
V(

KFKI-1980-21

*Hungarian ‘Academy o f‘Sciences

CENTRAL
RESEARCH
INSTITUTE FOR
PHYSICS

BUDAPEST

F. VAJDA

COMPUTER SCIENCE NOW AND IN THE 1980s

KFKI-1980-21

COMPUTER SCIENCE NOW AND IN THE 1980s
F. Vajda

Central Research Institute for Physics
H-1525 Budapest 114, Р.О.В. 49, Hungary

То be presented on the Couree and Conference
Universities in World Network of Information
and Communication III.
May 13-23, 1980, Dubrovnik, Yugoslavia

HU ISSN 0368 5330
ISBN' 963 371 650 0

ABSTRACT
After a brief survey of computer systems and technology progress, the

paper presents an overview of curricula developments in computer science and
engineering education. Next it gives a mosaic-like picture as to what can be
expected in computer science and computer engineering education in the '80s.

АННОТАЦИЯ
После короткого обзора прогресса вычислительных систем и технологии в

статье дается короткое резюме о развитии планов инженерно-технического обуче­
ния науке вычислительных машин и вычислительной техники. Затем рисуется моза­
ичная картина предполагаемого прогресса в инженерно-техническом обучении нау­
ке вычислительной техники в 80-ых годах.

KIVONAT
A számitógép rendszerek és a technológiai fejlődés rövid áttekintése

után a cikk összefoglalja a számitógép tudomány és számítástechnikai mérnök-
képzés tanterveinek fejlődését. Ezek után mozaik-szerű képet ad a számitógép
tudomány mérnökképzés várható fejlődéséről a nyolcvanas években.

1

"The future is a race between
education and catastrophe"

H.G.WELLS

COMPUTER SCIENCE NOW AND IN THE 1980s
F.VAJDA

Budapest,Hungary

After a brief survey of computer systems and technology progress f the paper
presents an overview of curricula developments in computer science and
engineering education. Next it gives a mosaic-like picture as to what can
be expected in computer science and computer engineering education in the
* 80s.

1. A SURVEY OF COMPUTER SYSTEMS.

A computer is determined by many factors, including architecture,
structural properties, the technological environment, and the
human aspects of the environment in which it was designed and
built.
A computer scientist or mathematician sees a computer as levels-
of-interpreters. An engineer sees the computer on a structural basis3
with particular emphasis on the logic design of the structure.
The view most often taken by a buyer is a marketplace view. While
these people each favor a particular view of computers, each
typically understands certain aspects of the other views.
Adopted from c1D we will consider different views of computer
systems.

Central Research Institute for Physics of the Hungarian
Academy of Sciences and the Electrical Engineering
Faculty of the Technical University of Budapest

2

1.1 Structural levels.

In C 2 D, a set of conceptual levels for describing, understanding,
analyzing, designing, and using computer systems was postulated.
The model has survived major changes in technology, such as the
fabrication of a complete computer on a single silicon chip, and
changes in architecture, such as the addition of vector and array
data-types.

As shown in Figure 1, there are at least five levels of system
description that can be used to describe a computer. Each level is
characterized by a distinct language for representing the compo­
nents associated with that level, their modes of combination, and
their laws of behavior. Within each level there exists a whole
hierarchy of systems and subsystems, but as long as these are
all described in the same language, they do not constitute sepa­
rate levels. With this general view, one can work up through the
levels of computer systems, starting at the bottom.

The lowest level in Figure 1 is the device level. Here the components
are p-type and n-type semiconductor materials, dielectric materi­
als, and metal formed in various ways. The behavior of the compo­
nents is described in the languages of semiconductor physics and mate­
rials science.

The next level is the circuit level. Here the components are re­
sistors, inductors, capacitors, voltage sources, and nonlinear
devices. The behavior of the system is measured in terms of voltage,
current̂ and magnetic flux. These are continuously varying quantities
associated with various components; hence, there is continuous
behavior through time, and equations (including differential
equations) can be written to describe the behavior of the varia­
bles. The components have a discrete number of terminals whereby
they can be connected to other commponents.

Above the circuit level is the switching circuit or logic level. While
the circuit level in digital technology is very similar to the

3

PMS LEVEL

Figure 1.
Hierarchy of computer levels С2].

4

rest of electrical engineering, the logic level is the point at
which digital technology diverges from electrical engineering.
The behavior of a system is now described by discrete variables
which take on only two values, called О and 1 (or + and -, true
and false, high and low). The components perform logic functions
called AND, OR, NAND, NOR, and NOT. Systems are constructed in
the same way as at the circuit level, by connecting the terminals
of components, which thereby identify their behavioral values.

After a system has been so constructed, the laws of Boolean algebra
can be used to compute the behavior of the system from the behav­
ior and properties of its components.

In addition to combinational logic circuits, whose outputs are
directly related to the inputs at any instant of time, there are
sequential logic circuits which have the ability to hold values over
time and thus store information. The problem that the combina­
tional level analysis solves is the production of a set of out­
puts at time t as a function of a number of inputs at the same
time t. The representation of a sequential switching circuit is
basically the same as that of a combinational switching circuit,
although one needs to add memory components. The equations that
specify sequential logic circuit structure must be difference
equations involving time, rather than the simple Boolean algebra
equations which describe purely combinational logic circuits.

The level above the switching circuit level is called the register
transfer (RT) level. The components of the register transfer level
are registers and the functional transfers between those registers.
The functional transfers occur as the system undergoes discrete
operations, whereby the values of various registers are combined
according to some rule and are then stored (transferred) into
another register. The rule, or law, of combination may be almost
anything, from the simple unmodified transfer (A — B) to logical
combination (A — В Л (AND)C) or arithmetic combination (A — R +
(PLUS) C). Thus, a specification of the behavior, equivalent to the
Boolean equations of sequential circuits or to the differential

\

5

equations of the circuit level, is a set of expressions (often
called productions) that give the conditions under which such
transfers will be made.

