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ABSTRACT

Singlet states of the 1-d Hubbard chain with several pairs of complex
wavenumbers are studied. The original set of Lieb-Wu equations is replaced
by an equivalent set in which only real wavenumbers appear, the total number
of which is equal to the sum of the number of complex wavenumbers and the
number of electrons needed to make the band half-filled. In a sense discussed
in the text, the new set of equations refers to excitations only. The energy-
momentum dispersion is also found. Based on the energy spectrum and the
Uoo limiting form of the wavefunction, the excitations can be identified as
interacting quasi-particles.

AHHOTALNA

WccnepnywTcss CUHIIETHbIE COCTOSIHUS OAHOMEpPHbIX Xab6bappa-uenei, onucbiBaembie
MHOMMMW MNapaMu KOMMMEKCHbIX BOJSIHOBbIX BEKTOPOB. OpuruHanbHele ypaBHeHusi JINB-BY
3amMellanTCsd 9KBUBAIEHTHON WM CUCTEMOW YypaBHEHWA, B KOTOPbIX MOSAB/SITCA YXe
TO/IbKO AENCTBUTENbHbIE BOJIHOBbIE BEKTOPbI, YWCNO KOTOPLIX PaBHO CYMME 4YUCEsST KOM-
MEKCHbIX BOJIHOBbLIX BEKTOPOB W 3/IEKTPOHOB, HYXHbIX A8 MONy3anosIHEHUS 30Hbl. B
OaHHOM CMbIC/IE HOBasi CUCTEMa YpaBHEeHWUI OTHOCUTCH YyXe TOMbKO K BO30YXAEHUM.
OnpependeTcsa aHeprusa BO36yxAeHui. [lo (opve 3HepreTU4YecKOro crnekrpa, TaK Xe
KaK 1 no ¢opme BO/IHOBOM (yHKUMM, AOencTBUTeNbHOl B npepgene U <, BO306yXaeHus
MOXHO CcuUMTaTb B3aMMOAENCTBYWWUMU KBa3nvacTULAMU .

KIVONAT

1-d Hubbard lancok tobb komplex hullamszamparral leirhatdé singlet alla-
potait vizsgaljuk. Az eredeti Lieb-Wu egyenleteket helyettesitjik egy ekvi-
valens egyenletrendszerrel; ebben mar csak valés hullamszamok szerepelnek,
ezek szama megegyezik a komplex hullamszamok és a sav félig toltottségéhez
szikséges elektronok szamanak o6sszegével. A szbvegben targyalt értelemben
az uj egyenletrendszer mar csak a gerjesztésekre vonatkozik. Meghatarozzuk a
gerjesztések energiajat. Az energia spektrum formaja, valamint a hullamfiggvé-
nyek az U**> hatdresetben felvett alakja alapjan a gerjesztések kdlcsdnhaté
kvazirészecskéknek tekinthetdk.



1. INTRODUCTION

In Paper 1. (previous paper, F. Woynarovich 1980 ) those

eigenstates of the 1-d Hubbard Hamiltonian

a.1)

have been studied which correspond to states in which the
amplitude of finding electron pairs occupying the same site
does not vanish even if U is large. It has been established,
that these states are to be described by such solutions of the

Lieb-Wu (1968) equations

@-2)

in which some of the wavenumbers K are complex. Solutions
with one pair of complex wavenumbers were discussed in Paper |I.
for , and for singlet states, with A/”~/Velectrons.
In the latter case we have found that to the wavenumber pair

K tlx there is one n coupled by the equation

Jdnfktix) - N1+ i-if- 1.3



(This equation 1is correct up to terms exponentially small in

N o). N is determined by an equation of the type

2 arttg i.(n-Sinke) +larcty k.(A-sinkm) * U j' .4

where kt and are the wavenumbers defined by Eq. (1.2) to
correspond to the I -s left out of the ground state 1 set.

