LS () S

KFK1-1980-87

L, TAKACS
C, HARGITAI

CHARACTERIZATION OF THE LOCAL ORDER
IN AMORPHOUS MODEL STRUCTURES

Hungarian ‘Academy o f‘Sciences

CENTRAL
RESEARCH

INSTITUTE FOR
PHYSICS

BUDAPEST






KFK1-1980-87

CHARACTERIZATION OF THE LOCAL ORDER
IN' AMORPHOUS MODEL STRUCTURES

L. Takacs, C. Hargitai

Central Research Institute for Physics
H-1525 Budapest 114, P.0.B. 49, Hungary

To appear in the Proceedings of the
Conference on Metallic Glasses:
Science and Technology, Budapest,
Hungary, June 30 - July 4, 1980;
Paper S-15

HU ISSN 0368 5330
ISBN 963 371 733 7



AHHOTALWA

CpaBHUBa/IUCb GANXHME MNOPSAAKN Pa3/IMYHbIX CTPYKTYPHbLIX MOAener: moaenn co
C/lyyaiiHOW NIOTHelWwer ynakoBKOW, MOAENW, OCHOBAaHHOW Ha Heynopsgo4YeHHOl cucrte-
ME MOMNEKY/ISAPHbIX €AVHWL, W KBa3MKPUCTa//IMYecKol mogenun. CpaBHMBa/IMCb MOMN3A4PHI
onpeeneHHsle MepBLIMA COCEAAMM MEeTasl/IOUAHbBIX aTOMOB [ABYXKOMMOHEHTHOW CUCTEMb
beHeTTa, C Abipkamm bepHanis n mogeneil 6onee ynopsifiodeHHbX cucTem. [lokasaHo,
UTO B C/lydae KOOPAWHAUMOHHLIX 4vnces oT 6 A0 9 vawe Bcero BCTpevawWuMcs Mnonmajg
poM SIBNSleTCS TpUroHaslbHasi npu3ma.

KIVONAT

Kilonb6z6 szerkezeti modellek, nevezetesen a véletlen szoros illeszke-
déstu modell, a molekularis egységek rendezetlen rendszerére alapozott modell
és a kvazikristalyos modell kozeli rendjét hasonlitottuk Ossze. Egy két kom-
ponensi Bennett szerkezet metalloid atomjainak els6 szomszédai altal megha-
tarozott poliédereket hasonlitottuk 6ssze a Bernal lyukakkal és rendezettebb
modellek allitasaval. Megmutattuk, hogy 6 és 9 kozotti koordinacids szamok
esetén a leggyakoribb poliéder a haromszoég alapl hasab.



ABSTRACT

The local orders of dense random packing, random packing of
molecular units and quasicrystalline models are compared. The poly-
hedra formed by the nearest neighbours of the metalloid atoms iIn a
two component Bennett structure are compared with the Bernal holes
and the predictions of more ordered models. Trigonal prisms are
shown to be the most frequent polyhedra for coordination numbers
from 6 to 9.

INTRODUCTION

Metallic glasses are characterized by the structural randomness
that i1s by the lack of translational symmetry. Because of this the
information obtainable from scattering experiments is restricted
to correlation functions. The detailed geometry of the structure
cannot be studied experimentally. An indirect way 1is, however, the
study of structural models. Having the ™"atom-coordinates'™ of a mo-
del cluster the pair correlation functions as well as any directly
unmeasurable quantities can be calculated.

Although the most prominent feature of metallic glasses is
the structural randomness, they exhibit a rather well-defined
short range order up to a distance of about 15-20 8. This short
range order is determined by geometrical contraints as well as by
the chemical bonds. Till now numerous models have been proposed
to describe the idealized homogeneous structure of metallic glas-
ses. Classification of these structural models is possible on the
basis of the kind and degree of order and disorder they assumed.

