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ABSTRACT

The nucleons taking part in heavy ion reaction are considered as a
three-fluid system. The Tfirst and second components correspond to the nu-
cleons of the target and the projectile, while the thermalised nucleons
produced in the course of the collision belong to the third component.
Making use of the Boltzmann-equation, hydrodynamical equations are derived
which yield also the anisotropy of the momentum distribution. The equation
of state for anisotropic nuclear matter is derived from a field theoretical
model in the mean field approximation.

AHHOTALMA

HYK/IOHbI, y4acTByKWME B PEaKUUAX TsXKEsbIX WOHOB, PacCMaTpuBanTCH KakK Tpex-
KOMMOHEHTHAaA XWAKOCTb. [lepBasi U BToOpash KOMMOHEHTb COAEpPXaT HYKJ/OHbl MUWEHU W
6oMbapAMpYHWLEro sapa, a TPeTbs - HYK/IOHbl, KOTOpbLIE pacCevMBaKwTCs B Mpouecce
CTO/IKHOBEHMSI. Ha ocHOBe ypaBHeHusi BonbuMaHa Mosy4danTcs ruapoAvHaMMyecKne ypas
HEHVS1, KOTOpble YYMTHIBANT aHW30TPOMNUI MMMY/NLCHOrO pacnpefeneHvsi. BoiBoguTcs
YpPaBHEHWE COCTOSIHMSI aHU30TPOMHOro siAEpPHOro BelecTBa U3 TEOpPeTUKO-NOJSeBOl Mope
M B MNpPUGMKXEHUN CPESHEro noss.

KIVONAT

A nehéz-ion reakcidban résztvevé nukleonokat harom komponensii folyadék-
nak tekintjik. Az els6 és masodik komponens a target illetve a bombazé mag
nukleonjait, mig a harmadik az Utkdzés soran termalizaldodé nukleonokat tar-
talmazza. A Boltzmann-egyenlet alapjan olyan hidrodinamikai egyenleteket
szarmaztatunk le, amelyek anizotrop impulzus eloszlasra vezetnek. Az anizot-
rop maganyag allapotegyenletét atlag tér kozelitésben, térelméleti modellbdl
szarmaztatjuk.



1. Introduct ion

The anisotropy of the momentum distribution of the nucleons 1is one of the
most characteristic features of heavy 1ion reactions. The anisotropy is determined
by the relative momentum of the colliding nuclei. |In the course of the collision
the anisotropy -is decreasing. It does not disapper completely, however, since a
global thermodinamical equilibrium 1is not reached until the final stage of the
collision process. Since this residual anisotropy has an essential influence on
the momentum distribution of the reaction products, it seems to be desirable to
take into account the development of the anisotropy. The conventional hydrodynam-
ical models of heavy ion reactionsl-2) are formulated in terms of equations ex-
pressing the conservation of the particle number, the momentum and the energy.
These equations determine. only four of the parameters of the momentum distribution,
namely the three components of the flow velocity and the temperature. The parameter
characterising the anisotropy of the momentum distribution remains indeterminate.
It seems to be desirable to construct a generalization of the hydrodynamical model,
in which also the anisotropy 1is determined. 1In the present work the outline of
such an anisotropic hydrodynamical model will be given. The model is based on the
Boltzmann transport theory.This means that the basic assumptions of the Boltzmann
theory are regarded to be valid. The validity of these assumptions, however, |Is
not granted in the case of heavy 1ion reactions. The errors introduced by these
assumptions, will be compensated 1in some extent by applying a proper equation
of state. The basic equations of the anisotropic hydrodynamica! model will be
obtained from the Boltzmann equation by taking the moments of the distribution
function. These equations will be generalized to a many-fluid system. The
anisotropic pressure tensor occuring in the equations, will be obtained fronm
Walecka®"s mean field theory of nuclear matter5). Finally the outline of a simpli-
fied three-fluid model will be given. For the sake of simplicity our considerations
will be presented in non-relativistic framework. The relativistic generalization
can be carried out without serious difficulties.

