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ABSTRACT

A universal mass expression is derived for non-charm hadrons which unites
GMO formulae for various multiplets. Mass splitting is achieved via the gener-
ators of the 14-parameter ISU(3) group. The spectrum depends on three par-
ameters which vary with the spin. Comparison with particle data shows a near-
ly linear dependence.

AHHOTALNVA

BeBeaeHo o6luiee ypaBHeHMEe Macch ANnsi Heo4dYapoBaHHbLIX afpoHOB, 06befuHswlee
GMO-topMy bl pasfiMUHbLIX MYNbTUNAETOB. PacuenneHve mMacchl MPOBOAMTCS FeHepaTopamu
rpynnel 1SU(3) c 14-w napameTpamu. CneKTp 3aBUCUT OT Tpex CnuHo3aBUCAWMX napa-
MeTpoB. CpaBHEHMWE C AaHHLIMW 4YacTuly AaeT MNpPUGAU3UTENbHO NIMHENHYI 3aBUCUMOCTD.

KIVONAT

Altalanos toémegformulat vezetiink le nem-charmos hadronokra, amely kulonfé-
le multiplettek GMO-formulait egyesiti. A tomegfelhasitast a 14 paraméteres
ISGU(3) csoport generatorai végzik. A spektrum harom, spintél fiuggd paramétert
tartalmaz, oOsszehasonlitas a részecskeadatokkal koézel linearis fuggést szolgal-
tat.



We derive a mass expression for non-charmed hadrons which connects Gell-
-Mann-Okubo (GMO) formulae for various multiplets. Our expression is quad-

ratic both in meson and in baryon masses,

M2 = m2 + m2 + m2Y + m2[1(1+1) - gY)2] (€))

2 are functions of the SU(3) Casimir

with m the bare mass whereas ma, m'2 and
labels A and u, and of the baryon number B. These functions will now be cal-
culated explicitly. Thus the spectrum generation will be achieved by three
real parameters a, b and m , each dependent on the spin eigenvalue j.

The internal SU(3) flavor group with generators A" is enlarged by in-
eluding the translation generators d' and their conjugétes d~. The resulting

1l4-parameter ISU(3) group has the Lie-algebra commutation rules

r-i K, ci.k ck, i

v \Y, =Vj -V=*

1dl, Ajj] = 6*dj - rfijjd [d1, dj]=0=[di1,d.] - (@
tai- m X -

In unitary representations, the Al form a Hermitian and trace-less matrix.
This larger hadronic symmetry group is suggested by the Penrose theory of
twistorsl'z, together with the identification of internal-group infinitesimal
operators with physical quantum numbers. We shall not make explicit use of
twistor theory, however, in the present paper.

In the limit of perfect symmetry, the rest-mass is given by the Casimir-
ian of the ISU(3) group”

m2 = 2didi ] ®

We assume, as customary, that the physical masses are split by an operator
belonging to a nonet:

M =M% - m = <a H3|a> (@)
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We build up this operator H3 from the ISU(3) generators. Among the generators,
3 _ N

it is d' and @ which have matrix elements connecting different SU(3) multi-

plets. We define the nonet operator

Mk = d dk ®

Additional nonet operators may be obtained by contractions of 0™ with AMN"s
from left or right. Such chains of operators can be kept linear in O», by
using the dyadic structure () to factor out SU(3) scalars. We use Okubo"s
notation3 for nonet chains of operators. For example, we write

(A.n.i.A)1 - aV a»af >

The number of algebraically independent nonet chains is limited by
Okubo"s theorem3 which expresses the sum

U-ALX + (ALAX + (AA DX (@)

in terms of shorter nonet chains. We find that the algebraically independent
Hermitian nonet operators are [x and

(AAj + @.AdD i[(A.-A)I - (A.ADL , (AAA)*

¢:))
i[@-AAX - (AADX]T , ifGQ.LAANX - (AAL.A™]

In order to satisfy CPT symmetry, we must select positive C-parity oper-
ators. The C-conjugation is described by the involution