They have to satisfy the equations

*/ ———— Sinfu sin |
U'hvi - H »
@a.s)
oo ___(0
With ktj kM and n1 , all the other unknowns could be expressed;

in particular, the densities of the real «k -s, and "nornal”

N -s, could be given as

5 COSK u/itf
p (Kj IT (os(ujthk)duj + 2.*N
(% )™ r (sink-Af 1.6)
TN (aos(o (sink - sinkt)J -h cos(u(fink - sinkm))J du

and



) - (P) cos GjA d 1.7
Ne UHMKI Aty \ Eh[\-iinki)ift -

cA(b-I/InK,,)I&)

with the first terms in curly brackets being the groundstate

densities pgk) and D\

The energy of these states, evaluated by the formula

£ * E>(-2cosk) - bcosKchx 1.8
real K
is
£ ~EO 4 6(ke 4 €k t U (1-9)

with EO being the groundstate energy and

(0 0]

€k) - 2 a8k + 2[— —— cos(u)3ink) Cio (1.10)
o] chuljr a

while the momentum evaluated by

(1.1



P*Po - p(Ki)- p(km) (1.12)
with
* lo(”) sen(nssink) du (1.13)
P (kK 1B ¢ eh <OM- ’
y
In this paper we intend to generalise our results in two
directions: we look for states with several (L) pairs of complex

wavenumbers and at the same time we do not fix the bandfilling
which can be less than half. We denote the number of electrons
needed to make the band half filled by W ; H* N-NG6.

To separate charge and spin redistribution effects, we will look
for states in which the spin part is in its ground state. To make

sure, that the state can be singlet, we take Ne even.

The states with several pairs of complex K-s are expected
to have many parameters, thus we will not be able to solve the
Lieb-Wu equations completely. What we want to show is that even
if the number of complex k -s is large, they can be separated
from the real Kk -s and "normal" N -s and a system of equations
analogous to (1-4) (1.5 can be derived, which contains only the

parameters of the excitations.

We note that allowing for Ne * N , the treatment becomes
general enough to involve both kinds of charge-excitations

(Paper 1. Point 2.3).



In Chapter 2. we will derive the system of equations deter-
mining the parameters of the excitations. In Chapter 3. the
symmetry of the equations found is examined while Chapter 4. 1is

devoted to the discussion of the nature of the states in question.



2. EQUATIONS FOR THE STATES WITH SEVERAL COMPLEX WAVENUMBERS

2.1 Elimination of the complex wavenumbers from the Lleb-Wu

equations

We suppose that, similarly to the case of one complex K -
-pair, to each complex K —pair a A is coupled by the

equations:

sin(k, +ixn) m/a, -< ¢ « O(e )
2.1

Stn(Kh-ix, ) - Nn +i'L -t O(t~=~N

These equations are the generalisations of (1.3) allowing for
the possibility of being complex. The K -s and X -S

satisfying (2.1) ((up to exponentially small corrections) are

{{/(f- »mAf'ib'lstf* / ( { [ ] (2.2a)
0 , Sign ((OSKn) - - sign(jj-- J *,\)
H~ansinj. (/W + (Pefuy, + +
anchij-jjfa, 3T/lux+ (W * V (Tblb- | fj (2.2b)

K, >0 , sign(cotE,) - - Sign (jL +j,, /\B



Note that also in this case the set of complex k-s

consists

of complex conjugate pairs provided the N1 set consists of real

N -s and complex conjugate pairs. In the following we will

suppose this, but later we will see that the equations deter-

mining the N -s indeed define such A -sets.

Now the equations for the complex K -S are

fi

H(Ka+ix,) =ltlh - E (sinlkh )_/|._)_

L
- E lantgi-(scn(Khtixh) - AM)

zel )
N(K,-iKh) —=ZTIlh - £ larctcjiSCti(Kh-ixh - AJ ~
/13*1 r
L

— E IArciCj(sinfa-ixJ-A*))
Pl

It is not hard to verify that (2.1) and so (2-2.a-b)

solutions of the imaginary parts of (2.3.a-b) 1if the

ry+H

(-2.3.a)
(2.3.b)
are the

conditions

+u H I%t lanu/(sin(KMCx*) ¥ u(sin,(K*+iX,,) - Ah)fl__ y >0
]

2.4

e V [ E zarctj(sCn(i<H-ify -Afl) + Ei- a n L -A”rJ--frzo



are Tulfilled. These inequalities are to be checked at

the end when the X -s and /1 -s are known.

