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ABSTRACT

A perturbational method in the form of a power series iIn a 'softness
parameter'™ f has been developed for determining the thermodynamic properties
and the pair correlation function of a real fluid using the thermodynamic
quantities and distribution functions of a reference system.The method makes
possible a simple treatment for the higher order terms and enables us to
take into account some parts of the higher order terms in the usual density-
-dependent form of the thermodynamic quantities, in terms of lower order
terms, namely those parts, that can be expressed in terms of the dervatives
of lower order distribution functions with respect to the density. Thus we
expect to achieve higher accuracy compared to the usual treatments in the
case, when we know, for example, only the pair correlation function of the
reference system, since the method makes full use of the information content
of the pair function. Besides, new conditions have been proposed for the
optimal choice of the reference system.

AHHOTALMA

MepTypbaunoHHeii MeToh B (opme CTENEHHOro psga no ‘‘napameTpy msarkocTmn' F
pas3BuUT ANs onpefesieHMs TepMoAUHaMUYEeCKMX CBOWCTB U MapHO KOppensauvMoHHOM
(GYHKUUN peanbHOl XMAKOCTU. [pu 3TOM WUCMOMb3YWTCH WM3BECTHble TepMoaguHammyec-—
Kne QYHKUMM U DYHKUMW pacnpefenieHus CUCTeMbl, BbibpaHHOU B KayecTBe pefepeHumu .
MeTon faeT BO3MOXHOCTb AOCTOTOYHO MPOCTO MNOJiydaTb B Pas3/IOXEHUU YJieHbl BbICWNX
nopsgkos. OAHOBPEMEHHO OH MO3BOMIAET YYECTb YacTb Y/IEHOB BLICWMX MOPAAKOB ON1A
TepMOAMHAMUYECKUX BeMIMYMH B OObIMHOW 3aBucslweld OT MAOTHOCTU ¢opme /4yacTb, KO-
TOopas MOXeT ObiTb BblpaxeHa 4epe3 MNpPou3BOAHbIE MO MJOTHOCTU HU3WKMX Nopsankos/ .
Takum 06pa3oM MNpencTaBniseTCs, YTO BO3MOXHO MPOBOAWTbL BbIUMC/IEHUS C BbICOKOWA
TOYHOCTbLI B C/lyyae, KOrga M3BeCTHa TOMIbKO MNapHasa KoppenduuoHHas (yHKUMA Cu-
CTembl pegpepHuMn. Kpome TOro, npeasioxeHsl HOBble YCMNOBUA ANA ONTUMasIbHOro Bbl6O-
pa cucTemsl pefepeHuumn .

KIVONAT

Perturbaciés médszert fejlesztettink ki egy T "lagysagi paraméter™
hatvanyai szerint haladdé sor alakjaban egy realis folyadék termodinamikai
tulajdonsagainak és parkorrelacids figgvényének a meghatarozasara egy re-
ferencia-rendszer termodinamikai mennyiségeinek és eloszlasflggvényeinek a
felhasznalasaval. A modszer lehet6vé teszi a magasabbrendi tagok egyszeri
kezelését és a termodinamikai mennyiségek szokasos suriség-figgé alakjaban
fellépd magasabbrendl tagok egy részének figyelembe vételét alacsonyabbren-
di tagok segitségével /igy azokat a részeket tudjuk Ffigyelembe venni, ame-
lyek alacsonyabbrendi eloszlasfiggvények slirliség szerinti derivaltjaival
kifejezhetb6k/. igy a szokdsos médszerekkel o©sszehasonlitva nagyobb pontos-
sag érhetd el abban az esetben, amikor csak a referencia-rendszer parkorre-
lacios fiuggvényét ismerjik, mivel a moédszer a parkorrelacidos fuggvény teljes
informaciodtartalmat felhasznalja. Emellett uj feltételeket javasoltunk a
referencia-rendszer optimalis meghatarozasara.



INTRODUCT ION

In the calculation of the thermodynamic and structural
properties of real fTluids the perturbational expansions - being
the only viable methods besides the Monte Carlo and molecular
dynamics computer simulations - are of great importance.

