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ABSTRACT
After a brief survey of computer systems and technology progress, the 

paper presents an overview of curricula developments in computer science and 
engineering education. Next it gives a mosaic-like picture as to what can be 
expected in computer science and computer engineering education in the '80s.

АННОТАЦИЯ
После короткого обзора прогресса вычислительных систем и технологии в 

статье дается короткое резюме о развитии планов инженерно-технического обуче­
ния науке вычислительных машин и вычислительной техники. Затем рисуется моза­
ичная картина предполагаемого прогресса в инженерно-техническом обучении нау­
ке вычислительной техники в 80-ых годах.

KIVONAT
A számitógép rendszerek és a technológiai fejlődés rövid áttekintése 

után a cikk összefoglalja a számitógép tudomány és számítástechnikai mérnök- 
képzés tanterveinek fejlődését. Ezek után mozaik-szerű képet ad a számitógép 
tudomány mérnökképzés várható fejlődéséről a nyolcvanas években.
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"The future is a race between 
education and catastrophe"

H.G.WELLS

COMPUTER SCIENCE NOW AND IN THE 1980s
F.VAJDA

Budapest,Hungary

After a brief survey of computer systems and technology progress f the paper 
presents an overview of curricula developments in computer science and 
engineering education. Next it gives a mosaic-like picture as to what can 
be expected in computer science and computer engineering education in the 
* 80s.

1. A SURVEY OF COMPUTER SYSTEMS.

A computer is determined by many factors, including architecture, 
structural properties, the technological environment, and the 
human aspects of the environment in which it was designed and 
built.
A computer scientist or mathematician sees a computer as levels- 
of-interpreters. An engineer sees the computer on a structural basis3 
with particular emphasis on the logic design of the structure.
The view most often taken by a buyer is a marketplace view. While 
these people each favor a particular view of computers, each 
typically understands certain aspects of the other views.
Adopted from c1D we will consider different views of computer 
systems.

Central Research Institute for Physics of the Hungarian 
Academy of Sciences and the Electrical Engineering 
Faculty of the Technical University of Budapest
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1.1 Structural levels.

In C 2 D, a set of conceptual levels for describing, understanding, 
analyzing, designing, and using computer systems was postulated.
The model has survived major changes in technology, such as the 
fabrication of a complete computer on a single silicon chip, and 
changes in architecture, such as the addition of vector and array 
data-types.

As shown in Figure 1, there are at least five levels of system 
description that can be used to describe a computer. Each level is 
characterized by a distinct language for representing the compo­
nents associated with that level, their modes of combination, and 
their laws of behavior. Within each level there exists a whole 
hierarchy of systems and subsystems, but as long as these are 
all described in the same language, they do not constitute sepa­
rate levels. With this general view, one can work up through the 
levels of computer systems, starting at the bottom.

The lowest level in Figure 1 is the device level. Here the components 
are p-type and n-type semiconductor materials, dielectric materi­
als, and metal formed in various ways. The behavior of the compo­
nents is described in the languages of semiconductor physics and mate­
rials science.

The next level is the circuit level. Here the components are re­
sistors, inductors, capacitors, voltage sources, and nonlinear 
devices. The behavior of the system is measured in terms of voltage, 
current̂  and magnetic flux. These are continuously varying quantities 
associated with various components; hence, there is continuous 
behavior through time, and equations (including differential 
equations) can be written to describe the behavior of the varia­
bles. The components have a discrete number of terminals whereby 
they can be connected to other commponents.

Above the circuit level is the switching circuit or logic level. While 
the circuit level in digital technology is very similar to the
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Figure 1.
Hierarchy of computer levels С2].
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rest of electrical engineering, the logic level is the point at 
which digital technology diverges from electrical engineering.
The behavior of a system is now described by discrete variables 
which take on only two values, called О and 1 (or + and -, true 
and false, high and low). The components perform logic functions 
called AND, OR, NAND, NOR, and NOT. Systems are constructed in 
the same way as at the circuit level, by connecting the terminals 
of components, which thereby identify their behavioral values.

After a system has been so constructed, the laws of Boolean algebra 
can be used to compute the behavior of the system from the behav­
ior and properties of its components.

In addition to combinational logic circuits, whose outputs are 
directly related to the inputs at any instant of time, there are 
sequential logic circuits which have the ability to hold values over 
time and thus store information. The problem that the combina­
tional level analysis solves is the production of a set of out­
puts at time t as a function of a number of inputs at the same 
time t. The representation of a sequential switching circuit is 
basically the same as that of a combinational switching circuit, 
although one needs to add memory components. The equations that 
specify sequential logic circuit structure must be difference 
equations involving time, rather than the simple Boolean algebra 
equations which describe purely combinational logic circuits.

The level above the switching circuit level is called the register 
transfer (RT) level. The components of the register transfer level 
are registers and the functional transfers between those registers. 
The functional transfers occur as the system undergoes discrete 
operations, whereby the values of various registers are combined 
according to some rule and are then stored (transferred) into 
another register. The rule, or law, of combination may be almost 
anything, from the simple unmodified transfer (A — B) to logical 
combination (A — В Л (AND)C) or arithmetic combination (A — R + 
(PLUS) C). Thus, a specification of the behavior, equivalent to the 
Boolean equations of sequential circuits or to the differential

\
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equations of the circuit level, is a set of expressions (often 
called productions) that give the conditions under which such 
transfers will be made.