The equations defining the real «k -s are

N
Alk, -=2XL - -fEZtro+a ~-(sitbkf—HAa) * £ Zarc ~A*)J
' in- bl mxf kéiscout.
2.5)
%-L
-jZ lartit) Jt-(f**,kj-hp) +Z Z&rcfri”(slbkj -N *)]coni'
where we understand
. L 1 SCn,k-ReA , tn,k~ReA
Rej{-larcta /. a\) - &rcH) - Sl e * arctcef st ©
C J con,*. u + .
% - 7SUA (2.6. a)
uJIM b ,i(s bk -*)]- X bl
1 / ,m< 2°¢ +(s,«k=-**4
Xscyn, (sin,k-RcA™  If-
Rej iXjb; -A)IND (2.6 .b)
ejlArtiXjb; (Stlbk A)Jd "
4 /&, N/<T-
Im jlarcH ~(scnk-A)J =0
u Jdiscont.
The I set in (2.5) consists of integers if AR/ T is even
and half-odd-integers if f/z. is odd. Note that the | f

set defined as



- =1 - £’\.éb larctfE-(stki; -%fl) - E 2arc.+tj -jLfciksk, ) 7 2.7

consists of integers (or half odd-integers) if the /-s are
integers (or half odd-integers). Thus, depending on the

parity Of (@-H)2 we have to choose N-2L-H different | ' -s

from one of the sets

-{(N-i) , -~AJ-3), 4~-3), £(»-*) (2.8.3a)
- (/9—r; 5 . {(*-%) /{ " (2.8.b)
Equation (2.5) defines k-s also to the I' -s left out from

(2.8.a) or (2.8.b). We will denote this k-s by the index «

(for "hole"). The density of the k -s, satisfying (2.5) is

(%) (u/k)
p(k) =jL + JL—-lLeoskE , , - , +-]r-ZcoskEl (2.9)
y ZT tTTN (%) +(8cuk-Np)r ITN M (% )L s-Csikk-Au,)I-

As this p(k) contains also the contribution of the variables

kk j to replace -sums, we have to use

H+IL

[~ Fde- @1
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The equations for the ™"normal™ H -S are
*
£ Zart+zj (A~-SOtkjJ + Z Arc, t(j +1¥*)3  +
/74 m-1
+z larcirC jLN-s”~")] - 2Tfc + Elarclgl(®»-n) +
hief fef 2 .11)

+ E LarcigA”™NV-"]

Now using (2.1) and the identity

Larct<]£(*K-A*,-<?) -h larctgEfa-A”™ +ifi) =

(2.12)
e larctq jj( AK~NM) + dAsign (fc (\-n*))
One has ((up to exponentially small terms)
E 2arcty JL(*t-s(nkr) - Z 77 + Z lorcit) (2.13).
. u fi'i

iJ = 4 - E i sign(te(K-n*
i 5 gn(te( ))

}. is integer if (/J-H~-2L)/2 is odd and half odd-integer if
(AJ-H-ZL ) /2. is even* Note that (2.13) is formaly the same as

the corresponding equation for a system with N-ZL—H
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electrons, all described by real k-s.

The A -s coupled to the complex «k-s are determined by

the equations:

L
I Lan+q = (/\h-sink}) + £ Z«rcicj*(Ah- sik(km+ix*,)) +
ftl
L ie"L
£ z» PBE (N,-$Cr-4dn,)) - 2XE£ + 12-arc-tr)b (/1*-VL)+
Mui (=g 8

L
+ E  Zarc+Q jj- (N,,—A*J

IT in the first term of the I.h.s. we replace the continuous
part of the sum over the real k-s by the corresponding
integral, then we have, up to terms proportional to (calcu-
lating also the sum of the discontinuous parts by means of p(£)

would introduce an error of the order of %/ )

HriL

A s

G- )anun-z fli-*>* &
G danunz 5 (o)

* e K?2 **A>S « W * | LTH#/

Ve used here the 1identities (2.6.a and

T

Kk - ae« “JF+@Oj (2.17)



+ (N-sin,X?-

—————————————— dk
N+ (1 —sink)
are eh.
z
Thus sununing up Egs. (2.3.a),

(2.1) and (2.12), one obtains

2UH
z lanty £ -(/, -smtcA) - IT
A/
with
AJ ssjn>(e, AHl ~ %
+17 S (i
au K 2.
+ 4~ Z (Xe (A
i
5 being integer if N-L-H
N-L-H 1is even.

