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ABSTRACT

An axiomatic Tframework for describing general space-time models is out-
lined. Space-time models to which irreducible propositional systems belong
as causal logics are quantum theoretically interpretable and their event
spaces are Hilbert spaces. Such a quantum space-time is proposed via a ''ca-
nonical’™ quantization of Minkowski space M4. As a basic assumption the time
t and the place r of an event satisfy the CCR [t,r]=-ift". In that case the "
event space is a complex Hilbert space of countable dimension. When ft*-l0, M4
is provided as the classical limit of this quantum space-time. Unitary sym-
metries consist of Poincaré-like symmetries: translations, rotations and
inversion, and of gauge-like symmetries. Space inversion implies the time
inversion, and vice versa. This quantum space-time reveals a confinement
phenomenon: the test particle is "confined"” in an ft size region of M4 at any*
time. In the one particle theory over this quantum space-time, the Klein-
-Gordon eq. and the Dirac eq. may be reinterpreted as bare mass eigenvalue
eq."s for a scalar and a spinor particle, respectively. This quantum mechanics
reduces to the usual relativistic quantum mechanics when ft/2=0. An example
explains the potential model of the T-particle. This comparison with the

Y-particle gives TI"sl -

AHHOTALMA

OnuchiBaeTCsl aKCUOMATUYECKUIA MoAxXo[ K OnucaHuiw obwux MpoCcTPaHCTBO-BpeEMEH-
HbIX Mogenei. Te Mogenu npoCTpaHCTBa-BPEMEHW, KOTOPbLIE MMEWT HEMPUBOAMMLIE CUCTE-
Mbl MPOMO3MLUUN B KayeCcTBE MPUUMHHBIX fIOFUK, 06/1a4alT TeopeTUKO-NOoMNeEBOV MHTepnpe-
Tauvei, 1 UX NpPoCTpaHCTBa cO6bITUA sABNAKTCA MILGEPTOBLIMU. 3aJaeTcsl TaKoe KBaH-
TOBOE NPOCTPAHCTBO-BPEMSI C MOMOWbH KAHOHWYECKOr0 KBaHTOBaHWsS MPOCTpaHCTBa MUH-
KOBCKOIro M4 . 3TO KBaHTOBOE MNPOCTPAHCTBO-BPEMS UMEET CBOMCTBO 3anupaHusi- B opg-
HOYACTMYHOW TEopMU Ha ISTOM MPOCTPAHCTBE-BPEMEHU YypaBHeHus KneiHa-lopgoHa u
Avpaka vMenT WHTeprnpeTauuio ypaBHEHW Ha COBCTBEHHOE 3Ha4eHVe roJioil Maccs Ans
CKaNSIpHO/ WM CMUHOPHOW YacTulbl -

KIVONAT

Egy axiomatikus keretet vazolunk altalanos téridé-modellek leirasara.
Azok a térid6-modellek, amelyekhez irreducibilis propozicidé rendszerek tar-
toznak mint kauzalis logikak, kvantumelméletileg interpretalhaték és az ese-
ménytereik Hilbert-terek. Megadunk egy ilyen kvantumtéridét az M4 Minkowski-
-tér "kanonikus" kvantalasan keresztil. Alapvetd feltevésként egy esemény t
ideje és r helye teljesiti a [t,r] = -ifi" felcserélést relaciot. Ebben az
esetben az eseménytér egy komplex szeparabilis Hilbert-tér. Ha ft™0, M4-t
mint ennek a kvantumtéridének a klasszikus hataresetét kapjuk vissza. Unitér
szimmetridk Poincaré-szeri szimmetridkat: eltolasok, forgatasok és inverziok,
és mértékszeri szimmetriakat tartalmaznak. A tértikrdzés maga utan vonja az
1d6tikrozést és viszont. Ez a kvantumtéridd bezarasi jJelenséget fed fol: a
probarészecske bezarodik M4 egy ft méretld cellajaba minden idépillanatban. Az
egyrészecske-elméletben ezen a téridén a Klein-Gordon-egyenlet és a Dirac-e-
gyenlet Gjra interpretalhaték mint csupasz tomeg-sajatérték egyenletek egy
skalar ill. egy spinor részecskére. Ez a kvantummechanika a szokasos relati-
visztikus kvantummechanikara redukalddik ha ft"-l0. Egy példa magyarazza a
N-részecske potencial modelljét. Ez az O6sszehasonlitas a V-részecskével a

ft ~1 ~GeV" ertefet adja.



N Introduction

The view is widely accepted that the difficulties of conven-
tional local quantum () field theories arise from their para-
doxical and semantically inconsistent nature, namly they are
q theories over a classical (¢) space-time, they are cq theories
in the terminology of Pinkelstein (1974) . There exist iIn the
literature many different approaches to resolve this inconsis-
tency and to achieve a semantically consistent — which must
and do be a proper feature of a successftul theory stressed
oftenly by von Weizsacker (1973» 1974)— local g field theory
and at the same time to explain the very nature of space-time
or to arrive at a q space-time. Some of the most essential appro-
aches are the space-time code theory of Finkelstein (1974)
et al. (1974), the ur theory of von Weizsacker (1974) et al.
(1975, 1977, 1979, 1981), the twistor theory of Penrose (1975)

et al.(197P) and more recently the attempt of Marlow (1981a,
1981b)~. However these approaches have not been completed and
it iIs not too easy to see in their present stage whether they
will really achieve the goal or not. Therefore we think there
are still possibilities for other approaches.

Recently the present author proposed a generalization of q
logic of the type of Piron (1976) and Gudder (1970) for local
field theories (Ift) using the new technique of lattice valued
logics (Banai (1980, 1981a)). This g logical approach offers us
a new possibility to approach the problem above and to develop
a consequent g version of space-time. As a continuation of the
investigation of the ideas iIn these papers mentioned we elabor-
ate here the suggestions given in Banai (1981b) and propose a
canonical quantization”™ of Minkowski space nM and formally

n this,
develop a Hilbert space formalism for describingsq space-time



and for q mechanics over this q substratum. Our guiding prin-

ciples consist of two hypotheses:

(A) The space-time of a local g physical system should be (q
theoretically fTully interpretable.

(B) The time and place of an event could not be measured, In

principle, with orbitrary precision.

The first hypothesis is required by the semantical consistency
and i1t determines the mathematical framework of the corresponding
space-times. Following from the clearcut result of Cegla and Jad-
czyk @977) about the causal logic of @ will be equivalent
in mathematical terms with the requirement that the causal logic
of the space-time should satisfy the covering law and thus the
causal logics of the corresponding space-times become proposi-
tional systems of Piron (1976). The second hypothesis can be for-
mulated mathematically iIn the Heisenberg-type uncertainty relation

At Arn~ N r2 = x2 + x2 + x2 (¢))
where $1” is a Planck-constant characteristic for space-time,
and (1) will lead to a 'canonically” quantized version of , 1o
a concrete ( space-time.

The main content of this paper is presented as follows. In
sec. 2 an axiomatic framework for describing general space-time
models, Tollowing from a g logical approach of 1ft (Banai (1981a)) ,
is outlined. Space-time models to which irreducible propositional
systems of Piron (1976) belong as causal logics are g theoretical-
ly fully interpretable and, if their causal logics contain at
least four atoms, their event spaces are generalized Hilbert spaces.
In sec. 3 such a q space-time model 1is proposed via a '‘canonical
quantization of n. As a basic assumption following from (B)
the time t and the place r of an event satisfy the CCR [t,r] =

= -rfi* which implies () . In that case the event space iIs a comp-



lex Hilbert space H of countable dimension, events are rays in

H, observables are self-adjoint operators in H and symmetries

are unitary or anti-unitary %?erators in H. In the formal limit
b*—» O, IbF Is provided as they limit of this g space-time. In

sec. 4 it is shown that the unitary symmetries of q space-time
consist of Poincaré-like symmetries: translations, rotations and
inversion, and of gauge-like symmetries. The space iInversion
implies the time inversion, and vice versa, in this g space-time.
In the c limit the unitary symmetries are reduced to the Poincare
symmetries of IM. In sec. 5 some properties of  space-time 1is
studied and i1t is seen that this q space-time reveals a confine-
ment phenomenon: the test particle is '"confined" in an & size
region of B/l at any time. Sec. 6 deals with the one particle theo-
ry over this q substratum and the Klein-Gordon eq. and the Dirac
eq. are reinterpreted as mass eigenvalue eq.’s for the mechani-
cal (or bare) mass of a scalar and of a spinor particle, respect-
ively, which particles are free or interact with an external
field. This q mechanics is reduced to the usual relativistic (r)
q mechanics on Bi in the formal limit ti’—>0. In sec. 7 an ex-
ample, a particle In a Coulomb potential, explains why the po-
tential model of the Y -particle describes so beautifully the
spectrum of this particle in a non-relativistic way. This compa-
rison with the Y-particle gives b" » 1 natural units.

In sec. 8 concluding remarks close this paper.
2. Space-time models from a g logical approach of LFT

() In Banai (1980) the local physical system P(£2) 1is represented

by a lattice-valued logic (L, t, V); the value lattice 1 have



to reflect the causal structure of the physical space over
which the system spreads. Thus the physical space of the system
should be determined by £ together with its event structure»
symmetries and observable aspects.
(2) Given £ abstractly in a concrete lattice-valued logic (L, £,
V) representing the system P(£2), then a/ events are represented
by the atoms (or more generally by the maximal filters )of £ ,
b/ symmetries are given by the automorph!sms of £ ; the symmetry
group of £ 1is Aut(-£) , the geometrical symmetry group of the
corresponding physical space is generated by Aut(”®) , c¢/ observ-
ables are morphisms (O-morphisms or c-morphisms) from Boolean
lattices associated with the measuring apparatuses (classical sys-
tems) to £ .
(3) Causal relation: Definition. Two enents are causally dis-
connected (connected) whenever the two events are compatible
{non—compatible’%; they are orthogonal, they belong tg’Adistributive
sublattice In £ . The elements of L (two regions generated by
the two elements) are causally disconnected if they are compatible.
We say that the '"causal logic” £ 1is non-relativistic. respect-
ively, relativistic if £ 1is distributive. respectively, non-dis-
tributive .
™ Assumptions; We restrict ourselves, from now on, to CROC-
-valued logics representing a local P(Q). Thus £ will be a CROC,
complete orthomodular lattice. To simplify the event structure of
£ , a father assumption is to be £ atomic CROC, and thus events
are in one-to-one correspondence with the atoms of £
(5) Examples: & £ = U~~~ (R, this is the causal logic of
Galilean space-time X = R X The Borel sets of X constitute a
N—complete lattice £” in £ . The Galilean group G on X acts as

a group of automorphisms of £ and £7.



