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ABSTRACT

Those excited states of a half filled 1-d Hubbard chain are studied
which are connected with electron pairs occupying the same sites. It is
argued, that these states are to be described by such solutions of the Lieb-
Wu equations iIn which some of the wavenumbers are complex. Solutions of this

type, corresponding to S2 = 1/2N-1 and singlet states are found. The energy-
momentum dispersion is also calculated. The gap in the spectrum of the
singlet excitations is found to be equal to the discontinuity of the chemical
potential calculated by Lieb and Wu.

AHHOTALMA

NccnepywTcsa BO36yxAEHHble COCTOSHMSA NOsy3anofiHeHHbIX Xyb66apa-uener, KOTO-
pble CBAA3aHbl C 3JIEKTPOHHLIMX MapaMv, 3aHUMawWMMKU OAMHAKOBOE MecTOo. [loka3aHo,
UTO 3TU COCTOSIHUA ONMUCHIBAKTCHA pelweHuaMun ypasHeHusa JIMB-BY, copgepxawmmm Komn-
NIEKCHble BOJIHOBbIE BEKTOpbl. HaligeHol peweHuns ypaBHeHusi JIB-BY, copgepxawme opHy
napy KOMIM/IEKCHbIX BOJIHOBbIX BEKTOPOB, COOTBeTCTBywuwne Sz = 1/2 N-1 u cuHrnert-
HOMY CMMHOBbLIM COCTOAHUAM. B 060uX cnyyasx onpepensnTcs AUCMEPCUOHHbIE COOTHO-
WeHUss 3Heprmm-mmnynbca. "'Gap' B CMNEKTpPe CUHIETHbX BO30yXAEeHWA COOTBETCTBYET
CKauKy XUMWYeCKOro rnoTeHuuasna, Bbl4UC/IEHHOMY JIné u By.

KIVONAT

A félig toltott Hubbard lancok azon gerjesztett allapotait vizsgaljuk,
amelyek azonos racshelyet elfoglald elektron-parokkal kapcsolatosak. Megmu-
tatjuk, hogy ezeket az allapotokat a Lieb-Wu egyenletek komplex hullamszamot
is tartalmazé megoldasai Irjak le. Megkeressik a Lieb-Wu egyenletek

s = 1/2N-1 &s singlet spinallapotoknak megfeleld egy komplex hullamszam-part

tartalmazé megoldasait. Mindkét esetre meghatarozzuk az energia-momentum
diszperziot is. A singlet gerjesztések spektrumaban talalhatd gap azonos a
kémiai potencial Lieb és Wu altal kiszamolt ugréasaval.



1. INTRODUCTION

The one-dimensional Hubbard model, being a non-trivial
but exactly treatable model for interacting spin 1/2 fermions,
is of great theoretical interest. It describes electrons,
which can hop between the Wannier states of neighbouring sites
in a chain, and have a repulsion iIf two of them /with opposite

spins/ occupy the same site. Its Hamiltonian is

N
Gt) -h U 12 Kjf ftfj a.1
Here N is the number of sites on the chain, Qf. , qf and

are the creation, annihilation and number operators
respectively, fTor an electron with spin & in the Wannier
state centered around the site i . The problem is uniquely
defined by imposing periodic boundary conditions on the

system.

In the exact solution of the model the Ffirst step, which
made all further work possible,was made by Lieb and Wu (1968),
who, starting from Youg"s (1967) work, showed that the diagona-
lisation of (1.1) 1is equivalent to solving a set of coupled
nonlinear equations. They calculated the ground state energy
of the system for half filled band, and the gap in the spectrum
of the one particle type excitations at this bandfilling
(half filled band + one particle). Based on the equations

set up by Lieb and Wu, Ovchinnikov calculated (1970) the lower



edge of the continuum of the triplet excitations of a half
filled band. In his paper calculations for the singlet exci-
tations can be found, too. Coll (1974) calculated the spin-
-wave type and one-particle type excitations for general band
filling. The T = 0 magnetic properties of the model have
been worked out by Takahashi (1969) and Shiba (1972); 1iIn par-
ticular Takahashi found the magnetisation curve for the half
filled band, and extending this work Shiba gave the magnetic

susceptibility for an orbitrary concentration of electrons.

The aim of the present work iIs to study those excitations
of a Hubbard chain which are connected with charge rearrangement.
In a non-half-filled band two kinds of such excitations exist.
The Tfirst kind, which have been described by Coll (1974),
differ from the ground state only in the momentum distribution
of the electrons. The number of this type of excitations
disappears as the bandfilling aproaches 1/2; a fact which
suggests that in all these states the electrons occupy different
lattice sites. The other type of 'charge excitations'™ is
connected with electron pairs occupying the same lattice sites.
Our aim is to find a way to describe such excitations. For
the sake of symplicity, fTor this purpose the half filled band
is studied first, since in this case charge excitations of the

first kind do not exist.

