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ABSTRACT
The loadability of a tightly-coupled multiprocessor system with a common 

System-Bus is investigated by means of a population process. As against the 
classical network models the time parameter is discrete because the bus cycle 
time is of unit length. Since the state space turned out to be very large 
several approximations are given. Some states are lumped thus a process is de­
fined and discussed using a less detailed state space. This procedure seems 
to be relevant to models other than just the present one.

АННОТАЦИЯ
В статье описывается исследование нагрузочных параметров многопроцессор­

ной структуры, использующей системную магистраль. Описание структуры осущест­
влено с помощью "популяционного процесса". В отличие от классических моделей, 
описывающих сети, параметр времени имеет дискретный характер, что объясняется 
дискретным значением времени цикла магистрали - единицы времени. Поскольку по­
лученное пространство состояний огромно, дается несколько приближенных решений 
Они заключаются в обьединении некоторых состояний, и на основе менее подроб­
ного пространства состояний исследуется определенный процесс. Данный метод 
имеет больше возможностей чем те, о которых упоминается в статье.

KIVONAT
Az osztott rendszer-buszt használó több processzoros struktúra terhelhe­

tőségét vizsgáljuk. A leirás egy populációs folyamattal történik. A hálózato­
kat leiró klasszikus modellekkel szemben az időparaméter diszkrét, amit a busz 
ciklusidő egységnyi volta indokol. Minthogy a kapott állapottér igen nagy, 
több közelítést adunk. Ez úgy történik, hogy bizonyos állapotokat összevonunk, 
és egy kevésbé részletes állapottéren definiált folyamatot vizsgálunk. Az el­
járás túlmutat a cikkben kimerített lehetőségeken.



INTRODUCTION

Increasing system throughput by using parallel processing techniques in­
stead or besides endeavouring to increase the working speed of electronic com­
ponents has become a noteworthy tendency in the computer design of recent 
years. The idea itself is not new but from the practical point of view it is 
only the achievements of the last decade's semiconductor technology that have 
given actual possibility, notwithstanding some earlier special implementa­
tions .

Parallel processing seems to be particularly suitable in real-time appli­
cations where tasks are, in general, sufficiently independent so that their 
separate treatment does not imply large organizational problems.

Systems forming a subset and capable of parallel processing form the 
tightly-coupled distributed systems. In such systems active system parts /pro­
cessors/ have direct access not only to their local resources but to common 
resources as well. Access to common resources is maintained mostly via a com­
monly used, shared bus, the system-bus. As the access time of the most common­
ly used, resources /e.g. memory/ is of the same high order as the cycle-time 
of the bus, the system-bus may become the bottleneck of the whole system. In 
view of this the organization and the load of the system-bus are both of key 
importance. The point is to find the balance between the accessibility of sys­
tem resources /i.e. the flexibility of the system/ and the load of the system- 
-bus or, in other words, to establish a well balanced system based on local 
and common resources.

A well-proved method for bus load investigations is the simulation of 
the traffic on the bus. If appropriate codes are given and the particular 
loads of the processors along the bus are known; simulation can be performed 
successfully.

A principal problem arises when the necessary tools for the simulation 
are not given. It is no exaggeration to say that this problem is very much a 
real one since integrated processors and peripheral controllers are easily 
accessible and the implementation of self-made and problem-oriented system 
by customers has become possible.

As the investigation of the system-bus load is in no case neglectable an 
alternative method had to be found which is relatively easily applicable with­
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out creating too many other difficulties. If the number of active units on 
the bus, the distribution of their requests, and the duration of their bus- 
-occupation are known, mathematical methods originally used for handling 
queuing problems, e.g. in computer networks, can be used.

In the following an attempt will be made both to calculate the load of 
a multiprocessor system-bus model in order to achieve to optimal balance of 
local and common resources and to develop a tool for handling Markov chains 
of large state space.

