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ABSTRACT

The paper presents a study for the bubble behaviour in variable pressure
fields. The presentation is started with the deduction of mass momentum and
energy conservation equation in spherical form, and continued until the
solution is presented in a closed integral form. The paper outlines the
numerical solution, too. The main object of the paper is to present a useful
numerical tool for the study of growing or collapsing bubbles, in order to
study the interface mass and energy transferm terms, and the interface area.

AHHOTAUMA

B paboTe wuccnegyeTcs noBedeHve MNy3bipbka B GECKOHEYHOU cpefe nog BAUSHUEM
NU3MEHEHUA fOaBneHus. [peacTaBneHHas (U3nMyeckass MoAeslb COAEPXUT YpPaBHEHMST coxpa
HEHUSI MaccChl, WMMy/bCa WU 3HEPrun, CHOPMYSIMPOBAHHLIE B CHEPUYECKUX KOOpPAUHATAX -
B pa6oTe cHayana faeTcsi BbiBOJ 3TUX YypaBHEHWI, a 3aTeMm [aeTcs Takas 3aMKHyTas
(opMa peweHnii, KoTOopas yXe HEemnocpefCTBEHHO MPUrogHa A/ YUC/IEHHBIX PACUYETOB.
NccnepoBaHve pocTa My3bipbKa MOXHO OCYWECTBUTb MPU Ha/MUMM CaMbiX Pa3HOOB6pas3HbIX
BHEWHNX BO3AEUCTBUA, HO Bpemsi, Heobxoaumoe [/ pacyeTa, CWIbHO 3aBUCUT OT A/
TeNbHOCTW TpaH3ueHTa.llaBHas Uefb NPeACTaB/IEHHOINO MEeTOoAa - 3TO BO3MOXHOCTb MC-

CrefoBaHUsA BPEMEHHBIX MOBEAEHU (a30BbIX MEpexofoB, COMPOBOXAAWWMXCA OOGMEHOM
Maccoil N 3Hepruen.

KIVONAT

A kutatasi jelentés a végtelen kodzegben a nyomasvaltozas hatasara novek-
v6 vagy Osszeomld buborék vizsgalatara készilt. A bemutatott fizikai modell
gbmbi koordinatarendszerben, a buborék koézéppontjara felirt tomeg, impulzus
és energiamegmaradasi egyenletet oldja meg. A megoldas az egyenletek alakja-
nak levezetésével kezd6dik, majd megadja azt a zart format, amelyet mar csak
numerikusan lehet megoldani. A buborékndvekedést tetsz6leges kodrnyezeti nyo-
mas-i1d6 figgvény esetén lehet vizsgalni, de a szamitasi i1d6szikségletet a
tranziens id6tartama er8sen befolyasolja. A bemutatott médszer 6 célja az,
hogy segitségével vizsgalni lehessen kétfazisu aramlas esetén a fazisok ko-

zO6tti energia és tomegcsere tagokat, valamint a hatarfelilet id6beni valto-
z4sat.
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Introduction

There are three major fTields in the reactor safety
studies, where the behaviour of vapour bubbles is Important

a. / Interface mass and energy transfer terms for blow-
down calculations;
b. /7 noise analysis for boiling detection;

O. /7 bubble collapse, or cavitation for coolant pump
studies,

Vapour bubbles may grow, or collapse for two reasons:

1. /7 The pressure inside the bubble is different from
that of the outside. The growth or collapse is
controlled then by inertial forces.

2. / The temperature of vapour bubble is different from
that of the bulk liquid, there 1iIs evaporation or

condensation on the liquid/vapour interface. This
is the thermal effect.

Usually these effects are unseparable, they act to-
gether and there is a definite interaction between them.

In practice, the pressure and temperature difference
between the phases 1is not constant, but changing during
transient processes. But the widely used analytical rela-

tions are derived for steady superheat case with negligible
inertial effects.