The paper 1is organised as follows. In Chapter 2. after
introducing the general formalism an analysis of the wave

function leads us to argue that complex wavenumbers have to be



used to describe the states iIn question. In Chapter 3. we
study the simplest case in which such excitations can exist,
namely the one in which all but one of the spins point in the
same direction, but the electron with the opposite spin
propagates along occupied sites. In these states the spin
degrees of freedom are highly excited. Chapter 4. 1is devoted
to the description of such an excitation if the spin degrees

of freedom are not excited.



2. THE LIEB-WU EQUATIONS; SOME PROPERTIES OF THE EIGENSTATES

2.1 The symmetries of the Hamiltonian

In deriving the secular equations for the model, the
following symmetries of the Hamiltonian (1.1) have been

exploited:

A

i, H does not act on the spin coordinates of the electrons
(this becomes apparent if we write (1.1) iIn Ffirst quantised
form), 1.e. it commutes with both the A component and the
square of the total spin. This means that the eigenstates
can be characterised by these quantisies (of course S
and O do not define the state uniquely, thus together
with these quantities other quantum numbers must be intro-

duced, too) .

A

Introducing holes instead of electrons, the form of H

does not change (apart from an additive constant) thus it
is sufficient to describe those states in which the number
of electrons (Ne) is less than or equal to the number of
sites (N) . It is also apparent that It is enough to deal
with states in which the number of down spins (M) 1is less

than or equal to the number of up spins (_M'KNe-M)

Without the loss of generality t can be taken as tmf .

2.2 The Lieb-Wu equations and the eigenfunctions

Using a generalisation of Bethe®s hypothesis Lieb and Wu

showed that finding an eigenstate of (1.1) which corresponds



to (i1) 1is equivalent to solving the system of equations

M
Nki ~iTli -2 c.D)
(j. 1,1, ... N.)
Er<.rcl9z(An-*ny - z*i ~Lzcrct3L”",-Afl) e 2
-*)
where the parameters | are integers (or half odd-integers)

if J? is even (or odd) and the parameters J- are integers

(or half odd-integers) 1if Ae-JV i1s odd (or even) . In this
system of equations the k -s and J1 -s are the unknowns

and the parameters | and f are the actual quantum numbers
specifying the state. Only those solutions are meaningful, for
which all the k -s and A -s are different. It is a special
difficulty that it is not clear to which sets of | and J
can a meaningful solution of (2.1 -2) be found. Thus solving
(2.1-2) means a twofold task: Tfinding the appropriate 1 and

J sets and finding the k -s and A -s.

Following the reasoning which led to Egs. (2.1-2) , the
wavefunction can be constructed. One finds that the amplitude

of finding the electrons at the positions t



with spins Y R is (up to a normalization factor)

Ma,4;9a.b;~aw%) =L f-ifi-ifo p { i E j r (fw fai smt) (2.3)
where the permutation Q 1is defined by the condition that
NQl A" nNQz * «mm AN 2.4

and the summation is extended over all permutations P of the

b -s. The Tfunction $p is given iIn the form

*

P W p A(VHZ A DY @5

r/, Yalj IN(NKPj~K~ jt_ ) t

2 .6)
P '4 "/ iMnkA-\)+ ) i(sin, bpy-1) -fy
ft (me ® *-Xi JIr/H mum) i( Ti) — X Q.7
A@mmm Arat Ar< ) i( AZH-AXi) W X

where the y -s are the positions of the down spins in the

series ANQii N in Increasing order

Y/ e N4 U *e -8



and £ in (2.5) refers to summation over all permutations

of the A -s.

In connection with the wavefunction (2.3-8) the following

can be established:
it for example

o« f ~i1s uniquely defined even if Q 1is not:

and nj are equal, there are two permutations, Q and

which arrange the spatial coordinates into non-

-decreasing order but the value of f does not depend on

wether we choose Q or Q' in (2.3)

R f fis antisymmetric (due to the factor (-/} )]
Y f ~satisfies the eigenvalue equation with the energy
4
E*-E 2cosh, (2.9)
&, f Is periodic with a period N . lts momentum is
Ae
p-E Kj (2.10.9
which, by summing up (2.1) and (2.-2), yields
P — (2.10.b)
2.3 The ground state and simple excitations
characterised

According to Lieb and Wu the ground state is



by the parameter set in which both the Ilje-s and J -s are
consecutive integers (or half odd-integers)centered around

the origin.

