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ABSTRACT
The "model independent" part of the order a radiative correction due to 

virtual photon exchanges and inner bremsstrahlung is studied for semileptonic 
decays of hyperons. Numerical results of high accuracy are given for the rela­
tive correction to the branching ratio, the electron energy spectrum and the 
(Ee ,Ef) Dalitz distribution in case of four different decays: I" •> nev, 
l~ -*■ Aev, -*• Aev and Л -*• pev.

АННОТАЦИЯ

Изучена "независимая от модели" часть радиационных поправок в порядке а, 
которая соответствует обмену виртуальных фотонов и тормозного излучения. Для 
распадов Е -*nev, £ -*■ Aev, = Aev и Л -*• pev получены точные численные резуль­
таты для поправок к "branching ratio", спектру энергии электронов и диаграмме 
Далица (Е£ , Ef).

KIVONAT
A virtuális foton csere és fékezési sugárzás következtében fellépő a ren­

di! sugárzási korrekciók "modell független" részét tanulmányozzuk hyperonok 
szemileptonos bomlásaiban. Nagy pontosságú numerikus eredményeket adunk a 
l~ -*■ nev, l~ ■* Aev, =“ ■+ r̂ eV és A ■+ pev bomlások esetén az elágazási arány, 
az elektron energia spektrum és az (Ee ,Ef) Dalitz eloszlás relativ korrekci­
óira .



1. INTRODUCTION
In the last few years several high statistics experiments were carried 

out to study semileptonic decays of hyperons. The most interesting question 
about these decays is whether the experimental results fit into the framework 
of the Cabibbo model [1]. At the level of quarks, and after the extension 
made by Kobayashi and Maskawa [2] this model has become an important ingredient 
of the standard Glashow-Salam-Weinberg theory of electroweak interactions [3].

The improving precision of the measurements made it necessary to apply 
radiative corrections in the analysis of the experimental data. Several cal­
culations exist in the literature for the corrections to the branching ratio 
and the electron energy spectrum [4,5,6], all of them being descendant of the 
classic radiative correction calculations for neutron beta-decay [7,8,9]. Vie 
carried out a comprehensive calculation of the radiative corrections for the 
decays l +nev, £ ->-Aev, ЗИ -+Aev and л+pev with the aim of obtaining coherent 
sets of results for the branching ratio, the electron energy spectrum and the 
Dalitz distribution. In course of this work we were in close contact with the 
WA2 experimental group at CERN. This group measured the above decay modes, 
and the main goal of our work was to supply the experimental analysis with 
the necessary radiative corrections. Our results concerning branching ratio 
and electron energy spectrum are simply more accurate, in a sense to be ex­
plained later, than already existing results. The radiative corrections on the 
(electron energy, final baryon energy) Dalitz plot, which we are going to 
present here are so far unique in the literature. The obtained large variation 
of the latter correction is a warning, that, even if the integrated 'theore­
tical' correction to the branching ratio is small, the experimentally observed 
radiative corrections can be relevant and quite different in various experi­
ments, because of the acceptance properties of the experimental apparatus.

We mention, that analytical formulas have already been published to give
the radiative corrections for the decay distribution on the (Eg , cos0e~) plane
[10,11], Eg and 6e~ being the electron energy and the angle between the
3-momenta of the electron and the antineutrino, respectively. However, this
result is of very limited use from the point of view of analyzing experiments,
since 0 - is never measured [12]. ev J
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In Sect. II. we start with the presentation of the theoretical program 
for the calculation of radiative corrections to semileptonic decays. In Sect. 
III. we describe the "model independent" part of the virtual photon correc­
tions. In Sect. IV. we discuss some characteristic properties of two-dimensi­
onal decay distributions in the presence of inner bremsstrahlung. Our results 
are presented in Sect. V. together with a detailed discussion of the inputs 
and tests of our numerical calculation. In an Appendix we shortly discuss the 
effect of some numerical approximations.

II. FORMULATION OF THE PROBLEM
The calculation of radiative corrections to semileptonic decays is an 

old and complicated theoretical problem. The weak interaction, responsible 
for these decays, is mixed up with the electromagnetic and strong interactions. 
Infrared and ultraviolet divergences spoil the calculation, which must be 
overcome in a reliable fashion.

The problem of infinities, at least to order a, the fine structure cons­
tant, is now solved. The solution is simple in case of the infrared divergen­
ce, as the method familiar from QED works: one must add the decay probability 
of the bremsstrahlung process B->bev to that of B^-bev. The infrared divergent 
parts for both processes are the same, as if the coupling between the (real, 
or virtual) photon and the charged baryon are pointlike [7],

The problem of the cancellation of the ultraviolet infinities is much more 
difficult, the method of solution is rather complicated [13]. The result, 
however, can be expressed in a simple way. In a very general framework, which 
includes

1. / the standard SU(2)h U(1) unified gauge theory of the weak and electro­
magnetic interactions;

2. / generally accepted properties for the strong interactions,such as
SU(3) color gauge group, asymptotic freedom, current algebra rela­
tions ;

3. / an appropriate choice of counterterms [14],
the B->-bev decay amplitude to order a can be written as follows:

7П = m Ql 1 - |^{1 + 2Q) log cos20w ] + 7JV , (II.1)

where 0 is the Weinberg angle, Q is the average electric charge of the rele- 
w - 1 vant weak isodoublet. (For quarks in hyperon decays Q = -g, for leptons in

muon decay Q = -i) . The notation W Q is used for the decay amplitude in lowest
order,

W  o = /2 Сг й 2уУ (1 + Y5)v1]<f |j^(o) |i>. (II.2)

The labels i, f, 1 and 2 in (II.2) refer to the decaying and final baryon,
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antineutrino and electron, respectively. The coupling constant Gp is equal
with that observed in muon decay, G_ = G .J F jj 5

(We use the conventions of [15] for the Dirac gamma matrices, у11, у ,  
and for the metric in the scalar product of four-vectors. We normalize the 
Dirac spinors as uu = - w  = 2m). The matrix element W  in (II.1) is ultra­
violet finite. The order a part of the expression in the square bracket in 
(II.1) is due to diagrams, which are infinite before renormalization. We do 
not go here into the details of how to eliminate the infinities, neither into 
the derivation of their finite remnant. The interested reader can study these 
problems in the excellent works of Sirlin [13,15]. In a separate paper we 
also tried to give a simple presentation.

The term in (II.1) collects the contribution of three different types
of diagrams:

Ш  = + ЭД(2) + (II.3)Y Y Y Y

They are familiar from the literature, nevertheless, we write down the corres­
ponding expressions in order to give explicitly the basis of our calculation.

The first term, Ш  ̂ , in (II.3) is a contribution, which comes from the 
wave function renormalization of the final state electron due to the emission 
and reabsorption of a virtual photon:

ж (1> = m  s zY О (e) ' (II.4)

where

SZ (e)
. (2p0 - к )(2p0 - к )

= 7 ^  J<*°> > -: ** V  22Л ---- -[(k-p2) + me ]8n
(II.5)

a i r  < U2 ̂ '^^2^ y vU2+ — 2* /dk D< (k) —    ^  \4r2 V Г /l \ 2 , 2 П 232П me M [(k-p2) + me ]

Virtual photon can be emitted and reabsorbed also by the hadronic weak vertex. 
This is the origin of КП-у^ ,

= -i/2 Gp[u2yW (l+y5)v1]Tw< ,

where

Tu< 11m
q^Pi-Pf

/dkD;p (k) /dye-iqy Jd> -ikx

X <f|T{J^(y)J^(x)jP(0)}|i> - В

(II.6)

(II.7)
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We use the notation Jp for the hadronic electromagnetic current. Bpvp is a 
counter term to assure, that the pole of the uncorrected and the 0(a)-correc­
ted propagator for the i (or f) particle be at the same mass value, nr (or 
mf) .

The last term, BTV ̂ 3 ̂ , in (II.3) corresponds to the exchange of a photon 
between the weak vertex and the electron:

Ж (3) = /7g „ -2Ц- /dk D (k) TMP(k)
У F л it 3

M5
+ к (II.8)

X 2Р2у~ку~?[уЦ'К] 
(k-p2) 2 + m̂ ~~

y p (1+y5)v 1.

The tensor Tpp(k) is 

Tup(k) =

defined as

/dxe ikx<fIT(Jp (x)J^(o)}Ii>. (II.9)

The symbol stands for the mass of the charged weak vector boson, and D 
is the photon propagator in Feynman gauge:

D (k)u v 2 '

A small photon mass, A, is needed to regularize the infrared divergence of 
(II.5), (II.7) and (II.9). Finally, denotes

D (k) =pv
“w

D (k) . 2 pv

When writing down the expressions (II.5-9), we neglected the dependence of
the W-boson propagator on p.-p,. This means the neglect of very small terms

2m,
proportional to Ĝ ,a— j in the matrix element. As a result, we could write down

“w
the well-known formulas for the virtual photonic radiative corrections in the
traditional current x current theory of weak interactions [7,8]. Even an ult-

2 2 2raviolet regularizing factor, M^/(M^+k ) needed in this approach, is present 
in (II.5), (II.7) and (II.8). This is quite natural in case of (II.8), since, 
in fact, our starting point is the Glashow-Weinberg-Salam theory of weak 
interaction. The situation is slightly different in case of (II.5) and (II.7). 
In Sirlin's approach, which we follow here, these two types of diagrams are 
treated using the separation

D = D< + D> ,у V у V у V
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where

D (к) =yv
У v2 2 

k + M w
That part, which contains D ^ ,  is ultraviolet divergent, and is treated to­
gether with the other UV divergent diagrams arising in the SU(2)ßU(l) frame­
work. Their finite remnant is included in the first term of (II.1). Since the 2 2factor (M^+k ) is not really a tool to make the order a radiative correction 
UV finite, the "cutoff mass" Mw may survive even in the final results, and it 
was recently proved by Sirlin to do indeed so [17]. Some recent and old radia­
tive correction calculations, which start with the current x current theory, 
solve the problem of UV infinites by using momentum transfer dependent weak
and electromagnetic form factors, the dependence being extrapolated from the2low q region [6,8]. These calculations cannot account for the mentioned2(logarithmic) dependence on M^, and probably underestimate the large к part 
of the loop integrals.

