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ABSTRACT
An axiomatic framework for describing general space-time models is out­

lined. Space-time models to which irreducible propositional systems belong as causal logics are quantum theoretically interpretable and their event 
spaces are Hilbert spaces. Such a quantum space-time is proposed via a "ca­
nonical" quantization of Minkowski space M 4. As a basic assumption the time 
t and the place r of an event satisfy the CCR [t,r]=-ift'. In that case the  ̂
event space is a complex Hilbert space of countable dimension. When ft'-Ю, M 4 
is provided as the classical limit of this quantum space-time. Unitary sym­
metries consist of Poincaré-like symmetries: translations, rotations and 
inversion, and of gauge-like symmetries. Space inversion implies the time 
inversion, and vice versa. This quantum space-time reveals a confinement 
phenomenon: the test particle is "confined" in an ft size region of M4 at any* 
time. In the one particle theory over this quantum space-time, the Klein- 
-Gordon eq. and the Dirac eq. may be reinterpreted as bare mass eigenvalue 
eq.'s for a scalar and a spinor particle, respectively. This quantum mechanics 
reduces to the usual relativistic quantum mechanics when ft'-*-0. An example 
explains the potential model of the T-particle. This comparison with the
У-particle gives Tl'sl •

АННОТАЦИЯ
Описывается аксиоматический подход к описанию общих пространство-времен­

ных моделей. Те модели пространства-времени, которые имеют неприводимые систе­
мы пропозиции в качестве причинных логик, обладают теоретико-полевой интерпре­
тацией, и их пространства событий являются Гильбертовыми. Задается такое кван­
товое пространство-время с помощью канонического квантования пространства Мин­
ковского М4. Это квантовое пространство-время имеет свойство запирания. В од­
ночастичной теории на этом пространстве-времени уравнения Клейна-Гордона и 
Дирака имеют интерпретацию уравнений на собственное значение голой массы для скалярной или спинорной частицы.

KIVONAT

Egy axiomatikus keretet vázolunk általános téridő-modellek leírására. 
Azok a téridő-modellek, amelyekhez irreducibilis propozició rendszerek tar­
toznak mint kauzális logikák, kvantumelméletileg interpretálhatók és az ese­
ménytereik Hilbert-terek. Megadunk egy ilyen kvantumtéridőt az M4 Minkowski- 
-tér "kanonikus" kvantálásán keresztül. Alapvető feltevésként egy esemény t 
ideje és r helye teljesiti a [t,r] = -ifi' felcserélést relációt. Ebben az 
esetben az eseménytér egy komplex szeparábilis Hilbert-tér. Ha ft'-*0, M4-t 
mint ennek a kvantumtéridőnek a klasszikus határesetét kapjuk vissza. Unitér 
szimmetriák Poincaré-szerü szimmetriákat: eltolások, forgatások és inverziók, 
és mértékszerü szimmetriákat tartalmaznak. A tértükrözés maga után vonja az 
időtükrözést és viszont. Ez a kvantumtéridő bezárási jelenséget fed föl: a 
próbarészecske bezáródik M4 egy ft méretű cellájába minden időpillanatban. Az 
egyrészecske-elméletben ezen a téridőn a Klein-Gordon-egyenlet és a Dirac-e- 
gyenlet újra interpretálhatók mint csupasz tömeg-sajátérték egyenletek egy 
skalár ill. egy spinor részecskére. Ez a kvantummechanika a szokásos relati- 
visztikus kvantummechanikára redukálódik ha ft'-Ю. Egy példa magyarázza a 
^-részecske potenciál modelljét. Ez az összehasonlítás a V-részecskével a
ft ~1 ~GeV" erte'íet adja.
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1̂.Introduction

The view is widely accepted that the difficulties of conven­
tional local quantum (q) field theories arise from their para­
doxical and semantically inconsistent nature, namly they are 
q theories over a classical (c) space-time, they are cq theories 
in the terminology of Pinkelstein (1974) . There exist in the 
literature many different approaches to resolve this inconsis­
tency and to achieve a semantically consistent —  which must 
and do be a proper feature of a successful theory stressed 
oftenly by von Weizsäcker (1973» 1974)—  local q field theory 
and at the same time to explain the very nature of space-time 
or to arrive at a q space-time. Some of the most essential appro­
aches are the space-time code theory of Finkelstein (1974) 
et al. (1974), the ur theory of von Weizsäcker (1974) et al.
(l975, 1977, 1979, 198l), the twistor theory of Penrose (1975) 

et al.(l97P) and more recently the attempt of Marlow (l981a, 
1981b)^. However these approaches have not been completed and 
it is not too easy to see in their present stage whether they 
will really achieve the goal or not. Therefore we think there 
are still possibilities for other approaches.

Recently the present author proposed a generalization of q 
logic of the type of Piron (1976) and Gudder (1970) for local 
field theories (lft) using the new technique of lattice valued 
logics (Banai (1980, 1981a)). This q logical approach offers us 
a new possibility to approach the problem above and to develop 
a consequent q version of space-time. As a continuation of the 
investigation of the ideas in these papers mentioned we elabor­
ate here the suggestions given in Banai (1981b) and propose a
"canonical quantization" of Minkowski space пИ and formally

 ̂ this,
develop a Hilbert space formalism for describingsq space-time
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and for q mechanics over this q substratum. Our guiding prin­
ciples consist of two hypotheses:
(A) The space-time of a local q physical system should be q 

theoretically fully interpretable.
(B) The time and place of an event could not be measured, in 
principle, with orbitrary precision.

The first hypothesis is required by the semantical consistency 
and it determines the mathematical framework of the corresponding 
space-times. Following from the clearcut result of Cegla and Jad- 
czyk (1977) about the causal logic of (A) will be equivalent 
in mathematical terms with the requirement that the causal logic 
of the space-time should satisfy the covering law and thus the 
causal logics of the corresponding space-times become proposi­
tional systems of Piron (1976). The second hypothesis can be for­
mulated mathematically in the Heisenberg-type uncertainty relation 

At Д г ^  ^ r2 = x2 + x2 + x2 (1)
where $1’ is a Planck-constant characteristic for space-time, 
and (1) will lead to a "canonically” quantized version of , to 
a concrete q space-time.

The main content of this paper is presented as follows. In 
sec. 2 an axiomatic framework for describing general space-time 
models, following from a q logical approach of 1ft (Banai (1981a)) , 
is outlined. Space-time models to which irreducible propositional 
systems of Piron (1976) belong as causal logics are q theoretical­
ly fully interpretable and, if their causal logics contain at 
least four atoms, their event spaces are generalized Hilbert spaces. 
In sec. 3 such a q space-time model is proposed via a "canonical" 
quantization of пИ. As a basic assumption following from (в) 
the time t and the place r of an event satisfy the CCR [t,r] =
= -ifi* which implies (l) . In that case the event space is a comp-
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lex Hilbert space H of countable dimension, events are rays in
H, observables are self-adjoint operators in H and symmetries
are unitary or anti-unitary operators in H. In the formal limitc
Ъ*— ► О, IbF is provided as they limit of this q space-time. In 
sec. 4 it is shown that the unitary symmetries of q space-time 
consist of Poincaré-like symmetries: translations, rotations and 
inversion, and of gauge-like symmetries. The space inversion 
implies the time inversion, and vice versa, in this q space-time. 
In the c limit the unitary symmetries are reduced to the Poincare 
symmetries of IM̂ . In sec. 5 some properties of q space-time is 
studied and it is seen that this q space-time reveals a confine­
ment phenomenon: the test particle is "confined" in an & size 
region of В/П at any time. Sec. 6 deals with the one particle theo­
ry over this q substratum and the Klein-Gordon eq. and the Dirac 
eq. are reinterpreted as mass eigenvalue eq.’s for the mechani­
cal (or bare) mass of a scalar and of a spinor particle, respect­
ively, which particles are free or interact with an external 
field. This q mechanics is reduced to the usual relativistic (r) 
q mechanics on Вч in the formal limit ti’— >0. In sec. 7 an ex­
ample, a particle in a Coulomb potential, explains why the po­
tential model of the Y -particle describes so beautifully the 
spectrum of this particle in a non-relativistic way. This compa­
rison with the Y-particle gives Ь' »  1 natural units.
In sec. 8 concluding remarks close this paper.

2. Space-time models from a q logical approach of LFT

(l) In Banai (1980) the local physical system P(£2) is represented 
by a lattice-valued logic (L, t, V); the value lattice l have
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to reflect the causal structure of the physical space over 
which the system spreads. Thus the physical space of the system 
should be determined by £ together with its event structure» 
symmetries and observable aspects.
(2) Given £ abstractly in a concrete lattice-valued logic (L, £ ,
V) representing the system P(£2), then a/ events are represented 
by the atoms (or more generally by the maximal filters ) of £ ,
b/ symmetries are given by the automorph!sms of £ ; the symmetry 
group of £ is Aut(-£) , the geometrical symmetry group of the 
corresponding physical space is generated by Aut(^) , с/ observ­
ables are morphisms (0-morphisms or c-morphisms) from Boolean 
lattices associated with the measuring apparatuses (classical sys­
tems) to £ .
(3) Causal relation: Definition. Two enents are causally dis­
connected (connected) whenever the two events are compatible
/ 4 3.(non-compatible^; they are orthogonal, they belong toAdistributive
sublattice in £ . The elements of L (two regions generated by 
the two elements) are causally disconnected if they are compatible.
We say that the "causal logic" £ is non-relativistic. respect­

ively, relativistic if £ is distributive. respectively, non-dis­
tributive .
(̂ 4) Assumptions; We restrict ourselves, from now on, to CROC- 
-valued logics representing a local P(Q). Thus £ will be a CROC, 
complete orthomodular lattice. To simplify the event structure of 
£ , a father assumption is to be £ atomic CROC, and thus events 
are in one-to-one correspondence with the atoms of £ .
(5) Examples: &/ £ = U  ̂ ̂  ̂  (lR̂ ) , this is the causal logic of
Galilean space-time X = R x The Borel sets of X constitute a
^-complete lattice £^ in £ . The Galilean group G on X acts as 
a group of automorphisms of £ and £ ^ .
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The events are the points of X. The observables in £ B (0- 
-morphisms) generate Borel functions on X, and conversely (ceg- 
la and Jadczyk (1976)).
b/ Z is the causal logic of оИ, i.e. the elements of Z are 
given by double -orthogonal sets in and these sets form a 
CROC as it was shown by Cegla and Jadczyk (1977). The events of 
Z are the points of Maximal complete Boolean sublattices of 
Z correspond in one-to-one to spacelike hyperplanes in (M^; the 
atoms of a maximal Boolean sublattice in Z are the points of a 
spacelike hyperplane in оИ, all these events are causally discon- 
nected. The subset Z of Z consisting of all Borel sets in Z 
is a Ф -complete, orthomodular lattice. Every automorphism of Z 
is induced by a transformation of preserving interiors of 
light cones, and so, by the result of Borchers and Hegerfeldt 
(1972), is a Poincare transformation up to dilation. Thus the 
full group of symmetries, Aut(-d) consists of dilations and Poin­
care transformations. An observable in Z B (<?-morphism) generates 
a Borel function on a spacelike hyperplane in IM^, and conversely, 
(б) As we see the non-r causal logics are almost exhausted by 
the physically interesting and well studied example a/ though 
there are theoretically open questions in this case, too. Never­
theless we now concern the physically more interesting cases of 
r causal logics.