Taking the N— <& (A/V , M/IN = Tixed) limit, the
k and A variables will be distributed continuously 1in
the regions -Q «k QCj( , with density
functions p(k) and &(A) , respectively. (2.1) arid (2.2)
then leads to the integral equations

B

foorm(%
U f>U) * 1 + OBk = (%) re(A)c/\ 2.11)

J ((@F * (Enic-X)

0 a

I (%) N p(k)dk - L76(\) + ‘XWZ) . CEOAX 2.12)
J () +(A-mk) g (P+(HT) '

where Q and B are determined by the conditions
Q
« N - % N\’/n (2.13)
-B

The ground state is a singlet (if N is even) with
Nz | <SaS -0 , or a doublet, S , 'S*3q (if A is odd)
For this state B*oo is to be chosen, as i1t can be checked
by integrating (2.12) over A . For a half-filled band Q-T
is to be taken. For this state (2.11-12) can be solved in

closed form by Fourier transformation giving



JuJ cos(oiink) du)d (2.14)

00

as UA do (2.15)

The groundstate-energy for a half filled band is

-zZu ,2

*<e>§

where '6 and L are the zeroth and first order Bessel

functions, respectively.

The simplest excited states can be obtained by making
small changes iIn the 1 set, or In the ~ set, or iIn both.
The simplest excitations with one spin turned over are triplet
spin waves and are described by a j! set in which one ~» is
missing ('hole iIn the A distribution” in Lieb and Wu®s classi-
fication) . The simplest excitations connected with the b
distribution may be "hole™, "particle”™ and "particle-hole"”
type ones, which are described by certain well defined modifi-
cations of the 1 set belonging to the ground state. In the
cases of "hole" or "particle” like excitations the essential

changes in the | sets are removing one | from the "bulk™ of
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the set, or adding one 1 to the set far from iIts ends,
respectively. (Changing the number of 1 -s, 1i.e. the number
of electrons, by one may be accompanied by a change in the
parity of the numbers 2J- , and may necessitate the change of
the number of ? -s, and of the parity of 21 -s as well.

A pure 'charge'™ type excitation is defined by choosing the
spin part so as to get the lowest excitation energy.) The
“"particle-hole™ type excitations are defined by 1 sets which
are obtained from the ground state set by removing one 1
from the bulk of the set and adding to it an other / which
is larger (or smaller) than the largest (or smallest) | in
the ground state set. All these states are discussed in detail

in Coil"s paper.

Note, that i1if the band is half filled 1.e. Ne=N , from
the "particle™, "hole™ and "particle and hole in the A distri-
bution”™ states only the "hole"™ type can exist. This can be
seen by the following reasoning: All 1j can be taken to satisfy
as changing kjby 2T does not effect anything. In

the above region there are J¥ different integers or half odd-

-integers, thus i1f we originally had /¥ different 1j -s, we
can not displace an 1 outside of the region covered by the ground
state | -set.

2.4 Eigenstates with real k -s in the large U limit

Looking at (2.2) one sees that in the large U limit all
N1* - cink]j must be of the order of U . As for real A-s /sinkjl &,f
the /1*-s must be proportional to L( . This means that for states

described by a «k -set in which all «k -s are real, the limiting
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values of the /1 -s roust satisfy the equations which are
obtained by neglecting the sink--s iIn the 1.h.s. of (2.2).
These equations are essentially the secular equations of an
isotropic Heisenberg spin chain with & sites (See TFT. eg.
Griffits (1964)) independently of the actual values of the

Ilc -s(in fact, the substitution b~ A - leads to the
form of equations used in the literature of the Heilsenberg
chain.) The limiting values of the wavenumbers can be obtained

by neglecting the sink -s iIn the r_h.s. of Eq. (2.1) . They are

2.17)

This resembles the Ic -set of a noninteracting spinless fermi
system, except that all € -s ate displaced by /v times

the total momentum of the given state of the Heisenberg chain.

Neglecting the sinlc-s also in the wave function, one finds
that in y* becomes independent of the permutation P
and - turns into a product of a space coordinate dependent
and a spin dependent function. The former is essentially the
wave Tunction of a spinless Ferml-system, and the latter is

an eigenfunction of a Heisenberg spin chain.

