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ABSTRACT
The thermodynamic properties and the radial distribution functions for 

systems with inverse power potential and for a Lennard-Jones fluid at high 
temperature are calculated using a new perturbation method applied for a hard 
sphere reference system. The results are compared to those obtained from the 
Andersen-Weeks-Chandler theory and to the Monte Carlo results.

АННОТАЦИЯ
Термодинамические свойства и парные корреляционные функции для системы 

частиц, отталкивающихся по закону 1/гп, и для жидкости Ленард-Джонса были 
вычислены с помощью нового метода возмущения для системы референции твердых 
сфер. Результаты были сравнены с соответствующими величинами теории Андерсен- 
-Викс-Чендлера и с Монте-Карло "машинными" экспериментами.

KIVONAT

Az l/г11 taszitó potenciállal kölcsönható rendszerek és a magas hőmérsék­
letű Lennard-Jones folyadék termodinamikai tulajdonságait és radiális elosz­
lásfüggvényét számítottuk ki egy uj perturbációs módszer segítségével, ke­
mény-gömb referencia rendszert használva. Az eredményeket összevetettük az Andersen-Weeks-Chandler módszerrel számoltakkal és Monte Carlo számitógépes 
kísérletek eredményeivel.



Introduction

In the first part of this work.'*' (hereafter referred to
as paper I) a perturbational method was developed for the
description of the thermodynamic and structural properties of
real fluids in terms of a reference system, the properties

»
of which are assumed to be known. In this paper we apply this
method for a hard sphere reference system, for which convenient

2analytic formulae are available both for the equation of state
3 4and the pair correlation function ' .

During the last years the relationship between the pro­
perties of this idealized model system and those of real fluids 
with smoothly varying repulsive forces has been discussed in 
several papers. Rowlinson~* considered fluids with an inverse 
nth power potential and expanded the thermodynamic properties 
in powers of 1/n. Barker and Henderson^ generalized the Row- 
linson method by applying it to a wide class of repulsive 
potentials. One of the most successful method was proposed by 
Andersen, Weeks and Chandler /AWC/^. In this method a series 
expansion is obtained for the free energy in powers of a 
"softness parameter" íj by writing down its functional Taylor 
expansion in powers of the Boltzmann factor differences. The 
hard sphere diameter is chosen in such a way which causes the 
first order term of the free energy to vanish, at the same time 
reducing the magnitude of the higher order terms as well. 
However, if the interaction potential is not steep enough, the 
accuracy of these methods is not satisfactory in many cases, 
especially for the radial distribution function of the system.
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The inaccuracy of the treatment of softening the core 
reflects in the results of the perturbation calculations for 
realistic potentials, when an attractive tail is added to a 
smoothly varying short range repulsive potential. Although 
the different theoretical methods for treating slowly varying 
attractive perturbations can be tested by ruling out this

Qinaccuracy , the accurate treatment of soft cores has still 
remained an unsolved problem in the theory of classical fluids.

In this paper we caculate the thermodynamic properties 
and radial distribution functions for systems with inverse 
nth power potentials (n= 6, 9, 12) and for a Lennard-Jones 
fluid at high temperature using the method developed in I.
This method enables us to take into account an important part 
of the higher order terms of the usual g -dependent form of 
the thermodynamic quantities using only the radial distribution 
function of the hard sphere reference system (those parts that 
can be expressed in terms of the derivatives of this function 
with respect to the density). This will be demonstrated on the 
system with an inverse twelfth power potential. We discuss the 
problems related to the optimal choice of the hard sphere 
reference system and the condition g = § 0 proposed in I is 
compared to that given by Andersen et al^. The thermodynamic 
consistency will also be investigated: the equation of state 
is calculated both from the virial equation and from the deriva­
tive of the free energy with respect to the density. The results 
are compared to those obtained from the AWC method. In the last
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part of the paper the calculated radial distribution function 
for the system with inverse twelfth power potential is compared 
to the Monte Carlo results and to that obtained from the AWC 
theory.