Finally, the infrared problem requires us to deal with inner bremsstrah- 
lung. The matrix element for the B+bevY process can be written as

m = m '<h>Y Ш '  U)Y (II.10)

W ; (h) = /2 GFe[G2Yy (1+y 5)v 1] Tpy (k) ep* (k, s) , (II.11)

m ; U) = /2 GFe(G2^*(k,s) [i(gS2-K)+me ]“1 

X Yy (1+Y5)V1><iIJP (o)|f>.

The purpose of this paper is to study the decay distribution

(11.12)

I(Ee ,Ef) = ro (E0 ,Ef) + ra (Ee ,Ef), (11.13)

where Eg and Ef are the energy of the electron and the final baryon, respect­
ively, in the rest system of the decaying particle. The integral of Г(Ее ,Е£) 
gives the order a corrected branching ratio

p(B+bev) = ^/r(Ee ,Ef)dEedEf,

where Г is the total decay width of the particle B.
The bremsstrahlung part of ra (Ee>Ef) is obtained after integration over the 
whole kinematically allowed phase space for photons. Therefore our results 
are suitable for the purposes of experiments, which use no discrimination 
against hard photons at all.
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III. THE "m o d e l  i n d e p e n d e n t " c o r r e c t i o n

The first term, Г (E ,E_) , in (11.13) is the lowest order distribution о e f _
function for the process B-*-bev. It has been studied in detail by several 
authors, our basic reference is [18].

Following tradition we write the weak current matrix element in (II.2) 
as follows:

<f|jy (o)|i> = i (2П)4 i ufHyu± , (III.l)

where

Hy = YlJ[f1(q2) - T5g1(q2) ] - ^  qVoyvf2 (q2) ,

4 = ?! - P f
(III.2)

In its most general form Hy contains three further form factors, f3, g2 and 
g^, which we neglect in this paper.

(The sign convention in (III.2) for the axial vector form factor, g^, is 
the same, as in ref. [18].)

For the purposes of experimental analysis (Ee ,E^)should be given in a
form similar to Г (E ,E£) , that is, as bilinear combination of the unknown о e f
parameters f^, f2, g^ with known functions of Eg and E^ as coefficients. At 
present, this task is too difficult to solve, since our knowledge about strong 
interactions is not sufficient to evaluate the matrix elements of the product 
of two or three hadronic currents, Typ(k) and Tyvp(k).

In the bremsstrahlung case it seems reasonable to approximate Typ(k) as 
if the photon is coupled minimally to a pointlike baryon, since the photon 
energy cannot be large in the final state:

Typ(k) * •(2П) 4 -u. Mj^-K) + m . y V (III.3a)

for the l ->nev type of decays, and

Typ (к) = ~|(2П)4 üf уУ[1(^£+К) + mf]-1 Hpu± (III.3b)

for the n+pev type.
The situation is much more serious in case of the virtual photon correc­

tions, since in (II.7) and in (II.8) к is an unbounded variable of integration. 
We shall follow the strategy of writing as sum of a so called "model inde­
pendent" and a "model dependent" term. The idea of such a separation was 
originally invented by Sirlin in the case of neutron beta decay [7].
Since the mathematical expression giving the "model independent part" is 
quite general, it served later as a starting point of calculations also in 
case of other semileptonic decays [5,11]. In this paper we use its "model
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independent part" for TtV̂ , and call, following tradition, the resulting 
ra (Ee ,Ef) the model independent correction. By definition, this r^fE ,Ef) is 
a bilinear combination of the form factors f^, f2 , g^ and the coefficients 
(functions of Eg,Ef) are calculable. We want, howewer, to stress, that the 
radiative corrections are complete only, when also the "model dependent"
part of W  is included. Sirlin [7], and later Garcia [11], suggested, that,

Y E
neglecting terms proportional to in Ш  , the only effect of the model

dependent part is, that it changes f^, g^ to some "effective form factors"
f^, gl w;*-thout changing the coefficient functions, already known from the 
calculation of the model independent part. Maybe, this is true, but the notion 
of effective form factors is useless, when the ultimate purpose is to compare 
the experimental results with Cabibbo's predictions, which refer to the true 
form factors. We find it particulary disturbing, that the model independent- 
-model dependent separation is non-unique, therefore the effective form 
factors are ill-defined. We postpone the study of the problem of the "model 
dependent" part to a subsequent paper [19].
By the "model independent" part of we mean the expressions given in [7]
for (II.7) and (II.9). 6Z^ej in (II.5) is well-known from QED. In Feynman
gauge,

П M-. m q'
6Z(e) - T n  I lo95T - log~T + ! * i111*4»e

Substituting the "model independent" part for Ty< in (II. б) ТГИ2  ̂ takes the
form

m (2> = m  6z,у О (III.5)

where
6Z = /dk D* (к)- 1 1 у V8тг

(2Pch-ky)(2Pch-kV> 
[<k-Pch)2 + mch]2

(III.6)

This is part of the expression valid in QED for a pointlike, charged particle
2 2with -p h = m j (c.f. (II.5)). Standard calculation gives

6Z = 2 П
1 л MW n mch , 3
2 1одпГТ " lo g —  + 7ch

(III.7)

