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ABSTRACT

A continuum theory of polarized media is presented. The electromagnetic 
field is incorporated into the balance equations and an expression for the 
energy dissipation of the medium is obtained. Reversible and irreversible 
phenomena are separated. The final equations serve as a basis for setting 
up the constitutive equations for chiral smectic C* liquid crystals.

АННОТАЦИЯ

Представляется континуальная теория поляризованных сред. Электромагнит­
ное поле подставляется в уравнения сохранения и выражается диссипитивная 
функция среды. Различаются обратимые и необратимые процессы. Конечные уравне­
ния служат основой написания материальных уравнений спиральных смектических 
С* жидких кристаллов.

KIVONAT

Polarizált közegek kontinuum elméletét ismertetjük. Az elektromágneses 
teret beépítjük a mérlegegyenletekbe, és kifejezzük a közeg energiadisszipá­
cióját. Szétválasztjuk a reverzibilis és az irreverzibilis folyamatokat. 
Egyenleteink alapul szolgálnak a csavart szmektikus c* folyadékkristályok 
anyagegyenleteinek felírásához.



1. INTRODUCTION

Since the discovery of liquid crystals a lot of work has been
devoted to the study of macroscopic, "bulk" properties of these materials.'*'-^
Parallel with experiments several continuum theories have been developed to

1-23explain experimental data.
Perhaps the best known of them is the powerful Ericksen-Leslie

theory of nematic and cholesteric liquid crystals.6-11 Though it has been
criticized from some points of view and other theories for these phases also 

12-21exist, the Ericksen-Leslie theory can give an account on many reversible
2-4phenomena (e.g. elastic deformations, Freedericks transitions ) as well as8_nisome irreversible ones (e.g. viscous flow, thermomechanical coupling ). 

Unfortunately it cannot be generalized easily to describe smectic phases, 
while other theories of smectics usually deal with some special aspects
only.2-3,5,22

An alternative approach to the problem is the unified hydrodynamic
theory of Martin, Parodi and P e rshan.^ Within the framework of this theory
a rigorous formulation of the reversible dynamics of various liquid crystal-
Tine phases has been worked out, ’ ’ but much less attention has-been

19paid to irreversible phenomena. However these theories are primarily devoted 
to describe fluctuations and Tight scattering in the absence of external 
electromagnetic fields, thus unfortunately are less applicable to explain 
effects due to the external fields. Irreversible phenomena connected with 
electromagnetic fields, e.g. dielectric relaxation, are a priori .neglected 
arguing that relaxation of polarization takes place on a microscopic time 
scale while hydrodynamics is valid only for characteristic times much longer 
than the time between molecular collisions. Though this argument holds for 
most cases, there are exceptions since in smectic liquid crystals especially 
in ferroelectric chiral smectics C* there are relaxational phenomena at very 
Tow frequencies^'’" ^  too.

A combination of electro- and thermodynamics of polarized media 
can be found in two books of de Groot.'^’'5* However their equations are valid 
for systems without internal degrees of freedom but are not for liquid crys­
tals. A generalization for nematic and cholesteric phases has been done
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13-14within the framework of micropolar continuum theories , but to our know­
ledge no such theory exists for the smectic liquid crystals.

27Very recently we have found an experimental evidence that 
irreversible phenomena due to electromagnetic fields may play an important 
role in the ferroelectric chiral smectic C* liquid crystals. This moved us 
to try to combine hydro-, electro- and thermodynamics of chiral smectics C 
in a two-part paper establishing theoretically our observation.

In Part I. we focus on the basic equations of the continuum theory 
Incorporating electrodynamics into hydrodynamics we follow the conception of 
de Groot"5® but we use a different representation and the SI system of units. 
We derive equations valid for any inhomogeneous anisotropic polarized media 
having internal degrees of. freedom.

In the subsequent Part I I . w e  construct the constitutive 
equations for chiral and achiral smectic C liquid crystals covering rever­
sible and irreversible phenomena as well and discuss the relationship 
between chirality and the existence of new cross-effects in these materials.