The fifth and last level in Figure 1 is called the processor-memory-
switch (PMS) level. This level, which gives only the most aggregate
behavior of a computer system, consists of central processors,
core memories, tapes, disks, input/output processors, communi­
cations lines, printers, tape controllers, buses, teleprinters,
scopes, etc. The computer system is viewed as processing a medium,
information, which can be measured in bits (or digits, characters,
words, etc). Thus, the components have capacities and flow rates
as their operating characteristics.

1.2. Layers of interpreters.

In contrast to the structural view, this view is functional.
According to this view, a computer system consists of layers of
interpreterss much like the layers of an onion.

An interpreter is a processing system that is driven by instruc­
tions and operates upon state information. The basic interpretive
loop} shown in Figure 2 is most familiar at the machine language
level but also exists at several other levels.
To formalize the notion of levels-of-interpretation, one can
represent a processing system by the diagram in Figure 3.

The state information operated on by an interpreter is either
internal or external. This can best be understood by considering
the "onion skin" levels of the five processing systems that form
a typical airline reservation system. These levels are listed in
Table 1.

The Level О system is the logic that sequences the Level 1 micromachine.
The Level 1 system is a microprogrammed processor implemented in
real hardware. It is the machine seen by the logic designer. The
Level 2 system is the central processing unit (CPU) . it is the machine

6

FE TCH INS
POINTEC

IN S T R U C T IO

Г RUCT ION
TO BY

N COUNTER

UPDATE
INSTRUCTION

COUNTER

OECOOE
INSTRUCTION

1 1Г1
EXECUTE INST R U C TIO N

Figure 2.
The basic interpretive loop.

Figure 3.
A processing system

7

Table 1. Five Levels-of-Interpreters for an Airline Reservation
System ClD

Leve14

Leve13

Leve12

Leveli

Instruction:
Interpreter:
Internal state:

External state:

Instructions:
Interpreter:
Internal state:

External state :

Instructions:
Interpreter:
Internal state:

External state:

Instructions:
Interpreter:
Internal state:

Seat allocation request message
Airline reservation system.
Number of requests pending at this
moment
Location of passenger list on a
disk file
Number of lines connected to
system
Number of reserved seats on a given
flight
Airline name for a given flight
FORTRAN statement codes
FORTRAN execution system
Memory management parameters
User name
Main storage size
Location of disk files
Interrupt enable bits
Expression evaluation stack
Dimensions of arrays
Subroutine names
Values of data in arrays
Statement number
Program size
Value of an expression
DO-loop variable value
Printed characters on line printer
Machine language instructions
Processor
Program registers
Condition codes
Program counter
Data in main memory
Disk controller registers
Microcode
Micromachine
Instruction register
Flip-flops holding error status
Stack of microprogram subroutine
links.
Program registers
Condition codes
Program counter

External state:

8

Table 1 Ccont.D

LevelO Instructions: Hardwired combinational network
Interpreter: Sequential machine controlling the

micromachine
Internal state: Clock, counters, etc.,controlling

micromachine timing
External state: Micromachine, console

9

seen by the machine language programmer. The Level 3 system shown
here is a FORTRAN language processing system. The Level 4 system is an
airline reservation system. Four of these five systems form the hier­
archy shown in Figure 4, where each system is an interpreter that
sequences through multiple steps in order to perform a single ope­
ration for the next level interpreter. The highest level system,
the airline reservation system, is an interpreter operating on
messages received from outside of the system. It tests and modi­
fies states and generates messages to send back outside the sys­
tem, thus performing a single operation for the outermost inter­
preter.

1.3. Packaging levels of integration.

This is a structural view that packages the various components (hard­
ware and software) into levels. The levels for computers are as
follows:

9 Applications
8 Applications components
7 Special languages
6 Standard languages
5 Operating systems
4 Cabinets (to hold complete hardware systems)
3 Boxes
2 Modules (printed circuit boards)
1 Integrated circuits

There are three major changes taking place:

1. Changes in the hardware levels3 where the shrinking in
physical size of functions has three effects:
a. Lower levels subsume higher levels.
b. The semiconductor component supplier is forced

to assume higher and higher level design responsi­
bilities .

c. Levels disappear.

Io

LEVEL О
(SEQ UENTIAL

M A C M IN E -
NOT SHOW N)

Figure 4.

A hierarchy of interpreters ClD

11

2. Changes in the software levels, again with three effects:
a. Each level grows in size as more functionality is

added over time.
b. More levels are added as minicomputers are applied

to a broader range of applications.
c. Functions migrate downward from level to level.

3. Changes in the hardware/software interface3 where software
functions migrate into hardware for higher performance.

Figure 5 shows the costs of various levels-of-integration versus time for
small computers. The cost depends partly on implementation and
architecture word length. As the word length is made shorter,
there are some savings, particularly for very small computers,
because some levels-of-integration cease to exist. For example,
most hand-held calculators are implemented using 4-bit, stored
program computers with fixed programs that occupy a single integ­
rated circuit. There are associated modules, backplanes, boxes,
and cabinets - but all are contained in a single package that
fits in the hand.

Semiconductors у the lowest level of technology, have had the grea­
test price decline (Figure 5) . Modules have a lesser price dec­
line because they are a mix of integrated circuits, printed cir­
cuit boards, component insertion labor, and testing labor. The
price decline for the integrated circuit portion of the module
cost is moderated by the labor-intensive nature of module fabri­
cation, thus producing a price decline for modules that is mar­
kedly less than that for integrated circuits. At the box level-of-
integration3 power supplies and metal or plastic boxes are also
labor-intensive and further moderate the price decline provided
by the integrated circuits. Finally, as boxes are integrated
(by people) and applied at a system level (by people) , the price
decline almost disappears.

12

Figure 5.
Machine price vs. time for various levels

of integration CID.

13

1.4. Computer classes.

Because it is the complete marketplace process that produces the
computer, this view is the most complex. In terms of marketability,
a computer can be characterized as a function of price, perform­
ance, and time of introduction in what might appear to be a com-
modity-like environment.