The model independent part of Ж ^^ is obtained by writing in (II.8)

Twp(k) = у (2 П)4 2р !1ь -ch - „р
2 ] 2~ ufH ui*m

(III.8)
(k"Pch) + ‘"ch

Then the contribution of is as follows:
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в  <з> - « m Coulomb + “ (-d + d.) w  +у 2П 2П' о 1 о

(III.9)

+ fn 1(2п) 72 GF й2 ^ W(1+^5)V1 GfH4 ‘ír

In (III.9) the last term is included only for sake of tradition. Let alone 
the very low end of the electron energy spectrum it is negligibly small, the 
function d ^  being

m_
11 log e+

m

where

e+ E'e + PJ and E^ is the energy of

the electron in the rest frame of the charged baryon. The first term on the 
right hand side of (III. 9) is the so-called Coulomb term. 'J’TVCou'*'oinb = 0, if 
the final baryon is neutral, and

Coulomb (III.10)

if the final baryon is positively charged. Finally, the functions d and d,,2 и г
neglecting terms proportional to m /m h and (E^/m ^) ' can be wr;1-tten as

d1
1
2 (III.11)

dо log

+

(III.12)

The mass mc^ is equal with itu or -m^, depending on whether the initial or 
final baryon is charged, respectively. For the definition of the Spence func 
tion in (III.12) we use the convention

1 -I
Sp(x) = - Jdt ^ log(l-xt). 

о
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In summary, the "model independent" part of is a multiple of
(neglecting now the term with d ^  in (III. 9)),

= h  gi(E4> ^ o -  (in.i3)

a EeThe order ^ —  terms in the function ĝ  ̂(E') are of very little significance
ch

from the numerical point of view. The situation is different, when the E'/m ,e ch
terms coming from Ж о are considered. In hyperon decays they are not small 
enough to suppress large and remarkably varying terms of order a coming from
gi (E4>-

E' 2 P'+(Such a term is, e.g., —  log — )» ШP e
We mention, that in case of the neutral hyperon decays, (n,A-*-pev), an imagi­
nary part should be added to the function g^(E^) . It gives however no contri­
bution to any physical observable, if spin polarizations are not detected. 
Therefore we omitted it in this paper.

IV. TWO-DIMENSIONAL DISTRIBUTIONS IN THE PRESENCE OF BREMSSTRAHLUNG
It is well-known, that in case of the B-»-bev> process 4-momentum conserva­

tion is very restrictive. Assuming, that polarizations are not detected and 
the decaying particle is at rest, E^ = ггк , only two independent variables are 
available for the description of the final states. Several choices are possi­
ble for these two variables, the alternatives being easily related to each 
other. As a consequence, the quantities measured in an experiment can be 
freely transformed to other ones in order to obtain the wanted distribution.
If radiative corrections are applied in the analysis such a possibility does 
not exist any more. This is a consequence of the presence of 4 particles, 
bevy, in the bremsstrahlung final states and of the integration over the three 
momentum of the photon.

In order to illustrate, what we mean, we compare some properties of two 
distributions without and with radiative corrections.

a/ Distributions in terms of (Ee ,Ef)

If the B-*bev decay process alone is analyzed, the kinematically allowed 
region for these variables is

m < E < E ,e — e — emax '

E£ . (E ) < E_ < E, (E )fmin e — f — fmax' e *

(IV. 1).

(IV.2)

2 2 2m . - m c + m l____f e
2m.

where

emax (IV.3)
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Fmax
min

( " W P e *  +
m„

m i-E«±p,
(IV.4)

The variables Eg ,Ef determine a decay event up to trivial rotations. The 
angle 0  ̂between the 3-vectors £e and is uniquely fixed by the relation

mi-Ee-Ef = l£e+Efl:

COS0
m2 + m^ + m - Ef(mi"Ee )

ef 2PePf
Ee (fflr Ef)

where

Pf
2
f /E2-me

2
e ‘

(IV.5)

If radiative corrections are taken into account the experimental analysis 
must cover an (Ee ,E^) region, which is larger, than the one defined by (IV.1,2). 
Due to inner bremsstrahlung extra events appear with

if

where

m f i Ef < Efmin(Ee)'

m < E < E' , e — e emax

E' = 4 emax 2
m_

(m.-m,) +“i “f' ш ±-т£

(IV.6)

(IV.7)

(IV.8)

For the set of events with given Ee,E^ the relation (IV.5) is not true any 
more. This point can be conveniently discussed in terms of the variable

<3 = lEe + E f t = [Pe + Pf + 2PePfcos0ef]1/2 . (IV.9)

Instead of the single value

q = m, - E - E , (IV.10)l e t
A

it is an interval, which is allowed for q, and, therefore, for cos©e  ̂at each 
(Eg ,E^) points. Namely,

|pe - pf I _< q < mL - Ee - Ef , (IV. 11)

if (E ,E -) is in (IV.1,2), and e t

lpe - Pfl 1 я i pe + Pf *
(IV.12)
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if (Ee »Ef) is in (IV.6,7). In the latter case

p + p_ < m. - E - E,. (IV.13)*e i e f

The contribution of inner bremsstrahlung to Га (Ее ,Е^) is obtained by integra­
tion over q. Another variable of integration is the energy, E^, of the 
bremsstrahlung photon. The range of the possible photon energies is a func­
tion of q:

