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ABSTRACT
Using general considerations and the standard methods of functional ana­

lysis we develop a formalism for the phoneme recognition problem. The conclu­
sion is that a phoneme is characterized by not only its standard, but by the 
"directions" too, in which physically small changes cause maximal distortion 
of its character. In addition, the different phonemes are arranged into a 
system, whose basic organizing rules can be language-dependent.

АННОТАЦИЯ

Используя методы функционального анализа был развит общий формализм для 
распознавания фонем. Фонемы характеризуются не только стандартом, но также и 
"направлениями", в которых физически маленькие изменения дают наибольшие ис­
кажения. Основные правила, организующие фонемы в систему, могут зависеть от 
языка.

KIVONAT
Általános megfontolások és a funkcionálanalízis standard módszerei segít­

ségével kidolgozunk a hangzófelismerés problémájára egy formalizmust. A vég­
következtetés az, hogy egy hangzót nem csak standardja jellemez, hanem az olyan 
irányok is, melyben fizikailag kis változások maximális torzulást okoznak 
jellegében. Továbbá az egyes hangzók rendszert alkotnak, melynek alapvető szer­
vező elvei nyelvenként különbözhetnek.



1. INTRODUCTION
Phonemes are the atoms of the speech. It means that they are shortest 

parts of speech remaining more or less unaltered when the fluent speech is 
built up from them [1]. In some languages other components (e.g. the stress 
or the intonation) may also be vital in word recognition; the location of the 
stress produces lexical differences in English or Russian, or it is well 
known that the intonation plays a similar role in Chinese, moreover, there 
are some insolated examples for this phenomenon even in Swedish [2], [3]. 
Nevertheless, even in such cases the phonemes remain important. The general 
success of alphabetic writing systems, adapted to a great variety of languages 
sometimes very far from the original Semitic languages for which their ances­
tors had been developed, indicates that some recognition pattern exists for 
phonemes. A simulation of such a pattern is the optimal solution for the 
automatic speech recognition. However, there is a quite general experience 
that one is completely lost at his first encounter with a foreign speech: it 
is not possible to recognize anything at all. Therefore in different languages 
these hypothetical phoneme recognition patterns can be different. Of course, 
for some languages they may be common in gross features. As an example we 
quote the usual and well known two formant distribution of vowels in Hungarian 
[4] and jin American English [5], together with Lotz's data for the average 
formant frequencies in the Ottoman Turkish [6], (see Fig.l). In English the 
location of the different vowels seems to be more or less random, while the 
orientation of their regions are more or less radial, in the same time in 
Hungarian'the structure is rather vertical, both for the location and for 
the orientation of the vowel regions, and such a vertical structure (for 
partly different wovels) is compatible with Lotz's Turkish data too. We shall 
return to this problem in Sect. 8, here Fig.l is merely a demonstration of 
the existence of different recognition systems.

In such a case the experience collected in a linguistic community is 
not necessarily convertible to an other language. It may be useful to build 
up a general formalism without references to specific languages, as far as 
it is possible. This is the goal of the present paper. Of course, one cannot 
develop a really general and language-independent formalism; the simplifying 
assumptions (which are always necessary) are characteristic for the authors'
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preconceptions which are determined by their first language. E.g. here we 
restrict ourselves to the phoneme level, and treat them as separate inden- 
tities. It is a restriction, it cannot be too severe at least for Hungarian 
and for other languages with similar acoustic system, but there is no a 
priori way to decide, which are the languages for which this approximation 
is good enough.

For such a general treatment a formal scheme seems to be suitable.
Clearly, no formal scheme can entirely solve any problem, nevertheless for­
malization is very useful since it gives the framework for the empirical in­
formation, and, what is more important, it organizes the research process 
and calls attention to crucial points. It is really astonishing how far reach­
ing hypotheses can be at least formulated using very limited amount of actual 
information. So it is unwise not to take the advantages of an adequate forma­
lization. We basicly use the standard methods of linear algebra and functio­
nal analysis inspired by some methods of pattern recognition [?].

2. GENERAL REMARKS
The phoneme structure and the recognition process may be different in 

different languages. Nevertheless, some elementary facts seem to be valid 
for all languages. Here we list three of them:

a/ The majority of the physiologically possible sounds does not corres­
pond to any phoneme.

b/ A given sound of speech accepted as a realization of a phoneme
belongs solely to that phoneme, f.e. practically there are no tran­
sition pegions- Otherwise the mutual understanding would be impossible.

с/ Some realizations of a given phoneme can be clearly distinguished 
as sounds, therefore not the physiological limitation of hearing 
defines the domains of phonemes.

