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ABSTRACT
Those excited states of a half filled 1-d Hubbard chain are studied 

which are connected with electron pairs occupying the same sites. It is 
argued, that these states are to be described by such solutions of the Lieb- 
Wu equations in which some of the wavenumbers are complex. Solutions of this2type, corresponding to S = 1/2N-1 and singlet states are found. The energy- 
momentum dispersion is also calculated. The gap in the spectrum of the 
singlet excitations is found to be equal to the discontinuity of the chemical 
potential calculated by Lieb and Wu.

АННОТАЦИЯ

Исследуются возбужденные состояния полузаполненных Хуббард-цепей, кото­
рые связаны с электронными парами, занимающими одинаковое место. Показано, 
что эти состояния описываются решениями уравнения ЛИБ-ВУ, содержащими комп­
лексные волновые векторы. Найдены решения уравнения ЛИБ-ВУ, содержащие одну 
пару комплексных волновых векторов, соответствующие Sz = 1/2 N-1 и синглет- ному спиновым состояниям. В обоих случаях определяются дисперсионные соотно­
шения энергии-импульса. "Gap" в спектре синглетных возбуждений соответствует 
скачку химического потенциала, вычисленному Либ и By.

KIVONAT

A félig töltött Hubbard láncok azon gerjesztett állapotait vizsgáljuk, 
amelyek azonos rácshelyet elfoglaló elektron-párokkal kapcsolatosak. Megmu­
tatjuk, hogy ezeket az állapotokat a Lieb-Wu egyenletek komplex hullámszámot is tartalmazó megoldásai Írják le. Megkeressük a Lieb-Wu egyenletekz „S = 1/2N-1 és singlet spinállapotoknak megfelelő egy komplex hullámszam-párt 
tartalmazó megoldásait. Mindkét esetre meghatározzuk az energia-momentum 
diszperziót is. A singlet gerjesztések spektrumában található gap azonos a 
kémiai potenciál Lieb és Wu által kiszámolt ugrásával.



1. INTRODUCTION

The one-dimensional Hubbard model, being a non-trivial 
but exactly treatable model for interacting spin 1/2 fermions, 
is of great theoretical interest. It describes electrons, 
which can hop between the Wannier states of neighbouring sites 
in a chain, and have a repulsion if two of them /with opposite 
spins/ occupy the same site. Its Hamiltonian is

Here N is the number of sites on the chain, C(f. , C( f and

respectively, for an electron with spin & in the Wannier 
state centered around the site i . The problem is uniquely 
defined by imposing periodic boundary conditions on the 
system.

In the exact solution of the model the first step, which 
made all further work possible,was made by Lieb and Wu (1968), 
who, starting from Youg's (1967) work, showed that the diagona- 
lisation of (1.1) is equivalent to solving a set of coupled 
nonlinear equations. They calculated the ground state energy 
of the system for half filled band, and the gap in the spectrum 
of the one particle type excitations at this bandfilling 
(half filled band + one particle). Based on the equations 
set up by Lieb and Wu, Ovchinnikov calculated (1970) the lower

N
G,t  ) -h U 12 Кjf ftf j (1.1)

are the creation, annihilation and number operators
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edge of the continuum of the triplet excitations of a half 
filled band. In his paper calculations for the singlet exci­
tations can be found, too. Coll (1974) calculated the spin- 
-wave type and one-particle type excitations for general band 
filling. The T = 0 magnetic properties of the model have 
been worked out by Takahashi (1969) and Shiba (1972); in par­
ticular Takahashi found the magnetisation curve for the half 
filled band, and extending this work Shiba gave the magnetic 
susceptibility for an orbitrary concentration of electrons.

The aim of the present work is to study those excitations 
of a Hubbard chain which are connected with charge rearrangement. 
In a non-half-filled band two kinds of such excitations exist.
The first kind, which have been described by Coll (1974), 
differ from the ground state only in the momentum distribution 
of the electrons. The number of this type of excitations 
disappears as the bandfilling aproaches 1/2; a fact which 
suggests that in all these states the electrons occupy different 
lattice sites. The other type of "charge excitations" is 
connected with electron pairs occupying the same lattice sites. 
Our aim is to find a way to describe such excitations. For 
the sake of symplicity, for this purpose the half filled band 
is studied first, since in this case charge excitations of the 
first kind do not exist.

The paper is organised as follows. In Chapter 2. after 
introducing the general formalism an analysis of the wave 
function leads us to argue that complex wavenumbers have to be



3

used to describe the states in question. In Chapter 3. we 
study the simplest case in which such excitations can exist, 
namely the one in which all but one of the spins point in the 
same direction, but the electron with the opposite spin 
propagates along occupied sites. In these states the spin 
degrees of freedom are highly excited. Chapter 4. is devoted 
to the description of such an excitation if the spin degrees 
of freedom are not excited.
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2. THE LIEB-WU EQUATIONS; SOME PROPERTIES OF THE EIGENSTATES

2.1 The symmetries of the Hamiltonian

In deriving the secular equations for the model, the 
following symmetries of the Hamiltonian (1.1) have been 
exploited:

A

i, H does not act on the spin coordinates of the electrons 
(this becomes apparent if we write (1.1) in first quantised 
form), i.e. it commutes with both the A component and the 
square of the total spin. This means that the eigenstates 
can be characterised by these quantisies (of course S
and О do not define the state uniquely, thus together 
with these quantities other quantum numbers must be intro­
duced, too) .

