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ABSTRACT

This paper is a preliminary version of a review of the results obtained
by the authors and their collaborators which mainly concern problems of quan-
tum electrodynamics with the pair-creating external Tield.

In this paper the Furry picture iIs constructed for quantum electrody-
namics with the pair-creating external field. It is shown, that various Green
functions i1n the external field arise iIn the theory in a natural way. Special
features of usage of the unitarity conditions for calculating the total pro-
babilities of transitions are discussed. Perturbation theory for determining
the mean electromagnetic field i1s constructed. Effective Lagrangians for pair-
-creating TfTields are built. One of possible ways to introduce external Tfield
in quantum electrodynamics 1is considered.

All the Green functions arising in the theory suggested are calculated
for a constant field and a plane wave fTield. For the case of the electric
field the total probability of creation of pairs from the vacuum accompanied
by the photon irradiation and the total probability of transition from a
single-electron state accompanied by the photon irradiation and creation of
pairs are obtained by using the formulated rules for calculating the total
probabilities of transitions.

AHHOTALWVA

HacTofawas cTaTba sSABNAeTCA npeaBapuTefsibHbLIM BapuaHTOM 0630pa pe3y/bTaToB
aBTOpPOB W MX COaABTOPOB MO Mnpob6siemam KBaHTOBOW 3/IeKTPOAMHAMUKMA BO BHeWHEM
none, poxgawowem naps. [AnA Takux nosie nocrtpoeHa kKapTuHa ®appu. [loka3aHO, 4TO
€CTeCTBEHHbIM 06pa3oM B TeOopunm BO3HUKAWT pa3/imyHble (QYyHKUunM [puHa, [N KOTOPbIX
HaMM MOCTpPOEeHa MosiHaa cucTema ypaBHeHU. T[lonyyeHa gunarpammHas TexHuKa Aans
HaxoxaeHnsa cpegHero nons. Mogpo6HO o6cyxaawTcA YCMOBUSA YHUTapHOCTWU. HangeH
3heKTUBHbLIM JlarpaHxuaH ANns nonew, poxgawowmx napsl. Bce ¢dyHKuunm [puHa, BO3HUKaK-
e B Teopun, BblYUUC/EHb B MOCTOSAHHOM Mofsie, B MNOJsie MNJIOCKOM BOJIHBI U B UX KOMOU-
Hauum .

OPheKTUBHOCTb NpeAsIOXEeHHON Teopuu MNPOAEMOHCTPUpPOBaAHA Ha npumepax BblUUCe-
HUA pa3/iIndHbIX 3PHEKTOB BO BHEWHEM Mose, poxaawwem napbl.

KIVONAT

Ez a kdozlemény a kvantum elektrodinamika keretén belul a kils6é téren va-
16 parkeltés problémajaval foglalkozik. Furry-képben eléallitjuk a Green-flugg-
vényeket és perturbacidészamitissal meghatarozzuk az atlagos elektromagneses
teret. Ezutan megadjuk a parkelté terek effektiv Lagrange-fuggvényét. A kulsé
terek kvantum elektrodinamikaba valdé bevezetésének egy lehetséges médjat is
javasoljuk. Homogén és sikhullam kils6é tér esetére a javasolt elmélet Osszes

Green-fluggvényeit és kulonb6z6 atmeneti valdszinliségeket kiszamitunk.
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INTRODUCTION

During the recent years the growing interest is attached
to the problems of quantum electrodynamics(QED) with intense
electromagnetic field. To some extent this iInterest is due to
the achieving of strong fields i1n experimental conditions, fur-
ther growth of the laser iIntensities and recognition of some si-
tuations in astrophysics where the values of the effective fTields
are tremendous, 1iIndeed. This interest i1s also provoked by the
existence of analogies with problems in gravitation and iIn gauge
theories with spontaneous symmetry breaking. In this connection
solving of similar problems 1n QED may be thought of as, iIn a way,
the first step in solving these problems in the mentioned theories.
Finally, results for specified problems in QED with intense electro-
magnetic field are important for checking of i1ts validity iIn the
extreme domains of parameters and undoubtly are of general scientific
value.