Because various computers operate at different performance rates
and at various costs, computation can be purchased in multiple
ways, and price /performance ratios will thus affect marketability.
For example, computation can be supplied by a shared large,
central batch computer; each organizational entity can own and
operate a shared minicomputer; an individual can operate a single
desk-top system; or each individual can operate a programmable
calculator.

The price/performance ratio is not the sole factor determining
marketability, however. Program compatibility with previous machines
is important. Compatibility considerations are based on the eco­
nomic necessity of using a common software base.

In a similar way, compatibility over a range of machines at a given
time allows a user to select a machine that matches his problem
set while having the comfort that the problems can change and
there will be a sufficiently large or small machine available to
solve the new problems.

For these reasons, nearly all modern computer designs are part
of a compatible computer family which extends over price and time.
Technology provides basic improvements with each new generation at
approximately six-year intervals, and most new designs usually
provide increased performance at constant price.

The influence of technology on the computers that are built and
taken to the marketplace is so strong that the four generations of
computers have been named after the technology of their components

14

vacuum-tubes, transistors, integrated circuits (multiple transis­
tors packaged together), and large-scale integrated (LSI) cir­
cuits .

When an improved basic technology becomes available to a computer
designer, there are four paths the designs can take to incorpo­

rate the technology:

1. Use the newer technology to build a cheaper system with
the same performance.

2. Hold the price constant and use the technological impro­
vement to get an increase in performance.

3. Push the design to the limits of the new technology,
thereby increasing both performance and price.

4. Find a drastically new structure using the computer as a basic
archetype such that the design can be considered off the
evolutionary path.

In the first design style, the performance is held constant, and
the improved technology is used to build lower price machines
which attract new applications. This design style has as its most
important consequence the concept of the minimal computer. The mini­
mal computer has traditionally been the vehicle for entering new
applications, since it is the smallest computer that can be con­
structed with a given technology. Each year, as the price of the
minimal computer declines, new applications become economically
feasible.

The second, constant cost alternative uses the improved tech­
nology to get better performance at a constant price and will
usually yield the best increase in total system cost and effectiveness,
for reasons which will be discussed shortly.

The third alternative is to use the new technology to build the
most powerful machine possible. New designs using this alter­
native often solve previosuly unsolved problems and, in doing so,

15

advance the state-of-the-art. This design alternative must be used
cautiously, however, because going too far in price or performance
(i.e. building beyond the technology) is dangerous and can lead
to a zero performance, high-cost product.

Applying the three design styles over several generations produces
the plot given in Figure 5. These figures lead to one of the most
interesting results of the marketplace new, which is that computer
classes can be distinguished by price and named as follows: submicro,
micro, mini, midi, maxi, and super. The classes midi and maxi are some­
times referred to by the single, nondescriptive name, mainframe.

When one distinguishes computer classes by price, a new range of
price can be made possible by new technology and create a new
class. The new class appears at the low end of the price scale
where the minimal computer is introduced at a significantly lower
price level than existing computers.

The measure used to define a new class is price, whereas the meas­
ure defining an established class is performance. This is because
once a new class has become established in the marketplace, the
users become familiar with what computers of that class can do for
their applications and tend to characterize that class on a per­
formance basic. The characterization of existing classes on a
performance basic is important to this discussion because at each
new technology time, performance increases by one category, and
midi performance becomes available on a mini, for example.

1.5. An applications-functional view.

Because of the general purpose nature of computers, all of the
functional specialization occurs at the time of programming rather
than at the time of design. As a result, there is remarkably
little shaping of computer structure to fit the function to be
performed.
The shaping that does take place uses four primary techniques.

l
o

g
 и

н
о

е

16

« - 3 t - 2
T IM I ■ 1

Figure 6.
Price vs. time for each machine classCl]

17

Figure 7 .

Data type usage by application C1D

18

1. PMS level configuration. A configuration is chosen to match
the function to be performed. The user (designer) chooses
the amount of primary memory, the number and types of
secondary memory, the types of switches, and the number
and types of transducers to suit his particular application.

2. Physical packaging. Special environmental packaging is used
to specialize a computer system for certain environments,
such as factory floor, submarine, or aerospace applica­
tions.

3. Data-type emphasis. Computers are designed with data-types
(and operations to match) that are appropriate to their
tasks. Some emphasize floating-point arithmetic, others
string handling. Special-purpose processors, such as Fast
Fourier Transform processors, belong in this category
also.

4. Operating system. The generality of the computer is used to
program operating systems that emphasize batch, time shar­
ing, real-time, or transacting processing needs.

In the early days of computers, there were just two classifica­
tions of computer use: scientific and commercial. By the early 1970s,
computer use had diversified to seven different functional seg­
mentations: scientific, business, control, communication, file control,
terminal, and timesharing.

Functional segmentation into categories with labels such as business,
control, communication, and file control reflects a naming convention
rooted in the old two-category scientific/commercial tradition.

Machines, then, evolve to carry out more and more functions.
Since a prime discriminant is data-type, Figure 7 is presented to
show an estimate of data-type usage for various applications, using
mostly high level data-types, e.g., process descriptions. The
estimates shown are very rough, because attempts to measure such
distributions to data have not shown marked differences across
applications (except for numerical versus non-numerical) because
the data-types have not been of a sufficiently high level.

19

1.6. The practice of design.

In C3I Asimow gives a general perspective of engineering design
and how the formal alternative generators and evaluating proce­
dures are used. He also indicates where these formalisms break
down and where they do not apply. He defines engineering design
as an activity directed toward fulfilling human needs, based on
the technology of our culture. He distinguishes two types of
design: design by evolution and design by innovation.

Figure 8 called Philosophy of Design, shows the basic design process.
In C41 Phister posits a model of this process (Figure 9.).

Blaauw C5 3 distinguishes between architecture, implementation, and
realization as three separable levels in the construction of
anything, including computer structures (Table 2).
The architecture of a computer system defines its functionality
(behavior) as it appears to the machine level programmer and can be
characterized by the instruction set processor (ISP) . The imple­
mentation of a computer system is the actual hardware structure - the
register transfer (RT) level behavior and data-flow organization.
This also includes varios algorithms for controlling a machine as
it interprets an architecture. Realization encompasses the actual
technologies used and includes the kind of logic and how it is
packaged and interconnected. Realization includes all the details •
associated with the physical aspects of the machine.