The same separation can be seen In the energy of the
system, too. To calculate the energy, one has to find the
limiting values of the «kx -s up to fTirst order in M . This
can be done by expanding Eqs. (2.1) and (2.2) up to Ffirst order
in AN(in sink/y and in 2 dy ). In this way one gets
that the energy of such a state is the sum of the energy of

the Fermi-system and the energy of the Heisenberg chain with
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an effective coupling constant proportional to *u

Thus we can conclude, that in the large U limit, in
all states described by a real wavenumber set, the _.system
behaves like an uncoupled ensemble of a spinless Fermi-system
and a Heisenberg chain. The ground state corresponds to the
ground state of both the Fermi-system and the Heisenberg chain
The excited states connected with the f -set go over to the
excited states of the spin chain, while excitations connected
with thel set correspond to the excitations of the spinless
Fermi-system. This is why the excitations connected with the

} or J set can be regarded as 'spin" or ‘charge' exci-
tations. The maximum number of the spin excitations is ﬂé: as
this is the number of different states of the spins while the
maximum number of charge excitations described by real «k -s
is (w) . This implies that excitations connected with the

1 -set can be described by real k -sets only if i.e._the

band is less than half filled. (See: "particle”™ and "particle-

-hole in the k distribution™)

As in a spinless Fermi-system all particles occupy diffe-
rent sites, In all states described by real «k -sets the ampli
tude of finding electron pailrs occupying the same sites must
disapper as U-~oo . All the states in which this amplitude
does not vanish, must be described by «k -sets containing
complex wavenumbers, too. The energy of these states 1Is expec-
ted to have a term proportional to U , i.e. these states are
important if U is of the order of unity, but they are also

important when the bandfilling is near to 1/2 being the only
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excitations connected with charge distribution. Finding the
solutions of (2.1-2) corresponding to these states is the goal

of the present study.

Our strategy will be as follows: as we mentioned already,
solving the Eqs (2.1) and (2.2) means a twofold task: findig
the appropriate quantum numbers and determining the «k and
sets. Now we will not separate these two steps: we will not
specify all of the quantum numbers in advance, only the quantum
numbers corresponding to the real kK -s and the 4§ -s belonging
to them will be chosen at the beginning. These «k -s and 4 -s
will be determined as functions of the parameters belonging to
the excitations, and will be eliminated from the equations for
the complex «k -s. The quantum numbers belonging to the complex
wavenumbers will be specified only at this stage, so as to have

solution for the equations obtained in this process.
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3. 5~ /EN/-/ STATES WITH COMPLEX WAVENUMBERS

According to our program in this chapter we 1iInvestigate,
for a half filled band, the simplest possible case in which
Egqs (2.1-2) may have complex solutions. As these solutions
are expected to correspond to states in which at least one
site iIs doubly occupied even in the large U limit, there
should be at least cne spin which is turned down. That"s why we

investigate Tirst the states with *S ,

It is clear that iIf the k -set contains a complex «k |,
it should contain i1ts complex conjugate, too. We look for
solutions in which there is only one pair of complex wave-

numbers, and denote them by KE£tz
3.1 Basic equations

The equations for the real k -s are:

G-D

For the complex «k pair we have

A(k+(k) -2T1- Z arc.k]IL(sth(i6iiX)-Aj (3.2)

which by separating the real and imaginary parts is equivalent

to

Nk -2XI- Zfie. arete/ -~-(<sin(K,Hx)- JT) (3.3)
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N x - in WAi~ costsshxf"-b (sinkschX-A? (3.4
4 (% -“mcostsshx) -h(si'nkschx-Af
In (3.1) and (3.2) the | -s are half odd integers as /V 1is

one. Thus for the 1j -set we have to choose N-2. half odd-

-integers with Zj & 2z i.e. the series
-i(*4) / (a even) (3.5.3)
or
113 (A wé) (3'5'b)

with two holes left in it. Eq (3.1) defines ~-s also for the
[ -s left out of the series and we will denote them as kt

and . The parameter z in (3.3) will be fixed later.

The equation for /1 1is given by

J. ZarctqW-(A-sin,k ) + kKRc arckj*m(A-sin(kstix)J =Z ftf 3-6)
/W u " u

where J is an integer if N is even and a half odd-integer

if N 1is odd.

3.2 Solution of the system (3.1), (3.3) , (3.4) and (3.6)

We start with (3.4). ITf X 1is finite, the I_h.s. is of

the order of JV¥ . It means that to satisfy the equation K , X
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and N1 must be near to those values at which the r.h.s. is
singular. Choosing the X to be positive, these values are

defined by the equations

sitikO chxO-A =0

@G.-7D
O0SKO 6kx0 +/1- ~0
ie.
*, — arcsin (3.8)
Ji, /KS/1 7
(0*)=*,- arecki (

(the allowed regions for KQ in (3.8) come from the condition
that coskKO must be negative as both X0 and U are positive) .
Looking for the solution in the form X*= X0*Sx and X « ADtSlc

one finds that

6x T+Sin (3.10)

L)%
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with 2~ as yet unspecified. This solution is accurate up to

terms of the order of N mxp (~ZNz0)