Description of the method for a hard sphere reference system

In this section we reformulate the method described in 
paper I for a hard sphere reference system, assuming that we 
know only the hard sphere pair correlation function. In this 
case the basic equations of the method (equations (lla-b) in 
paper I) will have the form

(la)

and

(lb)

where, to simplify the formulas, we introduced the quantity 
'ft* 3
"ß" S  ̂  instead of the density ( O ’ stands for the charac

teristic length of the potential U (^ ) ) and the packing
7Г i3fraction n£0s . U g o a  for the hard sphere reference system 

(d is the hard sphere diameter).

In these equations the prime denotes a derivative with
j|£

respect to and d  = ol (б" . The integral J )

is defined as
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oo
1(^0,с1%Л2.«£,> x ) [ e ( d x ) - e ct x ) ] x zőlj< (2)

О

Here во(*)у£(^в<*) stands' for the hard sphere radial 
distribution function (which coincides with for nr >  d  ),
в  ( ^ ) and 6 0 ( ^ )  are the Boltzmann factors for the 
system under consideration and for the reference system, respec­
tively. The excess chemical potential of the system can be 
obtained from the equation (19) of paper Is

) л f3jLCел <Лг11' 7 (3)

The excess free energy per particle 
now from the thermodynamic relation

n . £ Д е х can be determined

у
a(^,ol ) я |3/̂ ex - 1° +  4 (4)

The calculation can be carried out in two steps. First, one has 
to determine the packing fraction о of the hard sphere 
system for a given value of *1 from the equation (lb). After 
this calculation the corresponding thermodynamic quantities can 
be obtained from the equations (la), (3) or (4) using this value 
for . We can, however, proceed in an other way, starting
from the usual density-dependent form for the thermodynamic 
quantities; expressions of this kind for the excess chemical 
potential and excess free energy can be obtained from the
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equations (20) and (21) in paper I, respectively (first order

in 5  ):

^ I
p / ^ k í ^ - ^  (5a)

a (*7 o(.*; a 0 C 'f ) - I ( ̂  » ol ) (5b)

To simplify the formulae, here we introduced the notation 
•if 3я <y£oL . The two kinds of description, in general, are

not equivalent with each other: the results of a calculation 
based on the equations (lb) and (3) or (4) differ from those 
obtained from the equations (5a-b) in the sum of an infinite 
subseries. They are equivalent only if the hard sphere reference 
system is determined from the condition £  = S° proposed in 
paper I, when the sum of this subseries equals to zero. The 
equivalency of the two descriptions can be seen by comparing 
the equations (5a-b) to (3) and (4) and taking into account 
the condition ~ S °  • which now has the form

[•7 Г (ч ,с1 *)]’= о (6)

This equation specifies the reference system for a given value ^  
through determining the function c L \ )  . To illustrate the 
difference between the two descriptions, we consider a system 
with an inverse twelfth power potential and calculate the excess 
free energy and the excess chemical potential as a function of
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the hard sphere diameter oL at different values for oj using 
both kinds of description. As it is well known, the thermo­
dynamic functions of a system with an inverse power potential 
of the form

a ( r ) ~  £. ( — *]
n

(7)

J/n
depends only on the quantity *£ (£ P )  . In the present method 
this scaling property is preserved as we can see from the defini­
tion (2) for the function I, which does not depend on p, £ , and 

O' separately, but only on a "temperature dependent
characteristic length" Cf [£.{$) . Replacing C7 by this new
characteristic length (i.e. taking s ^  £ p  ̂  and

ßl , rV„Cl —  ~r v £ p  Í ) , our formulae become appropriate for treating 
systems with a potential of the type (7).