In this kind of calculations the thermodynamic and structural
properties of a fTluid are expressed in terms of the properties
of a "reference system"™, which are assumed to be known. Among
these the most successful and most commonly used methods are
the high temperature expansionl (or A-expansion), the genera-
lized cluster expansion2 (often referred to as Y -expansion),
the optimized cluster expansion3 and their modifications4.

The high temperature expansion results iIn a power series iIn a
formal parameter A measuring the "amplitude”™ of the poten-
tial difference AvV) *u.(r)- u0OCr) , and not iIn a kind of
"softness parameter™ i measuring the "amplitude” of the

difference in the Boltzmann factors

|GE-(r)=e.(r)-e,(r>= e:"**“"Lr, .

Therefore the A -expansion is appropriate mainly for treating
slowly varying perturbations (e.g. an attractive tail added

to a Hard core repulsion). This holds for the other methods

as well, since - although they are not systematic expansions
in A - their leading terms are proportional to the potential
difference. An other group of perturbational theories (for

simplicity, hereafter we refer to them as “-expansions) has



been developed for treating rapidly varying perturbations

(in a narrow range of r) .to describe the thermodynamic proper-
ties of the so called soft sphere systems3®" * _ These methods
result In perturbational series actually iIn powers of a soft-
ness parameter (or In other words, a functional Taylor ex-
pansion in the difference of the Boltzmann factors &&(*) ),
as it can be seen clearly from the free energy expression

given by Andersen et al-7- The ~"-expansions are expected to
assure a rapid convergency for the perturbational series in the
cases, when the perturbation (which may vary rapidly) is loca-
lized in a narrow range of r in the small r-region (usually
around some core radius). The main reason for this is the
following. Since 1In this case the perturbation appears in the
region which is of primary importance from the point of view

of determining the pair function, iIn the 7~ -expansion already
the zeroth order term gives a reasonable result for the pair
distribution function nA(r) in the form )

( is the pair distribution function of the reference
system), In contrast to the zeroth order term of the high tempe-
rature expansion, where nr(M=MN.1(r) (as we can see from the
first order term of the free energy). The latter 1is appropriate,
therefore, for treating slowly varying perturbations appearing
in a region which has little effect on the pair correlation

function.

In these methods the derivation of the higher order terms
is usually rather cumbersome, i1f there exists any viable pres-

cription for their calculation at all. In this paper we present



a simple method in terms of which one can relate the thermo-
dynamic and structural properties of a real fluid to those of

a reference system in a compact, physically transparent form.

The method of derivation is similar to that of the usual cluster
expansion of the virial series. The series expansion developed

in this way in its original form (being a kind of a -expansion)
is mainly appropriate for the description of rapidly varying
perturbation, but expanding the difference of the Boltzmann
factors in terms of the potential difference v(r), we can

recover the formulas of the high temperature expansion as well.

The method in its present form contains an approximation
(decoupling of certain cluster integrals) which is, however,
not a necessary condition Tfor carrying out the calculation.

In the exact result some corrections contribute to the higher
order terms presented here, but the calculation of these
corrections 1is easier by using an other technique (the diagramma-
tic expansion) and it will be published elsewhereQ. The reason
for applying this decoupling approximation 1is threefold. First,
it allows us to derive the thermodynamic quantities in a simple
physically transparent form. Second, this formulation of the
problem makes i1t possible to take into account some parts of
the terms containing higher order correlation functions in the
usual density-dependent form of the thermodynamic quantities,

in terms of lower order terms, permitting to achieve higher
accuracy in the important special case, when we know only the
pair correlation function of the reference system. Finally

these corrections are usually small, and in applications they



are of little iImportance, because the higher order correlation
functions of the reference system are, iIn any case, unknown
(the calculation of the lowest order correction needs the
knowledge of the four-particle correlation function of the
reference system). The application of this method for a hard

sphere reference system is given in the following paper.