The events are the points of X. The observables in £B (0-
-morphisms) generate Borel functions on X, and conversely (ceg-
la and Jadczyk (1976)).

b/ Z 1is the causal logic of o, i1.e. the elements of Z are
given by double -orthogonal sets in and these sets form a

CROC as it was shown by Cegla and Jadczyk (1977). The events of
Z are the points of Maximal complete Boolean sublattices of
Z correspond in one-to-one to spacelike hyperplanes in (W; the
atoms of a maximal Boolean sublattice iIn Z are the points of a
spacelike hyperplane in oM, all these events are causally discon-
nected. The subset Z of Z consisting of all Borel sets iIn Z

is a ¢ -complete, orthomodular lattice. Every automorphism of Z
is induced by a transformation of preserving interiors of
light cones, and so, by the result of Borchers and Hegerfeldt
(1972), is a Poincare transformation up to dilation. Thus the
full group of symmetries, Aut(-d) consists of dilations and Poin-
care transformations. An observable in ZB (<?-morphism) generates
a Borel function on a spacelike hyperplane in IW', and conversely,
(6) As we see the non-r causal logics are almost exhausted by

the physically interesting and well studied example a/ though
there are theoretically open questions in this case, too. Never-
theless we now concern the physically more interesting cases of

r causal logics.

In example b/ Z 1is an atomic CROC, moreover it is an irreducible
atomic CROC; the chEr of Z consists of the empty set and ovT only.
But the covering law is not satisfied by I (one can easily verify
this considering the content of the law on a two dimensional
figure:

p1a =0, but (pVa)Aa’” is not an atom in general! as i1t should

follow from the covering law if it iIs satisfied.}?



Thus 1 1is not a propositional system in the sense of Piron
(1976) and so it does not be realizable via a (generalized) Hil-
bert space in accordance with the Piron’s realization theorem
about propositional systems.
CI) On the other hand if we suppose that the covering law iIs sa-
tisfied by Z (e.g., iIn the case of CROC-valued propositional
systems (L, V) representing rift systems (Banai (1980))) then
the r causal logic 4 becomes an irreducible propositional system
of Piron and thus, if t containes at least four atoms, 1t is
realizable with the lattice of the closed subspaces of a general-
ized Hilbert space H over a division ring K in accordance with
the Piron*s result. Furthermore the corresponding r space-time
can be fully operationally defined (at least to the extent of
the Piron’s q physical approach). Now, by Piron (1976) , we know
that the covering law guarantees In a g system, knowing the res-
ponse of the system undergo an ideal measu”™ment of the first kind,
to calculate the final pure state as a function of the initial
pure state. Without this axiom we cannot completely determine the
final state; and although the measuﬁment may be ideal, the per-
turbation results in a loss of information, even 1If we take the
response of the system into account.

A pure state is represented by an atom in the propositional sys-
tem; iIn the causal logic, an atom represents an event (of a test
particle moving in the corresponding space-time). Thus the cover-

ing law ensures us to be able to predict the subsequent event



of a test particle observing with an ideal measurement of the
first kind, as a function of the initial (previous) event. We
may have iIn this way such space-time models which only employ
operationally definable and observable concepts and which are

g theoretically interpretable. So we call such a r space-time
model to which an irreducible propositional system belongs as

r causal logic a g space-time.

(B) Let us collect the main results following from g theory and
concerning on (g space-times.

Theorem 1. Let (L, V) be an irreducible CROC-valued proposi-
tional system representing a pure rift system. If the r causal
logic £ is of rank at least equal to 4 then I can be realized
by the lattice !'P(H) of closed linear subspaces of a generalized
Hilbert space H over a field K. (The vector space (H, K, ®) is
a generalized Hilbert space iff u + UA = H, Vu€”P(H), ux =
={f6H]|$(f,g) =0, Vgeuj, where ¢ 1is a definite Hermitian
form constructed over this space.)

Proof. See in Piron(1976).

Theorem 2. The events of the causal logic L in Th_.l. can be rep-
resented by the rays of H. Two distinct events are causally dis-
connected iIf the corresponding vectors make the definite Hermi-
tian form vanish.

Proof. See in Piron (1976) .

So we see that the q substitute for the c event space is a
Hilbert space H corresponding to the rift system represented by
the irreducible CROC-valued propositional system (L, I, V), si-
milarly to q mechanics where the g mechanical substitute for c
phase space is the Hilbert space.

Theorem 3._.(Wigner) Let H be a generalized Hilbert space of di-

mension at least equal to 3» realizing a r causal logic t. Every



isoraorphism of (H) onto itself i1s induced by a semilinear
transformation of (H, k) onto itself. A semilinear transforma-
tion ((3, 6*”) of (H, k) onto itself induces an isomorphism of
"P(h) onto itself iff there exists ot6K such that 0°°“10(0"TF,
ffg) = o(f,e)ot-, VF,g B H.

Proof; Th.(3.28) in Piron(1976).

Corollary. If H is a complex Hilbert space of at least dimension
3, every symmetry is induced by a transformation u which is li-
near or antilinear. In the linear case $>(uf,ug) = 0(f,q),

Yf ,g€ H, and in the antilinear case (p(uf,ug) = <j£(g,f), VT,g€H.

But the transformation u is not entirely determined by the spe-
cification of the symmetry. Two u’s which differ by a complex
factor of unit modulus induce the same symmetry.

Thus the symmetry group Aut(£) of the r causal logic in Th.l.
generates, roughly speaking, the unitary group of the correspond-
ing (generalized) Hilbert space H, that is to say the geometrical
symmetry group of the corresponding £ space-time represented by
H is the unitary group of H.

Now an observable is a c-morphism of a Boolean CROC associated
with a measuring apparatus into the r causal logic 1 . When the
field K is isomorphic to one of three fields the reals, the comp-
lexes, or the quaternions one can state in the Hilbert realization
(Piron (1976) Th. (3.53)) :

Theorem 4. Each observable of a r causal logic which is an irre-
ducible propositional system P(H) defines an Abelian von Neumann
algebra over H. ITf H is of countable dimension, this algebra is
generated by a self-adjoint operator. If H is finite dimensional,
every observable has a purely discrete spectrum.

A state w can be defined on a q space-time as a generalized

probability measure on £ . The main result along this line the



the Gleason’s theorem (Gleason (1957)) .

Theorem 5. Let H be a complex Hilbert space representing the
event space of a q space-time. Every generalized probability
measure defined onto 5700 is of the form w (Q) = tr(Q$%>) ,
VQ€ P (H) , where 5 1is a von Neumann density operator.

This theorem was proved by Gleason for countable dimensional
case and by Eirels and Horst (1975) for uncountable dimensional
case with the assumption of Continuum Hypothesis. Using this
theorem and the properties of von Neumann density operators, the
mean value of an observable K which is a self-adjoint operator in

H has the form

00 n N N
= tr(A8) = 4"~ CaP™ = Nan AXN) =
= Z1=1<x 11A|x& .D)
where J = 1» P™s are mutually orthogonal projectors

of rank 1 and x”’s constitute an orthonormal basis In H. In par-
ticular the mean value of ,IA] in a pure state which Is represented
by a one dimensional projector or by a ray, Iis

Wp = tr(AP) = <(X|A]x> t.2)
Because of the definition of an event we can say that the expec-
tation value of an observable A at the event P = |x[Ax | is given
by (r.2).
Remarks Conserved curents define states on the causal logic of
IV in example b/ as was shown by Cegla and Jadczyk (1979)e
(© Maximal Boolean subalgebras in Z of example b/ correspond
to spacelike hyperplanes in similarly, maximal Boolean sub-
lattices in Z (in Th_.1.) generate spacelike hyperplanes in the
corresponding q space-time. Por, let B be a maximal Boolean sub-
lattice in Z , then B =<P(Q) where is the set of atoms of B.

Every event (the points of 42 ) in B is causally disconnected.
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Now Q with the discrete topology is a copletely regular space
and thus i1ts Stone-Cech compactification "P exists, which is a
compact Hausdorff space, extremely disconnected. On the other
hand, let A be the Abelian von Neumann algebra generated by B,
then A is a commutative C*-algebra (moreover a W*-algebra) and
so it is representable as a function algebra C(T) where V is
a compact Hausdorff space, extremely disconnected; T7 is the
spectrum space of A. It is clear that T1= T* up to topological
isomorphism. This completely disconnected compact Hausdorff space
I 1s what we can (and do) call a spacelike hyperplane in the q
space-time representable by a complex Hilbert space H. Follow-
ing from Th.5., all probability measures, states, on V are de-
termined as convex combinations of pure states and a pure state
is represented by a Dirac measure on V concentrated on a point
of ' . To summarize we can sState:
Theorem 6. Let Z be a r causal logic realizable with a "P(H)
where H is a complex Hilbert space of dimension at least equal
to 4. Every maximal Boolean sublattice B of t determines a space-
like hyperplane "F 1In the corresponding q space-time represented
by H. ' 1is a completely disconnected compact Hausdorff space
and can be identified with the spectrum space of the Abelian
von Neumann algebra generated by B. Every state on P> can be rep-
resented on T/ as a probability measure of the form /1 =
- 2 X6 Xx//Xx where Ay "™ 0, = 1 and MAx is the Dirac
measure concentrated on x 6T1.