In the present paper we will consider special features of
constructing of QED formalism, which are connected with the pos-
sibility of particle creation In an intense electromagnetic fTield,
and also clarify various aspects of the external fTield conception
in QED.

Thus, 1T one discusses problems of QED with an intense elec-
tromagnetic field In the frame of QED with an external fTield,
then one of the most Important is here the problem of how to keep
exactly the iInteraction with the external field to all the orders
of perturbation expansion. This problem has been investigated
weel, fTor iInstance, for the spinor or scalar charged fields iIn-
teracting with the external electromagnetic field (Feynman, 1949;
Schwinger, 1951; 1954 a,b). During the recent years the growing
interest 1s attached to i1t due to the examination of processes
of particle creation from the vacuum by the external field both
in electrodynamics and in gravitation (Nikishov, 1969» 1972; Popov,
1971; Bagrov, Gitman, Schwartsman, 1975, 1976; Sexl, Urbantke, 1969;
Hawking, 1975; Grib, Mostepanenko, Frolov, 1972, 1976, Parker, 1976;
Frolov, Gitman, 1978). For the total QED of the interacting quanti-
zed spinor and electromagnetic fields a consistent consideration of
the perturbation theory when keeping exactly the external fTield is
Tfulfilled (see more detail Ritus 1979) only for the fields which do

not product pairs (Furry,1951). The restrictions on the field nature



arise in the starting Furry approach, in particular, due to the
fact that i1In accordance with Furry the particle and antiparticle
creation and annihilation operators are built with the aid of the
solutions of the Dirac equation in the external field. For the
pair-creating fields there are, however, no such solutions,
whloh may be put into correspondence to particles or antipartic-
les at all the time-moments. In Chapter | of the present paper
we have discussed the generalisation of the Furry picture to pair-
creating fields (see also Gitman, 1977; Fradkin, Gitman, 1978).
In particular, a method of constructing of the vacua for the iIni-
tial and final states In an iIntense external field i1s given here;
perturbation theory with respect to the radiative iteraction 1s
built with the aid of the Wick’s technique generalization, wich
Is written out in appendix A; the quantum field representation
for the electron propagator in the external fTield and i1ts repre-
sentation over the solutions of the Dirac equation are obtained;
at the same time a consistent description is given of all the
zeroth order with respect to the radiative interaction processes
for an arbitrary pair-creating external field. The unitarity con-
ditions are analysed for the case under consideration, and it 1iIs
shown (see also Fradkin, Gitman, 1978; Gavrilov, Gitman, Shwarts-
man, 1979) that in the relations similar to the optical theorem
the usage of the two types of electron propagators is essential.
In accordance with these results for the pair-creating fields
there arises the necessity to distinguish, for example, the two
types of mass operators, the one of which discribes radiative
corrections to the scattering processes and the second one is
connected with the total probability of irradiation from a sing-
le-electron state.

In Chapter Il an attempt iIs made to treat some problems of
QED with the intense electromagnetic field. The matter is that
the applicableness of QED with the external field 1Is connected
with a number of implicitly made assumptions. Firstly it Is sup-
posed that the real electromagnetic field in the problem may be
identified with some external field which i1s given beforehand and
does not depend on the processes proceeding In the system. Second-
ly the belief exists that we get, by introducing in the Lagrangian
the interaction with such external field in the usual way, a the-
ory in which the calculation of the radiative corrections makes
sense to arbitrary order, moreover the accuracy of the theory
itself will not be exceeded. Meanwhile the radiative corrections