Description of the method

Consider a homogeneous system of volume V with N identical
classical particles, where the interaction energy 1iIs the sum

of pair iInteractions:

) , 7 _
Here the symbolic notation fr f’ stands for the coordinates

and r.,- r.. The canonical partition function

LE S LY LS
of the system has the form

Fg Tpeelys

)

-\z
where [ a h/2arrnUT) and p>=A/kV (k stands for the Boltzmann

constant, T is the temperature). We can now rewrite the expo-

nential by introducing formally the interaction energy

EI'=H WO(re=) of a reference system (hereafter the index "o"
J

bl
always refers to the reference system):



£A \ £PSWW u,,

Here we iIntroduced the notation

W,

Let us now define the functions U”IcH) instead of

by the equations

wz(rz)s j+ vrun.rd

(c3)= N -mui(r, fi) +ur(™ bl+- UjIC> T )
*u3(r, rzr,)
@)
AN Cr % 1 ou N<UAL .- » ZLNk= N

where the summation of the last equation extends, Tfirst, over
all possible partitiones of N as a sum of positive integers
and, second, for a given partitio over all possible ways in
which N atoms can be devided iInto groups consisting, respecti-
vely, of N2 ,... atoms. If a partitio is such that among the
Ni-s there are N-k I"s, k2 2°s,

.. ke I's, , the number of

terms corresponding to that particular partitio will be equal

to



N\ J
3a
IN-IT N k! D& e
tsl
and
Ltke*k
e»Z Gb)

Thus, using equations (2) and taking into account that the
number of terms corresponding to a given partitio is given by

(3a), WN can be reformulated as

WM(r«)=4 + L-njrcn wvvk (r»;
k*2

where we have used the symbolic notation

W k(ck)= 1 U’%ﬁ») ff§ah.
i .
In the last equation the summation extends over all possible
values k2, k3,... which satisfy the condition (@b). Using
equation (@ the canonical partition function (@) will have

the form

Qn (v £)=0Qw (v it [ + Z WJc-idrij
Us2.J

where MN f- ° stands for the canonical k-particle distribution



function of the reference system which is defined by

-~ ®
(w-u)!

Similarly to the derivation of the usual cluster expansion,
it is more convenient now to turn to the grand canonical forma-
lism. Using equation (G) the grand canonical partition function

can be written (by rearranging the terms in the double sum) as

HAVEX, (i)

n @
“Hot/U.V.Tm+ 1 J4 (¥ Wu(ck)<*rk]
UnZ I

Here N”™(rU) is the grand canonical k-particle distribution

function of the reference system:

oo §UN ~o0
Y e

Now we return to the discussion of the motivation for introducing

the "cluster functions”™ UN instead of WN~s. Suppose that the

potential difference V(r) 1is zero for r >d. Then i1t is easy
9
to show that UN i1s equal to zero, as soon as any one of the N

atoms lies at a distance larger than d from all the others



(i.e. UN:O, if the N atoms do not belong to one cluster). This
property of the cluster functions will allow us to determine
the volume dependence of the integrals appearing in the ex-

pression (7) for thé grand canonical partition function.

From the equations (?) and (4) we can see that the grand
canonical partition function consists of the sum of integrals

of the type

¢))
Since a certain product U.(r. r_) ... U.(r. TN IrC) ... differs
from zero only if the corresponding atoms 1,2...3,4,5,... fTorm

clusters, in the calculation of the integrals it seems to be
reasonable to assume, that the k-particle distribution function
of the reference system splits into the product of lower order
distribution functions according to the given combination of

the cluster functions appearing in the integrand:

®

This assumption exactly holds for an ideal gas reference system
where »g* : here stands for the density of the
reference system of a chemical potential YU , volume V, and

inverse temperature B:

M-IV, |G



The assumption (9 enables us to derive an expression for
the equation of state in a close, compact form, since the
integrals of the type (8) now split into the product of integ-

rals of lower dimension:
Jitcr® 9)[u,(t4]hlfLus(r»)J i .. cdrk

*>[Sni(c4AUZq C D F[jnS(r»nij(r.