The first section contains the description of the computer system. The 
second one establishes the mathematical model in detail. Section 3 is the 
theoretical part of the investigation but it is pointed out that the reader 
need not become immersed in it if interested solely in the system optimiza­
tion. A knowledge of this section is not essential to understanding the fur­
ther details. Section 4 involves the performance evaluation of the model and 
answers the questions arising in the first section. Finally, Section 5 con­
siders utilization.

I, SYSTEM REPRESENTATION
In connection with the development of a multi-microprocessor system a 

model is analysed. The model describes the system as follows. Processors of 
the system are placed along a commonly used bus, the System-Bus /Fig. 1/, 
which provides communication and data exchange between the processors, and 
between the processors and passive system parts /common resources: CR/ on the 
System-Bus. Some of the processors can be equipped with local bus facility 
where, if any, the local resources /LR/ of the processor are placed.

CR

LR

PrC

TIII
CR 1 Pr 1 Pr Pr

1 : 1—  _i 10 2 I01

common resource

local resource
processor for measurement 
control

communication processor

System-Bue

Local Bus

Figure 1
System-Bus structure
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So far as the bus bargaining is concerned, the system is represented by 
a closed loop /Fig. 2/.

Figure 2
Вив bargaining structure

Bus cycles and bus bargaining are overlapped. Two asynchronously rotating 
pointers P^ and point to the processors along the loop. P^ enables bus re­
quests and P2 grants the request. Granted request means that the rotation 
stops and the processor waits until the bus becomes free from the bus-cycle 
currently in progress. Once the unit has had the request granted, it occupies 
the bus and the rotation of the pointers starts again and during the bus-cycle 
the next bus-master can be encoutered.

Parameters of the model are the number of processors on the bus and the 
rate of their bus occupation. The cycle-time on the bus has been taken as 
unity which does not differ much from reality.

Concerning bus requests the system implies two priority levels. As the 
rate of the higher level requests is more than two orders less than that of 
the lower level requests and as one granted request yields always only one 
bus-cycle, in the model only one priority level has been introduced.

To get closer to real circumstances some additional parameters are in­
troduced: Two types of processors are distinguished, viz. the "R" type and 
the "Q" type. R-type processors may queue their bus requests /as is the case, 
for example, in some background storage processors/; Q-type processors are 
"halted" while their bus requests are pending. Further, we distinguish bet­
ween models, where the time T between the termination of the bus-cycle of a
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Q-type processor and the generation of the next cycle of the same processor 
is

a / О < T
and /1 .1 /

b/ 1 < T .
The questions to be answered are 

I H  - the utilization rate of the system-bus;
/ii/ - the duration of pending requests of the individual processor for the 

system-bus;
and, of particular concern for our present purposes,

/iii/ - the decrease of the throughput of Q-type processors caused by their
inability to queue their requests.

II. THE MODELS
An attempt is made to describe the architecture with a terminology which 

is appropriate for quantitative investigation. Computer network models seem 
to be suitable for this purpose.

Model 1 /М1/
We have N nodes /processors/. During a time unit /bus cycle/ each processor 
generates a customer /request/ with probability p^. During any one time unit 
one simple request may be served. The service order is cyclic.
We are interested in the number of requests accumulated in the nodes in con­
sequence of the occupied system-bus.

The described one is very similar to a Markov population model often 
used when evaluating a computer network. The more essential deviations are 
the following. We constructed a discrete model, i.e. there exists a time unit 
and each occurrence takes place during a multiple of it. Due to this the 
model fails to be ordinary bacause during a single time unit several events 
may occur. Service is not realized at the nodes but on another level common 
bus thus the service of one processor is not independent of the others.

