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ABSTRACT

The zero temperature renormalization group transformations for quantum
spin systems are analyzed. The block transformation and the decimation-type
transformation used in the study of the one-dimensional Ising model in trans-
verse field are extended to the quantum version of the Potts model and Ashkin-
-Teller model. It is shown that for these self-dual models the two kinds of
renormalization group transformations are dual to each other and therefore
give the same result for the critical behaviour. The duality persists even
ifT the higher lying states are taken into account in a perturbational way.

AHHOTALMA

NccnepywTca pa3paboTaHHbie O M3YYeHUs KBAHTOBaHHLIX CMUHOBLIX CUCTEM npe-
obpa3oBaHUs peHOpPMa/IN3auNOHHOA rpynnsl Npy HyNeBol TemnepaType. 06o06wakwTcs
npeobpasoBaHna O6/I0KOB U MeTO[ LEeCATUYHOrO AefleHUsi, KOTOopble MNPUMEHSIMCb npu
NU3y4YeHUn OJHOMEPHOW Mogenu l3vMHra B MOMepeyHoM none, 48 KBaHTOBaHHOIMO Bapu-
aHTa mofenu MoTTca, a Takke Mogenu AwkuHa-Tennepa. [oka3aHO, YTO B C/lydae 3Tux
camofyasibHbIX Modefnieil ykasaHHble npeobpa3oBaHnsa 060MX TUMOB SABASKTCA AyasbHbIMU
Mo OTHOWEHWI0 ApYr K Opyry, W noaToMmy npuvBedyT K OAMHAKOBOMY KPUTUYECKOMY MO-
BeAeHMw. [yanbHOCTb MMEET MeCcTO W Torga, €CNM BbhICOKOMEeXalye COCTOSHUS YUTEHb
METOAOM TEOpUM BO3MYLEHUS .

KIVONAT

A kvantalt spin-rendszerekre kidolgozott zérushémérsékleti renormaléasi
csoport transzformaciokat vizsgaljuk. A mer6leges térbe helyezett egydi -
menzidés Ising modell tanulmdnyozasaban hasznalatos blokk-transzformaciot és
decimalast altalanositjuk a Potts modell és Ashkin-Teller modell kvantalt
valtozatara. Megmutatjuk, hogy ezen ondualis modellek esetén a kétféle re-
normaladsi csoport transzformacid egymas dualisa és ezért a kritikus visel-
kedésre azonos eredményt adnak. A dualitas akkor is érvényes, ha a magasan
fekvé allapotokat perturbaciodos utdon figyelembe vesszik.



1 INTRODUCTION

The renormalization group (RG) transformations have proved
to be very powerful in the description of critical phenomena®Z.
The momentum shell integration method, when combined with the
large order perturbational calculation2 can produce good values
for the critical exponents of three-dimensional systems3.

In the real space RG transformations there is some arbitrariness
in the choice of the mapping and the results depend strongly on
the mapping. The usual transformations can be classified into
two broad categories. In the block transformation4 a cluster of
spins is mapped onto a single block spin according to an ad hoc
rule. The coupling between the new block spins is obtained from
the couplings of the individual spins between the neighboring
blocks, weighted, however, with the weight with which the iIndi-
vidual spins appear in the block spin state. The decimation
transformations’6 is an alternative approach. There one elimi-
nates a fraction of the spins by considering the effective
couplings these spins mediate between the remaining spins.

These transformations were originally invented for classical
systems and the RG transformation is performed in a way that
the partition function or free energy, from which the critical
behavior is derived, should remain invariant during the RG
mapping-

The extensions of the RG transformations to quantum

systems7_16 have been extensively used recently both to des-



cribe critical phenomena and to understand the properties of
quantum field theories. Quantum effects are usually irrelevant
for the critical behavior of systems near their phase transition
point, nevertheless quantum models are often used to calculate
critical properties, since d dimensional classical statistical
mechanical problems can be mapped onto d-1 dimensional quantum
mechanical problemsl7. The ground state energy and first excited
state energy of the quantum problem are related to the partition
function and coherence length of the classical problem. The

critical exponents can also be calculated from the behavior of

the quantum equivalent.

Since in the quantum problems one is interested in the
ground state energy and low lying excited state energies, the
number of degrees of freedom should be thinned in the quantum
RG transformation in a way that these states should be well
approximated. This 1is achieved by keeping the low lying states
in each step of an iterative procedure and neglecting some
higher lying states. This can be done for the quantum systems
in several different ways. The method introduced by Jafarey
et al.~ is based on splitting the system into blocks. The eigen-
value problem of the finite block is solved and as many lowest
levels are retained as it is necessary to map these states to
the quantum states of a single block spin. The coupling between
the blocks is obtained again from the couplings between the
individual spins taking into account the wave function of the

block state.



An alternative approach to the quantum RG treatment of
the Ising model and lattice gauge theories has been proposed
by Fradkin and RabylG.They decimate the number of lattice
sites by fixing the quantum states on a fraction of the sites,
keeping that state of the intermediate spins which gives the
lowest energy with the fixed configuration of the selected

spins and then mapping this state to a new state where only

the selected sites have spins.

The two RG transformations seem quite different. The Tfirst
one is similar to the classical block transformation, the
second one is more like a decimation transformation. We will
show in this paper that the two transformations are in fTact
very closely related. The decimation type RG transformation on
quantum spin systems leads to the same result as a block trans-

formation on the dual model.

The setup of the paper is as follows. A general description
of block transformation and decimation for quantum spin systems
is given in Sec. Il. The quantum version of the Potts model
(of which the Ising model in transverse field is a particular
case) 1is studied in Sec. I111. using both RG transformations.