The actual

and (2-19). Knowing all the

system to be solved

ki-s and K,-S,

(2.18.3a)

J(v)COSUA du}

- (N+h*-+ (2.18.b)

(2.3.b) and (2.15), and using also

L
+ Z Urcty~foi-Au,) (2.19)
14,1
aZ
Stfn (ke14) — A Siuk) (2 2n)

2

is odd and half odd-integer if

is the system of (2.5), (2.13)

q-s,

and
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/*-s , the complex wavenumbers can be calculated, the original

I , and } quantum numbers can be determined and through
(2.3.a-b) also the exponentialy small corrections to the «s and
of (2.2.a-b) can be obtained.

It is interesting to note, that the system (2.5) , (2.13) ,
(2.19) 1is entirely symmetric (as far as the structure 1is concerned)
in the variables ki , 4~ and K , A, - The only asymmetry is
that the number of -s is the half of the number of kj -s

while the number of /*. -s can be less than half the number
of -s (if H 1is not zero) . But this is only due to the fact
that we are investigating S** 0O states. It is not hard to see,
that if we were calculating states with 5%t 0 , then even this
asymmetry would disappear. (In the general case, with Ne
electrons, "n-s and MfcL) s ( = Ae — (M, +Mb) )]
the prescription Tfor the z"', and [/ parameters would
be that j' -s are integer numbers 1ifFf is even, 2 -s
are integers if Ae- M, is odd, and -s are integers 1if
Ne - NI7r is odd) .

2.2 Elimination of the normal_ X -s.

Equation (2.13) may have many solutions depending on the choice
of the parameters N _ As we stated in our program, we would

like to describe such states

dom are not excited.

and the corresponding equation of a system with

we have to choose

t

electrons,

tic of the ground state of a system of

To do this,

in which the spin degrees of free-

based on the analogy of (2.13)
N-H-LL

is characteris-

that -set which

N-H-LL electrons, 1i.e.
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the set
/ /IN—H-ZL _ /JIN-H-LL , + s N-H-ZL 2.21
-r—---VJ~Z<l— Vi owe 5N -2
With this choice of the -s, the density of the A -s must

satisfy the equation

00
M) Cyo)
p(k)dk , 2>TW"N 2/————--—--—— - M - 2.22)
i%)x+(b-a*y I J(UJ L+ (A -*T

The solution of (2.22) 1is easily obtained by Fourier transforma-

tion :

pa; -£ f n» - _LIr=* 4 (2.23)
wf JV« h-f ck(A-sihkK)jf

This o4 allows us to eliminate the [ -s from yj~of (2.9)

with the result

-430
g(k) = 1+ coskd e -~ (os(tosink) du )
0 N1 "
0?2 -loz ML
-J—- OBk /J?—— T 1 (m(sink-SinkA)oO
U-N 0 cKwuf. @ .24)

+ .j!— . Zcosk ) (Ll)
IX-H ml V-(sink-T™)1
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By means of f(A) Tfrom (2.5) equations Tfor the variables

can be obtained

0O «Wi " "

(2.25)
mrl du -Efin bU ank A ji

As by the M-s and /l,-s all the other unknowns are determined

the problem is reduced to the solving of Eqs. (2.19) and (2.25)