The fifth and last level in Figure 1 is called the processor-memory- 
switch (PMS) level. This level, which gives only the most aggregate 
behavior of a computer system, consists of central processors, 
core memories, tapes, disks, input/output processors, communi­
cations lines, printers, tape controllers, buses, teleprinters, 
scopes, etc. The computer system is viewed as processing a medium, 
information, which can be measured in bits (or digits, characters, 
words, etc). Thus, the components have capacities and flow rates 
as their operating characteristics.

1.2. Layers of interpreters.

In contrast to the structural view, this view is functional. 
According to this view, a computer system consists of layers of 
interpreterss much like the layers of an onion.

An interpreter is a processing system that is driven by instruc­
tions and operates upon state information. The basic interpretive 
loop} shown in Figure 2 is most familiar at the machine language 
level but also exists at several other levels.
To formalize the notion of levels-of-interpretation, one can 
represent a processing system by the diagram in Figure 3.

The state information operated on by an interpreter is either 
internal or external. This can best be understood by considering 
the "onion skin" levels of the five processing systems that form 
a typical airline reservation system. These levels are listed in 
Table 1.

The Level О system is the logic that sequences the Level 1 micromachine. 
The Level 1 system is a microprogrammed processor implemented in 
real hardware. It is the machine seen by the logic designer. The 
Level 2 system is the central processing unit (CPU) . it is the machine
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Table 1. Five Levels-of-Interpreters for an Airline Reservation 
System ClD

Leve14

Leve13

Leve12

Leveli

Instruction: 
Interpreter: 
Internal state:

External state:

Instructions: 
Interpreter: 
Internal state:

External state :

Instructions: 
Interpreter: 
Internal state:

External state:

Instructions: 
Interpreter: 
Internal state:

Seat allocation request message
Airline reservation system.
Number of requests pending at this 
moment
Location of passenger list on a 
disk file
Number of lines connected to 
system
Number of reserved seats on a given 
flight
Airline name for a given flight
FORTRAN statement codes
FORTRAN execution system
Memory management parameters 
User name 
Main storage size 
Location of disk files 
Interrupt enable bits 
Expression evaluation stack 
Dimensions of arrays
Subroutine names
Values of data in arrays
Statement number
Program size
Value of an expression
DO-loop variable value
Printed characters on line printer
Machine language instructions
Processor
Program registers 
Condition codes 
Program counter
Data in main memory 
Disk controller registers
Microcode
Micromachine
Instruction register 
Flip-flops holding error status 
Stack of microprogram subroutine 
links.
Program registers 
Condition codes 
Program counter

External state:
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Table 1 Ccont.D

LevelO Instructions: Hardwired combinational network
Interpreter: Sequential machine controlling the

micromachine
Internal state: Clock, counters, etc.,controlling

micromachine timing
External state: Micromachine, console
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seen by the machine language programmer. The Level 3 system shown 
here is a FORTRAN language processing system. The Level 4 system is an 
airline reservation system. Four of these five systems form the hier­
archy shown in Figure 4, where each system is an interpreter that 
sequences through multiple steps in order to perform a single ope­
ration for the next level interpreter. The highest level system, 
the airline reservation system, is an interpreter operating on 
messages received from outside of the system. It tests and modi­
fies states and generates messages to send back outside the sys­
tem, thus performing a single operation for the outermost inter­
preter.

1.3. Packaging levels of integration.

This is a structural view that packages the various components (hard­
ware and software) into levels. The levels for computers are as 
follows:

9 Applications 
8 Applications components 
7 Special languages 
6 Standard languages
5 Operating systems
4 Cabinets (to hold complete hardware systems)
3 Boxes
2 Modules (printed circuit boards)
1 Integrated circuits

There are three major changes taking place:

1. Changes in the hardware levels3 where the shrinking in 
physical size of functions has three effects:
a. Lower levels subsume higher levels.
b. The semiconductor component supplier is forced

to assume higher and higher level design responsi­
bilities .

c. Levels disappear.
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11

2. Changes in the software levels, again with three effects:
a. Each level grows in size as more functionality is 

added over time.
b. More levels are added as minicomputers are applied 

to a broader range of applications.
c. Functions migrate downward from level to level.

3. Changes in the hardware/software interface3 where software
functions migrate into hardware for higher performance.

Figure 5 shows the costs of various levels-of-integration versus time for 
small computers. The cost depends partly on implementation and 
architecture word length. As the word length is made shorter, 
there are some savings, particularly for very small computers, 
because some levels-of-integration cease to exist. For example, 
most hand-held calculators are implemented using 4-bit, stored 
program computers with fixed programs that occupy a single integ­
rated circuit. There are associated modules, backplanes, boxes, 
and cabinets - but all are contained in a single package that 
fits in the hand.