The duality relation between the two transformations is dis-
cussed in Sec. 1V. These results are given for a scale factor

b = 2. In Sec. V. the considerations are extended for arbitrary
scale factor. A similar relationship between the two RG trans-
formations for the Ashkin-Teller model is shown to exist 1in

Sec. VI. The effect of the higher order perturbational correc-



tions is considered in Sec. VII. It is shown that the duality
persists even if new cuplings are introduced by these corrections.

Finally Sec. VIlI. contains a discussion of the results.



I1. GENERAL FORMALISM

In this paper we,will be concerned with one-dimensional
quantum systems on a lattice. Assuming a nearest neighbor inter-
action Ti T and a single site term UI’ the total Hamiltonian

of the system has the form

N N
h= D 1. L.+ v u .1

i-i i-itl i
where periodic boundary condition has been imposed, though this

is not important in the further calculations.

IT the system can be iIn q states at each site, the total
number of states 1is qN. We are interested iIn the ground state
and low lying excited states, either because the phase transition
occurs at T=0, or becaus®"e these quantities of the quantum me-
chanical problem are the analogues of relevant quantities of a
statistical mechanical problem in higher dimensions. In the
quantum RG transformation the number of degrees of freedom, the
number of states is decreased by mapping the chain with N sites
to a chain with N/b sites in a way that the gqN//b states of the
new system should possibly coincide with the gN//b lowest states”

of the original chain.

In the block trans;formation7_15 this mapping is achieved by
grouping the sites into cells (each having b sites) and mapping
the lowest lying states of the cells onto equivalent new states.
The sites will be indexed by a cell index £ (Z= 1,2,...,N/b)

and a further index a (a= 1,2,...,b). The Hamiltonian is split



into intracell and intercell parts:

H = Hintra * Hinter 2-2)
where the intracell part 1is
N?b
Hintra oA Hcell ¢ 2-3)
wi th
b-1 b
Hcel I/ a1l Ti,a:l, a+1 + UE.,a " 2.9
while the intercell part is
N/b
Hinter =) Hinter @A+ (2-5)
with
Hin er(A’A+1) - Txrﬂx t+1,1 @-6)

Solving the eigenvalue problem of a single cell first, one

finds gb states. They have the Torm

@) 1.S_ IS _

o *3Aynig. . Mt e tioTa,2 i, A,b
|1||2-***

8 - I121---1q ’ (2'7)

where |s”™>£ a is the ith state at site A,a. Keeping the g lowest

lying states, they can be 1identified as the q states of a renor-



maiized entity y

3 - I»2,...,q (2.8)

The new Hamiltonian acting in the space of y states should have
the same form as the Hamiltonian iIn Eq. (2.1) acting in the
space of s states, only the couplings can have renormalized

values.

The new single site term is obtained from the energy spectrum
of the low lying cell states. The coupling between the neighboring
cells is calculated by requiring that the matrix-elements of the
new Hamiltonian between the y states should be the same as the
matrix elements of the original Hamiltonian between the corres-

ponding cell states iIn the s state representation.

The decimation transformationl6é starts from a different
splitting of the Hamiltonian (2.1). Using the same convention as
above for indexing the sites, the first site of each cell is
selected to be kept while the other sites are to be eliminated.

We separate the Hamiltonian into two parts

H = Hfixed spin © Tintermediate -9
where H_. . contains the single site terms on the selected
fixed spin
sites
N/b
Hfixed spin A fixed spin (2-10)
with

Hixed spin V) = Ux g 2-15
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while Hintermedlate contains the single site terms on the inter-

mediate spins and the coupling terms

(U +1) (2.12)

intermediate

N/b
intermediate £I
=1

b-1 b
t + 2.13
Hintermedlate (M+1) azl Tl,at £,0+1 T£,b; £+1,1 al;,ljﬁ,o ( )

Fixing the states on the N/b selected sites gives g\~
possible configurations. For each such configuration the states
on the iIntermediate sites are chosen in such a way that the
energy be minimal. This is equivalent to finding the lowest lying
eigenstate of Haﬂiﬂi-with fixed states s;l ) and 321+_ _on the

s i,i

end sites £,1 and £+1,1. Denoting this state by @ G ,S- ),
1,1+1 x£,1 1£+1,1

*£,£+1SI ,S1 = 1Si >E£ 1*E _£+1(Si "Si
£,1 £+1 l] £,1 C £,1 £+1,1} BIE+1.1>1+1] " (2*14)

where

b
e y= 1 bE s .sp ) Mlsy > 2-15
XE,E I(S'1,1 £+1,1 A1 I,‘3+1,1 rz‘s,a a=2 lE,a B2
£,a

is a linear combination of the states of the Intermediate sites.
The states of the system which are kept in the RG transformation

are of the form

Sllll*l,l XI,2(S|1’1'S|2,1}IS|2,1*2,1 X£,£+1(S|£,1'8|gil,})IS|g¢&/ﬂ +lrl*>*

(2.16)
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This state will then be mapped onto the state

1V*i >nl i >0 e**|] >+ " 2.17)
*1,1 1 =*=2,1 2 .o 1a+1,2 * 1

The Hamiltonian acting iIn the space of the p states should have
the same form as the original Hamiltonian, the new couplings
should be calculated from the requirement that the matrix-elements
of the renormalized Hamiltonian between the states given in Eq.
(2.17) should be the same as the matrix elements of the original

Hamiltonian between the states given in Eq. (2.16) .

