these methods the error function of some initial 
approximations to a given functions can be improved so that it obtains the 
properties characterizing the error function of the minimax approximation. The 
partial sum of the Taylor expansion, some interpolating polynomials, the partial 
sum of some orthogonal expansions, the expansion formula fór In b(u) obtained 
by Bigeleisen and Ishida with the use of the Lanczos т method [4] etc. can 
be regarded as initial approximation.

To formulate the minimax approximation to In b(u), it is first 
expanded in terms of Chebyshev polynomials, second the Chebyshev coefficients 
are improved by the method of Hornecker [2б] and finally a numerical test is 
performed to see whether the error function has the properties required by 
the Chebyshev theorem.

The Chebyshev expansion of the In b (u) is written in the form

c 00
In b(u) = — ■ + I ck T*(x2) О < x < 1 /3.6/

к— 1

where

x = u О < u < u
max max /3.7/

i
= I \ ln b(X-Umax) Tk 0 2) — Т - Ц Т  dxr\ V J. X

/3.8/

and
ть(х2) = cos [k arc cos (2x2 - l)] k=0 ,l,2,... /3.9/
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Stands for the orthogonal polynomials transformed to [o ,l]interval, the so- 
called Chebyshev polynomials [24]. Unfortunately, the integrals /3.8/ can be 
evaluated only by numerical processes.

For the calculation of the coefficients c^ , use is made of the 
expansion of In b(u) given by Eq. /2.22/ and the equation

1
In (1+x) - x j * /3.10/

о
Eq. /2.22/ can be thus rewritten as

ln b(u') = I u2
2 ~ 7 Tk=l 4it к 1 -

° 1 + 7 T T 2  У4 TT к

dy • /3.11/

Using an even power series expansion of the function 1A1 + ̂)l27j
= I bm u m + /3.12/

1 + u m=o
77

and substituting it in Eq. /3.11/ we obtained the polynomial approximation
to In b(u) as

2 n
ln b(u ) = yj I b.

m=o
C(2m+2) 1

m £(2 ) m + 1
2m . „ u + H /3.13/

where

/3.14/

and 5(m) = £ l/£m the Riemann zeta function. For the estimation of the
£=1

error H of In b(u) we get by /3.14/

|H| < — SJ2- |h| /3.15/

On multiplying the coefficients bm of the approximation /3.12/ by 
r^2^(mil) an<̂  ЬУ rearran9in9 this polynomial approximation in terms of
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Chebyshev polynomials [24] we get the approximate values of the coefficients 
c^ defined by Eq. /3.8/. On improving the approximate values of the coeffici­
ents c^ by the Hornecker method [26] we get the coefficients of the mini­
max approximation of the function In b(u).

The curves for the absolute error in In b(u) obtained by the mini­
max approximation over the ranges [o,4ir] and [o,8ir] as a function of u 
for orders n = 1-4 can be seen in Figs. 1 and 2, respectively. For comparison 
also the error curves plotted for the Chebyshev /L=0, L=5/, and the "best" 
Jacobi polynomial approximations of Bigeleisen et.al. [5] are shown. It is 
apparent from the figures that the shape of the error function for In Ь(и) 
has the properties of the minimax approximation: it exhibits uniform small 
amplitude oscillations on both sides of the abscissa and has the number of 
extrema required by the Chebyshev theorem.

Fig. 1
Intercomparison of the absolute error in In b(u) obtained by variousV
approximations over the range [o ,4tt] as a function of u for 
orders n = 1-4
.......... "Best" Jacobi polynomial L=5, --------  Chebyshev poly­
nomial L=5, Chebyshev polynomial L=0 [5], __________
minimax approximation.
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Intercomparison of the absolute error in ln(u) obtained by various 
approximations over the range [0,8if) as a function of u for 
orders n = 1-4
.........  "Best" Jacobi polynomial L=5, -------- Chebyshev poly­
nomial L=5, Chebyshev polynomial L=0 [5], _________
minimax approximation.

The 1th derivative of the expression /2.22/ can be written as

In b(u) = (-I)* (f-l)l
k=l ^4tt̂

/3.16/

It can be shown that the derivative of any order of the function In b(u) 
is nonzero over the range C0 'umaxl anc* thus two of the extrema are at the 
end of the interval [28], that is the constant term of the approximation is 
nonzero. This fact, however, does not give any trouble in the calculation of 
the reduced partition function ratio considering that owing to the difference 
In b(u') - In b(u) in Eq. /1.2/ the constant terms cancel each other on 
expanding both In b(u') and In b(u) in the same power series using a 
common u^ax determined by the highest frequency of the light isotopic molecule.

The coefficients a (n A i u,nax) of the approximation

in b(u) = I a(n,k,umax) . (u/umax)2k /3.17/
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for u = 1,2,...,30 and for n = 1-4 are listed in Table I. /As mention- mőix
ed above, the coefficient a(n,0 ,u x) of the approximation equals the 
amplitude of the error curve./

The coefficients a (n 'k 'umax  ̂ as a function of n and к are 
shown in Figures 3,4,5, while the absolute error as a function of n for
u = 2 0  and 30 can be seen in Fig. 6 .max 3

Fig. 3

Coefficients of the minimax approximation to In b(u) as a function
of u for n = 1,2.max '



J.

Fig.

Coefficients of the minimax approximation to 
In b(u") as a function
of umax for n = 3.

a(
n.
k,
Un
J

Fig. 5

Coefficients of the minimax approximation to 
In b(u) as a function 
of umax for n = 4*
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Fig. 6

Absolute error in In b(u) obtained by the minimax approximation 
as a function of n, the order of the expansion for u = 20, 30.