Semiconductors у  the lowest level of technology, have had the grea­
test price decline (Figure 5) . Modules have a lesser price dec­
line because they are a mix of integrated circuits, printed cir­
cuit boards, component insertion labor, and testing labor. The 
price decline for the integrated circuit portion of the module 
cost is moderated by the labor-intensive nature of module fabri­
cation, thus producing a price decline for modules that is mar­
kedly less than that for integrated circuits. At the box level-of- 
integration3 power supplies and metal or plastic boxes are also 
labor-intensive and further moderate the price decline provided 
by the integrated circuits. Finally, as boxes are integrated 
(by people) and applied at a system level (by people) , the price 
decline almost disappears.
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Figure 5.
Machine price vs. time for various levels 

of integration CID.
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1.4. Computer classes.

Because it is the complete marketplace process that produces the 
computer, this view is the most complex. In terms of marketability, 
a computer can be characterized as a function of price, perform­
ance, and time of introduction in what might appear to be a com- 
modity-like environment.

Because various computers operate at different performance rates 
and at various costs, computation can be purchased in multiple 
ways, and price /performance ratios will thus affect marketability.
For example, computation can be supplied by a shared large, 
central batch computer; each organizational entity can own and 
operate a shared minicomputer; an individual can operate a single 
desk-top system; or each individual can operate a programmable 
calculator.

The price/performance ratio is not the sole factor determining 
marketability, however. Program compatibility with previous machines 
is important. Compatibility considerations are based on the eco­
nomic necessity of using a common software base.

In a similar way, compatibility over a range of machines at a given 
time allows a user to select a machine that matches his problem 
set while having the comfort that the problems can change and 
there will be a sufficiently large or small machine available to 
solve the new problems.

For these reasons, nearly all modern computer designs are part 
of a compatible computer family which extends over price and time. 
Technology provides basic improvements with each new generation at 
approximately six-year intervals, and most new designs usually 
provide increased performance at constant price.

The influence of technology on the computers that are built and 
taken to the marketplace is so strong that the four generations of 
computers have been named after the technology of their components
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vacuum-tubes, transistors, integrated circuits (multiple transis­
tors packaged together), and large-scale integrated (LSI) cir­
cuits .

When an improved basic technology becomes available to a computer 
designer, there are four paths the designs can take to incorpo­

rate the technology:

1. Use the newer technology to build a cheaper system with 
the same performance.

2. Hold the price constant and use the technological impro­
vement to get an increase in performance.

3. Push the design to the limits of the new technology, 
thereby increasing both performance and price.

4. Find a drastically new structure using the computer as a basic 
archetype such that the design can be considered off the 
evolutionary path.

In the first design style, the performance is held constant, and 
the improved technology is used to build lower price machines 
which attract new applications. This design style has as its most 
important consequence the concept of the minimal computer. The mini­
mal computer has traditionally been the vehicle for entering new 
applications, since it is the smallest computer that can be con­
structed with a given technology. Each year, as the price of the 
minimal computer declines, new applications become economically 
feasible.

The second, constant cost alternative uses the improved tech­
nology to get better performance at a constant price and will 
usually yield the best increase in total system cost and effectiveness, 
for reasons which will be discussed shortly.

The third alternative is to use the new technology to build the 
most powerful machine possible. New designs using this alter­
native often solve previosuly unsolved problems and, in doing so,



15

advance the state-of-the-art. This design alternative must be used 
cautiously, however, because going too far in price or performance 
(i.e. building beyond the technology) is dangerous and can lead 
to a zero performance, high-cost product.

Applying the three design styles over several generations produces 
the plot given in Figure 5. These figures lead to one of the most 
interesting results of the marketplace new, which is that computer 
classes can be distinguished by price and named as follows: submicro, 
micro, mini, midi, maxi, and super. The classes midi and maxi are some­
times referred to by the single, nondescriptive name, mainframe.

When one distinguishes computer classes by price, a new range of 
price can be made possible by new technology and create a new 
class. The new class appears at the low end of the price scale 
where the minimal computer is introduced at a significantly lower 
price level than existing computers.

The measure used to define a new class is price, whereas the meas­
ure defining an established class is performance. This is because 
once a new class has become established in the marketplace, the 
users become familiar with what computers of that class can do for 
their applications and tend to characterize that class on a per­
formance basic. The characterization of existing classes on a 
performance basic is important to this discussion because at each 
new technology time, performance increases by one category, and 
midi performance becomes available on a mini, for example.

1.5. An applications-functional view.

Because of the general purpose nature of computers, all of the 
functional specialization occurs at the time of programming rather 
than at the time of design. As a result, there is remarkably 
little shaping of computer structure to fit the function to be 
performed.
The shaping that does take place uses four primary techniques.
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Figure 7 .

Data type usage by application C1D
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1. PMS level configuration. A configuration is chosen to match 
the function to be performed. The user (designer) chooses 
the amount of primary memory, the number and types of 
secondary memory, the types of switches, and the number 
and types of transducers to suit his particular application.

2. Physical packaging. Special environmental packaging is used 
to specialize a computer system for certain environments, 
such as factory floor, submarine, or aerospace applica­
tions.