Modern architectures (ISPs) usually have multiple ШТ) implementations.
For example, the LSI-11, PDP-11/40, and PDP-11/60 are different
implementations of the same basic PDP-11 instruction set.

2. TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES.

If during the next 10 to 12 years the evolution of technology will
be as fast as it has been over the past ten years, and there is
every reason to believe it will, we expect that by 1989 we will
be able to offer functional complexity which is at about 1000 to

2o

Figure 8.
Philosophy of design C1D.

O 3 e 9 12 1S 18 71 74

IlM C IM O N 1 H S I

Figure 9.
Hardware product development CUD

Table 2.Characteristics of Design Areas C5:

Architecture Implementation Realization

Purpose Function Cost and Buildable and
performance maintainable

Product Principles of Logic design Release to
operation manufacturing

Language Written Block diagram, Lists and
algorithms expressions diagrams

Quality Consistency Broad scope Reliability
measure

Meanings ISP RT level machine: Physical
(used herein) Machine ISP microprogrammed realization:

sequential machine physical
(at logic level) implementation

22

2000 times what it is today at costs 100 to 1000 times less C6D.
This means that 10 years from now almost every one will expect
inexpensive computer power in some way accessible at any time.
This will mean major changes for all of us in our offices, in our
homes, and in our way of doing business.

A recent Rome Air Development Center/State University of New York
Symposium on Command Control and Communication predicted that,
by 1985, over half of the US workforce will use computing technology
daily C7D.

It is customary when reviewing the history of an industry to as­
cribe events to either market (user) pull or technology push. The
history of the auto industry contains many good examples of mar­
ket pull, such as the trends toward large cars, small cars, tail
fins, and hood ornaments. The history of the computer industry3 on
the other hand, is almost solely one of technology push. If the
automobile industry had had the same evolution as the computer
field: a car which in 1945 would have cost about 10.000 dollars
and would have driven about four kilometers on one litre, in 1979
an "equivalent" would be costing 500 dollars, be driving 75 kilo­
meters on one litre, at 1200 kilometers an hour and in 1989 such
a car would cost 50 dollars, be driving 750 kilometers on one
litre at the speed of 10.000 kilometers an hour C6] .

Technology push in the computer industry has been strongest in
the areas of logic and memory.

For users of digital integrated circuits there are several relevant
parameters C11:

1. The function of an individual circuit in the integrated
circuit, the aggregate function of the integrated circuit,
and the functions of a complete integrated circuit family
such as the 7400-series.
The number of switching circuit functions per integrated
circuit. This quantity and density is a measure of the
capability of. the integrated circuit and the ingenuity of

2.

23

the designers.

3. Cost.

4. The speed of each circuit and the speed of the integrated
circuit and set of integrated circuits within a family.
The semiconductor device family (transistor-transistor
logic = TTL. Schottky TTL = TTL/S, emitter-coupled logic
= ECL, metal oxide semiconductor = MOS, complementary
MOS = CMOS, silicon on saphire = SOS, integrated injection

2logic = I L) usually determines this performance.
5. The number of interconnections (pins) to communicate outside

the integrated circuit.
6. The reliability. This is a function of the circuit tech­

nology, the density, the number of pins, the operating
temperature, the use (or misuse), and the maturity (ex­
perience) of the manufacturing process.

7. Power consumption and speed-power product. A frequently
used metric is the speed-power product, where the delay
through a typical gate is multiplied by the power con­
sumption of the gate. For a particular technology, the
speed-power product tends to be constant because short
gate delays usually are accompanied by high power con­
sumption. A technical advance that lowers the speed-
power product is considered noteworthy.

Figure 10 shows a family tree (taxonomy) of the most common digital
integrated circuits. The least complex functions are in the upper
portion of the figure, and the most complex are at the bottom.
In addition, the circuits are ordered by generation, starting
with the second generation on the left side of the figure and
progressing to the fifth generation on the right side. The cir­
cuits are clustered roughly by the regularity of the function and
whether memory is associated with the function. Circuit regula­
rity is important in large-scale integrated circuits because it
is desirable to implement regular structures to minimize area­
consuming interconnections and, thus, to simplify layout and

24

S E C O N D T H IR D FO U R TH FIFTH
G E N E R A T IO N G E N E R A T IO N G E N E R A T IO N G E N E R A T IO NI----------- 1------------1------------1--------1
SEOUE N

I________
S E C O N D

G E N E R A T IO N

_________L
T H IR D

G E N E R A T IO N

________ I________I
FOURTH f i f t h

G E NE RA TIO N GENERATIO N

Figure lo.
Family tree of digital integrated
circuit function CID.

25

understanding and to aid testing.

The number of gate circuits per chip not only determines chip
functionality у it also is the measure of density as seen by a user
(Figure 11). This metric is the product of the circuit area and
the number of circuits per unit area. Progress in lithopraphy
has led to a reduction of conductor linewidths and a corres­
ponding reduction of circuit size to yield higher speeds and
higher densities. Linewidths have decreased from 10 microns in
early large-scale integrated circuit chips to 6 microns in the
LSI-11 chips, and more recently to 3 or 4 microns in Intel's
8086. Linewidths of less than a micron have been achieved at
the research level, but they require electron beam techniques
instead of present photographic methods of production. The pro­
cessing techniques to create semiconductor materials have also
been improved for better manufacturing yields (and lower costs).
Circuit and device innovation (such as reducing the number of
transistors per memory cell) have also contributes to density
and yield increases.