can contribute sufficiently in the case of large energy and iIn-
tense fTields and change considerably the primary given field.
The proof of the second one from the above mentioned assumptions
iIs also unknown. Therefore the approach based on the external
field conception requires, undoubtly, a consistent formal sub-
stantiation, establishing of the bounds of i1ts applicableness
and ascertaining of the sense of the external field being iIntro-
duced. The one of the possible ways to clarify the indicated
questions i1s to start with QED without external field and under
one or another assumption "derive'" fTormally the QED with the ex-
ternal fTield from i1t. On following this way we have obtained so-
me results. Thus, i1n Sec.l of Chapter Il the vacuum, initial and
final states are built under the condition that there is an iIn-
tense mean electromagnetic field In the system. It is shown, how
the problem reduces to the solving of a problem in the external
Tield.

Here the problem of determining of the exact mean electromag-
netic field in the system proved to be, iIn connection with the
questions discussed, highly important. In Sec.2 of Chapter Il we
have constructed the generating functional which enables to ob-
tain the exact mean fTield when arbitrary initial states are cho-
sen. Its representation, equivalent to the perturbation theory
with respect to the radiative interaction by the exact keeping
the i1nteraction with the 1nitial mean field sind external current,
IS given. We succeeded, by introducing matrix propagators which
are composed from a whole number of propagators in the external
field, i1In giving to the obtained theory the Feynman form. The
effective Lagrangian for the exact mean field i1s constructed*

In Sec.3 of Chapter Il the perturbation theory for matrix
elements of processes is being constructed under the assumption
that an i1ntense electromagnetic field i1s present in the initial
and final states and the system interacts iIn addition with an
intense external current , the latter being related to the par-
ticles which are, In some approximation, external with respect .
to QED. When doing so the generalization of the Wick technique
to unstable with respect to the particle creation vacuum is used
essentially.

At last, transitions into the final states, for which the mean
Tield i1s defined as the zeroth-order approximation for the exact
mean field at the final time-moment with respect to the radiati-



ve interaction, are considered apart. It 1s shown that in this
case the perturbation expansions fTor matrix elements of transi-
tions coincide completely with the perturbation expansions iIn
Furry approach to QED with the external field, equals to the mean
Tfield of the zeroth order approximation. In our opinion, this
statement may be the basis for one of the possible iInterpreta-
tions of QED with the external fTield.

In appendix A we give the generalization of the Wick technique
to the case when vacuum i1s unstable during the evolution. The de-
finitions of the normal ordering, normal form of couplings and
chronological couplings are generalized. The formulations of the
Wick theorem are given, which make it possible to reduce any ope-
rator to the generalized normal form.

In appendix B the calculations of various Green Tfunctions
which appear i1n Furry approach to QED with the external pair-
creating fTield are presented, moreover a constant electric fTield
and 1ts combination with a magnetic field and a plane wave field
are taken as an example. When performing these calculations we
proceeded from the representations of the Green functiops over
the solutions of the Klein-Gordon or Dirac equation which follow
from the original field theory definitions. All the results are
given In the form of contour integrals In the proper time comp-
lex plane. The corresponding inverse operators for the Klein-
Gordon and Dirac equations are obtained on the strength of these
results.

In appendix C we write out the calculations of the total pro-
bability of the photon irradiation from the vacuum accompanied
by creation of pairs and the total probability of transition
from a single-electron state accompanied by the photon irradia-
tion and creation of pairs, which are performed by cutting the
diagrams. For this purpose the vacuum diagram and the dragram
of the type of mass operator with the noncausal Green function
are calculated according to the general theory, which 1Is stated
In Sec.2 of Chapter 11. The checking of the validity of the re-
sults obtained In this way is carried out by the straightforward
summing of the probabilities of transitions.

Appendix B 1s carried out iIn common with S.P. Gavrilov, Sh_M.

Shwartsman and J.J. Wolfengaut, and appendix C is carried out by
S.P.Gavrilov, Sh_M.Shwartsman”® J.J.Wolfengaut.cmd 3.M. Gl tman.



