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ABSTRACT

Simple model is constructed for the tunneling two level systems inter­
acting with the conduction electrons in metallic glasses. The coupling con­
stants do not commute in the momentum space. Scaling theory shows a strong 
similarity with the antiferromagnetic Kondo effect and it is shówn that at 
low temperature a bound state is formed in which the motion of the tunneling 
atom and the angular dependence of the screening electron cloud varying in 
time are strongly correlated.

АННОТАЦИЯ

Сконструирована простая модель для описания туннелирования системы двух 
уровней, взаимодействующих с электронами проводимости в аморфных металлах. 
Константы связи в импульсном пространстве не коммутируют. Теория скэйлинга 
показывает сильное сходство с антиферромагнитным эффектом Кондо, и показано, 
что при низких температурах образуется связанное состояние, в котором движе­
ние туннелирующего атома сильно коррелировано с угловой зависимостью экрани­
рующего электронного облака, меняющейся во времени.

KIVONAT

Fémüvegekben a vezetési elektronokkal kölcsönható alagutazó két nivós 
rendszerre egy egyszerű modellt javasolunk, amelyben a csatolási állandók az 
impulzustérben nem felcserélhetők. A skálázás elmélete nagyon hasonlit az 
antiferromágneses Kondo effektusra,és alacsony hőmérsékletekre megmutatjuk, 
hogy egy kötött állapot keletkezik, amelyben az alagutazó atom mozgása és a 
leárnyékolási felhő szögfüggése erős korrelációban van.
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Recently great attention has been attracted by tunneling two level
1 2 /systems (TLS)— *—  In metallic glasses, where an atom or group of atoms 

has two positions close in energy and the conduction electrons are scat-
3/tered by thesé centers.—  In several cases resistivity minima have been

observed with logarithmic temperature dependence. These observations invoked

the idea of similarity between these systems and Kondo effect in dilute
4/magnetic alloys.—  In case of the present problem the tunneling motion of 

the atom is associated with screening by conduction electrons thus it is 

closely related to the X-ray absorbtion problem. The problem has been 

attacked by Kondo himself-^-*-^ who has shown that if the electron scattering 

appears exclusively in one scattering channel (e,g. , in s-channel) then the 

repeated screening processes result in scaling behavior in terms of the 

electron band width cut-off D, but no spectacular physical effect could 

be expected because the problem does not scales into the strong coupling
5 7 9/region.— *— 1—  The situation is, however, essentially different if those two

scattering process, in which the atom of the TLS center does not or does 

change its position have different non-commutative angular dependence.

First Kondo has pointed outr^ that in this non-cummutative case logarithmic 

contributions to the electrical resistivity exist even in the leading 

logarithmic approximation. This result obtained in fourth order in pertur­

bation theory^-*-^- Kondo^ used the argument that there is a similarity between 

the present problem and the behavior of magnetic impurities in dilute alloys. 

The role of impurity spin is taken over by the internal degree of freedom of 

the TLS and spin polarization in the conduction band is substituted by the 

angular dependence of the screening. The aim of the present paper is to 

demonstrate this analogy beyond the fourth order in perturbation theory by 

constructing a simplified model, where the first order scaling equation can 

be solved and tha analogy becomes obvious.
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The general model—  can be given as H ■ H + H whereо 1
9/

H - I E. a+ a+ - о ~ к к к
к

Л° Z ^  лх
Т °  + 2 ° (1)

Here а+ is the annihilation operator for the conduction electron with energy

e. and with momentum к and the electron spin is not labelled as it does not
Z Xplay any role in the present theory, a and a are the Pauli operators acting 

on the states of the TLS, furthermore, Aq and A^ are the energy splitting and 

the intrinsic tunneling rate respectively. It is assumed that Aq and Aj are 

negiligable with respect to the other variables as energy ш, temperature T 

and conduction electron cut-off D. The interaction of conduction electrons 

with the TLS is given as

4 ' i - l  4 1 v * ‘г>
k.k'

(2)

where are the coupling constants. In realistic models it is usually

assumed that vj, kk 0 for the bare value.