Using this approximation equation (7) can be written as

RV TR OV DR 2L 2L CprprasypXd 4

U»2 IcjUj-

where

(10)

=Y
[

and 21 e N

Due to the property of the cluster functions mentioned earlier,
the integrals 1in -s are proportional to V, since once the
coordinates of one of the particles have been fixed, the region
of integration (where the integrand differs from zero) 1iIs reduced
to a finite volume determined by the range of interaction of the

potential. Thus P? -s remain finite iIn the thermodynamic limit
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when V tends to infinity. After some manipulation we get
oo 00 — v

e*2 uw.o

@ JANFYs e
and the equation of state:

F*POF pf (11a)

enZ.

IT the reference system is an ideal gas (i.e. (r =90 )
the equation (1l1a) 1is just the well known activity expansion
of the equation of state. In this case 0= n3 and
3 KS* bE where bg -s are the usual reducibld® group

integrals which depend on the temperature but not on the volume.

The density of the system is given by the equation

(lib)

The equations (lla-b) are the basic equations of the method.
These equations allow us to express the pressure in terms of
the density (and not with the density of the reference system)

which is more convenient and more usual for comparing the
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theoretical and experimental equation of state. The solution
of this problem is equivalent to the invertation of the function
given by the equation (lib). In the usual cluster ex-
pansion during this procedure only the irreducible cluster
integrals remain as the coefficients of the power series IiIn -
Here, however, the situation is different, since 1In our case
the "group integrals” are not "reducible”™, because in the
integrals the cluster functions are weighted by different
distribution functions for the reference system. Thus the in-
vertation is more complicated here than in the usual cluster
expansion and it can not be carried out iIn general for every
potential at arbitrary density. On the other hand from the
equation (lib) one can see that the problem of invertation has
automatically been solved if we could choose the reference sys-
tem In such a way that should disappear at arbitrary
density (in general, this implies the use of different reference
systems for different densities). We will discuss this condition
(g=do0 ) later in connection with the optimal choice of the
reference system. Keeping in mind the iImportant role of the
case $=£0 f°r the solution of the problem and that the veri-
fication of the next procedure should be carried out in each

case separately, we proceed in the following way.

First, we will rewrite the equations (lla-b) 1in a different
form. Using the definition (2) of the cluster functions, 1t is

easy to show that
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a2

where the Mayer-function F(r) is constructed now from the
potential difference v(r) = u(r) - uQ(r). Here we Introduced
the formal parameter ~ , the power of which is equal to the
order of the corresponding term in Ae i.e. to the number of
the Boltzmann-factor differences appearing in this term (»
plays the role of a kind of softness parameter7)- In the ex-

pression for Ui. the lowest order term in ¥ (or in [Je) contains

i-1 f-functions (to connect 1 points with each other one needs

at least 1-1 "bonds™) 1i.e. 1ts order Iis ijl . Substituting ([12)
into (10) and (11) and collecting the terms of the same order
in ~ , we get a functional series expansion in the difference
of the Boltzmann factors fe(r) (which is just the funcional

Taylor series of the pressure):
00
p= P, +21 (132)

and

(13b)

From (10) and (12) one can see that
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jjaltrliltlolr
P2 ="y, 1)L dr dr-

For convenience we introduce now the following function:

(15

At the same time this equation defines the functions v~ C"0) =
From the definition (15) we can see that the solution of inver-

tation is equivalent to the determination of the function
v ($) = v(goCsV (i6)
for which we take the form

v Ig) =21 CF)
i=1

Now we expand V(<?0) into a power series in I*go-

V(g,)= vcS) + Z A4£1b|§§}" an

LsJ c* L N

where the superscript (i) denotes the i-th derivative with

respect to INng . Substituting the power series expansion of V
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and V in 5 into the equation (17) and using the equality (16),
we can determine the functions Cg) 1in terms of the func-
tions and their derivatives, if we compare the terms of
the same order in E of the two sides of equation (@7) . Thus

we get

where the prime denotes the derivative with respect to £ .
After the determination of the function 6%9) we can easily
express the thermodynamic quantities as a function of < .
It directly follows from the grand canonical description that

the chemical potential of the system at £ is equal t" that

of the reference system at , that i1s the excess chemical
potential is given by the equation