Note In conclusion that each section In the paper has Inde-
pendent formulae numbering. When making reference to a formula
from the same section i1ts original number i1s given. When making
reference to a formula from the other section of the same chap-
ter the number of the section is placed to the left of 1ts num-
ber. When making reference to a formula from the other chapter
or from an appendix the number of the chapter or of the appendix
is placed to the left of its number.
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CHAPTER 1. QUANTUM ELECTRODYNAMICS WITH EXTERNAL
FIELD CREATING PAIRS

I. Furry approach

a) Vacuum, 1initial and final states,

*
th an external field $$a%@®. The correspon-
S

Consider QED wi
ding Hamiltonian 1

Wh - J: ¥(*)[-Uv +elBexi(x)tm]y(x);aT~

"I- 9 cl c?sjj(x)B (x)d¥= )

JE)= | [¥1.
where V(Z)t Y (X), A(X) are the spinor and electromagnetic
field operators in the Schrodinger picture.

Let iin and £ be the initial and the final moments of
time which In the final expressions will be understood as moved
to infinitely remote past and future, respectively. ITf the vec-
tor potential of the external field i1s switched off 1n the mo-
ments one may, as usual, assume that since the radia-
tive interaction is effectively switched off when £-**00 the
initial and final states are free states with, say, a definite
particle numbers

[Irt>= NcC+... S*..a+,..lo>r  ..[E, 2)

where {a+ ,a, are operators of creation and annthila-
tion of free electrons and positrons, {C*C] are the photon
creation and annihilation operators , /0> is the vacuum of free
particles, = f0>e./0>"j /0>~ /0)Y are the corresponding va-
cuum vectors in the Hilbert spaces of states of the spinor and
electromagnetic fieldsf N is a normalizing factor.

Consider now a more general case when the vector potential
of the external field does not disappear at -Cn> ~oni and

propose a method of determination of vacuum, initial and final
states.

Define the vacuum at the initial (final) time-moment as the
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state /0>t7></ « which minimizes the mean value of the

Hami Itonian taken at - Q)
CrkeDKA N>t —nun, )
oK A 10>oui -min , 1- i0ui /

since gyfiae should be understood as moved to the iInfini-
tely remote past and future time-moments one can, as before,
assume that the radiative interaction is effectively switched

off at 1N - I therefore the problem (3) may be redu-
ced to the following =

Cn<O! A I — miIn , t—ten

e - _ ()
QLE<OL FA -min,
To find the vectors /0>. /0>7],. suffice 1t to have

the solutions of the eigenvalue problems for the single-particl
Dirac Hamiltonian in the external fields /le(*(X9M\) and

G\ytn\fn o),
% U«u)\(x)=

U, (D)= (<" 77+e Ae(x, i)tm),

which obey the following requirements:

i +&n ~ 0, 0, S/ and there is a gap between
the negative and the posotive levels;
ii) The spinors {+FNQDY? {C)) complete and ortho-

normal sets of functions in the space of X — dependent spinors.
Por example, for { X))}

(X X b 3 td>a W)= i)
ZIXQ)EL)*$1 DXGM] Ul . 0,
iii) The spinors {J @Y OJ doey the condi-

tions 9

ft(
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C it X)XI(-,
(8)
mm>
where ™ X a )=X(1)J t, r/
W*t0> T>AJ Tml '[Aexi=0

Indeed, let us decompose, with the aid of (7), the spinor
field operators V(X) V(X) into the sums of the solutions

an O} "u {£ M1
{an@IM O+ NEH)Y M 1)) o
N?2)=f saUmiX (x)+{n(*)Y n(x)}r
V(X):;b_{am(ouiff )rc 30 do)

() =" Ly man i i)-tirfol fn (7)) _

Then the commutation relations for V(X) and V(X) and equa-
tions (7) lead to the fact that the operators {Q*(CnCL(tN)F

thn), Sidyr @orta), a@n), Wold), {€)} are Fermi

creation and annthilation operators. The Hamiltonian dia-
gonalizes at oD in ~ert8 of these operators