•j(mi - Ee - Ef - q) < E^< - E£ - Ef + q) . (IV. 14)

Interesting properties of Г (E ,E..) follow from (IV.11-14). When (E ,E,) is(X G II G I
in (IV.6,7) the "correction" ra (Ee ,E^) comes from bremsstrahlung alone. It is 
finite, since min(E^) > 0. But, when the curve Efmfn (Ee) approached, 
min(E^) -»■ 0, and Га (Ее ,Е^) grows logarithmically:

ra (Ee'Ef) - -Slog 1 -
ш . - E l e

pe + pf
(IV.15)

On the curve E, . (E ) (and, for E < E' ) Г (E ,E,) is finite, because fmrn e ' e emax a e f '
here the infrared divergent bremsstrahlung and virtual photon corrections sum 
up to give a finite result.

Another interesting case is, when E^ and E^ are on the curve Efmax(Ee)»
or on E - . (E ) (and, in the latter case, E > E' ). In both cases tmin e e emax
пь - Ee - Ef = |pe - pf I, and the two-dimensional region of integration over 
(E^,q) degenerates to a line,

A
q = Ipe - pf I *

0 l Ey < lpe - pf I•

It is straightforward to verify, that, as a result of this degeneracy,

Гa (Ee ,Ef) - £log (IV.16)

when the above-mentioned boundary curves are approached. As the bremsstrahlung 
contribution to Га (Ее ,Е^) becomes finite in this limit, the infrared diver­
gence of the virtual photon part reappears.

b./ Distributions in terms of (Eg , cos©^) .
Whether radiative corrections are considered or not, possible values of

cos© c are ef
-1 < cosGe£ - 1 (IV.17)
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if
m < E < E ' , ande — e — emax

cos0e£ <_ O, (IV.18)

m, E - E_ . _ i emax e0 < sine _ < ------- ------  >
ef - mf Pe

if E' < E < Eemax e — emax.
For those events, which have the same Eg and cos0e  ̂the possible energies 
for the final ЬаГуоп are different depending on whether it comes from a 
B-*-bev, or B+bevy event, but which are not distinguished from each other. Let 
us denote by the following quantities

.( + ) m, (E - E ) + m-ri emax e f- l { < ” i - E
2 2 2 2 2 П 1/21±  Pe co s0ef Lmi (Eemax - V  “ m fPesin 0efJ J'

(IV.19)

2 2 2where a = (m. - E ) - p cos 0 c.1 _ e e er
In case of B+bev events E^ is uniquely determined by Ee and cos©^, if
E < E' : e emax

Ef - E<-> (IV.20)

The relation is two-to-one, if E > E' :e — emax

E = E (— } Ef Ef . (IV.21)

For B+bevy events these relations change to

m f < Ef < e | ^ (IV.22)

when E < E' , and to e emax

Ef+) 1 Ef < E^_) (IV.2 3)

when E > E' . In order to evaluate the bremsstrahlung contribution to g  emax
Га(E0 ,cos0ef), one must integrate over Ef and E^. The allowed range for E^ is
given by (IV.14) and (IV.9). Unbounded behaviour of Га(Eg ,cosO^) emerges
only, when E > E' , and 1 e emax

sine
m . E l emax

ef m,

Along this boundary curve E^+  ̂ = E^ \  and

Г (E ,cos0 c) - -^log a e ef ц J
•i+h1 (IV.24)
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This is another example of the recovery of the infrared divergence coming 
from the virtual photon corrections.

Further illustrative examples could be brought to stress, that kinema- 
tical relations, which are commonly known for B+bev decay, might be incorrect 
to use in experimental analysis, if radiative corrections are relevant. It 
is difficult to tell, that, nonetheless, in a given context the use of B-»-bev 
kinematics is an acceptable approximation, or not. Intuitively one expects, 
that this approximation can be used, if in most of the bevy final states the 
photon and the antineutrino move parallel to each other. This is, however, 
not the case, because the smallness of the electron mass results in a sharp 
maximum of the bremsstrahlung matrix element, when the photon and the electron 
have parallel momenta. Theoretical calculation of radiative corrections must 
be designed very carefully in order not to confuse "theoretical" and experi­
mentally measured quantities. Best example is cos0e~, 0ev being the angle be­
tween the momenta of the electron and the antineutrino. In experiments 0 - is 
an indirectly obtained quantity, since the antineutrino is not seen. A radi­
ative correction calculation must use the "experimental" definition of 0 -, if 
it is destined for the purpose of analyzing experiments. The radiative correc­
tion to the (Ee ,cos©e-) distribution given in refs. [10,11] is only of theor­
etical value, since in this paper 0 - means the actual angle between the 
momenta of the electron and the antineutrino. For similar reason any result, 
known to us, in the literature concerning the radiative correction to the 
asymmetry parameter a - is inadequate to apply to the experimentally measured 
“ei П2].

