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АННОТАЦИЯ

Сравнивались ближние порядки различных структурных моделей: модели со 
случайной плотнейшей упаковкой, модели, основанной на неупорядоченной систе­
ме молекулярных единиц, и квазикристаллической модели. Сравнивались полиэдры 
определенные первыми соседями металлоидных атомов двухкомпонентной системы 
Бенетта, с дырками Берналя и моделей более упорядоченных систем. Показано, 
что в случае координационных чисел от 6 до 9 чаще всего встречающимся полиэд 
ром является тригональная призма.

KIVONAT

Különböző szerkezeti modellek, nevezetesen a véletlen szoros illeszke- 
désü modell, a molekuláris egységek rendezetlen rendszerére alapozott modell 
és a kvázikristályos modell közeli rendjét hasonlítottuk össze. Egy két kom- 
ponensü Bennett szerkezet metalloid atomjainak első szomszédai által megha­
tározott poliédereket hasonlítottuk össze a Bernal lyukakkal és rendezettebb 
modellek állításával. Megmutattuk, hogy 6 és 9 közötti koordinációs számok 
esetén a leggyakoribb poliéder a háromszög alapú hasáb.



ABSTRACT

The local orders of dense random packing, random packing of 
molecular units and quasicrystalline models are compared. The poly- 
hedra formed by the nearest neighbours of the metalloid atoms in a 
two component Bennett structure are compared with the Bernal holes 
and the predictions of more ordered models. Trigonal prisms are 
shown to be the most frequent polyhedra for coordination numbers 
from 6 to 9.

INTRODUCTION

Metallic glasses are characterized by the structural randomness 
that is by the lack of translational symmetry. Because of this the 
information obtainable from scattering experiments is restricted 
to correlation functions. The detailed geometry of the structure 
cannot be studied experimentally. An indirect way is, however, the 
study of structural models. Having the "atom-coordinates" of a mo­
del cluster the pair correlation functions as well as any directly 
unmeasurable quantities can be calculated.

Although the most prominent feature of metallic glasses is 
the structural randomness, they exhibit a rather well-defined 
short range order up to a distance of about 15-20 8. This short 
range order is determined by geometrical contraints as well as by 
the chemical bonds. Till now numerous models have been proposed 
to describe the idealized homogeneous structure of metallic glas­
ses. Classification of these structural models is possible on the 
basis of the kind and degree of order and disorder they assumed.

(i) Very strong chemical and topological short range order is 
assumed by the quasicrystalline (QC) models [1,2]. Its principal 
assumption is that the short range order of the glassy state is 
identical to that of a crystalline intermetallic compound produced
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Рг9‘ 1• Two dimensional representation of a/ quasicrystalline 
/QC/; b/ random packing of molecular units /RPMU, one 
"molecule" consists of a square capped with four tri­
angles/ and с/ dense random packing /DRP/ models. Open 
and closed circles represent metalloid and metal atoms, 
respectively. In Fig. a atom A is the origin, the mea­
surê  of the circles indicate the area where the proba­
bility of finding the atom is significant. In Fig. c 
the dashed lines indicate arbitrariness of defining 
nearest neighbour polyhedra.
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by annealing. Disorder is introduced only by defining a probability 
distribution of finding an atom at a given place around its equi­
librium crystalline position. Two features of this model should be 
emphasized:

a) As no kind of topological disorder is introduced in the 
model, not only the short range order but even the long range 
crystalline symmetry is preserved in the glassy state.

b) In each case a single crystalline phase is assumed as the 
basis of the glassy structure. Thus abrupt structural changes are 
expected as a function of composition where the structure of the 
crystalline products formed during heat treatments changes.

(ii) The importance of the metal-metalloid bonds is emphasized
by the random packing of molecular units (RPMU) model by P.H.
Gaskell in a completely different way [3,4]. The basis of this 
model is the observation that trigonal prism formed by metal atoms 
is the almost universal nearest neighbour environment in transi­
tion metal rich borides, phosphides, carbides and silicides such as 
Pd^Si, Fe-jP and Pd^P. Assuming similar bonds in the crystalline 
and the glassy state, a metalloid atom with its six metal neigh­
bours can be used as a building molecule of the amorphous struc­
ture. These elements, however, can be connected randomly without 
refering to the topology of any of the crystalline compounds. Com­
paring with the QC model two basic differences can be found:

a) Topological disorder is explicitly included, so only the 
short range order around the metalloid atoms is similar both in 
the crystalline and the glassy state.

b) As trigonal prisms are the general building elements of a 
number of crystalline compounds , RPMU model predicts only minor 
differences between the structure of different transition metal - 
metalloid metallic glasses.

(iii) Dense random packing (DRP) models form the broadest
* class of structural models [5-10] including hard and soft sphere

packings, models refined by energetic relaxation, Monte Carlo and 
molecular dynamics calculations. Although there are several dif­
ferences between these models, their basic idea is common: The 
arrangement of the atoms is essentially random, but a sufficiently 
dense aggregate of hard or soft spheres cannot be built without 
clear-cut short range ordering. This short range order is dicta-
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ted by geometrical constraints and - taking into consideration 
the chemistry of the system - by the pair potentials and the 
exclusion of metalloid-metalloid hard contacts.