Y'A&n)=Z .i£ n<€(in)anfa)-Cnin (in)in Mn),
G
Yen (aaun)-X. {in Q@D @LD-An ()M Gy + X30)

where Lfin, ), €t(hnl) are c-numerical constants. Consequently
the vectors 10%1 and D’fﬁh satisfy the conditions

d

anM io £ = {n(in)lo>&a =0f Vrii
12)

ar, (wlofdil- gn (cui)'of{=o0

Equations (12) have solutions in the original Hilbert space if

the operators {WW(@)} d), B0), M)} 3ua
[U @), dlaunt oDt @Ifare unitary-equivalent to the set of

creation and annihilation operators for which the vacuum vector
exists in this space (Berezin, 1965)* The creation and annihila-
tion operators of free particles {C"AF €éJ constructed
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with the aid of the spinors {+2P(X)J

o> X&h CX(X)}I .

are that kind of operators. The comparison of (9) with (13) gi-
ves via the relations (/)

Nx»/ QT N rKami + \ X=t,
(14)

At®*) =a,, Asi<n=in(in}t A,+=aP A,.=fn,

Or», X\ % ,1-= ON-,"=0, on,n,.-(Y,, XTI,

Y =Y =0 Y =(f f°\ Y -1f fo\x

The transformation (14) 1is proper and the unitary equivalence
needed holds if Y iIs a Hilbert-Schmidt operator (Berezin,

1965» Kiperman, 1970), which corresponds to the first condi-
tion (8) in our terms. The second condition (8) springs up in
the same way.

It follows from (11)-(12) that { Q-*("n)t dUn)f £ Htt%/ £(th)}
may be referred to as creation and annithilation operators of
electrons and positrons at the initial time-moment tLn and

| OL*(ou.t), Clfrui)i*(eu.i), {(cut) as creatior
tion operators at the final time moment 4.0ut . In accordance
with this the states with definite numbers of electrons and po-
sitrons at icn, ‘'Lout may be built from the vacuum vectors

I0>cn, lo>,. in the usual way. Consequently the general

form of the initial and final states with definite numbers of
electrons and positrons, 1In accordance with the above considera-
tion and the relation (b)» must be as follows:

IC n>=ffc+.r tan.)... a+(cn)... to>

<oué/= £@D). _C NF

(15)

b) Perturbation theory with respect to the radiative inter-
action
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The probability amplitude for an arbitrary process iIn QED
with the external field and the i1nitial and final states (15)

has the form
nm—t(lA: 0*4

Here ~ Ain )  is the evolution operator, corres-
ponding to the Hamiltonian (In (16) we omitted the unes-
sential normalizing factors of the i1nitial and final states).
Consider the construction of the perturbation theory for the
matrix elements (16) with respect to the radiative interaction
choosing = e+ ~y- Jfeji as zeroth-order approxi-
mation Hamiltonian. Define the evolution operator corresponding

to the Hamiltonian
(1if-X )W .-L)=0>U (iIA ,hTezp({-if an

and construct, with 1t’s aid , the field operators iIn the inter-
action picture with respect to the external fTield

W)y=0~%tj nx)ta kn), ?(*)=——>Ff a

A(X)=ih-% iAR)U a,iin), (18)
" A a< A £Xé
(id-en (x)-m)f(x)=o0, pfxjfid+eA (X)+m)=o0,

a9
MM (x) = o.