/3/t-gx t80) HV (3) 19
Expanding into a power series in info- and taking the

function v (S) from (18), we obtain an expression for A™eXx
as a function of in the form of a power series In "
Substituting this expression to the equation (19), we obtain

the excess chemical potential of the system as a function of ¥ :

I = - T -
ST S2[n YJ- ... 20y
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The excess free energy per particle __K_ can be obtained
directly from (U0) using the relation

9 (90"

Thus we have

21

The expression for the pressure can be obtained by differen-

tiating the equation (@1).

After calculating the thermodynamic quantities we turn now
to the determination of the pair distribution function for the
system. In principle we could start from the definition of the
pair correlation function and carry out a calculation similar
to the derivation of the thermodynamic quantities, analogously
to that of the usual cluster expansion of the pair correlation
function. We can proceed, however, iIn a more simple way if we
start from the expression ((21) and use the relation7 which
expresses the pair correlation function as the functional
derivative of the excess free energy with respect to the poten-
tial u(r) :

£ CL
n2(Dbz) 22)

S pu.(L)

From equations (21) and (22) we can obtain an expression for

the pair correlation function iIn the form of a series expansion



10

in &~ _We have introduced here the function by the usual
definition Nr@*F Thus
Wwn - mee) + (c JVAe. (rvyro
ni , @3)

where 73 is defined by the relation

hj(r, r’)= £0tr Ifioir'i tror>

The zeroth order term in the softness parameter ~ gives back

7
the well known result that

yai'->= yStr)

Discussion

In this section we comment on the errors introduced by the
decoupling assumption (9@ and investigate the differences bet-
ween the applications of the equations (Ila-b) and (21). Finally
we will discuss the problem of the optimal choice of the refe-
rence system. We mentioned in the introduction that if we do not
use the approximation (9), we obtain corrections to the equations
(Ila-b). The determination of these correction terms 1is easier
by using the diagrammatic expansion technique and it will be
published elsewhereg. To illustrate the effect of these correc-
tions we show the form of the lowest order correction which 1is

of the type
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[ (r4)- rcrra) nitr3it)]{ (Tw){ (M3uMra °iij cArh @0

i.e. It means a contribution to the expansion of the order of
g* . With a suitable choice of the reference system (which is
necessary to obtain a successful description in any case) these
corrections become usually negligible. Besides, in applications
these corrections are of little importance, since the higher
order correlation functions of the reference system are, 1in

most of the cases, unknown.

Let us now turn to the discussion of the differences bet-
ween the results derived from equations (lla-b) and those ob-
tained from equation (21) . Comparing the two equations one c.an
see that i1f we start from the equations (lla-b) keeping only the
zeroth and first order terms in ~ , and solve the problem of
invertation exactly (e.g. we determine the reference system
from the condition g=g0), the result will contain the sum of
an infinite subseries compared to the calculation which starts
from the equation (21) and takes into account only the zeroth
and first order terms (the accuracy of the two descriptions is
equivalent only in the case 8~80 when the sum of this subseries
equals to zero). This can be seen from the equation (21), where
the derivative of appears in the second order term (and its
higher derivatives appear iIn the higher order terms). Therefore
we expect to obtain more accurate results starting from the

equations (lla-b) if we know, say, only the pair correlation



function of the reference system, because In this case the re-
sult of first order in tf will contain all the terms of (1)
which can be expressed by the pair function or its derivatives

with respect to -

At this point we have reached the problem of the optimal
choice of the reference system. This problem arises from the fact
that we do not have complete information about the distributional
properties of the reference system; 1in most of the cases we
know only its pair correlation function. The optimal choice
of the reference system means the minimization of the higher
order terms concerning one or more thermodynamic quantities.