The variation of the absolute error with u__„ for different values of nITlaX
is plotted in Fig. 7.

It can be shown that the error of the (n+1) —  th order approximatioi 
becomes for large orders equal to the error of the n-th order approximation 
multiplied by q, Since

lim
n-*-°°

Jn+1 /3.18/

/see Appendix III/. For large values of umax » 4 is close to unity. This 
means th\,at the error decreases very slowly with increasing n, e.g. for 
u = 2 0  and u = 30, q = 0.54 and q = 0.66, respectively. Thus, the 
error is not reduced even by half if the order of the approximation is 
increased by one. Consequently for too large umax a few terms cannot give 
a good convergence.
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Fig. 7
Absolute error in In b(u) obtained by the minimax approximation
as a function of u„ and n, the order of expansion.max ^

The absolute values of the percent error of the approximation over 
the range [0,20] as a function of n = 2,4,6 are shown in Fig.8.

On substituting Eg. /3.17/ into the expression /1.2/ we obtain

in als'f.  3T  У "  '3-19/

where



I/

Fig. 8

Percent error in in b(u) obtained by the minimax approximation over 
the range [0,6tt] as a function of u and n, the order of 
expansion.

6 / u' max u ,2kmax
/3.20/

“max can ke est;*-mated without actually solving the secular equation by 
applying the "row-sum and column-sum" method used by Bigeleisen et.al. [5].

In the next chapter some applications to polyatomic molecules, an 
analysis of the accuracy obtainable and a comparison of the results of the 
minimax approximation with those obtained by Bigeleisen et.al. [5] will be 
presented.

4. Application of the minimax method
У The minimax approximation method was used for the evaluation of the 

reduced partition function ratios of some pairs of isotopic molecules and the 
approximations to the exact values were compared with those obtained by other 
methods. For the exact calculations of In s/s'f the individual molecular 
frequencies were evaluated by using the Wilson FG-matrix method [29] . The



18

value of u' was computed at each temperature from the highest molecularIHclX
frequency of the system and rounded off to the next higher integer. The 
coefficients of the plynomial for the rounded value of u ,̂ax were taken from 
Table 1. The temperature range covered by the calculation was chosen to be 
wider than that which is experimentally significant.

In Tables II-IV the intercomparison of the Chebyshev expansion [4], 
the "best" Jacobi polynomials [5] and the minimax approximation with the 
exact values of In s/s'f for isotopic pairs in ethylene and methane is 
presented. /The coefficients of the Chebyshev polynomials were evaluated by 
using the "running u" method [4]./

For the deuterated ethylene molecules /Table II/ the value of 
In s/s'f of every isotopic pair was evaluated separately for the planar, 
non-planar and total vibrations of the molecule. It can be seen that the 
errors for the non-planar vibrations are smaller than those for the planar 
and total vibrational spectrum. This is due to the smaller value of u' x
which determines in the first place the error of the minimax approximation,/and to the narrower range of the non-planar vibrations. It can be seen that 
in the case of the total and planar vibrations the minimax method gives bfetter 
results than the Chebyshev expansion, especially so, at room temperature and 
low values of the order n. The accuracy of the minimax approximation is not 
worsened if more protium are substituted by deuterium.

The intercomparison of the different approximations to the In s/s'f 
for the planar vibrations of mono-deuteroethylene /Table III/ is difficult 
because of the fact that different Chebyshev /L=0, L=5/ and "best" Jacobi 
/L=0, L=5/ polynomials yield the best results at different temperatures and 
orders, i.e. the "best" Jacobi polynomials are not always the best. A detailed 
inspection of the values in Table III, however, shows that the minimax method 
gives in this particular example at least as good results as the other 
approximations. Similar conclusions can be made from Table IV for the mono- 
deuteromethane.

The results of the minimax approximation in the case of the deuterated 
methyl halide molecules /Table V / show that at lower temperatures even for 
high values of In s/s'f the method works very well. The maximum error, 11.1% 
is obtained in the case of CD^F-CH^F at 200°K and n=l.

In table VI the results obtained by using the actual value of u 'J 3 max
are compared with those obtained by using the rounded off value for theVievaluation of the coefficients of the minimax approximation in the case of 
CD,F-CH,F. If one uses the actual values of u ' the occasional breaks in 
the monotonous trend of the approximation disappear but it may worsen to some 
extent. Consequently, it presents no special advantage to use the actual value



19

of u ^  , not to mention the difficulty caused by the necessity of evaluating
the minimax approximation coefficients of In b(u) every time the actual
value of u' is used. . max

The results for isotopic methanols, summarized in Table VII show
13 12for the CH3OH- CH-jOH pair of isotopic molecules the iresults are not 

better but in some cases even worse than those obtained for the deuterated 
methanol molecules. This is not surprising if one considers that the error 
of the approximation is determined above all by the value of uĵax which 
is the same for all the isotopic methanol molecules.

It can be seen from the intercomparison of the approximations in the 
case of deuterated water molecules /Table VIII / that about room temperature 
the Bigeleisen-Mayer G(u) expansion gives the best, while the minimax method 
the second best results. The Bernoulli expansion cannot be applied at room 
temperatures at which the condition u^ax < 2тг does not hold. At temperatures 
of 1200°K and 3000°K the Chebyshev and the minimax approximations yield similar 
results and both are better than those obtained from the Bernoulli series. It 
is of interest to note that the percent errors are about equal for the HDO-I^O 
and D2O-H2O pairs of isotopic molecules although the value of In s/s'f has 
doubled by the introduction of the second deuterium into the H^O. It is apparent 
from Fig. 9 in which the errors of the minimax approximation for the different 
vibrations of the K^O, HDO, D2O molecules are shown, if one uses a polynomial 
corresponding to umax ~ 19 and n=l, that the increase in the percent error 
on replacing protium by deuterium in HDO is due primarily to the shift in the 
tdj vibrational frequency.