The result given in Figure 11 is exponential and indicates that
the number of bits per chip for a metal oxide semiconductor (MOS)
memory doubles every two years according to the relationship:

Number of bits per ship = 2t_1962
This is the so-called Moore's Law c8Dt

The cost history of integrated circuits is reflected very drama­
tically in the cost history of a special class of integrated
circuits, semiconductor memory. The semiconductor memory cost curves,
given in Figure 12 are also interesting because of the important
role of memory in past and future computer structures.
Two factors influence the cost of integrated circuits: density in
bits -per integrated circuit and cost per bit. The two factors have not
had equal influence in reducing costs because, while chip density
has improved by a factor of 2 each year, the cost per bit has not
declined by a factor of 2 every two years. The equation for the

C
O

M
P

O
N

E
N

T
S

 P
E

R
 C

IR
C

U
IT

26

SSI M SI IS I

YEAR

Figure 11.
Components per single integrated
circuit die vs. time C13.

27

YEAR

Figure 12.
Cost per bit of integrated circuit RAM
memory vs. time C93*

YEAR

Figure 13.
Failure rate of silicon integrated
circuits Clo] .

28

line drawn in Figure 12 is C9D:
t-1974Cost/bit (c) = 0,3 x 0.72

Over the past 15 years, the failure rate for standard integrated
circuits has been reduced by Ьью orders of magnitude to the neighbor-7hood of 0.01 percent per 1.000 hours. This corresponds to 10
hours (about a millenium) mean time to failure (MTTF) per compo­
nent. Figure 13 CIO], shows the trend. The lower curves show
the higher reliability obtained when more extensive testing and

8 9screening are employed. The improved MTTF of between 10 and 10
are obtained at a cost increase of 4 to 100 times per component.

A dilemma involving a search for universal circuits has developed
in the manufacture of largescale integrated (LSI) circuits. The
economics of the LSI industry make it essential that integrated
circuit suppliers produce circuits with a high degree of univer­
sality. This is because the learning curve of a manufacturing
process causes cost to be inversely proportional to volume, and
for a design to be sold in high volume, it must be usable in a
large number of applications. However, the trend in circuit com-
plexity, which allows semiconductor manufacturers to put more
transistors on a constant die area each year, tends to increase
specialization of function, lowering the volume and raising the
price.

The LSI product designer is therefore continually in search of
universal primitives or building blocks. For a certain class of appli­
cations, such as controller applications, the microprocessor is
a fine primitive and has been so exploited. For other applications,
circuit complexity can embrace even higher functionality at the
processor-memory-switch level. The Intel 827X is an interesting
example: two processors, a 1.25-microsecond byte-processor and
a 2.50-nanosecond bit-processor, are combined in one large-scale
integrated circuit.

The characteristics of microprocessor and read-only memory design
methods of creating customized results from universal large-scale

29

integrated circuits are summarized, along with the characteristics
of a number of other methods, in Table 3.

With the advent of the processor-on-a-chip, digital system design
has been, or soon will be, converted completely to computer system
design. The hardware part of the design, the interface to the par­
ticular equipment, is straightforward. The major part of the
design is the programming. Since the late 1940s, three generations
have learned about computer design, especially programming. The
first generation discovered and wrote about it. Then it was redisco­
vered and applied to minicomputer systems. This time, it is being
learned by everyone who must use and program the microcomputer.
Each time, for each individual or organization, the story is about
the same: people start off by programming (using binary, octal, or
hexadecimal codes) small tasks, using no structure or method of
synchronizing the various multiple processes; the interrupt mecha­
nism is learned, and the symbolic assembler is employed; and
finally some more structured system, possibly an operating system,
is employed. Occasionally, users move to high level languages or
macroassemblers.

In view of this cyclical history3 it seems likely that current dig­
ital systems design practice, which consists of building simple
hardware interfaces to relatively poorly defined buses together
with programming the applications, will be relatively short lived.
The design method of the future (fifth generation) will be at
the PMS level component, although at the moment there are several
factors that prevent this from being done reliably and cheaply
by large numbers of enigneers.
One factor which impedes this progress to the fifth generation is
the (fundamental) interconnect problem. Currently, many small-scale
integration components are required to handle the mismatch between
microprocessor chips and memory and I/O subsystems. Furthermore,
buses are hard to specify.

Зо

Ml М О в v

Figure 14.
Family tree of memory technology.

I

%

31
Table 3. Design Techniques for Various LSI
Building Blocks C13

Building
Block

Technique
for Varying
Function

Degres
of

Generality
Permanence
of Change

Computer Program Very None
module high
Micro Program High Low to
processor medium
Bit-slice Microprogram Medium Medium
ROM Factory mask Very Irreversible

change high
PROM Field change Very Irreversible

high
EAROM Field change Very Low
EPROM high
PLA change
FPLA Field change Medium Irreversible
Gate Factory mask Medium Irreversible
array change
RAM Write Very high None

32

Another impediment is that system level behavior (the interaction
of processors, memories, and transducers via switches and links)
is less understood than is interaction at the register transfer
level.

Of substantial assistance in easing the transition to the fifth
generation would be base level operating systems that were embedded
in hardware. These should be placed in read-only memory to give
a feeling of permanence so that users would be less likely to
embark on the expensive, unreliable rediscovery path.
Figure 14 shows the various technologies employed in computer
memory applications, while Figure 15 shows current devices of solid-
state memory technology and a likely progression of develepment
to come [1]. Table 4 separates storage systems by their function
and size.

3. TRENDS AND PERSPECTIVE IN COMPUTER SCIENCE AND
ENGINEERING EDUCATION.

It is not easy to trace the evolution of the computer science
and engineering (CSE) education. At the beginning two types of
courses were most prominent; the logic design courses primarily
emphasizing the computer design techniques based on switching
theory and circuit design and programming courses emphasizing
machine and assembly language programming. The former was gene­
rally taught by electrical engineering professors, while the
programming courses usually by specialists of the university's
computing center under the auspices of the mathematics department.
Later electrical engineering (EE) departments naturally included
computer design courses in their curriculum whereas the mathematics

departments generally handled programming and numerical analysis
courses.
Subsequently computer science (CS) departments began to appear as
offshots of mathematics departments in the colleges of art and
sciences. At present, the CSE education in major universities and

BIPOLAR RAM

MOS RAM

MAGNETIC BUBBLES

CCD

ROM

EPROM

1977 1978 1979 198o 1981

Figure 15.

U>Ы

Solid-state memory technology trendsCHD.