2. STATE VARIABLES OF THE MEDIUM

A continuum is characterized by its motion and its internal thermo 
dynamic state. We pretend that, as it is usual in non-equilibrium thermo­
dynamics, our medium is in local equilibrium. The motion can be described 
by the velocity field v_(r) but the usual thermodynamic state variables 
(internal energy p u, entropy p s, density p , temperature T, pressure p) alone 
do not give a complete description of the thermodynamic state of the medium. 
The electromagnetic field, when interacting with the medium, modifies its 
internal state, consequently one has to incorporate into thermodynamics some 
electromagnetic state variables too (e.g. polarization and magnetization or 
electric field and magnetic induction). Furthermore liquid crystals or any 
other ordered systems have further internal degrees of freedom which have 
to be taken into account (e.g. director for nematics or displacement of 
layers for smectics e.t.c.).

As it is usual in field theories, two frames of reference will beО О _ T nused. The laboratory frame serves for the description of the electro­
magnetic field and the motion of the medium. However the thermodynamic 
quantities characterising the internal state of the medium will be given in 
the material frame, i.e. in the frame co-moving with the medium. This choice 
makes possible an easy formulation of a Galileian invariant electro- and 
thermodynamics. The electromagnetic fields detected in these two frames are 
different, since the frames are moving relatively to each other."5®
To make a distinction, dashed quantities will be used to denote electro­
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magnetic variables in the material frame and these dashed quantities will 
appear in thermodynamics. We pretend throughout this paper that the velocity 
of the medium is small enough to remain in the non-relativistic approximation. 
The rules of transformation between frames for the electromagnetic quantities 
are given by Eq.(A.l.) in Appendix 1.

3. CONSERVATION LAWS

Since the electromagnetic field interacts with the medium, neither 
of them alone can be regarded as a closed system. The conservation laws can 
be written only for the system being composed of the medium and the electro­
magnetic field. Though it could be done in both frames, the laboratory frame 
is preferred because of the presence of electromagnetic terms. However the 
transformation rules of the fluxes are taken into account, i.e. the convective 
terms are separated in the balance equations. In the non-relativistic approxi­
mation the electromagnetic mass is neglected thus we have conservation laws 
for the mass, the total linear momentum and the total energy. The integral 
form of these equations in the laboratory frame are

jj^fpdV = -ф Pvd n (3.1)

J ( РУ + s field)dV = -<j> ( a -  p v.v -  T)d n (3.2)

(тур v2 + P u + efleld)dV = -$ Jedp (3.3)

where д / * e ̂ d and are the linear momentum and energy of the electro­
magnetic field respectively, _£ and J are the mechanical and the Maxwell
stress tensors respectively. The total energy flux is not specified at
this point, it will be given later via a constitutive equation.

The above conservation laws have to be supplemented wi-th the 
entropy balance equation

^  j psdV = -<j) (у д  + p sv)dP + j у dV (3.4)

where д is the heat current and R is the energy dissipation.
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4. BALANCE EQUATIONS FOR THE ELECTROMAGNETIC FIELD

The electromagnetic field can be described in the laboratory frame
32by the Maxwell equations given in SI.

7 0  = pe
7 B  = 0
V x E

э в
a t (4.1)

BD
7 x H = J + --

9 t

where pg is the charge density, £  is the current density and

o = e0£ + P
H = - В  - M (4.2)-  u„~

defines the polarization £ and magnetization M of the medium.
These equations can be rewritten into the form of a momentum and 

energy balance as shown in Appendix 2 and 3.

-  gfield = V .T .. - F. (4.3)at 1 J 1J 1
A  efield = 7 jfield + rfield (4.4)
at J J

where £ is the force exerted on the medium by the field, ^he
electromagnetic energy flux, rlleld is the rate of transformation from field 
energy into kinetic or internal one, and the summation convention on repeated 
indeces has been used. However the definition of the electromagnetic momentum 
and energy is not unique, the medium and the electromagnetic field cannot be 
separated unambiguously because of their interaction."51 We have chosen the 
representation"51 where

fielda e0 E xB (4.3)

and
fielde 1 1 R22 й Д BM (4.6)

since it has led to a consequent Galileian invariant treatment of the 
thermodynamics of polarized media in the non-relativistic approximation. 
For further details including the definition of the other quantities of 
Eqs. (4.3) and (4.4) we refer to Appendix 1-3.
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5. BALANCE EQUATIONS FDR THE MEDIUM

Using Eqs.(4.3) and (4.4) the conservation laws E q s .(3.1)-(3.3) 
can be converted into balance equations for the mass, linear momentum, kinetic 
energy and internal energy of the m e di u m . ®  In the material frame they read

гг ° - - p vj vj

dt P V, — V. o. . - n v. V. J 1J 1 Jv. V. v- + F.