From the formulation of the problem it is clear that the
block transformation is conveniently done in such a representation
where the s and y states are eigenstates of the single &aite term,
the decimation is conveniently done iIn a representation where the

nearest neighbor coupling is diagonal.

In the RG transformations presented until now the higher
lying states are completely neglected. The matrix elements are
calculated between states which are products of low lying eigen-
states of individual, cells. Hirsch and Mazenko14 have shown that
a systematic improvement can be achieved by taking into account
the higher lying states in a perturbational way. Using the same
mapping of the s states to the y states as before, the requirement
is not simply that the matrix-elements of the Hamiltonian should
be unchanged, but the shift due to virtual excitation of the

higher 1lying states is taken into account. The-states we are

working with are eigenstates of a truncated Hamiltonian.
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In the case of the block transformation they are eigenstates

of the intracell part

N/b
I-|o intra I Hce|| U) (2-18)

with HE given in Eq. (2.4), while for the decimation transformation
they are eigenstates of the Hamiltonian of the intermediate spins

N/b

o] intermediate X/El Hintermediate U,£+1) (2-19)

with HE £+1 given in Eq. (2.13). The rest of the Hamiltonian

V = Hinter A:|1 Hter U-1+D A}’ THb: W [ (2.20)
and
N/ N/b
V= H fixed spin - 1_I1 fixed spfn() = __I_ ii (2.21)
= i=i
respectively, are treated as perturbations. ITf | and |p > are

eigenstates of Hg with energies E® and E ., respectively, such
that they are the products of the low lying cell states, while

is an eigenstate with energy E”, such that at least one of the
cells 1is iIn a higher lying state, the RG transformation should be
done by comparing the matrix elements of the renormalized
Hamiltonian to the matrix elements calculated in second order

in V
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. H #VH7 1 vU ><p, V 0. > (2.22)

= E _-E
IE i- D

In one case the perturbation is a nearest neighbor coupling
between the end sites of neighboring cells, while in the other
case the single site term on selected sites serves as a perturba-

tion .

The two transformation can in general lead to completely
different approximation schemes. We will see iIn the next sections
that for self-dual models the two RG transformations lead to
equivalent results. Block transformation is the same as decimation
in the dual model and therefore the critical exponents calculated

in the two ways are equal.
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I11. RENORMALIZATION GROUP TRANSFORMATIONS FOR THE QUANTUM

VERSION OF THE POTTS MODEL

The one-dimensional Ising model in transverse Tield has
been used extensively as a test of various quantum RG transfor-
mations, since the exact solution of this model is known18
The Potts model19 being a simple generalization of the Ising

model, we will consider now the quantum RG transformations on

this model.

The one-dimensional Hamiltonian version of the two-dimensional

classical Potts model has been discussed in the preceding paper20

The Hamiltonian contains two terms

= Hpoees * Meielad - G-D

where HPotts 1is the usual Potts coupling between the neighboring

spins,
Potts S G-2)

where =1,2,..., Qq; q is the number of components of the Potts

spin, and ft is a diagonal matrix

ft = w=exp &20Y) | (3.3)
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while H . is the "transverse field” which rotates the spins,
field
1 41 Kk
Nga =-h I YT oM, (3-4)
field i1 k=I 1
where
/0 1 o .. o]
0] 0 1 ... o
M = (3'5)
\1 o] o ... o

A. The block transformation

The preceding paper20 contains the results of the block
transformation. Here 1 only quote the results. Starting with the
Hamiltonian given in Egqs. (3.1) - (3.4), new couplings are
generated, which correspond to the simultaneous flip of two
neighboring spins. The strength of these new couplings Iis
renormalized in such a way that a well defined relationship is
maintained and in fact only a single new coupling is needed 1in
terms of which all other couplings can be expressed. Using now
the notations of Ref. 20, the new couplings are denoted by A™ ,
AN and A and they satisfy the relations

A2 = x AX A3 Al (3-6)

The recursion relations for the renormalized couplings

20
are as TfTollows
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2o~ T\ d+a) °b% + 2(q-2) A2(l+a) a b +
1 cell [I+(q-Da2][g-2+2b* ]

+ (g-2)2 A3 a2 } ,

P« - on - A f a F O{1VHall2 1,1 b(4"3+2 +

+2@2) ab]l+ @2 A3 a(g-3+b ) } ,

3 «XI- 3 ,2.2 <4AX »2 * 4 X2 b(@-3+th2) ¢ X3@-3+b V
« i q22¢%6 9 » @ ) @ 3
with
a= (@DAL {"qgh+ 2 A3+ 7~(@h ™2 A3)2 + Al }
Ar (g-3)A3 / Al-(g-3)A3 22
fh 2q ¢ Zq —_—_

and
ghcell= E1 " E1
where
= _ St! 2.
E, @2 h _— 2q V,(qh - 24 A3f
AJ+(9-3) Ai-(g-3)A - 2 (@2
I o NED @2

G.-7

3-8)

G.9)

(3-10)

(3.11)

(3.12)

(3.13)

(3.14)
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These recursion relations have been analyzed in Ref. 20.
Here we want to compare them with the results of the decimation

transformation.