As a general rule it is found that the accuracy of the approximation 
is sensitive to the distribution of the frequencies of a given pair of isotopic 
molecules. Therefore it can be hardly predicted how many terms of the polynomial 
are needed to obtain a given accuracy. An analysis of the calculated examples 
shows that at about room temperature /300°K/ the maximum error of the approxi­
mation is not more than 20% for n=l, 10% for n=2 and vl% for n=3. In a 
favourable case the error of the approximation may be much smaller.

The relationship between the "rules of the mean" and the polynomial 
expansion of In s/s'f is thoroughly discussed by Bigeleisen and Ishida [4]. 
Considering the minimax approximation from this point of view,, we find that 
e.g. in the case of deuterated water molecules /using w' of H_0 for 
the evaluation of the coefficients of the polynomial for both isotopic pairs/ 
the minimax approximation predicts zero quantum correction to the first order, 
thus satisying the first rule of the mean, /Table IX /. In order to approximate 
the exact value of the quantum correction it is necessary to use a polynomial 
with at least n=3.
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Error curve for the minimax approximation to In b(u) for isotopic 
water molecules /u = 19, n = 1/.
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0 0 .0 0 0 0 0 0 1 6 0 .0 0 0 0 0 9 5 0 .0 0 0 0 9 2 0 .0 0 0 4 2 0.0013 0 .0 0 2 9
a = 2 1 0 .0 4 1 6 6 3 6 6 0 .1 6 6 4 9 0 7 О.373254 0 .6 5 8 4 2 1 .0 1 5 9 1 .4 3 7 8

2 -0 .0 0 0 3 3 9 1 4 - 0.0050704 -0 .0 2 3 1 1 9 -0 .0 6 4 0 4 -0 .1 3 4 6 - 0 .2 3 7 8

0 0 . 0 0 0 0 0 0 0 1 0 .00000 017 0 .0 0 0 0 0 3 5 0 .0 0 0 0 2 6 0 . 0 0 0 1 1 О.ООО34
П - Л

1 0 .0 4 1 6 6 6 6 4 0 .1 6 6 6 6 1 1 1 0 .3 7 4 8 8 4 6 0 .6 6 5 7 6 5 1 .0 3 7 6 5 1 .4 8 7 3 7** J 2 - o .00034710 - 0.00553713 -0 .0 2 7 5 1 2 4 -0 .0 3 3 9 7 2 -0 .1 9 4 1 6 -0 .3 7 4 6 7
3 0 .0 0 0 0 0 5 3 1 0.00030533 0 .0 0 2 9 4 7 3 O .O I3427 0 .0 4 0 3 1 0 .0 9 3 0 6

0 0 .0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0

V

0 .0 0 0 0 0 0 1 4 0 .0 0 0 0 0 1 8 0 . 0 0 0 0 1 1 0 .0 0 0 0 4 4
1 0 .0 4 1 6 6 6 6 7 0 .1 6 6 6 6 6 5 0 0 .3 7 4 9 9 2 6 2 0 .6 6 6 5 7 2 6 1 .0 4 1 0 6 7 1 .4 9 7 5 3 5

n=4 2 - 0:00034722 -0 .0 0 5 5 5 4 2 0 -0 .0 2 8 0 6 3 5 1 -0 .0 8 8 0 8 2 8 - O .2I I 7O5 -0 .4 2 7 3 3 8
3 O.OOOOO55I 0 .0 0 0 3 4 8 8 4 0 .0 0 3 8 4 5 5 0 0 .0 2 0 0 8 3 8 0 .0 6 8 8 7 6 0 .1 7 9 2 3 6
4 -0 .0 0 0 0 0 0 1 0 -O.OOOO2I 7B -0 .0 0 0 4 4 6 3 6 -0 .0 0 3 3 5 6 9 -0 .0 1 4 4 5 8  . -0 .0 4 3 8 1 2

T a b le  I .  The c o e f f ic ie n t s  a ( n ,k ,U Q ax)  o f  th e  m inim ax a p p ro x im a tio n



Table I. (Continued.)

uaax
к

7 8 9 10 11 12 13 14

n 1 0 0.047 0.067 0.091 0.119 0.149 0.181 0.216 0.252n-1 1.553 1.920 2.303 2.697 3.102 3.515 3.934 4.359

0 0.0056 0.0096 0.015 0.021 0.029 0.039 0.049 0.061
n=2 1 1.9157 2.4416 3.008 3.610 4.241 4.898 5.577 6:2752 -0.3737 -0.5405 -0.735 -0.956 -1.198 -1.461 -1.741 -2.036

0 0;00082 0.0016 0.0029 0.0048 0.0072 0.010 0.014 0.018
-x 1 2.01030 2.6008 3.2528 3.9603 4.7173 5.519 6.360 7.236n-3 2 -0.63699 -0.9871 -1.4264 -1.9530 -2.5629 -3.251 -4.012 -4.840