As a next step we solve (3.6) for A .We turn the summa-
tion on the l.h.s. into on integral: to do this we use the
fact that the number of b -s satisfying (3.1), and falling

into the interval (lcj k+dk) , 1S N g(k)dk with

,\P(k) -Jp +J~.JL.icosk —( | ——————- (3.11.a)
({//0))2 ﬂ(sink-n)\z'

As the f(k) contains also k( and , we have to use
fo) - FfFW - 33 S(b-bt) - X cl(k'bb) (3.11.b)
Then
T
£ ZarcHj A-(n-siftkj) « IN f Ne+<]--(J1-SIKk)- P*(b)c//c (3.12)
JV.th U J U J
1 -X

where the equality holds up to terms of the order of </N -

Making this substitution, we have

ZMK(A) - z arctcj~(J1-~$Cuk() - Zanty-~(/1-senk*,) +
(3.13)
mh f/6e arctq JL(A-Sin(tc+ix)J - JJITJ
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K(A) Mbln-e")
r 7 (3.14)

-£ M Hp)

Multyplying (3-3) by z and adding it to (3.-13) we get

2N(KO+k(A)) - ZT(J +21) - Z ancb)JL(A-*Utkt) +2abllfa-sin”) (3-15)

Note that

+K(1) - Tsign, A (3-16)
i.e. the l.h.s. of (3.15) 1is of the form zX where J.'

is an integer if ¢ is integer and half odd-integer if J is
half odd-integer. At the same time the r.h.s. changes between
21 and +zZV as A runs from-oo to & , thus we have a solution
only if the l.h.s. is -ZT , 0 or z}3t (Y integer) or -T or T

( half odd-integer) . The possible solutions are

A1sC™nA-(Y+21) =0 A-  (senkg+SEnky) (3.17.2)

+N-(}F +ZL) ~=+1 A-£ o0 (3.17.h)

or
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Solutions (3.17.a) and (3.18) are proper solutions of the systems
in the sense that all quantities are finite iIn the equat-ions
and in the corresponding wavefunction. We discuss these solutions

now and come back to the interpretation of (3.17.b> later.

Using the form of « and % ((3.8-1oM we have with

exponential accuracy

which, 1f N 1is given, can be solved easily for < and 1 .

Thus we see, that all unknowns can be expressed by sin ke
and &n> , and the quantum numbers ~ and 1 can also be
determined if and are known. Thus the system (3.1),
(3.2), (3*6) 1@ reduced to the determination of and
with (3.1) and (3.17) or (3.18), if I and 2Z, are given.

The solutions correct up to terms of the order of are

i* <*£(.«* Tr1"H 0 ) (3.20)
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where Dby we understand the A determined by

(3.17), or (3.18), where sinkt(™® -Sinll I£4 -

3.3 Energy and momentum

The energy of the state calculated above is, according to

2.9)
£ =-£ Zcoskj - ~0bt0dbX.0 (3.21)
it,»
Using f*(k) to evaluate the sum, and also using the identity
f (Ura) %0
G A — cas k de - omsleft) me (3.22)

with  kft) given by (3.14) , and X0 given by (3.1) , one has

£ = Zcoskf + Zcosk,A + U 3.23)

The momentum, according to (2.10.b) 1is

(3.24)

and for (3.18)

/. rr«?,./?-%I1t-U I M* £ +r (3.26)
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Expressing (3.25) and (3.26) by and yields
p--k* -Lt +f (3.27)
where ™ 1i1s zero if N is even and if AV is odd.

3.4 Interpretation of the solution with infinite n (3.17.b)*

We try to interpret this solution so that all k -s, KO, X#
should be treated as functions of A , and
the A- w00 (or-o0) limit must be taken. Whether this inter-
pretation 1is possible or not depends on whether the wavefunction
obtained through this limiting process is meaningful or not.
Note that if this iInterpretation is reasonable, both (3.23) and

(3-27) remain valid.

Analysing the wavefunction one finds that some of the terms
will be divergent in the above outlined limiting process. The
most divergent amplitudes are those in which two coordinates
are equal, (and the down spin belongs to one of these coordi-
nates.) The terms with the strongest divergence in these ampli-
tudes belong to those permutations for which in the exponent
K+LX and K- ix are multiplied by the equal coordinates. These
terms diverge as |IN*** « The coefficient of this factor is

given by
(3-28)

where n denotes the coordinate of the electron pair, Q/ orders
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the remaining coordinates into increasing order, '  means
7
summations over the real Ic-s and JC means summation over
P

all possible permutations of the btz real 4-s._. This form
is independent of the sign of the 51 , and we have used that

K,(d) —» - if /-« zoo . It is clear that the normalised

wavefunction will have a limiting form proportional to (3.28)

At the same time the limiting values of the real k -s

can be given as

| rrr +

/< AN cJ Jrf (3-29)

The wavefunction (3.28) can be given also iIn second quan-

tised form:
N\ * N '
( n2_/1 nth* e ) (I]Ll,» M_f )/vacuum)? (3.30)

It is easy to see that the commutator of the operator

n N iAn.
x 3.31
Ce 21 Cy Q ¢ )
with H is
- UC G-32)

thus (3.30) and so (3.17.b) 1is indeed a good eigenstate with
its energy and momentum given by (3.23) and (3.28), respectively.