(5.1)

(5.2)

± . I pV2 = . Vj(v. o ^ )  - | P v2 V.v. + FiVi + 0ijV. Vi 

and

3 t » u “ Л И ' VJ ° U } - * " V i -

- °ij V i  * v i ield - r“ Bld - ' л

d 3where + _v J7 is the material time derivative.

From Eq.(3.4) the entropy balance is

(5.3)

(5.4)

dt pS = “ (T qj} ~ pS V j  + T (5.5)

6. CONSERVATION OF ANGULAR MOMENTUM

The only conserved quantity, which we have not yet paid attention 
to, is the angular momentum. Employing Egs.(4.3) and (5.2) the balance 
equations for the angular momentum of the field and the medium are respec­
tively

ж  ' « “ »i ■ V i j k V k i ’ - ' ^ i  - ‘ i j k V i

Ht (£*pv)i = - (Ei.k rj0kl) + (rxF). + eijk a k.

Adding these two equations and comparing with Eq.(3.2) it follows immedia­
tely that the conservation of the total angular momentum requires

(6 .1)

(6 .2 )
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s j k  c k j  * c i j k Tk j  *  V ü k  £ k j i  <6- , )

where is an arbitrary antisymmetric tensor. In our representa­
tion the Maxwell stress tensor is not symmetric consequently the mechanical 
stress tensor must have an antisymmetric part too. In the absence of electro­
magnetic field Eq.(6.3) reproduces the usual argument that a symmetric stress 
tensor automatically meets the requirement of conservation of angular momen­
tum.1 6 -20

In Eqs.(3.2),(5.2) and (6.2) we pretended that the medium had no 
extra internal linear or angular momentum. This means no restrictions in case 
of liquid crystals, since on contrary to the Ericksen-leslie1 11 or the
micropolar12-1  ̂ theories which have to introduce such quantities, hydro-

16-2023-24 3dynamic theories ’ can describe the same phenomena without the
need for such extra momehtums.

7. GENERALIZED FREE ENERGY

The internal energy is the thermodynamic potential belonging toI Ithe set of independent state variables js,£,M However it is more
practical to use for independent variables the temperature instead of entropy, 
the electric field instead of polarization and the magnetic induction instead 
of magnetization. This transition in variables corresponds to the Legendre- 
-transformation

p f * ( T , E V  ) = p u (p s , p ! m ' )
I t  I f

Tps - P E - M В (7.1)

where the generalized free energy pf is the new thermodynamic potential for
I I .the new set of independent state variables {T,E_,B_, . . .§ . Though either of the 

above two representations could be applied to describe the same phenomena, 
we prefer the latter one since it has many advantages when setting up the 
constitutive equations for chiral smectics in Part I I . ^

I IBesides T,JE and E3 a medium has some other independent state 
variables too. These are the density, temperature gradient, velocity gradient 
and the internal degrees of freedom denoted by Xa (a=l,2,...). These latter 
quantities•should be specified separately for each media.

With the above arguments the general form of pf* is

Pf* = pf * ( T , E ' , B_' , p , VT. Vov . X“ ) (7.2)

This expression is Galileian invariant since it contains only quantities giv­
en in the material frame but not the velocity of medium.
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0. THE ENERGY DISSIPATION

The basic equation of irreversible phenomena is the expression for 
the energy dissipation.