Taking these facts into account let us define the following stochastic 
process of discrete time

u (1) (n) = (u{1) (n) , u^1)(n), ... , UjJX) (n) ;k(n) ) /2 .1/

where (n) is the number of customers accumulated at moment n at the i-th;
k(n) takes the values 0 ,1,2,...,N according to which node is served at moment 
n. It is easy to see that u^\n) is a discrete time homogeneous Markov chain I MC I 
of лл, state space. Since the accumulation of a certain number of requests in 
a single node may be fatal it is worthy investigating finite modifications 
where either the total population or the number in nodes is limited. This 
yields a finite model of rather large state space. The facultative reduction 
of certain states fails essentially to improve the situation.
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Let therefore

(1 )
N

= I »i1=1
(1 ) (n) /2 .2 /

(1)be the number of all requests. It is easy to see that is a Markov chain
with transition probability matrix /ТРМ /

P{£+1 arrivals} if k>0 and £<N-1
P{ I arrivals) if k=0 and ?,<N , / 2.3/
О if £>N

P{Un=k+ M Un-i=k > =

where

P{ £ arrivals) = г 1
1 i=l ^kl<k <...<k £<N i

/2.4/

This is a matrix of easily calculable elements. Disregarding the first row it 
is a Toeplitz type matrix in which case the determination of the stationary 
distribution /SD/ of meets hardly any difficulties.

Model 2 /М2/
For concrete purpose a more specific structure is discussed. Two types of pro­
cessors are distinguished {Q^,Q2»•••»Q^) and { , R2,...,RR). Since the Q-type 
processors fail to queue their requests the restriction

Р{и|2) (n)< 1} = 1 if i=l,...,N /2.5/

is assumed. The distinction concerning whether the Q-type requests may be 
generated immediately after each other or not influences only the TPM. The in­
vestigation concentrates on the case T = 0. Further we will point out that 
the model with T > 0 considerably less than 1 does not cause a significant de­
viation from T = 0.
Thus the process

U (2)(n) = (u{2)(n) u22)(n) ,(2)N (n) ,. .. fu ^  (n) ;k (n)) /2.6 /

is defined. It is easy to see that и 
space

(2 ) (n) is a Markov chain with лл, state
Calculation of the elements of its TPM is extraordinary tedious. Its 

SD is denoted by n^2^.
Let

ui2) = T u i 2) (n)
i=ln

(2)In general this fails to be Markovian. The state space of u , however,
12) narises from concentrating the states of u v '(n) thus its SD is not without 

meaning. It can be determined from n by summing up the stationary probabil­
ities of the concentrated states. Without calculating n^2  ̂ the SD of is
not evaluable thus approximations will be given in the following.
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Let us formulate the questions in the first section using the terminol­
ogy of the queueing theory. We are interested in

1. the utilization rate of the server /system-bus/;
2. the waiting time of the individual processors
3. the intensity of the real arrival process from the Q-type processors 

taking into account /2.5/.

III. MATHEMATICAL TOOLS
In the following a capital letter denotes a matrix and the same lower 

case letter with two indices refers to its elements.
At first an ordering relation on discrete probability distributions is 

introduced. The vector £ = (p ,p^,...,p ,...) is said to be greater than 
3 = (qo ,qlf...,qn ,...) (E > 3>

l Pi < l 3i /3.1/1=0 i=0
for all n = 1,2,... /cf. [2 ]/ loosely speaking it means that the random
variable with £ takes the larger values with larger probability than 3 .

For finite distributions p = (p ,p,,...,p ) p, = О i>n makes the defini-0 1  n 1
tion complete.

The Markov chain £ is said to be greater than n /£ > n / if its SD 
is greater than that of nn- This definition will be used for processes whose 
SD is interpreted.

The Markov chain is said to be monotonic if either £n < £n+m or £^ < En+m 
for all n and m. The monotonicity is not independent of the initial probabil­
ity vector.