3 0.17986 0.3065 0.4762 0.6900 0.9476 1.247 1.587 1.965

0 0.00013 0.00031 0.00063 0.0011 0.0019 0.0030 0.0043 0.0061
1 2.03413 2.64800 3.33542 4.0920 4.9131 5.7939 6.7296 7.7158

n=4 2 -0.76157 -1.23604 -1.86596 -2.6602 -3.6221 -4.7507 -6.0421 -7.4900
3 0.38498 0.71863 1.20778 1:8729 2.7273 3.7779 5.0262 6.4701
4 -0.10462 -0.21099 -0.37585 -0.6097 -0.9201 -1.3119 -1.7874 -2.3470



Table I. (Continued^)

umax
к 15 16 17 18 19 20 21 22

n=l x 0.290
4.790 0.3305.224 0.3715.662

0.414
6.104 0.4576.548

0.502
6.994

0.548
7.443 О . 5 9 57.894

0
n=2 1

2
0.074
6.990

-2.345
0.088
7.719-2.666

0.1038.461
-2.998

0.119
9.215-3.340

0.136
9.978

-3.690
0.153
10:751-4.048

0.172
11.531
-4.413

0 . 1 9 1
1 2 . 3 1 9
-4.785

0
n=3 1  

3

0.023 8; 144 
-5;730 
2.377

0.0299.080
-6.676
2.823

0.035 10.042 
-7.674 
3.393

0.04311.027
-8i7193.801

0.050
12.032
-9.807
4.329

0.058 13.056 
-10.934 

4.881

0.06714.096
-12.098

5.454

0 . 0 7 7
1 5 . 1 5 2

-1 3 . 2 9 4
6 . 9 4 7

0
1

n=4 2
34

0.0082
8.7483-9.0872
8.1044

-2.9897

0.011
9.823-10.326
9.922

-3.713

0.01310.936
-12.697
11.915
-4 .5 I5

O.OI712.085
-14.692
14.074
-5.390

0.021
13.267-16.804
16.389
-6.337

0.02514.478
-I9 .O2 3
18.853
-7.351

0.02915.716
-21.344
21.455-8.428

0 . 0 3 4  
16.979 

-23.759 
24.187 
-9.565



Table 1. (Continued)

umax
к

23 24 25 26 27 28 29 30

n 1 o 0.643 0.692 0.741 ' 0.791 0.842 0.894 0.946 0.999n- 1  x 3.346 3.800 9.256 9.712 1 0 . 1 7 0 10.629 11.089 11.549

0 0 . 2 1 1 0.232 ■0.253 0.275 0.297 О.3 2О О . 3 4 4 0 . 3 6 8
n= 2 1 13.113 13.914 14.719 I5 . 5 2 9 16.344 1 7 . 1 6 2 17.984 18.810

2 -5.161 -5 . 5 4 3 -5.930 -6 . 3 2 0 -6.715 -7.113 -7.513 -7.917

0 0.037 0.097 0.108 0.119 0.131 0.144 0.156 0 . 1 7 0

n * 1 16.222 17.305 18.399 19.504 20.619 21.743 22.875 24.015n-3 2 -14.521 -15.775 -17.055 -18.358 -19.683 -21.028 -22.391 -23.772
3 6 . 6 5 8 7.286 7.929 8.587 9.258 9.941 10.635 11.340

0 0.039 0.045 О.О5 1 0.058 0.064 О.О7 2 0.079 0.087
1 18.266 19.573 20.900 22.245 23.607 24.984 26.376 27.781

n=4 2 -26.261 -28.844 -З1 .5ОЗ -3 4 . 2 3 2 -37.027 -39.884 -42.798 -45.765
3 27.041 30.009 33.083 36.257 39.525 42.830 46.317 49.8314 -10.758 -12.003 -14.397 -14.638 -16.023 -17.448 -18.911 -20.411



Table II. Comparison of the minimax method with the Chebyshev expansion
of In s/s'f for ethyleneJ

Class of 
vibrations

T
°K

Exact 

In s/s'f
n=l

P e r
n=2

c e n t  e r r  
n=3

c2h 5d/c2h4 .

0 r
n==4

Planar 3 0 0 2.09490 -40.42 -14.0 -10.5 5.5 -3.8 -O.I3 0.58 -0.52
1200 0.261075 -3.0 -1.9 -O.O3 I -0.040 -0.019 0.020 0.001 -0.001
3 0 0 0 0.0465407 -0.3S 0.79 -0.000 -O.OI5 -0.000 -0.000 Q .000 0.000

Non-planar 3 0 0 0.225675 -2.3 -7.6 -0.000 0.27 -0.11 0.039 0.008 -0 . 0 0 31200 0.0176614 0.017 1.3 0.001 -0.011 -0.000 -0.001 0.000 -0.000
3000 0.00287159 0.005 0.51 0.000 0.001 -0.000 -0.000 0.000 -0.000

Total 300 2.32057 -42.9 -10.1 -11.8 6.0 -3 . 9 0.021 О . 5 4 -0 . 5 41200 0.278736 -3,6 -1.2 -0 . 0 7 1 0.010 -0 . 0 1 9 0.022 0.001 -0.000
3000 0.0494123 -0.50 0.91- -0.001 -0.010 -0.000 -0.000 0.000 0.000

cis-C~Ec. 2D2/^2Н^

Planar 300 4.19392 -40.4 -13.9 -10.4 5 . 2 -3.8 -0.007 0.55 -0 . 5 4
1200 0.522391 -5.0 -1.8 -0.022 -0.048 -0.020 0.020 0.001 -0.001
3000 О.О9 3 0 9 О7 -0.39 0.80 0.000 -0.015 -0.000 -0.000 O'.OOO 0.000