B. Decimation transformation

We will outline the decimation for the b = 2 case, when only

the odd sites are retained after the decimation. According to the

prescriptions given in Sec. 11, the Hamiltonian is split as
H = HO-F vV, (3.15)
where
N/2 . N/2
Ho=-hA T (0 0 ) -h 4'|<_ (3.16)
° 1=1 S£,1S£,2 S£,2 SA+1,1 £=1 k=
and
N2 g-1
v h 1 (3.17)
fa k=1

Fixing the states at the (£,1) sites, the eigenfunctions of Hgqg
are easily obtained. If two neighboring fixed spins are in the

same state i, the lowest energy configuration of the intermediate

spin 1is
X-(ii) = =-m—= {c]I>+c @+ ... +cli-I>+ |i> + clitl> + ... + clg>},
1 A+(g-1)c2
(3.18)
where

c= @Dh » ~+ h + /(X- h) + D h 3} . (3-19)
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and the energy Iis

EL(ii) = - A [ - §2 %+ (@1 n (3.20)

IT the two end spins are iIn different states, the lowest

energy configuration Iis

{1> + 12> +._.+ 1i-1> + dli > +]i+l> +

A—2+2d

(3.21)
+3-1> + dij >+]j+1> +...+|o> },
wi th
d-k {1x J§ @dhe/ij A-J (@-HM2 +2(q-2)h2 (3.22)
and the energy Iis
Kl 1 2 2
E1@?)) * -J X -J &B2)h J A -y(@@-4h) + 2(g-2)h (3.23)

Performing now the mapping as discussed in Sec. 11, the new
Potts coupling between the renormalized spins is obtained from
the energy difference of the configurations when the neighboring

fixed spins are in identical or different states:
El(l Jj) - El(ll) (3.24)

The renormalized field is given by the matrix element bet-

ween states, where one spin is different. It turns out that the
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matrix element will depend on the configuration of the neighbors.
We have to introduce three different fTields defined by the matrix

elements:

h o=<i JiH didii>—<jji H iij> ,inNj (3.25)
-2 =<jki M iidj>, %, ik, j/k (3.26)
-h3=<j N H ikj>, ik, i j/xi, (3-27)

The difference in the renormalization comes clearly from the
fact, that in calculating these matrix elements, identical
neighbors appear twice in (3.25), once only in (3.26) and there
are no 1identical neighbors in (3.27). For a self-consistent
renormalization we have to introduce these couplings from the
very beginning. an™ x™(i~j) still have the same form as

in Egs. (3.18) and (3.21), but now

h3y + (@1 h2 } (3.28)
(3.29)
EIQR) =" 1 A" 2 tV (G-3)h3]- Aj H b bl <U'3)b™ 242(4'2)b2 , (3.31)

The renormalized value of X is still given by the energy
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difference as in Egq. (3.24), but with the new energy expressions.

The renormalization of the three fields is obtained by calcula-

ting the matrix elements (3.25) - (3.27) between the renormalized

states. We get

_ L h @)X+ 2(g-2)h2 (1+c)cd +
1 Cell ((1+(g-Dc2)(g-2+2d~)

(3.32)
+ (@-22h3c2 } ,
{ 2h1 (1+c)d2 + h2[(1+c)d(g-3+d2) +
2 cell ¢/ 2, 32
1+@@ D c (g E;Zd ; (3.33)
+2(q-2)cd]+ (g-2)h3c(g-3+d ) } ,
h, , = ——-— - -« { 4h.d2 + 4h_d(g-3+d2) + h,(gq-3+dV } . (3-34)
3 Cell (g-2+2d2)2 1 2 3

The three fields are not really independent of each other. Since

in the unrenormalized model = h2 = h3 -

each step of the
iteration

2
h3 cell/hl cell = (h2 cell/hl cell) (3-35)

Comparing now these recursion relations with those obtained

in the block transformation (see Eqs. (3.7) - (3.14)),it is seen

immediately that the substitution

A smgh, ghl A , gh2 N2, gh3 «+A3 (3.36)

generates the results of the block transformation -from the deci-
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mation transformation. We will show in the next section that these
relations are the consequence of the self-duality of the Potts

mode 1.
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1v. DUALITY RELATIONS IN THE POTTS MODEL

The Hamiltonian of the quantum version of the Potts model
has been given in terms of the matrices f¥* and . These matrices
commute if they belong to different sites, while on the same

site they satisfy the following algebra:

o L S “-

Ml * = Mg E 4.2)
u 1i1_t -0) KE%? pe 4.3)

Let us introduce the dual lattice and define the operators

ﬁiK and MHK on the sites of the dual lattice, 1.e. on the links

of the original lattice:

fifk . Mg. 4.4

ﬁ;[l.k 1ik+1’ (4-5)

It Is easy to see, that these operators satisfy the same algebra.

For example

o<* (4.6)

The Hamiltonian can be written in terms of these new ope-

rators as

H = Hootes ¥ Pield -7



where now

q_
- hi M K (4.8)
Potts qi-l k1 1
and
N i&
fietd - ~ D __l AN (L (4.9)
izl k=l

We have used the relation wg=l 1in deriving this form of the

Hamiltonian.

Since the new operators satisfy the same algebra as the
original ones, comparison of the two forms of the Hamiltonian
leads to the duality relationship21: for any value of g and
the model should behave iIn the same way as the model in which
and h are interchanged. The relations in Eq. (3.-35) are the

generalizations of this duality relationship for the renormalized

Hami ltonian



V. CALCULATION FOR LARGER CELLS

The quantum RG transformations usually do not give good
values for the critical exponents when the scale factor b=2 .
One way to improve the results is to take larger scale factors13
The analysis becomes very cumbersome and the lowest energy states
of the cell problem can be found numerically only. It is, however,

possible to see, without solving the problem, that the duality of

the block transformation and decimation persists even for b>2 .

Let us look at the case b=3 . It is convenient to use In

the block transformation the states defined by

- V. U-D) D I,
1> = ‘ K> . G-
&
Thex are ei%enstates of Hﬂﬁeld ,
HFfield 11 > = - <4-D h 11 > ,
G-2)
hpiopd | &> =h 5> for i/ 1,
while H will now flip the neighboring spins simultaneously.