(The operators A(X) coincide in the case with the operators

in the usual i1nteraction picture). Then the total evolution
operator W|g may be represented iIn a form for which the ex-
pansion 1n powers of the charge is not connected with the” expan-

sion in powers of the external field, if the operator U iIs
known
UAMU ST S =Texp{- 7/ j(z)A(X)CiX] 120)
and the matrix elements (16) assume the form
MEn*otb= r Idfouti... Rfodi)%C,,.Sc ... O L /o>dn} 1)
o @ (ou)
Qloud) = IX s ouy U aSol=.ioll.
I* (cue) ] _
é (oui) (22)

i (oud)
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The matrix elements (21) differ from the matrix elements of the
processes 1In QED without the external field in that the vacuum
vectors as well as the creation and annthilation operators which
stand to the right and left of the S~ matrix are different,
(These distinctions are essential, as i1t will be clear from the
below consideration, only for the fields creating pairs,) There-
fore the conventional Wick’s technique based on the reduction

of the matrix to a normal form with respect to one vacuum

i1Is not efficient here when evaluating the perturbation expan-
sion. The main i1dea which allows us to obtain an analogue of
conventional perturbation theory Is to express any operators

of the spinor field, and specifically the o -matrix, only iIn

terms of the creation &*(oui), 6* (ou.i) and annihilation
CL(in), I(Ca) operators, all the (ont)f £+ (out) being
placed on the left of all the @a(n), The corresponding

formalized computational technique'™ is discussed in detail in

the appendix A. To use it when evaluating the matrix element
(21) one should gptain the explicit form of the canonical trans-
formation from to Ouli- operators; the decomposition of
(A.5) - form for the operators VIZ) and (2)

4(X) = <>+ $<*Ux), ? (X) ~PH(2)+
?H@IO>ir *$ HX)K>xn 3 6ui<0!fM(x) =< 01?m(x)*0;

the generalized chronological coupling of the operators V(X).
and y($) which is the perturbation theory propagator; the an-
ticommutators of the operators V V ( X ) and CL(oni)t
£ (cut) a3 well as those of the operators (X), ® (Z2) and
a + w ,t+d'n); the probability amplitude for the vacuum to re-
main the vacuum to the zeroth order with respect to the radia-
tive interaction Cy
C* = out<OIU Itn= oui<®1o>=<n 5 )
the relative probability amplitudes of the processes In the ex-
ternal fTield which are ©f the zeroth order with respect to the
radiative iInteraction

eur /9 . (...)-

_. (24)
— O©AF1 M )_g*(in)... agin) ... /0>. ect _
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Let us now find the coefficients of the above-mentioned
transformation and the representation of the (A.3)-type. Con-
sider the function Z® which is the % representation
for the matrix element of the evolution operator of the Dirac
equation with an external field J1 (Z)* The function
satisfties the Dirac equation and the condition

6-@X)  =<$(X-X") (25)
Dor 1t the relations
T G(X,y)G(y,x)dy=&x")
/

g +(G,x )= &(*: %)

(26)

hold, Dote also, that &(ZyZl) is the anticommutator of spinor
Tfield operators in the interaction picture with respect to the

B, AAGENL=GXX).

The function G (X, X') may be constructed using any complete
and orthonormal set of solutions-{fk«ZDjof the Dirac equation
in the usual way

=1 cft) 4* x . @0

The properties of the function & (X, X" imply that the opera-
tors ®(Z)t V(Z) satisfying the Dirac equation in the field
A (x) are connected for different time-moments by means
of the function &(X,ZD in the following way

Wx)~86(%,Xx")4>(x")dx'}

P(x)" IJp(x) f& (x[x)fd ?" D
The relations (28) allow us to find the connection between the
operators {0 +(ou.l), a(ouir), and { CI*(in),
d@@), §f( i n ifin)}. Put {= , i In (28) «rite

the left-hand sides with the aid of the representation (18) and
substitute the decompositions (10) into them, while the decom-
positions (9) must be substituted i1nto the right-hand sides.
This yields

aveu-i)~ Sm(+!+)&(,n) + & (*I-) £+cn)
> (29)



a(id) = aHa) &HH+1@) &(-\H),

t+Ha)= «(CHdh) w3 1%n),
1(ai)- Q+@)&CHH) -+

&(~\x)mn~F Ja—=iut,adyn) 7/ ,, dx-
i KH J % O ug<er. (50)
Put 2= "cnf | =1 citj. in (28), write the right-hand sides

with the aid of the representation (18) and substitute the de«

compositions (10) into the right-hand sides and (9) into the
left-hand sides. This yields

QL) =&=>1*)0-(o«t)+6(+-)i'(ou.i),
a+dn)= a+(oui)&(+U) +1foui)6-H+),

¢ (to)—&(-1+)u (oui) + Q-(-1~) S~foui), GD
e(cn) = a +(oui) @i(oui) B (-1-).
% .