Using Eqs . (5.4), (5.5),(7.1) and (A.21) one gets for the energy 
dissipation

R - - г  О »  - - pf“ - Ц  у  * o'Ej' - p13 V3vt -
d pf dT , dE. , dB.
--  - p s —  - P • — A - M . — -*A
dt dt  ̂dt  ̂dt

( 8 . 1 )

where the notation

-.X e
- V vi 0 ij Vj { ^  PV/2 + pf* + PTS + Pi^-X-  >i} - (В.2)

was introduced.
With indirect derivation of E q .(7.2) one gets

Эрf  , I I
R = - V (Jx - q ) - ( pf* - p---  ) V v - A q H  + J E -

J J J  0p J J j J J  J J

ij 3 1
3pf* dE. 9Pf*

- (P. + ' , -) — 1-- (M. + -- r-
3

ЭЕз dt 3
9Bj

3pf* dT 9pf* dV.T
-  ( p s + --- ) --- _ J__

ЭТ dt 9V.T dt

_ # aЭрГ  dX

3 i

(8.3)

which has to be supplemented by the constitutive equations describing the
16 18time evolution of the internal degrees of freedom. ’

Xa = - Za at a = 1,2, (8.4)

9. SEPARATION OF REVERSIBLE AND IRREVERSIBLE PHENOMENA

In general reversible and irreversible processes coexist in a 
medium. Their description requires different tools so one has to separate 
them. This separation can be done on the basis, that reversible processes 
are invariant under time reversal, while irreversible ones are not. Neverthe­
less this invariance concerns the equation describing the process and not the 
individual physical quantities. In general any physical quantity can be 
splitted into an equilibrium, reversible and a non-equilibrium, irreversible



part. Reversing the time these two parts of the quantities have to transform 
in an opposite way. It is quite natural to regard the independent state 
variables as purely reversible ones. Moreover the generalized free energy and 
entropy describe equilibrium systems consequently they are also reversible as 
well as their partial derivaties. The reversible parts of the other quanti­
ties are determined by the requirement, that in equilibrium, where all irrev­
ersible terms vanish, the balance equations (5.1)— (5.5) must be invariant 
under time reversal.

To summarize, the purely reversible variables are 

T,e ' V , p ,v,x“ ,pf*, ps

as well as their time derivatives and gradients, while others split into two 
parts

R =-- Rr + Rlr ; It

ж -,ХГ -,Х1Г2 + Д  ; а = аг + а1г

1P
1

= P r + p'ir ; м' = м'Г + м'1Г ; 1а = z“r + z“ir
1

3 = 0 -,'ir + 2 ; g_ = 0 + ^ 1Г

where the latter two, namely the electric and heat currents have only irrev­
ersible parts.

We illustrate the above mentioned method of separation on the energy 
dissipation term. The entropy is reversible and is invariant under time rever­
sal. Owing to the derivation with respect to time the left-hand side of 
Eq.(5.5) changes its sign if time is reversed. In equilibrium this entropy 
balance equation is invariant under time reversal, consequently the reversible
part Rr of the energy dissipation has to change its sign, while the irrev- 

i гersible part R has to be invariant if time is reversed. Similar speculations 
can be followed for the other quantities in Eq.(9.1). For chiral and achiral 
smectics C the resulting transformation rules are listed- in Table 1. of 
Part II.33
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After separating reversible and irreversible phenomena one gets 
f rom E q .(8.3)

7.J*r 9pf* 9pfM dE.
- ( pf* - p ) V.v. - о г . V .v. - (f%r + -- г-) — ^J J 3 P J J ij J 1 J ЭЕ dt

9pf* dB'. 3Pf*
Z“r - ( P s +

3Pf* dT
(M r + --Г—) — j— - E 3X“

--- ) -  -
J Зв. dt a ЭТ dt

dpi* d^T 9Pf* d7.vi
dy^T dt ay.Vi dt

-ДГ V. (Jxir - q .) - —  q • 7 -T +
1 i

J.E.J J j J  j j J J

i dEi dß! Spf^
Pj

1 Г  J -- „j — L * Edt adt эх“
,air

(9.2)

(9.3)

10. SECOND LAW OF THERMODYNAMICS

Second law of thermodynamics introduces one more distinction be­
tween reversible and irreversible phenomena. It states that the energy dissi­
pation has to be zero in all reversible processes while in irreversible ones 
energy dissipation is always positive.