In example b/ Z is an atomic CROC, moreover it is an irreducible 
n .

atomic CROC; the celter of Z consists of the empty set and OVT only.
But the covering law is not satisfied by l (one can easily verify
this considering the content of the law on a two dimensional
f igure:
рЛ a = 0, but (pVa)Aa’ is not an atom in general! as it should 

follow from the covering law if it is satisfied.}?
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Thus i is not a propositional system in the sense of Piron 
(I976) and so it does not be realizable via a (generalized) Hil­
bert space in accordance with the Piron’s realization theorem 
about propositional systems.
CO On the other hand if we suppose that the covering law is sa­
tisfied by Z (e.g., in the case of CROC-valued propositional 
systems (L, v) representing rift systems (Banai (l980))) then 
the r causal logic 4 becomes an irreducible propositional system 
of Piron and thus, if t containes at least four atoms, it is 
realizable with the lattice of the closed subspaces of a general­
ized Hilbert space H over a division ring К in accordance with 
the Piron*s result. Furthermore the corresponding r space-time 
can be fully operationally defined (at least to the extent of 
the Piron’s q physical approach). Now, by Piron (1976) , we know 
that the covering law guarantees in a q system, knowing the res­
ponse of the system undergo an ideal measu^ment of the first kind, 
to calculate the final pure state as a function of the initial
pure state. Without this axiom we cannot completely determine the

ёfinal state; and although the measu^ment may be ideal, the per­
turbation results in a loss of information, even if we take the 
response of the system into account.

A pure state is represented by an atom in the propositional sys­
tem; in the causal logic, an atom represents an event (of a test 
particle moving in the corresponding space-time). Thus the cover­
ing law ensures us to be able to predict the subsequent event
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of a test particle observing with an ideal measurement of the 
first kind, as a function of the initial (previous) event. We 
may have in this way such space-time models which only employ 
operationally definable and observable concepts and which are 
q theoretically interpretable. So we call such a r space-time 
model to which an irreducible propositional system belongs as 
r causal logic a q space-time.
(в) Let us collect the main results following from q theory and 
concerning on q space-times.
Theorem 1. Let (L, v) be an irreducible CROC-valued proposi­
tional system representing a pure rift system. If the г causal 
logic £ is of rank at least equal to 4 then Í can be realized 
by the lattice !P(H) of closed linear subspaces of a generalized 
Hilbert space H over a field K. (The vector space (H, K, Ф) is 
a generalized Hilbert space iff u + uA = H, Vu€^P(H), ux =
= {f6H|$(f,g) = 0, V g e u j ,  where ф  is a definite Hermitian 
form constructed over this space.)
Proof. See in Piron(l976).
Theorem 2. The events of the causal logic l. in Th.l. can be rep­
resented by the rays of H. Two distinct events are causally dis­
connected if the corresponding vectors make the definite Hermi- 
tian form vanish.
Proof. See in Piron (1976) .

So we see that the q substitute for the c event space is a 
Hilbert space H corresponding to the rift system represented by 
the irreducible CROC-valued propositional system (L, l, V), si­
milarly to q mechanics where the q mechanical substitute for c 
phase space is the Hilbert space.
Theorem 3.(Wigner) Let H be a generalized Hilbert space of di­
mension at least equal to 3» realizing a r causal logic t . Every
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isoraorphism of (H) onto itself is induced by a semilinear 
transformation of (H, k ) onto itself. A semilinear transforma­
tion ((э, б*’) of (H, k ) onto itself induces an isomorphism of 
^P(h ) onto itself iff there exists ot 6 К such that 0'’“1 0(0'f, 
ffg) = Ф ( f ,e)ot- , Vf,g в H.
Proof; Th.(3.28) in Piron(l976).
Corollary. If H is a complex Hilbert space of at least dimension 
3, every symmetry is induced by a transformation u which is li­
near or antilinear. In the linear case $>(uf,ug) = 0(f,g),
Y f  ,g€ H, and in the antilinear case (p(uf,ug) = <j£(g,f), Vf,g€H.
But the transformation u is not entirely determined by the spe­

cification of the symmetry. Two u ’s which differ by a complex 
factor of unit modulus induce the same symmetry.

Thus the symmetry group Aut(£) of the r causal logic in Th.l. 
generates, roughly speaking, the unitary group of the correspond­
ing (generalized) Hilbert space H, that is to say the geometrical 
symmetry group of the corresponding £ space-time represented by 
H is the unitary group of H.

Now an observable is a c-morphism of a Boolean CROC associated 
with a measuring apparatus into the r causal logic I . When the 
field К is isomorphic to one of three fields the reals, the comp­
lexes, or the quaternions one can state in the Hilbert realization 
(Piron (1976) Th. (3.53)) :
Theorem 4. Each observable of a г causal logic which is an irre­
ducible propositional system P(H) defines an Abelian von Neumann 
algebra over H. If H is of countable dimension, this algebra is 
generated by a self-adjoint operator. If H is finite dimensional, 
every observable has a purely discrete spectrum.

A state w can be defined on a q space-time as a generalized 
probability measure on £ . The main result along this line the
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the Gleason’s theorem (Gleason (1957)) .
Theorem 5. Let H be a complex Hilbert space representing the 
event space of a q space-time. Every generalized probability 
measure defined onto 5^00 is of the form w (Q) = tr(Q$>) ,
V Q €  P (H) , where 5> is a von Neumann density operator.
This theorem was proved by Gleason for countable dimensional 

case and by Eirels and Horst (1975) for uncountable dimensional 
case with the assumption of Continuum Hypothesis. Using this 
theorem and the properties of von Neumann density operators, the

Л
mean value of an observable A which is a self-adjoint operator in 
H has the form oo л ^  ^

= tr(A §) = Д ^ С аР ^  = ^  i ̂  Ax^) =

= Z 1 = 1 Д < х 11 А|х±> (2.1)

where JE Д  = 1» P^*s are mutually orthogonal projectors
of rank 1 and x^’s constitute an orthonormal basis in H. In par-

Лticular the mean value of A in a pure state which is represented 
by a one dimensional projector or by a ray, is

<CA/>p = tr(AP) = <(x|A|x> (£.2)
Because of the definition of an event we can say that the expec­
tation value of an observable A at the event P = | х Д х  | is given
ьу (г.2).
Remarks Conserved curents define states on the causal logic of 
IM̂  in example b/ as was shown by Cegla and Jadczyk (1979)•
(9) Maximal Boolean subalgebras in Z of example b/ correspond 
to spacelike hyperplanes in similarly, maximal Boolean sub­
lattices in Z (in Th.l.) generate spacelike hyperplanes in the 
corresponding q space-time. Por, let В be a maximal Boolean sub­
lattice in Z , then В = <P(Q) where is the set of atoms of B. 
Every event (the points of Я2 ) in В is causally disconnected.
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Now Q  with the discrete topology is a copletely regular space 
and thus its Stone-Cech compactification "P exists, which is a 
compact Hausdorff space, extremely disconnected. On the other 
hand, let A be the Abelian von Neumann algebra generated by B, 
then A is a commutative C*-algebra (moreover a W*-algebra) and 
so it is representable as a function algebra C(T) where V is 
a compact Hausdorff space, extremely disconnected; T7 is the 
spectrum space of A. It is clear that T1 = T* up to topological 
isomorphism. This completely disconnected compact Hausdorff space 
Г  is what we can (and do) call a spacelike hyperplane in the q 
space-time representable by a complex Hilbert space H. Follow­
ing from Th.5., all probability measures, states, on V  are de­
termined as convex combinations of pure states and a pure state 
is represented by a Dirac measure on V concentrated on a point 
of Г  . To summarize we can state:
Theorem 6. Let Z be a г causal logic realizable with а ^Р(Н) 
where H is a complex Hilbert space of dimension at least equal 
to 4. Every maximal Boolean sublattice В of t determines a space­
like hyperplane "F in the corresponding q space-time represented 
by H. Г  is a completely disconnected compact Hausdorff space 
and can be identified with the spectrum space of the Abelian 
von Neumann algebra generated by B. Every state on P> can be rep­
resented on T7 as a probability measure of the form /Л =

- 2 хбГ X x//x where A y ̂  0, = 1 and ^Ax is the Dirac
measure concentrated on x б T1 .

So we see that a q space-time has a much more discrete inner 
topological structure compared with the space-time IM^; a space­
like hyperplane in is a connected locally compact Hausdorff
space in its usual topology.
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(10) We saw that the observables of a q space-time representable 
by a complex Hilbert space of countable dimension are self-ad­
joint operators. Thus the observable time and space coordinates 
of an event (which are supposed, in c space-time, that they are 
observables) become self-adjoint operators in such a q space-time. 
The space-time coordinate 4-vector plaies a distinguished role
in IM̂ ; all other observables on IM̂  can be expressed as functions 
of this 4-vector. Thus the determination of the commutation pro­
perty of the coordinate time and space operators is decisive 
for us. It will be done this in the following sec. using a heu­
ristic argument.

3. A "canonical” quantization of Minkowski space

(11) Prom now on we restrict our attention to such q space-time 
models which are represented by complex Hilbert spaces of coun­
table dimension. In these cases the whole well-known mathemati­
cal apparatus of q mechanics can be exploited to build up a 
sensible and, probably, satisfactory q version of space-time.

We note that any two such q space-time models, i.e. represent­
ed by two complex Hilbert spaces of countable dimension, are unit- 
arily equivalent because of any two such Hilbert spaces are unit- 
arily equivalent.