So we see that a q space-time has a much more discrete inner
topological structure compared with the space-time IMW‘; a space-
like hyperplane in is a connected locally compact Hausdorff

space iIn its usual topology.



-11-

(10) We saw that the observables of a g space-time representable
by a complex Hilbert space of countable dimension are self-ad-
joint operators. Thus the observable time and space coordinates
of an event (which are supposed, iIn c space-time, that they are
observables) become self-adjoint operators in such a q space-time.
The space-time coordinate 4-vector plaies a distinguished role

in IW; all other observables on IM can be expressed as functions
of this 4-vector. Thus the determination of the commutation pro-
perty of the coordinate time and space operators is decisive

for us. It will be done this in the following sec. using a heu-

ristic argument.

3. A "canonical” quantization of Minkowski space

(11) Prom now on we restrict our attention to such g space-time
models which are represented by complex Hilbert spaces of coun-
table dimension. In these cases the whole well-known mathemati-
cal apparatus of q mechanics can be exploited to build up a
sensible and, probably, satisfactory q version of space-time.

We note that any two such g space-time models, i.e. represent-
ed by two complex Hilbert spaces of countable dimension, are unit-
arily equivalent because of any two such Hilbert spaces are unit-
arily equivalent.

Let H be a complex Hilbert space of countable dimension, rep-
resenting the event space of a r space-time model. Let 3 and %
be two observables iIn this g space-time, 1.e. two self-adjoint
operators in H and let ¢ be a unit vector defining an event
in both of their domains, and such that A¢p 1is iIn the domain of
B and vice versa. Denote S (A, ®) the dispersion of A In the event
¢ , 1.e. S(A ,9) 1is a quantitative measure of the degree of

"spreadoutness”™ of an observable iIn a given event (pure state):
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R - <o - AUEDI5 =] - <]

Then, as it is well-known from g mechanics (see, e.g., in
Mackey(1963)), the product of the two dispersions 5@ ,9) and
£(B,p) is bounded below by |\ - AB)p|p~]/72 -
5(X,9)-5B.0 £ 5 B, Alp |¢>] GCD
When ﬁ{and é do not commute this is a limitation to the degree
to which the probability distributions of the corresponding ob-
servables may be independently concentrated near to single points
(12) Now let xQ = ct, x, $2» x» be the self-adjoint operators
corresponding to the coordinate time and space observables (of
an event of a test particle)-? These observables play a role iIn
DIH similar to 1l:le role of the conjugate momentum and coordinate
observables in c mechanics; all other observables on IM are
the functions of these observables. The non-commuting property
of the conjugate momentum and coordinate observables has a cent-
ral role in g mechanics. Thus we suspect that, similarly, there
is a corresponding relation between the coordinate time and space
observables iIn g space-time.

In g mechanics, following from the CCR, arbitrary small cells
of phase space built up from p and q do not correspond to physi-
cally observable reality. A similar statement in g space-time
that the arbitrary small cells of I - this is the analogous of
phase space - do not correspond to physically observable reality,
i.e. with physical measurements with vanishing dispersions. In
other terms we are not able to distinguish, by measurements
with zero dispersions, two events arbitrarily close In M from
each other. On the other hand we may expect - taking into acount
the great empirical success of non-r g mechanics which presuppos-
es the Euclidean structure of space and that any particle is lo-

calizable iIn space to a point also in g mechanics, and the conser



-13-

vation of angular momentum (Segal (1965)) - that the spacelike

coordinates x, x®, x~ of a test particle are measurable without

dispersion, i.e. x™, x™ and x* are commutable among themselves.
Let AA= £(A,p) then we formulate this heuristic argument

"
in the following Heisenberg-type uncertainty relation

AtAr~n™1ia 7» r = "x2 + x2 + x2° (3.2a)
or OAxoArl ~ 1t U = eft (3-2b)
where IS a constant characteristic for space-time. This un-

certainty relation means that the time and place of an event
cannot be measured with arbitrary precision, in principle, any-
how the measuring apparatuses are refined. We can derive this
relation, applying (3.1), from the following Heisenberg-type
commutation relation (CR):

[t, r] = -ifid (3.33)
or r2 = X2 + x| + X2

[xo, r] = -ifc*l (3-3b)

where 1 is the identity operator on H and equality are under-
stood on the common domain of the both side (and this remark
willwalid for all formal equalities between unbounded operators
in H they extensively appear in what follows?). We choose the
CR(3.3)our (second) basic assumption to set up an operationally
defined and phenomenologically allclable concrete q space-time.
(13) We can easily determine a concrete realization of (3.3).

Let (H, 0) = (12(R), <Filf2> = NRId (Q)T2(9))= Then the follow-
ing self-adjoint unbounded operators satisfy (3.3) (when they

are suitably restricted):
tp@ = -1V [g<p(@), "0A?(w) = """ (9)
rcp(@ = g @

But the realization (3.4) 1is unique up to unitary equivalence

-4
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in the sense of the Stone-von Neumann theorem (1932).

Note that the pair (q, -i”) of operators constitutes an irre-
ducible system of operators In L (R) in the sense that only the
scalar multiplies of the identity operator commute with both of

them.

Now let (H, ) = (12(R3), <FIf 2> = S 3dm f-~x~fe)) then

Xt p(x) = x1*p(x) (3.52)
To determine the self-adjoint representation of (3.3) in this

case, let us use the following trick-; Let us consider the map

Vi L2QR) — 1IA® ; O (@ 1 Jgp@ , where d§& (@ = g2dq. This
is a unitary map. Denote h the multiplication operator and -i —jg

the differentiation operator in Lj@ . Then VgV = h and

v(-1 127"1 = -1t EX h = _i(Jh + B) := > Furthermore let

£ :R3- >R X (0, X (@, 2IM) ; x & >((xI sign x*, arc cos ,
) X, / 0 0 of
arc sin -n™ ), Il =vx® + x2 + x» = r, then (h, % )=
VX 1+x2

= (Jh] sin*cos X , |nlsino™sinX , h cos ), and the mapping U
L2(R3) —>b](K) © Ly(0, J)® L2, 2¥);Cpt—»Cpo ™ -1 is unit-

ary, where dv(-\5) = sin-Jld-\>. Then we can write

U (h® idlly(o ,, ® idLi Qi2T))u 1l <h.A*) IxIsign x* =

r-p(),

U CF® IdLY (0,f) ® 1d2(0,2T)) u"4(h.AXx) =

" -1 HIsignx3UIl xiU7 + idl1(ED))@e> *

* f F(XtdXi+ 1)~ ) r= i )

and these self-adjoint operators clearly satisfy (3.3) if we put

the coefficient @1 or t#* on the appropriate place. Thus we have

*00(£) - -lh 1 f0&) (3.5b)
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r o(x) =r*>p(x), (3.50)
t p(x) - —.nkfp o (x) (3.5d)
The operator r in (3.5¢) clearly satisfies the condition r2 =
= X% + X3 + §R.

Note that the system (x*, -i1J-~), 1i1=1,2,3. of operators cons-
titutes®&n irreducible system of gperators in LZ(FE), and, while
the solution in (3.4) for (t, r ) is irreducible, the solution
in (3.5c,d) is not irreducible in L2(R3).~ Furthermore observe
that, in this representation, ir(ffr) is orthogonally decomposed
into the direct sum L2(R3) m Hj = Hg « L2(0RR X R+ ) = L2(JR2 x R),
and the pair (t, r)acts in H® as (-iftx © r » r) and in
as (tifc* p r, -r); (t, r) has purely positive spectrum in H"
and purely negative spectrum in H2.

With the aid of this representation of xQ we obtain, after a

formal calculation, the CR’s between the components of the coor-

dinate 4-vector Xu : A
pO.xt] * -iti “ , i=1,2,3 (3.6a)
or A
[x* , xvJ = -iti A%y , /M,v =0,1,2,3 (3.6b)
where 10, x x2, x>
[U - : = © _ Vi (3-7)

-X2, U, U, U
xj, 0, 0, 0J
By means of (3.1) we get the uncertainty relations for the com-

J1
ponents of X s A

« 35 |O].  (M)-<01r10>  @8)
TN Xy M A, AY = iR €sD)

We can write for the expectation values of the coordinates of
an event realized by a unit vector ¢€H

XU = tr(Php x*) = <O|x/.1p> =SrS ¢ x*¢ d3x , (3.9)
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X0 = _i* AR d9 sin® 502T dX 4>(q,”,*) |_d(u,n™,X) =
= —it SR3 d3x ¢Cx) ~ Ph(X) (3.9)
X+ = 5°3 p(x)x4h(x) d3x (3.9b)

(14) When H = L2({R3) so that the x~ 1is as indicated above in
(3.5), each event vector ¢ may be written in the form ¢ =
= {? eis where % = |p] 2 and s is a real-valued function on I3
which is determined only up to an additive constant. 8 and s
together uniquely determine @, and 8 has an obvious physical
significance. If E is any Borel subset of RB3 then 5 ? (X™»Xp,Xx™)d3x
is the probability that measurements of the x* of the event
will give a value for the 3-tuple x», x*, x~ lying in E. There-
fore we can interprete Ff as the classical physical apace iIn
which the measuring apparatuses (c objects ) behaving stationary
take place (cloks, measuring lines, ect.; cf. below sec.4.).

s also has a simple physical meaning. Assuming that ¢ is suit-
ably differentiable, let us compute the expected value of the

A
observable t. It 1is

<plEh> = -it” $R dq ~ drsin-A dX =
r? .
=-it  aq ST d% X dg Vy ov#sin X
X$Fd* —3 N oarsine SF« R aq x

Xsin-v 2T dX g f* _ _ E}Ll

IT we have an event, i1.e. a state of a test particle, i1n which
8 1s highly concentrated, 1.e. In which x*, x*, x* is almost
sure to be very near to x°, x*, x”, then the time coordinate t
will have an expected value very near to t” "p(x°,x",x°) (cf.
below). In any case x £+>t” ~(x) gives a map that associates a

time coordinate value to every set of space coordinate values.
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The mean of this time coordinate value with respect to 8§ 1is the
expected value of the time coordinate for the event /Tel8
In this sense *jp describes the coordinate time of the event.