Table 4. Storage peripherals Cll]

FAST AUXILIARY NONREMOVABLE REMOVABLE MASS STORAGE
MAIN MEMORY MEMORY MASS STORAGE ON-LINE OFF-LINE

PERIPHERALS CORE FIXED HEAD DISK MULTIPLATTER MULTIPLATTER AUTOMATED TAPE
MOS RAM EBAM DISK DISK SYSTEM
BIPOLAR RAM CCD CCD MAGNETIC

MBM MBM TAPE

MINI- CORE FIXED HEAD DISK SINGLE PLATTER SINGLE PLATTER MAGNETIC TAPE
PERIPHERALS MOS RAM CCD DISK DISK TAPE CARTRIDGE

MBM MBM FLOPPY DISK FLOPPY DISK

MICRO- MOS RAM MBM MBM MINIFLOPPY CASSETTE
PERIPHERALS ROM CCD CCD MINIFLOPPY

PROM MINICASSETTE
EPROM

35

colleges are administered mainly by separate CS and EE depart­
ments or by a combined EE and CS department. A few departments
identified computing engineering (CE) or call themselves elec­
trical and computer engineering (ECE) departments (Figure 16).

We have used the terms CS and CE without defining them. The
computer scientist is interested in theory and science of compu­
tation and programming, while the computer engineer is interested
in the specification design and implementation and utilization
(operation) of data processing systems including both hardware
and software. Taking a closer look at each, the distinction
between them is decreasing nowadays.

The need to transform software design and development into an
engineering-type discipline called into existence software engineer­
ing (SE) and the software engineer whose speciality is the
design and construction of software systems.

The curriculum development of the CSE education of the USA can
be identified by a few basic milestones.

31. The ACM's Curriculum Committee on Computer Science (C S)
published a set of recommendations called the Curriculum *68
in 1968 C133. The prerequisite structure of courses of
Curriculum '68 is shown in Figure 17.

2. The COSINE Cormittee of the National Academy of Engineering
discussed various aspects of computer education in the mid
sixties C14] C153 C163.

3. The ACM Curriculum Committee on Computer Education for Management
issued Curriculum Recommendations for Undergraduate and
Graduate Programs in Information System in 1972 and 1973,
respectively C17] C183. The core course sequences are given
in Figure 18, while the course relationships in Figure 19.

4. The Education Committee (Model Curriculum Subcommittee) of
the IEEE Computer Society presented the revised version of its
Curriculum in Computer Science and Engineering in January,

Electrical Engineering CEEl
department

Mathematics СМИ Computing
Center

Computer EngineeringCCEИ

department

department

Electrical and

Computer Engineering

CECEH department

Computer ScienceCCSИ

department

Figure 16.

Family tree of computer science education CCSED departments.

37

im сом сои »Ml of ТИ« мотами итамоитаи»»! моокдм

Figure 17.
Prerequisite structure of courses in

Curriculum'68 C133.

38

Figure 18.
Core course segnences for information

systems programs C1Ö3.

39

Figure 19.

Course relationship C17D

COMPUTER ORGANIZATIONDIGITAL LOGIC, AND ARCHITECTURE SOFTWARE ENGINEERING THEORY OF COMPUTING

Figure 2o.

CSE Curricula flowdiagram of the Education
Committee of the IEEE Computer Society C193.

41

1977 С19: С201. The subcommittee divided the CSE program into
four subject areas i.e. digital logic, computer organization
and architecture, software engineering and theory of comput­
ing (Figure 20). It was the first real effort to bridge the
gap between computer science and computer engineering and to
integrate hardware and software as well as theory and prac­
tice. Another significant contribution of the Computer Soci­
ety is the report on computer architecture curriculum С21].
An extensive survey of the literature in computer science
education since Curriculum'68 was published in January 1977
[22: .

5. In March 1979 the ACM Curriculum Committee on Computer Science
published its new recommendations for the undergraduate pro­
gram in computer science, called Curriculum* 78 [23:. Its
course structure is illustrated in Figure 21.

4. ISSUES FACING COMPUTER SCIENCE AND ENGINEERING
EDUCATION.

4.1. Keeping up with the computer revolution.

Before addressing the question of how to keep up with the computer
revolution, first we must understand the computer revolution itself
[24] . The computer revolution is the product of the availability
of cheap high level functions in small boxes. Currently complete
processors are available on single chips in the future even large
processors and complete computers will be placed on single chips
[25] (See figure 22). This drastically affected the economics of
computers making them available for use in a wide range of products.
However, basic computer architectures have not been revolutionized
by the computer revolution. Instead, it has continued a steady
evolution. No one has really invented substantially new archi­
tecture recently. Basics, well taught, readily leads the engineer
into new technology. The revolution of the computer revolution is
the revolution of computer applications, not computer theory.

With this understanding, the question becomes not how to keep up,
but what fundamental principles and techniques of computing and com­
puter hardware should be taught. If educators try to keep up with

Figure 21.
Recommended courses of Curriculum'78 C233

NJ

43

Figure 22.

Intel's plans for the 8o‘s C25 3

44

every manufacturer's latest hardware and software product, they
will be swamped with data that are out-of-date by the time they
have been incorporated into a course. Instead, if courses are
oriented toward the fundamental principles and techniques, which
evolve more slowly and use recent products as examples, graduates
who can quickly evaluate and adopt to the rapid product changes
of computer revolution will be produced. However, if courses are
oriented towards case studies of the current product lines, graduates
may miss principles and techniques which will prevent them from
rapidly adopting to new products and development.

4.2. Specialist vs.systems engineering.

For a generation there have been separate specialist in circuit
design, logic design, microprogramming, machine language programm­
ing, system programming and applications (Figure 23). Now the
boundaries between these disciplines are blurring.
Till now the available component technology has dictated the current
micro-architecture but the future component technology would be
directed by the computer architectural demand. There is already cross
fertilization of design ideas between computer and semiconductor
manufacturers, the development of denser integrated circuits will
force even more intimacy upon them now exists. Because the hard­
ware engineering is no longer insulated from software pruduction
and the logic design is merging with semiconductor fabrication} the engi­
neer's education has to be broden.