The scaling equation for can be obtained e.g. by Anderson's "poor

man's derivation".—  ̂ Eliminating some part of the phase space by lowering the 

cutoff D the coupling strengths must be changed in order to keep the scattering 

amplitude invariant. Using the result of perturbation theory 

V^'fcix) = V®,k - 2ipQ | — 5s VC,- Vi. log x one gets the scaling equation-

3V“ ,к к
9log X

f ̂  V1,- viJ SF k'k kk

F

i j . ijk к oJ = ie J a ,

(3)

D i 1 ü k  кwhere x “ and о a = ie J a , pQ is the density of states for conduction

electron at the Fermi surface, dS, /S_ is the normalized surface element of theк F
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Fermi surface, thus dS^/Sp = 1. This equation is valid in the leading

logarithmic order and results in a term log |o)| in the expression of the 

electron inverse lifetime obtained in fourth order.A i ü /  It is hard to 

find the scaling trajectories for an arbitrary momentum dependence in 

V̂ , , because the momentum dependence is strongly modified also due to 

scaling. In the general case can be expanded in terms of a complete

set of functions f (k) (a = 1,2,...)

Vkk' = £ f„ * 0 0 V ^ f o(k')
aß aß ß (A)

where f (k) depends only on direction of momentum k.a
We propose a simplified model by retaining only two of these basic 

functions, which will be labelled as a = 1,2. In this subspace we must work 

two by two matrices, thus these matrices can be expanded also in terms of 

Pauli matrices, thus

V„R = V! « + V.1 (a ) „ +’aß -x " V a ß  ' vy T Vz (°z)a8 (5)

where the lower indeces are related to the momentum dependence and the upper 

ones to the TLS, furthermore, the unit matrix is omitted in this expansion, 

because it commutes with the other terms. Using this notation! given by 

eq.(5) the scaling equation (3) has the form

’S - _ijs (6)
3V _ i 1 iis

---1- = -2P_ V vj e1JS e 031og x о a ß aßy
S ->s s s sIn the following we take V as the component у of vector V = (V ,V ,V )у x у z

thus e.g.

(VSVP) = Ivsvp and (У^Ук) = e“3yv1v|vk 
u a a a ß ya '
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Making use of simple algebra one can see that

Эр/Ру8) 
a log x 0 thus (VPV ) = invariant (7)

for p ф s. Furthermore, one can verify that

= -8p ( v W )  (8)aiog x о

thus the rate of change of |vP |̂  is the independent of p. From this follows that 

in case ( v W )  > 0 the vector VP (p = x,y,z) increases as D is decreasing and 

the ratio | VP | / | VS |-*1. Furthermore, according eq. (8) VP (p = x,y,z) scales to 

infinity, thus identity (7) means that they tend to become perpendicular.

Using these identities we can construct the scaling trajectories. Let
->X ->-z ->yus assume for the physical values that V and V are finite and V = 0. Thus, 

in the first step is generated in the normal direction of the pl,ane determined
->-X ->2 ->xby V and V . In the further steps V and V remain in the same plane and the

direction of is not changing. The assumption (VXV^VZ) > 0 made earlier
->x ->zholds automatically and V and V are approaching step by step to their per­

pendicular positions. In an advanced stage of scaling V^V^V2 can be considered 

as the approximate edges of a growing but not turning cube. This scaling 

trajectories are depicted in Fig. 1. One could, furthermore, calculate the

correction to the first order scaling eq. (6). Using the argument of Anderson— ^
12/and Fowler—  in a one dimensional problem one can not expect fixed points which 

are different from zero and infinite. Therefore, the corrections to the scaling 

of first order might modify the trajectories but the basic feature of the tra­

jectories can not be altered, thus, the corrections can not change the fact that 

a weak coupling system scales into the infinitely strong region. The system 

studied here, indeed, can be regarded as a one-dimensional one because we keep
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a finite number of terms in expansion (4), thus, the absolute value of the 

momentum к is the only continous variable.

The result obtained are based on the following approximations:

(i) We kept two values of a in expression (4). Working on a realistic 

system, more functions must be kept, but very likely a few is satisfactory;
4 5/e.g. in the specific TLS system studied by Kondcr11—  three angular momentum 

channels occur (1 = 0,1,2, with m = 0).

(ii) It has been assumed that the variables |ш| or T large compared 

to the parameters of TLS as A^ and A^ which act like the extermal magnetic 

field does in the Kondo problem. Thus, the scaling is blocked by A^ and A^ 

as soon as D becomes comparable with them. Similiar effect can be caused by 

the superconducting energy gap.