2. The equations of the anisotropic hydrodynamical model

Ve begin our considerations with the Boltzmann transport equation3), given

by

Gt + i Visi)f = © C X, ¥, 7)., m
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where the one-particle function f(r v t) describes the space and velocity distri-
bution of the nucleons. The right hand side of this equation gives the changing
rate of the distribution function produced by nucleon-nucleon scattering

C = i/d3vid3v"d3vj [f(v )f(v;) w(v vj.lvvl)-f(v)f(vl)w(vv,]|v vj)], @

where w denotes the transition probability of the nucleon-nucleon collision.
Following the usual procedure, we multiply the Boltzmann equation with mmv|
and imvghK and integrate over the velocity space to obtain:

atP + tpn.t =0, ©)
D = o, W

jk I(u1<*pjk +TPUJUK) + ik
r(p1j') -3 / CvjvK d3v Q)

where the mass density, p(rt) and flow velocity u. (rt) are defined by the rela-
tions:

P r m/fd3v, (6)

3 ﬁJfV d3v . ™)

U {

The pressure tensor Pjj(rt) and the heat flux tensor Q.j~(rt) are defined as
follows:

P .. = .C .
ij m/fcchdSV, ®)
Aijk in/fcrcj d3v, )
where Cp s Vi - Uy (10)

The right hand sides of the equations (3) and W) vanish, because of the
particle number and momentum conservation. These are the usual equations of con-
tinuity and momentum. The trace of the tensor equation (5) yields the energy
equation:

3t (e+ipua) + Eg.(e+ipu2) + g.+Eu.P..) = 0, (rn
i iJ J

where the energy density c{rt) and the heat flux vector q.(rt) are defined as:
e = - Jfc2d3v, »

O = EalfCiFstv - a3)



The right hand side of equation (11) vanishes because of the energy conservation.
The remaining linearly independent elements of the tensor equation (5) form a
traceless, symmetric tensor equation. The five independent quantities determined
by this equation are the elements of the anisotropy density tensor. The collision
integrals on the right hand side do not vanish now since there 1is no conservation
law for the anisotropy. The anisotropy changes due to the collisions. In the
general case one has to keep all elements of the anisotropy density tensor. |In
the case of symmetric,central collision of heavy ions, however, the anisotropy
density 1is characterized by a single quantity. Therefore in such a situation the
usual set of hydrodynamical equations have to be supplemented only by one more
equation:

Gt[aj.J + £p(u.J - 3u2)] + L 3-[u. (a.JJ.+ip(u’G - 3u2)) +

i - IEu.Ps.)] = —/Cv?2d3v. (14
341 XJ 3K a J

The anisotropy density ajj (rt) is defined as:

a lc (15)
3

LS

The 1index j corresponds to the coodinate axis along which the heavy ions collide.
For the. illustration of the discussion above, let us assume a Maxwell-
-Boltzmann type distribution function for the nucleons:

f 72 e-(c2+(--Der) 2

(© = kBr), (16)

where a 1is the anisotropy parameter along the z axis. |In this case the energy

density» the heat flux,the pressure tensor and the anisotropy density are given by
the following expressions:

£ = 9(2+a), (17)
4 - o, (18)
p.ij. = £ 06“..( l+(a—1)6fz),. (19
azz ~ 3 EO.(a—l)' (20)

These equations show, that all physical quantities depend on the anisotropy
parameter a. One observes also that the quantity azz is really a measure of the
anisotropy, because it vanishes for a=1, that 1is for an isotropic velocity
distr ibut i.on.
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3. The three-fluid model

The traditional hydrodynamical models of the heavy ion reactions based on
the one- or two-fluid assumptionl-2) do not provide an adequate description for
the thermalisat ion process taking place during the collision and the production
of hadrons different from the nucleons. Therefore it seems to be desirable to
construct a model which is able to accomodate the description of these processes.
The first steps along this line were taken by Montvay and Zimanyi working out the
had-on-chemistry model*“). To describe the thermal ising process the nucleon
distribution function f 1is splitted into three components:

f = E fS (s = 1,2,3) L)

and an anisotropic three-fluid hydrodynamical model is constructed. It is assumed
that the nucleons of the target and the projectile belong to the distribution s=1
and s=2, respectively, while the third distribution (s=3) is populated by the
nucleons scattered out from the two previous distributions. If hadrons different
from nucleons are produced 1in the collision process then additional components
must be introduced. However, this possibility is not discussed 1in this paper. Due
to the decomposition of the distribution function f the Boltzmann-equation can be
written in the form of a coupled set of equations:

Bk + 7 vpa,)fs = Cs, 22)

where

C =1L Jd’\—PSV'd’\Vll[f (vDF (V!L)NSr v wn)-Fe(DTr (vj AN , (Wi M\H)]
rsrv
(23)

where the transition probability for two nucleons from the distributions (sr) into
the distributions (s°"rl) is denoted by w|fr,. The definition of this transition
probability would be unique 1if the particles of the different distributions were
distinguishable. However, this 1is not the case. The transition probabilities could
be defined uniquely also if the distributions were extended only on non-overlapping
regions of the velocity space. In our case this criterion is fulfilled only
approximately and this fact should bhe taken into account properly computing the
collision integrals. Multiplying the equation (22) by m,mv and im VjVv~, and
integrating over the velocity space, the equations of the anisotropic three-fluid
hydrodynamics are obtained in the following form:

a)tPS + E%pSuf = m JCSd3v, uk)
i
s
6 tpSUj - % afpsr-Uy 4 Pf; ) = m/CSvjd3v, (25)
v * p8k * p)k + *p*“K > +
* aijk o+ iujpik e Pl w o seevjvkar (26)

Taking the trace of the tensor equation (26) one get the energy equations for each
component. The remaining linearly independent equations form a traceless, symmetric
tensor equation for the anisotropy density. Due to the nucleon-nucleon collisions
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nucleon, momentum and energy exchange 1is taking place among the various components.
Consequently the collision integrals standing on the right hand side of the
equations do not vanish. These collison integrals represent the couplings among
the components. If a summation 1is performed on the component index s then, of
course, the overall continuity, momentum and energy equations are obtained with
vanishing right hand side, except for the equations of the anisotropy density.

The anisotropy of the colliding two nuclei has its maximum before the collision
The anisotropy decreases in the framework of this model via two mechanisms:
nucleons are scattered from the target and projectile components into the third
one, on the other hand the anisotropy of the third component is decreasing further
due to subsequent nucleon-nucleon collisions.

I* Equation of state for anisotropic nuclear matter

In order to specify completely the equations of the anisotropic hydrodynamical
model, discussed in the previous sections, in addition to the transition probabil-
ities, the pressure tensor P.~A(rt) and the heat flux g.(rt) must be provided, ~f
these quantities are given tAen the equations can be silved for the density P(rt),
flow velocity u.(rt),energy density e(rt) and anisotropy density a.”(rt). From
these functions the experimental quantities can be computed. The transition
probabilities w , , can be expressed in terms of the nucleon-nucleon differential
cross section, measured as the function of energy. The pressure tensor P.7
and the heat flux g. depend on the energy density e and on the anisotropy ¥
density a.” therefore a model of the nuclear matter is needed which 1is able to
produce P4, and g. in the function of e and a.”. For this purpose the mean field
theory of~Walecka”offers an excellent possibility. This theory in its
original formulation is a relativistic, renormalisable field theory, 1in which the
interaction among nucleons (f) 1is mediated by 1isosinglet scalar (0) and vector
(VA) mesons. The coupled field equations are given by

<SA _ msZ) o= - ™ . (27)

aviuy M@ Vp T igyTY v, (28)
ig,r g-

A 4 . Vp) + o L =0 (29)

where the field strength FA Is defined by

T By — @V, (30)

and the inverse Compton wave length of the scalar meson, vector meson and nucleon
is denoted by ms, mv and m, respectively. With the appropriate choice of the
coupling constants gs and gv a nucleon-nucleon potential can be derived, which

is rather similar to the phenomenological soft-core potentials, except for the
one-pion tail. In the mean field approximation the meson fields are replaced by
their average values which are constant for homogeneous nuclear matter:

o - <0 > = 00 (3D

v <V.> = 16y, V.. (32)
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By means of the field equations the average fields % ang V. can be expressed
in terms of the densi ties:

gs
<
° vz m% c2 Ps * (33)

v, —— <Oy m

By substituting these classical fields into the Dirac-equation an exactly soluble
model is obtained. The Hamiltonian density in this mean field approximation can be
expressed as follows:

mécZ
2

Ho=gVobp ¥ |1F % \ (k2 +m*2)* bkX} + &)