Logic design and programming, as seperate specialities, are going
the way of the dinosaur. There is a widening gap between supply
and demand of systems-oriented computer engineers C26:.People
(called system engineers) in this field are engineers who can pull
together from various disciplines all the elements needed to
satisfy an application. One of these disciplines is semiconductor
design. The systems engineer responsible for specifying custom
chips to the semicondustor industry must be knowledgeable of
semiconductor processing rules. Not only must he know exactly what
he needs-which means he must thoroughly understand the appli-
cation-but he must also figure out what kind of a program it

45

8СВьоW

ёDЕнUWЕннки«

User

Data base system

Language translator

Operating and file
system

•+-----Data base programmer

<•-----Compiler writer

---- System programmer

ё<
§
К

ЫPStDEhUЫEh
«UPS<

Target system
architecture

Machine language
programmer

Micro architecture Microprogrammer

Computer circuits

Integrated circuits

Logic designer

■Circuit designer
■Solid state physicist

Figure 23.
"Architecture" of computer sysrems and its relationship

with different specialist.

46

will take and what kind of processor can best execute this pro­
gram.
To prepare development staffs for the future, the different dis­
ciplines of computer-aided design (prototype, system and mask design,
simulation and testing) have to be included in almost every hard­
ware-oriented courses.

There is another software driven departure from the pure inter­
preter model (See figure 1 and figure 23) Using the technique
of vertical migration C27] some layers are bypassed when more
ideal primitives exist at deeper levels. Vertical migration is
a technique which improves system performance by moving software
primitives through layers of application program and operating
system software and microcode (Figure 24) . The microcode concept
generally keeps spreading in the design of computers together
with "soft" architecture offering standardized hardware that
can be customized С28].

4.3. Theory vs. practice.

Educators have always been confronted with the question of bal­
ance between theory and practice. In recent curriculums an in­
creasing emphasis is being placed on practice and "hands-on" expe­
rience via laboratory courses (e.g. [19], see figure 25). On the other
hand, undue emphasis on current professional practice in edu­
cation can make the graduate obsolete rapidly with the changes in
technology. Here then the theoretical emphasis serves as "tonic"-
or as "vitamin" toward building a solid intellectual foundation
on which advances in technology can be absorbed and built upon.
While theoretical emphasis is desired, one has to bear in mind
that computer engineering is a complete set of activities in­
cluding the use of taxonomies, theories, models and heuristics,
associated with the design and construction of computers. It is
like other engineering and the definition ClU is especially
appropriate: engineers first turn to science for answer and help,
then to mathematics for models and intuition, and finally to
the seat of their pants. It also means that longer period of

47

Figure 24.
Levels-of-interpreters with

"pipes" that bypass levels С1].

48

L-1

Figure 25.
The segnence of laboratories C193.

49

training in the industry is necessary before the new graduate is
"broken-in" into professional activities.

Regarding the role of theory in the computer science and engineer­
ing curriculums the difficult question of "why, what, when and
where" (and the biggest problem: to decide what material can most
easily be left out) we refer to [29].

4.4. Engineering vs. software engineering.

Because of the cost of hardware is dropping rapidly and software
productivity improves only slowly, the cost of software relative to
hardware is increasing. The software/hardware ratio was about
2:1 in 1973 C30] 5:4 in 1978 [31], and it is projected as going
to 10:1 by 1985 [32].
Because of a great deal of software is already in existence,
some of it of low quality, more and more effort, of necessity
has to be devoted to maintenance. It was estimated that up to
75 [33] or 80 [34] percent of all programming activity might be
maintenance, including enhancement and modification of existing
programs. Without real changes the software cost would set limits
to the utilization of VLSI (considering the yearly incresae the
USA would need in excess of 1 million software engineers by 1990.)
It is described as a "■programmers catastrophe" [25].
In software engineering, the very term, engineering implies that
the entire development of a product from initial conception through
testing and maintenance is organized in an orderly, manageable way.

Nowadays the practical software process differs from the hardwarethereprocess in many ways. For one thing is too much freedom in "soft­
ware land". For example it is entirely possible to design software
components using textbook examples, friends' recommendations, or
your own immaginations for that matter. Another factor is the
backgrounds of programmers, they may have degrees in mathematics, in
engineering, history, journalism, teaching or whatever . This
lack of common background may be part of the cause, - although
modern programming parctices have been ready for use for a con­
siderable time, - that conservatism is a legacy forced on the

5o

computing community by past and present development practices.
Software engineering is just becoming recognized as a legitimate
academic discipline. As a result, software engineering education is
in a very primitive state but will develop rapidly in the years
ahead. Strong computer science education is, and will be a vital
part of the education of a software engineer. Recent curriculum
proposals for computer science education have identified several
options within a computer science undergarduate program СЗЗЗ.

4.5. Continuing education.

Generally accepted estimates state that the available knowledge
in most areas of computing science and related technologies
doubles approximately every 5-8 years. Although a computer profes­
sional is expected to continue to learn "by osmosis" from his
peer group for the major part of his productive life, continu­
ing education can clearly assist him in acquiring the necessary
new knowledge in rapid and systematic manner. Universities and
colleges, industry and professional societies play different
roles in this process 134 3 C353 . The major problems are motivat­
ing the employer to support an employee's participation and the
employee to participate.

4.6. Impact of microsystems.

There are contraditory opinions regarding this effect, e.g.
"The Jmicrocomputer-revolution1 is best understood by realizing that
a microcomputer is basically just an inexpensive computer. Most
microcomputer concepts are already covered in a good engineering
curriculum C 36 3 .
"The proliferation of microcomputer systems will have an anormous
impact on computer science and computer engineering education"
C 34 3 .
However, almost all of the outhors agree that a micro-lab facility
can provide students with exposure to concepts and problems such
as actual hardware, computer operation,operating systems, backup
procedures, program size problems, inter-computer communications,
scheduling, maintenance and computer management.