A

ii, Introducing holes instead of electrons, the form of H 
does not change (apart from an additive constant) thus it 
is sufficient to describe those states in which the number 
of electrons ( N e)  is less than or equal to the number of 
sites (N) . It is also apparent that it is enough to deal 
with states in which the number of down spins ( M )  is less 
than or equal to the number of up spins (_M'K N e - M ) .

iii, Without the loss of generality t can be taken as t m~ f .

2.2 The Lieb-Wu equations and the eigenfunctions

Using a generalisation of Bethe's hypothesis Lieb and Wu 
showed that finding an eigenstate of (1.1) ,which corresponds
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to (ii) is equivalent to solving the system of equations

M

NkÍ  ~ i T l i  - Z  (2.1)

( j .  1 , 1 ,  . . .  N . )

Ег< .гс19 ± ( А л - * п у  - z * i  ^  L z c r c t 3 L ^ , - A f l )  (2 2)

- * )

where the parameters I  are integers (or half odd-integers) 
if Л? is even (or odd) and the parameters J- are integers 
(or half odd-integers) if /Ve—Л/ is odd (or even) . In this 
system of equations the к -s and Л -s are the unknowns 
and the parameters I  and f  are the actual quantum numbers 
specifying the state. Only those solutions are meaningful, for 
which all the к -s and A -s are different. It is a special 
difficulty that it is not clear to which sets of I  and J- 
can a meaningful solution of (2.1 -2) be found. Thus solving 
(2.1-2) means a twofold task: finding the appropriate 1 and 
J sets and finding the к -s and A -s.

Following the reasoning which led to Eqs. (2.1-2) , the
wavefunction can be constructed. One finds that the amplitude 
of finding the electrons at the positions t
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with spins , VJL, . . .  Г" is (up to a normalization factor)

М я , 4 ; я . ъ ; ~ я щ % ) • L f - i f i - i f  o p { i E j r ( f w f ai  sm t ) ( 2 . 3 )

where the permutation Q is defined by the condition that

n Ql ^ n Qz ** • ■ ■ A N (2.4)

and the summation is extended over all permutations P  of the 
b -s. The function <f>p is given in the form

, *
Jp (̂Qt °QNe) “ p  ̂  ( 'V/ *TZ" ^  'p ( ̂TU> Ít)J (2.5)

with

r  /, ) a / j  l ^ (n kP j ~ K^  jt_ ) ______ t _______
P ' 4 '/•' i(MnkPj - \ )  + )  i(sin, Ьру-Л) -f y

(2 .6)

ft (■ • • *-xi Лг/н ■ ■ ■ )  i (  T i ) — x
A (■ ■ ■ Árút Ar< )  i (  A-ZiH - Axi) V- x

(2.7)

where the у -s are the positions of the down spins in the 
series ,^Q ii VqNc in increasing order

У/ • ^ 4 „  u *e
(2 .8)
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and £  in (2.5) refers to summation over all permutations 
of the A. -s.

In connection with the wavefunction (2.3-8) the following 
can be established:

oC f ^is uniquely defined even if Q is not: if for example
and nj are equal, there are two permutations, Q and Q* 

which arrange the spatial coordinates into non- 
-decreasing order but the value of f  does not depend on 
wether we choose Q or Q' in (2.3)

ß  f f i s  antisymmetric (due to the factor (-/} )

Y f ^satisfies the eigenvalue equation with the energy

4
E  * -  E  2. cosh, (2.9)

& , f is periodic with a period N . Its momentum is

Ale
p - E  kj (2.10.a)

which, by summing up (2.1) and (2.2), yields

P - (2.10.b)

2.3 The ground state and simple excitations

According to Lieb and Wu the ground state is characterised
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by the parameter set in which both the I j • -s and J-K -s are 
consecutive integers (or half odd-integers)centered around 
the origin.