Points a/ and с/ suggest that the most important factor in the recogni­
tion is the analysing activity of the brain. The details of this activity 
may be quite complicated, nevertheless it is not hopeless to look for a re­
latively simple mathematical description. An encouraging example is the 
problem of color vision. There the final goal is to restore the reflection 
properties of the illuminated surface. The relative color constancy indicates 
that the brain is able, in fact, to achieve this goal by using some data of 
the illuminating and reflected lights. This seems to be a very complicated 
process, nevertheless the final result can easily be formulated by means of 
Riemannian geometry [8], [9].
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3. THE DEVIATION FUNCTIONAL
Consider a linguistic community with complete mutual understanding.

This mutual understanding implies that there exists a common probability of 
accepting a sound as the realization of a given phoneme. This acceptance 
probability is denoted here by p , where a labels the sounds; let us postpone 
the question which are the important characteristics of the sounds compress­
ed here into a formal index. Obviously, there are minor individual variations 
in p^ even within a linguistic community, but one may neglect them in first 
approximation. The acceptance probability can be measured; for the scheme of 
an idealized measurement see Ref. 10. Since рд is a probability, 0<p <1. Now, 
let us introduce the standard of a given phoneme: the standard is the sound 
for which pa is maximal. We do not assume the unicity of the standard; a de­
finite counterexample will be shown in Sect, 4. The acceptance probability 
for the other possible sounds is smaller. Therefore one can introduce a num­
ber Ф measuring the deviation from the standard via the acceptance probabi­
lities Ф=Ф(р). We want to reduce the recognition process to a minimum search­
ing, therefore the following conditions are suitable for the actual gauge 
Ф (p) :

< О ; Ф(O) - .!pmax) - 0

One can use a specific gauge

Ф = -In(p/p ) мпах

which, obviously, satisfies the above conditions. 
Eq. (3.2) gives

P Pmaxe

(3.1)

(3.2)

(3.3)

The mutual understanding requires

1 P < <, 1мпах (3.4)

otherwise communication would be difficult. For simplicity's sake here we 
use the approximation Pmax=l-

If one knew p^ for all the possible sounds, then the human phoneme 
recognition could easily be simulated. Since this would need an infinitely 
long measurement, for practical purposes at first a guess is necessary for 
the form of the connection between the characteristics of the sound and p, 
and then a finite series of measurements can yield approximate values for 
the parameters in the formula for p.

In order to get a connection between the sound and a, one has to de­
scribe the sound mathematically. The sound is completely characterized by



4

the amplitude function F(t) of the oscillation; from obvious physical reasons 
we require

F (t < О) = О
(3.5)

Jf 2 (t)dt < “ 
о

Instead of F(t) it is more convenient to use its Fourier transform z:

z (v) = f(v)e1<p(v) = /F(t)eivtdt (3.6)
о

The real function f(v) is the weight of the component with frequency v, while 
cp(v) is its phase. As F(t) is real, the following relations hold:

f(-v) = f(v) 

<p(-v) = —Ф ( V )
(3.7)

that is, cp(0) = 0, and F(t) is completely determined by f(v>0) and p(v>0).
Therefore the sound is completely characterized by a complex function 

z (v), so

4>=i>(z(v)) (3.8)

l,e, $ £s a functional.
The Ohm-Helmholtz Law [11] suggests that cp(v) is irrelevant for sounds 

having no internal temporal structure. This may be the situation for phonemes 
whose realizations can be lengthened without limits, as vowels, nasals, frica­
tives and some liquidae, so it seems that for such phonemes f(v) carries the 
basic information (nevertheless observe the short-long opposition for vowels

9in Hungarian, moreover the 1-1 opposition in Slovakian). Therefore essent- 
tial information could be obtained by investigating the restricted problem 
when the functional Ф is considered in the space of real functions [12]

Ф = Ф (f(v)) (3.9)

In this paper we use this simplifying condition. We think that even in cases 
when the time structure of a phoneme is essential for its recognition, one 
can apply this approach by dividing the sound into characteristic parts and 
by analysing these parts separately.

By introducing the notation f(v) for the standard, eqs. (3.1) lead to

Ф (f) = О
4(f) > О if f / f

(3.10)
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Therefore, if one is able to determine the deviation functional 4>(f), 
with this information the results of human phoneme recognition process can 
be simulated, since f(v) can be measured by standard automatic methods. If 
one can guess a form for this functional with a finite set of unknown para­
meters, then the parameters can be fitted by measuring the acceptance proba­
bilities p(f) for a finite set of sounds, and then by further measurements 
the assumed form can be checked. Some technical difficulties can arise, 
nevertheless such an approach is well elaborated in experimental physics.

It is important to clearly distinguish here the acceptance probability 
p(f) from occurrence probability q(f), the second being the probability of 
the sound for the given phoneme in speech. They obviously differ, neverthe­
less, these quantities must be closely related, because speech and speech 
recognition are closely related processes too. Here we formulate a conjec­
ture that they are approximately in functional dependence

p(f(v)) s p(q(f (v))) (3.11)

(where г indicates not simply an approximate equality but also some restric­
tions discussed in the next Section). Relation (3.11) will be verified in 
Sect. 6 in a simple model. If Rel. (3.11) were an exact equality, the devia­
tion functional could be determined via q(f) too, which is technically more 
easily measurable than p(f).