Let H be a complex Hilbert space of countable dimension, rep-
A Aresenting the event space of a r space-time model. Let A and В 

be two observables in this q space-time, i.e. two self-adjoint 
operators in H and let ф be a unit vector defining an event 
in both of their domains, and such that Аф is in the domain of 
В and vice versa. Denote S (А, ф) the dispersion of A in the event 
ф  , i.e. S(A , Ф) is a quantitative measure of the degree of 
"spreadoutness" of an observable in a given event (pure state):
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£(i,<t>) - <[á - <?Ф1 ф>]2ф|ф>5 =<л2ф|ф> - <лф|Ф>2.
Then, as it is well-known from q mechanics (see, e.g., in 
Mackey(1963)), the product of the two dispersions 5 (а ,Ф) and 
£(В,ф) is bounded below by |<̂ (ВА - АВ)ф|ф^|/2 :

5(Х,Ф)-5(В,ф) £ 5 |<[в, А]ф |ф>| (э.1)
/Ч АWhen A and В do not commute this is a limitation to the degree 

to which the probability distributions of the corresponding ob­
servables may be independently concentrated near to single points
(12) Now let xQ = ct, x-̂ , $2» x^ be the self-adjoint operators 
corresponding to the coordinate time and space observables (of 
an event of a test particle)-? These observables play a role in 
DlH similar to 1:Це role of the conjugate momentum and coordinate 
observables in c mechanics; all other observables on IM̂  are
the functions of these observables. The non-commuting property 
of the conjugate momentum and coordinate observables has a cent­
ral role in q mechanics. Thus we suspect that, similarly, there 
is a corresponding relation between the coordinate time and space 
observables in q space-time.

In q mechanics, following from the CCR, arbitrary small cells 
of phase space built up from p and q do not correspond to physi­
cally observable reality. A similar statement in q space-time 
that the arbitrary small cells of IM̂  - this is the analogous of 
phase space - do not correspond to physically observable reality, 
i.e. with physical measurements with vanishing dispersions. In 
other terms we are not able to distinguish, by measurements 
with zero dispersions, two events arbitrarily close in 0И  from 
each other. On the other hand we may expect - taking into acount 
the great empirical success of non-r q mechanics which presuppos­
es the Euclidean structure of space and that any particle is lo- 
calizable in space to a point also in q mechanics, and the conser

1
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vat ion of angular momentum (Segal (1965)) - that the spacelike
coordinates x-̂ , x^, x^ of a test particle are measurable without
dispersion, i.e. x^, x^ and x^ are commutable among themselves.
Let A  A = £(А,ф) then we formulate this heuristic argument

иin the following Heisenberg-type uncertainty relation
A t A r ^ ^ l i ’» r = ^x2 + x2 + x2' (3.2a)

0r Д х о Д г 1  ^ ft, Ü = eft’ (3.2b)

where is a constant characteristic for space-time. This un­
certainty relation means that the time and place of an event 
cannot be measured with arbitrary precision, in principle, any­
how the measuring apparatuses are refined. We can derive this 
relation, applying (3.1), from the following Heisenberg-type 
commutation relation (CR):

[t, r] = -ifi’-l (3.3a)
or Г2 = X2 + x| + X2

[xo, r] = -ifc*l (3.3b)

where 1 is the identity operator on H and equality are under­
stood on the common domain of the both side (and this remark 
willWalid for all formal equalities between unbounded operators 
in H they extensively appear in what follows?). We choose the 
CR(3.3)our (second) basic assumption to set up an operationally 
defined and phenomenologically allclable concrete q space-time.
(13) We can easily determine a concrete realization of (3.3).
Let (H, 0) = (l 2(IR), <filf2> = |̂Rd<l (q)f2(9))• Then the follow-
ing self-adjoint unbounded operators satisfy (3.3) (when they 
are suitably restricted):

t <p(q) = - iV |q<p(q), ^0Я?(ч) = " ^ ^ ф ( 9 )

rCp(q) = q*Cp (q)
(З.4)

But the realization (3.4) is unique up to unitary equivalence
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in the sense of the Stone-von Neumann theorem (1932).
Note that the pair (q, - i ^ )  of operators constitutes an irre- 

ducible system of operators in L (R) in the sense that only the 
scalar multiplies of the identity operator commute with both of 
them.

Now let (H, ф) = (l 2(R3), <flf f2> = S 3 d32L f-^x^fe)) then
Xi ф(х) = х1 *ф(х) (3.5a)

To determine the self-adjoint representation of (3.3) in this 
case, let us use the following trick-; Let us consider the map 
V: L2(R) — l|((R) ; Cp (q) i <jp(q) , where d §  (q) = q2dq. This 
is a unitary map. Denote h the multiplication operator and -i -jg 
the differentiation operator in Lj(1R) . Then VqV = h and 

v(-i I ^ 7"1 = -i E Ж  h = _i(|h + Б) := f> Furthermore let
I I

£ : R3 — > R X (0, X (О, 2ТГ) ; x 1— > (|xl sign x^, arc cos ,
X, / О О ö f

arc sin - л ̂  ^ ) , Ixl = v x^ + x 2 + x^ = r, then ( h, %  ) =
V x1+x2

= (|h| sin^ cos X , |hl sin o^sin X , h cos ̂ ), and the mapping U : 
L2(R3 ) — >b|(K) ©  Ly(0, J ) ®  L2(0, 2¥);Cpt— »Cpo ^ -1 is unit­
ary, where dv(-\5) = sin-Jld-\>. Then we can write 
U (h ®  idlIy(o „  ®  idLi (0i2T))u_1 <h . A * )  = Ixlsign x^ •

:= г-ф(х),

U Cf ®  ldL!v (o,f) ®  ldL2 (o,2T)) u' 4 ( h .  A x )  ■=

' -1 HI sign x3 U l  xi Ü 7  + idL1(E1))(te> *

* -i Г (Xt dX i + 1 ) ^ ) !*= _i )

and these self-adjoint operators clearly satisfy (3.3) if we put 
the coefficient ti or ti* on the appropriate place. Thus we have

*оФ(£) - -lh I f Ф & )  (3.5b)
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г Ф(х) = г*ф(х), (3.5с)
t ф(х) - -Л* fp Ф(х) (3.5d)

The operator г in (3.5с) clearly satisfies the condition r2 =
*2 *2 л2= X-̂  + x2 + x^.
Note that the system (x^, -i J~), i=l,2,3. of operators cons-

i 2 3titutes'&n irreducible system of operators in L (IR ), and, while 
the solution in (3.4) for (t, r ) is irreducible, the solution 
in (3.5c,d) is not irreducible in L2(lR3).^ Furthermore observe 
that, in this representation, ir(ffr) is orthogonally decomposed 
into the direct sum L2(lR3) ■ Hj • Hg « L2(lR2 X (R+ ) • L2(|R2 x R_), 
and the pair (t, r ) acts in H-̂ as (-ift* ^ r » r ) and in 
as (+ifc* p r, -r); (t, r) has purely positive spectrum in H-̂ 
and purely negative spectrum in H2.

With the aid of this representation of xQ we obtain, after a 
formal calculation, the CR’s between the components of the coor­
dinate 4-vector Xyu : A

p 0 . x±] * -iti “  , i = l ,2,3 (3.6a)
or A

[x* , xvJ = -iti A^y , /M,v =0,1,2,3 (3.6b)
where Í 0, x-̂ , x2, x^ >

[ U  - ; '?i' ° - V i  (3-7)-x2 , u , и, и
x̂ j, 0, 0, 0 J

By means of (3.1) we get the uncertainty relations for the com-
лponents of x^ s ____ ___  A

* J* |(̂ )|. (^)-<Ф1^1Ф> (3.8.)
О г

4 ^ ДХу^  ̂% I А,му( , А̂у = <ф|А*>/|ф)> (3.8b)
We can write for the expectation values of the coordinates of 
an event realized by a unit vector ф € Н  :

x̂ u = tr(Pф x^) = <Ф|х/.1ф> = SrS ф x* ф  d3x , (3.9)
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xo = _i^ (̂R d9 sin^ 502T dX 4>(q,^,*) | _ ф ( ч,п^,Ж) =

= -it SR3 d3x фСх) ^  ф(х) (3.9a)

Х± = 5^3 ф(х)х4 ф(х) d3x (3.9b)

(14) When Н = L2(lR3) so that the x^ is as indicated above in
(3.5), each event vector ф may be written in the form ф  =
= { ?  eis where % = |ф| 2 and s is a real-valued function on IR3
which is determined only up to an additive constant. § and s
together uniquely determine ф, and § has an obvious physical
significance. If E is any Borel subset of (R3 then 5̂  ? (x  ̂»Xp,x^)d3x
is the probability that measurements of the x^ of the event
will give a value for the 3-tuple x-̂ , x^, x^ lying in E. There-

3fore we can interprete IR as the classical physical apace in 
which the measuring apparatuses (c objects ) behaving stationary 
take place (cloks, measuring lines, ect.; cf. below sec.4.).

s also has a simple physical meaning. Assuming that ф  is suit­
ably differentiable, let us compute the expected value of the

Aobservable t. It is
< ф|£ф> = -it’ $R dq ^  d^sin-^ dX =

= -it’ dq SlJo S f  d% SK dq r?V dv# sin X 0

X $ f d * _S
q !i S0? d ^ s i n ^  Sf « SR dq x

Xsin-v^ $2T dX J 0 § f* - - 8 Ц
If we have an event, i.e. a state of a test particle, in which 
§ is highly concentrated, i.e. in which x-̂ , x^, x^ is almost 
sure to be very near to x°, x^, x^, then the time coordinate t 
will have an expected value very near to t ’ ^p(x°,x^,x°) (cf. 
below). In any case x 1— > t ’ ^ ( x )  gives a map that associates a 
time coordinate value to every set of space coordinate values.
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The mean of this time coordinate value with respect to § is the 
expected value of the time coordinate for the event / Т е 18.
In this sense •jp describes the coordinate time of the event.

А  Л  AWe note that the operators x-̂ , x^, x^ form a complete commuting 
family, thus an event is completely determined by the measure-

А Л Аment of the observables x-̂ , x^, x^, while the measurement of the
Aobservable t does not determine completely the event.

(15) Let us consider the c limit of the model. According to q 
mechanics the c limit is provided by the set of events for which

Athe dispersions of the time observable t and of the place observ­
able r are minimal, i.e. for which

At A  r = \ t’ (3.10)
This condition is equivalent with the following equation for 
the corresponding events (see in von Neumann(1955)):

(t - t)4> « ijr(£ - г)ф , ф € Н ,  JT€(0, + ~) (3.11)
where t = and r = ^ ф | г ф ^  . Let H = L2(IR) then (3.14)
can be written as follows

{-it* ^  - t ) Ф(Ч) = i Y (q - ?) Ф(Ч)
then

d<\> Г а' У -  i t ] i
d f - 55 l - ST q " K T r  + ÍT7 { <P »

ф  (q) = c exp £ S_oodq ( - j ^ q - j ^ r  + yj4)^=c exP гр" q2 +

+ f  "rq + f  qi = c’ exp [- (q - ^ 2 + №  q ^

Because of У  > 0, 11Ф«2 - $ “ |ф(«1 2 dq <  o*> , so ф  6 L2(r ) .
—  00 p

The constant C’ can be determined from the condition ||ф|| = 1.