2.3 Energy and momentum

The energy 1is calculated by the formula

T
E = -JV'Il cosk p~(k) dk - £ I(cos(khi-iXhl) + COSfa-cx*,)) (2.26)
J trt“1
-1r
which gives
HUL
£ = EO t+ Z t(kk) (2.27)
Al

where 6(k ) is given by (1.10). The momentum evaluated by

means of the formulas .11 , @.7n, -8, (.19 , (2.20) ,

(2.21) and (2.25), turns out to be (up to nIT )

HeZI-

P -E - b f 2-28
I p (b)) + ( )

where p (k) is given by (1.13) , and is zero if

is odd and 7T if (N-H)/ 2 is even (in the general case
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when N-H can be odd, 1w (N~H)1) modIX ) . The appearence
of this is not connected with the presence of complex wave-
numbers. It rather resembles the fact, that even the ground
state momentum of a Heisenberg chain can be 0t T/z. or T
depending on the parity of the number of sites, and that even
the ground state momentum of a half filled Hubbard chain can be

O or T depending on the parity of N/u

2.4 A special solution for the -s

The equations (2.19) and (2.-25) are highly nonlinear but
there is one case when they can be replaced by a linear integral
equation. This is the case, when H*0 , L 1s macroscopic

(comparable to N ) and we choose for the %' set the numbers

-rn-0, -{(L-3), mmu {(I-1)

With this choice of 3 -s all Ah will be real, and the number

of A -s between A and A+dA can be given as (iL) f(A) c(A

where
ZL

FO '@ “Z InCA-SihkA Q..

Combining this with (2.23) one finds that the density of all

N -s and A -s is the same as the density of A -s in the

ground state

oc

6(b) + Ty-f(b ) - 1 ~ costoA du> * ~(A) (2.31)
o ckui Y-
4
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using the £(n) to evaluate the sum over the /2H1 -s in (2.25) ,

we Ffind that

1>«)m$ K (2'32)

i.e. iIn this special case the quasiparticles are not interacting.
We should emphasize, that this holds only if L is large, and

the error introduced by using f(A) in the summations (for which
Vi1 is an upper limit) 1is small enough, and if we choose (2.29)

to characterize the system.

2.5 O0On the conditions (2.4)

Any solution of the system (2.5), (2.13) and (2.19) is
meaningful only if substituting the A -s into (2.4), the
inequalities are satisfied. We were not able to show in general
that they hold, only in two cases: one in which the number of
excitations is small compared to N (i.e. the number of /N -s
is not macroscopic) and at the same time the spin part is near

to its ground state. The other caseis when although the number

of N -s 1is macroscopic, the system is nearto the state des-
cribed iIn Point 2.4. In both casesthe sums iIn (2.4) can be
estimated by integrating over the ] -s using their ground state
density. This estimation shows that both and are

definitely positive. It is also true, that for a small number of
complex «k -pairs, to each pair there must exist a J satisfying
(2.2_.a-b). (If there where complex «k pair without /1 , then to that

pair and m should be zero.)



18

2.6 The number of solutions

Eq. (2-.19) in the large U limit goes over into the
secular equation of a Heisenberg chain with length LL+H and
with L+H spins pointing in one direction and L spins
pointing in the other. 1f Bethe®s hypothesis holds, (i.e. all
eigenstates of a Heisenberg chain can be described by the Bethe
equations) then these equations must have glm+H) solutions.

At the same time one has (ZL+H) possibilities to choose the 1n
set. Supposing continuous behaviour in the large U limit, one
can conclude that the equation (2.25) together with (2.19) must
have NI!/{(N-H-IL)!(L +H)!IL!'J solutions for all U 0 and this
is exactly the number of states in which there are HwuL empty
and L doubly occupied sites, with the spins belonging to

the N-H-ZL singly occupied sites being in ground state.
Thus (@.25) and (2.19) describes all of these states (for small
enough L to be sure that (2.4) is valid). It is interesting

to note, that with the same reasoning, counting into account the

number of different solutions of Eq. (2.13) we have that EqQs.