The aim of the paper is to solve the governing equa-

tions of bubble growth with no such restrictions, TfTor the
following reason:



During flow transients, like the Loss of Coolant
Accident, the hulk liquid pressure is changing rapidly,
there are even pressure oscillations sometimes, and the
inertial effects could be important for the suhcooled part
of boiling.

The model discussed below is based upon the following
physical limitations:

1. / The liquid 1is incompressible. This restriction
may cause error only near to the critical point.

2. / As a consequence of surface tension, the shape of
the bubble 1is spherical.

3. / The pressure and the temperature in the liquid at
a given r radius from the bubble center 1is uni-
form. /See Fig.1,2/

4-/ The spatial distribution of pressure and tempera-
ture i1s uniform within the bubble.

5. / The vapour and liquid temperature 1is the same at
the ipterface-

6. / The system has only one component, there is no
dissolved gas in the liquid or iIn the vapour.

7. / The kinetic energy of"vapour 1is negligible compared
to the liquid.

8. /7 The liquid density will be taken at the bulk liquid
temperature. /It is different only in the thin ther
mal boundary layer./

Only the restrictions 2,3 and 4 could be serious limi-
tations, but for small bubbles, where the spatial change of
pressure is still not significant, one may use the spherical
approximation.

For reactor coolants, when the liquid is chemically pure
the limitations 5 and 6 are not significant.



Derivation ol liguations

In order to be able to determine the behaviour of a
bubble one must solve a set of conservation equations,
namely the mass, momentum and energy.

from the conservation of mass /see Appendix 1,/ one
obtains:

"dt /1/

The momentum equation for sphere, with angular in-

dependence :
A D
r2u) =0
rzar( ) /2/
3 d T \
therefore, excluding r = 0: — (r2uJd -0

Integrating the left-hand side with respect to r yields:

_ rzg{ _ 'ng)_n
A

as the right-hand side = 0O, the velocity of liquid, u will
be:

_dr _djr/ia_\
dt  dt\r) /Y

For incompressible liquids the conservation of momentum is
the same as the conservation of kinetic energy.



The kinetic energy of the liquid /that is the system, as

the vapour kinetic energy is neglected/ 1is given by the

o0
aruzdv
E,- 7 74/
integral, 1i.e, substituting /3/ into /4/ yields
o0
r r
r- gm / P RrajTolr =
K Z dtir
R © /5/
vird
roll Livirk
\dt) Z K

fhe work done against the surface tension and liquid

pressure lbe
‘R

Ee- \Trifft) w - J120EATAYICR 16/
A R |
where the Tfirst integral stamis for rk done against the

surface tension forces, while the second one stands for the
work done against the ambient Fof>/t/ pressure.

The relation between the vapour pressure and the
pressure at the outer wall:

pm—p_—lr3_1|7||'| 77/

Therefore substituting /7/ into the first term of /6/, and
adding the integrals yields:



Et” 0 ML) o)
e
"Ko

fart() ) iowxdnr
"
0 0

When the initial radius HQ 1is small enough, the se-

2

cond integral is negligible in /8/.

As the work done on the liquid minus the work of surface ten-
sion forces and ambient pressure is equal to the kinetic e-
nergy of the liquid: En = , that is:

RIFWIT dR=ZX2t( g )R 3i) /791

0
substituting dR=~dt into the integrational variable, then

differentiating by time both sides, one obtains:

WIT 2,() - o' &tjlk -2% ( 212Rk +30 Y r

or jan amplified and rearranged form:

R b fF R H IV - "l -TioW

When the effect of viscosity is taken into account, a
new term is added to the right-hand side:

o< nho*2 g " Rvih™R
RP +f-P 1 -"B.W . /10/

This is a second order nonlinear ordinary differential
equation, but 1t is easily transformed into a set of linear
differential equations.



Substituting R = z,

This system of equations gives the motion of spherical vapour
bubbles. It is obvious, that V(0 /t/ must be given and deb/t/
must be calculated in order to close the system of equations,
where T ~./t/ is the temperature of vapour being in satu-
rated condition.