Non-planar 300 0.453482 -2.8 -7.2 0.089 0.16 -0.11 0.048 0.008 -0.004
1200 0.0353334 -0 . 0 2 7 1.3 0.001 -0.010 -0.000 -0.001 0.000 -0.000
3000 о . 0 0 5 7 4 3 5 9 -0.002 0.52 0.000 0.001 -0.000 -0.000 0.000 0.000

Total 300 4.64740 • -4 3 .О -10.0 -11.7 5.8 -4.0 O.I5 0 . 5 1 -0 . 5 51200 0.557730 -3.7 -1.1 -0.064 0.004 -0.020 0.022 0.001 -0.0003000 0.0988343 -0.51 0 . 9 2 -0.001 -0.010 -0.000 -0.000 0.000 0.000



Table II. ( Continued^

СХазз of 
vibrations

T
°K

Exact 
In sls'f n=l

P e r c e n t
n=2

trans-C^H^

e r' r 0  

n=

V е 2*4

r
3 n=4

Planar 500 4.19275 -40.4 -15. S -10.5 5 • 5 -3.8 -0.12 0 . 5 9 -0 . 5 41200 0.522211 -5.0 -1.8 -O.O3 I -0.040 -0.020 0.020 0*001 -0.001500C 0.0950855 -0.58 0.79 -0.000 -0.015 -0.000 -0.000 0.000 0.000
Kon-planar 500 0.456029 -5.4 -6.7 0.16 Q .067 -0.11 0.046 0.006 -0.0021200 0.0555562 -0.078 1.4 0.002 -0.007 -0.000 -0.001 0.000 -0.000

5000 0.00574407 -0.010 0.53 0.000 0.002 -0.000 -0.000 0.000 -0.000
Total 500 4.64875 -4 5 . 0 -10.0 -11.9 5.1 -4.0 О.О7 1 0 . 5 4 -0 . 5 41200 0.557567 -5.6 -1.2 -0.073 0 . 0 1 2 -0.020 0.022 0.001 -0.0005000 0.0988275 -0 . 5 0 0.92 -0.001 -0 . 0 1 0 -0.000 -0.000 0.000 0.000

Planar 500 4.19744 -40.5 -15.8 ' -10.5 5 . 4 -3.9 -0.047 0.62 -0.591200 0.522525 -5.0 -1.8 -0.029 -0.041 -0.020 0.021 0.001 -0.001
5 0 0 0 0.0950875 -0.58 0.80 0.000 -0.015 -0.000 -0.000 0.000 0.000

Kon-planar 500 0.451755 -2.4 -7.6 -0.023 0.29 -0.100 0 . 0 3 1 0 . 0 0 9 -0.004
1200 0.0555247 0.011 1.3 0.001 -0.011 -0.000 -0.001 0.000 -0.000
5000 О.ОО5 7 4 5 2 2 0 • 004 0.51 0.000 0.001 -0.000 -0.000 0.000 0.000

Total 500 4.64920 -4 5 . 0 -10.0 -11.9 6.0 -4.0 0.10 0.58 -0.60
1200 0.557650 -5 . 7 -1.2 -0.070 0.010 -0.020 0 . 0 2 3 0.001 -0.0005000 0.0988507 1 0 • \л о 0.92 -0.001 -0.010 -0.000 -0.000 0.000 0.000



Table II. (continued)

Class of T Exact P e r c e n t e r r 0 r
vibrations °K In s/s'f n=l n=2 n=3 n=4

CgHDj/C^

Planar 3 0 01200
3000

6.299190:783702
0.139639

-40.5-3 . 0
-0.39

-1 3 . 8-1.8
0.80

-10.5-0.024
0.000

5.3-0.046
-0.015

-3.9-0.020-0.000
0:016 
0 ;021 

-0.000
0.600.001
0.000

-0.60
-0.0010.000

Non-planar 3 0 0
1200
3000

0.684142
О.О5 ЗОЗ5 10.00861612

-3.4
-0.079-0.011

-6.71:4
0.53

0:170.002
0.000

0 .062 
-0.007 0.002

-0.11
-0.000
-0.000

0.047-0.001
-0.000

0.006
0.000
0.000

-0 . 0 0 3-0.000
-0.000

Total 3 ОО
1200
3000

6.98333
0.8367370.148256

-43.1
-3.7
-0.51

-9.9-1.10.92
-11.8
-0.066
-0.001

• 5.9 0.006 
-0.009

-4.0
-0.020
-0.000

0.20
0.023-0.000

0:54
0.001
0.000

-0:59-0 : 0 0 0
0.000

V C2H4
Planar 300

1200
3000

8.40818'
1.04525
0.186197

-40.6
-3 . 1-0 .40

-13.7-1.8
0.81

-10.4
-0.020
0.000

5-2
-0.049
-O.OI5

-3-9-0.021
-0.000

0.094
0.021
-0.000

0.60
0.001
0.000

-0.63-0.001
0.000

Non-planar 300
1200
3000

0.916751О.О7 О7 4 7 4
0.0114891

-3-8
-0.13
-0.019

-6.2
1.4
0.54

0.2 7 
О.ООЗ 0.000

-0.059-0.006
0.002

-0.11
-0.000
-0.000

0.056
-0.001
-0.000

0.004
0.000
0.000

-0.002
-0.000
0.000

Total 300
1200
3000

9.324931.11600
0.197687

-4 3 . 2
-3.7-0.52

-9.7 ' -1.1 
0.93

-11.8 
-0.064 
-0.001

5-90.004
-0.009

-4.1
-0.021
-0.000

Q .29 
0.023 -0.000

0 . 5 4
0.001
0.000

-0.61 
-0.000 
Q .000

matrix elements taken from [30] , geometry parameters from [31] «
2Por each temperature and order the figure on the left'is the error of the Chebyshev expansion [4 ] 
and that on the right the error of the minimax method.