Taking the N —~ <*> ( /Чг/л/ , M /N • fixed) limit, the
к and Я variables will be distributed continuously in 

the regions -Q  к  Q C j( , with density
functions p ( k ) and &(A) , respectively. (2.1) arid (2.2)
then leads to the integral equations

В

U  f> U ) *  1 + COS k>
f  ! ■ ( % )

J ( uA f  *(aA) + (sen ic -X)
r  e (A )c /\ (2 .11)

Q a
l  ( % ) ________  ̂p ( k ) d k  - L 7 6 ( \ )  +

Xй/ z )

J (%) +(A -mk) -в
(“/2)Ь+(Л-Л')

C(X)dX (2 .12)

where Q and В are determined by the conditions

Q

« й  - %
-B

N,
V n

(2.13)

The ground state is a singlet (if N is even) with 
Ne/ z  I <Sя S - 0  , or a doublet, S , *S • 3/q (if /V is odd)

For this state B*oo is to be chosen, as it can be checked 
by integrating (2.12) over A. . For a half-filled band Q - T  

is to be taken. For this state (2.11-12) can be solved in 
closed form by Fourier transformation giving



(2.14)Jo(uJ cos(ю йпк) du) J

oo

cos u)A do (2.15)

The groundstate-energy for a half filled band is

. - z u  ,2
* < • > &

where 7, and 1 are the zeroth and first order BesselО 7
functions, respectively.

The simplest excited states can be obtained by making 
small changes in the 1 set, or in the ^ set, or in both. 
The simplest excitations with one spin turned over are triplet 
spin waves and are described by a j! set in which one ^  is 
missing ("hole in the Я distribution" in Lieb and Wu's classi­
fication) . The simplest excitations connected with the b 

distribution may be "hole", "particle" and "particle-hole" 
type ones, which are described by certain well defined modifi­
cations of the 1 set belonging to the ground state. In the 
cases of "hole" or "particle" like excitations the essential 
changes in the I sets are removing one I from the "bulk" of
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the set, or adding one 1 to the set far from its ends, 
respectively. (Changing the number of 1 -s, i.e. the number
of electrons, by one may be accompanied by a change in the 
parity of the numbers 2.J- , and may necessitate the change of 
the number of ? -s, and of the parity of 21 -s as well.
A pure "charge" type excitation is defined by choosing the 
spin part so as to get the lowest excitation energy.) The 
"particle-hole" type excitations are defined by I sets which 
are obtained from the ground state set by removing one 1 

from the bulk of the set and adding to it an other / which 
is larger (or smaller) than the largest (or smallest) I  in 
the ground state set. All these states are discussed in detail 
in Coil's paper.

Note, that if the band is half filled i.e. Ne = N , from 
the "particle", "hole" and "particle and hole in the A distri­
bution" states only the "hole" type can exist. This can be 
seen by the following reasoning: All I j  can be taken to satisfy 

as changing k j by 2T does not effect anything. In 
the above region there are Л/ different integers or half odd- 
-integers, thus if we originally had Л/ different I j  -s, we 
can not displace an I outside of the region covered by the ground 
state I  -set.

2.4 Eigenstates with real k -s in the large U limit

Looking at (2.2) one sees that in the large U limit all 
Л*- cinkj must be of the order of U . As for real А -s /sinkjl  á,f , 

the Л*-s must be proportional to L( . This means that for states 
described by a к -set in which all к -s are real, the limiting
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values of the Л -s roust satisfy the equations which are 
obtained by neglecting the s i n k - - s in the l.h.s. of (2.2). 
These equations are essentially the secular equations of an 
isotropic Heisenberg spin chain with л/е sites (See f. eg. 
Griffits (1964)) independently of the actual values of the 

lc -s(in fact, the substitution !t2b>* Я- leads to the
form of equations used in the literature of the Heisenberg 
chain.) The limiting values of the wavenumbers can be obtained 
by neglecting the sink -s in the r.h.s. of Eq. (2.1) . They are

This resembles the lc -set of a noninteracting spinless fermi 
system, except that all fc -s ate displaced by 1/v times 
the total momentum of the given state of the Heisenberg chain.

Neglecting the sinlc-s also in the wave function, one finds

and -f turns into a product of a space coordinate dependent 
and a spin dependent function. The former is essentially the 
wave function of a spinless Ferml~system, and the latter is 
an eigenfunction of a Heisenberg spin chain.

The same separation can be seen in the energy of the 
system, too. To calculate the energy, one has to find the 
limiting values of the к -s up to first order in Vu. . This 
can be done by expanding Eqs. (2.1) and (2.2) up to first order 
in ^(in s in k / ц  and in ^ ы/ ц  ) . In this way one gets
that the energy of such a state is the sum of the energy of 
the Fermi-system and the energy of the Heisenberg chain with

(2.17)

that in y* becomes independent of the permutation P
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an effective coupling constant proportional to */u

Thus we can conclude, that in the large U limit, in
all states described by a real wavenumber set, the .system
behaves like an uncoupled ensemble of a spinless Fermi-system
and a Heisenberg chain. The ground state corresponds to the
ground state of both the Fermi-system and the Heisenberg chain
The excited states connected with the f  -set go over to the
excited states of the spin chain, while excitations connected
with the I  set correspond to the excitations of the spinless
Fermi-system. This is why the excitations connected with the

} or J set can be regarded as "spin" or "charge" exci-
£tations. The maximum number of the spin excitations is Лe as 

this is the number of different states of the spins while the 
maximum number of charge excitations described by real к -s 
is ( щ ) . This implies that excitations connected with the

1 -set can be described by real k, -sets only if i . e . the
band is less than half filled. (See: "particle" and "particle- 
-hole in the k, distribution")

As in a spinless Fermi-system all particles occupy diffe­
rent sites, in all states described by real к -sets the ampli 
tude of finding electron pairs occupying the same sites must 
disapper as U-~ oo . All the states in which this amplitude 
does not vanish, must be described by к -sets containing 
complex wavenumbers, too. The energy of these states is expec­
ted to have a term proportional to U , i.e. these states are 
important if U is of the order of unity, but they are also 
important when the bandfilling is near to 1/2 being the only
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excitations connected with charge distribution. Finding the 
solutions of (2.1-2) corresponding to these states is the goal 
of the present study.