We note that the operators 9(—’\, g(’\, %~ form a complete commuting
family, thus an event is completely determined by the measure-
ment of the observables Q—’\,nx’\f\ x”~, while the measurement of the
observable At does not determine completely the event.
(15) Let us consider the c limit of the model. According to ¢
mechanics the c limit s provided by the set of events for which
the dispersions of the time observable t and of the place observ-
able r are minimal, 1.e. fTor which

At A r=\1T" (3.10)

This condition is equivalent with the following equation for
the corresponding events (see in von Neumann(1955)):

(t - 4> « igyr€ - 1r)op , h€EH, JTE0, +-~) G-1D)
where t = and r =g rp”~ . Let H = L2(IR) then (3.14)
can be written as follows

HEN - )Y =i Y- ?) 94
then

&R I d y- it]i
df-% 1-ST q "KTr + I7{ €»

d (@ =cepfSalg (-jrq-jAr +yj4)r=c exP  rp" @2 +

+f Yg+Ff qi=~c” exp [- -"2+MN gn

Because of Y >0, 110«2 -$ “ |p(«1l 2 dg< o>, so ¢ 6L2().

o}

p
The constant C” can be determined from the condition |ol] = 1.
1 = ||dl12 HC1~dg exp - @ -?2)2] = |C°]2 C dx X

Xe~Trx2 = (CM 2F ~ , then IC"l -

Thus the events we have been looking for have the form
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QO=E\V)Tepl™L @m72+& U] GD

where Y €@, +«), r 6 -°°, +°°), t é (-«=, +0%, and for these
events . .

At = , Ar =/ (G .13)
@G in (3.12) describes a wave packet around the point F,
with the width Y\ . If we take the formal limit "b’-— >0"
then @concentrates at the point r, 1i.e.

1 t 7/ -\2 it ,,

im b @ - lim (-V)7 *«F el .**4,
"n»o" N "“fT-»0"" b

q

= S @ - F) e* = |r, _t\>/ G149

It is clear that the operators t and ¥ commute on the events

jr, t~ _ In this way we can approximate the events of IM* with

the events (>@ |47, O/’OA)/ whelhe I?2L%Y i1s a common eigenfunction of
the angle operators and X , and in the formal limit "ﬁ”‘—>03I

Iim hp()|-r?*,X> = |r,-inN, 1, t> > X , X,, X?,%X.) é M4,

i.e. we have a one-to-one mapping-
We note that the operators "t and r have continuous spectrum
with eirgenfunctions 117>= exp(™r ) and |r*= & (@ - r), res-

pectively, where t, r 6 (-00, +°°).

4. The symmetries of q space-time

(16) The symmetries of g space-time introduced iIn the foregoing
section are generated by unitary or antiunitary operators U in

H according to Th.3. and Corollary, and two U*s which differ by a
complex factor of unit modulus induce the same symmetry. Let us
determine fTirst those symmetries of g space-time what we call

Poincaré-like symmetries, i.e. translations, rotations and in-
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versions 1In ¢ space-time.
(A7) q space-time translations: A space-time translation means
a translation on the spectrum of the "4-position™ operator ,
i.e. in mathematical terms:
BUaV Uall*“YV + af»*1 * V 6 E (G))
where Ua = U(aQ, an, a2, a) 1Is a 4-parameter unitary group in H.
The events transform under translations according to
d* = Uaog , heH “4.2)
ITf a = ((Q, a8, a2, a™) is infinitesimal we can write
Ua *1 -E "~ S- (¢=3)
where is the self-adjoint generator of the translations in
the "ym-direction™. One get from (4.1)
UaV UaX * 11 “K fivPv) V C1 +E av M =V + 1 tv *Pv] a
=V + 0¥+l
Then we have the OCR’s
[P74 , xv] = Mgty , 9°° =-g9l11 =1 “4.49

The solution of these OCR’s in H = LR is

Xxp(x)= xxo(x) , P*p(x) = -1 P(x) . (@5
*o0(x) = -7 (x) - POO(r) =1 *0(*) (4*3b)
namely [pQ, X ] Cp(x) =£J @ - %(rp)) - (D(*) where

(3.5) was used. This solution also is unique up to unitary equi-
valence in the sense mentioned in sec.3.. By means of this
representation, one can determine the CR’s between the components
of pu . They are

i~ Pi1 0(X) - o,
[pO- &) "1 Kilrte o(r)Y " 1Hr|rown)

»2
- il r-o(r)

Thus we obtained
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A
[Pi, Pj] - O, [pO, pj - it&2 ~ (4.62)
or
[p> »Py] = i~2Vy (4 -6b)
frhere AAy is given by (@.7) and the abbreviation A = Ti was
introduced. By (3.1) one gets the following uncertainty relations

between the components of

(4*%)

O p ~ a p U& 1AMy (4.7b)
The p,* 1is a self-adjoint operator thus it corresponds to an
observable iIn g space-tinre and clearly we can identify it with
the "4-momentum”™ observable of a test particle; % = C%Q is the
energy observable, p~’s are the components of the 3-momentum
observable.
Note: Let pp = pR +AJE +A£% then one gets, with an argument si-
milar to that used in the case of the observables % and r above,
the CR

[po- p] = itéa2’l @ 8a)
and the uncertainty relation ApQAp> ~ t62. In momentum rep-
resentation we have
PLd(E) = P* i(f)

Pp(E) =£"0®E) = IPlI sign P3 d(£)
POOE) - i727 DE) = 21 (Pir7 + 0D(E)
Now the energy observable E = C%Q of a test particle commutes

with the momentum observable p according to

[e, p] = ictii2 = ic |2 = ifi*th (4.8b)

. il
where n* =27 , and thus it follows the uncertainty relation
OELp> 1 fi*fi*2 .9
for the energy and momentum of a test particle, which means that

the energy and momentum of a test particle cannot be measurable
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in an event of the test particle, with vanishing dispersions.

We can consider the c limit of the "4-momentum space'™ in a way
similar to above in the case (t, r). The c 4-moraentum space is
approximated to the greatest extent in this model by the set of

the following wave packet-like events

(M) =(@v VO7expl" Q" + |
where y < 0 and
NK E =1 1%72
v AE Ap
0 N
Now consider the transformation of an event ¢®£H = L*(RJ)

under an infinitesimal g space-time translation U& = 1 - a™p”.
It 1s

o* «umap - p(x) - £ a”PAl pCx) (4.10)
Then for a finite translation in space when aQ =0, a~ /7 0 s

~oT(E) U U(ai,az,a3)p(x) = [exp (M aipido(x) = o(x + @), (4.1D

and for a finite translation in time when aQ ~ 0, a» = 0 :

**<*>m\ p(~}rm [exp(-* b w exp(- * a°E)(4n2)
Remarks: 1/ The Minkowski space I is isomorphic to the para-

meter space of the translation group of q space-time. Now this
is a noncommutative group and all of its irreducible representa-
tions are infinite dimensional and unitary equivalent as this
follows from (4.6) and (4.8). M 1is given by the following set
M4 =X 11 =a<kelU» V 6B " M>» = }

The corresponding set of self-adjoint operators in b(H) (the set
of linear operators iIn h) iIs given by

QM4 ;= [E£]£ = (X + aMkDe/s , a*6 R , [X* , xyd = -ifi Ay ,

(e , ey =S"y J where QM4 1s also endowed with a vec-

tor space structure. The metric in M is formulated by the ex-
pression s2 = g©,, (y» - x4 (yv - xv) = gh,ya ay , the corres-

ponding quantity in QM4 is s2 = gy (Y- x*40) (yv - xv) =
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(0] o
= g/Wya/' av*l and its average value is s = <@ le ¢p> = g°y adhv

= s2 , Y $6H . Therefore s2 is translation iInvariant in ¢
space-time.

2/ What is the relation between <¢ |un¢p> , p6H, and s2 = a~,aM ?
The latter describes the causal relation of two points in W,
while the former describes the same for two events ¢ and n&p in
q space-time (Th.2.). For infinitesimal translations <gpluag]> =
=<qp| o> - N ar<plp/mp> =1 - &* Wu « This is not null in

general, but for localized events iIn space, i1.e. for @ (x) =

=11> = S (1 “ *)Y(®H) and for spacelike translations of these
“"events', aQ = 0, - ata*< 0, s2< 0; JUa]x =< x|x + a)y=0,
i.e. 1 and are causally disconnected. Now for a time-

like translation of the event ®€ H, we have: aQ ~ 0, a = 0,

a2 =% > °5 <o0lua o> = "r0CA)YP(Y) exp(- ™~ aQg) dg 4 0, i.e.
¢ and U ¢ are causally connected. Generally we can say that
the nullagone structure become "'smeared out™ in g space-time.
(18) g space-time rotations: We introduce the rotations via the
action of a 6-parameter unitary group co** > Uco™Vv in H, where

, and for agpeH

07 = . e K o, (4.13a)
% - 14,, Xs (4.13b)
1 .
where ﬁA a An d I\AA = —?\/Iy/U . To determine completely the

rotations we have to give the concrete form of the self-adjoint
generators ’ - Because}MAy is a self-adjoint operator It cor-
responds to an observable of the test particle; we identify §
with the /4v-component of the angular momentum observable of

the test particle. Spin degrees of freedom have been not attached
to the test particle so the total angular momentum observable is

A A
equal to the orbital angular momentum observable, i1.e. My,* = ly,y
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and thus
ft i n * A A
MYy = LMY = XN py - Xy (4.1%)
A
according to the c form of L*y. We shall call the component

