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ABSTRACT

The type of phase transition in a chain of Ising spins with multispin
interaction is studied in a transverse Tfield, using strong- and weak-coupling
expansions. The transition is shown to be of first order if more than three
spins are coupled. The critical exponents for the three-spin coupling model

are estimated.

AHHOTALNA

WccnepoBaH popa ha3oBOro nepexoAa MoAesnv CAUHOBOW LEMoYKU MavHra ¢ MHO-
ro-CrnMHOBLIMM CBSI3SIMM B MPUCYTCTBUM BHEWHEro neprneHAuKyIsipHOro MarHUTHOro Mno-
ns. MNokazaHo, 4TO (ha30BLIi MNepexof SABASETCA NepexoaoMm MNepBoro poja, €cln Konv-
YeCcTBO CBSI3aHHbLIX CMUHOB 60/blie Tpex. [alTcs OUEeHKU KPUTUUECKUX ISKCMOHEHTOB

mMoaesin C TpeX-CrNMMHOBLBIMN CBA3AMA.

K1VONAT

Tobbspin koélcsénhatasu Ising spin-lanc fazisatalakuldsinak tipusat merd-
leges magneses tér jelenlétében erds- és gyengecsatolasi sorfejtéssel tanul-
manyozzuk. Megmutatjuk, hogy az atalakulas els6rendl, ha tébb, mint harom spin
k6zott van csatolds. Becslést adunk a harom-spin kdélcsdnhatasu modell kriti-

kus exponenseire.



1. INTRODUCTI ON

While second-order phase transitions can be studied conveni-
ently by using various formulations of the renormalization-group
transformation, the situation is much less satisfactory for
first-order phase transitions. Although the concept of discon-
tinuity fixed point (Nienhuis and Nauenberg 1975) 1is useful in
describing first-order phase transitions, these latter are not
always associated with a discontinuity fixed point. Similarly,
although detailed studies have been performed in finite-size
scaling for systems with first-order phase transitions (Imry 1980,
Fisher and Berker 1982, Blote and Nightingale 1982, Igldi and
S6lyom 1983, Hamer 1983, Cardy and Nightingale 1983, Privman and
Fisher 1983, Binder and Landau 1984), 1in many practical cases it
is not easy to decide from the data for finite systems, whether
the transition is of first or second order. This is e.g. the case
for the multispin-coupling model studied in this paper.

The model was introduced by Turban (1982) and by Penson et

al. (1982). The Hamiltonian can be written in the Tform

_ z z
H = XECKOi+1 o djamo1 a.n
where a* and are Pauli operators on site i. The value of m

determines the number of neighbouring spins that are coupled.

At zero temperature the system has a phase transition as the
transverse fTield iIncreases. Since it seems that there is a single
phase transition in the system, the self-duality of the model
predicts that it should be at (h/X)* = 1, independently of the
number of coupled spins m. For m=2 the model 1is the standard
Ising model in transverse TfTield which has a second-order phase
transition. For m - <, however, mean-field theory should be



exact and the transition turns out to be of fTirst order. Thereare
controversial predictions for the critical value of m, above
which the transition should be of first order. Mean-field the-
ory gives mc=2, however renormalization-group calculations
(1gloi et al. 1983) give a usual second-order behaviour for w"3.
The analysis of finite-size scaling results lead Penson et al.
(1982) to conclude that mc=4. From a conjectured criterion for
distinguishing between continuous and discontinuous transitions
(Livi et al. 1983), Maritan et al. (1983) predicted that for
m=4 the transition is already of first order. Since Ffinite-size
scaling is not very sensitive to decide when the character of
the transition changes, other methods should be used.

In this paper we use the series-expansion method to deter-
mine the critical value of mc- The paper is organized as Tollows.
The series obtained for the ground-state energy in the weak- and
strong-coupling limits are presented in Sec. 2. The series are
analysed in Sec. 3, where we find that in fact m(,=3, and for this
case, where the transition is still of second order, the critical
exponents are also determined. The results are discussed in
Sec. 4.

2. SERIES EXPANSION

The weak- and strong-coupling series expansions for quantum
spin systems, which are analogous to the high- and low-tempera-
ture expansions in classical statistical mechanics, and the analy-
sis of the series by using different methods to determine the
critical behaviour, have been proved to#&e very useful in the
study of many systems (Hamer et al. 1979, Elitzur et al. 1979,
Hamer and Kogut 1980, Marland 1981) . We will apply this procedure
to the multispin-coupling model.