1 = ||ф||2 H C ’l^dq exp Í- (q - ?)2| = |C’| 2 C dx X

X e ~ T rx2 = (CM 2f ^  , then IC'I •

Thus the events we have been looking for have the form
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Ф(<0 = (tV)T ехр Í ' Ш  (q ■ ?̂2 + & Ч ] (3-12)
where У € (О, + «•) , г 6 (- °° , + °°) , t é (-«•, + о•), and for these
events _____  _____

At = , A r  = / (3.13)
(bfq') in (3.12) describes a wave packet around the point F, 
with the width \| . If we take the formal limit "Ъ’— > 0"
then ф(ч) concentrates at the point r, i.e.

1 t / — \2 it „
llm ф (ч) - lim ( - V ) 7 .* « f  (Ч • Г) . ** 4 ,
" п ► О "  ^  "ft’-»О" '

г - q _ - V (з*14)= S (q - г) е* = |r, t>

А  дIt is clear that the operators t and r commute on the events 
jr, t^ . In this way we can approximate the events of IM̂  with 
the events (|>(q) | -г?*, % У  where la?1, % У  is a common eigenfunction of

А Л y|
the angle operators and X  , and in the formal limit "fi* —>0 
lim ф(я)|-г?*,Х> = |r,-i^,í, t >  > (x , x,, x?, X-.) é M4,

i.e. we have a one-to-one mapping.
A  AWe note that the operators t and r have continuous spectrum 

with eigenfunctions 11 ̂> = exp(^r q) and |r^= <5* (q - r), res­
pectively, where t, r 6 (-00, + °°).

4. The symmetries of q space-time

(l6) The symmetries of q space-time introduced in the foregoing 
section are generated by unitary or antiunitary operators U in 
H according to Th.3. and Corollary, and two U*s which differ by a 
complex factor of unit modulus induce the same symmetry. Let us 
determine first those symmetries of q space-time what we call 
Poincaré-like symmetries, i.e. translations, rotations and in-
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versions in q space-time.
(17) q space-time translations: A space-time translation means 
a translation on the spectrum of the "4-position" operator , 
i.e. in mathematical terms:

B Ua V  Ua_1 “ V  + a/»*1 * V  6 E (4.1)
where Ua = U(aQ, a^, a2, a^) is a 4-parameter unitary group in H.
The events transform under translations according to

ф* = U а ф  , ф е н  (4.2)
If a = (aQ, a^, a2, a^) is infinitesimal we can write

Ua * 1 - E ^  S- (♦•3)
where is the self-adjoint generator of the translations in
the "ум-direction". One get from (4.l)

Ua V  UaX * Í1 “ К flV Pv) V  С1 + E aV M  = V  + I t v  *Pv] a
= V  + 0̂ 4*1

Then we have the OCR’s
[P/4 , x v] = ifi g^y , g°° = - g11 = 1 (4.4)

The solution of these OCR’s in H = L̂ (lR̂ ) is

х± ф ( х ) =  х± ф(х) , Р*ф(х) = -i'b ф(х) . (4.5a)

*оФ(х) = - ^ ^ ф ( х )  . Р0ф(г) = I *Ф(*) (4*5b)

namely [pQ, x j  ф (x) = £ J (l  - %(гф)) - Ф (*) where
(З.5) was used. This solution also is unique up to unitary equi­
valence in the sense mentioned in sec.3.. By means of this 
representation, one can determine the CR’s between the components 
of p̂ u . They are

[í>i* Pj] Ф(х) - 0 ,
[p0- Ф (— ) ' I K i l r t e  Ф(г)У ' 1 нг | г ф и )

»2
- i Í г-ф(г)

Thus we obtained
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/4

[Pi, Pj] - 0, [p0, p j  - it&2 ^ (4.6a)
or

[p> » Py] = i ^ 2 V y (4.6b)
л  -fc.

frhere А^у is given by (3.7) and the abbreviation ^ = Ti was 
introduced. By (3.l) one gets the following uncertainty relations 
between the components of :_

(4*?a)
Д р ^ д р Ü&2 I A^y I (4.7b)

The p,* is a self-adjoint operator thus it corresponds to an 
observable in q space-tinre and clearly we can identify it with

А  дthe "4-momentum" observable of a test particle; E = cpQ is the 
energy observable, p^’s are the components of the 3-momentum 
observable.

p p ^  p Д  p
Note: Let p = p^ + P2 + P3 then one gets, with an argument si-

А  дmilar to that used in the case of the observables t and r above, 
the CR

[p o. p ] = itá2’l (4.8a)
and the uncertainty relation A p QA p >  ^ tö2. In momentum rep­
resentation we have

Pi Ф(£) = Pi* ф (£)
P ф(£) = £'Ф(£) = IPl sign P3 ф(£)

Pо ф(£) - i^ 2 ^  Ф (£) = 2 I  (Pi ^7 + 0Ф(£)
А дNow the energy observable E = cpQ of a test particle commutes 

with the momentum observable p according to
[e , p] = ictíi2 = ic | 2 = ifi*ti»2 (4.8b)

. ílwhere n* = ^7 , and thus it follows the uncertainty relation
Д Е Д р >  I fi’fi’2 (4.9)

for the energy and momentum of a test particle, which means that 
the energy and momentum of a test particle cannot be measurable
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in an event of the test particle, with vanishing dispersions.
We can consider the c limit of the "4-momentum space" in a way 
similar to above in the case (t, r). The c 4-moraentum space is 
approximated to the greatest extent in this model by the set of 
the following wave packet-like events

Ф (ч) = (tt'v V O 7 exp Í " (q " + l
where у < 0 and

Л К
о ^Now consider the transformation of an event ф £ Н  = L*(RJ) 

under an infinitesimal q space-time translation U& = 1 - ^ a^p^.
It is

Ф* « иа ф  - ф(х) - £ а ^ Р/Ы фСх) (4.10)
Then for a finite translation in space when aQ = 0, a^ / 0 s

^ Ф ’(£) " U(ai,a2,a3) ф(х) = [exp ( ̂  aip;L )J ф(х) = ф (х + а), (4.1l) 
and for a finite translation in time when aQ ^ 0, a^ = 0 :

* ' < * > m \ ф ( ~ } ■ [exp(- * ф ш  ’ exp(- * а°Е)(4л2) 
Remarks: 1/ The Minkowski space IM4 is isomorphic to the para­
meter space of the translation group of q space-time. Now this 
is a noncommutative group and all of its irreducible representa­
tions are infinite dimensional and unitary equivalent as this 
follows from (4.6) and (4.8). IM4 is given by the following set

M 4 := { X I 1 = a/< e/U » V 6B ' <Ce/M » = }
The corresponding set of self-adjoint operators in Ь(Н) (the set 
of linear operators in h ) is given by

QM4;= [ £ | £  = (x^ + a/M«l)e/“ , а* б IR , [_x̂  , xyJ = -ifi A^y ,
(e^ , ey> = S'“у J where QM4 is also endowed with a vec­

tor space structure. The metric in IM4 is formulated by the ex­
pression s2 = g^„ (y^ - x'*4) (уv - xv) = g^,y a a y , the corres­
ponding quantity in QM4 is s2 = g^y (y'“ - x*4) (уv - x v ) =

II У1
ДЕ Др = i 1 ’& ’2
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_о л о
= g/Uya/" av*l and its average value is s = < ф  le ф >  = g^y a/4lav = 
= s2 , Y  <f> 6H . Therefore s2 is translation invariant in q 
space-time.
2/ What is the relation between <ф | и ф >  , фбН, and s2 = a*,a/M ? 
The latter describes the causal relation of two points in 01/!̂, 
while the former describes the same for two events ф and и&ф in 
q space-time (Th.2.). For infinitesimal translations <ф|иа ф]> =
= <ф|Ф> - ^ а'* <ф|р/мф >  = 1 - в/* Vyu • This is not null in
general, but for localized events in space, i.e. for ф (x) =
= I I >  = S (i “ * )(^H) and for spacelike translations of these 
"events", aQ = 0 , - a^a^ < 0 , s2 < 0 ; | Ua| x = < x|x + a)y = 0,
i.e. I and are causally disconnected. Now for a time­
like translation of the event ф €  H, we have: aQ ^ 0, a = 0, 
a2 = %  > °5 <Ф1иа Ф> = ^ Ф С Я ) Ф ( Ч )  exp(- ^ aQq) dq 4 0 , i.e.
ф  and U ф  are causally connected. Generally we can say that 

ao
the null cone structure become "smeared out" in q space-time.
(18) q space-time rotations: We introduce the rotations via the 
action of a 6-parameter unitary group со*** ♦—> Uco^v in H, where 

, and for афеН

ф ’ = . e K Ф  , (4.13a)

%  - 1Ц,, xs (4.13b)
A_|_ A  A  A.where M a n d  M = -My/U . To determine completely the 

rotations we have to give the concrete form of the self-adjoint
A y  Agenerators . Because M^y is a self-adjoint operator it cor-

Aresponds to an observable of the test particle; we identify 
with the /4v-component of the angular momentum observable of 
the test particle. Spin degrees of freedom have been not attached 
to the test particle so the total angular momentum observable is

A  A
equal to the orbital angular momentum observable, i.e. My,* = 1у,у
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and thus
ft i  л  *  A  AM^y = L^y = x^ py - xy (4.14)

A
according to the c form of L^y. We shall call the component
A  A  A
Moi - -Mio = the generator of a boost in the i-direction in

A  A
space, while the component = -Мд is the generator of the 
usual space rotations in the i-j plane. Let us compute the CR’s 
[м^у, Xg] , [м^у, ps] and [м^у, MgJ with the aid of the CR’s 
(3.6b), (4.6b) and (4.4). A formal noncommutative algebraic cal­
culation yields , e.g., for [M^y,
[Myuy, xg] * [x̂ py - XyPyu, xg] = [x̂py, xs] - [xypA,
=  x ^ j p y ,  X g J  +  L x / - *  x s J  P v  “  x y J _ P / * »  X S J  “  L X V »  X § J  P / *  *  ( ß v j X y * .  —

- £у»$-*у,) “ Ĉ **sPy — Ayg P/*) * 
and similarly
(м^,у, ps] = ih (ggyP^u - g?/.Py) + ifc&2 (хДу* - XyA^g) ,
[м*лу, Mger] = ih (gy^M^«, + g^Myg + g^Ms-y + g0yMS/U)+ Л  [(Ao-уРg -
- fi2^,xsAffy) + (Äg/4p6py - ^2XyXaAg/.) + (а̂ о-р^Ру - ^XyXgA^e) +
+ (AyjPffP̂ . - l 2x/.x<rAyf)J
Note that t v »  XS] = 0 but  ̂p / ОI íorf [Â a^í Pq |̂ s ^*
[Aid, ig] = 0, [A00, ps] = 0, [Aoi, pj] = iti I •

