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ABSTRACT

Given a function f(p p, ) of the scalar product of two timelike, light-
like or spacelike four-vectors it can be expanded in terms of the products
Y°(p ) of spherical functions on the (Pa)2 and (p")2 hyperboloids.

P P

Simple formulas for the evaluation of the expansion coefficients are derived.
Six types of expansions exist according to whether pa or p”~ are timelike,
lightlike or spacelike four-vectors.

AHHOTALNA

oyHkuna F(p PN) OT ckKansapHOro npov3BefeHusa ABYX BpeMeHW-, CBeTOo- Wau
NPOCTPaHCTBOMNOAOOHLIX 4-BEeKTOPOB pa3foxmma no npoussegeHuam YA(pa)*Y° (@)

2 2 P 3 P
chepunuyeckmnx QyHkKuUmin Ha runepo6onongax (Pa) u (p”) . BoiBegeHbl NpocTbie (QopMybl
ONA BblUMCNEHUA KO3QOUUMEHTOB pa3/ioxeHus.limeeTcsa wecTb TUMNOB pa3/I0OKEHUn, Cco-
OTBETCTBYWWNX BPEMEHW, CBETO- WM MNPOCTAHCTBEHHOMY XapakTepy 4-BeKTOpOB Py

KI1VONAT

Két idb6szerld, fényszerid vagy térszeriu vektor skalarszorzatanak f(pap, )
fluggvénye kifejthetdé a (pa)2 U . ®, )» hiperboloidon értelmezett gombfigg-
vények Y~ (pa)*Y®(p”) alakl szorzata szerint. Egyszerd formulakat adunk a

kifejezési egylutthatdok kiszamitasara. Hatféle kifejtés létezik aszerint, hogy
pa és pb idbszerl, fényszeri, vagy térszeri vektor.



1. INTRODUCTION

In a recent paper [1] a complete set of orthonormal functions on the
timelike and spacelike hyperboloids as well as on the light cone have been
derived. The homogeneous spaces considered are on the surfaces u”ull =
= (u°)2-(ul)2-(u2)2-(ul3)2 = 5 (with 5 = 1,0,-1) and can be specified as
follows:

i - upper sheet of the double-sheeted hyperboloid,
£=1,uuy=1, u° >1,
HQ : forward light cone, £ = 0, u’\uu =0, u0 >0,

H_ : single-sheeted hyperboloid, 5 = -1, u®uu = -1.

A parametrization introduced in [1] can be written in a unified form

for all the three homogeneous spaces as

1-al2 - -
+ . ., ., ozl -1 4 z
u = +V- "u =17" u-=1 (€))
€ =1,0,-1)
where u+ = u® + u3, u = u°-u3, u = (i1, u2), z = (X,y)- The parameter |

ranges over 0<£<“ for the hyperboloid H¥ and the cone HJ and over
(1~0) TFor the hyperboloid H_. The two-dimensional vector z covers the entire
(x,y) plane in each case.

Denote the generators of spatial rotations and boosts by M and W. The
spherical functions on either of the above spaces satisfy then the eigen-
value equation of the Casimir operator,

o2 - s2)Y  FZ 2 by @

where jQ = 0, a is real continuous for the spherical functions on H*, Hgqg
and on H_ for the continuous part of the spectrum. There is also a discrete
spectrum on H_ for which o0=0, jQ=integer.

The basis is defined by the eigenvalue equation of the horospheric
momenta

Gix + M2)Y = PjY , (N2 MAY = p2y ®

which hold for all the three values of £.



The simultaneous eigenfunctions of Egs. (@) and () derived in [1] are as

follows;

A
1. Double-sheeted hyperboloid (H+ , C=1, jo=0)

yaUf$) = LKiaoO(l_ e-i?z
@
(0<a<»>)
where K1a is the third kind modified Bessel function [2], P P1P2}"
2y, P = /(Px)2 +
2. Light cone (HQ , 7?=0, j85©)
°(«.,2) = p-1a SJ].- @
1a/ir ’
®
(o< <),
3. Single-sheeted hyperboloid (H, E = -1)
a. Discrete spectrum (a = 0, j = integer)
. ,1 -i5z,
Y °U,Z) = in/TigUl Q4P i) Ton ®
®
M — Jg — +11 12t ==e)
where ‘Jn is the Bessel function,
b. Continuous spectrum ((Jo=0, a continuous)
* —_ —_—— * H * H 1 (7)
Y>P z) = 7/a_sﬁill'a 1Jieop I*I><i7 e_iP2)
where e = sg(i.) = +1 and J‘iea is the Bessel function.