3. Data-type emphasis. Computers are designed with data-types 
(and operations to match) that are appropriate to their 
tasks. Some emphasize floating-point arithmetic, others 
string handling. Special-purpose processors, such as Fast 
Fourier Transform processors, belong in this category 
also.

4. Operating system. The generality of the computer is used to 
program operating systems that emphasize batch, time shar­
ing, real-time, or transacting processing needs.

In the early days of computers, there were just two classifica­
tions of computer use: scientific and commercial. By the early 1970s, 
computer use had diversified to seven different functional seg­
mentations: scientific, business, control, communication, file control, 
terminal, and timesharing.

Functional segmentation into categories with labels such as business, 
control, communication, and file control reflects a naming convention 
rooted in the old two-category scientific/commercial tradition.

Machines, then, evolve to carry out more and more functions.
Since a prime discriminant is data-type, Figure 7 is presented to 
show an estimate of data-type usage for various applications, using 
mostly high level data-types, e.g., process descriptions. The 
estimates shown are very rough, because attempts to measure such 
distributions to data have not shown marked differences across 
applications (except for numerical versus non-numerical) because 
the data-types have not been of a sufficiently high level.
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1.6. The practice of design.

In C3I Asimow gives a general perspective of engineering design 
and how the formal alternative generators and evaluating proce­
dures are used. He also indicates where these formalisms break 
down and where they do not apply. He defines engineering design 
as an activity directed toward fulfilling human needs, based on 
the technology of our culture. He distinguishes two types of 
design: design by evolution and design by innovation.

Figure 8 called Philosophy of Design, shows the basic design process.
In C41 Phister posits a model of this process (Figure 9.).

Blaauw C5 3 distinguishes between architecture, implementation, and 
realization as three separable levels in the construction of 
anything, including computer structures (Table 2).
The architecture of a computer system defines its functionality 
(behavior) as it appears to the machine level programmer and can be 
characterized by the instruction set processor (ISP) . The imple­
mentation of a computer system is the actual hardware structure - the 
register transfer (RT) level behavior and data-flow organization.
This also includes varios algorithms for controlling a machine as 
it interprets an architecture. Realization encompasses the actual 
technologies used and includes the kind of logic and how it is 
packaged and interconnected. Realization includes all the details • 
associated with the physical aspects of the machine.

Modern architectures (ISPs) usually have multiple ШТ) implementations. 
For example, the LSI-11, PDP-11/40, and PDP-11/60 are different 
implementations of the same basic PDP-11 instruction set.

2. TECHNOLOGY PROGRESS IN LOGIC AND MEMORIES.

If during the next 10 to 12 years the evolution of technology will 
be as fast as it has been over the past ten years, and there is 
every reason to believe it will, we expect that by 1989 we will 
be able to offer functional complexity which is at about 1000 to
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Figure 8.
Philosophy of design C1D.
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Figure 9.
Hardware product development CUD



Table 2.Characteristics of Design Areas C5:

Architecture Implementation Realization

Purpose Function Cost and Buildable and
performance maintainable

Product Principles of Logic design Release to
operation manufacturing

Language Written Block diagram, Lists and
algorithms expressions diagrams

Quality Consistency Broad scope Reliability
measure

Meanings ISP RT level machine: Physical
(used herein) Machine ISP microprogrammed realization:

sequential machine physical
(at logic level) implementation



22

2000 times what it is today at costs 100 to 1000 times less C6D. 
This means that 10 years from now almost every one will expect 
inexpensive computer power in some way accessible at any time. 
This will mean major changes for all of us in our offices, in our 
homes, and in our way of doing business.

A recent Rome Air Development Center/State University of New York 
Symposium on Command Control and Communication predicted that, 
by 1985, over half of the US workforce will use computing technology 
daily C7D.

It is customary when reviewing the history of an industry to as­
cribe events to either market (user) pull or technology push. The 
history of the auto industry contains many good examples of mar­
ket pull, such as the trends toward large cars, small cars, tail 
fins, and hood ornaments. The history of the computer industry3 on 
the other hand, is almost solely one of technology push. If the 
automobile industry had had the same evolution as the computer 
field: a car which in 1945 would have cost about 10.000 dollars 
and would have driven about four kilometers on one litre, in 1979 
an "equivalent" would be costing 500 dollars, be driving 75 kilo­
meters on one litre, at 1200 kilometers an hour and in 1989 such 
a car would cost 50 dollars, be driving 750 kilometers on one 
litre at the speed of 10.000 kilometers an hour C6] .

Technology push in the computer industry has been strongest in 
the areas of logic and memory.

For users of digital integrated circuits there are several relevant 
parameters C11:

1. The function of an individual circuit in the integrated
circuit, the aggregate function of the integrated circuit, 
and the functions of a complete integrated circuit family 
such as the 7400-series.
The number of switching circuit functions per integrated 
circuit. This quantity and density is a measure of the 
capability of. the integrated circuit and the ingenuity of

2.
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the designers.