Table III. Intercompariaon of various expansions of in s/s'f for 
planar vibrations of ethylene

T
°K

Exact 
In s/s'f n=l

P e r c
n=2

e n t  e r r o r  
n=3 n=4

200 3.42613 -57.32 0.69 -24.6 5.0 -11.0 -1,66 -0.75 2.1
10.2 11.3 -7.1 -7.0 -4.7 0.177 1.58 0.119

-15.6 6.4 1.0 -2.2

300 2.09490 -40.4 3.8 -10.5 ’ 4.0 -3.8 -1.23 0.58 0.85
12.2 10.8 -4.1 -4.9 -2.5 0.061 0.92 0.017

-14.0 5.5 -0.13 -0.518

w o 1.44128 -28.0 5.0 -4.6 ' 2.9 -1.60 -0.81 0.35 0.3311.2 9.8 -2.6 -3.3 -0.178 0.033 0.39 -0.005-8.2 0.46 1.21 -0.34

600 0.812063 -13.9 5-2 -0.99 1.38 -0.41 -0.30 ' 0.073 0.057
4.9 6.5 -1.62 -1.41 0.002 -0.023 0.040 -0.004

-5.4 0.005 0.38 -0.050

800 0.519383 -7.6 4.3 -0.27 0.67 -0.129 -0.106 0.016 0.012
5.4 5.3 -0.60 -0.70 -0.001 -0.002 0.008 -0.001

-3.6 -0.065 0.13 -0.009



Table III. (Continued)

T Exact 
In s/s'f n=l

P e r c e
n=2

n t e r r o r  
n=3 n=4

1000 0.358527 -4.5 3-5 -0.084 0.35 -0.047 -0.041 0.004 0.003
2.9 3.5 -0.38 -0.33 0.006 -0.003 0.002 -0.0001 - -1- • I? -0.23 0.059 0.000

1200 0.261075 -3.0 2.7 -0.031 0.192 -0.019 -0.017 0.001 0.001
2.5 0.53 -0.196 -0.007 0.003 -0.000 0.000 -0.000

-1.36 -0.040 0.020 -0.0C1

3000 0.0465407 -0.38 0.57 -0.000 0.007 -0.000 -0.000 0.000 0.000
0.61 0.58 -0.006 • -0.007 0.000 -0.000 0.000 -0.000

0.79 -0.015 -0.000 0.000

1 See the footnote 1 of Table IX.
2Por each temperature and order the results of the various expansions are arranged as follows:

Chebyshev (L=0) Chebyshev (b=5)
"Besf'Jacobi (L=0) "Best,rJacobi (L=5)minimax method

The errors for the Chebyshev and "Best" Jacobi expansions were taken from [5] .



Table IT. Intercomparison of various expansions of in s/s'f4for methane •jl

m
°K

Exact 
In s/s'f n=l

P e r c e
n=2

n t e r r o r  
n=3 П=4 .

200 4 .OOI7 O -5 8 .3 2 -0.43 8.4 10.1
-15.8

-24.5 6.2 -6.3 -5.8
6.2

-9.7 0.60 
-3.1 1.74 -2.0

-0.52 2.7 2.2 0.6 
-1.8

300 2.45632 -41.7 2.5 10.4 9.4 
-10.1

-10.6 • 4.6 
-3.8 -4.3

1.3
-3.0 -O-.QI7  -1.72 0.89 

0.76
0.73 1.11 1.21 0.23 

-1.21

400 1.69197 -29.5 3.7 9.5 8.4 
-7.9

-4.7 3.2 
-2.5 -3.10.80

-1.15 -0.195 0.36 0.46 
0.53

0.43 0.44
0 . 3 6  0 . 0 7 8

-0.48

600 0.952670 -1 5 . 1  4.2
3 . 8  5 . 5  

-5.1
-1.07 ' 1.46 -1.66 -1.42 

0.27
-0.28 -0.136 
0.148 0.088 

0.21
0.089 0.076
0 . 0 3 1  0 . 0 1 1  -0.082

800 0.608673 -8.4 3.7 
4.7 4.6 

-3.5
-0.31 0.70 -0.64 -0.72 

0.089
-0.09 -0.059 
0.045 0.033 

0.077
0.019 0.016 0.006 0.001 

-0.017



Table IV. (Continued.4)

T
°K

Exact 
In s/s ' f n=i

P e r c
n=2

e n t  e r r o r  
n=3 n=4

1000

1

0.419890 -5.2 3.0 2.4 3.1 -1.4 .
-0.109 0.36 -0.41 -0.36 

-0.15
-0.034 -0.025 0.022 0.009 0.046

0.005 0.004 0.001 0.000 
-0.003

1200 0.305650 -3.4 2.4 2.2 2.5 -1.8
-0.045 0.20 -0.21. -0.20 0.012

-0.014 -0.011 
0.009 0.004 

0.013
0.002 0.001 0.000 0.000 -0.001

500C 0.05^4606 -0.46 0.52 . 
0.55 0.55 0.79

-0.001 0*007 
-0.007 ■ -0.007 -0.013

-0.000 -0.000 
0.000 0.000 -0.000

0.000 0.000 
0.000 0.000 0.000

* F matrix elements and geometry parameters taken from [52]
2 See footnote z of Table III.for the arragement of the results of the various expansions
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Table V. Approximation to In s/s'f by the rainimax method for 
deuteratod methyl halide molecules.^