To perform this calculation, one needs the knowledge of the
hard sphere radial distribution function as a function of
the packing fraction and the distance, and the equation of state

ofor hard sphere fluids. For outside the core we used the
analytic expressions obtained empirically by Verlet and Weis'* 
based on the solution of the Percus-Yevick equation^, while in 
the r 4. d region we took the Thiele-Wertheim cubic polinomial 
form in r/d, with coefficients, which assure the continuity of 
the pair distribution function and its first and second deriva­
tives at r=d^. Verlet and Weis state that the function y ^  obtained 
in this way differs from their Monte Carlo results by at most 
3 %. For the equation of state of hard sphere fluids we used the
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expression suggested by Carnaham and Starling , which summarizes 
the available molecular-dynamics and Monte Carlo results within 
the statistical accuracy of these computer calculations. For the 
excess free energy and for the excess chemical potential this 
gives

2

o-oiä) Í 4 -
(8a)

8*j

H  -  n])3 (8b)

The calculated values for the excess free energy and for the
excess chemical potential of the system with inverse twelfth

■ *power potential vs. ol are shown in Fig. la and b at three 
different values for *1 ( **[ = 0.3, 0.4, 0.5). The solid curves
were obtained from the equations (la), (lb), (4) or (3) by 
eliminating • while the results obtained from the equation

(5b) or (5a) for CL and Р Л е л  respectively, are indicated by 
dashed lines. The Monte Carlo results'*'0 are also shown in the 
figure by dotted lines for the corresponding values . To
interpret the results we call attention to the fact that if we 
knew all the higher order distribution functions of the hard 
sphere system, in principle we would obtain accurate results 
starting from any value of ol . Thus the extension of the region 
in ol t where these two kinds of first order calculation give 
reasonable results (the "flat" regions of the curves close to 
the dotted lines) , characterizes, in some sense, the magnitude
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of the neglected higher order terms. Therefore this figure 
clearly shows the advantages of a description which starts from 
the equations (lb) and (4) or (3). In the figure we also indi-

I*cated the values c( determined from the equation (6) and 
those obtained from the AWC condition ( K ^ i  d  ) = 0) .

I*The two methods result in similar values for сл » and therefore, 
for this system, they are nearly equivalent from the point of 
view of the thermodynamic quantities (but not from the point of 
view of the pair distribution functions, as we will see later). 
Furthermore, it is easy to show that at the value of where

ф ~ • not only the values of the free energies obtained
from the two kinds of description equal to each other, but the 
slopes of the curves also coincide at this point^:

(9)

On the other hand - since in zeroth order уг ( 1 ' £ ) = у  » И 1 5 )  

as we can see from the equation 23 of paper I - the virial pressure
, д J 4

Pv is related to the derivative ( J ~ by the equation

913(̂ - иИ 1 г Ы ч (10)

Thus we can see that p = p^ when ( A k  equals to zero.
From Fig. la we can see that this condition is approximately 
satisfied for all the three values of ^  at the point where 

9  e ' which predicts a good zeroth order approximation for 
the radial distribution function by using the ?-$*<> condition.
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Results

A. Equation of state

In order to test the present method, in this section we 
calculate the equation of state for several systems from the 

condition 5^= ' anĉ  compare them to those obtained from the
AWC method and to the results of computer simulations. The values 
for the free energy and the pressure for a system with inverse 
twelfth power potential are shown in Table 1. As was already 
indicated in Fig. 1, there are no reasonable differences between 
the results obtained from the condition = g 0 (equation (6)) 
and those obtained from the AWC condition (1=0) when the equation 
of state is determined by numerical differentiation of the free 
energy with respect to the density. The virial equation of state, 
however, is more accurate in the case of the condition r

as we can expect on the basis of the discussion in connection 
with Fig. 1. The values for the pressure obtained from the 
equation (la) using the condition are in good agreement
with those obtained by numerical differentiation, demonstrating 
again how the thermodynamic consistency is fulfilled in the 
present method.