C: ®

and by the operator product rule C(XY) = (CX)(CY) .
The baryon number operator B defined by

mB = ZEI,'.KA.i 10

has negative C-parity. Any odd functional f of the baryon number, f(B)=-f(-B)
may be used to revert the charge parity of some operator. The resulting oper-
ator would not, however, contribute to the masses of B = 0 states. If we ex-

clude them, we find that there is a unique combination of operators (@) with

positive C-parity:

X = 2fRFL - 3(dkFX + ~d1) + AX + 6XB an

where we employ the notation fi = d¥ i and A = m2/2-
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We select as our mass splitting nonet operator the linear combination
H* = afl* + br£ . (%))

We may alternatively write as

Gi-iVi'S +hA*dE> @

where
r_ A o= flr ng = TKAJ a
and”®
a -3b O
-3b 2b O . @5
0 0 0

The matrix elemeé1ts of operaton(’) A Mmay be evaluated by u%e of the Wigner-
-Eckart theorem <b] Ila> = <a; (1,0) |bxb || £.,]la> where (1,0) denotes the
s-quark state with SU(3) quantum numbers {(X,uw),Yllz} = {(1,0), - ~oo} and
<bll CB l 2> is a reduced matrix element (RME) independent of the quantum num-
bers N = {YllzIl. Substituting Eq-(@3) in (&) we have

AM2 = paB<alCo bxb IEOla> =

1
b,A,B 2 B

b AB<b|Cl ]laxb|C2]a> = 16)

IgAB<a; (1,0) 3Ib>2<b WM CA lJaxb 0] na >

The values of the quark coupling CIebsch—Gor%an coefficients <a;(1,0)J|b>
have been worked out by Asherova and Smirnov . On inserting these values and
coefficients (15 in Eq.({6) we obtain our mass formula (@) with the functions

m2, m2 and mZ given by

2 = (A+2AD (A.+2u+3),,2 (B+28+u) (6+2N1+1)? (A-w) (B-X+u),,2]-

0 u(N.+U+1) 9 (A+2) (A+u+3T 9A(u+2) b+t)B

2=101U 3 /7 1 2 2KAN+?/2 2 _ Arp-J/2 2 17
1 3u AHu+1)N 3(A+2) X+u+3)1 3X(u+2)b D N
2 _ -N2 P2 S2

2 uU+u+l) " (A+2) (A+u+3) X (u+2)

The quantities N2, P2 and S2 containing the RME"s are defined

2A
N2 = 1 g,BN L | > SZ:IgB
AB A B P =, 194> B A,BAEB



nbA =
plA = <*+1"Y||
SMA = <X-i ,u+i

The RME"s of operators u4 have been calculated, using the ISU(3) algebra, by
Perjés and Sparling6- These are
21 (iB+j+1+y) (Ib-j+Y)
1 (u+D) (X+u+2)
21 (gB+j-1-x)(]B-j-2-x)
» @
| X+D) (X+u+2)
21 (IB+j+2) (yB-j-1+2)
*1 = - _.._Ffc+iIVOT+i).. -
where
Y = 2.)_(.4:11_ _ X+2yi -
3 y = 2% 3 20>
These RME"s satisfy
21 21 21
N1 + P1 +S1 =1 @b
and they are non-negative within unitary representations of ISU(3).
The RME"s of operators £2 and can eas:i-ly produced by using defini-
tions (14) between states |a> (chosen with the lowest weight) and |b> =
= |X+1,u/N>:
<bWNC2{fa>= - ~*<b]|] CxQa
22)
<bUN C3 Da> = (1AxU)2<b DCI || a>
The remaining RME"s are obtained by choosing [b> = |X-1,u+l> and |b> = |X,u-I>
with the results
/\ X+2u+6,,1 »3
3 1 ’
_ 22X+ 1 = (@X+y) -1
vh 3°1 P3 9~ *1 @3
X-u+3,,1 —
B2 3 bl B3 ~

Inserting the values (15) and (23)

tion of the RME"s

CA JI MIXX,U-1]] CBE~M>"(U'1S 2)

CA Il XuxX+i ul] CRI Xu> (1+T) €<X+uT2y  (18)