V. RESULTS
Using the "model independent" expressions of section III. for the virtual 

photon corrections and the "electromagnetically pointlike" baryon approxima­
tion, (III. 3.a,b), for the description of inner bremsstrahlung we have cal­
culated radiative corrections to the branching ratio, the electron energy 
spectrum and the (Ee ,E^) Dalitz distribution for four different semileptonic 
baryon decays, E -*■ nev, E Aev,IEl -*■ Aev, Л -+ pev, assuming, that the
decaying particle is at rest. In this calculation we have needed the weak form 
factors as input. We have used the zero momentum transfer values of f^, f£ 
and g^ obtained by the WA2 group at CERN from a first fitting of the experi­
mental data without applying radiative corrections. We have checked, that our 
results do not change under the influence of a few percent change (which is 
allowed by the experimental errors) in the value of these parameters. We have 
put equal with zero the form factors f^, g2 and g^. Exact SU(3) and CVC 
justifies this in case of f^ and g2* The term with g^ in the matrix element 
of the weak current is very much suppressed in the lowest order decay matrix 
element, therefore it is usually not included in experimental analysis. The 
suppression is resolved in the order a corrections, but, unless one expects 
unreasonably large value for g^, its contribution cannot be more, than
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0.1 - 0.2 %. We have also ignored the momentum transfer dependence of the
(irt. - m f)2

form factors, its effect being of the order of ^ -̂---- . In fact, to
m i

calculate the relative corrections given in this paper one needs only the 
form factors divided by f^ (by the cosine of the Cabibbo angle in case of 
l Aev) . These input numbers are summarized in Table 1, together with the 
corresponding ones for n -+ pev decay, as they have been used in the Cabibbo 
analysis of the WA2 group [19].

We have obtained our results from computer calculation. We have used 
Reduce algebraic programs to calculate traces of complicated products of 
Dirac gamma matrices. To evalute the 3-, 4- and 5-dimensional integrals 
required by the bremsstrahlung part of the correction to the Dalitz distri­
bution, electron energy spectrum and branching ratio, respectively, we have 
used the DIVON general purpose routine for numerical integration. We have 
had to subtract the infrared divergent part of the square of the bremsstrah­
lung matrix element (III.10-12):

к -p.. Ш , (V.l)

For the 3-dimensional integration of (V.l) over the photon momenta we have 
used standard methods described, e.g., in [20]. The integration of the remain 
ing finite part is, in principle, straightforward. Convergence problems arise 
however, due to the electron propagator in (III.12). In order to make the 
numerical integration convergent, we have had to smoothen the large varia­
tions of the integrand by means of appropriately chosen variables of integra­
tion. For the Spence function we have used power series expansion.

To check our programs and to study the convergence properties of the 
DIVON routine in the case of our specific problem we have made the following 
tests.

1. / We have computed the "model independent" radiative correction to
the n->-pev decay rate. This number, 1.5 %, is well-known from the 
literature [7]. Our result by computer is 1.54 %.

2. / We have computed the "model independent" radiative correction to the
electron energy spectrum in n+pev decay. In Table 2. we present our 
results together with the corresponding values of the famous 
g(E ,E___„) function of Sirlin [7].0 GlTlclX

3. / Vie have computed the total order a photonic radiative correction to
у -*■ ev^v decay rate. The classic result for it is [21,22,8]

■ h  (I[2 “ = - °-42 %-
m^ — mf

This is an example, in which ——  ----  is not negligible. (We have



15

assumed mf = m^ = 0.) For the purposes of this calculation we have
v

had to keep the complete "pointlike" expressions for Tu< in (II.6) 
and for Typ in (II.8). In our computer program there has been a 
formal dependence on M^. It is well-known, that in V-A theory and 
to order a the radiative correction to p-decay is independent of the 
cutoff mass. We have put 80 GeV for but our results have not
changed, when this number had been changed to 800 and to 80 000.
We have obtained - 0.45 % for the correction to p+ev^v decay rate.

4./ We have calculated the correction to all of the branching ratios in 
two different ways. First, we have taken the complete order a expres­
sion for the radiative correction, and computed its 5-dimensional 
integral. In the second case we have decomposed the weak current 
matrix element (III.1) in terms of the form factors F^, F2, F^ and 

instead of the ones f^, f2 and g^ (see ref. 18). Then we have 
separated and integrated the kinematical coefficients for F^, F^F2,
F2, etc., and have obtained the correction to the branching ratio 
as a combination of these terms. This procedure is extremely sensi­
tive to numerical inaccuracies, because in most cases large terms 
with opposite sign sum up to give small result. In this way we have 
been able to excellently reproduce the results obtained by the first 
method. (In an early report we studied the Dalitz distribution for 
Z +nev decay following the second method. In that calculation we 
used the complete "pontlike" expression for the I~-photon coupling 
[23].)

On the basis of these investigations we can say, that the percentage 
values we give here for the relative corrections (RC %) have a numerical accur­
acy -0.1 % ((RC +0.1) %) for all branching ratios, and for the electron
energy spectrum and the Dalitz distribution in case of the l'+neí and A->-pev 
decays. In some points of the energy spectrum and the Dalitz distribution 
for Z +Aev a n d + A e v  decays this accuracy is worse, (RC +0.5) %. The 
reason for this is that we saved computer time.