3. Cost.

4. The speed of each circuit and the speed of the integrated
circuit and set of integrated circuits within a family.
The semiconductor device family (transistor-transistor
logic = TTL. Schottky TTL = TTL/S, emitter-coupled logic
= ECL, metal oxide semiconductor = MOS, complementary
MOS = CMOS, silicon on saphire = SOS, integrated injection 

2logic = I L) usually determines this performance.
5. The number of interconnections (pins) to communicate outside 

the integrated circuit.
6. The reliability. This is a function of the circuit tech­

nology, the density, the number of pins, the operating 
temperature, the use (or misuse), and the maturity (ex­
perience) of the manufacturing process.

7. Power consumption and speed-power product. A frequently 
used metric is the speed-power product, where the delay 
through a typical gate is multiplied by the power con­
sumption of the gate. For a particular technology, the 
speed-power product tends to be constant because short 
gate delays usually are accompanied by high power con­
sumption. A technical advance that lowers the speed- 
power product is considered noteworthy.

Figure 10 shows a family tree (taxonomy) of the most common digital 
integrated circuits. The least complex functions are in the upper 
portion of the figure, and the most complex are at the bottom.
In addition, the circuits are ordered by generation, starting 
with the second generation on the left side of the figure and 
progressing to the fifth generation on the right side. The cir­
cuits are clustered roughly by the regularity of the function and 
whether memory is associated with the function. Circuit regula­
rity is important in large-scale integrated circuits because it 
is desirable to implement regular structures to minimize area­
consuming interconnections and, thus, to simplify layout and
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understanding and to aid testing.

The number of gate circuits per chip not only determines chip 
functionality у  it also is the measure of density as seen by a user 
(Figure 11). This metric is the product of the circuit area and 
the number of circuits per unit area. Progress in lithopraphy 
has led to a reduction of conductor linewidths and a corres­
ponding reduction of circuit size to yield higher speeds and 
higher densities. Linewidths have decreased from 10 microns in 
early large-scale integrated circuit chips to 6 microns in the 
LSI-11 chips, and more recently to 3 or 4 microns in Intel's 
8086. Linewidths of less than a micron have been achieved at 
the research level, but they require electron beam techniques 
instead of present photographic methods of production. The pro­
cessing techniques to create semiconductor materials have also 
been improved for better manufacturing yields (and lower costs). 
Circuit and device innovation (such as reducing the number of 
transistors per memory cell) have also contributes to density 
and yield increases.

The result given in Figure 11 is exponential and indicates that 
the number of bits per chip for a metal oxide semiconductor (MOS) 
memory doubles every two years according to the relationship:

Number of bits per ship = 2t_1962 
This is the so-called Moore's Law c8Dt

The cost history of integrated circuits is reflected very drama­
tically in the cost history of a special class of integrated 
circuits, semiconductor memory. The semiconductor memory cost curves, 
given in Figure 12 are also interesting because of the important 
role of memory in past and future computer structures.
Two factors influence the cost of integrated circuits: density in 
bits -per integrated circuit and cost per bit. The two factors have not 
had equal influence in reducing costs because, while chip density 
has improved by a factor of 2 each year, the cost per bit has not 
declined by a factor of 2 every two years. The equation for the
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Figure 11.
Components per single integrated 
circuit die vs. time C13.
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YEAR

Figure 12.
Cost per bit of integrated circuit RAM
memory vs. time C93*

YEAR

Figure 13.
Failure rate of silicon integrated 
circuits Clo] .
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line drawn in Figure 12 is C9D:
t-1974Cost/bit (c) = 0,3 x 0.72

Over the past 15 years, the failure rate for standard integrated 
circuits has been reduced by Ьью orders of magnitude to the neighbor-7hood of 0.01 percent per 1.000 hours. This corresponds to 10 
hours (about a millenium) mean time to failure (MTTF) per compo­
nent. Figure 13 CIO], shows the trend. The lower curves show
the higher reliability obtained when more extensive testing and

8 9screening are employed. The improved MTTF of between 10 and 10 
are obtained at a cost increase of 4 to 100 times per component.

A dilemma involving a search for universal circuits has developed 
in the manufacture of largescale integrated (LSI) circuits. The 
economics of the LSI industry make it essential that integrated 
circuit suppliers produce circuits with a high degree of univer­
sality. This is because the learning curve of a manufacturing 
process causes cost to be inversely proportional to volume, and 
for a design to be sold in high volume, it must be usable in a 
large number of applications. However, the trend in circuit com- 
plexity, which allows semiconductor manufacturers to put more 
transistors on a constant die area each year, tends to increase 
specialization of function, lowering the volume and raising the 
price.

The LSI product designer is therefore continually in search of 
universal primitives or building blocks. For a certain class of appli­
cations, such as controller applications, the microprocessor is 
a fine primitive and has been so exploited. For other applications, 
circuit complexity can embrace even higher functionality at the 
processor-memory-switch level. The Intel 827X is an interesting 
example: two processors, a 1.25-microsecond byte-processor and 
a 2.50-nanosecond bit-processor, are combined in one large-scale 
integrated circuit.

The characteristics of microprocessor and read-only memory design 
methods of creating customized results from universal large-scale
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integrated circuits are summarized, along with the characteristics 
of a number of other methods, in Table 3.