Theorem 1 /[2]/
If the ergodic MCs £ and r) have TPMs P and Q, respectively and one ofn n

them is monotonic then from 

к к
I PH  > I q<-i for a11 k = 1,2,... /3.2/j=0 j=0 13

follows £ < n .n — n
In the following, condition /3.2/ will be referred to shortly as P < Q. 
Theorem 2
Let £ be an MC with state space S, with TPM P and SD n. Let A1UA_U...UA n — 1 2 n

be a disjoint partition and let us define the quantities

qij = I M  I ns)_1* I PirJ fcCAĵ 1 S€h± S rCA.
In this case the solution x of the system x = xQ satisfies

/3.3/

{i = Ií.€Ai
/3.4/
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Proof: The case S = { 0 , 1 , A^ = {0,1}, = {1} will be discussed.
Let В be given as follows:

bil ■ Pio*?il If 1 > 2

bij " Pij if i > 2 and j > 2

and the values b^^ will be determined in the way that

xB /3.5/

Tt (p +p .J+n.fp, +p..) + ...+n (p +p . ) = Tt +nO rOO *O l  1 ^ l O  *ll n ^ n l '  n

п *p _ о ^o2 +TV P12 +...tu *p _ n *n2

n ' * n o  * п 1 '  о 1

=

/3.6/

Tt *pо ron +Tt. *p. +. . ,+Tt *P1 rln n rnn = Tt

Subtracting /3.5/ from /3.6/ we have

Tt (p +p . ]о *oo  * o l l + n l ( p l o + p l l ) = (Tto +tt1 ) b 11

о *o2 +TV P l 2 = ( n o + n l ) b 12

n *p о *on +TV p l n = (V n i ) b m

From this we get the values b ^ .  The coincidence of Q and В is evident.
The sense of the proof is completely similar for an arbitrary partition.

REMARK 1 /3.3/ is a convex linear combination of the rows of matrix P
corresponding to the set A^ where the weight of the rows is 
proportional to the stationary probabilities of the correspond­
ing state.

REMARK 2 The above theorem is a generalization of a classical result [1' 
namely if

. (i)
I P*r  c ir<EA. *r J 3

for Л6А. /3.7/

In the latest system b^-s are the variables and = pQ+p^; x^ = p^ are as­
sumed to be known. If /3.5/ is supplemented with the condition b^j = 1 it 
is a correct problem.

Let us specify the system n = ttP and add the first two equations
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does not depend on i. then 
identical elements./

/We have an arbitrary combination of

Theorem 3
Let Aq = {0,1,...,m}; A^ = {m+i} if 1 < i < n-m be a partition and 

b*1* = {pio» Pii' ••• * Pin) О £ i < m. Let u = m$x{b^}; v = m^ntb*1*)* 
and the notation of Th.2 supplemented with

m m
u . . 1D ^i+m j+m if i» j > 0; u = ) u. , u . = u , , 

00 i=o 1 °3 3 Uio =
ro m

vij ^i+m j+m if i. j > 0; v = У V . , V . = v . , 
00 i=o 1 03 3 Vl° ■ Д о р»

we have v < x < z if it is assumed that U and V are monotonic** where

у = yV and ẑ = zU /3.8/

Proof: The first row of Q is a convex linear combination of vectors b ^  with 
unknown weights. It is easy to see that an arbitrary combination of this kind 
is between the maximum and minimum of the basis vectors. Thus V < Q < U and 
from Th.l the statement follows.

Finally some guiding principles are given for solving fixed point prob­
lems of large - occasionally лл. - matrices. This tedious procedure consists 
of the following steps.

1. Generating the possible states and ordering them into a vector /S =
= (0,1,...,N,...}/. If we have too many of them a limitation is needed as de­
tailed below.

2. Enumerating the TPM. A sparse one is organized into a list form.
3. The SD is approximated by iteration.

The limitation has two possibilities
1. Some states are neglected /the state space will be S' = {0,1,...,N} 

instead of S/ and iteration is executed by a truncated /substochastic/ matrix.
2. Some states are concentrated /S' = {0,1,...,N-l}u{N} instead of S/. 

Transition probabilities to N are determined to obtain a stochastic matrix. 
Transition from N are more difficult. Two extreme cases are considered

P{N -*• N} = 1-e - N is nearly an absorbing state if
e is small /3.9/

P{N + 0} = 1 /3.10/

The real case is somewhere between /3.9/ and /3.10/ if e is small enough.