T
°K

Exact 
In s/s'f n=l

Percent
n=2

error
n=3 n=4

CD^F/OH^P

200 13.016222 -11.1 6.3 -1.6 -2.3
300 7.901031 -6.1 2.0 0.93 -1.21
400 5.391878 -4.8 1.3 0.66 -0.46
1200 0.948549 -1.08 0.045 0.016 -0.001
3000 0.167998 0.93 -0.008 -0.000 0.000

c d-5ci/ch5cl

200 12.822894 -a.a 4.8 1.16 -2.9300 7.769187 -6.9 3.2 1.03 -1.1
400 5.299955 -5.6 2.0 0.71 -0.41
1200 0.937514 -1.4 0.081 0.016 -0.001
3000 0.166523 0.85 -0.009 0.000 0.000

CD^Br/CH^Br

200 12.668759 -9.1 5.2 1.5 -2.7300 7.670660 j -7.3 3.4 1.19 -1.0
400 5.233233 -6.0 2.1 0.78 -0.38
1200 0.928145 -1.56 0.082 0.017 -0.001
3000 0.165016 0.83 -0.010 0.000 0.000

CD3I/CH3I

200 12.566487 -9.8 6.1 1.4 -2.5300 7.609738 -8.0 3.9 1.1 -0.94
400 5.195229 -6.6 2.4 0.75 -0.351200 0.925714 -1.8 0.098 0.016 -0.001
3000 0.164877 0.79 -0.011 0.000 0.000

¥ matrix elements taken from [33] »geometry parameters used 
are given in £33] too.
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Table VI. Comparison of tho approximations to In s/s'f for
CDXF/CH,F with the actual u and the rounded um r .'1 3 ' 3 max max

T
°K

umax Exact 
In s/s'f Пят 1

Percent
n=2

error
n=3 n=4

300 22.78 13-016222 -11. I2 6.3 -1.6 -2.3-11.7 7.3 -2.3 -1.8

300 15.19 7.901031 -6.1 2.0 0.93 -1.2
-9.3 4.9 -0.83 -0.7

400 11.39 5.391878 -4.8 1.3 0.66 -0.46-7.6 3.2 -0.28 -0.26

1300 3.80 0.948549 -3 .08 0.045 0.016 -0.001-2.0 0.17 0.001 -0.001

3000 1.52 0.167998 0.95 -0 .008 -0.000 0.000-0.39 0.006 0.000 -0.000

'See footnote Í of Table V.
2 For each temperature and order the upper number Jg calculated
by rounded the lower by the actual value of umax J max
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Table VII. Approximation to In s/s'f for 
isotopic methanol molecules.

T
°K

„ i. 2Exact 
In  s/s'f n -1

P e rc e n t
n - 2

e r r o r
n=3 n=4

CH^OD/CH^OH

200 4.139935 - I 9 .O 14.3 0.035 -1.9ЗОО 2.562505 —16.5 9 .2 0.48 -0.72
400 1.786176 -12.4 З .З 1.8 -0.551200 O.35245I - 2 . 1 -0.24 0.073 0.002

3000 0.065525 -0.35 -0.013 0.001 0.000

CD^OH/CH^OH

200 12.299398 5.3 —4.4 1.8 0 .2 2
300 7.428451 6 . 0 -2.9 1.2 0.37400 5.045085 8.3 -2.1 0.46 0.41
1200 0.866466 5.4 -0.12 -0.015 0.004
3000 O . I5I 97O 1.18 -О .ОО3 -0..000 0.000

CD^OD/CH^OH

200 16.444358 - 2 . 1 -Ö .3 6 1.4 -0.34500 9.993444 - 0 . 8 6 -0.069 1.05 0.081400 6.832797 2.1 -0.78 0.82 0. .161200 1.219061 3.1 -0.16 0.010 O.OO'i
3000 O .2I 75O I 0.72 -0.006 0.000 0.000

J3CH50H/12CH^OH

200 0.213980 12.6 4.1 1.7 -4.2300 0.127058 11.4 3.7 1.9 - 1.65400 0.084978 12.2 2.6 1.7 -0.39
1200 0,014089 5.3 0 .2 1 0.061 0.0073000 0.002470 1.1 0.008 0 .0 0 0 0 .0 0 0

P matrix: elements taken from [>1j , geometry parameters from [35] •
2 The contribution f rom the hindered rotation of the OH group is not 
included in In s/s'f exact.



Table VTII. Intercomparison of various approximations to In s/s'f for deuterated water molecules.

P e r c e n t e г г o Г P e г c e n t e г г 0 Г
I

T Exact Bige lei sen-Mayer Chebyshev Bernoulli Minimax method^
°K In s/s'f n=l n=2 n=3 n=l n=2 n»3 n=4 n»2 n=3 n=4 n=l П=2 n=3 n=4

HDO/H^O HDO/HgO

3001200
3000

2.58246
0.3778300.0714062

-2.4 0.49 -0.13 • -47.9 -4.2 
-0.45

-16.30.0120.004
-7.5-0.069-0.001

0.16
0.0050.000 22.94.1 . -8.9 -0.26 3.90.018 -1.77-0.001

-20.2
-4.1
-0.78

-6.9-0.11
-0.007

0.026
0.0550.000

-0.95-0.003-0.000

DgO/HgO DgO/HgO
I

30012003000
5.201780.756234
0.142830

-3.2 0.72 -0.18 -48.3 
-4.3 -0.46

-16 ;7 -0.0050.004
-7 '.8-0.072-0.001

0.17
0.0050.000 22.84.1 -8.9-0.26 3.90.018 -1.76-0.001

-19.6-4.0
-0.77

7.3-0.095-0.007
0.24
0.0590.000

-1.02
-0.005-0.000

___________1

* The results of the Bigeleisen-Mayer, Chebyshev and Bernoulli approxima­
tions taken from [4] .