Our strategy will be as follows: as we mentioned already, 
solving the Eqs (2.1) and (2.2) means a twofold task: findig 
the appropriate quantum numbers and determining the к and Л 
sets. Now we will not separate these two steps: we will not 
specify all of the quantum numbers in advance, only the quantum 
numbers corresponding to the real к -s and the Я -s belonging 
to them will be chosen at the beginning. These к -s and Я -s 
will be determined as functions of the parameters belonging to 
the excitations, and will be eliminated from the equations for 
the complex к -s. The quantum numbers belonging to the complex 
wavenumbers will be specified only at this stage, so as to have 
solution for the equations obtained in this process.
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3. vS*- /£Л/-/ STATES WITH COMPLEX WAVENUMBERS

According to our program in this chapter we investigate, 
for a half filled band, the simplest possible case in which 
Eqs (2.1-2) may have complex solutions. As these solutions 
are expected to correspond to states in which at least one 
site is doubly occupied even in the large U limit, there 
should be at least cne spin which is turned down. That's why we 
investigate first the states with *S ,

It is clear that if the к -set contains a complex к , 
it should contain its complex conjugate, too. We look for 
solutions in which there is only one pair of complex wave- 
numbers, and denote them by K £ t Z

3.1 Basic equations

The equations for the real k. -s are:

which by separating the real and imaginary parts is equivalent 
to

(3.1) •

For the complex к pair we have

A! ( k ±(k)  - 2 T 1 -  Z arc.k]JL(sth(i6iiX)-Aj (3.2)

N k. - 2 X I -  Z fie. arete/ -~-(<sin(K,Hx)- Л) (3.3)
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Nx —  in W A í ~  costs shxf'-b (sinkschX-A?
4 ( %  -*■ costs shx) -h (s i'nkschx-A f

(3.4)

In (3.1) and (3.2) the I  -s are half odd integers as /V is 
one. Thus for the l j  -set we have to choose N -2. half odd-
-integers with Z j  é=. ZZ i.e. the series

- i ( * 4 )  , / ( a/  even ) (3.5.a)

or

i  “ (  Ai odó ) (3.5.b)

with two holes left in it. Eq (3.1) defines ^-s also for the 
I  -s left out of the series and we will denote them as kt 

and . The parameter Z in (3.3) will be fixed later.

The equation for Л is given by

JL Z a r c t q W - ( A - s i n , k  ) + к Rc arckj^■(A-sin(kstix)J = Z f t f  
/ W  u ' u

(3.6)

where J- is an integer if N  is even and a half odd-integer 
if N is odd.

3.2 Solution of the system (3.1), (3.3) , (3.4) and (3.6)

We start with (3.4). If X is finite, the l.h.s. is of 
the order of Л/ . It means that to satisfy the equation К , X
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and Л must be near to those values at which the r.h.s. is 
singular. Choosing the X to be positive, these values are 
defined by the equations

s itik0 chx.0 - A = 0

COSK0 ó k x 0 + Л -  ~ 0

(3.7)

i e .

*, - arcsin

J i, /к„/1 7

(3.8)

( 0 * ) * , -  areck i (I

(the allowed regions for KQ in (3.8) come from the condition 
that cos K.0 must be negative as both X0 and U are positive) . 
Looking for the solution in the form X*= X0*-Sx and X, « AS0 tSlc  

one finds that

étc

éx

г

Г • Sín г

г -  I
и
3L -x„N

г. ) %

(3.10)
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with ^ as yet unspecified. This solution is accurate up to 
terms of the order of N  ■ exp  ( ~ Z N z 0)  .

As a next step we solve (3.6) for A . We turn the summa­
tion on the l.h.s. into on integral: to do this we use the 
fact that the number of b -s satisfying (3.1), and falling 
into the interval ( lc j  k+dk) , is N g (k )d k with

P(k) - J p  +  J ^ . J L . i cosk --- (̂ l ------- (3.11.a)
 ̂ Д/ /// »2. / \Z,(% ) +■ (sink-л)

As the f ( k ) contains also k( and , we have to use

f o )  - f W  - JJ S (b -b t ) - X  с Г (к 'Ь ы) (3.11.b)

Then

T

£  ZarcHj А-(л-sift kj) « IN  f  №+<]--(Л-SlKk)- P*(b)c//c (3.12)
jM.th U J U J
1 -X

where the equality holds up to terms of the order of </N -
Making this substitution, we have