The Hamiltonian of eq. (1.1) can be split in two ways. |If
the multispin coupling X is stronger than the transverse Tield
h, this latter can be treated in perturbation and an expansion



in powers of h/A can be generated. This strong-coupling expansion

for the ground state energy per site will have the form

§ = - AZan (])n , for A >h . 2.1)
n
On the other hand, if the multispin coupling is weaker than the
transverse Tield, a weak coupling expansion in powers of A/h can
be generated. Due to the self-duality of the model, the series
expansion coefficients will be the same in the two cases, 1i.e.

§ = - hkEan ()n , for A <h , 2.2)
n
and at A=h the two expressions match. This is valid even if only
a few Finite-order terms are calculated in the expansion.

IT the transition is of second order, than the two express-
ions give not only the same energy at A=h, but the left and right
derivatives, calculated from the two expressions in their regions
of validity, respectively, are also identical at this point. Only
the second derivatives will differ. On the other hand, 1if the
transition is of Tfirst order, the weak- and strong-coupling ex-
pansions give different Tfirst derivatives on the two sides of
the transition point, indicating a finite latent heat.

IT the expansion coefficients are calculated up to a finite
order, the two expansions always give differring left and right
derivatives at the transition point, although after extrapolating
to nmt°° the difference may disappear, indicating a second order
phase transition. If, however, the transition is of first order,
the difference between the two derivatives should remain finite
even when n#>=.

We have performed the weak- and strong-coupling series ex-
pansions for the ground-state energy of the model given iIn eq.
(1.1) up to 10th order for m=2,3 and 4, while for m=5,6 and 7 up
to 8th order. The series-expansion coefficients are given 1in
Table 1.



3. ANALYSIS OF THE SERIES

As discussed iIn the previous section, finite-order perturba-
tion theory always gives a finite latent heat, a finite differ-
ence between the derivatives of the ground-state energy at A=h,
when calculated from the weak- or strong-coupling expansions.

This nth order latent heat Ln is defined as

, F3E®(b,X) EM(h,A)
L,=»>»{-5H-U --TAr-uj = 3D
Here Eﬁ and EW are the ground-state energies calculated in the
strong- and weak-coupling expansion, respectively, keeping terms
up to nth order. The values obtained using the results of the
previous section are given in Table 11l.

In the extrapolation to n#=& the exact solution of the m=2
case (Pfeuty 1970) can be used as a guide. It is easily seen,
that for the Ising case the expansion coefficients can be written
in the form

i-3v
2§ * (3.2)

I3

4on

After summing up the series with these coefficients one recovers

the exact result of Pfeuty (1970). The Ilatent heat in nth order
can be approximated by

L 1(n+1/2) G-3)
One can see that the latent heat goes to zero roughly as 1/n.

This expression is the special case of the general scaling form

valid for second-order transitions (Igloi 1985)

G.-4)



Here a is the specific-heat exponent. This kind of scaling be-
haviour has been used by one of us to determine the critical
exponents of various physical quantities from series expansions.
According to eqs. (3.-3) and (3.4), a plot of log Ln versus
log(n+1/2) should give a straight line for second-order phase
transitions, with a slope -(I-a). This plot is shown in Fig. 1
for different values of the number of coupled spins. The points
lie very well on a straight line for m=2 and 3, while for m>4
there are considerable deviations. The slope of the line for m=3
is approximately 1/2, therefore we plot in Fig. 2 the value of
Ln as a function of (n+1/2)’112- As 1is seen, the values are on a
straight line not only for m=3, but for larger m values as well.
For m=3 the extrapolated latent heat vanishes, thus the transi-
tion is of second order. The error in the extrapolation of the
latent heat is smaller than 0.005. For m>4 , however, the latent
heat differs significantly from zero. In these cases the transi-
tion is of First order. The accuracy of the extrapolation is
rather good. This 1is due to the fact, that the ratio of the co-
efficients an (m)/an (m+1) varies only slowly with n, as can be
read off from Table 1. This quantity is smaller than one for m=2,
but it is larger than unity for rn>3. This ratio is extremely
stable for m=3. Supposing that this ratio is the same in higher
orders of the expansion as weel, 1i.e. an (3)7an (4)si.227 , inde-
pendently of n, we estimate the latent heat for the case m=4
to be