One of the most successful optimization procedures was proposed
by Andersen et al-7, in which the reference system is deter-
mined from the condition that the first order term in .21l) should
vanish at arbitrary density and at the same time the magnitude
of the higher order terms 1is reduced. In this method the compressi-
bility is the thermodynamic quantity which iIs taken to be equal
for the two systems. Returning now to the condition <§:go which
takes some parts of the higher order terms of the expansion
exactly equal to zero, we can see from the equation (19) that in
this case the chemical potentials of the two systems of the same
density are equal to each other. Thus the condition g =gO physi-
cally means that we choose the reference system iIn such a way
as if it were in chemical equilibrium with the system under
consideration. Taking into account only the Tirst order term in

ij , the condition $=80 will appear in a form similar to

that proposed by Andersen et al., but now in the integral the
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difference of the Boltzmann factors is weighted by the deriva-
tive of the pair distribution function of the reference system
with respect to the density, and not by the pailr correlation

function itself:

(25

This condition will be tested in the following paper for systems
with inverse power potentials using a hard sphere reference
system and the results will be compared to those obtained by

using the method of Andersen et al.

Finally we discuss the problems appearing in the determina-
tion of the pair correlation function. In zeroth order approxi-
mation the determination of the pair function is completely
analogous to that proposed by Andersen et al. The only difference
appears in the way of choosing the reference system, for which
- Tfor the reasons mentioned above - we propose the condition
(25) when "~~S0O - In this order the pair function satisfies
the compressibility equation and tends to unity for large dis-
tances. A new problem arises, however, i1If we determine the pair
function In the next order from the equation (23). Namely the
lowest order correction arising from the use of the approxima-
tion (9 appears iIn this order (which comes from the correction
to the second order term of the free energy shown in (24)) and
the pair correlation function does not satisfy the compressi-
bility equation and does not go to unity for large distances

any more for an arbitrary reference system. However, one can
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avoid these difficulties by choosing the reference system in
such a way that the decoupling of the cluster integrals should
mean a consistent description in this order as well. This can be
reached in the following way. The derivative of the pair dis-

tribution function with respect to the density can be expressed

ni(rb 2"J"2"2nJ(r") +-I(n]j(r r=)-frtj(r) )J (26)

Thus in the calculation of an integral of the type

)F(chX

the consistent application of the decoupling assumption (9
would mean that the integral coming from the second term of
the right hand side of equation (26) should vanish, that is we

obtain the equation

The equation (27) can serve as a condition for choosing the
reference system in the first order calculation of the pair
correlation function (and in the second order calculation for
the free energy. In this case we can use for instance the

Kirkwood superposition approximation®***~ for the three-particle



21

correlation function). It is easy to show that if the equa-
tion (27) 1is satisfied, the pair correlation function obtained
in this way satisfies the compressibility equation and It goes
to unity for large distances. In the following paper we will
give numerical examples for both the zeroth and the first
order determination of the pair correlation function from the
condition 2= ax”™ from the equation (27) , respectively,

for a system with inverse twelfth power potential using a hard

sphere reference system.

Conclusion

To summarize, we developed a perturbational method in
which the thermodynamic properties and the pair correlation
function of a real fluid are expressed with the thermodynamic
quantities and the distribution functions of a reference systenm
in the form of a power series 1In a softness parameter. In this
form the method (being a kind of a ”~ -expansion) 1is appropriate
for treating rapidly varying perturbations in a narrow range
of r, but expanding the difference of the Boltzmann factors
with respect to the potential difference, we can recover the
formulas of the high temperature expansion as well. The method
in its present form contains an approximation which enables us
to obtain the results iIn a simple, physically transparent form

allowing us to take iInto account some parts of the higher order
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terms of the usual (@ -dependent forra for the thermodynamic
quantities using lower order terms (those parts, that can be
expressed in terms of the derivatives of lower order distri-
bution functions). In this sense the present method makes Tull
use of the iInformation content of low order correlation functions
and therefore we expect to achieve higher accuracy compared to
the usual methods, for example iIn the special case when we know
only the pailr correlation function of the reference system.
Moreover we proposed new conditions for the optimal choice of

the reference system for both the first and the second order

determination of the free energy of the system.
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