Introduce the following notation
N^v = pyu py - It2 x y (4.15)

and observe that pA py - íi^XyX^ = pyp^, + iftft2 A^y - ihfi2 A^y -
- * % S y  = РУР/* “ !2^ y  , so N^y = NV/M . With the use of these 
facts and notation let us summarize the CR’s above
[M^y, xj] = ih (gy$x^ - ĝ jjXy) + ifi (Aygp̂ , - A ^ p y) , (4.16)
[M^y, Pg] = ih (gjyP^ - g g/UPv) + if&2 ( Ay£ XyU “ A^Xy ) . (4*17)
jjVv, Mfff] = ih ( gv^M^g- + ĝ ffMyj + gjy.Mg-y + ggyM^*,) +

+ it ( AyjN^er + Â crNyy + A^Ng-y + AyyNg/M) (4.18)
We see that the CR’s of the Herraitian generators of the trans­
lations and rotations in q space-time agree with the CR’s of the
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infinitesimal generators of the Poincare group in the order of 
Ъ, and for /*=i, V= j, S- к and <5=1 they completely are 
equal to the CR’s of the infinitesimal generators of the rota­
tion and translation group in 3-space. Thus we can say that an 
observable P = P(pyu* , xy) = F(j), x) or a set of such observables 
is a "scalar" or a "4-vector" or a "4-tenzor" if it is in order 
a scalar or a 4-vector or a 4-tenzor in the order of "h accord­
ing to the usual definition of these objects in rq mechanics.
So, e.g., p^ and x^ are 4-vectors, an other example, W'*'1 =
= ^ S ylA'/<i(3r Mvgpg- (the Pauli-Lubanski 4-vector) then an easy cal­
culation produces, using (4.17) and (4.18), that [M^y, W§] =
■ iti (gyjW^ - g^jWy) + iti , thus is a 4-vector, too.

А  О  A  л #40We note that the usual Casimir operators P = í^p^and W =
A  A

= - of the Poincaré group clearly do not remain invariant
operators!

We can conclude that the restricted Poincaré-like transforma­
tions (translations and rotations) in q space-time are induced 
by the elements of a 10-parameter unitary group (a,co) v—>U(a,co) 
in H, and the events and the observables transform under such an 
element according to

ф* - и(а,<^)ф , ф е н  (4.19)

and F» = U(a,u>) F U(a,co)_1 (4.20)
For infinitesimal transformations we con write

U(a ,u->) = 1 — ^ a^p^ - у (4.21)
where p^ and M^y satisfy the CR’s (4.6), (4.17) and (4.18).
(19) q space-time inversions: Let P be the space inversion op­
erator then by definition P Ф(х) = Ф(-х). Р2Ф(Х) = ф(х), 
ф(х ) 6 L2((R3),and <рф I р ф >  = < ф  I ф> thus Р is a unitary operator

2 + _iand Р = 1, Р = Р = Р , as in the old q mechanics. Furthermore 
we get from these relations

А  ЛP X P = - X (4.22)
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and it follows from the definition of r
p r p « -г , р(г ф(*)) * -r фс-i) (4.23)

Then the CR (3.3) provides P(tr - rt)P * PtPPrP - PrPPtP =
= -PtPr + rPtP = -iti* P2 = -it’, therefore

P t P = - t , (4.24a)

Bnd p V  = - xo (4.24b)
This means that the space inversion implies the time inversion 
in q space-time and vice versa, and thus it implies the space- 
time inversion, too. We obtained that the time inversion and 
space inversion are not independent symmetry transformations 
of this q space-time model.
(20) Other unitary symmetries of q space-time: We can write for 
a one-parameter unitary group a v—» U in H

ua = exp{-iPaj (4.25)
where P is a self-adjoint operator in H and thus it is a func­
tion of the members of the irreducible system of operators in H, 
or, taking into acount (3.5) and (3.7), we could say that F is a 
function of the 4-position operatior x̂ , , l.e. P = F(xq, x) ,

Athat is to say, P is a ”q spaoe-time dependent function".
Now let U(l) be the local gauge group of a clft locally invariant 
under U(l) (e.g., c electrodynamics) then the elements of U(l) 
have the form

U(f) = e"if(x)e (4.26)
where f(x) is a function on Let us make the formal corres­
pondence f * f(x) t— >• P = f(x) between the elements of the set of 
functions in (4.26) and the elements of the set of operators in 
(4.25), then, for a fixed a, a unitary operator of the form (4.25) 
corresponds to each element of U(l) and the collection of such 
one-parameter unitary groups in H corresponds to U(l) . This 
analogy suggests that we call the unitary transformations of the
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form (4.25) in H gauge-like transformations and the corresponding 
symmetries in q space-time gauge-like symmetries.
(21) We can close this section with the observation that the 
unitary symmetries of q space-time consist of Poincaré-like sym­
metries; translations, rotations and inversion in q space-time, 
and of gauge-like symmetries. The space inversion implies the 
time inversion, and vice versa, in q space-time. In the c limit
of the model, in the formal limit ft —^O, the unitary symmetries of 
q space-time reduce to the Poincaré symmetries of IM̂ .

5. Some properties of q space-time

(22) Now we mean under a coordinate system of a given observer 
a coordinate system in 3-space spanned by three rectangular 
measuTring lines, and a collection of clocks placed densely in 
this coordinate system in 3-space, as in c theory. These macros­
copic measuring lines and clocks are the measuring apparatuses

A  Aassociated with the observables r and t, respectively. The coor­
dinate systems of different observers transform among themselves 
according to the law of special relativity in a good approximation, 
i.e. two such macroscopic coordinate systems are connected by 
Poincaré transformations (in a good approximation). The measur­
ing apparatuses in a given coordinate system, associated with 
different observables, are c objects governed by the laws of c 
r theory. Such an arrangement of things are guaranteed by the 
existence of the c limit of q space-time under consideration, 
which means that the c description provides a good approximation 
in large space-time regions relative to ft and these space-time 
regions are those in which the coordinate systems of different 
observers operationally are available for the observers. New 
effects due to the q nature of space-time should be expected in
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íi size regions of space-time.
(23) The general transformation laws of the observables and the 
events under Poincaré-like transformations are given by (4.19) 
and (4.20). Let us consider these transformations for infinite- 
zimal Poincaré-like transformations.
1/ Infinitezimal translations: U = 1 - ; The transforma­
tion of events is

ф» - Ф  “ 5 а̂ Ф  . Ф^Н (5.1)
and the transformation of observables is

»’ - (1 - К f1 * E а"я~) - * + к О. P/J«" (5.2)ЛThus the change of the observable P is

i* - в *•[?, gj (5.3)
and this allows us to define formally the "partial derivatives" 
of an observable P = F(xo, x) with respect to the x^’s. They are 

Э F (x) 5 F i fi; ^ л /г лÖ ft/* Üt*^o a' = ?T LF* P/-J (5*4)
2/ Infinitesimal Poincaré-like transformations: U(a,u>) =

1 A i A= 1 - ^ 2fíto>,v V ’ The transformation of events and of
observables are

Ф’= Ф - а%ф - ̂ ы^М^уф , (5.5)
P* = (l - ̂  a ^  - •§£ (1 + £ + I j c ^ M ^ y )  =

= P + i [p, pja* + ^  [p, (5.6)
Aand the change of P is

<$P = P ’ - P =r ! ([p, p/Ja'*‘ + I [p, M^yjto^) (5.7)
. А  дExamples: a/ Let P = x^ then

x >  = V  + J  [ x ^ ,  Py] ay + [ x * ,  M y J o j> v « .  + a ^ -1  +

+ ^ (gs^Xy - gv/,xs)tx>v? + ^ I (A^Py - AV/1<pg)cov? = xr  + a^‘1 - 
- co^y Xy + fi-1 A/<iw ?yp)/ = v - u ^ ^ i y  + a^-1 + A/uSu5eypy

(5.8)
where (4.4) and (4.16) were used. If we compare (5.8) with the
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usual Poincaré transformation of x̂  then we see that (5.8) differs 
from that in the third term of the order Il~^.
Ъ/ Let F = pyu then
P^ -  [P/4f Pv] aV + [ i > .  M v s ] t^ VS » P/< -  & V ftV +

+ I (g^Pv - g^yPe)^Vf + \ Ъ (Aĵ x у - Ay/ix,) ^ V?= p^ - u ^ v py - 
- fc í ^ a y + fc =(^.V - - Í V ( a v - W Vix 9 ) (5.9)
where (4.6b) and (4.17) were used. Comparing (5.9) with the 
usual Poincaré transformation of p^ we observe that (5.9) differs 
from that in the second term of the order fi , and that p,* is not 
translation invariant!
(24) Let us introduce the notion of the time derivative of an ob­
servable. We can write for the change of the expected value of an

/4observable P under a translation in time with a in positive direc­
tion that
ДР = ?a - P0 - <фа|р фа> - <ф IF ф> » <ф|и;1риа - р\ф> -

-а<Ф1к [р0. р]1Ф>
then formally

АdP . 
ЗТ {' lim ±^L = с <ф|* [$о, р]|ф> , у ф б НF

аа-* о
and thus, also formally,

з ?  ■* i | [ p 0 - *] - к  I й - (5-i°>
Notes: a/ One can define the 3-velocity observable of a test 
particle as the time derivative of r and the i-th component of

j  Л

this observable as the time derivative of x^, i.e. v := ^  =
= ^ [E, r] = 0, v^ := [po, = 0, taking into acount
(4.5b) and (4.4). Then we can interpret £ = (x^, X2, x^) as the 
3-position observable of the test particle in its rest frame and
, - A  Athus xQ = ct is the proper time observable of the test particle. 
Also x,« is the 4-position observable of the test particle in its 
rest frame. The 4-velocity observables of a test particle can be 
also defined as follows

u/* : = = í- L po i XXI = " r° ( 5 . Ю
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where (4.4) was applied. Let us execute an infinitesimal boost 
in the i-direction, then Ajr
A  , A —1 A i Г A Í! I Л /А $ —1 i A \
4  - и“'оЛи<‘>о1 • *1 * t lxi* “ol^ol «i < * o  * Ь Г  Pl)<Joi
where (3.7) and (£.16) were applied. Thus the velocity of the
test particle boosted infinitesimally in the i-direction is 

dx \ ic r a i c *i г a a ic г a
V1 = я г  " ?r ipo» xiJ = ccooi - e* f  lpo » Pil^oi - e* Lpo»

rJPi^oi ■ vi +(r)2J
where coo  ̂ » —i and we used (4.6a). The expectation value of this 
expression differs from the c one in the terml^y which term is 
minimal if x^ =0 and is maximal if B r , in the latter case 
v* «= , i.e. it is two times larger than in the c case. Now the
square of the velocity of a test particle after boosted sepa­
rately in all direction is л