51

4.7. Computer and society.

One of the biggest challenges of the 80's may be educate the
average citizen about computers. In particular, people should be
able to separate fact from fiction with regard to computer-related
stories on TV and in newspapers and popular magazines.

The growing interest and public support for the computer literacy
concept was cited as a reason in a current US recommendation
C37 3 that all high school graduates be computer literate.
To achieve the desired computer literacy, graduates should have
knowledge of the historical perspective of computing, the computer
anatomy (includes parts, work and problem solving) basic uses of
computers, social implications and futuristics.

5. REFERENCES.
С1D C.G.Bell,J.C. Mudge and J.E.McNamara: Computer engineering.

Digital Press,1978.
C 2 3 C.G.Bell and A.Newel:Computer structureas Readings and

examples. McGraw-Hill,New-York,1971.
C 3 3 M.Asimov: Introduction to design. Prentice-Hall, Englewood

Cliffs,N.J., 1962.
[43 M.Phister: Data processing technology and economics.Santa

Monica Publishing Co., Santa Monica,Calif. 1976.
[53 G.A.Blaauw:Hardware requirements for the fourth generation.

In Fourth generation computers: User requirements and
transition, F.Gruenberger(ed.),Prentice-Hall, Englewood
Cliffs,N.Y. 1970,155-168.

[63 J.C.Peterschmitt: The challange of the eighties. Digital
Europa, December 1979,p.3.

[73 E.Bloch and D.Galage: Component progress: Its effect on
high-speed computer architecture and machine organization.
Computer, April 1978, 64-76.

[83 G.Moore: VLSI:some fundamental challenges. IEEE Spectrum,
April 1979,30-37.

[9 3 R.N.Noyce: Large scale integration: What is yet to come?
Science, 195(1977), 1102-1106.

[103 D.A.Hodges:Progress in electronic technologies for computer.
National Bureau of Standards Report T73219,March 1977.

52

Cll] D.P.Bhandarkar: The impact of semiconductor technology
on computer systems. Computer,September 1979,92-98.

[12] A.Csákány and F.Vajda: The impact of computer availability
on engineering education in Hungary. IEEE Transactions
on Education, February 1977, 2-6.

[13] Curriculum'68. Recommendations for Academic Programs in
Computer Science. (A report of the ACM Curriculum Commit­
tee on Computer Science) Communications of the ACM, March
1968, 151-197.

C14] COSINE Committee, Some specifications for computer-oriented
first course in electrical engineering. Commission Engi­
neering Education, Washington. D.C., September 1968.

[15] COSINE Committee, An undergraduate electrical engineering
course on computer organization. Commission Engineering
Education,Washington. D.C., October 1968.

[16] COSINE Committee, Some specifications for undergraduate
course in digital systems. Nat.Acad.Eng.Washington D.C.,
November 1968.

[17] Curriculum Recommendations for Graduate Professional Pro­
grams in Information Systems. (A Report of the ACM Curri­
culum Committee on Computer Education for Management)
Communications of the ACM, May 1972, 364-398.

[18] Curriculum Recommendations for Undergraduate Program in
Information Systems. (A Report of the ACM Curriculum
Committee on Computer Education for Management) Communi­
cations of the ACM, December 1973, 727-749.

[19] A Curriculum in Computer Science and Engineering.
(Prepared by the Education Committee of the IEEE Computer
Society) IEEE Computer Society, EH 0119-8 January 1977.

[20] Special Supplement: Computer Science and Engineering
Education. Computer, December 1977, 70-135.

[21] G.E.Rossmann et al.: A course of study in computer hardware
architecture. Computer, December 1975, 44-63.

[22] R.H.Austin et al.: A survey of the literature in Computer
Science education since Curriculum'68. Communications of
the ACM,January 1977,13-21.

[23] Curriculum'78. Recommendations for the undergraduate
program in Computer Science (A Report of the ACM Curriculum
Committee on Computer Science) Communications of the ACM,
March 1979, 147-165.

[24] Keeping up with the computer revolution. IEEE Transaction
on Education, May 1979, 39-43.

[25] J.G.Posa: Intel takes aim at the 80's. Electronics,
February 28, 1980,89-95.

[26] D.D.McCracken et al.: An ACM Executive Committee position
on the crisis in experimental Computer Science. Communi­
cation of the ACM, September 1979, 503-504.

53

С273 J.Stockenberg and A.van Dam:Vertical migration for per­
formance enhancement in layered hardware/firmware/software
systems. Computer, May 1978, 35-50

c28: A.Durniak:VLSI shakes the foundations of computer architec­
ture. Electronics, May 24, 1979, 111-133.

[293 B.M.Barnes: Theory in the computer science and engineering
curriculum: Why, what, when and where. Computer, December
1977, 106-108.

[303 B.W.Boehm: Software and its impact: A quantitative assessment.
Datamation, May 1973, 48-59.

[313 A.I.Wasserman and P.Freeman:Software engineering Education:
Status and prospects. Proceeding of the IEEE, August 1978,
886-892.

[32 3 W.Myers: The need for software engineering. Computer,
February 1978, 12-26.

C333 A.I.Wasserman and P.Freeman: Software engineering concepts
and Computer Science curricula. Computer, June 1977, 85-91.

[34] U.W.Pooch et al.(Computer Science and Computer Engineering
education in the '80s. Computer, September 1978, 69-83.

[353 R.Chattergy and U.W.Pooch: Continuing education for the
computer professional: The role of the professional society.
Computer, December 1977, 124-128.

[363 J.F.Wakerly and E.J.McCluskey: Microcomputers in the computer
engineering curriculum. Computer, January 1977, 32-38.

[373 R.H.Austing and G.L.Engel: Recent developments in computers
and society research and education. Proc. AFIPS.vol.
48.1979 National Computer Conference.AFIPS Press, New York,
1979, 407-410.

■

■V-

63 .<?<72_

Kiadja a Központi Fizikai Kutató Intézet
Felelős kiadó: Sándory Mihály
Szakmai lektor: Csákány Antal
Nyelvi lektor: Jávor András
Példányszám: 270 Törzsszám: 80-233
Budapest, 1980. április hó