Potts

It is convenient for the further comparison to shift the energies

by - h so that

Hfield <> =®qh6EFIII" > - (5.3)

The intercell part of the Hamiltonian will mix the following ¢

states:
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ill £ 1% , I[l 2 qI >r |1’» §»(q—i§%§ e Iltth «b s ,

'I'zt (i) ”f >, I?ﬂ'%q—]!)v» 1' > Iq» /2\» 1t >

g >, 13F1r@D >, ... KU1t 2 >, (5.4)
2" 2°(q-1)*>, 12 3°(q-2) > ., ... R (-1 27> ,

13 2" (@2 * 9 9 >

One has to find the lowest energy eigenstate of the intercell

Hamiltonian in the subspace spanned by these states.

Alternatively in the decimation transformation one has to

find the lowest energy configuration of two intermediate spins.

Fixing the two end spins, the intermediate spins can be 1in q2
configurations
n 1> , nz>= , . I1 g>
2 1> , B1> , ... IKgl>
(5.5
r 2> , B3> , ... Iqqg>
» 3> Ig (D) > .

We have to find the lowest energy configuration of the two inter-
mediaté spins when the end spins are fixed e.g. in the |1>.]1>
state. One can easily convince oneself that the eigenvalue matrices

in the two transformations are related by the duality relations

given in Eq. (3.36).
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In the same way as for the b=2 case, the next lowest lyinc
states of the cell problem in the block transformation are in an
ortogonal subspace which can be generated starting from the state
= 1 2 > Analogously one can look for the lowest energy
state of the two intermediate spins in the decimation transfor-
mation when the two end spins are fixed in the states |I> __..]2 >
Again the two eigenvalue matrices are related by the duality

relations.

So in general one can show by writing down the eigenvalue
matrices and the wave functions of the lowest energy configura-
tions, that the two RG transformations are dual to each other.
This 1Is a consequence of the fact that H. -

intermediate
in Egs. (2-3) - (2-4) , of which the lowest

in Egs. (2.12)

-(2.13) and F+infra

Ixing states are considered and H in Egs. (2-10)-(2-.11)

fixed spin
and H_mter in Egs. (2.5) - (2.6) which are treated as perturba-
tions, are dual to each other. It is important to emphasize that

this duality persist even after renormalization, when new coup-

lings are generated.



VI. THE QUANTUM Z(4) MODEL OR ASHKIN-TELLER MODEL

Let us consider now the RG transformations for the quantum
version of the Ashkin-Teller model. In the classical Ashkin-Teller
model22 there are four possible states at each lattice site.

The energy of the system depends on the configuration of the
nearest neighbors. It is - j X~ if the neighbors are iIn the same
state, i.e. for the configurations |II>, 22> , |33> and |44> .
The energy is + X~ for the configurations [|13> and |24>

, while

for the configurations |12>, 14> , |23> and |34> the energy Iis

— X2 . In the case when X = , we recover the four-state Potts

model, while X» = 0 is the usual clock model.

In the quantum version of the Ashkin-Teller model spin-flip
terms are introduced. The transverse Tield which flips the spins

can be defined by the relations

Hh 11 > = + h2 11 > - hil2> - h2 3> -\ 14 >

Hh 12> =" hill >+ h2 12> - hl |I3> - h2 14 > ,

®-1)
Hh 13> =" h211 > *“ h! 12>+ h2 |3> - hx 14 > ,
Hh 14> = - hill > - h2 12> - hl 13> + h2 14 >

where Hh is the fTield term in the Hamiltonian,

Equivalently we could use a linear combination of the states

1
> 5> (1> - 12> + 13> | 14> ) |
1 . ]
12> o (I +j12> * 13> -ips ) ,
1 6.2)
13> > (1> - 12> + 13> _ 14> ) |
1 _
“*=> 5 1> 2> - 13> 4§ 14> )
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which are eigenstates of ,
,Jd 1 ">_. - 2h111*> , Hh ]2°> - 2h2|€ =
1t (6.3)

1 1.Ff
“ni3 v m 2hx 137>, Hh|4 > - 2h214 > .

The Ashkin-Teller coupling part of the Hamiltonian, H , iIn

this representation will flip the neighboring spins, e.g.

ax|14s>.  -2lgeies o7 12747 42 13"3" > 41 o> r
X2 .. X1 ... X2 e
InL1>+T 12 4" > 4133*> 4142>9
® .4
A 12°4" > 1373 X e
Hj13"3,>m - T 11717> - X 4 4 ?
Hx [472"> - -~ 1 _ ?2 12747 > )Z' 3737 , %(2 u2°> .

Similar relations hold for the states 11*2"~ 4, 12*1* , 13"4°> and
1473 > , for 11"3">,r 12727, 13"1°> and 1474"> as well as for 11-s4->

12°3*> , 1372°> and b ~1*>

In the block transformation it is convenient to use this
representation. In the same way as iIn the Potts model, new couplings
are generated by the renormalization. Accordingly, we will genera-
lize the Ashkin-Teller coupling part of the Hamiltonian, H”, to

have seven couplings:

Ao » h X9 i
hd iV AW >N pys 47 33 - ZI4 1472 *>

Ay A A A

4 1_1_*1* > 4+ _2_1_ 2,5 " ~4’ 13-3’> _ 44 14.2.>
) A2 Ag A A (6'5)
1J3°3% 4 i > 4 124> + 44 13'3,> -2 427>

A1 Aq A_, A

R LI e 4 1274™> - 13°3"> + 142 ">

and
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Hx [172"> = [I*2=> D¥*> - 134> - 143> f
HX1270™> = v o0 4 x 271 - X 1374,> -T-1473,> *
©6.6)
H1874%> = X 114 - X RA>+ X 13%> -X KU3> °
HyJf3™> = - oy J1°2% - -y P*1*> - -y J3%47> + -y J473">

The relations for the set of states |1MM™>, U"1*>, |372™>, |2*3%

the same as in (6.6), while

Hx 173" >. F 13> X |272"> X 371> X |474">.
HX[22"> - -~ JIV> & F 272> -~ |3-1-> -~ 1U*4"> |
6.7
H,|3"1™> - X [17°3"> X 2V > X 13717> - 474>
Ac A A A
Hal4™4™> = 2 -y U™3"> -y 12727> 72— 13"1"> 4 fm 14747> .