- vf [1 +( ^ ) 2j ♦ V* [x j g f ]  ♦ V* [l *(|i)2] . 
while the velocity of the test particle after a (non-separated) 
infinitesimal rotation is

A  , dr ’ i Г Й  ''ll 2 / - A  Л  A  \
v = 3Y - 5 LE» r j - r (vlxl + V2X2 + V3X3)

where r* = г + ^  [r, M/MV,]co/“v , as one can verify this easily 
with a formal calculation.
b/ t transforms under an infinitesimal boost in the i-direction 
as follows
t’ - t + b Lt, MolJĉoi - t - - х±и̂о1 = t - xlVi
where (5.8) was applied for /* = 0 and a^ = 0. Then the change of 
i is <ft = t’ - t  = - ^*xivi and the infinitesimal change of the 
expected value of t* observing this from the original frame is

dT* * t£ - t£ = tg - + ^  8 dt • c*vi~i
which differs fifm the c expression in the factor 2. Now the trans­
formation of t under an infitesimal rotation is

*• - * + к  [t. W « "  - í - - 1-1
where (5.8) was used, and then
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which differs from the c expression in the third terra of the order
fc-1.
(25) We can say that an observable is conserved in time if and 
only if its time derivative vanishes, i.e. iff

if “ ?T [Po* = E P] = 0 (5.12)
Examples:!/ F = , the 4-momentum observable of a test particle
moving freely in q space-time. Then from (4.6b)

(5.13)

p t*-> /

Ü *  = 1 E [p0» P/J = - Ao/*
For /* = 0

(5.13a)
so po is conserved in time and thus E = cpQ, the energy observ­
able of the test particle is also conserved in time. For = i

dp±
JT • •  “ Г  (5ЛЗЪ)

(see (3.7))* is not conserved in time ! We know from c theory
that ^ i  is the i-th component of the force acting on the c par-

A
tide, thus we can interpret f^ = ^-i as the i-th component of the 
force acting on the free test particle in q space-time, and (5.13b) 
(or (5.13)) provides formally the equation of motion of the free 
test particle moving in q space-time. Then the force is given by

* = If = 1 Б [Po’ P] = (5 * ^ )
where (4.8) was used. Taking into acount this interpretation 
dp„
^  defines the 4-force observable f̂  of a test particle in q 

о
space-time.
Notes: a/ We see that a constant force acts on the free test par­
ticle in q space-time, forcing it to the origin of its rest frame. 
It is an atractive force!Note that the expectation value of the 
energy E = cpQ=?i*r of the particle raises linearly with the radial 
distance r for positive r and t values (in the subspace of the 
event space H (cf. sec.3. paragraph(13))). Classically E is equiv-
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alent with a linear potential V(r) * li’-r in which the c point 
particle moves; the force is given in this potential by P = -grad 
V(r) and F. = - . If we compare this phenomenon1 </ Г
with ihe current quark models of hadrons then we can interpret
this as a confinement phenomenon in д space-time?; the free test
particle is forced to the origin of its rest frame in q space-
time. We can give an estimation for the magnitude of this force

-15if we choose the characteristic distance magnitude 10 Jm and 
time duration lo~^sec in hadronic events as characteristic place 
and time uncertainty values, i .e. д г ~  10_1^m, A t ~  10-2^sec , then 

д г At~10~39msec, Ъ = cfi*~ 3.10~31m2, ft * £~3,33.10~4 lig­
and ft* = £,~103N. This provides an enormous force confining the 
particle inside an ft’ ~  a t  At ~  103^msec size space-time bubble
at any time. (Note that only the cells of M 4, having at least a 

* -31 2size п ^ З . Ю  m correspond to physically observable reality 
and these minimal cells realize in (M4 the set of events in q space- 
time which provides the c limit of the model, i.e. if "ft-̂ O" these 
events concentrate on the points of IM4. Redefining the translations 
on this set of events (bubbles) the generators of these transla- 
lations will commute among themselves and thus they will be trans­
lation invariant as in the usual theory. Another note that the 
time translation invariance remain valid in this model.) 
b/ Consider the change of the expectation value of an observable 
F in time. It is
A F  = <UQ ф  |FUa Ф> - < ф | Н >  = fо <ф|£ [p 0 , f J| ф> =

о о ___

■ <ф||||ф>dt ■ (fl) dt . dt - f°
then, formally,

P(t)= $1 dt <ф||||ф>  ̂ (5.15)
Thus 5(t) = Sí dt <ф||||ф> = 0, рОЕ) = Si dt <Ф|||1Ф> = -&’t,
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P±(t) = So dt <ф|||1|ф>в -1’ ^  <ф!|1|ф>= -*• (fi)*t ,
d2nnote that -r*£i = Of furthermore that the time average of p(i) and

(t) between -t and +t vanish , i.e.
p = lim —  (+t dT p(t) =0, p. = lim —  (+t dt p .(t) = 0. 

T.->oo ?+. 1 1 t->—  21 J~z 1
. . A ^ Л A A

2/ a/ F «=  ̂ or P = J1 - ^ijkMjk* *he component of the
3-angular momentum observable of a test particle. Then

afiJ ■ 5s [p0> “ijl - - g0lp p  ♦ - хю гр] -

" cíi(i íjíj - i SjXj.) - 0 (5-16)
where (4.17) was applied. Then J ̂ ’ s are conserved in time as we 
expected.

A  A  A  AOЬ/ P = JiJ1 = J . Then

M  = 11 [ív Vi] - °' (5.17)
thus J is conserved in time.

—  ±2 1  A  A3/ P = in = ~ py*p^f the square of the mechanical (or bare) mass
( A 2 Note that m is

clearly a scalar in the sense metioned above in sec.4f paragraph 
(18)). Then

# -  fe [i.. ° f c a ? o ’ ♦ h p o ’ ад) - , 4 ( V p> + .
♦ ^ v )  ■ !  (hhi+ KA)  ■ I (**.a  ♦ Í  I) ■ 4  с®. - ? )

= af,2 (í - if,- i ) (.5.18)
where (4.4) and (3.5b) were used. Thus m2 la not conserved in

dm2 a 2time. Observe that ^  is not a self-adjoint operator, while m
is! (The Lie bracket operation does not preserve the self-adjoint-

4 a  2
ness property.) We get for the real part Re ^  = 2n t that 
Re m2(t) = $o dt <4>|2fi2t I Ф> = 2&2 ~ t2 = fi2t2 and

Re m(t) = -ft t (5.19)
We can attach the negative root in (5.19) to the anti-particle 
and thus q space-time inversion + charge conjugation provides 
positive bare mass for anti-particles (cf. below). The time av­
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erages of the two roots are also zero, i.e. Re ra = lim —  X£ о» 2t
^t Re “ 0*

4/ F * m = — tfS4 p\, , the bare mass observable of a test particle 
with|^ , where the ){'M *s are the Dirac matrices. Then

I? = E [Po* X* M  * E Г[Ро» P/J * r V  e I ) f A  (5.20)
So m does not be conserved in time. Puthermore

r t  . г  у x , (' лга,(t) - 5* at <ф||?|ф> - 4 (i 1гЛ )-1
where б"^*в arewhere jL(t) is a 4x4 matrix. Let *=/ 0 ®i \

l-^i °/
the Pauli matrices, then y^x^ =/ ° ^ixi%\ . Diagonalize Ĉ x.̂

\— о J

then O^x^ ал:)and thus

r iixi = = Г

We obtained
ra.(t) = fc J 1 • t (5.21)

We see that jj[(t) is purely real and implies negative bare mass 
expectation values for anti-particle, but q space-time inversion 
+ charge conjugation provides again pozitive bare mass for anti­
particles. In this q space-time model, only the OPT theorem 
would remain an exact symmetry of natures as it is well-known the 
parity inversion implies the charge conjugation in nature, but 
we saw that the parity inversion implies the time inversion, too, 
in this q space-time background. We can identify the subspace 
of the event space H with the event space of the test particle, 
while the subspace H2 belongs to the anti (test) particle.

The time average of m(t) vanishes, too, i.e. j| = lim — • X
dt mCt) = 0.

t — 2t



-34-

6. The one particle theory in q space-time

(26) Free case; The 4-position observable of the particle in its 
rest frame is satisfying (3.6) ; xQ = ct is the proper time
obseryable of the particle. The 4-momentum observable of the 
particle is p^ satisfying (4.6). The 4-veloc?ty observable of the 
particle in its rest frame is given by (5.11). The 4-force observ-

л ,A , ^

able acting on the particle is f^ = w  = ft Cp0. -
О '

and the equation of motion of the particle is given by (5.13).
a/ scalar partidéi The state functions are the elements of H ;
Ф = Ф (x ) if H = L2(R^), pure states are the events of q space-
time. Let ф 0 be a pure state of the particle then the particle is
at the point x£ = ^ ф 01х/Ь.фо); the world line of the particle is

given by the mapping aQi— > U& Ф  о =[exP(- I  ао?о)]Фо ! ^ (ao> ■о
“ <Ua Ф о ^ иа Ф о > ^ Ъ = <Фо»х/“ Фо У . The angular momentumtto о
observable is given by (4.14). The square of the bare mass observ­
able is

m2 = %  Pz-P̂ *1 - 
c«- (6.1)

Observe that

[Mld. p j  + [Miá, P/J p ^ =  ib[(PjPi“ PiPj) +

+ - PjPi)] + ltt2 [р»(ХЗо*1 - + ( * , A  • 1loij)Po] - 0
where (4.17) and (3.7) were applied. Then m2] = 0, [J±f
m2m З Г A2 A?*) A 2 А Л 2= 0 and [_J , m l  =0, thus m , J, and J constitute a complete
commuting set of operators in H, therefore we can use they for 
labeling of the state vectors, i.e. if ф  is a common eigenstate 
of these operators then we can write ф  = J m2,/*, Z y  where 
m2 |m2^ = m2f m2̂ , |^У = and J2I СУ = Z(l+ 1)1 The
bare mass eigenvalue eq. of the particle is given by the Klein- 
-Gordon eq.