ZMk(A) - z  arctcj~(Л-~$Сик( ) -  Z a n t y - ^ ( Л - senk*,) +  

■h f/6e arctq JL(A-Sín(tc+ix)J - JJT J

(3.13)

with



18

Г

к(А) М Ы л - е ' )
-Г 7 (3.14)

-  £  ^  Н л )  %

Multyplying (3.3) by Z and adding it to (3.13) we get

2N(K0+k(A)) - Z T ( J  + 2 1 ) -  Z  ancb)JL(A-*Utkt ) + 2 а ъ Ц  f a - s i n ^ )  (3.15) 

Note that

+ к(Л)  - 7Г sign, A (3.16)

i.e. the l.h.s. of (3.15) is of the form ZX where J .' 

is an integer if •}• is integer and half odd-integer if J- is 
half odd-integer. At the same time the r.h.s. changes between 
-2.Л and +ZV as A runs from -o o to &o , thus we have a solution 
only if the l.h.s. is -Z T  , 0 or ZJt ( У- integer) or - T  or T  

( half odd-integer) . The possible solutions are

A!sC^nA-( У+21) =0 A - (sen kg + Se n кщ) (3.17.a)

± N -(} + ZL) ~ ± 1 A - £  oo (3.17.b)

or
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Solutions (3.17. a) and (3.18) are proper solutions of the systems 
in the sense that all quantities are finite in the equat-ions 
and in the corresponding wavefunction. We discuss these solutions 
now and come back to the interpretation of (3.17.b> later.

Using the form of « and % ((3.8-loM we have with
exponential accuracy

Thus we see, that all unknowns can be expressed by sin ke 

and &'n> , and the quantum numbers ^  and 1  can also be
determined if and are known. Thus the system (3.1),
(3.2), (3*6) 1® reduced to the determination of and
with (3.1) and (3.17) or (3.18), if I^  and Z „  are given.
The solutions correct up to terms of the order of are

which, if Л is given, can be solved easily for <J) and 1 .

-  it• *  < * £ ( • « *  тг!'Н  Ю ) (3.20)
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where by we understand the A determined by
(3.17), or (3.18), where sin,kt ( ^  - Sin Щ  I £(Htj  .

3.3 Energy and momentum

The energy of the state calculated above is, according to
(2.9)

£ = - £  Z cos kj -
it*,»

^ CObtC0dbX.0 (3.21)

Using f * ( k ) to evaluate the sum, and also using the identity

f (Ufa ) , -%o
X / — ------------------- саз k die -  cos left) ■ e
1 Jr Ш

(3.22)

with k f t ) given by (3.14) , and X0 given by (3.1) , one has

£  = Zcosk£ + Zcosk,^ + U (3.23)

The momentum, according to (2.l0.b) is

(3.24)

which gives for (3.17.a)

г Г siyn Л - ~ j-Z c - S i
AJ *

and for (3.18)

/ .  г г « ? ,./? -  % I t - U l M * £  + r

(3.25)

(3.26)
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Expressing (3.25) and (3.26) by and yields

p -  -  k *  - L t  +- f (3.27)

where ^  is zero if N is even and if /V is odd.

3.4 Interpretation of the solution with infinite Л (3.17.b) *
*

We try to interpret this solution so that all k -s, K0 , X#

the A — +■ oo (or-oo)  limit must be taken. Whether this inter­
pretation is possible or not depends on whether the wavefunction 
obtained through this limiting process is meaningful or not.
Note that if this interpretation is reasonable, both (3.23) and 
(3.27) remain valid.

Analysing the wavefunction one finds that some of the terms 
will be divergent in the above outlined limiting process. The 
most divergent amplitudes are those in which two coordinates 
are equal, (and the down spin belongs to one of these coordi­
nates.) The terms with the strongest divergence in these ampli­
tudes belong to those permutations for which in the exponent 
K+LX and Kj-  i x are multiplied by the equal coordinates. These 
terms diverge as I N * * *  • The coefficient of this factor is

should be treated as functions of A , and

given by

(3.28)

where n denotes the coordinate of the electron pair, Q / orders
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the remaining coordinates into increasing order, ' means
7

summations over the real !c -s and jC means summation over
P'

all possible permutations of the Ы- Z  real 4-s. This form 
is independent of the sign of the Л , and we have used that 
k,(A) —»  - if Л — •» z o o  . It is clear that the normalised 

wavefunction will have a limiting form proportional to (3.28)

At the same time the limiting values of the real k -s 
can be given as

l . _ г г  r  + r/ ‘ АУ C-J J f
(3.29)

The wavefunction (3.28) can be given also in second quan­
tised form:

(  2/ ^ntCn* e ^ ) ' (  J  f  ) / vacuum) (3.30)
n-1 1Ц» КГ  x

It is easy to see that the commutator of the operator

л N

C e 2-1 Сщ  Q
h sr 4

iAn.
(3.31)

with H  is
A A

[H,c] - u-c (3.32)

thus (3.30) and so (3.17.b) is indeed a good eigenstate with 
its energy and momentum given by (3.23) and (3.28), respectively. 
(Note, that (3.32) holds if N is even only, otherwise operators
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with indeces 4 and N do not cancel. At the same time infi­
nite Л solution exists also only if /V is even.)