(2.5), (2-13) and (2-19) should have

N-H
p (IL+H\ ( N-LL-H

“ " L *\(n-z1~H)/L (2.33)
different solutions, which is exactly the number of states
of N-H electrons in a chain of length N . Unfortunately to

conclude that the system (2.5), (2.13) and (2.19) describes all
solutions of the problem one should have to show that (2.4) holds

for all solutions.
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3. SYMMETRY OF THE SYSTEM (2.5) (2.13) (2.19)

As we already mentioned, the system (2.5), (2.13) and (2.19)
is entirely symmetric in the variables kj , and kk , nH
Now we show that this symmetry is present in some form also in
the momentum and the energy of the system.

Let us define the complex wavenumbers elalalakalel and £*_**

for the A4 variables analogously to (2.1) and calculate

G-
&n
using (2.5), (2.9) and that
T
-A G.2)
- &<@) * 174 ~ D)~ iXA) B n scqg* fte *«(»))(
$t(x) being the step function, we find that the value of (3.1)
is simply (up to n-21 )
3-3)

depending on whether J/-/7 ( M being the number of down spins)

is even (fA) or odd (O) . Thus interchanging the roles of the
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variables ki , A* and I, changes the sign of the

momentum of the system ((up to a term X )

If we calculate the sum

Z (-losk) - Zz  I(wipmti**)i-cor(iem -ix*))
*« K * (3.4

- E 2 (cos (K4 +inK) wcotfa-ix«))

we Tind that this is equal to M-U . Thus 1in this sense the states
in which the roles of the variables , 4* and kK, /N, are inter-
changed are "complementers”. This complementarity can be used

to calculate the energy and wavefunction of highly excited
states or low energy states of a Hubbard chain with negative U
(From this, for example, one knows that the highest energy state

of N electrons is the one in which all kK -s are complex and

the distribution of A, -s is the same as the distribution of
A* -s in the ground state,but this is also the ground state
of the chain with -uUu )

This complementarity may be connected with the property of
the Hubbard Hamiltonian, that if we introduce holes instead of

the up-spin electrons, then

bl «
H U-Z nté - H (3.5)

11

where H has the same structure as H . Taking into account
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the parallelism that in the complementary states the parameters
A< describing the spin part change role with the A* para-
meters connected with the charge distribution, and that the
transformation which transforms ﬂ into ﬁl introduces
doubly occupied or empty sites instead of the singly occupied

ones (uncompensated spins), and vice versa, the above-suspected

connection seems very possible.
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4. ON THE NATURE OF STATES WITH COMPLEX WAVENUMBERS

The goal of this chapter is to connect our results obtained
through the lengthy algebraic work of the previous chapters
with some less rigorous but more or less transporent pictures.

A full analysis of the structure of the eigenstates would require
the knowledge of the different correlation functions, but this

is beyond our grasp. Instead, we have to be satisfied with some

indirect reasoning or with the examination of limiting cases.

We will base our arguments on the energy-momentum relationship,

and on the analysis of the U-*oc behaviour of the wave function.

4.1 Quasi-particle picture for the energy-momentum relation-

To have a closer look at the energy and the momentum, let us
consider first a system in which there are Ne =V/-/Y electrons
in a state described by real wavenumbers. According to (2.27)
and (2.28), the energy measured from the ground state energy of

a half filled band, and the momentum are

(4.1

P “ £, -p (kKK * TO i'Nelz.))

If we take a system with more electrons than N , with Ng ~N*H'

we have



23

g
e -L 6(kh) t H'M
A*L

@ .2

P°E -p(kj + T(I+Nefi)

(such a state can be obtained by taking a state with N-H' electrons
and acting on it by the operator explii ’ + nt o+ Oﬁcnnfy
This introduces holes instead of particles, and changes the
energy by H'U and the momentum by Tti' . Now looking at

the energy of a state with N€-N-H electrons and with L pairs

of complex wavenumbers

H+IL
B £ G(ki) + Lu
A=/

(4-3)
H+LL
p- E - p(K) t t(<+ "t/L)
A
we see that it is like the energy of a state with L+H holes

in a subband with dispersion -€k(p)) ((4.)) and L particles in

an other band with dispersion Ck()tu ((4.-2)) . Thus the form of
the energy suggests that introducing pairs of complex wavenumbers
instead of real k -s acts like exciting a number of carriers
from one band to the other. This picture, however, reflects only
the apparent additivity of the energy and momentum, and gives