The conservation of the thermal energy

The thermal energy equation for spheres, iIn the absence
of heat source, when the temperature distribution is spheri-
cally symmetric is as TfTollows:

combining with 73/ yields:

E2 LLI. X .+sLfri dl
rz dt dr fac r2 ar\ drJ ) r2s

This linear, second order partial differential equation will
be transformed into a practically usable integral form.
A new variable

A3/

is introduced to replace r, so h = h/r,t/ for R =r

and /14/
ar

that is oh = r2dr



Instead of the temperature a new variable will be iIntroduced,
which is proportional to the energy conducted to the bubble:
Unt)= f rl@mn - T\-D)ar

-R
instead of r, according to /14/, the new variable h is

introduced as

h
S0 ufFh.-t) = / (1 - TCb’t))dh* /157
0
Por this new variable U/h,0/ =0
us/o,t/ =0

(See Pig»2.)

As the U/h,t/ function has been derived from T/r,t/f one
may write for the first term of the left hand side in /12/:

9T(r,t) 3blI 3h 3U. di
at "3H at at dt

but gl\_( R at from /137,

3T _ 30”701 "R, au

D bl ' an dt + at 7167

In the second term of the left hand side of /12/

21 = U 2 h. 8u dt
dr Oh Qr Bt olr /17/



but ~ = 0, and substituting /14/ into /17/ one obtains:
10 =, y-Z OM. /187
dlr 3h

/16/ and /18/ is substituted into /12/ in order to eliminate
T/r,t/, the result is:

M

un  W-tf-dA , e! &R 12Ji
ri dt 3h dt 719/

9t — 9h dt

That is, the left hand side of /12/ is a single term now.

Transformation of the right hand side of /12/:

As A- — pi 9. from /13/ or /14/,

ar
[.1.9.731)=A_ 3/V*3I ¥
"C>1 Br\  dr1 fC ™~ ar/
but with /18/
= -A, a9 M)
c 3B\  9h / 720/
IT r 1is expressed from /13/, r™ will have the following
form: 4
3h
(=R ft) "~ H /217
Ufa)
Therefore the combination of /20/ and /21/ yields:
’4a
3b + < au
A 3, b\t
a, ¢ dh ) 9h 722/



tImi 1s

T e "GHT
Vi ¢ 9h c>h

or

a —_
A. .t ,r o+ r 3 £y 723/
o ah r/h2’

As :: - 0 outside the thermal boundary layer, and the mag-

nitude of r 1i1s always comparable with R, Tfor small bubbles

the fTirst term is negligible, therefore:

cM - A N$h-+ﬂ§i c~U
at 9 o [/ 3b2

or tr

4 au A fsh +Af’.5.M_
RN at ip(’C 1"R3 - 1 iz

t
ntroducing a new time variable, AN | {fﬂ/de
0
1 2 _ d
therefore - /24/
H4 31 3(r
Anally =_L f3h+ /(3 yxn 723/
20 c \ ab2
al 0 _ 0
As r = R i1n the thermal boundary layer, so r =R and
r»R = Rp, so the fTollowing approximation holds true:
r3-bs v,
3 3 "5 K R

where cT i1a the thickness of the thermal boundary layer,
"this expression for example in case of water seldom exceeds
10 but usually is around 10 ",



It Hi";! omrio Kq./2b/ "a simplified 1o

A 21 U
\yi 3HL 3<r /;>6/

/26/ ig a second order, ."Linear Lranaien L heal conduction
equa tion, named after Fourier, /6ee Appendix 11. for the
no lu E@on./

The so lution tranaformed to the original varjablea in as
N llowa: t

n /;\ r2(%) BTir*"iO
b1 /k%)olfl /2Y/
o7 ! 1

arl
One abonld specify in order to get the integrand,

with the help of the boundary condition for the bubble.