With the advent of the processor-on-a-chip, digital system design 
has been, or soon will be, converted completely to computer system 
design. The hardware part of the design, the interface to the par­
ticular equipment, is straightforward. The major part of the 
design is the programming. Since the late 1940s, three generations 
have learned about computer design, especially programming. The 
first generation discovered and wrote about it. Then it was redisco­
vered and applied to minicomputer systems. This time, it is being 
learned by everyone who must use and program the microcomputer. 
Each time, for each individual or organization, the story is about 
the same: people start off by programming (using binary, octal, or 
hexadecimal codes) small tasks, using no structure or method of 
synchronizing the various multiple processes; the interrupt mecha­
nism is learned, and the symbolic assembler is employed; and 
finally some more structured system, possibly an operating system, 
is employed. Occasionally, users move to high level languages or 
macroassemblers.

In view of this cyclical history3 it seems likely that current dig­
ital systems design practice, which consists of building simple 
hardware interfaces to relatively poorly defined buses together 
with programming the applications, will be relatively short lived. 
The design method of the future (fifth generation) will be at 
the PMS level component, although at the moment there are several 
factors that prevent this from being done reliably and cheaply 
by large numbers of enigneers.
One factor which impedes this progress to the fifth generation is 
the (fundamental) interconnect problem. Currently, many small-scale 
integration components are required to handle the mismatch between 
microprocessor chips and memory and I/O subsystems. Furthermore, 
buses are hard to specify.
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Table 3. Design Techniques for Various LSI 
Building Blocks C13

Building
Block

Technique 
for Varying 
Function

Degres
of

Generality
Permanence 
of Change

Computer Program Very None
module high
Micro Program High Low to
processor medium
Bit-slice Microprogram Medium Medium
ROM Factory mask Very Irreversible

change high
PROM Field change Very Irreversible

high
EAROM Field change Very Low
EPROM high
PLA change
FPLA Field change Medium Irreversible
Gate Factory mask Medium Irreversible
array change
RAM Write Very high None



32

Another impediment is that system level behavior (the interaction 
of processors, memories, and transducers via switches and links) 
is less understood than is interaction at the register transfer 
level.

Of substantial assistance in easing the transition to the fifth 
generation would be base level operating systems that were embedded 
in hardware. These should be placed in read-only memory to give 
a feeling of permanence so that users would be less likely to 
embark on the expensive, unreliable rediscovery path.
Figure 14 shows the various technologies employed in computer 
memory applications, while Figure 15 shows current devices of solid- 
state memory technology and a likely progression of develepment 
to come [ 1 ]. Table 4 separates storage systems by their function 
and size.

3. TRENDS AND PERSPECTIVE IN COMPUTER SCIENCE AND 
ENGINEERING EDUCATION.

It is not easy to trace the evolution of the computer science 
and engineering (CSE) education. At the beginning two types of 
courses were most prominent; the logic design courses primarily 
emphasizing the computer design techniques based on switching 
theory and circuit design and programming courses emphasizing 
machine and assembly language programming. The former was gene­
rally taught by electrical engineering professors, while the 
programming courses usually by specialists of the university's 
computing center under the auspices of the mathematics department. 
Later electrical engineering (EE) departments naturally included
computer design courses in their curriculum whereas the mathematics 

departments generally handled programming and numerical analysis 
courses.
Subsequently computer science (CS) departments began to appear as 
offshots of mathematics departments in the colleges of art and 
sciences. At present, the CSE education in major universities and
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Table 4. Storage peripherals Cll]

FAST AUXILIARY NONREMOVABLE REMOVABLE MASS STORAGE
MAIN MEMORY MEMORY MASS STORAGE ON-LINE OFF-LINE

PERIPHERALS CORE FIXED HEAD DISK MULTIPLATTER MULTIPLATTER AUTOMATED TAPE
MOS RAM EBAM DISK DISK SYSTEM
BIPOLAR RAM CCD CCD MAGNETIC

MBM MBM TAPE

MINI- CORE FIXED HEAD DISK SINGLE PLATTER SINGLE PLATTER MAGNETIC TAPE
PERIPHERALS MOS RAM CCD DISK DISK TAPE CARTRIDGE

MBM MBM FLOPPY DISK FLOPPY DISK

MICRO- MOS RAM MBM MBM MINIFLOPPY CASSETTE
PERIPHERALS ROM CCD CCD MINIFLOPPY

PROM MINICASSETTE
EPROM
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colleges are administered mainly by separate CS and EE depart­
ments or by a combined EE and CS department. A few departments 
identified computing engineering (CE) or call themselves elec­
trical and computer engineering (ECE) departments (Figure 16).

We have used the terms CS and CE without defining them. The 
computer scientist is interested in theory and science of compu­
tation and programming, while the computer engineer is interested 
in the specification design and implementation and utilization 
(operation) of data processing systems including both hardware 
and software. Taking a closer look at each, the distinction 
between them is decreasing nowadays.

The need to transform software design and development into an 
engineering-type discipline called into existence software engineer­
ing (SE) and the software engineer whose speciality is the 
design and construction of software systems.

The curriculum development of the CSE education of the USA can 
be identified by a few basic milestones.