Of course, we do not think, that our present theoretical knowledge allows 
to produce the complete radiative correction, i.e., including the "model 
dependent" part, with the above accuracy. However, we wanted to avoid numeric­
al uncertainties in the calculation of the "model independent" part, which 
are possibly comparable with the theoretical uncertainties. We have been very

careful about terms proportional to yj- —  or ---—--- , particularly, because

E 2 E
large factors, such as log ^  and log , can make them significant.

e e
We present our results in Tables 2,3,4 and 5. Tables 2 and 3 contain the 

relative "model independent" correction for the branching ratios and the 
electron energy spectra. For comparison, we give our numbers together with
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the ones, which can be obtained by using Sirlin's well-known results derived
E

originally for n->pev decay neglecting consistently all the terms with —  or
i

m . . With the exception of A->-pev decay there is no difference between

the two sets of numbers in case of the branching ratios.
(Table 2 does not contain the Coulomb part of the correction, which is + 3.5% 
for n-*-pev, and + 2.3 % for Л+pev.) The situation is different for the electron 
energy spectra. In comparison with the limiting curve 9(Ее 'Еетэх) of Sirlin 
we have obtained steeper function for the relative corrections. The differ­
ence is best visible in the lower third of the curve.

Table 4 contains the relative correction to the 2-dimensional distri­
butions in some points of the (Ee ,Ef) Dalitz plot. (The points were specific­
ally chosen to meet the needs of the WA2 experiment. Table 5 gives the dimen­
sionless coordinate values x = E /Е and £ = E,-/m, for the various decays.)e emax r i
As it was discussed in Sect. IV., part of the (Ee ,Ef) distribution is due to 
bremsstrahlung events alone. Here the "relative correction" would, of course, 
be infinite. Therefore, in Table 6. we separately present the contribution 
of these events to the electron energy spectrum.
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APPENDIX
In this paper we gave an account of our calculation of the order a radia­

tive corrections to the (E^E^) Dalitz distribution, the electron energy 
spectrum and the branching ratio for semileptonic hyperon decays. The numbers 
given in the tables refer to the "model independent part" of the corrections. 
Since there exist now several calculations of the "model independent" correc­
tions to the electron energy spectrum and the branching ratio, we find it 
necessary to clearly state the differences.

We have carried out our calculations without approximations in the lowest
order expression for the decay matrix element [18], and keeping all the terms

E m. - m.G i fproportional to — , -------  in the order о virtual and real photonic expres-
i l

sions. The tables give our results for the corrections in percentage of the 
precisely calculated lowest order quantity.
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In the tables we marked another set of numbers by the name of Sirlin.
These numbers come from calculations, which were originally designed to de-

E m ± - in­
scribe n-*-pev decay, and, in which all the — , — — ---  terms are neglected.

That is, the formulas for the corrected electron energy spectrum and the 
branching ratio are

rB+bev(Ee} 2П
3 (fí+3gí)E^(Eemax-Ee) 1+2 ^ (Ее'Еетах> (Al)

and

B->-bev
F e 5 

3 emax60П
(fl+3gj) It- -g (E ) 2 IP emax'

where

g (E )  ̂ emax |юд-
mch

4E'
81
10

emax

(A2)

ГАЗ)

In hyperon decays пк - m^ is not small enough, therefore the approximate 
lowest order quantities in (Al), (A2) are not suitable for the purposes of 
present experiments.

Garcia has attempted to cure this problem in ref. 11., and he has given 
a general expression for the (Ee ,cos0e~) distributions which is valid also 
when polarizations are detected. This result is not suitable for application 
in experimental analysis, because cos0e~ is not a good variable [12]. One can, 
however, integrate Carcia's result over cos0e~ and, e.g., perform summation 
over the polarization to obtain for the electron energy spectrum

W ; < V  -  гов-ьв;(Ев>[1 + l i p i V W ’ ] '  (A4)

where г0з_,.ье\] (E ) is the lowest order function for the electron energy spect­
rum without approximations [18]. (In the notations of [11]: g(E ,E ) =
= 2 ( +  01 ) .)
The relative correction is the same, as in (Al). An unaesthetic point about
(A4) is, that it follows from a result in [11], which is obtained after ad hoc

E m. - m-
manipulations with —  , £ ——-----  terms in the inner bremsstrahlung contri-П m^ П m^

butions. The purpose of these manipulations is to obtain a result, which con­
tains the precise lowest order quantities. The problem is, that large loga-

E m. - m-
rithmic factors multiply -2. —  and £ -------  and, therefore, they are notПт. П т .  ■*

really small in hyperon decays. An illustration of this is the correction 
to the branching ratio. Garcia gives

B-*bev— — ГoB-*-be
a
та Я (E ) ^ emax (A5)
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(Better to say, the numerical values of g(E ) are given in (11] for

several hyperon decays.) The relative correction is again the same, as in 
Sirlin's case, but in (A5) is the lowest order decay rate without
approximation. In contrast with (A5) the actual relative correction, which 
follows from (A4) is

a _  1 
211 1 oB^-bev

Г - (E ) g (E ,E ) dEoB->bev e  ̂ e emax e

This quantity is given in our Table 2 under the name of Garcia. (In ref.19. 
Table 4. has just the opposite heading.) These numbers are definitely differ­
ent from the relative correction in (A5). In case of A^pev decay the differ­
ence, 0.7 %, is not even small in comparison with the error, 2%, of the 
presently best experiment [24].
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Table 1.
The form factor values used in the present calculation.