A A A
Mol - -Mio = the generator of a boost iIn the i-direction 1in

space, while the component ’ = —AM,q is the generator of the
usual space rotations in the i-jJ plane. Let us compute the CR’s
[vYy, Xgl , [y, ps] and [Wy, MgJ with the aid of the CR’s
(3.6b), (@@.6b) and (4.4). A formal noncommutative algebraic cal-
culation yields , e.g., for [MMy,
Moy, xdl * Py - xveyu, xa1 = XY, XS] - PR,
= xMjpy, XgJ + LxI-* xsJPv “ xyJ PI*» XSJ “ LXV» X8 P/ * (RvjXy*., —
- Bpfy) © Oy - AygRr)
and similarly
.y, psl = i1h (ggyP™u - g7.Py) + ifcg2 (xAy* - XyA“g) ,
[wony, Mger] = ih (Qy"W«, + g”Myg + g"Ms-y + gOyMAD+ N1 [(AoyPg
- fi2n ,xsATR) + (Ag/46py - "2XyXaAg/.) + (@ op™Py - "XyXgA~e) +
+ (QAyjPrP™. - 1 2/ x<Ay )]
Note that tv» XS] = 0 but ~p /Ol iorf [Aa™ Pg”) s N*
[Aid, ig] = 0, [A00, ps] = 0, [Aoi, pj] = a l -
Introduce the following notation

NV = pu py - 2 xy (4.15)
and observe that pApy - TiI”™XyX™ = pyp?, + iftf2 Ay - i1hfi2 ANy -
- *%Sy =PYP/* “ 120y , so Ndy = NVM . With the use of these

facts and notation let us summarize the CR’s above

My, xj1 = ih (Qy$x* -gijxy) + ifi (Aygp™, - A%py) , (4.16)
MYy, Pgl = ih (gJyP" -gdPv) + 1T&2 (AVEXWU “ A™Xy) . 4*17)
Vv, Ml = ih (gv“W'g-+ g™fwj + aly-Mg-y + ggyW™,) +

+ it (AyjNer + Acryy + A”Ng-y + AyyNgM) (4.18)

We see that the CR’s of the Herraitian generators of the trans-

lations and rotations in g space-time agree with the CR’s of the



—24-

infinitesimal generators of the Poincare group in the order of
b, and for /*=i1, V= jJ, S- K and <5=1 they completely are
equal to the CR’s of the infinitesimal generators of the rota-
tion and translation group iIn 3-space. Thus we can say that an
observable P = P(pu~ , xy) = K(J), X) or a set of such observables
is a "'scalar” or a "4-vector™ or a "4-tenzor"™ if it Is iIn order
a scalar or a 4-vector or a 4-tenzor in the order of 'h accord-
ing to the usual definition of these objects iIn rg mechanics.
So, e.g., p~ and x~ are 4-vectors, an other example, W*1 =

= N"SYINAQ@ Mvgpg- (the Pauli-Lubanski 4-vector) then an easy cal-
culation produces, using (4.17) and (4.18), that [MMy, W8] =

moaa (gyjw - gMjWy) + 1a , thus is a 4-vector, too.
We note that the usual Casimir operators /IADO = A|"\f:)’\and WO =

=_ "7 of the Poincaré group clearly do not remain invariant
operators!

We can conclude that the restricted Poincaré-like transforma-
tions (translations and rotations) In q space-time are induced
by the elements of a 10-parameter unitary group (@,co) wv>U(a,co)
in H, and the events and the observables transform under such an

element according to
o* - un@, <M, heH (4.19)

and > = U(a,u>) F U(a,co)_1 (4.20)
For infinitesimal transformations we con write

U@ =1 -7 ap” - y (4.21)
where p”~ and MMy satisfy the CR’s (4.6), (4.17) and (4.18).
(A9) (q space-time inversions: Let P be the space inversion op-
erator then by definition P 0(x) = o(-x). P20(X) = o(x),
b(x )6 L2(RD,and <ph Ipp> = <¢ Ip> thus P Is a unitary operator
and P2 =1, P+ =P = P—i , as in the old g mechanics. Furthermore

we get from these relations

PXP=-X (4.22)
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and it follows from the definition of r

prp«— , p(d@) *r CtC—l) (@ 23)

Then the CR (3.3) provides P(tr - rt)P * PtPPrP - PrPPtP =

= -PtPr + rPtP = -1ti* P2 = -i1it”, therefore
PtP=-t, (4.243)
Bnd p Vv = - X0 (4.24b)

This means that the space i1nversion implies the time inversion
in q space-time and vice versa, and thus it implies the space-
time iInversion, too. We obtained that the time inversion and
space inversion are not independent symmetry transformations
of this g space-time model.
(20) Other unitary symmetries of g space-time: We can write for
a one-parameter unitary group a v-»U in H

ua = exp{-i1Paj 4.25)
where P is a self-adjoint operator in H and thus it is a func-
tion of the members of the irreducible system of operators in H,
or, taking iInto acount (3.5 and (3.7), we could say that F iIs a
function of the 4-position operatior x%, , l.e. P = F(xq, x) ,
that is to say, ﬁ is a ’q spaoe-time dependent function™.
Now Bet U(l) be the local gauge group of a clft locally invariant
under U(1) (e.g., c electrodynamics) then the elements of U(I)
have the form

Uk = e"if(x)e (4.26)

where f(x) 1s a function on Let us make the formal corres-
pondence T * f(X) &>P = T(x) between the elements of the set of
functions in (4.26) and the elements of the set of operators in
(4.25), then, for a fixed a, a unitary operator of the form (4.25)
corresponds to each element of U(l) and the collection of such
one-parameter unitary groups in H corresponds to U(l) . This

analogy suggests that we call the unitary transformations of the
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form (4.25) iIn H gauge-like transformations and the corresponding
symmetries in  space-time gauge-like symmetries.

(21) We can close this section with the observation that the
unitary symmetries of q space-time consist of Poincaré-like sym-
metries; translations, rotations and inversion iIn ¢ space-time,
and of gauge-like symmetries. The space inversion implies the

time 1iInversion, and vice versa, in (g space-time. In the c limit

of the model, in the formal limit ft -0, the unitary symmetries of

g space-time reduce to the Poincaré symmetries of IM\

5. Some properties of g space-time

(22) Now we mean under a coordinate system of a given observer

a coordinate system In 3-space spanned by three rectangular
measuTring lines, and a collection of clocks placed densely in
this coordinate system in 3-space, as In c theory. These macros-
copic measuring lines and clocks are the measuring apparatuses
associated with the observables T and t, respectively. The coor-
dinate systems of different observers transform among themselves
according to the law of special relativity In a good approximation,
i.e. two such macroscopic coordinate systems are connected by
Poincaré transformations (in a good approximation). The measur-
ing apparatuses iIn a given coordinate system, associated with
different observables, are c objects governed by the laws of c

r theory. Such an arrangement of things are guaranteed by the
existence of the c limit of g space-time under consideration,
which means that the c description provides a good approximation
in large space-time regions relative to ft and these space-time
regions are those iIn which the coordinate systems of different
observers operationally are available for the observers. New

effects due to the g nature of space-time should be expected in
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o~

il size regions of space-time.
(23) The general transformation laws of the observables and the
events under Poincaré-like transformations are given by (4.19)
and (4 .20). Let us consider these transformations for infinite-
zimal Poincaré-like transformations.
1/ Infinitezimal translations: U =1 - ; The transforma-
tion of events is

P» - ¢ “5ar o . o™NH G.1)
and the transformation of observables 1is
»”? - (1 -K fl1 *E d'a~) —n* +K 0. P/J«" G2
Thus the change of the observable P 1is

-7 Q) )

and this allows us to define formally the "partial derivatives"

of an observable P = F(x0, X) with respect to the x~’s. They are

Tar o % - TIPS ()
2/ Infinitesimal Poincaré-like transformations: U(a,u>) =
=1 - A § i2ﬁ'to>,v\A/ > The transformation of events and of
observables are

O=0 - a%p """y , ($%9)

Px = (I -~ a” - & (1 +£ + 1jcAMAy) =

=P+ 1 [p, pja*x +~ [p, G -6)
and the change of lls is
P =P”-P ! ([p, pPla=*“+ 1 [p, M yjtoN) G.7)
Examples: a/ Let P = X~ then
x> =V +J [x~, Pylay + [x*, MyJdoj>v« . + an-1 +
+ N (gs™Xy - gV, xs)ev? + N~ 1 (AMPy - AVEpg)cov? = xr + an‘l -
- coNy Xy + fi-1 A/<iw ?yp)Y = v -uttiy + an-1 + AASueypy

G-8)
where (4.4) and (4.16) were used. ITf we compare (56.8) with the
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usual Poincaré transformation of x* then we see that (5.8) differs

from that in the third term of the order I .

b/ Let F = pu then

P~ - [P/4f Pv] aV + [i>. Mvs]t*"VS » Pk - & V ftVv +

+ | (g"Pv - gryPe)~VE T \]3 (Ai™xy - AYiX , )"V?= p™ - uvpy -

-t iray + & =(~.V - -T Vv(av -WVix9) (5.9

where (4.6b) and (4.17) were used. Comparing (5.9) with the

usual Poincaré transformation of p”~ we observe that (5.9) differs

from that in the second term of the order fi , and that p,* Is not

translation invariant!