31. The ACM's Curriculum Committee on Computer Science (C S) 
published a set of recommendations called the Curriculum *68 
in 1968 C133. The prerequisite structure of courses of 
Curriculum '68 is shown in Figure 17.

2. The COSINE Cormittee of the National Academy of Engineering 
discussed various aspects of computer education in the mid 
sixties C14] C153 C163.

3. The ACM Curriculum Committee on Computer Education for Management 
issued Curriculum Recommendations for Undergraduate and 
Graduate Programs in Information System in 1972 and 1973, 
respectively C17] C183. The core course sequences are given 
in Figure 18, while the course relationships in Figure 19.

4. The Education Committee (Model Curriculum Subcommittee) of 
the IEEE Computer Society presented the revised version of its 
Curriculum in Computer Science and Engineering in January,
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Figure 17.
Prerequisite structure of courses in 

Curriculum'68 C133.



38

Figure 18.
Core course segnences for information 

systems programs C1Ö3.
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Figure 19.

Course relationship C17D



COMPUTER ORGANIZATIONDIGITAL LOGIC, AND ARCHITECTURE SOFTWARE ENGINEERING THEORY OF COMPUTING

Figure 2o.

CSE Curricula flowdiagram of the Education 
Committee of the IEEE Computer Society C193.
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1977 С19: С201. The subcommittee divided the CSE program into 
four subject areas i.e. digital logic, computer organization 
and architecture, software engineering and theory of comput­
ing (Figure 20). It was the first real effort to bridge the 
gap between computer science and computer engineering and to 
integrate hardware and software as well as theory and prac­
tice. Another significant contribution of the Computer Soci­
ety is the report on computer architecture curriculum С21].
An extensive survey of the literature in computer science 
education since Curriculum'68 was published in January 1977 
[22: .

5. In March 1979 the ACM Curriculum Committee on Computer Science 
published its new recommendations for the undergraduate pro­
gram in computer science, called Curriculum* 78 [23:. Its 
course structure is illustrated in Figure 21.

4. ISSUES FACING COMPUTER SCIENCE AND ENGINEERING 
EDUCATION.

4.1. Keeping up with the computer revolution.

Before addressing the question of how to keep up with the computer 
revolution, first we must understand the computer revolution itself
[24] . The computer revolution is the product of the availability 
of cheap high level functions in small boxes. Currently complete 
processors are available on single chips in the future even large 
processors and complete computers will be placed on single chips
[25] (See figure 22). This drastically affected the economics of 
computers making them available for use in a wide range of products. 
However, basic computer architectures have not been revolutionized 
by the computer revolution. Instead, it has continued a steady 
evolution. No one has really invented substantially new archi­
tecture recently. Basics, well taught, readily leads the engineer 
into new technology. The revolution of the computer revolution is 
the revolution of computer applications, not computer theory.

With this understanding, the question becomes not how to keep up, 
but what fundamental principles and techniques of computing and com­
puter hardware should be taught. If educators try to keep up with



Figure 21.
Recommended courses of Curriculum'78 C233
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Figure 22.

Intel's plans for the 8o‘s C25 3
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every manufacturer's latest hardware and software product, they 
will be swamped with data that are out-of-date by the time they 
have been incorporated into a course. Instead, if courses are 
oriented toward the fundamental principles and techniques, which 
evolve more slowly and use recent products as examples, graduates 
who can quickly evaluate and adopt to the rapid product changes 
of computer revolution will be produced. However, if courses are 
oriented towards case studies of the current product lines, graduates 
may miss principles and techniques which will prevent them from 
rapidly adopting to new products and development.

4.2. Specialist vs.systems engineering.

For a generation there have been separate specialist in circuit 
design, logic design, microprogramming, machine language programm­
ing, system programming and applications (Figure 23). Now the 
boundaries between these disciplines are blurring.
Till now the available component technology has dictated the current 
micro-architecture but the future component technology would be 
directed by the computer architectural demand. There is already cross 
fertilization of design ideas between computer and semiconductor 
manufacturers, the development of denser integrated circuits will 
force even more intimacy upon them now exists. Because the hard­
ware engineering is no longer insulated from software pruduction 
and the logic design is merging with semiconductor fabrication} the engi­
neer's education has to be broden.

Logic design and programming, as seperate specialities, are going 
the way of the dinosaur. There is a widening gap between supply 
and demand of systems-oriented computer engineers C26:.People 
(called system engineers ) in this field are engineers who can pull 
together from various disciplines all the elements needed to 
satisfy an application. One of these disciplines is semiconductor 
design. The systems engineer responsible for specifying custom 
chips to the semicondustor industry must be knowledgeable of 
semiconductor processing rules. Not only must he know exactly what 
he needs-which means he must thoroughly understand the appli- 
cation-but he must also figure out what kind of a program it
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will take and what kind of processor can best execute this pro­
gram.
To prepare development staffs for the future, the different dis­
ciplines of computer-aided design (prototype, system and mask design, 
simulation and testing) have to be included in almost every hard­
ware-oriented courses.