fl f 2 81
£ -* nev 1 - 1.139 0.310
£ -* Aev 0 1.213 - 0.588
= -> Aev 1 - 0.065 - 0.249
A -*■ pev 1 0.974 - 0.699
n ->- pev 1 1.974 - 1.239

Table 2.
Relative correction to the semileptonic decay rates in %

This
calculation Sirlin Garcia+

£ nev - 0.41 - 0.25 - 0.81
£ •> Aev 0. 14 0.12 - 0.23
= -*■ Aev_ -k - 0.20 - 0. 15 - 0.50
A ->■ pev - 0.57 - 0.22 - 0.89
n pev 1.53 1.50 1.50

* + 2.29 % Coulomb correction
** + 3.5 % - " -
+ See Appendix



Table 3
Relative correction to the electron energy spectrum in %.

At each x the upper number gives the value of Sirlin’s ,

the lower one is our result. (Coulomb correction is not included).

X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
14.9 5.84 2.71 0.76 - 0.80 - 2.23 - 3.70 - 5.41 - 7.83

z ■* nev 18.2 7.2 3.5 1.3 - 0.4 - 2.0 - 3.8 - 5.6 - 8.6

z- -* Aev 11.4 4.90 2.54 1.01 - 0.24 1 t—- • О - 2.61 - 4.01 - 6.01
13.4 5.5 3.0 1.3 - 0.2 - 1.3; - 2.6 - 4.1 - 6.2

-> Aev 14.3 5.70 2.71 0.84 - 0.66 - 2.05 - 3.47 - 5.12 - 7.47
16.2 6.5 3.2 1.2 - 0.4 - 1.8 - 3.4 - 5.0 - 7.6
13.7 5.45 2.57 0.75 - 0.71 - 2.05 - 3.44 - 5.04 - 7.34

Л -y pev 18.0 7.0 3.4 1.3 - 0.4 - 2.0 - 3.7 - 5.7 - 8.5

n -*■ pev 1.88 1.77 1.60 1.39 1.13 0.74
2.0 1.8 1.7 1.5 1.1 0.7



Table 4

Radiative correction to the Dalitz distribution in %.

X1 X2 X3 X4 X5 X6
E -*■ nev 5.4 1.7 - 0.7 - 2.9 - 5.7 - 9.0
E ->• ev 3.9 1.6 0.4 - 1.9 - 5.0 - 6.5
= -> Aev 1.4 2.3 - 1.0 - 3.4 - 5.2 - 8.2
A •* pev 4.4 1.1 - 1.2 - 3.2 - 5.9 - 8.7
E -*■ nev 10.9 3.4 0.3 - 2.2 - 5.6 -11.6
E -*■ Aev ?2 5.4 2.8 0.8 - 1.0 - 4.1 -
= -»■ Aev 6.1 3.7 0.5 - 2.0 - 5.4 -15.0
A -> pev 9.5 3.0 0.2 - 2.1 - 5.2 -13.0
E -> nev 4.5 0.5 - 2.3 - 6.6
E Aev ^3 2.9 0.9. - 1.0 - 3.6
= ■> Aev 4.6 0.6 - 2.1 - 6.5
A -* pev 4.1 0.5 - 2.0 - 6.1
E -*■ nev 6.8 0.7 - 2.5 - 9.8
E -> Aev 2.9 0.8 - 1.4 - 5.5
= ->■ Aev 6.7 0.6 - 2.5 -12.0
A -*■ pev 5.5 0.8 - 2.1 -19.8
E -> nev 1.0 - 3.0
E -» Aev S5 0.4 - 3.9
= -> Aev 0.4 - 5.0
A -> pev 0.8 - 2.4

In case of Л -*■ pev uniformly 2.3 % must be added for the Coulomb correction.

I
ro
I
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Table 5.
The (x,£) coordinate values belonging to the points, in which the radiative
correction to the Dalitz distribution is calculated, (x щ E /Е = E^/m.)e emax’ f x

x. = 0.1, 0.25, 0.45, 0.65, 0.85, 0.95.

52 ?3 V ?5
E- nev 0.7925 0.7965 0.8005 0.8045 0.8075
T.~ Aev 0.9320 0.9325 0.9330 0.9335 0.9340
=~ ->• Ae.v 0.8460 0.8500 0.8520 0.8540 0.8560
A pev 0.8440 0.8465 0.8490 0.8515 0.8535

Table 6.
Radiative correction in % to the electron energy spectrum, caused by 
bremsstrahlung events, which fall outside the 3-body Dalitz plot (see 
Sect. IV.).

X 0.1 0.2 0.3 0.4 0.5
E nev 7.8 1.5 0.5 0.1 0.02
E -*■ Aev 00 2.4 0.9 0.2 0.01
= -> Aev 6.5 1.2 0.3 0.1 0.01
A pev 9.5 2.3 0.8 0.25 0.02
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