As one of the most useful concepts to understand the struc­
ture of metallic glasses, the model by Polk [6 ] should be men­
tioned separately. He assumed that the transition metal atoms form 
a DRPHS structure and the metalloids fill the largest holes pre­
sent in that skeleton. Although the hole-statistics given by 
Bernal [5] has been reevaluated [11,12] and the quantitative va­
lidity of the Polk model has been questioned [13,14], this model 
is the easiest way to the qualitative understanding of the metal­
lic glass structure.

RESULTS

In this paper the short range order of different structural 
models is compared in terms of the polyhedra formed by the nearest 
neighbours of a metalloid atom. A conventional two component 
Bennett structure has been constructed using the global criterion 
and not allowing metalloid metalloid hard contacts. The diameter 
ratio of the metal and metalloid atoms is 1:0.76.

The spheres within a distance of 1.15 times the sum of the 
radii - 1.15(г ^+Г2> - were taken into consideration as nearest 
neighbours when constructing the polyhedra. As this cut-off dis­
tance is arbitrary and spheres near to this value can occur, only 
those metalloid atoms were taken into consideration, which had no 
neighbours within an 0.15(r^+r2) long distance interval around the 
cut-off at 1.15(r^+r2).

Finally, 50 polyhedra formed by the nearest neighbours of a 
"metalloid atom" have been folded from carton paper. As all the 
polyhedra are more or less distorted, having them in hand was a 
great help in their identification. In principle the polyhedra 
have only triangular faces because the probability of finding four 
or more coplanar points in a randoitv array of points is zero. If, 
however, the angle between the planes of two neighbouring triangles 
is small - less than 20-30° - these triangles are regarded as 
forming a distorted square.



The polyhedra can be compared with the predictions of other 
models: they should be identical with the Bernal holes in terms of 
the Polk model; RPMU model emphasizes trigonal prismatic coordi­
nation; QC model predicts a local order identical with that of a 
crystalline intermetallic compound.

The following polyhedra have been identified in the course of 
increasing coordination number Z:
Z = 5: Only one "metalloid atom" has five nearest neighbours 
forming a distorted half octahedron.
Z = 6: All the 12 polyhedra have distorted intermediate shapes be­
tween trigonal prism and octahedron.
Z = 7: 22 smaller spheres have 7 nearest neighbours. The most 
frequent polyhedra are trigonal prism capped on one square face 
with a half octahedron, pentagonal bipiramid and some intermediate 
shapes between them. Distorted cube with one missing vertex and 
some unidentified polyhedra occur as well.
Z = 8: Among the 12 polyhedra with 8 vertices trigonal prisms 
capped on two square faces with half octahedra are the most fre­
quent. Some polyhedra have shapes between cube and square anti­
prism, one polyhedron is a cube with a missing vertex and with an 
additional "atom" above one of the edges. The surrounding of one of 
the "metalloids" consists of two trigonal prisms connected at a 
square face. Tetragonal dodecahedra have not been found.
Z = 9: Two polyhedra with unidentified shape.
Z = 10: One unidentified polyhedron.

The topology of the polyhedra could be described in terms of 
a set of numbers giving the number of vertices where 3, 4, 5 etc. 
edges meet. This characterization, however, is rather insensitive. 
For example, among the 12 polyhedra with Z = 8 11 is described by
(0,4,4) regardless of the great variety of their shapes.

DISCUSSION

The most interesting point in this study is the comparison of 
the Bernal holes - the surrounding of the metalloid atoms according 
to the Polk model - and the polyhedra formed by the nearest neigh­
bours of a metalloid atom in a two component system. Unfortunately 
only a qualitative comparison is possible because of the arbitrary



6

definitions. Moreover, the structure is sensitive to the diameter 
ratio of the smaller and the larger balls, but the Polk model pre­
dicts the same structure for every metallic glass.

The polyhedra found are more distorted than expected. (Perhaps 
relaxation results in more regular polyhedra.) Although there is a 
considerable correspondence between them and the Bernal holes (es­
pecially in the case öf trigonal prisms), a number of unexpected 
polyhedra has been found and tetragonal dodecahedron does not oc­
cur. Many polyhedra would be divided into two or more parts and 
would be counted as more separate smaller polyhedra when making a 
hole statistics. These results indicate that the increase of the 
intersticies to accomodate the metalloid atoms requires the re­
construction of the metal skeleton even if its space-filling re­
mains almost unchanged.

The fact that trigonal prisms are the dominant surroundings 
of the metalloid atoms raises the question whether there is any 
basic difference between the structures built by the RPMU and DRP 
algorithms especially after energetic relaxation. It is interes­
ting to note that trigonal prisms occur not only for Z = 6 and 
Z = 9 but also for Z = 7 and Z = 8. Similar local orders can also 
be found in some crystalline metal-metalloid intermetallic com­
pounds. If the metalloid is very small, the coordination number is 
6. If, however, the diameter of the metalloid atoms increases in 
comparison with the metal atoms, the edges of one or more square 
faces increase and the next neighbours come closer to the metal­
loid atom. For example, Z = 6 in Fe^C and Z = 9 in Ni^P. A typical 
intermediate case is Pd^Si where the six atoms forming the trigonal 
prism around a Si atom are at distances between 2.35 8 and 2.48 8, 
the next two atoms are at 2.56 8 but the nineth neighbour would be 
at 3.04 8, i.e. the coordination number is Z = 8.
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