O) Very strong chemical and topological short range order
assumed by the quasicrystalline (QC) models [1,2]. Its principal
assumption is that the short range order of the glassy state 1is
identical to that of a crystalline intermetallic compound produced



Pro“ 1« Two dimensional representation of a/ quasicrystalline
/QC/; b/ random packing of molecular units /RPMU, one
"molecule”™ consists of a square capped with four tri-
angles/ and c/ dense random packing /DRP/ models. Open
and closed circles represent metalloid and metal atoms,
respectively. In Fig. a atom A is the origin, the mea-
sure™ of the circles indicate the area where the proba-
bility of finding the atom is significant. In Fig. c
the dashed lines indicate arbitrariness of defining
nearest neighbour polyhedra.



by annealing. Disorder is introduced only by defining a probability
distribution of finding an atom at a given place around its equi-

librium crystalline position. Two features of this model should be
emphasized:

a) As no kind of topological disorder is iIntroduced in the
model, not only the short range order but even the long range
crystalline symmetry 1is preserved in the glassy state.

b) In each case a single crystalline phase is assumed as the
basis of the glassy structure. Thus abrupt structural changes are
expected as a function of composition where the structure of the
crystalline products formed during heat treatments changes.

(i1) The importance of the metal-metalloid bonds is emphasized
by the random packing of molecular wunits (RPMU) model by P.H.
Gaskell in a completely different way [3,4]- The basis of this
model is the observation that trigonal prism formed by metal atoms
is the almost universal nearest neighbour environment in transi-
tion metal rich borides, phosphides, carbides and silicides such as
Pd"Si, Fe-JP and Pd™P. Assuming similar bonds in the crystalline
and the glassy state, a metalloid atom with its six metal neigh-
bours can be used as a building molecule of the amorphous struc-
ture. These elements, however, can be connected randomly without
refering to the topology of any ofthe crystalline compounds. Com-
paring with the QC model two basicdifferences can be found:

a) Topological disorder is explicitly included, so only the
short range order around the metalloid atoms is similar both in
the crystalline and the glassy state.

b) As trigonal prisms are the general building elements of a
number of crystalline compounds , RPMU model predicts only minor
differences between the structure of different transition metal -
metalloid metallic glasses.

(i11) Dense random packing (DRP) models form the broadest
class of structural models [5-10] including hard and soft sphere
packings, models refined by energetic relaxation, Monte Carlo and
molecular dynamics calculations. Although there are several dif-
ferences between these models, their basic idea i1s common: The
arrangement of the atoms is essentially random, but a sufficiently
dense aggregate of hard or soft spheres cannot be built without
clear-cut short range ordering. This short range order is dicta-



ted by geometrical constraints and - taking into consideration
the chemistry of the system - by the pair potentials and the
exclusion of metalloid-metalloid hard contacts.

As one of the most useful concepts to understand the struc-
ture of metallic glasses, the model by Polk [6] should be men-
tioned separately. He assumed that the transition metal atoms form
a DRPHS structure and the metalloids Till the largest holes pre-
sent in that skeleton. Although the hole-statistics given by
Bernal [5] has been reevaluated [11,12] and the quantitative va-
lidity of the Polk model has been questioned [13,14], this model
is the easiest way to the qualitative understanding of the metal-
lic glass structure.

RESULTS

In this paper the short range order of different structural
models 1is compared iIn terms of the polyhedra formed by the nearest
neighbours of a metalloid atom. A conventional two component
Bennett structure has been constructed using the global criterion
and not allowing metalloid metalloid hard contacts. The diameter
ratio of the metal and metalloid atoms is 1:0.76.

The spheres within a distance of 1.15 times the sum of the
radii - 1.15@¢™MI2> - were taken into consideration as nearest
neighbours when constructing the polyhedra. As this cut-off dis-
tance is arbitrary and spheres near to this value can occur, only
those metalloid atoms were taken into consideration, which had no
neighbours within an 0.15(r™+r2) Ilong distance interval around the
cut-off at 1.15(r"+r2).