Р/-Р/И ф  = c 2m2 ф  , фен (6.2a)
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or with (4.5)
Ъ2 г2 ф  + ti2Д  ф  = с2ш2ф  , ф б Ь 2(Е3 ) (6.2b)

In polar system, one can write Ф = = I R(r) (^, X),
then the radial eq. of (6.2b), after a simple calculation, is

^  ♦ ( * » *  - 4 ^  - - Ц Н > М  ■ 0 (6.20)
2This eq. gives a continuous spectrum for m .

Ъ/ Spinor particle with spin Our basic assumtion (3.3”) does 
not affect the internal degrees of freedom, so the state functions 
are Dirac spinors ^  « ^(x* s) = ^фосС*)!» **• = 1»2,3»4, ф,*6Н,
and the s are the elements of the Hilbert space 'it with the 

scalar product = $E 3 d3x X QY 2 = d3£ Т ^ О О ^ г С з О  =
= ^  d3x ф ^ х )  ф 2(£) • The total angular momentum observ­
able is = L^y + S^y * х^Ру — Xyp̂ . + *2 ^му , G^«y= 2" C .
It is clear that M„.v satisfies (4.18). We identify the bare mass 
observable with

m - “ Г “ P/- (6.3)
Observe that

[Mij ^  P/hJ = + ^ij»y/WP/‘J = Г [ Ь 13. P/J * Г SiJ P/*4 =
= ift J''" (g/t;jpi - ĝ u^Pj) + iítfi X'“ (Aĵ ,x̂  - A ^ X j ) + —^ Í/iJ ~

-[*)*!. ^ ) p ^ =  iR (iTjPi - ^iPj) + ih(^iPj - iTjPi) = 0 
where (4.17) and the relation }f/*ífv+ Yvfr = 2g/*v were used. Then 
[m ^, inj = 0, [j^, mj = 0 and [ J2, mj = 0, thus m, and J2 
constitute a complete commuting set of operators in 'it. One can 
use they for labeling of the state vectors, i.e. for a common 
eigenstate one can write = |m,/<, s w h e r e  m(m^='m|m)>,
J3 l/S s> = (/A+ 3) (/<, s> and J2 \l , d> = + 1) + d(d + l)Jx
X| Z » d • The bare mass eigenvalue eq. of the particle in its 
rest frame is given by the Dirac eq.

Y* Vr Y  = cm It » lY € 'Я (6.4a)
or with (4.5)



-36-

й * Yo - 8) “ I JjJ" ^(x, s) = сш У  (x, s) (6.4b)

Let us consider the corresponding second order eq. in a formal 
way. Let ^  (У* Pv + mc)X then ^ у ур/лру X • ( g^y - 1<э/1л*')х

XP^Pv/t = (j^P'1'- |б'/'У [р/4, Pv])X . Thus from (4.6b)
f r p *  + I íifi2er^ Ar v)X = m2c2 £  (6.5a)

or, with G'/"y = ( i ^  , - 2 )  and A^y = ^ (x, 0) ,

(ĵ .p'“ - i£ft2 p * £ ) X  = m2c2 ^  (6.5b)

The extra term in this eq. indicates the interaction of "an 
electric moment tíi2 £ with the electric field ^ x" in q space- 
time (from the analogy of cq Dirac eq. in an external field (see, 
e.g., in Schweber(l962))) , in the rest frame of the free spinor 
particle.

Note that the second term in the lhs of (6.5b) is not self-adjoint, 
it is purely imaginary. This is the consequence of the fact that, 
while ft** pr  is self-adjoint, i'/Myv p^py is not necessarily self- 
adjoint .
(27) Interaction with an external field; The particle is interact­
ing with an external field given classically by a 4-vector poten­
tial кун= A/M(xq, x ). Then formally = A/M(xq, x ) . The canonical 
4-momentum observable of the system from its c counterpart is

= P/- + |г and "the P^’s satisfy (4.4) and (4.6). Then p^ =
- b* - 1 v  (the 4-momentum observable of the particle). Let us 
consider (formally) the eq. of motion of the particle. The time 
derivative of p^ is

-1 tv ад - ¥ tv M - ¥ tv w : -*’v  - W v  ад
and, using the notations e u*. = -gQ/, and ^ [A-, Pyj

(of.(5.4)), we obtain

tfc - -* v  - ilh “v (6.6)
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Note that the c counterpart of (.6*6) -jj“— = ^ F ^ U y  where
F^y = A y  - 9y Â m (cf. below Note 2.).
a/ Scalar particle: We identify the square of the bare mass ob­
servable of the interacting particle with

m2 * = - f V)(p^ - § Â ) (6.7)
then the corresponding bare mass eigenvalue eq. is given by the 
Klein-Gordon eq.

(p̂  - f v)(^-f ̂ )Ф = °2т2Ф » Ф 6Н (6-8)
Afor the particle in the external field k^ in its rest frame. 

b/ Spinor particle: The bare mass observable of the interacting 
particle is identified with

í-rí^-fv) (6-9)
then the bare mass eigenvalue eq. is given by the Dirac eq.

f ( v f  V ) ^ e c m ^ >  "Уге^с (6.10)
for the particle in the external field */* in its rest frame.

Let us consider the corresponding second order eq. in a formal 
manner. Let Y  = -§ A* + me )x then
rr(i>- f v)(pv -f Ay). (gA- - ier-)ß - f v)(Py - f Ay) -
- ß  ' f U ß  -Is-")- Ier"- Iß - f v. ?y - f ív] =
- ß  - I U ß  - f 'n - (ß.?»]-! ß. ÍJ - f ß.
* J V fa ß. ív]) - ß  - f ijß - f Í") + 5 ^  V  *

U  - |(f) [ V, ív]
where the notation F^y = Av - dv kyu [see (5.4)] and (4.6b) was 
applied. Thus

iß - f W "  - f «О * i*" (b*2V- - Is ß> - f(|f X
X ^ y[A/-' *у]]* = c2m2 X- (6.11a)

д А л  1
or with F^y = (- £» ^  ) * lO /W 12 = (i - £  ) and k^v = — (x, 0)

iß - f V)ß- f P-) V |s !•« - i i(^21V se £ ) .
2 2 ус m Л (6.11b)
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This eq. differs from the cq one in two extra terms, following 
from the quantized nature of space-time. The first term is added

Ato the electromagnetic field tenzor *>v and it increases the 
electric moment - electric field interaction. The second term 
predicts further spin moment - electric moment interaction with 
the external field in íi size regions of сИ. [a^, Äy] = 0 if
A
к/л describes a time independent electromagnetic field, a static 
field in the rest frame of the particle. When A^ depends on the 
time in this rest frame then Ay] is, in general, not equal
to zero.
Notes: 1/ The replacement m = 0 in the Dirac eq. (6.4) or (6.10) 
now has no meaning because this would have the consequence that
У^ рг  4 = o, W e f t  , or -f v)l= o, Vie f t  , i.e.
У* fy* = 0, or У'*1 (Рл. - ^ Ауи) = 0 . Thus the zero rest mass Dirac 
eq. for neutrinos has no meaning in this model. The neutrino now 
can have eigenstates with zero (bare) mass but it must possess 
not zero bare mass states, too, or not vanishing expected values 
for its bare mass. A similar statement is valid for the photon in 
this model, too.
2/ The eq. (6.10) is invariant under the following gauge-like 
transformations
'Г = Ua^  =[exp{- Р а $ Ь  cm’=Ua J * * ( f W  U^1, aé|R (6.12) 
where F = F(x q, x) is a self-adjoint operator in H (a "q space- 
time dependent function"). For infinitesimal a ’s one can write

=s- = ci - éf M nt- - 1 v)(i - 4* *•) - r ( t  - й • ti. U  -
- t V  ♦ W  i i .  U«) - r(t - f Я- f ff. - ♦ iff/ [>. У  a)
In the formal limit "& —► 0" these transformations clearly turn 
into the c gauge transformations and in this limit the transforma­
tions (6.12) mean the gauge transformations of the cq Dirac eq. 
in an external electromagnetic field given by A^. But it is ob-
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vious that the classically gauge invariant combination d^Ay - 
- dv Ayu, does not remain a gauge-like invariant combination in this 
model. (Note that A^ classically is not observable but in q mecha-

А Л vnies A/л is an observable if A^ is a self-adjoint operator in H.)

7. An example and the cq limit of the one particle theory

(28) As an example for a particle in an external field let us 
consider briefly the case of the Coulomb potential, i.e. Aq = - ~ 
and Ai = 0. It is clear that this choice is only applicable when 
the source of this potential is in rest in the rest frame of the 
particle. The energy observable of the interacting particle is
А Д /N Л i 2 1E = cp = cP„ - e A = n’r + e — and the expectation value of  ̂о о о — r c

- — t - 2 1the energy for positive time t is E = n ’r + e = . Then we can
consider this case classically that the particle is an external

* e2potential V(r) = n ’r - — with the source in the origin of the 
3-coordinate system of its rest frame. But we recognize in this 
example the very popular potential model of the У  -particle, in 
which the У  -meson consisting of a quark c (chán) and of an anti­
quark c, is described by the Schrödinger eq. with the potential 
V(r) = A r + JS ̂  as a non-r two body system.Thus we can consider 
the У  -particle as the "hydrogen atom" of this q mechanics over
q space-time. The two quarks are in their common rest frame, one

2
of these quarks (c) provides the external potential U (r) = - -p =
= fi> . The bare mass eigenvalue eq. of the second quark ( c) is 
given by the Klein-Gordon eq.

(fc L + f 2 -?)2ф  - Р±Р±Ф  = с2т2ф  , ф е н  (7.1)
or by the Dirac eq.

Y0(^r + f = cm^ , y e t i  (7.2)
depending on the fact that the quark has a spin 0 or respective­
ly. Furthermore the two quarks are confined in their common rest
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frame, in an ft size region in пИ at any time (cf. with sec.5. 
paragraph(25) Note a.). In this picture the two quarks are in 
rest with respect to each other, thus one can consider this sys­
tem, in cq theory, in a non-relativistic way as two body system, 
calculating the energy spectrum of the bound states.