The general scaling behavior found shows a strong resemblance to the 

antiferromagnetic Kondo problem. In both cases the original'system is 

scaled to the strong coupling region and that approaches the isotropic 

case. In order to make it more obvious one can introduce a new linear com­

bination of f^ and f^ or, in other words, one can rotate the coordinate system 

in the momentum space that the new axis coincide with the asymptotes of the
— ->-y -*-£ X у

scaling trajectories of V , \r, and V . In the new system only V and Vx у
2and V are different from zero. In the first order scaling the Hamiltonian z

near to the infinite fixed point has the form

p +
Нц ■ Va1 | » 1» Л 1»(,1), А г>

(9)

where \ o a^f^Ck). Furthermore, because (VXV^VZ) > 0, thus, V > 0.

Indeed, the scaled Hamiltonian near the fixed point has exactly the form of

the Kondo Hamiltonian with antiferromagnetic coupling where and acorrespond
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to the localized and conduction electron spin respectively. By taking into account 

the higher order corrections in the scaling equation it may occur that the system does 

not scale exactly to the Kondo Hamiltonian, however, that can not change the fact that 

the scaling leads to the strong coupling region. Some modification could be 

expected rather in the fine structure of the ground state e.g. the asymptotes 

of vector V* might not be perpendicular.

The internal degree of freedom of the TLS system plays the role of the
X V  zimpurity spin. It is crucial that V , V ^ , , and V^i are not commuting 

in the momentum space just like the conduction electron spin operators in 

the real space. In the Kondo problem at low temperature a resonance or bound 

state is formed where the impurity spin is compensated by the conduction 

electrons, while in the present case a strong correlation occurs between the 

motion of the TLS atom and the angular distribution in the screening electron 

cloud. It is hard to give a general expression for the Kondo temperature TK.
->-xwhere this correlation becomes strong, but assuming that V is perpendicular 

to VZ already at the beginning one obtains for |vZ| >> |vX| that
1x zV exp{ - (log 4 )/vZ}V * (10)zV

where v* = p Iv̂ l for i = x,z. This result is correct in the leading logarithmic

approximation and can be slightly changed by taking into account corrections

of higher order in the scaling. In the other limit |vX |'ь|vZ| one obtains

T = D exp { - l/vZb  K. c

Estimating the Kondo temperature we assume that v is due to the conduction
2electron assisted tunneling and v is the non-tunneling coupling, which are 

usually noncommutative^/ The ratio vX/v can be easily estimated if we assume 

that the barrier height V is modified by the potential due to the fluctuation

v

of conduction electron density and calculating the assisted tunneling rate one

* this formula is the one corrected by K. VlaJár*
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get vX/vZ ~d(2MV)^^ • Д^/V where M is the mass of the tunneling atom?* It is
x z -2 -3reasonable to assume that there are tunneling states for which v /v - 10 -10 in

2order to get 0. 1 К one must assume that V ^0.6. This value is somewhat
14/larger than the measured one for Pd^ ^g Si^ Cu^ alloy—  but that can be

3/ 13/different for various systems because it is proportional —  ’ —  to the 

pseudo potential of the atom, the Fermi momentum and the separation distance of 

the two states of TLS and the conduction electron density of states at the 

Fermi energy.

We consider as the main result of the present paper that it has been shown 

that a coupling between conduction electrons and TLS can result in an angular 

dependent screening cloud which is strongly correlated with the motion of the 

TLS. Being aware of the fact that the model treated here is oversimplified,
13/we believe that a more general physical system may behave in a similar manner.—

The appearance of Kondo state in metallic glasses could lead to several

consequences. First of all when a metallic glass is cooled down to lower and

lower temperature then less and less TLS center behaves like a free TLS. The

sound absorbtion must be essentially modified also and the Kondo state must

show up in the behavior of glassy metallic superconductors. The Korringa
14/relaxation mechanism for TLS-=— is expected to be enhanced as the Kondo 

temperature is approached in a similar way as the electron inverse lifetime 

is increasingr^This might be observed by ultrasonic absorption measurements. 

Finally, we may note, that this treatment is valid for two and three dimensions 

as well.

The author expresses his gratitude to J. L. Black, B. Golding and J.

Sólyom for valuable discussions and to D. Pines for his hospitality in the 

Physics Department at the University of Illinois.

**
and d is the width of the potential barrier
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Fig. 1. The scaling trajectories are depicted for eq. 6 in the space variable
->X ->2related to the lower indices. The starting vectors V and V are shown

->-y ->y
by solid lines, while V starts from V = 0. V and V are scaled in

->ythe plane determined by them and V is moving in the normal direction

to that plane. The scaling trajectories are depicted by dashed dotted
->x ->zlines, the asymptotes of vectors V and V are represented by dotted 

lines. The arrows indicate the ends of the vectors at different stages 

of the scaling, which are labelled by numbers.
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