The temperature of the vapour will be:

Wth).T<1 Hid j'—4'tff—|—| ar 'm4927 di
[HVIJdf
/ 5

"oT | 0
3r 1R " °6tained from the conservation of energy at the

bubble i1nterfaoe:

| AITAADE) *ui/To@+* YIIEFD -Tne)|

The left hand side is the energy conducted to the bubble, the
first term on the right hand side is the evaporation heat,the
second, is the energy requirement of work against surface ten-
si.on forces,, the last is the work agolnst the ambient nreaaur«



Subati luting /7/ into the last term, and neglecting PW — Ib,

the sum of the second and last term will be — R23(TT ,
jm. 3

thus after aﬁplifioation:

Aif 3 J Ifyv(DG() v j-ff-criT)!
9p I cH (3

or after differentiation and rearrangement

N RBd A~ TDwT 2 ci"Ril2
- N +2 ci "R
dr R~ 3R dt dt g 739/

The second term is dominant in this expression, while the
last is usually considerably smaller, practically negli-
gible,

The final form is obtained by substituting /30/ into
/28/, that 1is:

That is, /12/ has been transformed iInto a second order
Volterra-type .integral equation, which has always a
solution, end from numerical point of wiew In easier to
sol ve,

Now a closed system of equations has been obtained,
that is: F = F/T/ , the state variables as a function
of temperature /or pressure/
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| 4

2.1 "Rz + |-z2 -.i “P«t(D I'LLI) ?7Jt) _UjMT)z

R(® -R
/32/
1 +R5- j H f26RK j
-1
_ ) 2.
Itfii)df’
0
PoO = Poo/i/ is specified afd boundary condition, and the ini-
tial conditions are:
t=0 = Re
drR
0
dt t=0
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The Solution of the sy3lern

Obviously, bills system off equations has no analytical
solution, only numerical iterative methods may yield re-
sults. Unfortunately, the ordinary differential equations
have stiff behaviour, R/t/, R/t/, t may change several
orders of magnitudes. The step-length control is signifi-
cant in this case, therefore a fifth order Sarafian-.Butcher
method has been applied.

In the denominator of /31/, the functional has been
integrated by second order approximation.

The method of iteration is a "learning” algorithm de-
vised for this system.
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Appendix 1«
Conservation of mans
The continuity for vapour:

d

\_d
R2T dt

after simplification:

dSsr+ o,dB.
3 dt T dt

for small bubbles the first term is negligible, so

Continuity for liquid:
(ft —~UCR] ) = ho

where U 1is the interface velocity, where the radius
crement caused by evaporation is not neglected, while
«

R only the density variation is considered.

Combining /I11/ and /12/ yields :

- up*_ -
or
R u
| f /137 is as follows:
'R , or =u

the interface velocity.

/117

/137

Wear to the critical point this relation yields conside

rable error.
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Appendix ll«

The solution of the Fourier equation

—Yy = L /11.1/
IC) 074 A 9V

The equation is:

r 1 the initial and boundary conditions are respectively:

Ufh.0) -0 /11.2/

Ufo.r) -0 /n.3s

egnn Uth,tr) =0 /11.4/
h-~co

n
ntroducing P_I'-C D j eq-Z/11.1/7 will be solved by Laplace

Jyansformation.

The formal transformation yields: M- -5 LL /N_.5/
dh2 D
o0
where ~ =u(h;s) "J & Uthiv'') dv
0
This 1s a second order linear ordinary differential equation.
The general form of the solution will be:
urAe a4 |
and from /11.4/ Ci] =0
dh h®o00
therefore d'i"\ Ae°° + Eeroo:o
dh h=o
ielding A-0 , that is, U »33¢& /11.6/



Star Lilift from the definition ofe yiMbjif, -MNb “,0)cu;