3.5 Visualisation of the states described by (3.17) and 
(3.18) '

In the eigenstates studied here the appearence of complex 
wavenumbers would suggest at the first sight that we have some 
sort of bound states. In what follows we show that the same 
states can arrive at via another route which makes them appear 
as unbound states. Describing the N -1 up-spin electrons as a 
filled band with one hole in it, one gets a Hamiltonian for 
the system consisting of the hole and the down-spin electron 
which is similar to (1.1) with the difference that now these 
two particles have an onsite attraction instead of repulsion.
This Hamiltonian can be diagonalised by elementary methods 
giving N bound states and N ( M - 1 ) scattering states. Inspecting 
their energies and momenta, one finds that the scattering states 
are those which correspond to our complex к -states: a complex 

k -state characterised by kc and corresponds to a state
which is a combination of the states with a hole in the filled 
band of the up-spin electrons with wavenumber kt and a down- 
-spin electron propagating along occupied sites with a wave- 
number K ~ k ^ , and vice versa. (This can be seen directly 
on the state corresponding to the solution (3.17.b) i.e. on the 
eigenstate (3.30) , by expressing the operator C as 27 Cr . .

oil к r *r
and taking into account that in this sum only those terms can act 
in which к is either kc or ) . This result,namely that
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our complex к -states are those which correspond to the 
scattering states of the electron-hole pair, is not surprising, 
as in a state with all k - s  real the electrons most occupy 
different sites as U-~oo i.e. the electron with down spin 
is "bound" into the hole in the band of up spin electrons.

Unfortunately the picture becomes less clear if the band- v ,
filling is less than 1/2, as it can be illustrated on states

A
analogous to (3.30). The operator C acting on eigenstates of 
the Hamiltonian creates an other eigenstate with two more 
electrons. In this new state certainly there is at least one 
pair of electrons occupying the same site, but to regard these 
electrons as bound ones makes sense only if they are sur­
rounded mainly by empty sites i.e. when the bandfilling is 
much less than 1/2. In the opposite limit, when the doubly 
occupied sites are surrounded by singly occupied sites, one 
of the electrons can move any way, and we can not tell which 
electron is bounded to which other one. In the intermediate 
case neither the electron-hole nor the bound electron pair 
picture seems well established.
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4. SINGLET STATES WITH ONE PAIR OF COMPLEX WAVENUMBERS

4.1 The Lieb-Wu aquations for singlet states with two 
complex к -s

To describe 6 * ш0  states we have to introduce Я -s.
We take N as an even number, otherwise the state with the 
smallest spin belongs to vS** ± */z. . This restriction makes
no difference concerning the nature of the excitations since 
if N were odd both the ground state and the excited states 
analogous to those discussed here would belong to v5* ■ - '/'j. ,
and so, both for even and odd N the excitations themselves 
can be regarded as singlet ones. We suppose that among the 
Д, -s there is one (which we denote by A ) for which, as in 

the case discussed in the previous chapter,

s i n ( K t i x ) - + 0 ( e  )  (4.1)

where is a positive number of the order of unity and
O ( t ^ )  means terms of the order of e ̂

The equations for the complex к pair are

t - f  ,
N(Kti%) • IXI — Zj 2jArctq ~jjr(SiK(KtixJ -

-lore tqJL(ttn.(ktix) -Л )

(4.2)

and (4.1) is actualy the solution of their imaginary part, 
provided that
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(4.3)

It is easy to see that if (4.3) holds, then к and x are 
the same functions of /) as given by (3.8-9-10) with the 
only difference that in the r  of (3.10) in the exponent we 
have ^ instead of %0 . The validity of (4.3) (and so of 
(4.1)) can not be proven in general. What one has to do is to 
solve the remaining part of the equations using (4.1) and at 
the end, having the Я -s at hand, to check whether (4.3) holds 
or not. This is what we will do.

The real part of (4.2) , using the identity 

l  Re orctcj J í-(sú i(b+tX )~X) -

combined with (4.1) can be written in the form (up to terms 
exponentially small in N )

(4.4)

-  VRe arc^ - j j - (&*>(K+iX) - Л )

(4.5)
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The real к -s are defined by the equations 

N4 mlTl i -Z4k S9± ( sí>vIc, -A )
(4.6)

Now the l j  -s are integers if Л/Д is even and half odd integers 
if N/l is odd. Thus, depending on the parity of %  we have 
to choose one of the sets

- { ( “ - * )  , - £ ( » - * ) ,  ■ i N (4.7. a)

- U » - i )  , ■■ ■ { ( N - 3 ) ,  i ( » - 0 (4.7 . b)

with two holes left in it.