Finally, 50 polyhedra formed by the nearest neighbours of a
"metalloid atom” have been Tfolded from carton paper. As all the
polyhedra are more or less distorted, having them iIn hand was a
great help in their identification. In principle the polyhedra
have only triangular faces because the probability of finding four
or more coplanar points in a randoitv array of points is zero. IFT,
however, the angle between the planes of two neighbouring triangles
is small - less than 20-30° - these triangles are regarded as
forming a distorted square.



The polyhedra can be compared with the predictions of other
models: they should be identical with the Bernal holes in terms of
the Polk model; RPMU model emphasizes trigonal prismatic coordi-
nation; QC model predicts a local order identical with that of a
crystalline intermetallic compound.

The following polyhedra have been identified in the course of
increasing coordination number Z:

Z = 5: Only one "metalloid atom” has five nearest neighbours
forming a distorted half octahedron.

Z = 6: All the 12 polyhedra have distorted intermediate shapes be-
tween trigonal prism and octahedron.

Z = 7: 22 smaller spheres have 7 nearest neighbours. The most
frequent polyhedra are trigonal prism capped on one square face
with a half octahedron, pentagonal bipiramid and some iIntermediate
shapes between them. Distorted cube with one missing vertex and
some unidentified polyhedra occur as well.

Z = 8: Among the 12 polyhedra with 8 vertices trigonal prisms
capped on two square faces with half octahedra are the most fre-
quent. Some polyhedra have shapes between cube and square anti-
prism, one polyhedron is a cube with a missing vertex and with an
additional "atom™ above one of the edges. The surrounding of one of
the "metalloids™ consists of two trigonal prisms connected at a
square TfTace. Tetragonal dodecahedra have not been found.

Z = 9 Two polyhedra with unidentified shape.

Z = 10: One unidentified polyhedron.

The topology of the polyhedra could be described in terms of
a set of numbers giving the number of vertices where 3, 4, 5 etc.
edges meet. This characterization, however, 1is rather insensitive.
For example, among the 12 polyhedra with Z = 8 11 is described by
(0,4,4) regardless of the great variety of their shapes.

DISCUSSION

The most iInteresting point in this study is the comparison of
the Bernal holes - the surrounding of the metalloid atoms according
to the Polk model - and the polyhedra formed by the nearest neigh-
bours of a metalloid atom In a two component system. Unfortunately
only a qualitative comparison is possible because of the arbitrary



definitions. Moreover, the structure is sensitive to the diameter
ratio of the smaller and the larger balls, but the Polk model pre-
dicts the same structure for every metallic glass.

The polyhedra found are more distorted than expected. (Perhaps
relaxation results in more regular polyhedra.) Although there is a
considerable correspondence between them and the Bernal holes (es-
pecially in the case Of trigonal prisms), a number of unexpected
polyhedra has been found and tetragonal dodecahedron does not oc-
cur. Many polyhedra would be divided into two or more parts and
would be counted as more separate smaller polyhedra when making a
hole statistics. These results indicate that the increase of the
intersticies to accomodate the metalloid atoms requires the re-
construction of the metal skeleton even if its space-Tilling re-
mains almost unchanged.

The fact that trigonal prisms are the dominant surroundings
of the metalloid atoms raises the question whether there is any
basic difference between the structures built by the RPMU and DRP
algorithms especially after energetic relaxation. It is interes-
ting to note that trigonal prisms occur not only for Z = 6 and
Z = 9 but also for Z =7 and Z = 8. Similar local orders can also
be found in some crystalline metal-metalloid intermetallic com-
pounds. If the metalloid is very small, the coordination number is
6. If, however, the diameter of the metalloid atoms iIncreases in
comparison with the metal atoms, the edges of one or more square
faces iIncrease and the next neighbours come closer to the metal-
loid atom. For example, Z = 6 In Fe™C and Z = 9 in NiI“P. A typical
intermediate case iIs Pd"Si where the six atoms forming the trigonal
prism around a Si atom are at distances between 2.35 8 and 2.48 8,
the next two atoms are at 2.56 8 but the nineth neighbour would be
at 3.04 8, i1.e. the coordination number is Z = 8.
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