the right coefficient of U . One should not, however, forget
that the states under concideration are excited states of a
many-body system, and even if these quasi particles and holes

can be identified in some limiting cases as some sort of spatial

configurations, their energy and momentum is carried by the system

See p. 33.
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as a whole. This 1is expressed in the fact that introducing a

pair of complex wavenumbers changes the value of all the other
wavenumbers, and consequently the contribution of the other
electrons to the total energy and momentum. Another point is

that these excitations, if we treat them as quasi particles,
should be regarded as intereacting ones. This is reflected in

the fact that the momenta of the quasi particles are not free
parameters, they are connected with the actual quantumnumbers
through a system of equations ((2-19), (2-25)). In this respect
the picture 1is very similar to the one we can connect with the
motion of the electrons themselves: we have a system of particles
which can propagate along a chain, and can scatter on each other.
In this scattering processes they can change momentum and depen-
ding on their mometa,their phase is shifted as well. To have a
stationary state, we have to fit the momenta and the phaseshifts
properly. These conditions are expressed in the Lieb-Wu equations
and we can put this picture behind the equations (2.19), (2.25),too.
This also explains why we can not tell, which momenta are to be.

associated with the holes and which ones with particles.

The analogy of Egs. (2.19), (2.25) with the original Lieb-Wu
equations makes possible an alternative interpretation. We may
regard the quasi particles as 1identical ones with energy momentum
dispersion £(k(p)) , but carrying an "isospin" + flL . Then we
do not have to think in terms of two bands but we have to inter-
pret the U as the creation energy of a pair of these quasi

particles with isospins +tt. and - > .
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4.2 The U—oo limit of the wavefunction

The above detailed interpretation of the states with
complex wavenumbers is based merely on the form of the energy
and the structure of the equations determining the parameters
connected with these excitations. Now we try to find out about
the nature of these states in the large U limit, where also the

form of the wavefunction becomes more transparent.

Making the d —» oo limit in the wavefunction (see
expressions (2.3-B) of Paper 1.) one Tfinds, that some of
the amplitudes diverge. As in the normalised wavefunction only
the terms with the strongest divergence will give finite contri-
butions, picking out the most divergent terms we can separate
those configurations which can be realised even if U 1is very
large. This way we get the result that for large U only those
configurations remain in which the number of doubly occupied
sites i1s equal to the number of complex « -pairs. In the amplitude
of these configurations only those permutations P and 'H give
contributions in which the + and  **-i"x*, wavenumber
pair belongs to one doubly occupied site, and the A~ belongs
to the down spin at this site. Using the fact, that for large U
all the Sinkf-S can be neglected compared to the J/lh -s and A, -s,
and also using (2.1) the amplitude of the configurations in

question can be given as

(4.4)
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Here the permutation O arranges the coordinates 4, nt .._.n, H
into nondecreasing order with the restriction that from two

equal coordinates that of the electron with down spin must come

first. The n& -s refer to singly occupied sites, the d to
doubly occupied ones and P goes over all permutations of the
real wavenumbers. The Tfunctions (f and fL are essentially

the Heisenberg eigenfunctions:

Yy

ilff t u + “iy 1

9 o H Awe B AmI) (— a !
H

VI A - U/tf) - I i Atn4 -«A,
(4.5)

A(... A*, ATbl-.) "~ [/(bTnH- Ajri) - Uz

A(m Aru, Art-- m) “(An*- Aj,) *m

The numbers y™* are the coordinates of the down spins in the
chain of singly occupied sites in increasing order, oqy is for-
mally the same as (ju with the difference that U must be
replaced by -U , the by the AM -s, and the numbers uA
are the coordinates of the doubly occupied sites in the chain
containing only the doubly and unoccupied sites. The amplitude
of the configurations in which the number of doubly occupied
sites is more or less than L vanishes at least like */y as