Rr = 0 and Rir >  0 (10.1)

Since the material time derivatives of the independent variables 
can be adjusted arbitrarily and independently from any other quantity, 
Eqs.(9.2) and (10.1) yield

8pf*---- = 0
3V г

8Pf*--- = - ps
ЭТ

9 Pf*
3V.v. J 1

3pf*

= 0

3pf*
( 10.2)

i.e. the generalized free energy has to be independent of temperature gradient 
and velocity gradient. Thus in general the infinitesimal change of the
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p f *  = pf *  ( T , e ‘ , b ’ , p ,Xa ) (10.3)

generalized free energy can be written as

* 'г 1 -г 1 9pf Э р Г  яd p f* = - psdT - P . r dE. - M.rdB. + --- dp + £ --- - dX01
1 1 1 1 3 p „ 9Xa

(10.4)

and there is a constraint between reversible quantities

V * r V i  - (pf* - p — -) V v + f T - 0J J 1J J 1 э р  J J „ a x “
8pf

(10.5)

Up till now the medium under consideration has not been specified 
at all thus the equations derived above are valid for any polarized conti­
nuous media, i.e. for liquids, crystals or liquid crystals as well. However 
these general equations do not give a complete description of the behaviour 
of the materials, one still has to set up a series of constitutive equations 
giving the dependence of physical quantities listed in Eq.(9.1) on the 
independent state variables. The construction of these constitutive equa­
tions for chiral and achiral smectic C liquid crystals is described in the 
subsequent Part I I . ^  of our paper.

U .  SUMMARY

The continuum theory of polarized media described in this paper is
16 18a generalization of former hydrodynamic theories. ’ We incorporated the 

electromagnetic field into the conservation laws which has led to the modi­
fications listed below.

â, There is an electromagnetic force in the equation of motion 
of the medium /Eqs . (5.2),(A .8) and (A.11)/

b, The conservation of total angular momentum requires the
mechanical stress tensor to be asymmetric /Eqs . (6.3),(A .7) 
and (A.10)/.

£, In the presence of an electromagnetic field the adequate
thermodynamic potential, describing reversible phenomena in 
the medium is the generalized free energy, which contains 
electromagnetic contributions too. /Eqs.(7.1),(10.3) and 
(10.4).

jj, After separating reversible and irreversible processes three 
irreversible electromagnetic terms remain in the expression 
of energy dissipation, which are related to the Joule-heat,
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dielectric and magnetic relaxations. /Eq.(9.3)/
E qs.(8.4),(9.3) and (10.3)-(10.3) stand for the starting point in construc­
tion of the constitutive equations for different media.

5

Appendix 1. TRANSFORMATION RULES OF ELECTROMAGNETIC FIELDS

The transformation rules of electromagnetic field between moving 
frames can be determined from the fact that the Maxwell equations (4.1) are 
Lorentz invariant. In the non-relativistic approximation neglecting terms 
proportional to ^ - « 1  one gets the transformation rules'1̂  in the SI system 
of units

e p  e |C
-J II J +  P V e—

в = в '

II

L
U
| E - vxB

D = o '

II

1H +  V X D

p  = p ' M =
1

M - vx£

1 = 1 II

(О
 Й

d l '  &

(A . 1)

where the dashed quantities are the ones measured in the material frame, mov­
ing with the velocity v̂ relatively to the laboratory frame.
With this transformation rules the Maxwell equations (4.1) can be rewritten 
in the material frame as

« д  = pe 

v в’ = 0
I dJB t ,

5 xE = ---  + (B 9)v - В (Vv)
dt

, . dD , ,
9xH = J + --- ( 0 У  )v - 0 (Vv)

dt

(A.2)

I

which shows that in the non-relativistic approximation the Maxwell equations
become Galileian invariant /The extra terms containing velocity gradients 
disappear in a Galilei transformation, where v̂ = constant/.
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Appendix 2 . BALANCE OF ELECTROMAGNETIC MOMENTUM

Deriving the balance equations we follow the method of de Groot 
and Mazur"50 but we use SI and define the electromagnetic momentum as
a field = 6o (e x b i.31
Its time derivative

—  flfield = —  ee (ExB) = —  (DxB) - —  (PxB)
at at at at

( A . 3 )