4. NEUTRAL AM PL IFI CA TI ON
An elementary experience is that there are some parameters of the sound 

which, in a broad range of their values, are irrelevant in the recognition 
process; the most obvious of them is the total intensity. The advantage of 
this fact is obvious, otherwise one could communicate only with a given 
loudness fitted to the distance. Let us restrict ourselves to a single para­
meter X. There are operations f(v) ■+• T(x)f(v) = f'(v) leaving Ф invariant:

Ф(f') = *(T(x)f(v)) = *(f) (4.1)

Such operations will be called here symmetries. In many cases the operators 
T (X) can be parametrized in such a way that they form an Abelian group, i.e.

T(X1)T(X2) = T(XX + x2) 

T(0) = 1
(4.2)

Now let us try to guess the specific form of T(X) belonging to the neut-4ral amplification of a sound. We can assume that in this case T is a multip­
lication by a function t(X;v):
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(T(A)f)(v) = t (X;v)f (v) (4.3)

There are even two hopeful candidates for t(A;v). The subjective intensity 
r(I,v) of a monochromatic sound of frequency v and physical intensity I is 
found to be [13]

r(I,v) = rQ (v)ln[l/IQ (v)] (for I > IQ) (4.4)

where IQ (v) is the sensitivity threshold. The logarithmic dependence is just 
the Weber-Fechner Law. Thus, by requiring that the neutral amplification add 
a constant X to the subjective intensities of the constituents, one obtains

A/r (v)
t ( A ; v ) = e  (4.5)

This seems, in fact, to be a subjectively neutral amplification for a sound 
as a sound. Nevertheless, the symmetry belonging to transformation (4.5) is 
not advantageous in the communication, since it is definitely not the trans­
formation corresponding to the change of the distance between speaker and 
listener. By requiring that change to be a neutral amplification and symmetry, 
one gets

t (A ; v) = e * (4.6)

Then eq. (4.1) means that Ф is a homogeneous functional of zero order [12].
If the neutral amplification is, in fact, the transformation (4.6) in­

stead of (4.5), that is again an indication that the phoneme reconstruction 
is not simply a physiological process. Since elementary experiences seem to 
show that the change of distance does not influence the recognition until 
the intensity is not too low, here we accept eq. (4.6) as the correct symmetry.

Observe that T(A) f is again a standard, because of eqs. (3.10) and 
(4.1). Thus f cannot be unique. Now, returning to eq. (3.11), it is clear 
that the existence of a symmetry means the existence of a parameter of which 
p is independent. On the other hand, q generally depends on this parameter 
when measured under usual circumstances, so the sign s in eq. (3.11) stands 
for "approximately equal to, for special values of the symmetry parameters".

5. QUADRATIC AP PR OXI MA TI ON
Eqs. (3.1-2), (3.9-10) and (4.1) fix only the most fundamental proper­

ties of the deviation functional Ф, the actual form should be determined 
from experiments. The standard way is to take a definite form with free para­
meters, which can be fitted. Nevertheless, the chosen form should be taken 
from experimental data too. This is a rather complicated procedure, for which 
a great amount of data and intuition is needed. Nevertheless, the most impor-
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tant region for communication is where Ф is nearly 0. For that region one 
may try to use a "power expansion" of Ф.

First we introduce a new variable x=x(v)

x(v) = J(Io (v')) -Ldv' (5.1)
О

Then

f2 (x)dx = (f2(v)dv)/IQ (v) = dI(v)/IQ (v) 

Since for v-»-“ Iq (v ) decreases very rapidly,

x (“) = M < “

(5.2)

(5.3)

Therefore x remains in the [0,M] interval, which is very advantageous.
Eq. (3.10) shows that Ф (temporally denoted by Ф') starts quadratically 

in the difference from f at f=f, i.e.
M M

Ф' = / / s (x,y) e (x) e (y) dxdy + Э ( е  ) (5.4)
о о

where e is some still undefined difference function, and s(x,y) is a symmet­
ric weight function; e=0 is a true minimum if and only if

M M
/ / s(x,y)e(x)e(y)dxdy > 0  (5.5)
о о

for any e^O. Then there remains the problem of proper definition of e. It is 
convenient to incorporate the symmetry (4.6) (i.e. the homogeneous zero order
nature of Ф) into the definition, which can be explicitely done by redefining 
Ф as

e(X,x) = e^f(x) - f(x) 

Ф(^ = min^ Í Ф ' (e ( X ,x) ) }
(5.6)

where f is an arbitrary but fixed member of the set of standards, and Ф' is 
defined by eq. (5.4). The meaning of eq. (5.6) is that the symmetry connects 
a "ray" of sounds, and we compare f with the nearest member of the ray.
By evaluating eqs. (5.4), (5.6) one obtains