U-* oo

To understand (4.4) let us consider a configuration in
which the first N-H-1L sites in the chain are singly occupied,
and_the remaining H+IL sites are the empty or doubly occupied

ones. In this configuration the electrons can not move (except
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the last one) as either the Pauli principle or the large on-

site repulsion prevents it. Although in this configuration

there is no direct interaction between the electrons, through

an intermediate state with energy U neighbouring electrons

can see each other®s spins, and electrons with different spins
can change position, 1i.e. the spins can move in the same way as
spins move in a Heisenberg chain, the distribution of the spins
will correspond to the eigenstates of the Heisenberg Hamiltonian.
The situation with the empty and doubly occupied sites is similar:
Neighbouring sites can observe each others occupancy through an
intermediate state of relative energy -U ; and also the same
intermediate state makes possible for an empty and doubly occupied
site to change position . Thus the distribution of the empty
and doubly occupied sites will be the same as the distribution

of up and down spins in a Heisenberg chain. (See also Chapter 3.)
It is clear that neither the spin distribution nor the relative
distribution of the empty and doubly occupied sites does change
if the chain of singly occupied sites is "diluted”™ by empty and
doubly occupied sites making possible also direct propagation

for the electrons.

Now, having the Uwoo form of the eigenfunction at hand,
we can see, that complex K pairs in a solution of the Liebs-Wu
equations correspond to doubly occupied and empty sites if U
is large. Thus in this limit the quasi particles corresponding
to these excited states should be identified with these objects.

We can see also, that if we treat them as particle and hole like
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ones, then the filled band corresponds to all sites being
occupied by one electron, the holes correspond to the empty
sites and the particles to the '"second™ electrons at the doubly

occupied sites. This 1is in accordance with the intuitiv notion

of exciting a number of carriers across a Mott-Hubbard gap.

It can be seen also that the alternative interpretation
is equivalently good: in this case the carriers are the not
singly occupied sites, and the isospin tells us wether a carrier

is an empty or a doubly occupied site.

We should emphasize, that what has been said applies only
if U is large, and no discussion of comparable simplicity can
be given as one moves away from the U-*oo limit, since it Iis
obvious that for U~/ there are many doubly occupied sites even
in the ground state where there is no complex wavenumber in the
kK -set. For TfTinite u we have to be satisfied with the

expressions for the energy and momentum of these states without

putting behind them a transparent picture.
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5. SUMMARY

In the present work we have investigated those eigenstates
of the 1-d Hubbard model, for which in the wavenumber set there

are several pairs of complex «k -s. Our results are the following

1. For such states solving the Lieb-Wu equations 1is
equivalent to solving the system of Egs. (2.5), (2-13) and (2.19)
provided (2.4) is satisfied by the found solution. This system
is similar in structure to the Lieb-Wu equations, the difference

is that there are no complex wavenumbers in it.

2. This system can be reduced to a simpler one (Egs. (2.19)
(2.25)) for those states in which the spin degrees of freedom
are not excited. For these states the energy and momentum can be
given as the energy and momentum of quasi particles. These quasi
particles can be regarded as particle-hole like ones but they
can be treated as pairs of identical particles with "isospin”

equivalently well. The form of the energy and momentum

of the quasy particles 1is given by (1.10) and (1-13).

3. A "complementarity"™ between solutions of the system
(2.5), (2.13) and (2.19) corresponding to low and highly éxcited
states can be established, which can be used to describe diffe-
rent states with one solution of the system. In the complementary
states the parameters connected with the charge and spin degrees

of freedom change role.



30

In the present study we concentrated on the 'charge excita-

tions”™. To isolate charge rearrangement effects,
we examined such states in which the spin part was

in its ground state. We plan to extend our study to those states
in which also the spin degrees of freedom are excited. Preliminary
results show, that, as it is expected, the presence of spin
excitations does not affect drastically the results concerning
the states studied so far, just in addition a new type of

"elementary excitations” must be introduced.
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Footnote (- 23.)

The state with ©' extra electrons can be constructed

this way only if A 1is even. I1f N is odd, the transfor-
mation between particles and holes changes the periodic
boundary condition into antiperiodic or changes the sign

of the kinetic energy.
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