From the Maxwell equations (4.1) follows, that

a a o ЭВ
—  (DxB) = —  xB + Ox —

at 9t " " at

= v | b o H + fl»E - K i . B2
(A.4)

Introducing £ = and using the definition of the material time derivative

—  (PxB) = —  p (£xB) = p — — (£xf3) - i[vo(PxB)]at at dt
(A.5)

Thus we get the balance equation of the electromagnetic momentum in the form

gfield = У.T. • - F.at 1 J lj 1 (A.6)

where

T lj ■ OjE, * Ej«, * »j - »ij (i. BkBk . i [.EkEk - BkMk ) (A.7)

and

F, = peEl * OxB), . Pj 5 lEj . Mj ii6j . pf/fixB) (A.8)

The Maxwell stress tensor and the electromagnetic force can be 
expressed with the dashed quantities too. Using the transformation rules 
(A.l), neglecting terms of the order ^ - « 1  and using the identity

v^(P )̂  + B^ vxP )̂ + P (B xv)A = 6 ^  v(P xB ) (A.9)
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one gets
II II II II

Tij ■ V i  * V i  - 6ij < к вЛ  * Ь  EkEk - BkMk >

and

(A.10)

I l i i  I I
Fi • pe Ei * У  -I >i * Pj 'iEj * Mj 5iBj * V j (A.11)

Appendix 3 . BALANCE OF ELECTROMAGNETIC ENERGY

The formal balance equation for the energy of the field is

3 field Г7 -.field „field 3t E = - V J + г (A.12)

From the Maxwell equation (4.1) one can get easily the Poynting
theorem

3D ЭВ
E --  + H —  + V(ExH) + JE = 0

3t 3t
(A.13)

We define the energy flux of the field as

jfieid = ExH = S (A.14)

which is the Poynting vector.
Using the transformation rules (A.l) Eq.(A.13) can be rewritten 

into the form

(A.15)
,30 , 3D ,3B , ЭВ

E --- (vxB ) —  -t- H —  + (vxD ) —
3t 3t 3t at

- J (vxB ) = 0

Neglecting terms of the order 1 it can be transformed further

, 1 I о J. 19 I t \ ion a I I
{ -  e0 E + --  В - В M l + V S_ + E—  + В —  + v—  (P xB ) +
1 2 2u0 ’ 3t 9t Bt (A.16)I I

+ Д  E + Pe)(E - Д  (vxjl ) = 0

Comparing Eq.(A.16) with Eq.(A.12) now we can define the field energy efield
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and the energy supply term rfield as

field 1 '2 x 1 „'2 ' ' _ 1. c2 . 1 02 я м '
e = 2 e° — + ' I *  - 2 e° £  + TiТ0 й - I M (A.17)

and

„field , ЭР , ЭМ 
E ---- В —

3t “ V. —  (P. xE3 ) - 2  £  “ P„vE + 2  (v.xJL )at at e
(A.18)

The balance equation of the internal energy of the medium (5.4) 
contains the electromagnetic terms

infield _ rfield _ ^  > which can now be expressed with the field
variables.

From Eq. (A.11) one gets easily

V i • к в Ei*i * “i * ’ i {»ipjEj * * vivjcr ' * s'5 j } * vi “а̂ н.* s'

■[EiPi * "Л * vjC- 'xB' ^ i vi - EjvlViPj - 6jvi'iMj - Y i'i<P xa')i (A. 19)

and finally

V i ■ -eVi - * »Í { vt [P̂Ej ♦ m!b: * vj(p'*B}]}- (E/; * .

, эр! , эм' 3 . I , dp! , dM*
+ E . — J- + B. — J- + v. —  (P xB ). - E.-1 - B. — 1 (A.20)

з at ^ at ^ at ** ^ dt ^ dt
With the definitions (A.14) and (A.IB) one gets

v f eld - rfleld - V i  = ' i { «*!<>! - » i ( E / j  * B/ y } -  (e ’p : . в :м:)чл  .

, , , dP, , dM.
* ¥ i  * Ei ^  * pi - (A.21)

which yields a simple, Galileian invariant expression for the energy 
dissipation of the medium. /Eq.(B.l)/.
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