X(u+2
B CA || xuxx-i ,uti 0 Cgll Xm>11“£m 531)

in Egs.(@8) we compute the contribu-

in the mass matrix elements:



N2 = {a +2b[(y+2)2-3(y+2) IIN21
P2 = {a +2b[x2+3x]}P21 (€2))
s2 = {a +2b[(z+1)2-3(z+1) ]1}s21

All the coefficients in our mass formula (@) can now be explicitly cal-
culated. For a given spin j and with suitably chosen values of the parameters
m, a and b, we insert the RME"s (19) in expressions (24) which we use, in
turn, for evaluating the coefficients mQ, m" and m2 given in Egs.(17).

Our procedure may first seem to offer a wide range of applications. Yet
we meet severe limitations in its use. The strongest constraint follows from
the unitarity of the ISU(3) representations. The allowed range of quantum
numbers in unitary irreps has been obtained in Ref. 6. We now recall that the
inequality X+u 2j holds for ISU(3) unitary irreps. The unitary singlet
X,u) = (0,0) can only occur with vanishing spin. The octet (1,1) has only
the spin values 0, 1/2 and 1 whereas the decuplet (3,0) can have spin values
not exceeding 3/2. Regge recurrences and the vector singlet do not lie in
unitary ISU(3) points. Several propositions have been made to incorporate
these hadrons in the present scheme6'8 but it is not yet clear which of them
if any is acceptable.

Another problem is posed by the SU(3) mixing. This means effectively
that singlet masses are uncertain to the degree the mixing angle is. In con-
clusion, our mass formula can reliably be tested with the octets of pseudo-
-scalar and vector mesons, the spin-1/2 baryons and with the j=3/2 baryon de-
cuplet .

For octets we obtain

e =ZaétLfa(a+8b)PEIL+DB
mﬁ - ;tali}x - cj,i(a+8b)F’§1 + c%1(:;1-4b)5§1 + b )
m% = - iLaN’21 - y%(a+8b)F"21 + %(a—4b)821

where
N21 = |<B/2+j+2)(B/2-j+1)

PAL = |(B/2+j-2)(B/2-j-3) ©6)

SN = 1(B/72+j) (-B/2+j+D)

For triangular SU(3) representations the mass formula (@) greatly simplifies.
We obtain for the baryon decuplet with j=3/72, (A.,u) = (3,0) and B = 1:



M2 = m2 + i(atbb) + (yla - "b)Y . @n

We now want to use the experimental values of the masses M to determine
the values of the parameters m, a and b. Without a further assumption, how-
ever, this is only possible with the baryon octet. A least-square fit to the
octet masses yields the ratio (Table 1)

b/a = -0.066 + 0.013 ) ©9)

Clearly, the contribution of operator '3 to the mass is small.

In order to test the sensitivity of the parameter values to the mass
data, we repeat the fit with different assumptions. For example, we may gen-
erally ignore the isosinglet particle in an octet because of possible mixing
problems. Calculation of the baryon octet parameters with /1 ignored, results
in a drastic reduction of standard errors. This is because the GMO fit con-
tains now only the experimental mass errors. The values of m2 and a do not
change appreciably with respect to the corresponding least-square standard
errors. However, the parameter b does change. Conversely, we may say that the
masses vary little with the ratio b/a.

The masses in the meson octets and in the decuplet are also insensitive
to the ratio b/a. We shall exploit this phenomenon and adopt the value (28)
throughout. (The remaining multiplets contain insufficient data for evaluat-
ing b/a from the experimental masses. Cf. Eq.(27), for example.) In this way
we are able to calculate m2 and a for the pseudo-scalar and vector meson
octets and for the j=3/2 decimet (Table 1) .

As expected, the mass parameters m and a do vary with the spin. It
would be of interest to model this variance. A further insight is obtained
from the experimental values of Table 1 if we plot m? against a (Figure 1) .
The nearly linear behaviour of the parameters found in this way gives a hint
that the twistor particle model in which our mass formula originates may con-
tain valid ingredients of hadron structure.
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