(24) Let us introduce the notion of the time derivative of an ob-

servable. We can write for the change of the expected value of an

observable é'under a translation in time with a In positive direc-

tion that

AP =7a - R0 - <dajpge> - <pF@> » <Pju;lpa - p\p> -
-a<dik [p0. p)Jld>

then formally

dP . Jim 2aF = .
R ;_'Toiaﬁ = c<pl* [$0, p11> . yhHG6H

and thus, also formally,

32 0 01 | [p0-*] -« lit- (51°>
Notes: a/ One can define the 3-velocity observable of a test
particle as the time derivative of r and the i-th component of
this observable as the time derivative of x», i1.e. v := ;n =
="~ [E, r] =0, v\ = [po, = 0, taking Into acount
(4.5b) and (4.4). Then we can interpret £ = (x*, X2, x») as the
3-position observable of the test particle in its rest frame and
thus QQ = ¢t is the proper time observable of the test particle.
Also x,« 1s the 4-position observable of the test particle in its

rest frame. The 4-velocity observables of a test particle can be

also defined as follows

w* = = i-LppiXl =" r° (5.1
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where (4.4) was applied. Let us execute an infinitesimal boost

in the i1-direction, then

A, w A1 A i rA_ ‘I': | n s $—1iiA\ _
4 - UToNal = ~1 ~ € IX*F “ol™ol «1 <o b [ PD<IO1
where (3.7) and (£.16) were applied. Thus the velocity of the

test particle boosted infinitesimally in the i-direction 1is

dx\ 1ic ra ) ) ic *I ra a_ ) ic ra
Vi=qar "?r ipo» XxiJ = ccool -e* f Ipo» Pil™0o1 -e* Lpo»

rJPior mvi Hr)2J]

where coo”™ » —1 and we used (4 .6a). The expectation value of this

expression differs from the c one in the terml”~y which term is

minimal 1If x» =0 and i1s maximal 1if B r , in the latter case
vV* &« , 1.e. It is two times larger than in the c case. Now the
square of the velocity of a test particle after boosted sepa-
rately in all direction is n

-VvE[1 +(")2) ¢« V*[x jJgf]l & Vv[I *(]1)2]
whille the velocity of the test particle after a (non-separated)

infinitesimal rotation 1is

A, dr- 1 Tt 2 /7 - A n

A \
v =3Y -5 LE»rj -r (vIxl + V2X2 + V3X3)
where r= = M+~ [r, W/,]IYV as one can verify this easily

with a formal calculation.

b/ t transforms under an infinitesimal boost in the i1-direction

as follows

U-t+o I, MOl -t --Xi1a =t- XM

where (5.8) was applied for /7= 0 and a”™ = 0. Then the change of

i Is <ft =t~ -t = - ~*xivi and the infinitesimal change of the

expected value of t* observing this from the original frame is
dT™* * t£ - t£ = tg - + N 8 dt = c*vi~i

which differs fifm the c expression in the factor 2. Now the trans-

formation of t under an infitesimal rotation is

e - * + kK [ W « Y - 01 - -1-1
where (56.8) was used, and then
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which differs from the c expression in the third terra of the order
fc-1.
(25 We can say that an observable is conserved iIn time iIf and
only if its time derivative vanishes, i.e. iff
it “ ?T [Po* =E Pl =0 G.12)
Examples:l/ F = , the 4-momentum observable of a test particle
moving freely iIn g space-time. Then from (4.6b)
U* =1E [pO»P/I = -  Agr (-13)
For e 0
(5.13a)

so po is conserved iIn time and thus E = cpQ, the energy observ-

able of the test particle is also conserved in time. For =1
dpz
JT e “ T Gn3b)
(see (3B.7)* is not conserved iIn time ! We know from c theory

that ~i 1is the i-th component of the force acting on the c par-
tide, thus we can interpret ?k = ~~i as the i-th component of the
force acting on the free test particle In g space-time, and (5.13b)
(or (5.13)) provides formally the equation of motion of the free
test particle moving iIn g space-time. Then the force iIs given by
*=|1f =16 [Po” P] = G*")

where (4.8) was used. Taking into acount this interpretation

Epn defines the 4-force observable ¥ of a test particle in ¢
spgce—time.

Notes: a/ We see that a constant force acts on the free test par-
ticle In g space-time, forcing It to the origin of Its rest frame.
It Is an atractive forcelNote that the expectation value of the
energy E = cpQ=?i*r of the particle raises linearly with the radial
distance r for positive r and t values (in the subspace of the

event space H (cf. sec.3. paragraph(3))). Classically E is equiv-
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alent with a linear potential V(r) * Ii’-r in which the c point
particle moves; the force is given in this potential by P = -grad

V(r) and F1 = - . IT we compare this phenomenon

< r
with 1he current quark models of hadrons then we can interpret
this as a confinement phenomenon in g space-time?; the free test
particle is forced to the origin of iIts rest frame in q space-
time. We can give an estimation for the magnitude of this force
if we choose the characteristic distance magnitude 10_1§lm and
time duration lo~"sec in hadronic events as characteristic place
and time uncertainty values, 1.e.ar~ 10 1™m, A t~ 10-2”sec, then
ArAt~10~39msec, b = cfi*~3.10~31m2, ft * £~3,33.10~4 lig-
and ft* = £,~103N. This provides an enormous force confining the
particle inside an f'~ at At ~ 103"msec size space-time bubble
at any time. (Note that only the cells of M4, having at least a
size ﬁ’\3-lo_31m2 correspond to physically observable reality
and these minimal cells realize in (M the set of events In ( space-
time which provides the c limit of the model, i.e. If "ft-"0" these
events concentrate on the points of IM . Redefining the translations
on this set of events (bubbles) the generators of these transla-
lations will commute among themselves and thus they will be trans-
lation invariant as in the usual theory. Another note that the
time translation invariance remain valid in this model.)
b/ Consider the change of the expectation value of an observable

F in time. It is

AF

<uQ ¢ JFua &> - <g|H> = Fo<ql£ [pO, FIld>=
(o] (0]

<ort1gsde m (oar . o - P

then, formally,

P()= $1 dt<dp]|]]|d> N (5.15)
Thus 5(t) =Si dt <] ld> =0, pOE) =Si dt <o]]]10> = -&7¢,



-32-

P£(t) = So dt <p]|[1]l¢p>8 -1~ <op!]1l]¢p>= -*= (fi)*t ,

note that g@%i = Of furthermore that the time average of p(i) and

() between -t and +t vanish , i1.e.

= Imm - +t dT p(t) =0, .= him - +t dt p .(t) = 0.
P T.-00 2 ( 1 P(t) pl t—>— 21 J~z pl( )
- A n N A A
2/ a/ F«&« ~or P =J1 - ~ijkMjk* *he component of the

3-angular momentum observable of a test particle. Then

afiJ m 5s [pO0>“i1jl - - gOlpp - xworpl -

ta@ gy -15%)-0 G116
where (4.17) was applied. Then J"’s are conserved In time as we
expected.

A A _A AO
b/ P =JiJ1 = J . Then
M =11[ivVi] -< (5.17)

thus J 1is conserved iIn time.

3/ P =¥ =1 pH°F the square of the mechanical (or bare) mass
A2
( Note that m

clearly a scalar in the sense metioned above in sec.4f paragraph

(18)). Then

# - Te [i.. °fca?o0”’ ¢ hpo ~ag) - ,4(Vp>+ .

¢Av) ! (hhi+ KA) ol (**.a ¢ 1) nd cb.-2?)
=af2(i - if- i) (5.18)

where (4.4) and (3.5b) were used. Thus m2 la not conserved in
time. Observe that Am2 is not a self-adjoint operator, while %2
is! gThe Lie bracket operation does not pres;e{ve the self-adjoint-
ness property.) We get for the real part Re = 2n t that
re M2() = $o dt «wpefize 0> = 282 -~ 2 = fizt2 and

Re m(t) = -ft t (5.19)
We can attach the negative root in (56.19) to the anti-particle
and thus q space-time iInversion + charge conjugation provides

positive bare mass for anti-particles (cf. below). The time av-

1S
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erages of the two roots are also zero, 1.e. Re m= lim - X
£ o 2t
~t Re “ o
4/ F *m = — tfiAp\, , the bare mass observable of a test particle

with]|”™ , where the )M *s are the Dirac matrices. Then

1?7 = E [Po* X* M *E N[Po» P/J * r V el )TA (56-20)
So m does not be conserved in time. Puthermore

@ - 5% at 513 10> -4 (G o )1

where JL(E) i1s a 4x4 matrix. Let /0 ®1 \ where 6B are
-1 °/
the Pauli matrices, then y~™x* =/ ° 2~ixiA\ . Diagonalize (™.
\— o]
then O~x” an: )and thus
roiixi = =TI
We obtained
ral® = fIcJ l-t (5.21)

We see that jj[(® i1s purely real and implies negative bare mass
expectation values for anti-particle, but g space-time inversion
+ charge conjugation provides again pozitive bare mass for anti-
particles. In this g space-time model, only the OPT theorem
would remain an exact symmetry of natures as it is well-known the
parity inversion implies the charge conjugation in nature, but
we saw that the parity inversion implies the time inversion, too,
in this g space-time background. We can identify the subspace
of the event space H with the event space of the test particle,
while the subspace H2 belongs to the anti (test) particle.

The time average of m(t) vanishes, too, 1.e. j|] = lim — X

t— 2t
dt mCt) = O.
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6. The one particle theory in g space-time

(26) Free case; The 4-position observable of the particle iIn its
rest frame is satisfying (3.6) ; xQ = ct is the proper time
obseryable of the particle. The 4-momentum observable of the
particle is p” satisfying (4.6). The 4-veloc?ty observable of the

particle in its rest frame is given by (5.11). The 4-force observ-

~

able acting on the particle is 12’\ = V\? :tGZD- .-
and the equation of motion of the part(i)cle is given by (5.13).

a/ scalar partidéi The state functions are the elements of H ;
CD: cD(x) if H=L2(R"), pure states are the events of ( space-
time. Let ¢ O be a pure state of the particle then the particle 1is

at the point x£ = " 0IxA ¢po); the world line of the particle is

given by the mapping aQ¥ > U&OtD 0 =[exP(- I ao?0)]%0 '~ (ac> =

“ <U%O¢ on Maocb o>"%b = <0o»x“do Y . The angular momentum
observable is given by (4.14). The square of the bare mass observ-
able is
m2 = Oé(_ Pz (6 '1)

Observe that
[MId. pj + [Mia, PAAp~= ib[(PjPi*“ PiPj) +

S * -
t -PIPD] + vz [po(X30-1 - +(*,A e lorj)Po] - o
where (4.17) and (3.7) were applied. Then m2] = 0, [J=f

m23= 0 and If_éz , n%?l* =0, thus 'r?iz , ﬁ‘, and 5'2 constitute a complete
commuting set of operators in H, therefore we can use they for
labeling of the state vectors, i.e. If ¢ 1is a common eigenstate
of these operators then we can write ¢ = Jm2.,/*, Zy where
m2 m2” = m2fm2?, | ™Y = and J2ICY =z(1+ D1 The
bare mass eigenvalue eq. of the particle is given by the Klein-
-Gordon eg.