The functions given by Egs. (@) and () form a complete set of functions
on Hl: and on H&. For a complete set on the single-sheeted hyperboloid H_*
both the spherical functions of the discrete (6) and the continuous spectra
(7) are needed.

The aim of the present paper is to give formulas for the expansion of a
sufficiently well behaved function f(udu]D) of the scalar product of twg four-
vectors in terms of spherical functions of Y°(u ) and Y*(u, ). Let e.g.
(ual)2:1, (u,D )2:1 be two timelike vectors. Thgn gn expangion of this kind
looks like

f(ua Vv = a<a> V ua>*yub> , ®
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where the coefficient a(a) 1is determined by

aa (@ dw shwsin(aw)f (chw)
"\

®
(chw = (u3uD)3I, “Oxt<@) -

The expansion (8) is conveniently presented in the form of the addition

theorem

1 sin (RJ)

d2P Y°(ud* Y°(u, ) ao
. 2 a ? b wla STW
_ - 1 sin(owm) . _
and a subsequent expansion in terms of > shw as is given by
Mo
f(chw) a@ S'@m (1D

This is a sine Fourier expansion whose inverse is given by Eq. (9)-

A kind of addition theorem has been derived in [1]. By addition theorem
in the present context the one given by Eq. (10) and by its counterparts for
spacelike and lightlike vectors are meant. Analogous theorems in other, e.g.
in angular momentum basis, can be found in literature, cf. [3], [4]-

Due to the presence of the continuous spectrum a proper mathematical
framework for treating the spherical functions is the theory of rigged Hilbert
spaces. Its application to the present problem as well as the derivation and
rigorous meaning of the addition theorems are outlined in the Appendix. It is
recommended especially for understanding of the addition theorems where light-
like vectors are involved. In the next section addition theorems analogous
to the one considered above are given for u , u, timelike, lightlike and
spacelike, which amounts to six cases.

2. ADDITION THEOREMS

1. Timelike-timelike case

Let (ua)2 = 1, @W)2 =1 , (na>nbL6H|]) be two timelike vectors. The
spherical functions corresponding to them are given by Eq. (4). Consider now
the integral

d2? Ya(u )* Yg(ub_) a2
? a

and denote the parameters of u and u, by I , z and I,, 2z as is given by
Egq. (@ with 5=1. The integration can be performed in polar coordinates either
directly or by noticing that 1° is a Lorentz invariant quantity thus depend-



ing on the scalar product (uaub) only in which case it can be evaluated in
the frame uvua = (,0,0,0), ub = (u”,0,0,u™) which corresponds to the values of
e

-
the coordinates, Ta=l, za”°; 0<"b<0*" zb=°*
The result is In any case

d2P Y°(u )* Y®(u ) = - — 47T a3
5 a ? b n20 shu
with
_ _ P2 2 'b 2-
chu, = (uaub) = 2_a b[la + |.b + % ) 1. (@))

To obtain the expansion of a function f(uauu) in terms of spherical functions

expand shwf(choj) in Fourier integral,

co

shoif (choi) adcr a(a)sin(oa)) as5)

— 00

As asin(ow) is an even function of o only the even part of a(a) contri-

butes which means that a(a) can be supposed to be an even function, i.e.

shof(chw) a(a)sin(aoj) - (16)

This can be easily reversed,
®

aa(o) = it dau shtosin(aw) f (cho) . an

co

Substituting (13) into (16) one gets the expansion (8),

2 ) .
f(uaub> = 2 da d2? a@ Y?(ua) Y®?(u.b) . (18)

2. Timelike-lightlike case

Let u2=1, k2=0 (uGH*,k6H*) then the addition theorem is

d2? y°(k)*Y°() = —LU- M1l r(ia) (ku)-1"10 19)
5 ? 22 / I

where the scalar product is expressed through the coordinates of u=u(f,z),
k=kUo,z0) as

w = (ku) = 2TF"[i2 + (z-zq)2] > O.