(Note, that (3.32) holds if N 1is even only, otherwise operators



23

with Indeces 4 and N do not cancel. At the same time iIinfi-

nite 1 solution exists also only if A 1is even.)

3.5 Visualisation of the states described by (3.17) and

(3.18) -

In the eigenstates studied here the appearence of complex
wavenumbers would suggest at the first sight that we have some
sort of bound states. In what follows we show that the same
states can arrive at via another route which makes them appear
as unbound states. Describing the N-1 up-spin electrons as a
filled band with one hole in it, one gets a Hamiltonian for
the system consisting of the hole and the down-spin electron
which 1s similar to (1.1) with the difference that now these
two particles have an onsite attraction iInstead of repulsion.
This Hamiltonian can be diagonalised by elementary methods
giving N bound states and N(M-1) scattering states. Inspecting
theilr energies and momenta, one finds that the scattering states
are those which correspond to our complex «k -states: a complex

k -state characterised by kc and corresponds to a state
which is a combination of the states with a hole in the filled
band of the up-spin electrons with wavenumber kt and a down-
-spin electron propagating along occupied sites with a wave-
number K-~k~* , and vice versa. (This can be seen directly
on the state corresponding to the solution (3.17.b) 1i.e. on the
eigenstate (3.30) , by expressing the operator C as O_ZIZ (4 b wp

and taking into account that iIn this sum only those terms can act

in which k 1s either kc or ) - This result,namely that
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our complex k -states are those which correspond to the
scattering states of the electron-hole pair, 1is not surprising,
as in a state with all k-s real the electrons most occupy
different sites as U-~oo i1.e. the electron with down spin

is "bound” into the hole in the band of up spin electrons.

Unfortunately the picture becomes less clear if the band-
filling i1s less than 1/2, as it can be illustrated on states
analogous to (3.30). The operator é acting on eigenstates of
the Hamiltonian creates an other eigenstate with two more
electrons. In this new state certainly there i1s at least one
pair of electrons occupying the same site, but to regard these
electrons as bound ones makes sense only if they are sur-
rounded mainly by empty sites i.e. when the bandfilling is
much less than 1/2. In the opposite limit, when the doubly
occupied sites are surrounded by singly occupied sites, one
of the electrons can move any way, and we can not tell which
electron is bounded to which other one. In the intermediate

case neither the electron-hole nor the bound electron pair

picture seems well established.



25

4. SINGLET STATES WITH ONE PAIR OF COMPLEX WAVENUMBERS

4.1 The Lieb-Wu aquations for singlet states with two
complex K -S

To describe 6*wo0 states we have to introduce A -s.
We take N as an even number, otherwise the state with the
smallest spin belongs to VS £ ¥z, . This restriction makes
no difference concerning the nature of the excitations since
if N were odd both the ground state and the excited states
analogous to those discussed here would belong to om - 7).,
and so, both for even and odd N the excitations themselves
can be regarded as singlet ones. We suppose that among the

b, -s there is one (which we denote by A ) for which, as in

the case discussed in the previous chapter,

sin(Ktix) - + 0(e ) “4.1)
where is a positive number of the order of unity and
O (tn) means terms of the order of e ™

The equations for the complex k pair are

NCKE) = IXI — 7' ZArct irGKEDd
“.2)

—lore gL (tin.(kax) -/1)

and (4.1) is actualy the solution of their imaginary part,

provided that
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4.3

It Is easy to see that if (4.3) holds, then k and x are
the same functions of /) as given by (3.8-9-10) with the
only difference that in the r of (3.10) in the exponent we
have 7~ instead of %0 . The validity of (4.3) (and so of
(4.1)) can not be proven in general. What one has to do is to
solve the remaining part of the equations using (4.1) and at

the end, having the 4 -s at hand, to check whether (4.3) holds

or not. This is what we will do.