M M  ,
Ф = Ф Ш  = { / / s (x,y) f (x) f (y)dxdy} *

о о
M M  M M

* {[/ f s(x,y)f(x)f(у)dxdy ][/ J s(x,y)f(x)f(y)dxdy] - 
о о о о

M M  _  р  ,

— [/ / s(х,у)f (х)f (у)dxdy] } + a((f-f) )
о о

(5.7)
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which is, in fact, clearly homogeneous of zero order. This form is a direct 
consequence of the guessed type (4.6) of the neutral amplification; for any 
other form of the corresponding transformation the procedure could be repe­
ated. If there are no other symmetries, then f=e f is a true minimum of Ф; 
if other symmetries exist too, not incorporated into the definition of e in 
eq. (5.7), then Ф(^ _> *(e*f) is valid. 3It is not clear, which is the region for e where the e terms are neg­
ligible in eq. (5.7); formally one can say that they remain negligible for 
Ф < 1 (which is important for recognition) if Ф is slowly varying. According 
to the principle of Occam's razor, we assume this until counterevidences are 
not known.

Now we consider the functions f(x)

f(x < 0) = f(x > M) = О (5.8)

2to be the elements of a real Hilbert space L [0,M] with a scalar product
M

(f,g) = / f (x) g (x) dx (5.9)
о

Then the operator S
M

(sf)(x) = / s(x,y)f(y)dy (5.10)
о

is completely continuous [12], and according to the Hilbert-Schmidt theorem 
its eigenfunctions form a complete orthonormal basis in the Hilbert space:

afi ‘ k A
<£ i ' V  - 5ik
00

1 fn (x)fn (y) = 6(x-y) n=l
with the following properties of the eigenvalues:

max I I  < C 
1 im к . = 0ll_->-co

(5.12)

2On this basis the standard f and an arbitrary f belonging to the L (0,M) 
space can be expressed as
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f = I Ф f
n=l n n

Ф = ( f ) i x

f = l Ф fn=l n n

cp± = (f,fi)

Then eq. (5.10) can be rewritten into the form

(5.13)

sf = l, кпфп£п (х) n=l
COs(x,y) = У к f (x)f (y) ' '1' L. n n n w

(5.14)

that is, s is separable. Therefore, instead of the function s(x,y) of two 
variables it is sufficient to use the infinite set of eigenfunctions if^ix)} 
of one variable and the numbers {k^} and (ф 1>. Thus the functional Ф, given 
by eq. (5.7), becomes a function Ф of the infinite set of variables ф^:

• (f) - ( I V n > ' 1(< кЛ >  -n=l n=l n=l

- ( ^ кпфпфп )2} 5 Ф(ф1> n=l
Evaluating uneq. (5.5) one obtains

(5.15)

Ук cp2 > 0 (5.16)n nn=l
Thus the eigenvalues are not negative; they form a monotonously decreasing 
series

ki kj2.0 '- i < j (5.17)

Since obviously the largest eigenvalues are the most important, uneq. (5.17) 
show how to truncate the infinite sums for approximation.

The form (5.15) given for the deviation functional seems to possess 
strange mathematical properties: it ceases to be a quadratic function of its 
argument, therefore no linear operator seems to correspond to it (as s of 
eq. (5.10) to eq. (5.4)). But, as it can be shown (cf. the Appendix), in 
second order its properties correspond to a quadratic form with one zero 
eigenvalue. This fact is very important, because it assures .the existence of 
quadratic expressions we use later on in Sect. 7.

We have seen that further symmetries, unbuilt into the explicite form 
of Ф, violate the strict unequality in (5.5) and О eigenvalues are possible 
corresponding to symmetry directions. This phenomenon may disturb the actual
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evaluation, thus it is useful to explore first the possible symmetries. This 
will be discussed in a subsequent paper.

6. CONNECTION BETW EEN ACCEPTA NC E AND OCCURRE NC E PROBABILITIES
At the end of Sect. 3 a conjecture was formulated about the approximate 

functional dependence between the acceptance and occurrence probabilities 
p(f) and q(f), since the pronounciation habits of the linguistic community 
form the individual's speech recognition via learning, and in its turn the 
fixed recognition pattern in the brain prevents serious changes in the pro­
nounciation. It would be very desirable to exploit this connection, because 
the occurrence probability can easily be measured; here we verify the func­
tional dependence in a simple model.

By definition q(f) is the occurrence probability of sounds formed as 
realizations of a given phoneme. There áré other sounds which are not inten­
ded to be realizations of that phoneme at all and disturb the communication 
process; their occurrence probability is denoted by Q(f). Since they mainly 
are noises, their distribution is more or less uniform in the region where 
p(f) is substantial.

The recognition process of an individual is optimal if he accepts
a/ different representations of a given phoneme (pronounciated by

different members of the community) with maximal probability; and, 
in the same time,

b/ other sounds, not belonging to that phoneme, with minimal proba­
bility.