The equations for the A, -s are

E  Zantg E ( / \  - sin k j) -  H Re arctq Jl  (sinfui-(X) -  A) -

I X  f  +  Í  Л - А р )

(4.8)

(kt and Xs*, being the к -  s defined by (4.6) for the holes in
the I setJand

E  ZarcHf -sin,k}-)  — We arc tq (sinl)c+ix) - Á j ) -
f i  h i  и (4.9)

- 2 *}oc * £  +  2 . a r t t q j j ( K - Л)
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This second equation combined with (4.4) and (4.1) is equivalent 
to the equation

E  la r t tq M A j- S t 'b k . ) - г л £  + Z
jie,» /i*i

(4.10)

i  ^  ~  X  s i f b ( K ~ A)

Since }  is aii integer if is odd and half odd-integer if
n/ t. is even, is integer i f N/x is even and half odd-integer

if N/ l is odd. It is interesting to note that (4.10) is formally 
the same, as the corresponding equation for a system of 4/-2

_ Ielectrons. Based on this analogy, we suppose that it is the f  

set which defines the state of the spin system. According to 
our program, now we want to describe states for which the 
spin degrees of freedom are not excited, thus for the -s
we choose the same set which would correspond to the ground 
state of a system of Ы -1 electrons, i.e. the set

(4.11)

4.2 Solutions of the system (4.2), (4.6), (4.8), (4.10)

In the following we suppose that in the large N limit 
all the k j -s and -s can be described by their density 
functions p(k) and 6"(X) . Equations for these functions
can be derived from (4.6) and (4.10);

k-
See p. 39.
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j Leos к I  ( и/ч )______
1Т_ [% Т +  (s ih .k -X f'

6(X)dA + Zcosk (UA )

Z X N  X % f * ( s M * A
(4.12)

' / s S s f / ’ " * '
-Л -oo

oo
(U/2.)

f (X )d * ! (4.13)

with

f ( k )  - j W  - - L  J ( k - k ( ) - - i - J ( k - k n )  (4.14)

( p (k ) being the density of fc -s satisfying (4.6) , with the whole 
set (4.7), it contains also kt and k*, , i.e. the -s
belonging to the two holes.) This system can be solved by 
Furier transformation giving

• W  (-ch(A- sin k() f

and

Chib-sink* )ZT J 
и ■

(4.15)

?(k) - V* • leas к _ Ö Ü ________2 /̂V (% )t  + (sin.k-AjL

(  cos(v(sinlc-Sin kf))-t C0S(v(sink-si’nkm))Jdu
(4.16)

with y0(k) and &0(A.) given by (2.14) and (2.15), respectively.
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Having fik ) at hand, also (4.5) and (4.8) can be reduced:
(4.8) after carrying out the summation over the k. -s (using 
p\k ) ) yields

1М к(Л ) - 1 л г с Ц ± (л - sinkt) -  Zarctq fa (A -$ ln k J  +

(4.17)

+ к Re. urctq fa- (a -  stnfjc+ix)) - LT + Z_,larct<j
/SB1

with к  (A) given by (3.14) . (4.5) and (4.17) are the analogues
of (3.3) and (3.13). Their solution for Л can be obtained in 
the same way. Thus we have

А/sign A ~ (J - - A - j(Sínkéi-sinktJ (4.18 . a)

«

(n - j ( £~1)) signЛ -(} +21) «  ±1 A — ^  —  oc (4.18.b)

(Note that now the solutions corresponding to (3.18) do not 
exist, as ? - {  E  sign, (A -b p ) is always an integer. The solution 
(4.18.b) is to be understood as (3.17.b)). At the same time, 
we have from (4.17) (With the sum turned into an integral with 

lT(Ä.) given by (4.15))

2 AI I  7a(o) Sin to A 

Z T I  «j • ck uj£-0 if
cUj « ZT J  + h fie Arc bg fa (sinfc,+LX)-A j (4.19)

which is the equivalent of (3.19) to determine J- (and 
through (4.18), I  ) and y? of (3.10).
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To solve the system completly we have to solve the 
equations:

oo -  uJL

V ;  J°(u) г útí^•й ^ k* i ) * ^  -  J
О V

(4.20)

* ^ /  Д  д. ** (w V ;  - Лл
0 f

which were obtained by evaluating the sum over -s in (4.6). A 
given by (4.18), (4.20) can be solved numericaly.