The expansion of f(ku) in terms of (19) is a Mellin transformation,



f @) a2 do /SMIrecinyacoyw 1710 20y
o
which has the inverse
2 = n 1
a“a@) = fshita T (1a) dw w*af () . 1)
o

3. Timelike-spacelike case

Let now u2:1, q2:—l (uEH™, g€H_) then the addition theorem reads
—icO
d2P Y®(u)*Y!1(4 22)
pCITVHED ol O
with
12 2 o > :2 ©, tete)
@) = sh* = 21717 a Spt(EaZy) =)

3. D

where the coordinates of u and g are u=u(sia ’ch)’ q:q(H.D ,le). The expansion
of f(qu) iIn terms of (22) is again a Fourier expansion

f(she) = —- da 44 ® 23
24 a cha>

with the iInversion formula

a(@y = Tloj dm ch@)f(shto)e (€25

4. Lightlike-lightlike case

Let (k3 )2205 &, )2=0 be two lightlike vectors (l3<k ,D€Hc’;)o The present
and the next addition theorems differ from the previous ones in their form, as
the label is extended to complex values. The Appendix provides some insight
into this problem.

It has been shown in [1] that for real values of 0 y°(k) satisfies

orthogonality and completeness relations. These can be generalized as follows

d2z ~ y~-1I' U,z) y°(A,z) = i76(01-al)62 (P"-?) (25)
217 -5° ? ar 11
°°+io.
azdod2P y °(£'z9)Y®(£'2) - 2125('-1)62@z"-2) - (26)
-oo+ia

(@ = an+lo2/ o0 ,= o~+lo02)



For real values of a yo(k)* =y °(k), i1.e. these equations reproduce the
usual orthogonality ancl completeness relations.
The addition theorem is given in the form

d25 y°(ka)y°~(kb) = M (k,k,j“1+la @n
(-I<Imo<~])

_ r"i1vio r(l—iaz
a-— ~ tzg r@ga =*

The scalar product is expressed through the coordinates simply as

m Y2
za_zb

Gakp) = 375

Expand f(kaka) in terms of (27),
°°+ia.

£ kakb> = do M a @ (<) -l+io ©8)

°+ia.
This can be reversed as

Mra @) = 4iF ldw f(w)w io (a=ol+ia2, -I<a2<-j)

5. Lightlike-spacelike case

Let K2:0 be a lightlike and q2:—l a spacelike vector (k6Hx, qOH_) . Add
a positive imaginary part to a, i.e. 0=07+102 then the following addition

theorems hold in the strip O<a2<1

N (kg)"] €))

d PY °(k)Y°<qg>
IO

(0}

d2P y (kY °(@ = Na(ka) ' 30)
O <Ima<l)
where
= 2it/irashira” r(1-ia)
and (k)M if (kg >0
= <

(ka)” )
0 if (kg <O



0 if (k >0
<kq)u =
Ikaly if ((a) <O
The scalar product is expressed in terms of kK = kK (#. a =qU . 7b)
as
> = 2rJ i (za-zb "£b]-
The expansion in terms of (kq) 1-1o g again a Mellin transformation
w10,
f
f(kg) = da Na[a+ (a)(kg)+1 ia + a_(a)(kqg)_1 ia] (€1))
-"+10,
which has the inverse
Nja, @ = dw F(+w)wl0 O<Ima<l). G32)

6. Spacelike-spacelike case

As a consequence of the contribution from the supplementary series this
case 1is somewhat more complicated than the previous ones. Let (qa)2=—l,(q’\) 2=
=-1 be two spacelike vectors with the corresponding spherical functions
\"®(qa), yl"gj-,) °F the continuous spectrum. For these two kinds of addition
theorems are needed one of which is conveniently stated as

nf *x oW m -che<-1

1 ch(acp) - - _ _
d2FV° <up>* +Yj ““Aph> *¥ <V 1 nza Shirasincp if -i< (anb)—COSCp<I

if (qaqid) = cho>l1

G3)



and the other one as

0 if (gagb) = -chO<-I

1 cha(iq-@ _
A2PLY v r ¥ o<y e .2 shnasincp -1< (qaqb)=coscp<l

1 sin(G9

2 she
it a

if (qagb) cho>l1

©>0, 0<P<TT).
(€D

A similar relation holds for the spherical functions of the discrete spectrum,

if (qagbX-1
f,2 ) - _
—iy- | si7_nc_:p_ if -1<(a,g,) = coscp<l (35)
a'nl
if (gagb)>1

O<p<r7) -

It is seen that when expanding a function f(qaq.d) in terms of the above for-
mulas only Eq. (3)" (Eq- (34)) contributes in the range (qaq_d)<—l ((qa,q9)>l)
while all the three types of functions given by Egs. (33),(34),(35) show up
in the range -I1<(gagb)<l.