A0 can be set equal to zero, it does not play any role in the

renormalization of the other couplings.

Solving Ffirst the cell problem with two sites, the four

lowest lying levels of the cell are two non-degenerate and one

doubly degenerate levels. A non-degenerate level is at E , which
is the solution of

1 2

-V 4hi 4 4
-V 4h2
=0 , (6.8)
3
4 -V 4hi

-I>||—\
D
N

-V 4h2
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a doubly degenerate level is at

XI+X3 X1-X3 2 4" X5+X6 2

E2-2h2-n“1if/@r‘ﬂi_" L i,

and another non-degenerate level is at

E3

_ 2h2

24 / 2 4 2 A5
8 " @2+ 8 ) + (2

The corresponding wave functions are:

al

(2)

2
N +2 373

(-E1-4h1)X3+ 4 X1X2

V4

- F)X2+ 1 XIX3

(-E1-4h1)X3+ 4 X1X2
(-E1+4h1)Al+ j X2X3

/ 2+2b2

A2+2b

{ b11*2* >+ bI2"1" > +13"4*> +14"3" > }

{bl1"4">+ bKA*1*> +I13"2"> +12"3" > }

{11*1*>+ a |2V>+ a2|3"3>+ a ™V »

}

(6.9

(6-10)

(6.11)

(6.12)

(6.13)
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n * “A / vV A4 ~ A+A 2
|::V5(")'IE5 { 2hi + - + /Chi+-8- > + (-T- > }" (6-19)
and
D = T--2 {cll*3* + cI3*1*> + R*2"> + KU4"> } , (6.15)
/ 2+2c
with

n-n 2 A2
c = - {2n + 27X / (6.16)

A5 > (2h2 + -V 1» + (T> }
The mapping of these four states of the cell to the states of the

renormalized spin is chosen as:

t
>cell >cell >cell

2 14 >Cell (6.17)

The renormalized values of the fields are obtained from the

energy spectrum of the renormalized states:

h t

1 ceH 4 (Es'fl)
(6.18)

h2 cell 4 (E2~E1} ~ 4 (E3_E2)

The renormalized A couplings can be calculated from the

matrix elements between states differing by two spin flips.
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We get:

(1 cell = _(}1%; ;a[i;-é:?—bi) { A1 (1+a1) VvV +2 A3 (1+al)b(al+§ ) + A3(a1+§ Y 3},

2 cell" (1+2a2+§i/ 5(2;2-023 { »2(1ta2|2,=2+ 4 V 1+*2>0 ai + 4 X4 “1 1 =
n = e e — { Aib+c)2 + 2 A (b+c) (1+bc) + A (@+bc)2 } ,
3 cell (2+2b2)(2+2c2) 1 5 3
A, - —U 1 {4A, b2 + 4 A b(1+b2) + A (1+b2)2 } , (6.19)
4 cell (@+2b2)2 2 6 4
= -Tw=====— jo———— ;——; { A (I+a )b(b+c) + A [(1+a )b (I+x) +
5 <=ll /1+2a2+a2 @R+2b2) N+ 2? 11 5 1
+ (brc) (an+a™ ] + A3(al+a2) (I+hc) } .
- y— ———— - {2A (1+a )cb + Act(l+a )c (1+b2)+4a.b ]
6 cell  /(1+2a2+a” @+2b2)/2+2c2 2 2 6 2

+2M ar(l+b ) 3,

In the physical model, before renormalization there are only

two couplings, A, = A, = Ag and A2 = A4 :8< , and as it 1is

1 3

easy to see, the generated new couplings are not independent of

each other. There are in fact two new couplings, since

2
X3 cell/Al cell ™G5 cellai cell and (6.20)

2
M cell™ cell <A6 cell/A2 cell*
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Let us look now at the decimation transformation. Here it
is more convenient to work in that representation, 1in which
the Ashkin-Teller coupling is diagonal. The renormalization will
lead to new spin-flip terms, more precisely the spin flip ampli-
tude will depend on the two neighboring spins. We jfill introduce

six spin-flip terms defined by the matrix elements:

= <1211 111> <221 IHh|[112 >

-hl Hh

"ho = <131 th 1111 > = <331 iHhl 113>
“h3 = <131 th|1121> = <241 Hhl 132>
"ha = <141 1Hh| 121> = <3411 Hhl 12 3>

= <2411 112 >
>

"h5 Hh <2311 12 2>

Hhl

= <2311 112 >

he Hh <2411HJ 122>

Fixing now every other spin on the chain, the eigenvalue
problem for the fixed configuration is easily solved. If the two
endspins are in the same state, say in |I>, the lowest energy

configuration of the intermediate spin Iis

X. (1D = A, -=n (0> +d 2>+ d |3>+d 4>}, (6.22)
/1+2d2+d2
with
(-E1 (1)-A1)h3+h1h2 (-E(ID-A >h +h h2
dl = (-E1 (11)+A2-h4)h2+2h1h3 d2 = (-E1(U)+X1)h1+h2h3