where [ stands for the normalization volume, the effective mass m* is given by
" te %o &

the creation and annihilation operator for nucleon and antinucleon with wave number
I and spin-isospin quantum numbers X is denoted by aj* , bj* and a™ , b
respectively. Formally this Hamiltonian density corresponds to a non-interacting
nucleon-antinucleon system, The interaction via the scalar mesons 1is reflected by
the effective mass m*, while the interaction via the vector mesons gives rise to a
constant energy shift of the one-particle energies expressed by the first term of
the Hamiltonian density. Since formally we have a non-interacting system, the
nucleon and afntinucleon assemblies can be described by Fermi-Dirac distributions:

n(Ta)

(exp((k2+(1/a-1)k2 + m*2)ry -v)+1)'1 | (€))

n(Ta) (exp((k2+(Vct-I)k% +m*2)* q; tv)+1)-1 (€2))

where the anisotropy parameter 1is denoted by a and the quantity v is related to
the chemical potential. It is worth while to note that at the available energies

of heavy ion reactions the contribution of the antinucleons is negligible. Taking
the expection value of the energy-momentum tensor of the system by the help of the
distributions given above the energy density and the pressure tensor can be obtained
as the function of the temperature and the anisotropy parameter:

0}
I

e (Ta), (€2))]

PJ=Pj @Ta). o

By eliminating the density p the desired equation of state for anisotropic nuclear
matter is obtained7-8):

P,- €@To). b
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5. A simplified model

The solution of the equations of the anisotropic hydrodynamic model in its
full complexity seems to be a hopelessly difficult task, since 30 coupled partial
differential equations should be solved. The task is further complicated by the
fact that the calculation of the pressure and the heat flux is very complicated
in the general case. For the sake of the applicability of the model a series of
simplifying assumptions should be introduced.

First of all the task is simplified in a great extent if the treatment is
restricted for central collision of 1identical nuclei. In this case, as it was
pointed out earlier, only one remains relevant out of the five equations for the
anisotropy density. On the other hand,the calculation of the pressure and the
heat flux can be performed along the lines discussed 1in the previous section.

The second assumption concerns the form of the distribution functions fs. The
explicit parametrization of the distribution function 1is inevitably needed for

the computation of the collision integrals. Since the hydrodynamical equations
determine only some of the moments of the distribution function, it 1is not
meaningful to introduce more independent parameters as the number of the equations.
Keeping in mind this requirement, the simplest form is assumed for the distribution
funct ions:

on 9D Crsd @ t(ast Det oo 2)

The distributions s=1,2 are considered to be isotropic in their own frame of
reference:

as =1, G =1,2). D)

This choice,on one hand facilitates the calculation of the collision integrals by
making use of the saddle point method, on the other hand the error caused by the
third assumption,to be introduced below,is compensated in some extent. The third,
rather drastic, assumption is the following: 1in the course of the collision the
velocity distribution remains unchanged both for the target and for the Drojectile.
The nucleons scattered out from the distributions of the target and the projectile
increase the number of the nucleons of the third distribution but there is no
rescattering from the third distribution into the other ones. This assumption 1is
very well justified in the first stage of the collision process when the number

of nucleons in the third distribution 1is almost zero, however.it is rather
questionable in the later stages. Therefore to describe the target and projectile
nucleons by Maxwell-Boltzmann distributions, instead of Fermi-Dirac ones, seems to
be much more appropriate on the time average of the whole collison process. This
third assumption can be formulated quantitatively in the following way: all of the
transition probabilities w|fr, are zero except for the cases when (sr) = (12),(13),
(23) and (s’rl) = (33). furthermore both the temperature and the flow
velocity for the components s=1 and s=2 are constant:

us = const, Ts = const, (s = 1,2).. D M

On the price of these simplifying assumptions only 8 independent equations remain
out of the 30 ones needed for the description of the general case. The difficulties
associated with the calculation of the collision integrals and also the errors
implied by these calculations can be diminished if the momentum and energy
equations®are summed up for the index s. In this way the rigth hand side should
vanish exactly and therefore it is not necessary to calculate some of the collision
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Integrals. The details of the model outlined above and the results of calculations
along these lines will be published in the near future.
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