The expansion in the First range is

f@agb> = f(-ehe) = do ¢ (@) Si';ff;Q)

if (qaqﬁ) = -chO<~1 (0>0).

Since only the odd part of c_(o0) contributes it can be supposed to be an
odd function of a that implies the expansion of the form

f(gagb) = f(Cch0) = - - ; da C_(a) ((gagb)<-D (36)
o

which is a sine Fourier expansion of the odd function shOf(-chG).
Similarly, in the range (gfgg)>l one gets
_ _ f, , - sin(a0) . 11,
f(gagb) = f(ch0)= da c+ (@ “ihe-—- ((gagb)>:D

r28

@GN



and in the intermediate range -1<(gag, )<1
f (qagb) = f (coscp) = ~2 do sh{qgsiwp tc_ (&)ch (aco)+c+ (a)cho (n-cp) ] +
N cosncp
22 “o sinp " n2 hodgg- sincp @8)
(-K(gagb)<b)

The expansions (36) and (37) can easily be inverted,

21 de shOsin(a0)f(-ch0) 39

< @
-ct(@ = 2k dO shOsin(a0)f(ch0) . (40)

Thus the integral term along with f(coscp) becomes a known Ffunction whose
Chebishev expansion is Eq. (38). Denoting ~7 (-)n d» = fn+3n (n=0,1,2, ...)
one gets the final form of the expansion in the intermediate range

sin(pf (coscp) = - 7 | dOshe f(ch0) + che+cosp f(~ch0)] +

+ 2 5 (f +g Ycosncp + 3 (F,+g ) 1)
Tnit *h h

(0>0, O<x<in)

where
fn = dO0 shOe n0O [f(chO) + ()nf(-ch0)] “4
r
9 dp sincpcosncpf (coscp) (CS))

o (nh=20,1,2,...)
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APPENDIX

Mathematical aspects

The Hilbert space we start with is the space of square integrable func-
tions on the hyperboloid or cone, H = L2(H,dp), where H stands for one of
the spaces H, H®, H_ and dp is the invariant measure on H,

dp dZE .

The scalar product is defined by

.9 dp ™ (pP)gp) (f.gC&) .

The operators - N», + M2/ N2 - whose simultaneous eigenvalue equa-
tions have been solved are formally Hermitean provided suitable boundary
conditions are imposed on the functions in their domain. Nevertheless, apart
from the discrete spectrum, they do not have any nonzero common eigenfunc-
tions in Wy, as the spherical functions belonging to the continuous spectrum
(4),(5),(7) are not normalizable. A proper mathematical framework for treat-
ing such eigenfunctions is the theory of rigged Hilbert spaces [5]- Consider
a continuous linear operator K:X 'ty with a dense range and for which
KerK=0. Denote by Xw the space X.*r = kXcX which becomes a seoarable Hilbert
space itself if a scalar product is defined in it by

<f+,g+)+ = (K~If+' K_19+) (*vg+c&+).

Consider the space of continuous antilinear functionals on %+: s (ft+) =
=(9_"f+) = (f+»g )*? T+6 . The linear space of g_ vectors becomes a ilbert
space, too, if a scalar product is defined in it by (g_,f)_ = (K+tg_,K+f_),
(g_,T_e#_) where K+ is the adjoint operator. Thus the embedding X+C#,cX_  is
obtained where W is dense in X(in the topology of % and % is dense 1In %
(in the topology of $,). The operators K and K+ map onto each other these
spaces according to X. It4— £_ < The scalar products in and are
defined by pulling back the elements into X by means of K and K . The point
is that when X is restricted to X+ then the space of antilinear functionals
on X+,(g_,f+), becomes largér than the original fl/ and it is large enough to
contain the spherical functions of the continuous spectrum. The spherical
functions are thus viewed as functionals (Ya, f+) on %+ . The subspace it+ can
be conceived as a space of test functions for the elements of fj_.

The eigenvalue equation Ap - of a selfadjoint operator A in
%,tpxeDAC& holds whenever (Ap,®x) = A@,®x) holds for any <p60g . This equation
can be extended to the vectors for ¢p€0pNf+/0 , Acpe™ . This provides a

generalization to those eigenfunctions of the continuous spectrum which are
elements of the Hilbert space
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Thus the rigorous meaning of the eigenvalue equations (M2-N2)Y° =

= -(02+1)Y0O (N.+M9)YO = P_.Y° (N--M,)Y® = P9Y® is that A.p, Y°) =PX (cp,Ya)
p X p 1P 1 P Z P * P K ?
holds for cp@®, DHDft l'lg ODa nf+/ k=0,1,2, where Ag = (M -S2), = N.,+M2,
o 1 az2

A2 = NO-MN and n , Xb, Xj are the corresponding eigenvalues.