— Щ -----------------------

max and min are to be understood in the sense of /3.1/.
• •

This means that the corresponding MCs are monotonic.
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IV. MODEL DISCUSSION DEMONSTRATED BY EXAMPLES

4.1 Some bounds on the stationary distributions
The numerical evaluation of some specific models is executed. Architec 

tures of four processors are considered with Q^, Q2 and R^, R2> The corres­
ponding values of p^ are

Pi P2 Рз P4
Example 1 /Е1/ .35 .35 .1 .05

E2 .4 .4 .1 .05
E3 .45 .45 .1 .05
E4 .5 .5 .1 .05
E5 .6 .6 . 1 .05

The stationary distribution of in the model Ml is

PiU = k} 0 1 2 3 4 5 6
El .15 .254 .219 .139 .086 .053 .033
E2 .065 .145 .162 .139 .117 .098 .081
E3 DOES
E4 NOT
E5 EXIST %

It is obvious that the SD x of is less than that of in then П
sense of /3.1/. This approximation coincides with z in /3.8/. V in /3.8/ is 
easily determined by p^ = min p.. and from Th.3.

yo yl y2 y3 y4
El 2607 .4605 .2463 .0319 .0006
E2 2037 . 4577 .2975 .0403 .0008
E3 1550 . 4441 .3506 .0495 .ООН
E4 1138 .4184 .4067 .0597 .0014
E5 0557 . 3512 .5116 .0788 .0021

(2)Before further investigation the solution of и will be determined and
(2) nthus the exact evaluation of u can be obtained. This lengthy procedure is

sketched at the end of Section 3.
(2)The state space of i>n is v l , thus the mentioned limitation is needed.

If the total population
/ Í V [ 2) <n)=M/ 
i=l 1

is supposed as being M < 5 the deviation of /3.9/ and /3.10/ is 10~4 if e=.001. 
After summation we get
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P{u2 = 0} =1______^2______ ^3______ -=4_______>4
El .2473 .4369 .2538 .0554 .0059 .0006
E2 .1899 .4267 .3011 .0726 .0085 .OOIO
E3 .1412 .4061 .3474 .0915 .0115 .0015 /4.4/
E4 .1026 .3769 .3918 .1115 .0149 .0024
E5 .0479 .3017 .4703 .1533 .0226 .0037

The above results are from a very tedious calculation. This is illustrated by 
the table

M= 2_______ 3_______ 4______ 5
number of states 20 46 84 134
number of probab. 400 2116 7506 17956
positive probab. 148 386 693 1153
rate of saturation 37% 18,2% 9,8% 6,4%

If the exact values /4.4/ are compared with the upper /4.2/ and lower 
bounds /4.3/ the latter turns out to have a better fitting. This is not sur­
prising since the requests for Q-type processors arise much more frequently 
thus they are busy more frequently than the R-type ones. This supports heu- 
ristically that W = ^(U+V) is an upper bound too:

x < w where w = wW

The bounds and correct values are compared in the figures below.

.... lower bound /V/
---- exact

---- approximation from W

upper bound /V/
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t

.....  lower bound /V/

-----  exact

-----  approximation from W

Figure 3
The cumulative distribution for the examples El-Eb
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4.2 Answers to questions
Based on the above facts let us try to answer the questions raised in 

Section 2.
The following notations will be used: The letters U, V and W always re­

fer to an upper bound, a lower bound and a heuristic approximation, respec­
tively, based on the values in Fig. 3.

1• yíiii5§tion_groggrtion_gf_the_common_bus

U W Exact V
El 85 % 78,4 % 75,3 % 73,9 %
E2 95 83,1 81 75,6
E3 100 88,2 85,8 84,5
E4 100 92,8 89,7 88,6
E5 100 97,3 95,2 94,4

/4.5/

The real utilization is slightly greater than we obtained because of the 
asynchronicity but the deviation is not significant. More precise discussion 
needs further data on the working.