(6.23)



and E (11) 1is the lowest energy solution of

-h1l “h2 ”hl
“"EI+A2 "h3 "h4
=0 (6.24)
"h3 -E1+Al "h3
_EN
"h4 “h3 E7+X
IT the two end-spins are in the |12> , 14> , |23> or |34> con-

figurations, the lowest energy configuration of the intermediate

spin is different. For the |[|12> state, e.g-

Xx (12) = {el> + el2> t13> +la>y (6.25)
*9+2e2

e nn F3ALELT T LAE Kpu Grhd? v Geg2)
(6.26)

and the energy Iis
E1(12) = ¥ ZetRithdy - /7 X hgR+ (grhe . (6.27)

Similarly, when the two endspins are in the |13> configura-

tion, we get

% (L3) = { fl11> + 12> + fI13> + 14> } (6.28)
1 /
/242

T = ons 1Y Xtha-hg) + /7 ] Qythy-hg2 +4n2 3, (6-29)
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and the energy is

E1(13) - 2 ,x2-h2-haYy - [ i (A2*h2-hap *4>4 (6.30)

The renormalized Ashkin-Teller couplings are simply given

by the energy differences of the various configurations:

AMocen” B4@® - EAD
(6.31)
A cert G2 - B AL - E G, - FE A2)

The spin-flip amplitudes can be obtained by calculating the matrix

elements of Eq. (6.21) between the renormalized states. We get:

2- { h1(1+d1)2e2+2h5 (I+d1l) e(dx+d2) + »~{dj+d )2 },
1 cell (1+2d2+d2)(2+2e~)

2= T h2 @+d2)2r2 + 4y (Fd2) Fd1 £-4hd d* }
2 cell (1+2d2+d2)(2+2f~)

i - —— \——— r {hie+f)2 + 2h (etF) (Q+ef) + h_(1+ef)2 } ,
3 cell (2+2e2)(2+212) 1 5 3
- 4h2e2 + 4h6 1+e2) + h4<l1+e2)2} , (6.32)
4 cell @+2e ) { © e(l+e2) €2)2}
ic =7-,;- —7=W~ {h, (1+d de(e+H)+ h [(1+d de(l+ef) +

5 cell /14207 A +d3(2+2e2) 72+2F2 1

+ (d1+d2)(e+F)] + h3(dL+d2)(1+eP} ,

—=====r4---- T-  (h @+d def + h,[ (I+dHF(l1+e2) + 4d e] +
6 cell  /1+2d* +d2(2+2e2)/2+2F2 2 2 6 2 1

+2h4 d Qe ) }
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Comparing now these recursion relations with those obtained in
the block transformation, Egs. (6-18) - (6-.19), we see that

after the substitution

A, - 4h i = 1,2
(6.33)

4hg$A- . 1,2 6,

the two transformations lead to identical recursion relations.
In the block transformation new X couplings are introduced,

while in the decimation new spin-flip terms entered, but in a
dual manner. So the decimation transformation in these general
four state models is equivalent to the block transformation Iin

the dual model.
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VII. PERTURBATIONAL CORRECTIONS TO THE RECURSION RELATIONS

A consistent way to improve the results of the block trans-
formation has been suggested by Hirsch and Mazenkol4- The inter-
cell Hamiltonian is treated as a perturbation and the higher
order corrections are calculated in a consistent perturbational

way. In second order e.g. the renormalized Hamiltonian 1is obtained

to match the second order matrix elements given in Eq. (2.22).

A consistent treatment of the Potts model or Ashkin-Teller
model is prohabitively difficult due to the large number of new
couplings generated in higher orders. We will show here for the

Ising model that the new couplings are again dual to each other.

We write the Hamiltonian of the Ising chain iIn transverse

field In the form

L 2 4 1T -

where a* and a® are the Pauli operators. Hirsch and Mazenko14

have shown that in second order a new coupling of the form
kK 0% oX . (7.2)

is generated. Note that in Ref. 14. both the Hamiltonian and the
new coupling are written with a different choice of the coordinate

system.

The recursion relations obtained by Hirsch and Mazenko14

can be written iIn the form
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"cel1” 2107 T GR FifapHF (4 & 7 -2
, A uxi>L . 2K i=4 7.5

cett 2@+a ) 1+a
KESL_l: A g('lijﬁiz ’ E11- 1EO’ (7.5)

with

a= S, T4 - 2h ] (7.6)
Fo” v oan (7.7
E (7-8)

In the decimation transformation the Hamiltonian is split as

H = HO + VvV , 7.9
with
N/b yNb b1 N/b
o ML L1y °i,aai o (7.10)
0 *xq a=2 2 14 g4y “laaiatl 7 £l1 <+, 1
and
N/b
Y h J (7.11)
i=1

The eigenstates of Hq are easily obtained by Tfixing the spins
on the selected sites and solving the cell problem with the fixed

end spins. For a scale factor b = 2, the wave functions with both
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end spins up are

*1_(e0> = y = j I+>(1+> + CI+>) I+> = |+>X1(+H)]|+> ,
(7.12)
o2(M) = mA-y I+ (-clt> +]+>)]|+> = [+>x2 (E&+H)]|+> ,
/ 1+c
whe re
C:F]{ﬂ2+h2-ﬂ} (7.13)
and the energies are
- n - / 2
EX(M) = -/ A2 + h ec2 (ft) = K= + h (7.14)

The wave functions when both end spins point down can be

obtained by flipping all spins.