Now Л= ft’ = lg, but 0,2 GeV2 (see e.g., in Tryon(l976))
then ft’ = — ft? 5 GeV-2 = 1 in natural units, or in usual
units: ft ®*l,8.10“^ m 2, ft* = p 6.10-^Cmsec, ^ = ft ~ 5,5.10~^kgsec 
and ft’ = Äil,66.10^N. These values are in a good agreement
with those which were expected heuristically in sec.5. paragraph 
(25) Note a.
Notes: a/ The solutions of the eq.’s (6.2), (6.4), (7.l) and 
(7.2) with their physical implications will be discussed elsewhere.
b/ The expectation value of the energy of the particle change for

2
a repulsive potential p in the same way as above for an attractive 
potential, and the linear term dominates beyond the turning point 

now, too. Thus the two particles are confined again 
in spite of the repulsive Coulomb potential acting between them.
(29) Let us consider the formal limit ft —>0 in the one particle 
theory over q space-time. As we saw in sec.3. paragraph (15) the 
c limit of this q space-time model is realized by the events ф  eH 
for which A r A t  is minimal, i.e. A r  At = p ft*. These events 
have the form (3.12). Let M be the set of such events then we can 
write formally: Мэф —  |xQ, > (xQ, x) 6 then
II в> 1M^. Furthermore:
[*/.. Ху] Ф  = -ift А ^ ф  ^ ~">-P->[x/t<, XyJ |xo, x > =  0,

[P/о Ру]ф = 1 ^ 2Ауиуф »[p^, Pv] |x0, x) = 0
but ♦ _[p/** *у]Ф - ^^уф---Zt--»[p ,̂ xv] |x0, X>= illg^yi^, x>
i.e. these OCR’s remain valid in the formal limit ft— >0. Thus
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we can say that, in the formal limit ?i— ^0,the q space-time we 
proposed turns into the flat space-time ИИ**, while q mechanics 
over this q space-time is reduced to the cq mechanics; the bare 
mass eigenvalue eq.’s (6.2), (6.8) and (6.4), (6.10) are reduced 
to the cq Klein-Gordon eq.’s and to the cq Dirac eq.’s, respectively. 
The situation can be represented formally as follows

QST ^ -»?> RST , v NRST 

QM ------► RQM -----♦ NRQM
i.e. q space-time include r space-time (M^) and non r space-time, 
and q mechanics over q space-time include rq mechanics and non rq 
mechanics as limiting cases, respectively.
Remark: As we saw in the theory of the one free scalar particle 
on q space-time, one can write for a ф  GH ф = 2. C(m%/< , I )x 
X|m2,//, 1 У  = 2 C(m2)|m2> С (Л ,/л) | /л, l> = 2  C(m2) |m2> X )  .

Q Q
Then an element ф  of M can be written as Ф  - Z 0 0 O | m ‘> -
= ф(с[, t) , i.e. ф  (q, t) is a superposition of different bare
mass states of the scalar test particle. Furthermore the elements
of M represent the smallest cells (bubbles) of the flat space-time
IM̂ , which cells possess, in principle, physically testable reality.
Therefore the elements of M may be interpreted as the quanta of
flat space-time IM̂ . The following relations are valid for these
space-time quanta: A r A t « b *  where At is the lifetime of such
a quatum, д г  is the size of such a quantum in space; AEAt«iti

. 2
where Д Е  is the energy of such a quatum, ДЕ Д р ^ п ’п ’ = £,
where Д р  is the momentum of such a quatum. If we choose the
values Ar«slO“^^m and At ̂ 10-2^зес as characteristic values

2
for such space-time cells (quanta) then AE «?10~^°kgs°c ^  1 Gev 
and Ap-^IO-'1'̂ kg — (or Ар*** £,• ** 0,2 GeV in natural units).
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8. Concluding remarks

(30) The idea that the space-time coordinates would have to be 
operators in a semantically consistent q theory of fields was 
emphasized by von Weizsäcker (1973» 1974). The "canonical" quantize 
tion of вИ proposed in this paper is a kind of realization of this 
idea. It is a well-known idea of Heisenberg that q uncertainties 
should emerge in the space-time metric in small space-time regions 
but the space-time points remain unchanged, i.e. the null cones 
should become "smeared out" in the q area. Then the causality be­
comes indefinite. In the twistor theory of Penrose(1972, 1975), 
space-time points arise as secondary concepts corresponding to 
linear sets in twistor space, and they, rather than the null cones 
should become "smeared out" on the passage to a q relativity 
theory. It is straightforward to see that both the space-time 
points and null cones become "smeared out" in our q space-time 
model. The causal relation of two q events is only decidable opera 
tionally by measuring the transition probability between them 
that is exactly formulated by the relation <^ф-̂1 Ф 2^ describing 
the causality connection among q events in q space-time. We could 
say nothing about causality inside an fi size region of M^.

As another comparison we note that our approach shows up a 
similarity, in its spirit, to that of Pinkelstein (1974), however 
the differences between them are clear.

Comparing our model to the elementary length theories or to the 
time quantum theory of Pinkelstein we see that our model does 
not assume the existence of an elementary length Jt or of a time 
quantum 't rather it assumes the existence of an elementary cell 
fi ~  i • H in IM^.

The inner topology of q space-time (the topology of a space­
like hyperplane in q space-time) is much more discrete relative
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to the usual topology of IM̂  and it is very similar to the topology 
of a lattice on IM̂  nowadays used extensively in the practical 
calculations of finite results in qlft. For, considering the points 
of a lattice on a spacelike hyperplane of (M̂  as the isolated points 
in a spacelike hyperplane Г  of q space-time (cf. sec.2. parag­
raph (9) ) .
(31) One of the main implications of our model is the confinement 
phenomenon for point particles ("quarks"). This phenomenon finally 
may lead to the explanation of the "quark puzzle". This explanation 
would be a combined kinematical and dynamical one, for, kinematical 
because it may follow from the q nature of space-time, and dynamical, 
too, because the q geometry of space-time provides the confining 
force. (Cf. this explanation with that of Saavedra and Utreras (1981).)
(32) Let us consider briefly the case of a particle closed inside 
a sphere with radius R, i.e. O ^r^R. One may demonstrate the 
physical meaning of the uncertainty relation (3.2) by thought ex­
periments leading to such a problem, similarly to usual q mechanics 
where the Heisenberg uncertainty principle is demonstrated by 
thought experiments which are equivalent with the problem of a 
particle closed inside a box. In that case H = L^f-R, +R) and,
as it is well-known, now the time operator t = -ill* has a purely

„ t 9
discrete spectrum tn = —jp n , n = 0, +1 , -2, ... with eigenstates 
|t > = -Д3. exp(^|p nq) . Now we can write A r  = 2R and Ä t  = tß+1 - 
- tn = , then Д г  At = 2¥h*. One can consider Д  t = T  as a
time quatum and if 'X 10-2^sec in a good agreement with the 
estimated magnitude of the Finkelstein*s time quantum then R ~  

^¥•6.10 ^msec 10^sec“^~ 1,8.10”^ т ^  2 fermi. Then one might 
consider R as the radius of a.hadronic "micro-universe" with the 
circular frequency со = i ^ l 02^sec_1, which appears as a "bubble" 
embedded in an external, overall essentially flat, macroscopic 
world. (Cf. with P. Roman(1979).)
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(33) In this paper we interpreted the lattice i of the values 
of the local propositions of a local physical system described 
in Banai (1980) by a CROC-valued propositional system as the r 
causal logic of the corresponding q space-time; the Hilbert space 
H for wich P(H) = Ü was interpreted as the event space of this
q space-time. Now in Banai (1980) it was mentioned that the CROC­
valued logics are in a close connection with the Í -valued models 
of the Takeuti*s (1981) q set theory. In this way, in the Takeuti’s 
I -valued models, the lattice Jt of the truth values and the 
corresponding Hilbert space H get a physical interpretation, too. 
Each maximal Boolean algebra in ^P(H) determines a "spacelike" 
hyperplane in the corresponding q space-time, on which the physic­
ists prepare the states of the local physical system. So every 
maximal Boolean algebra in ^P(H) may be interpreted as a Boolean 
reference frame in accordance with M. Davis (1977), [first/who]
established in q theory the relativity principle we used here to 
set up q space-time models.
(34) Along the C*-module quantization program for rift suggested 
in Banai (1981b) (and which quantization is partly done for non 
r local physical system in Banai (1981c)) we give in this paper
a resolution for the problem appears in this program in connection 
with the space-time of a local physical system. Thus the C*-algebra 
A over which the corresponding Hilbert module Нд must be construct­
ed is determined, too: it is the von Neumann algebra generated by 
the lattice of projectors of the event space H. In the succeeding 
paper (in the second part) we will proceed along this program and 
the formalism of clft will be transferred over q space-time pro­
posed in this part as a canonical example for general q space-time 
models. In this context this procedure will provide the first 
quantization for local field theories.
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Footnotes
*

It is not easy to give a complete references on the related 
papers because of their enormous numbers and their numbers are 
growing year by year. Nevertheless we list here other related 
works, too, which are known explicitly by the author; Das (1966) , 
Atkinson and Halpern (1967) and Gudder(l968) , these papers concern 
on the elementary length theories. Along the algebraic approach 
of q theory it is worthwhile to mention here some papers of Segal 
- among others - : Segal(1965, 1980) and Jakobsen et al.(l978). 
Futhermore, related papers can be found in a high concentration, 
e.g., in the proceedings of the conferences on "the q theory and 
the structures of Time and Space" held Manually by the Max Planck 
Institute at Starnberg: von Weizsäcker et al. (1975, 1977,
1979, 1981), especially under the names Finkeistein, von Weizsäcker, 
Castell, Segal, Roman, Barut, Biedenharn, Penrose, Wheeler.
2This argument is due to W. Cegla.
3 Л AThe use of the c light velocity c in xQ = ct is not too consequent 
because of the complete spreadoutness of the light cone structure 
of (M̂  in the following model, rather it should write c instead of 
c, which operator c would produce c in the c limit. However, in 
this first draft of the theory, we insist on the use of c.

^Several trials give this relation which will satisfy all expected 
physical criteria. The relations, e.g., д х одх. > X i=l»2,3, 
in Banai (1981b) could not imply a definite c limit (correspondence 
principle!) for the corresponding q space-time.

'’The attention is paid to the followings. Let (H, ф) = [ L2̂>( 0, + oo)<g 
®  L2yJ 0,T)<2> L2(0, 21Г) , <fx,f2> = S~ dr r2 So d*  sin^  
dX f^(r, X) f2(r , X) I • then the operators -ifi* —  and r 
in H satisfy formally (3.3) but -i ■?- does not has a unique spectral 
decomposition, as it is well-known. The operator -in’ — ~ ( r  ф) =
= —in’(g-p + — )ф satisfies (3.3) with г ф  , and it is symmetric 
but it has not a unique self-adjoint extention because it is 
unitarily equivalent with -i in L2(0, <»). The author got consid­
erable aid from prof. T. Matolcsi to reTsolve this problem in the 
trick.
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Âs supplementary conditions to (З.З) we should require the 
following formal CR’s for the angles пЯ and X and for t:

= 0, [t, Xj = 0, and these relations is satisfied by $ 
in (3.5d), indeed.
7If we define the rotations, similarly to the translations in 
(4.1) , as followe:for infinitesimal copy’s, let xji, = Uti^) хии~'*‘(и>) 
= Xyu - io/Mv xy , then this would lead a generator M ’̂y different 
from (4.14).
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