There is another software driven departure from the pure inter­
preter model (See figure 1 and figure 23) Using the technique 
of vertical migration C27] some layers are bypassed when more 
ideal primitives exist at deeper levels. Vertical migration is 
a technique which improves system performance by moving software 
primitives through layers of application program and operating 
system software and microcode (Figure 24) . The microcode concept 
generally keeps spreading in the design of computers together 
with "soft" architecture offering standardized hardware that 
can be customized С28].

4.3. Theory vs. practice.

Educators have always been confronted with the question of bal­
ance between theory and practice. In recent curriculums an in­
creasing emphasis is being placed on practice and "hands-on" expe­
rience via laboratory courses (e.g. [19], see figure 25). On the other 
hand, undue emphasis on current professional practice in edu­
cation can make the graduate obsolete rapidly with the changes in 
technology. Here then the theoretical emphasis serves as "tonic"- 
or as "vitamin" toward building a solid intellectual foundation 
on which advances in technology can be absorbed and built upon. 
While theoretical emphasis is desired, one has to bear in mind 
that computer engineering is a complete set of activities in­
cluding the use of taxonomies, theories, models and heuristics, 
associated with the design and construction of computers. It is 
like other engineering and the definition ClU is especially 
appropriate: engineers first turn to science for answer and help, 
then to mathematics for models and intuition, and finally to 
the seat of their pants. It also means that longer period of
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Figure 24.
Levels-of-interpreters with 

"pipes" that bypass levels С1].
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Figure 25.
The segnence of laboratories C193.
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training in the industry is necessary before the new graduate is 
"broken-in" into professional activities.

Regarding the role of theory in the computer science and engineer­
ing curriculums the difficult question of "why, what, when and 
where" (and the biggest problem: to decide what material can most 
easily be left out) we refer to [29].

4.4. Engineering vs. software engineering.

Because of the cost of hardware is dropping rapidly and software 
productivity improves only slowly, the cost of software relative to 
hardware is increasing. The software/hardware ratio was about 
2:1 in 1973 C30] 5:4 in 1978 [31], and it is projected as going 
to 10:1 by 1985 [32].
Because of a great deal of software is already in existence, 
some of it of low quality, more and more effort, of necessity 
has to be devoted to maintenance. It was estimated that up to 
75 [33] or 80 [34] percent of all programming activity might be 
maintenance, including enhancement and modification of existing 
programs. Without real changes the software cost would set limits 
to the utilization of VLSI (considering the yearly incresae the 
USA would need in excess of 1 million software engineers by 1990.) 
It is described as a "■programmers catastrophe" [25].
In software engineering, the very term, engineering implies that 
the entire development of a product from initial conception through 
testing and maintenance is organized in an orderly, manageable way.

Nowadays the practical software process differs from the hardwarethereprocess in many ways. For one thing is too much freedom in "soft­
ware land". For example it is entirely possible to design software 
components using textbook examples, friends' recommendations, or 
your own immaginations for that matter. Another factor is the 
backgrounds of programmers, they may have degrees in mathematics, in 
engineering, history, journalism, teaching or whatever . This 
lack of common background may be part of the cause, - although 
modern programming parctices have been ready for use for a con­
siderable time, - that conservatism is a legacy forced on the
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computing community by past and present development practices.
Software engineering is just becoming recognized as a legitimate 
academic discipline. As a result, software engineering education is 
in a very primitive state but will develop rapidly in the years 
ahead. Strong computer science education is, and will be a vital 
part of the education of a software engineer. Recent curriculum 
proposals for computer science education have identified several 
options within a computer science undergarduate program СЗЗЗ.

4.5. Continuing education.

Generally accepted estimates state that the available knowledge 
in most areas of computing science and related technologies 
doubles approximately every 5-8 years. Although a computer profes­
sional is expected to continue to learn "by osmosis" from his 
peer group for the major part of his productive life, continu­
ing education can clearly assist him in acquiring the necessary 
new knowledge in rapid and systematic manner. Universities and 
colleges, industry and professional societies play different 
roles in this process 134 3 C353 . The major problems are motivat­
ing the employer to support an employee's participation and the 
employee to participate.

4.6. Impact of microsystems.

There are contraditory opinions regarding this effect, e.g.
"The Jmicrocomputer-revolution1 is best understood by realizing that 
a microcomputer is basically just an inexpensive computer. Most 
microcomputer concepts are already covered in a good engineering 
curriculum C 36 3 .
"The proliferation of microcomputer systems will have an anormous 
impact on computer science and computer engineering education"
C 34 3 .
However, almost all of the outhors agree that a micro-lab facility 
can provide students with exposure to concepts and problems such 
as actual hardware, computer operation,operating systems, backup 
procedures, program size problems, inter-computer communications, 
scheduling, maintenance and computer management.



51

4.7. Computer and society.

One of the biggest challenges of the 80's may be educate the 
average citizen about computers. In particular, people should be 
able to separate fact from fiction with regard to computer-related 
stories on TV and in newspapers and popular magazines.

The growing interest and public support for the computer literacy 
concept was cited as a reason in a current US recommendation 
C37 3 that all high school graduates be computer literate.
To achieve the desired computer literacy, graduates should have 
knowledge of the historical perspective of computing, the computer 
anatomy (includes parts, work and problem solving) basic uses of 
computers, social implications and futuristics.
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