2F matrix elements and geometry parameters taken from [36].



Table IX. Deviation from the first rule of the mean, for water :

2 In s/s'f
/

In s/s'f

т
°к

Exact Order Bigeleisen-Mayer^ Chebyshev (l=5)2 Chebyshev (b=0)2 Minimax method

зоо -3.687 10 2 1 4.900 10“| 0 ® -3 0 —22 -4.906 10 % -1.286 10-2 -3.994 10 2 -1.490 10 %
3 -3.410 10“^ -2.630 10 2 -2.181 10 * -2.568 10 *

1200 -5.741 IO"4 1 0 0 -4 0 пл-42 -4.588 i<rj -4.441 10^ -4.43 10^7
3 -5.516 10^ -5.482 IO“4 -5.46 10“4

* P matrix elements and geometry parameters taken from [31] . 
2 Values taken from [4] .
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APPENDIX I

It will be shown that the series expansion /2.1/ converges at the 
rate of the geometric progression. For convenience, the consideration is 
restricted to the general term in

sh (x. + ^ iS. I sh(x. — i d . )„ , V 1 2 i) , V 1 2 V  г 1 . 2k+l 1 „(2к+1), 4
S _ ln , 1 , ln 1 . . E .k 6i (2k+l)I F (Xi)

xi + 2 6i xi " 2 6i k=° 4 ^
/ 1 /

where

Y 00 / у  ̂  \
F(xi)- i„ _ ^ . tji l n (i + _ ii _ )  /2/

It can be readily shown that

F (2k+l)(*l) ' (2k>  j  T - ----- 1 'k+l/2 « ■  [(2k+l) a r c t g . ^ 1  /3/lxi + 4тт Л / L 1 J
Substituting expression /3/ into /1/, we get 

M 62k+l
s = I - 2Й+Т Í "7---- --- ---- Fk+x/2 cos i(2k+1) arctg /4/k - 1  4  * = 1  ( * 2  +  4 t t 2  Я 2 )  7  L  1  J

Г 2 ̂i кthat is, a series convergent for q = — -r-=----- < 1  at a rate q .
4 fx^ + 4tt2)



iá

APPENDIX I l

It will be shown that the series /2.8/ converges faster than one can expectД \Jfrom condition J_1 < j given by Vo;jta.
ui

We consider the Eq. /2.8/ of the form

ln s/s'f = I I f-l)k G.(u )(Au )k 111
i k=l 1 1

where

S W  -  - ( ё т ^ '-  « ч Ч '1 ív

from which in the same manner as in APP.I. we get the expression

oo r* "
Gk (u i') “ I ------------- \k+i /2 COS (k + 1 ) arctg Ч Г  /3/(uj + 4л2 Sf L ^

On substituting /3/ into /1/ we obtain a series which is convergent for every 
value of i, at a rate qk , where nui

q T ~ 2  *



39

APPENDIX III

The formula /3.18/ can be obtained by expanding the function In b(u) 
in terms of Chebyshev polynomials as follows:

ln b(u) = I Aj T*(x2) О < x < 1
l = o

111

where

x u
umax 121

The coefficients A^ can be formulated in terms of a Chebyshev expansion 
of the function In (l + sx2) as

oo

ln(l + sx2) = l T*(x2) , s =
l —о

umax
2itk 111

where

r. c_\ _ 1 + /l+s „ /_4 2(-l)^+  ̂ s^
„ ' 21n ' B * (s) ' (i ♦ /i t ; ) 2 *

Л-1,2,... /4/

and the coefficients A. can be expressed as

Al  BH, , . ,k=l \ 4тт к
max
2 ~ 2 /5/

bet

e = max
n o<u<u-- max

In b(u) - Sn(u) / 6 /

and

E = max I In b(u) - Q (u)o<u<u — — max
/7/
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where Sn is the n-th partial sum of Eq. /1/ and Qn is the minimax 
approximation to In b(u).
It can be shown than

en I£=n+l
/8/

which by /4/ can be rewritten in the form

OO 00
F'n k=l J +1 Z 4k ' 4k (l + /I+19 У

/9/

For large n, we find
n+1

„ 2 ql
en n+Г ~ T ~ =~ql

/ 10/

Instead of /10/ one can use the expression

[1 + 0 ( 1 ^ ) ]  n i l

According to Lebesque's theorem [25], for large n

E < e < c ln n E /12/n — n — n

where c is a positive constant. Thus we can write

1c In n e < E < e n — n — n /13/

Applying now the formula /11/ to this equation, it can be seen that an equation
of the form /11/ holds also for E^^nn

E n n - 4, [i t o  (ia-a)] /14/

Hence

1 + 0 m sr1)'
n+1

-

1 + 0 ]
/15/
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in which the ratio tends to 1 if n goes to infinity and therefore

lim
n+°°

n+1
n (l + /l+s7)2

1я1 = q ; sx = r / / 16 /
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