P/PMp = c2m2¢p , oeH (6-2a)
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or with (4.5)
b2 r2¢ +4@24 ¢ = caw2¢p , h6b2(E3) (6.2b)
In polar system, one can write (D = =1 R() ", X,

then the radial eq. of (6.2b), after a simple calculation, is

A ’(*»* -4 N - - U H >M m 0 (6-20)
This eq. gives a continuous spectrum for m2

b/ Spinor particle with spin Our basic assumtion (3.3") does
not affect the internal degrees of freedom, so the state functions

are Dirac spinors » « N(X* 8) = NpocC*)I» *= 1»2,3»4, ¢h,*6H,

and the s are the elements of the Hilbert space "It with the
scalar product = $E 3 d3x XQY 2 = d3£ T~00~rCs3o0
= N d3x p~x) ¢ 2(£) = The total angular momentum observ-
able is = LAY + Sy * x"APy — Xyp . + /My , Gi«y= 2'C

It is clear that M,v satisfies (4.18). We identify the bare mass

observable with

m - [ “ P/~ (6.3)
Observe that

[Mij ~ PAJ = + Nijry/WP/I =T [b13. P/ * I'SiJ P/ =

= e @I - g wreid + i X @It - ANXG) + -0 w -

-[*)*1. ~ ) p~r= iR ((TjPi - ~iPj) + ih(iPj - iTjPI) = 0
where (4.17) and the relation }/ZAif#+ Yvfr = 2g/4v were used. Then
[, Inj =0, ™, mj =0 and [J2, mj = 0, thus m, and J2
constitute a complete commuting set of operators in "it. One can
use they for labeling of the state vectors, i.e. for a common
eigenstate one can write = Im,/<, s where m(mM="mlm)>,
J31/S s> = (JA+ 3) (/<, s> and J2\Il , d> = + 1) + d(d + 1)JIx
X]Z »d < The bare mass eigenvalue eq. of the particle iIn its
rest frame is given by the Dirac eq.

Y*W Y =cm It » Iy € "5 (6.4a)
or with (4.5)
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M *Yo - 8) “ I JjJ' A(x, S) =cuY (X, s) (6.4b)

Let us consider the corresponding second order eq. in a formal

way. Let ~ (Y*Pv + mc)X then Ny ypnpy X < (gNy - 19/ )x
XPAPV/t = (JAPTI- 16777 [/4, PVDX . Thus from (4.6b)
frp* + 1 iif2er™ Arv)X = m2c2£ (6.5a)

or, with G/'y = (i~ , -2) and A%y =™ (x, 0) ,

ghp™“ - iff2p * £)YX =m2c2” (6.5b)
The extra term in this eq. indicates the interaction of "an
electric moment tii2 £ with the electric field ~ X" in g space-
time (from the analogy of cq Dirac eqg. in an external field (see,
e.g., in Schweber(1962))) , in the rest frame of the free spinor
particle.

Note that the second term in the lhs of (6.5b) is not self-adjoint,
it is purely imaginary. This is the consequence of the fact that,
while ft*pr is self-adjoint, MWv p”~py is not necessarily self-
adjoint .

(27) Interaction with an external fTield; The particle is interact-
ing with an external field given classically by a 4-vector poten-
tial kyH= AMU(xQ, x). Then formally = MMk, x) . The canonical
4-momentum observable of the system from its c counterpart 1is

= P-4+ r and "the PN’s satisfy (4.4) and (4.6). Then p™ =
- b* -1 v (the 4-momentum observable of the particle). Let us
consider (formally) the eq. of motion of the particle. The time
derivative of p" is

-ltvan¥tvM ¥tvw -/ Wv a1

and, using the notations e u. = g/, and N [A-, Pyj

(of.(5.4)), we obtain

tc- v -1lh*“v (6-6)



-37-

Note that the c counterpart of (.6"6) 4~ =~ F~MUy where
Fry = Ay - 9y Am (cf. below Note 2.).
a/ Scalar particle: We identify the square of the bare mass ob-
servable of the interacting particle with
m2*= -TV(E* -8 AX) ©.)
then the corresponding bare mass eigenvalue eq. is given by the
Klein-Gordon eq.
@ -FV)(-F )0 =210 » o6& 69
for the particle in the external Tfield k~ in its rest frame.
b/ Spinor particle: The bare mass observable of the interacting
particle is identified with
i-rin~-fv) 69
then the bare mass eigenvalue eq. is given by the Dirac eq.
f(vF V)Yrecm > "Yre~c (6.10)
for the particle in the external fTield */* in 1ts rest frame.
Let us consider the corresponding second order eq. in a formal
manner. Let Y = -8 A* + me)x then
r(i>- POV -FA) . G- ier)R —F)E -FA) -
B "FUR -Is)-1a-IR -Fv. F¥-FM=
B -IWUR -Fn - (BR.D]1R.1J-.
*] VRR. f\ﬂ?—B FijR-F)+5 ~ Vv *
u-i® MM
where the notation F*y = Av —-dvkwu [see (5-49] and (4.6b) was
applied. Thus
i3 -fw " —FO*i*" @2~ -B> —f(QFX
X N y[A- *yll* = c2n2 X- (6.11a)
or with AF’\y = (- T A ) DMR= G -£ ) and k~v = (x, 0)

iR -f)R-FRV[ I -1 ("2VE £).

c2m2 N (6.11b)
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This eq. differs from the cq one in two extra terms, following
from the quantized nature of space-time. The Tirst term is added
to the electromagnetic fTield tenzor i>v and It increases the
electric moment - electric fTield interaction. The second term
predicts further spin moment - electric moment interaction with
the external field in ii size regions of c. [a~, Ay] = 0 if
Qﬁldescribes a time independent electromagnetic field, a static
field In the rest frame of the particle. When A" depends on the
time in this rest frame then Ay] is, in general, not equal
to zero.

Notes: 1/ The replacement m = 0 in the Dirac eq. (6-4) or (6.10)
now has no meaning because this would have the consequence that
YApr 4 =0, W eft , or -fv)l= o0, Vieft, 1.e.
y* fy* =0, or Y*1(Ph. - ~ AmM) = 0 . Thus the zero rest mass Dirac
eq. Tor neutrinos has no meaning in this model. The neutrino now
can have eigenstates with zero (bare) mass but it must possess

not zero bare mass states, too, or not vanishing expected values
for i1ts bare mass. A similar statement is valid for the photon in
this model, too.

2/ The eg. (6.10) is invariant under the following gauge-like
transformations

"I = va~ =[exp{- Pa$b cm’=Ua J** (fW UL, &4R (6.12)
where F = F(xq, X) is a self-adjoint operator in H (a g space-
time dependent function'). For infinitesimal a’s one can write

s =c-efMnt--1v)(i-4*%)-r(t -neti. U -
—tV ¢ Wii. U«) -r(t -f3 Fff. —eifi/p. Y 9
In the formal limit & —» 0" these transformations clearly turn
into the c gauge transformations and in this limit the transforma-
tions (6.12) mean the gauge transformations of the cq Dirac eg.

in an external electromagnetic field given by A*. But it is ob-
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vious that the classically gauge invariant combination d™Ay -
- dv Ay, does not remain a gauge-like invariant combination in this
model. (Note that A" classically is not observable but in g mecha-

nies An is an observable if A%~ is a self-adjoint operator in H-5

7. An example and the cq limit of the one particle theory

(28) As an example for a particle in an external field Ilet us
consider briefly the case of the Coulomb potential, i1.e. Ag = - ~
and Ai = 0. It is clear that this choice is only applicable when
the source of this potential is iIn rest in the rest frame of the
particle. The energy observable of the interacting particle 1is

é = cﬁo = d%, - e ﬂo = %f[ + e2 % and the exeectation value of
the energy for positive time t is E = h-t + 22 . Then we can
consider this case classically that the particle is an external
potential V(r) = E’r _ £ with the source in the origin of the
3-coordinate system of its rest frame. But we recognize in this
example the very popular potential model of the Y -particle, in
which the Y -meson consisting of a quark c¢c (chan) and of an anti-
quark c, is described by the Schrodinger eq. with the potential
V(r) = Ar + B” as a non-r two body system.Thus we can consider
the ¥ -particle as the "hydrogen atom" of this q mechanics over

q space-time. The two quarks are iIn their common rest frame, one

of these quarks (c) provides the external potential U() = - 13=
= ® . The bare mass eigenvalue eq. of the second quark (c) is
given by the Klein-Gordon eq.
(fcL +Ff2-22p - P+P+d = c2r2¢ , beH 7.1
or by the Dirac eq.
YO('r +F =cm™ , yeti ‘2
depending on the fact that the quark has a spin 0 or respective-

ly. Furthermore the two quarks are confined in their common rest
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frame, In an ft size region iIn N/ at any time (cf. with sec.5.
paragraph(25) Note a.). In this picture the two quarks are in
rest with respect to each other, thus one can consider this sys-
tem, In cq theory, iIn a non-relativistic way as two body system,
calculating the energy spectrum of the bound states.

Now J1= ft* = Ig, but 0,2 GeV2 (see e.g., in Tryon(1976))
then f© = — f?5 GeVv-2 = 1 in natural units, or in usual
units: fte®*1,8.10“"m2, ft* = p 6.10-~"Cmsec, ™ = ft ~ 5,5.10~"kgsec
and ft’ = Ail,66.10°N. These values are in a good agreement
with those which were expected heuristically iIn sec.5. paragraph
(25) Note a.