Using « W  the validity of (4.3) can be checked: The l.h.s. 
can be estimated by replacing the £  by with an error
of the order of L n N / M (This estimated error comes from
the supposition that пип(Я^ - Л ) Ä . We may suppose this, 
since if /n in f t f l - 'A ) is much less then */л/ for one A( I £ and 

l -ь, ) then changing l t (or I» , ) by one, A will change 
while the difference between neighbouring 

around A is i  ~é(Á)  ' t^us will be of the order
of 1/n  • Thus this estimate may not hold only accidentally for 
a few points of the dispersion.) Although the integral obtained 
in this way can not be evaluated in closed form, one can show 
that the l.h.s.(7 ) is definitely positive. This means also, 
that for one pair of complex к -s, there must be a A coupled 
to them by (4.1): if there were no such A then instead of 
(4.1) we would have an equation ^ О , which has no solution.
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4|_jji The energy and momentum

The erer«;y of the states is easily calculated by means
of :

T
£  „ - N  JjLcosk f ( k )  dk — 4 coskckx -

-T
(4.21)

« Ec + €(£e) i- e(kj у u 

with E0 given by (2.16) and

£(k) « 2.COS к  + z j —  ----. .  c os (ц sin к )  doj (4.22)
о chujTf 10

The momentum, according to (2.l0.b), (4.7), (4.10) and 
(4.11) is

i - t
P -  77 ( - i t  - r „  + }  + Z  1- n )  + Po a  .2 3 )

where Po , t he momentum of the ground state is Я" if N/i_ is 
even and C if Nfo is odd This combined with (4.18) and 
( 4.20) , yi ,lds

P-Fb

°° —kid- »y
г г ч у ь л  -

и  ■ ck to ~  

oo -u H .
- 4 - [  e * XyfjojSinjusink^c/u

Q CO • C k  CO

(4.24)
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I n t r o d u c i n g  t h e  n o t a t i o n

(4.25)

we have (up to 2-Ä” )

P -P o  - - p ( kl )  - p ( k »,) (4.26)

The energy momentum curve defined by (4.25) and (4.22) is 
shown in Fig. 1. .Fig. 2. displays the continuum of the excita­

4.4 Comments

The number of states described above is N(N-1)  as there are 
N (n - i ) / l choices of the I t and -Z"*, parameters and to each 
choice we have two solutions ((4.18.a) and (4.18.b)). On the 
other hand,as one can verify, these states in the large U 

limit correspond to states in which one site is doubly occupied 
and one site is empty, and the Heisenberg chain of the spins 
belonging to the singly occupied states is in its ground state. 
As the number of these states is also N ( N - f ) we have found all 
of them.

It is interesting to note that the state with lowest energy 
is the one in which kt ot fc*,:vT. Here the energy is

tions in the ! p) plane.

(4.27)
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which is exactly the same as

< 4 - 2 8 >

( Е0(Н*1) being the ground state energy of a system with N±1 

electrons) calculated by Lieb and Wu. In other words the gap 
calculated through the one particle excitations coincides with 
the gap in the spectrum of particle number conserving charge 
excitations. A detailed discussion of the results of this 
chapter is given in the second part of the present work 
(Woynarovich 1980 ), where solutions corresponding to an 
arbitrary number of complex pairs are found for the case of 
an arbitrary band-filling.
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5. SUMMARY

The main points of the present study can be summarised 
as follows:

1. Based on the analysis of the u -~ o o limiting form of 
the eigenfunctions of the 1-d Hubbard chain it is shown, that 
all those states in which the amplitude of finding electron 
pairs occupying the same sites is finite, even if U is large, 
are to be described by such solutions of the Lieb-Wu equations 
in which some of the wavenumbers are complex.

2. Solutions of the Lieb-Wu equations containing one pair
of complex wavenumbers, corresponding to states
are found. In these states all but one spins point in the same 
direction, and the electron with the opposite spin propagates 
along occupied sites. The states are characterised by three 
parameters ( ke , and Л ) which are coupled to the
corresponding quantum numbers, and to each other, by a set of 
nonlinear equations (3.1),(3.15). The solution of this system 
is given by (3.17) or (3.18) and (3.20).

3. Solutions with one pair of complex wavenumbers, corres­
ponding to states in which the spin part is in its ground state 
(singlet) are also found. Also these states are characterised
by three parameters ( kt , km and Л ) and these parameters 
are coupled to each other by Eqs (4.18),(4.20). In the energy 
and momentum only the parameters ** and km appear explicitely



36

((4.21), (4.22), (4.25), (4.26)). In the spectrum a gap is found 
which is of the same magnitude as that calculated by Lieb and Wu 
for the one-particle type excitations.
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FOOTNOTE (p. 28. )

* ,Describing the к and A sets by their density functions 
is very plausible, but it.is not established in a strict 
mathematical sense. The problem is that one must be sure, 
that the error introduced by turning the sums into integrals 
is much less then the 1/n  terms which are present due to the 
excitations. Replacing (1/ы)%к by fdkp(k) introduces an 
error of the order of 1/n *- but the replacement of (%/) 

by Jdh&fl) may introduce a larger error as the integration 
interval is infinite.
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Fig. 1. é(p) dispersions for different values of U . The 
individual curves are labelled by the value of U.

Fig. 2. Schematic representation of the continuum of the
states with two complex wavenumbers in the energy- 
-momentum plane. Doubly shaded areas represent de­
generate states: to one (€  t p ) point there is 
two nonequivalent ft , pL pair for which f t *  Pv ш P  

and é(ft) t  £ ( f t )  + U - €

Figure captions
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