OTftht) _ 1 ~T(O0,t) _rf()
b W Dr “nt"

we obtain
h=0

Therefore X{F(r)}-f(s)

du ;
bo - —Fis) /11.7/
dh h=o

After the derivation of eq. /11.6/ wi th respect to h twice,
and combining with eq. /11.7/ the result is

therefore 3 *f(s) %

Now u will have the following form:
- I3a\& - u
Uch,s) = |1S)“~r & /TT. 5/

The inverse Laplace transformation will be carried out not
for u , but for , as this i1s more fTavourable;

x "l -1 -717,-71(H

. U TQK,™-T, -iF-1If @, O



The inverse transformation has been carried out by /A / table,
yielding >
B (VY
T(h,<r) =b + | | /11.10/
(<r-3Js)
J
0
is substituted into the nomina-
tor, one obtains
| ol(bl£) 2
— a&==-e¢ df
/ rR2(-:£
0

Transformation

As the transformed time variable is

one may replace df

one obtains

KMDbvff

and
rfnt)-Tr §

to original variables:

S =
0

with dx , because of

r*£~e-
L X
ft r3-'/m38
IL. e izoyWyty
r < -il
fvydc,

J M(x")dx*

=rV)

dx

dX
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or at the bubble wall

r *<*E> r=m)

thh) —ta !

It Jiiii

Finally, when R~ 00, that is, for a plane, 1in eq. /11.11/
R 1s regarded as a constant, therefore

dx
yielding £
ran
. \Y ICH I
Th) =1, -\ ’
) irJ Il-x
0
Inasmuch as "7 1 inequality is not fulfilled,

a correction is to be applied. Applying the method of suc-
cessive approximation . T 1s approximated as
T = T*__,_'_ T** + T*** +,

T* , as the first approximation is given by /11.11/

By similar methods, as T* was obtained, an inequality is

derived for T : _t
* % A b\ A f O(*R,S)
T(t)4a 3\ 21Cl J
i 0
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where o(ty) =T, — T*0?7,1)

According to the calculations, the correction was very
smal], usually negligible.

A. Erdélyi et al.: Tables of Integral Transforms.
Vol. 1., McGrow Hill
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Comparison oF results with test data

The previously presented numerical model has been compared with
three test data. The data has been published by M. Niino iIn the
"Study of Single Bubble Generation and Growth by Laser beam”™, Ph.
D. Thesis Univ. of Tohoku, Japan, 1975, and by Hewitt and Parker
in the "Bubble Growth and Collapse in Liquid Nitrogen'™, ASME Jour
nal of Heat Transfer, Vol.90, 1968, pp. 22-26.

The data is plotted in a paper by 0. Jones, Jr and N. Zuber:
"Bubble Growth in Variable Pressure Fields"™ ASME Journal of Heat

Transfer, Vol. 100, Aug. 1978, pp. 453-459.

On Fig- 1. and Fig. 2. water has been used in the experiment,
while in case of Fig. 3., liquid nitrogen. The experimental re-
sults of bubble radius measurements are plotted on the radius
curves as black dots. The agreement is reasonable between the
calculated and measured values. It has to be emphasized that the
method is general, the pressure history around the bubble could
be arbitrary. Smooth pressure functions are, however, more con-
venient to calculate, jumps or sudden changes require more com-

putational time.

In case of Fig.- 1. and Fig. 2. at the beginning of the calcula-
tions the time has been plotted logarithmically. This period,
although starts in real time, requires a significant protion of
all computational time.

The method 1is appropriate for bubble collapse calculation, until

the bubble radius becomes smaller then the critical radius.
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Nomenclature

r radius, 1independent variable
t time, independent variable-—
R(Y) bubble radius

initial bubble radius at t = 0O

u velocity

P pressure

p.<u ambient pressure
T temperature

initial temperature
bubble volume

pressure at the outer wall of bubble

State variables

pt<n) liquid density
o, B vapour density
o( surface tension

Psat(T) saturation pressure

A(T) liquid heat conductivity coefficient
c( liquid specific heat
G evaporation heat

X Q) dynamic viscosity
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