2 • Mean_waiting_time
Correct discussion is not easy. We have to discriminate the waiting time

of different processors for the bus /W./. The exact procedure based on the SD 
(2) 1of и does not result in exact information on this parameter. For example, 

if the system is in the state /1,0,0,2;4/ then the second request at R2 may 
wait 2,3,4 units depending on the number of arrivals to Q2 and R^ during the 
service of the requests preceding it at and R2> Let us define the stochas­
tic variables T^ and /the sojourn time of a request generated at the i-th 
processor and the number of requests - if any - at the i-th processor/. This 
means

Р{Т± = к} = P{Wi = k-1)

since the service time is equal to 1 and

Р(0± = к}
P{u|2) = к) 
P{u|2) > 0}

It is obvious from the above example that Q, < S. in the sense of/ \ 1 "" 1
/3.1/. On the other side u.' is majorized by • The deviation between Q.

 ̂ (9) (2) ^and Tj, seems to be less than that of ' and u' . /The former concerns only
some states mostly of small probability./ These are summarized in the follow­
ing table for El.
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i E (Q1) E(T±) E(Q) B1 B2
1 1,43 1,449
2 1,43 1,455 1,51 1,675 1,7793 1,69 1,739
4 1,68 1,73

where Q is the total number of requests, if any

P{Q = k} Р{ц(2| ° k} 
PÍU(2) > 0}

12)is derived from the SD of и' ? B, and B- are bounds for E(Q) derived from
П  L 4L

the approximations W, U and W, V.

E <wi> < J /i - 1,2/ and EiW^ < 1  /i - 3,4/

seem to be persuasive from /4.6/ and they are not unfavourable.
An other approximation will be given by Means of the throughput.

3 • throughput
The utilization of the single processors of Q-type decreases because of

(2 )the restriction /2.5/. This is investigated for El based on the М2 . The 
probability that the i-th processor is busy is as follows

i= 1 • 2 3 4

4
.4377 .4387 .1723 .0857

same way the table
i= 1 2 3 4

.3010 .3015 .1 .05

/4.7/

/4.8/

gives the probability that the i-th processor is being served. This charac­
terizes the output rate /throughput/. Since these procedures are based on the 
exact model of rough calculation, approaching possibilities are needed. The 
model Ml is evaluated with different values of ■ Pj. If these distributions 
are compared with those from the approximation^ W

Ei .30 E2 .33 E3 .35 E4 .37

4 • II о .3100 .3780 .3447 .4220 .4404 .4780 .5112 .5360
=1 .4332 .3794 .4265 .3769 .4060 .3657 .3749 .3461
=2 .1868 .1683 .1562 .1477 .1263 .1219 .0970 .0967
=3 .0513 .0523 .0339 .0395 .0227 .0273 .0142 .0177
=4 .0153 .0154 .0065 .0100 .0035 .0056 .0018 .0029
=5 .0034 .0045 .0014 .0025 .0006 .0011 .0003 .0004
=6 .0007 .0013 .0004 .0006 .0001 .0002 .00008 .00008

/4.9/
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a rather good fit is found - especially for the larger values of the variable.
Thus the estimated decrease of the throughput is compared with the correct

(2)values /obtained from и /.

E1 E2 E3 E4
correct 0.301 /85,7%/ 0.331 /82,7%/ 0.354 /78,7%/ 0.374 /74,8%/
estimated 0.30 0.33 0.35 0.37

The real throughput of the two Q-type processors /4.10/

The real throughputs of the two Q-type processors have a deviation of 
approximately 10-3 / is .3010 and Q2 is .3015 if Pĵ  = P2 = .35/. This is 
not by chance. The worst circumstance of is because of its position after 
Q^. If an R-type node reserves the bus both of the Q-types can generate a re­
quest. If both of them do it Qj is always the first to be served. Therefore, 
it is in a better position. The deviation is extremely small because of the 
relatively small values of p^ and p^.