Consider some set of sounds densely distributed in the space of all sounds, 
the index a labels them. Then Conds, a/ and b/ can be written as

У (1-p ) q = min. L *a (6.1)a
Ур Q = min (6.2)
a

where p = p(f ) and so on. Now, these conditions are inconsistent, namely, 
the solution of eq. (6.1) is pa = 1, while that of eq. (6.2) is p^ 2 0, in­
dependently of a. Therefore only a compromise can be achieved; the sum can 
be minimized for a function У = У ( (l-p)q,pQ), instead of the two above func­
tions (l-p)q and pQ. A simple function of this form is

У = ( (1-p)q)2 + ß2 (pQ)2 (6.3)

where ß is a constant expressing the relative weight of Conds, a/ and b/. 
Evaluating the minimum condition for У

ÍKi-Pa>q„)2 + e2i<PA>2 ■a a
m m (6.4)
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one gets the solution for p as

P = ~2q
2a
2 2 + В Q

(6.5)

Since Q is slowly varying in the neighbourhood of the standard, there p and 
q approximately fulfil Rel. (3.11). If there4q dominates Q, and В is modera­
te, then l-p(f)<<l, as we have assumed according to elementary experiences.

The result (6.5) does not reflect the fact that the functional depend­
ence can be valid only up to symmetries; obviously the symmetries should be 
built into the form of S'. This problem will not be discussed here.

It is easy to see that the main reason of the approximate validity of 
a functional dependence is not the specific form (6.3) of the "compromise 
function" S', but rather the approximate constancy of Q(f). Namely, for a 
general

S' = S' (p,q,Q) (6.6)

the extramum condition (6.4) gives

^ М Й . о  (6.7)d p

which is an implicite equation for p,

p(f) = p(q(f),Q (f)) (6.8)

If Q(f) - const., eq. (3.11) approximately holds.

7. THE PARAMETER SPACE
In some cases it is useful to use a basis different from that of (5.11) 

or from that of the extremal directions (cf. the Appendix). For an arbitrary 
basis b^(x)

f = I crbr (x) r=l
and

(7.1)

00

Ф (f (x) ) = Ф( l crbr (x)) = 4>(ci) 

Now, consider a symmetry of form (4.3); one can write

t (X,x) = I t (X)b (x) 
r— 1 r r

(7.2)

(7.3)
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and then the transformation (4.1) can be reformulated as

ci c^(tk (A) ,ck) (7.4)

Since T is a symmetry, Ф can depend only on invariant combinations. For the 
special case (4.6) the invariant parameters can be

с* = с±+1/с1; (7.5)

Ф has a minimum at the standard parameters ci, therefore

Ф(c .) = I К (c* - c*)(c* - c*) + d((c*-c*) ) (7.6)
1 r,s=l rs r r s s

where the matrix K^k is symmetric, and in the absence of other symmetries 
positive definite, otherwise semidefinite.

For practical purposes a finite basis is needed. Then one can improve 
the approximation if the basis functions b^(x) also contain some parameters 
to be fitted for optimally describing f(x):

N
f(x) = l c b (x;p ); a = l...a (7.7)

r=l r r r
and thus

Ф(f) * Ф(с1, pia) (7.8)

i.e. Ф is a function of N(l+a) parameters, which belong to two groups, accord 
ing to the different behaviour under neutral amplification. Thermodynamics 
offers some analogy for this: the coefficients c^ can be regarded as exten­
sive parameters, while p^'s are intensives [14]; the first group is multi­
plied in amplification, the second is not. Therefore one can reparametrize
the problem as

(с1'Р1а} " (cl'Ci / C l' P i a ) " (c 1'Pa }

Ф = Ф(Рд)
(7.9)

The the N(l+a)-l parameters рд are coordinates in a parameter spece. The 
deviation is a scalar function, the sounds of equal acceptance are on sur­
faces which are closed without additive symmetries. Near the standard values 
рд one can expand it as

N(l+a)-l_IM V X - T e » ; _  2

ф(Ра> = _ l krs(Pr-Pr)(Ps"Ps) + 0<(Pi-P> >К f о— X
(7.10)
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There again the matrix K^K is symmetric and positive (semi) definite, thus 
the surfaces <(>=const. can be approximated by ellipsoids in the parameter 
space.

The problem of optimal parametrization is connected with the problem 
how to find the formants of phonemes. The standard carries much important 
and unimportant information about the phoneme. But only such parts are of 
crucial importance, whose small changes give essential changes in Ф. These 
parts are defined by the smallest axes of the ellipsoid in (7.10) or by the 
largest eigenvalues in eq. (5.14), and so on. The brain is sensitive for 
correlated changes in the regions characteristic for them. Therefore these 
sensitive parts form the basic formants of the standard.