Other applications of the method are shown in Table 2 and 
in Fig. 2, where the equation of state is given for the systems 
with inverse ninth and sixth power potentials, respectively. In 
Fig. 2, the results obtained from the condition g  = ̂ >0 (solid 
line) are compared to those of the AWC method (dashed line).

r
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The dotted lines show the virial equations of state and the full
12circles indicate the Monte Carlo results . We can conclude 

again that at low densities there are no essential differences 
between the results of the two method, but for larger densities 
the condition $ ~ reproduces more accurately the Monte Carlo
values. The advantage of the condition g = g a is even more 
evident if one compares the virial pressure p^ to that obtained 
by numerical differentiation (p). Both the data in Table 2 and 
the curves plotted in Fig. 2 clearly show that p <v» p^ for the 
condition = g 0 , while using the AWC method p^ is essentially
larger than p at large densities.

Finally in Fig. 3 the calculated equation of state for a
*Lennard-Jones fluid is plotted at high temperature (T =5), to-

13gether with the Monte Carlo results . The results show that in 
this temperature range the method can be applied directly for 
a Lennard-Jones system as well, but at low temperatures it fails 
to work for the reasons discussed in paper I (at low temperatures 

our zeroth order pair distribution function r̂ zC'r)

is not a good approximation any more, and one should treat sepa­
rately the short range repulsive and long range attractive parts 
of the potential).

B. Radial distribution function

The equation (23) in paper I gives an expression (first order 
in í= ) for the radial distribution function, and we suggested two 
different recipes for the choice of the reference system in the
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zeroth and the first order calculation. In zeroth order (when

bi/t' <r ) = У*- (Я ' S ’ ) ) the reference system can be deter­
mined from the condition (equation (6)). The results of
such a zeroth order calculation are shown in the Fig. 4 and are

14compared to the results of a Monte Carlo computer calculation 
and to the pair distribution function obtained from the AWC method 
for the system with inverse twelfth power potential. In contrast 
to the case of the thermodynamic quantities, in this case there 
is an essential difference between the results obtained from 
the AWC method and from the condition $ ~ • While the first
peak of the pair distribution function is too large in the AWC 
method, the condition j? = j>0 almost exactly reproduces the 
results of the computer simulations in this region (here we used 
a moderately large value of , indicated in the figure). In 
the region of the first minimum, however, both the AWC and the 
present method give too small values for the function g2 (r).

These results can be improved by taking into account the 
next term in the expansion of the pair distribution function.
In this case the reference system can be determined from the 
consistency criterion given by the equation (27) in paper I, 
which now has the form (for a hard sphere reference system)

(ID

To perform the calculation, one should use some approximation 
for the three particle distribution function of the hard sphere 
system, which appears in the first order term in the equation (23)
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in paper I. Using the Kirkwood superposition approximation for 
this function, we can obtain an approximate expression for y2 
from the equation (23) of paper I:

where the integral J is defined by

x + x

О ч
m a x  (I x - x ' l , A /

(13)

This expression for J(x) was obtained by introducing a bipolar 
coordinate system.

The result of the first order calculation (solid line) is
plotted in Fig. 5 for a system with inverse twelfth power poten-

14tial, together with the Monte Carlo results (full circles)
The zeroth order curve (dashed line) is also shown. One can see 
from the figure that the result of the first order calculation 
agrees remarkably well with the Monte Carlo data not only in the 
neighbourhood of the first peak, but the agreement is essentially 
improved in the region of the first minimum as well compared to 
the zeroth order case.
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Conclusion

To summarize we can say that the application of the method 
developed in I for the systems with inverse power potential 
using a hard sphere reference system, verifies our expectations 
that using this method a more accurate and more consistent des­
cription can be achieved compared to the calculations which start 
from the usual density-dependent form for the thermodynamic 
quantities. This result can be ascribed to the fact that the 
present method makes a more complete use of the information 
content of the radial distribution function. The advantage of 
the method can be seen clearly from the remarkable agreement 
between the values for the pressure calculated from the virial 
equation and those obtained from the derivative of the free 
energy with respect to the density, and from the reasonable 
agreement between the calculated radial distribution functions 
and the Monte Carlo results.
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Figure Captions

Figure 1.