It seems to be worth mentioning that the decreasing of the throughput is 
connected with the occurrence of waiting. Loosely speaking decreasing from 
/4.1/ to /4.7/ reflects the blocking of processors Q^, Qj. Decreasing from 
/4.7/ to /4.8/ is because of the waiting for the bus reserved by others. 
Therefore it is easy to see that

E(T±)si = pB  ̂ : p /4.11/

This gives for El

i 1 2 3 4
E(Ti) from /4.6/ 1.449 1.455 1.739 1.73
E(T^) from /4.11/ 1.454 1.455 1.729 1.714

Another possibility is obtained for estimating Е(Т^). It is obvious that 
p3 = pS3f p4 = pS4*
Thus the values ps  ̂ are approximated from /4.9/ and /4.12/. It is obvious that

Pi > PB • > PSl lf 1 - 1'2 and p3 - PB ' P4 ± PB . •I I  3 4
From these

P1 p2E(T ) < zr^ = 1^45; E(T,) < — ^ = 1,452 .
?S1 ?S2

The bounds for E(T^), E(T^) derived in a similar way need several inequalities 
and are worse than in /4.6/.
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Finally the deviations caused by the different values of T are summar­
ized only for the exact El model

T=1 T=.l T=0
p{u,=0} .3663 .2480 .2473

=1 .4513 .4383 * 4369
=2 .1589 .2529 .2538
«3 .0220 .0542 .0554
=4 .0014 .0058 .0060
4 .0006 .0006 .0006

% .2414 /68,8%/ .301 /86%/ .302 /86,14%/

.3052 .439 .438

V. UTILIZATION OF RESULTS
When implemented the system will contain with all its extensions four 

processors, one for measurement control with p^ = pM = 0.35, one communica­
tions processor with P2 = Pc ** 0.35 /both Q-type processors/ and two input- 
-output processors of R-type, with p3 = pI0  ̂ = and P4 = Р ю 2 = °*05*

In utilizing the results two effects have to be considered, viz. the 
influence of the minimum distance /Tmin/ between consecutive bus cycles of 
the same processor /cf. /1.1//; the increase in throughput as a consequence 
of applying local resources.

The first effect can be influenced by the appropriate choice of the bus 
arbitration system. Table /4.12/ shows alteration of the throughput as the 
consequence of between two consecutive pulses. One can see that if
Tmin = the throughput of the Q-type processor decreases to 68,8% against 
the 86,14% for Tmin = 0. The difference is considerable. The bus arbitration 
used by the system comes very near to the model of Tmin = 0, as small diver­
gences of the limit T = О do not affect significantly the throughput /see 
table /4.12/ pg^ = pg^ = 86% instead of 86,14% by Tm^n = 0/.

So far as the local memories are concerned the following should be noted 
• Without using local memories, i.e. if the system-bus is loaded by the 

whole traffic of the four processors, the throughput of a Q-type processor 
decreases according to table /4.10/ to 86% of the optimum value /which corre­
sponds to the sojurn time S = 1/.

As communication jobs are relatively independent of other system activ­
ities local memory can be used as a communication program store and p2 takes 
the approximate value p£ = 0.05. If the calculations described in Section 4 
are performed the throughput for the "M" processor becomes 0.3313 /94,6%/ and 
for processor "C" 0.0491 /98,2%/. It is obvious that the figures encountered 
for the throughput are normed to one processor.

As the most affected processor M represents only a part of the whole 
system activity the system throughput will become approximately 90% of the
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Ideal case. The difference in speed is not large, the increase in performance, 
however, in advantageous.

VI. CONCLUSIONS
The method described is used for the investigation of system-bus load of 

tightly-coupled multiprocessor systems. It does not replace the simulation of 
the system completely as the accuracy of input parameters obviously influences 
the results, but it does give very useful preliminary information on system- 
-bus load at the design stage before simulation is possible. Though results 
have not as yet been verified in practice they seem to provide a good fit to 
real circumstances. Utilization of the method enables an optimum proportion 
of local and common resources to be established.
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