It is not necessary that these parts correspond to peaks of the stan­
dard; however, one can guess that the peaks are amongst the characteristic 
parts. Namely, a sound is formed via a resonance process, in which the eigen- 
frequencies of the cavities of the sound channel appear. As these cavities 
are open, there is some damping, the eigenfrequencies are complex, manifest­
ed as peaks of various heights and widths. It suggests a parametric form

N а Г
f(v) = e aV{ 1 ----2— _i2-- - + а smooth funct. } (7.11)

n=l (v-v ) + Гn n

with a~6 dB/octave. Then the parameters to be determined are the strengths, 
locations and widths of the resonance peaks, together with some parameters 
of the smooth background, which can be taken as a polynomial, for instance. 
The method of fitting by means of such functions is well elaborated [15], 
therefore objective results can be obtained.

8. THE STRUCTURE OF PHONEME SYSTEMS
Until now a chosen individual phoneme was considered. Nevertheless, 

generally the languages use several dozen phonemes which can be arranged 
into some structure characteristic for the language (or for a group of lan­
guages) . The knowledge of this structure may give additional information on 
the functionals 4p(f(v)) (where the capital Greek index stands for the differ­
ent phonemes). In this Section we discuss the relations among the domains 
of the different phonemes.

Clearly, a trivial relation is a repulsion between phonemes. The model 
calculation of Sect. 6 indicates that the occurrence probabilities of differ­
ent phonemes cannot have great values at the same place, otherwise the reali­
zations of these phonemes would be confused. If (3.11) is approximately true, 
then the ellipsoids of different phonemes are disjunct. If measurements show 
doubly represented domains, then it is an artefact of the projection of the 
"true" infinite dimensional parameter space into a finite dimensional one, 
where originally different points can coincide.
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The repulsion is a very important phenomenon, but it is almost trivial, 
and cannot generate a structure. Our guess is that Hungarian (possibly togeth­
er with other related languages) yields an example for an additional rela­
tion, generating a definite structure. The necessary quantitative investiga­
tion will be done in a subsequent paper.

In Hungarian there are 8 short vowels [16]. A rule called vowel harmony 
places two restrictions to the words:

a/ A word can be built up from front or back vowels without mixing.
b/ There is a relation between the vowels of the root and the actual 

form of the suffix.
Rule a/ is rather a tendency, e.g. it does not hold for compound and borrowed 
words; Phoneme [e] (also e in Hungarian orthography, sometimes in linguistic 
texts written as e) may occur also with back vowels; Phoneme [i] is a succes­
sor of both a front and a back vowel, etc. Nevertheless, Rule b/ is strict.
It arranges 7 of the short vowels into 3 groups. For a suffix the group is 
lexically fixed, while the actual vowel is determined by the vowels of the 
root. The groups are as follow:

(a,e) ~ ([o] [e]
(o,ö,e)  ̂ ([о],[ф],[e ])

(u,ü) = ([u],[у])

Since these and only these short vowels can substitute each other without 
change in the meaning of the suffix, and the changes must not influence the 
recognition of the suffix, one can venture the hypothesis that the vowels 
belonging to a group are variants of some fictious vowel, i.e. that the func­
tionals фr(f) show some group structure. In fact, as we mentioned in Sect.l, 
the available 2 formant measurements for Hungarian seem to indicate a verti­
cal structure with the above groups, i.e. that is common within a group.

Hungarian belongs to the Uralian family of languages [17]. In this fa­
mily there is a general tendeny for some vowel harmony, although in some 
cases (as for e.g. Estonian and Vogulic) this tendency i-s rather weak. There 
is an other group of languages, the Altaic, whose connection with the Hunga­
rian is not clear [18], but whose languages were in strong areal connection 
with Hungarian in the first millenium A.D. These languages also show vowel 
harmony which is the strongest in the Turkish and Mongolian subgroups. For 
the Ottoman Turkish J. Lotz recognized a vertical structure of 3 groups [6]:

(a , e) a ([ a ], [ ae ] )
(o,ö) = ([о],[ф])

(u,i,ü,i) = ([u], [at ], [y ], [i ])

the first and third group is the same for suffices, the second group cannot 
occur in them. Thus it seems that these cases are examples when the gramma­
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tical structure "generates" a structure in the recognition. This hypothetical 
vertical structure cannot be a trivial consequence of human physiology, cf. 
the rather radial American English structure obtained by Peterson and Barney 
[5], discussed in Sect.l.