The real part of (4.2) , using the identity

I Re orctcj Ji-(sti(b+tX)~X) -

(4.4)

combined with (4.1) can be written in the form (up to terms

exponentially small in N )

4.5

- VRe arc”™-jj-(&*>(K+iX)-1)
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The real kK -s are defined by the equations

N4 mITli -Z4 O (sivig -A)
(4.6)

Now the 1j -s are integers if JV/ is even and half odd integers

it N is odd. Thus, depending on the parity of % we have

to choose one of the sets

() S X R N N @79
“U»-i) - {(N-3), i(»-0 (4.7 .b)
with two holes left iIn it.
The equations fTor the A, -s are
E ZantgE (/\ - sinkj) - HRe arctqJi (sinfui-(X) - A) -
“4.8)

IXf o+ 1-Ap)

(kt and X, being the «k-s defined by (4.6) for the holes iIn

the 1 setJand

fE_ ZarcHf -sin,k}l) —We arctq (sinlc+ix)-Aj) -
i h i n

(4-9)

- 2*}oc * £ + 2.arttgjj(K-J)
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This second equation combined with (4.4) and (4.1) 1is equivalent

to the equation

E larttqMAj-St'bk.) —rnf + Z

Jie,» /T
(4.10)
[ Mo~ X sifb(K~A)
Since } is ail integer if is odd and half odd-integer if
Wt 1S even, is integer it Nx 1is even and half odd-integer

if NI is odd. It is iInteresting to note that (4.10) is formally
the same, as the corresponding equation for a system of 4/-2
electrons. Based on this analogy, we suppose that it is the f_l
set which defines the state of the spin system. According to
our program, now we want to describe states for which the

spin degrees of freedom are not excited, thus for the -s
we choose the same set which would correspond to the ground

state of a system of bl-1 electrons, 1i.e. the set

(4.11)

4.2 Solutions of the system (4.2), (4.6), (4.8), 4.10)

In the following we suppose that in the large N limit
all the kj -s and -s can be described by their density
functions p(k) and 6"'(X) . Equations for these functions

can be derived from (4.6) and (4.10);

See p. 39.
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J Leoskl (n/u) 6(X)dA + Zcosk (W) (4.12)
1T_ [% T+ (sih.k-Xf ZXN X%f*(sM*A
00
(ur2))

1 7 n ] fX d*l (4-13)
s S s T/ * o o
with

f(k) - J W - -L J(k-k()--i-3(k-kn) (4.14)

( p(k) being the density of T -s satisfying (4.6) , with the whole

set (4.7), it contains also kt and k<, , 1.e. the -S
belonging to the two holes.) This system can be solved by

Furier transformation giving

o 4.15
I ch(A- sink(Q f Chib-sink*)ZMT.\J ¢4-15)

and

) Val slecask _ O U
® B 2"\ (%)t + (sin.k-AjL

(4.16)
( cos(v(sinlc-Sin kf))-t @S(v(sink-sihkm))Jdu

with yok and &A) given by (2.14) and (2.15), respectively.
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Having fik) at hand, also (4.5 and (4.8) can be reduced:

(4 .8) after carrying out the summation over the k -s (using

pk) ) yields

IMk(N) - 1nrclt(n- sinkt) - Zarctqg fa(A-$InkJ +
“@.17)

+ KRe urctq fa- (a- stnfjc+ix)) — LT + Z larct<j
/8L

with «k(A) given by (3.14) . (4.5) and (4.17) are the analogues
of (3.3) and (3.13). Their solution for /1 can be obtained 1iIn

the same way. Thus we have

Alsign A ~(J- - A - j (Sinkéi-sirkta (4.18 .a)

h-j (ED)sigNn -G+21D) . £1 A_. _ o (4.18.b)

(Note that now the solutions corresponding to (3.18) do not
exist, as ? - { E sign,(A-bp) is always an integer. The solution
(4.18.b) 1i1s to be understood as (3.17.b)). At the same time,

we have from (4.17) With the sum turned into an integral with

ITA) given by (4.15))

2A 1 T7a(o) Sin toA
ZTh  «j eck ujff

dJj «ZTJ + hfie Arcbgfa (sinfc,+LX)-A j (4.19)

which is the equivalent of (3.19) to determine J-  (and

through (4.18), I ) and y? of (3.10).

«
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To solve the system completly we have to solve the

equations:

oo -udL
Vo P(u) ratireiirk* i) *~ - J
0 V
(4.20)
0 f
which were obtained by evaluating the sum over -s in (4.6). A
given by (4.18), (4.20) can be solved numericaly.