The excess free energy (a) and the excess chemical poten-
•fttial (b) of the system with inverse twelfth power potential vs.d 

at different values for ^  • The solid curves were obtained from 
the equations (lb), (la), (3) or (4) by eliminating ô0 , while 
the results obtained from the equation (5b) or (5a) for a. and

respectively, are indicated by dashed lines. The Monte Carlo 
results10 are shown by dotted lines. The arrows show the values 
of d determined from the condition g  = J?0 (equation (6)) ( 
and obtained from the AWC - condition (+)•

Figure 2.

The equation of state of the system with inverse sixth 
power potential. The dashed curve was obtained from the AWC - 
-condition by numerical differentiation of the free energy with 
respect to the density, while the dotted curves show the virial 
equation of state coming from both the AWC - method, and the 
condition <j> = 5>0 . The pressure obtained from the condition
£ =g0 by numerical differentiation is indicated by solid line.

The Monte Carlo results are denoted by full circles.

Figure 3.

The equation of state for a Lennard-Jones fluid at high
•fttemperature (T =5). The solid line shows the result obtained 

from the condition g =  / the MC - results13 are indicated
by black circles.
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Figure 4.

The pair distribution function of the system with inverse 
twelfth power potential at *4 = 0.4215. The zeroth order result 

obtained from the condition S - J ? *  (solid line) is compared 
to that calculated from the AWC theory (dashed line) and to the 
MC results (black circles).

Figure 5.

The pair distribution function of the system with inverse 
twelfth power potential at = 0.3746. The full line shows the
result of a first order calculation, where the three particle 
distribution function is given by the Kirkwood superposition 
approximation. The results of the zeroth order calculation 
and the MC - results are indicated by dashed line and black 
circles, respectively.
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Fig. 2
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Table Captions

Table 1.

The thermodynamic properties of a system with inverse 
twelfth power potential. MC = results of Monte-Carlo experi­
ments10; AWC = prediction of the AWC - theory, § =£o ~ results
obtained from the equation (6). The equation of state is 
obtained by numerical differentiation of the free energy;
AWC (V) and (v) are the predictions of the AWC - theory
and the condition jg> -£o , respectively, based on the virial
theorem. The values for the pressure obtained from the equation 
(la) using the condition £  =§o are also shown ( § ~ £ o  (la)). 
The AWC values shown in the table differ slightly from those of 
Ref. 7 as a consequence of the different extrapolation procedure 
for у 2° (r) inside the core.

Table 2.

The equation of state of a system with inverse ninth power 
potential. The notations are the same as in Table 1. The MC values 
were taken from Ref. 12.



*  6 a P
MC AWC MC AWC AWC (v) О =^0(1/а)

0.1 0. 40 0. 404 0.404 1.45 1.450 1.455 1.450 1.449 1.454
0.2 0.91 0. 907 0.908 2.12 2.123 2.155 2.124 2.123 2.143

го•о 1.53 1.537 1.540 3.12 3.116 3.232 3.123 3.119 3.166
0.4 2.33 2.331 2.337 4.58 4.556 4.873 4.580 4.571 4.631

in•О 3.34 3.332 3.347 6.66 6.616 7.334 6.665 6.669 6.640
0.6 4.61 4.599 4.623 9.56

!
9.539 10.945 9.591 9.688 9.256

Table 1



Я, 6
MC AWC AW C (V) r s o

0.1 1.50 1.50 1.51 1.50 1.51

0.25 2.70 2.69 2.84 2.70 2.77

0.5 6.60 6.48 7.74 6.61 6.65

Table 2
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