The acoustic structure generated by the vowel harmony may incorporate 
even some consonants. It is well known that [k] possesses "front" and "back" 
variants, regularly joined to front and back vowels in all European and Altaic 
languages, but not in the Arabic. Such an automatic correlation means that 
the orthography does not have to distinguish the different realizations, 
which may be, however, important for recognition. Of course, only measurements 
can show which consonants possess variants not reflected in orthography.
For Hungarian, speech synthetization data [19] yield some suggestions for 
"front" or "back" versions of some consonant. Figure 1 has demonstrated that 
first formants of the Hungarian vowels are characteristic for groups rather 
than for individual vowels; therefore let us consider a characteristic frequ­
ency of the consonant as a function of the subsequent vowel, as shown on 
Figs. 2a-a for the phonemes [k], [n] and [ji], on a double logarithmic coor­
dinate system. Clearly, these three consonants show three completely different 
behaviours. For [k] the logarithms of the two frequencies seem to be propor­
tional, by fitting a straight line on the logarithmic plot to the points one 
gets that

l

fх (kl = 1.101(f2 (V))0-984 (8.1)

where f^ denotes characteristic frequencies, V stands for "vowel". Ref. 19 
was not intended to measure errors for frequency data, therefore it would be 
difficult to determine the error of the exponent in eq. (8.1), but it is 
reasonable to think that there is a linearity between f-̂ (k) and f2 (V) in the 
Hungarian [kV] syllables; the Hungarian [k] seems to be multiply represented.

The next example is [n ]. One can see a saturation in f2 (n) either for 
low and for high f2 (V) values. Unfortunately, the middle region is unpopu­
lated in f2 (V), thus the functional dependence is by no means unique, nevert­
heless it can be well described by

f2(n) = 1.425 + 0.175th(4.244f2 (V) - 6,131) (8.2)

Thus [n] seems to be double-represented in Hungarian (f.(n) is constant).
The third example is [,p ] ; its. formant frequencies seem to be constant 

according to Ref. 19; it has a single representation in Hungarian.
A possible interpretation of these curves is that some consonants par­

ticipate in the vowel harmony rule of Hungarian; however the picture is still 
unclear to some extent, because not all the consonants belong to these three 
pure classes. Note that the vowel [jzi] is "misplaced" on Figs. 2a-a among the 
back vowels; in the syntheses of Ref. 19 a peculiarly low second formant 
frequency was accepted for [0], just at the lowest part of the boundary of
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its region (cf. Fig. 1). This may have been a consequence of the empty region 
between [o] and [&]; then a low f2 means better discrimination between to] 
and [e ].

There existed a language with properly adapted orthography showing such 
versions for some consonants. It was the Old Turkish preserved mainly in the 
Orkhon inscriptions [20]. This alphabet distinguishes the front and back ver­
sions of some consonants, namely [20],[21]

b,d,g,j,k,l,n,r,s,t

while there are no two versions for the consonants

&,m,p,&,z,n

As a first guess, we may regard the double-represented consonants (k has, in 
fact,; not 2 but 5 versions) as suspects to be objects of the harmony rule.
The data of the Orkhon alphabet for this question are roughly conformal to 
the acoustic structure suggested by the data of Ref. 19.

The investigation of such a structure of the phoneme system may shed 
some light on the reasons of changes in pronounciation, which sometimes lead 
to formation of new languages. This question will be discussed in a subsequent 
paper, here we only demonstrate that the reason is not simply a common feat­
ure of the physiology of the human speech channel. Namely, the fate of the 
intial [k-] phoneme was different in the Latin and Uralic groups. In the in­
heritors of Latin, [k-] remained unchanged before back vowels, excepting 
French, where [ka-] ■ -»• [&a-], and became either affricate of fricative before 
front vowels, excepting the Logudorese in Sardinia, and the extinct Dalmatian 
before [e], where did not change; probably the first step was [c], conserved 
in Central European pronounciation of Latin and in the orthographies of 
Hungarian and Latin writing Slavic languages. The final result is [c],[0] 
or [s]. This transition seems to be a permanent tendency among the Indo-Euro­
pean languages, since the most fundamental classification (into Western or 
kentum and Eastern or satem languages) is based on a (palatal k)+(s type 
fricative) transition [22]. On the other hand, the Uralic languages have 
fully opposite tendency. The phoneme [k— ] remained unchanged before front 
vowels in the last few millenia in all the Finno-Ugrie languages, and before 
back vowels in the most ones [17], [23]. There is a change in the Ugric group, 
for (k+back vowel): in some dialects of the Ob-Ugric languages the final 
result has been [x], in the Hungarian [h].

Now, one may or may not think that the permanence of the -Finno-Ugric 
[k] is a consequence of its multiple representation? obviously there is no 
great temptation to change the pronounciation of a consonant in the influence 
of the next vowel when the vowel already has influenced it, but first one 
should investigate the representations in the Indo-European counterexamples.
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Nevertheless, in any case, one can arrive at the conclusion that the reasons 
determining the directions of some linguistic evolution processes are partly 
in the brain, not in the sound channel.