When the two end spins are in different states, the wave

functions are:

ox(++) = 74%[* 1+> (If>+] +) 14> = 4>5x1 (++)|+> r
(7.15)
02 (+1) = = > (Je-|+>)[+> = f>x2(+H)[+>  *
with energies
E1(+) = - h E2(t+) = h (7.16)

The intermediate spins are eliminated by taking the lowest
energy state for each configuration, 1i.e. keeping ¢ (fv) and

o~(++) and mapping these states onto the |++> and |t4> con-
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figurations of the renormalized spins. The Tfirst order renorma-
lized value of A 1is obtained from the energy difference of the
|++> and |[t4—> configurations:
" . (++ - - + 6> " -
ﬁwll E{( ) E. (+¢ (7.17)
The renormalization of the transverse field can be calcula-

ted from the matrix element between two configurations differing

by one spin flip on a selected site. This gives

(1+c)?2
2(1+c2)

7.18
hcem! (7-18)
It is straightforward to calculate the matrix elements
appearing in the second-order correction iIn Eq. (2.17). The second-
-order energy shifts of the configurations, when the fixed spin
orientations are or ...t+t...

, lead to a second-order

_ / . i, i,
correction to the coupling between the renormalized spins:

2.2
A A-c)

ceH = h 4@ +02)% El1(tH) E G&4) (7-19)

In second order there is also a possibility for the simul-
taneous flip of two neighboring spins, a process which is not
present in the original Hamiltonian. The matrix element of the

second-order term of Eq. (2.17) between the states

s XL D) XX ) XL CED 1> ==

and

o IXL ) [+5X1 @) [+XL &) 15>
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2 d-c2)2 (7.20)

-h
8(l+c2)2  ECHD  ExED

whereas the matrix element between the states

- JISXLGE) ISXLAEH) IHXL TP 1> oe-
and

ceeli>xl ) I45XL (+H) |[+>X1 (HDILj>

242
<> (7.21)

+h A
8(I+02)2 EN +0D) Ex(*+)

Thus the sign of the two-spin flip process depends on whether

the two spins are parallel or antiparallel. The corresponding

term in the Hamiltonian can be written as

z X X y oy
K of Opvr 01 Opygr = K Og 0ppy (7-22)

where to second order in h

22
@)
B(1sc?)”  FXMD - BXCD N

SMince in a consistent RG calculation this generated new

coupling has to be introduced from the outset, its effect on the

other couplings should also be considered. This new coupling
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contributes to the matrix elements between the states

- XA +H) I+>X1CE) IJ* === and eee li>X1 I¥y>X1 @) 1j5,—— and leads

to an extra renormalization of h"

Kk 17¢ (7.24)

l+c*

AhceII:

Collecting the various contributions, finally the recursion rela-

tions are :

Teenn = E1®) E ¢ +h2 4(%;90232 E1(td)  E1(+D (7-25)
h - @O _g e 7269
cell 2(1+¢2) Lec

_ G-c?y?
eem = 1 g2y [E @D E1(t) (7.27)

A comparison of these relations with those given in Egs. (7-3) -
- (7.8) shows again that the two transformations lead to iden-

tical results if the h+>A/2 interchange 1is made.

It is furthermore apparent that the new coupling generated
in the block transformation, Eq. (7.2) and the one generated in
the decimation transformation are dual to each other. For the

special case of the Ising model the duality relations in Egs.

(4.4) - (4.5 can be written in the usual form:
alz = J. aX , 7.28
| D<i 3 ( )
IX = 4 (7.29)

i+1
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and therefore

z K a? OT+' o* aI+I (7.30)

This proves that the higher order corrections do not destroy

the duality of the two transformations.
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VI, DISCUSSION

In this paper we compared two types of quantum RG trans-
formations. In the block transformation7'8 the low lying levels
of independent cells are mapped onto new spin states, the coup-
ling between the cells, a nearest neighbor coupling between
the two adjacent end spins, 1is treated in a perturbational way.
In the decimation transformation16 the spin states of selected
sites are mapped onto the states of new spins, by taking the
lowest energy configuration for the intermediate spins. The
single site term of the Hamiltonian acting on the selected

sites is used now as a perturbation.

We have shown that the two RG transformations lead to
equivalent results when applied to the 1-dimensional quantum
versions of the Ising model, Potts model or general Z(4) model.
We have seen that the results of the decimation transformation
are identical to those obtained by the block transformation in
the dual model. This is true even if several couplings are
introduced, as in the Potts model or Z(4) model calculation,
and also in higher orders of perturbation theory, where further

new couplings are generated.

It was apparent in the first applications of the quantum
RG transformation to the quantum Ising model that the transfor-
mations do not conserve the self-duality of the model. By

treating the Ising coupling and the transverse Tield on equal
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footing, Fernandez-Pacheco was able to find an RG transfor-
mation which conserves self-duality and therefore gives the
critical coupling exactly.

Except for the critical exponent v , the other exponents
are not given exactly. When applied to the Potts modelzo, the
critical coupling is again obtained exactly, the critical
exponents, however, are not exact and become worse as the number
of components increases. There is no indication of the crossover
from second-order to first-order transition around q = 4 .

The other RG transformations, the usual block transformation
and its dual, the decimation transformation have the merit,
that the second-order to first-order crossover 1is reproduced20.
Due to the generation of new couplings, these transformations
can give a more realistic description of the behaviour of the

Potts model.

We have not looked in this paper at the solutions of the
recursion relations for the Z(4) model. Our aim was just to
establish the duality of the two transformations. We will return

to the solution of the equations in a subsequent publication.
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