Notes: a/ The solutions of the eq.’s (6.2), (6-4), (7-1) and
(7.2) with their physical implications will be discussed elsewhere.
b/ The expectation value of the energy of the particle change for
a repulsive potential p2in the same way as above for an attractive
potential, and the linear term dominates beyond the turning point
now, too. Thus the two particles are confined again
in spite of the repulsive Coulomb potential acting between them.
(29) Let us consider the formal limit ft—>0 in the one particle
theory over ( space-time. As we saw in sec.3. paragraph (15) the
c limit of this g space-time model 1is realized by the events ®¢ eH
for which ArAt 1is minimal, 1.e. Ar At = p ft*. These events
have the form (3.12). Let M be the set of such events then we can
write formally: MIb - |XQ > (XQ X) 6 then

1] B> IM. Furthermore:

*/-- Xylo = -ift A*p ~»~>P->[xk, XyJ |xo0, x>= 0,
[P/o0 Pylop = 17 2Aynyp »[p”~, Pv] |x0, x) =0
but

[ D - AMydh-—~ZE [P, 3] X0, Xo= illghyit, x>

i.e. these OCR’s remain valid in the formal limit f=>0. Thus
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we can say that, in the formal limit ?i—"0,the q space-time we
proposed turns into the flat space-time W™, while q mechanics

over this (g space-time is reduced to the cqg mechanics; the bare

mass eigenvalue eq.’s (6.2), (6.8 and (6.4), (6.10) are reduced

to the cq Klein-Gordon eq.’s and to the cq Dirac eq.’s, respectively.

The situation can be represented formally as follows
QST ~ -»?> RST ,v NRST

o] E— » RQM ————- * NRQM
i.e. g space-time include r space-time (M*) and non r space-time,
and g mechanics over q space-time include rq mechanics and non rq
mechanics as limiting cases, respectively.
Remark: As we saw in the theory of the one free scalar particle
on g space-time, one can write for a ® GH ¢ = 2. C(m%/< , 1 )X
X|m2,//, 1y = 2 C(m2)|m2> C (N1 ,/n) |/n, 1> = 2 C(m2)[m2> X) -
Then an element ¢ of M can be written as ¢ - ZO0 OOQl m9>—
= (c[, t) ,i.e. ® (@, ) is a superposition of different bare
mass states of the scalar test particle. Furthermore the elements
of M represent the smallest cells (bubbles) of the flat space-time
IW, which cells possess, in principle, physically testable reality.
Therefore the elements of M may be interpreted as the quanta of
flat space-time IM. The following relations are valid for these
space-time quanta: ArAt«b* where At 1is the lifetime of such
a quatum, ar 1is the size of such a quantum in space; AEAt«iti
where [JE 1is the energy of such a quatum, JOE Ap~n n ’2 = £,
where [p 1is the momentum of such a quatum. If we choose the
values Ar«slO“m and At ~10-2"3ec as characteristiczvalues

for such space-time cells (quanta) then AE «?10~-"°kgs°c ™ 1 Gev

and Ap-~10-T kg — (or Ap™™*£,= ** 0,2 GeV in natural units).
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8. Concluding remarks

(30) The idea that the space-time coordinates would have to be
operators in a semantically consistent g theory of fields was
emphasized by von Weizsacker (1973» 1974). The ™canonical™ quantize
tion of BN proposed iIn this paper is a kind of realization of this
idea. It is a well-known i1dea of Heisenberg that g uncertainties
should emerge in the space-time metric iIn small space-time regions
but the space-time points remain unchanged, i.e. the null cones
should become "smeared out™ in the q area. Then the causality be-
comes indefinite. In the twistor theory of Penrose(1972, 1975),
space-time points arise as secondary concepts corresponding to
linear sets iIn twistor space, and they, rather than the null cones
should become ''smeared out” on the passage to a q relativity
theory. It is straightforward to see that both the space-time
points and null cones become 'smeared out” In our g space-time
model . The causal relation of two q events is only decidable opera
tionally by measuring the transition probability between them
that is exactly formulated by the relation <Amfl® ZA describing
the causality connection among ¢ events iIn ¢ space-time. We could
say nothing about causality inside an fi size region of MM

As another comparison we note that our approach shows up a
similarity, in its spirit, to that of Pinkelstein (1974), however
the differences between them are clear.

Comparing our model to the elementary length theories or to the
time quantum theory of Pinkelstein we see that our model does
not assume the existence of an elementary length X or of a time
quantum "t rather It assumes the existence of an elementary cell
fi~ 1<H in IM.

The i1nner topology of q space-time (the topology of a space-

like hyperplane iIn g space-time) is much more discrete relative
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to the usual topology of IM* and i1t is very similar to the topology
of a lattice on IW nowadays used extensively iIn the practical
calculations of finite results in glft. For, considering the points
of a lattice on a spacelike hyperplane of (MW as the isolated points
in a spacelike hyperplane I' of g space-time (cf. sec.2. parag-

raph (9)) -

(B1) One of the main implications of our model is the confinement
phenomenon for point particles ('quarks™). This phenomenon finally
may lead to the explanation of the 'quark puzzle'™. This explanation
would be a combined kinematical and dynamical one, for, kinematical
because it may follow from the g nature of space-time, and dynamical,
too, because the q geometry of space-time provides the confining
force. (Cf. this explanation with that of Saavedra and Utreras (1981).)
(B2) Let us consider briefly the case of a particle closed inside

a sphere with radius R, 1.e. O”Ar~R. One may demonstrate the
physical meaning of the uncertainty relation (3.2) by thought ex-
periments leading to such a problem, similarly to usual g mechanics
where the Heisenberg uncertainty principle is demonstrated by
thought experiments which are equivalent with the problem of a

particle closed inside a box. In that case H = L"f-R, +R) and,

as it is well-known, now the time operator t = -ill* has a purely
ntg

discrete spectrum tn =—jpn ,n =0, +1, -2, ... with eigenstates

It > = -03.exp(|p ngq) - Now we can write Ar = 2R and At = th+1 -

- tn = , then Or At = 2¥h*_. One can consider ] t =T as a
time quatum and if "X 10-27sec in a good agreement with the
estimated magnitude of the Finkelstein*s time quantum then R ~
"¥e6.10 “msec 10”sec“”~ 1,8.10" 7~ 2 fermi. Then one might
consider R as the radius of a.hadronic '"micro-universe"™ with the
circular frequency co =1 ™ 1 02%sec_1, which appears as a 'bubble"
embedded in an external, overall essentially flat, macroscopic

world. (CF. with P. Roman(1979).)
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(33) In this paper we interpreted the lattice i1 of the values

of the local propositions of a local physical system described

in Banai (1980) by a CROC-valued propositional system as the r
causal logic of the corresponding g space-time; the Hilbert space
H for wich P(H) =U was interpreted as the event space of this

q space-time. Now in Banail (1980) it was mentioned that the CROC-
valued logics are in a close connection with the T -valued models
of the Takeuti*s(1981) q set theory. In this way, iIn the Takeuti’s
I -valued models, the lattice X of the truth values and the
corresponding Hilbert space H get a physical interpretation, too.
Each maximal Boolean algebra in "P(H) determines a 'spacelike"
hyperplane in the corresponding g space-time, on which the physic-
ists prepare the states of the local physical system. So every
maximal Boolean algebra in ~P(H) may be interpreted as a Boolean
reference frame iIn accordance with M. Davis (1977), [First/who]
established in g theory the relativity principle we used here to
set up q space-time models.

(34 Along the C*-module quantization program for rift suggested
in Banal (1981b) (and which quantization is partly done for non

r local physical system in Banai (1981c)) we give iIn this paper

a resolution for the problem appears iIn this program in connection
with the space-time of a local physical system. Thus the C*-algebra
A over which the corresponding Hilbert module Ha must be construct-
ed is determined, too: it is the von Neumann algebra generated by
the lattice of projectors of the event space H. In the succeeding
paper (in the second part) we will proceed along this program and
the formalism of clft will be transferred over q space-time pro-
posed in this part as a canonical example for general g space-time
models. In this context this procedure will provide the first

quantization for local field theories.
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Footnotes

It Is not easy to give a complete references on the related
papers because of their enormous numbers and their numbers are
growing year by year. Nevertheless we list here other related
works, too, which are known explicitly by the author; Das (1966) ,
Atkinson and Halpern (1967) and Gudder(1968) , these papers concern
on the elementary length theories. Along the algebraic approach
of g theory it is worthwhile to mention here some papers of Segal
- among others - : Segal (1965, 1980) and Jakobsen et al._(1978).
Futhermore, related papers can be found iIn a high concentration,
e.g., In the proceedings of the conferences on "the q theory and
the structures of Time and Space' held Manually by the Max Planck
Institute at Starnberg: von Weizsacker et al. (1975, 1977,
1979, 1981), especially under the names Finkeistein, von Weizsacker,
Castell, Segal, Roman, Barut, Biedenharn, Penrose, Wheeler.

2 . .
This argument is due to W. Cegla.

A

3The use of the c light velocity c in QQ = ct is not too consequent
because of the complete spreadoutness of the light cone structure
of (™ in the following model, rather i1t should write c instead of
c, which operator c would produce c in the c limit. However, in
this first draft of the theory, we iInsist on the use of c.

NSeveral trials give this relation which will satisfy all expected
physical criteria. The relations, e.g., aAxoax. > X i=1»2,3,
in Banai (1981b) could not imply a definite c limit (correspondence
principle!) for the corresponding g space-time.

“The attention is paid to the followings. Let (H, ®) = [LZ>0,+00)<g
® L% 0,T)<2> L2, 2 ,<fx,f2> = S~ dr r2 So d* sin®

dX f(r, X) f2(r ,X) I = then the operators -ifi* — and r
in H satisfy formally (3.3) but -1 m?- does not has a unique spectral
decomposition, as it is well-known. The operator -in” — ~(r @) =

= —in(@p + — )P satisfies (3.3) with ro , and It is symmetric

but i1t has not a unique self-adjoint extention because it is
unitarily equivalent with -i in L2(0, <»). The author got consid-
erable aid from prof. T. Matolcsi to reTsolve this problem in the
trick.



s lerentary coditias © we dould require te
follc;/av%fmal Rsfor teagles ad X ad for €

=0, [t, Xj =0, and these relations is satisfied by $
in (3.5d), indeed.

7
IT we define the rotations, similarly to the translations in

(@ .1) , as followe:for infinitesimal copy’s, let Xi, = UtiY) xum"=r)

= Yu - 1oM/xy, then this would lead a generator M”™y different

from (4.14)-
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