9. CONCLUSION
In this paper we introduced the deviation functional for mathematically 

describing the process of phoneme recognition. The argument of this function­
al is the Fourier transform of the amplitude function of the sound. Some 
approximations for the form of this functional have been discussed; it has 
been shown that if the functional Ф is slowly varying, then the region of a 
vowel is elliptical in the space of proper parameters. Some 2-formant meas­
urements, in fact, indicate a roughly elliptic shape. An approximate func­
tional dependence between the acceptance and occurrence probabilities has 
been verified in a simple model; this dependence could be checked in meas­
urements .

It seems that the individual phonemes form some structure, which is 
language-dependent. Here we at least have demonstrated a difference between 
the vowel structures in American English and Hungarian, reflected on the 2- 
formant plots. If the vowels, in fact, form identifiable groups, then this 
structure has to appear in the forms of the functionals Ф belonging to the 
individual phonemes too. This seems to be suggested by the vertical locations 
and orientations of Hungarian vowels together with the fact that some con­
sonants are not uniquely represented. These features, at least partially, 
seem to exist in Turkish languages too.
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APPENDIX: THE EXTR EMA L DIRECTIONS
Here, in order to study the properties of the deviation functional (5.15), 

we are going to look for the directions defined by the extrema of the change 
of the functional, i.e. for 6f's which fulfil the following relations:

f = f + 6f
(6f,6f) is fixed (Ä-1)
6Ф = Ф (f + 6f) - <Hf) = extremum

Then, writing

(Pi = Cf>i + eqjy' I e I «  1

eqs. (A.1) get the form

(A.2)

6Ф < It=l . -2,-1kt <pt) í( I к ф*)( I к qZ) - 
s=l s s r=l r r

(A. 3)

- ( I кгФгЧг) 2b 2 + 9(e3)
r=l r r

extr.

This is a variational problem with constraint, it can be solved by the 
Lagrange method, and the result is

= 9*// l Ф"r=l

q (A) = ki (pi 1

■ » " л - ч

(A.4)

where
» к2ф2
l —r=l (ß.k -1)' A r

00 _ o

1 Фr=l r

and is the Ath root of the equation

A ( ß) = I
, - 2  
кгфг

r=l ^ r " 1

(A. 5)

О (A.6)
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The upper index of labels the different solutions of the variational
problem; for 6f one gets

6f = e I 4 f (A.7)r=l r r
Since 6'°^f is an (infinitesimal) neutral amplification, it does not alter ф. 
One can verify that the functions

CO

(x) = I q J^ f  (x) (A.8)
r=l

form an orthonormal basis. Expanding f on this basis
CO

f(x) = f(x) + l e q (R)(x) =
R=0

(A.9)

= I  i ( l + e  )Ф + I  e R с ( Г ,к '~ - Т Т } £ г (х )r=l ° Г R=1 “R ^ R  r ' Г

the deviation functional gets the form

*(f(x)) = I е Ь “1 + ö (e3) (A.10)
R=1 R R

With increasing I ij is increasing and

lim ßT = “ (A.11)I-*-» 1

This can be proven as follows. Let us differentiate the equation (A.6) de­
fining ßj, then

d_
dß A ( ß)

°° k m .- У (. £--r-)1L. ßk -Г r=l r
(A.12)

Therefore X(ß) is a decreasing function in the intervals where it is conti­
nuous; it possesses (infinite) jumps at ß=l/k^. Now, let us start from a 
root of X, ß .. Then there cannot exists a new root in the continuous region, 
the Iе root is behing 1/k^, thus

1/kj. < ßj < l/kI+1 (A. 13)

Then eq. (5.17) leads to increasing ß values, while eq. (5.12)excludes any
finite upper bound.

Since the functions q^1  ̂(x) are the solutions of a variational problem, 
and the series ßj1 is decreasing, the expansion (A.9) possesses the minimal
error when truncated.
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Fig. n
A comparison of the two formant pictures of American English, Hungarian 
and Ottoman Turkish vowel systems, according to Refs. 5, 4 and 6, res­
pectively. For Turkish only mean frequency data are given.
American: dashed lines, small letters, IPhS orthography 
Hungarian: continuous tine, capitals, national orthography 
Turkish: stars, italics, national orthography
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Fig. 2b. Fig. 2c,

Fig. 2.
Examples for consonants of multiple, double and single acoustic representa­
tions, respectively, in Hungarian CV syllables; a characteristic frequency 
of the consonant versus the second formant of the vowel [19]. Both axes are 
logarithmic. The dots are taken from Ref. as frequencies of successful simu­
lations, the continuous lines are given by fitting formulae, of. eqs.
(8.1-2). The frequencies are meant in kHz. The sequence of vowels is: [u], 
[о], [о], [iz<], [a], [y], [e], [ e ] and [t].
Fig. 2a: The syllables [kV]; first noise maximum of [к]. The second one is 

constantly 4.6 kHz.
Fig. 2b: The syllables [nV]; the second formant frequency of [n]. The first 

one is always 0.250 kHz.
Fig. 2c: The syllables [yiV]: the second formant frequency of [/г]. The first 

one is the same as for [n].
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