Using «W the validity of (4.3) can be checked: The [1.h.s.
can be estimated by replacing the £ by with an error
of the order of LnN/ M (This estimated error comes fTrom
the supposition that nun(a”-1) A .- We may suppose this,
since it /ninftfl-'A) is much less then *In/ for one A(C 1 £ and

Il ) then changing It (or 1I», ) by one, A will change
while the difference between neighbouring

around A is i -~éA) ' thus will be of the order
of 1h e Thus this estimate may not hold only accidentally for
a Tew points of the dispersion.) Although the integral obtained
in this way can not be evaluated iIn closed form, one can show
that the 1.h.s_.(7) 1is definitely positive. This means also,
that for one pair of complex «k -s, there must be a A coupled
to them by (4.1): if there were no such A then instead of

(4.1) we would have an equation ~ O , which has no solution.
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44 The energy and momentum

The erer«;y of the states 1is easily calculated by means

of
T
£ ,-NJjLcosk f(k) dk —4coskckx -
-T
“4.21)
« Ec + €Ee) Fe(kj y u
with EO given by (2.16) and
£(k) «20C0SKk + zj— -—-—-—-. . cos(y sink) doj 4.22)

o chujTf 10

The momentum, according to (2.10.b), “4.7), (4.10) and

(4.11) 1is
i-t
P-77(-it-r, +} +Z tn) +Po a .23)
where Po , the momentum of the ground state is A" If N/i_ 1is

even and C 1Ff Nfo 1@1s odd This combined with (4.18) and

(4.20) , yi ,Ids

° —kid- >y

P-Fb rruybn -
n mck to ~
4.24)
00 -uH.
-4 - [ e * XyfjojSinjusink”c/u

Q @D.ck @
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Introducing the notation

(4.25)

we have (up to 2-&" )

P-Po - —p(kl) - p(k») (4.26)

The energy momentum curve defined by (4.25) and (4.22) is

shown in Fig. 1. .Fig. 2. displays the continuum of the excita-

tions in the !p) plane.

4.4 Comments

The number of states described above is N(N-) as there are

N(n-i)/1 choices of the It and <Z% parameters and to each

choice we have two solutions ((4.18.a) and (4.18.b)). On the

other hand,as one can verify, these states iIn the large U

limit correspond to states in which one site is doubly occupied

and one site is empty, and the Heisenberg chain of the spins

belonging to the singly occupied states is In its ground state.

As the number of these states is also N(N-f) we have found all

of them.

It Is iInteresting to note that the state with lowest energy

is the one iIn which kt a fox,:vl. Here the energy 1is

(4.27)



34

which 1s exactly the same as

( EO(H*1) being the ground state energy of a system with Ntl1
electrons) calculated by Lieb and Wu. In other words the gap
calculated through the one particle excitations coincides with
the gap in the spectrum of particle number conserving charge
excitations. A detailed discussion of the results of this
chapter 1is given iIn the second part of the present work
(Woynarovich 1980 ), where solutions corresponding to an

arbitrary number of complex pairs are found for the case of

an arbitrary band-filling.



5. SUMMARY

The main points of the present study can be summarised

as follows:

1. Based on the analysis of the u--oo limiting form of
the eigenfunctions of the 1-d Hubbard chain it is shown, that
all those states in which the amplitude of finding electron
pairs occupying the same sites is fTinite, even iIf U is large,
are to be described by such solutions of the Lieb-Wu equations

in which some of the wavenumbers are complex.

2. Solutions of the Lieb-Wu equations containing one pair
of complex wavenumbers, corresponding to states
are found. In these states all but one spins point iIn the same
direction, and the electron with the opposite spin propagates
along occupied sites. The states are characterised by three
parameters ( ke , and N1 ) which are coupled to the
corresponding quantum numbers, and to each other, by a set of
nonlinear equations (3.1),(3.15). The solution of this system

is given by (3.17) or (3.18) and (3.20).

3. Solutions with one pair of complex wavenumbers, corres-
ponding to states i1In which the spin part is In its ground state
(singlet) are also found. Also these states are characterised
by three parameters ( k , km and /1 ) and these parameters
are coupled to each other by Egqs (4.18),(4.20). In the energy

and momentum only the parameters * and kn appear explicitely
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(4.21), (4.22), (4.25), (4.26)). In the spectrum a gap is fTound
which is of the same magnitude as that calculated by Lieb and Wu

for the one-particle type excitations.
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FOOTNOTE  (p. 28. )

*Describing the k and A sets by their density functions

is very plausible, but it.is not established iIn a strict
mathematical sense. The problem is that one must be sure,

that the error introduced by turning the sums into integrals
is much less then the 1/n terms which are present due to the
excitations. Replacing Wbk by fdkp(k) introduces an

error of the order of 1/n* but the replacement of (%)

by Jdh&fl) may introduce a larger error as the integration

interval i1s iInfinite.
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Figure captions

Fig-

Fig.

1.

é(p) dispersions fTor different values of U . The

individual curves are labelled by the value of U.

Schematic representation of the continuum of the
states with two complex wavenumbers iIn the energy-
-momentum plane. Doubly shaded areas represent de-
generate states: to one (€ tp ) point there 1is
two nonequivalent ft,pL pair for which ft* Pv wP

and é(ft) t £(ft) + U - €
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