a @
L(m=4) = ~o (m~4) - LIQ(m=3) <&n—jy = 0.218 . (3.5)
n

This value is in good agreement with the estimate from Fig. 2.
The latent heat for larger values of m can be extrapolated 1in
the same way, however, the accuracy is somewhat smaller. The
calculated latent heats are shown in Fig. 3, together with the
series-expansion results. The latent heat for large values of m
behaves as L=1-3/2m. At m=3 the latent heat becomes zero and

remains identically zero for smaller values of m.



Next we estimate the critical properties of the model for
m=3. Since we have calculated the ground-state energy only, the
specific-heat exponent a can be obtained from the second deriva-
tive. The series 1is rather short, therefore different methods
have been used to get a best estimate. The result of the ratio
method (Gaunt and Guttmann 1974) is a=0.53+0.03. By using the
scaling relation (3.4) we obtain a=0.54+0.02. The best result
is achieved by Padé analysis (Gaunt and Guttmann 1974) of the
series. According to the Padé approximants (Table 111) we obtain
a=0.554+0.001. Thus all these estimates are consistent with the
prediction

a = 0.55 + 0.01 (3.6)

The critical exponent of the correlation length can be calcu-
lated from the hyperscaling relation dv=2-a, and we get v =

= 0.73+0.01. This value is somewhat smaller than the result ob-
tained by Igloi et al. (1983) from the renormalization-group
calculation and is close to the value determined by Penson et
al. (1982) from finite-size scaling.

k. DISCUSSION

In the present paper the phase transition in a chain of
Ising spins coupled by a multispin interaction and submitted to
a transverse fTield has been studied. The weak- and strong-coup-
ling series expansions for the ground-state energy have been
performed up to 10th order in the perturbation. 1t has been
shown that in the cases when more than 3 neighbouring spins are
coupled, the transition is of Tfirst order. This method is thus
more sensitive than finite-size scaling to determine the order
of transition. In this latter method the m=4 case still seemed
to behave like having second-order phase transition (Penson et
al. 1982). As shown by Igldéi and S6lyom (1983) and Hamer (1983)

the finite latent heat In a first-order transition can be de-



termined from finite-size scaling calculations as well but the
limits L=>°°, where L is the length of the system, and A->»>A* cannot
be interchanged.

The analysis of the series allowed us to estimate the criti-
cal exponents a and v for the case m=3. The values obtained dif-
fer from the values known for the 4-state Potts model 1indicating
once more that these models do not belong to the same universal-
ity class (Igléi et al. 1983), although in both cases a fourfold
degeneracy is lifted at the transition.
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Table

Series expansion coefficient aR@) for the model with m coupled

Order an(2)
2 1/1*
S 0.001562500
6 0.00390625
8 0.00152588

10 0.00071*768

spins

a,(3)

1/6
0.01851852
0.00560700
0.00251261

0.00137929

an (10

1/8
0.011*97396
0.001*57368
0.0020511*3

0.0011 21+33

an(5)

1/10
0.01183333

0.0031*6619

0.0011*81*76

in nth order of perturbation

an<6)

1/12
0.0091*9071*
0.00262871

0.0010611*5

a (7)

1/11*
0.00776239
0.00202679

0.00076953



Order

10

The latent heat In(m)

calculated from eq.

L@
Lo BT F
0.25

0 .11*06
0.0976
0.071*8
0.0606

L ®

0.5

0.3701*
0.3087
0.2710
0.21*1"8

10

Table

Ln@®

0.625
0.5202
0.1*699

0.1*301
0.1*178

in nth order of perturbation theory

(3*1) for the model with m coupled spins

L@

0.75
0.6836

0.651*6
0.6387

Ln (7>

0.7857
0.7311*
0.7091

0.6975
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Table 111
Padé analysis of the series for the logarithmic derivative

of the specific heat iIn the m=3 model
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The nth order latent heat Ln versus n+l1/2 on a
log-log plot for different values of the number of
coupled spins
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The nth order latent heat Ln versus (n+1/2) -1
the models with m>3
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Fig. 3

The nth order latent heat and the extrapolated value
for n>> plotted for different m values
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