Define the Fourier components of fe#+ by

co® = (., . (AD
P

Due to the Plancherel formula this equation can be extended from fek/+ to
fE£&. The expansion of Ffip) which is the inverse to (Al) has been written in
[1] in the form

f(p) = o02dad2P c°(P) YO (p)*
J P
which should be understood as
F.p) a2dad2P c° (P) (YO,cp
P

With these preliminary notions at hand addition theorems can be obtained
in the following manner.

Consider a bounded linear operator F: Xa with a dense domain Dp.
Here 1L (BL ) is the Hilbert space of the square integrable functions on one of
the hypergoloids H = (H:,HS,H_) and F maps d>(pa)+p(pb),P621 = ?a, p%: ?b
with 5; and D~ -1,0,1, independently.

Suppose that F commutes with the unitary operator of the left displace-
ment ,

[T .FAl =0
where Tg is defined as (M%) @) = ®(a ~p)- Let, furthermore, F has an integ-
ral representation of the form

Pp) a) = dpbF (Pa,Ps)p(Pb), (ParPoeH,p(pb)eop)

Then

The domain of F beeing dense, the commutativity [Tg,F] = O implies F(pa,gpb) =
= F(g 1Pa»Pp) or F (gpa,gpb) = F (pa,pb)which means that F(pa,pb) is a func-
tion of the scalar product only,

F(Pa"Pb) = fraPb5-
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The condition of the boundedness of F is satisfied for p% = pg = 1 provided

di) If(chw) [2sh2e < <.

Similar conditions can be given for the remalning cases.

It Is a consequence of [Tg,F] = O that the operators A (k=0,1,2)
defining the spherical functions commute with F,[Ak,F] = O in the sense that
for each 96X+

.[A, FIY°) = (@A (FY?) - X (FY®)) =0
K f K 2 K 2

This implies that FY° is also a solution of the eigenvalue equations
A_YTF = A Ya in the sense of Eq. (Al). It follows from this that
K P K ?

(FY=) (@ ) = fpbf(paPb)YA(pb) = o+ ()Y°(pa) + c_(a)Y~>(pa)
¢ a

must hold iIn a weak sense, again. Then as a consequence of the expansion
formulas for any cpGD,,

G (p ) = TRdad2f(c (O)Y; (DA)+C-(0)Yg(p(1))(Y; ®), (pent) -

Actually, Y° denotes the spherical functions on the hyperboloid. These are
+

symmetric uRder the change of the sign of a, therefore, c+ (a)+c_(a) = c(a)

can be put, 1i.e.

FEP (y) a2dad2pP c(a)Yf’) ®) (Y;CP)

a

*2)
(@6Dp , PaeH+).

An analogous formula holds for the spherical functions on the cone. It turns
out that there c+(©) =0 and the counterpart to (A2) takes the form

- *
¢t (pa) = o02dod2P c @y apy ¢pP (©Chg REH™D - *3)
Rewrite Eq. (A2) conditionally by omitting ¢ @") as
a’dad' P c(a)Y’(pJYpp,)*
f(PaPb> = > 'a P g
Whether or not the integration over P can or cannot be performed in advance
and the integration in (¥°,(p) over p~ can be left to the subsequent step

depends on which spherica? function is concerned. Thus e.g.

}dZ? Ye(pjY°(ph)* = 4 - 44—~
? a $ b »2a Sa)
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holds as 1is given by Eg.(10) and the integrations with respect to a and
can be performed subsequently. On the other hand, the integral

d2Py*(p Jy°(p.)* *4)
p P

does not exist at all. Anyway, the rigorous form of the addition theorems
as given by Egs. (A2),(A3) is always valid. Analogous formulas involving
the single-sheeted hyperboloid can be derived in a similar manner.

There exists, however, a quite different viewpoint for treating the integ-
ral (A4), namely, by considering ya(p) as an ordinary function no matter
whether or not it is an element of any Hilbert space. It turns out that if
extending a to the complex domain the integral (A4) aquires a meaning and
the change of the order of integrations is legitimate. In Sect. 1l. the addi-
tion theorem is given in its complex form (cf. in particular. Sects. 11.4,5)
as for practical purposes it seems more useful.
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