The matrices 6 ("/%x) andG (xl*) satisfy the completeness
and orthonormality relations which follow from the relations
of the (7)-type for the functions +W.[X) and *0"(2) and
theproperties (26) of the function & (X,z')\

G(*U)&(+X)+&(*1)&(-FEL, GPU)&U*h Ne - )L 7ho,

G (*r)@ {*It) + G(£I~)G-(~I)=T, 6 (tI9)G(+h)+G (tI~)§-(-1?)=0"

Moreover

SCT*ye § ([

By applying the relations (29)» (31) one may find the sim-
plest amplitudes (24) for the processes of scattering, annihi-
lation and pair creation, which at the same time are the gene-
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ralized couplings of the corresponding creation and annihila-
tion operators with respect to the vacuaou*Coland /0"

Ch@ @) = W(m n /0)=

~)}m- —{&(+!-) 6~Y-I-)}rmt (32)

(in) = W(oimn )=

dm(@ui)a*fa) = ur(m!n) )

In(cuQI*(c) ~ Ul(m In) = G~ .

tvwwyv j

Prom (27), (29) and (32) it follows that

Qu (ou)-Z.Wfml*)an -  urfm

Uoui)= Zw (nIR)tjCn) +ZLus(E (33)

at+ fa)= Z.u/(m!n )ai,(°«t)-Z. nr(6'!'én )4t fa)t
in )~ Z U3fmIn)§*(cui)-i2Lw(ojn NQeGn)

The relations (33) are the specification of the general repre-
sentation (A.3) for the case under consideration. It Is seen
that the treinsformation (29) admits transition to the generali-
zed normal form with respect to the vacua ™ < 0/ and it the
Inverse matrices ) and & V~/-) exist, in full accordance
with the general requirement (A.4)*

From (33) it follows, that (32) are the only nonzero genera-
lized couplings of the In and out ~ operators. Therefore any
matrix element (24) may he expressed, i1n accordance with (A.17),
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in terms of the amplitudes (32) only. Por example the probabi-
lity amplitude for electron scattering accompanied by the crea-
tion of a pair is expressed in the following way

i0"Im S ENfH)=UX (H o) Wi In) - urfimic/o) UJ(Nin) .

Let us evaluate , 10 do so consider the operator \/ which
performs the proper canonical, transformation of the £7-to ou( -
operators. (The condition under which such an operator exists
nonformally will be obtained below when discussing the unitari-
ty of the operator 'll )

_ QL*(in)

Q (ow, i

) ey a(in) V, ou.i<0Ol=tn<olV. 9
t*(cn)

i (W-€) ( (in)

The explicit form of \/ may be obtained from the relations
(29), (31) by operator methods (Bagrov, Gitman, Schwartsman,
1975» Gitman, 1977) or by using the general expression for the
generating functional of the proper canonical transformation

operator (Berezin, 1965).
Por the case under consideration we have, with an accuracy

to a phase factor, the following

£2P 0 . +@NUfa-1o) e4nyJepo ) (u+HHEN)

™

mexf>(- S(in.)In w (-i-) i Kcn)lxp(- $(m)u/(o/-+)au ,)

Prom (23), (34), (33) and (32) we get

Ov=cn<QVlo>n=expl-HUw (-i-)T}=dei&(-!-) m  (36)

Let us find the explicit form of the representation (A.5)
for the operators V(X) and Y (X). By setting { = *n ("8)
and using the decompositions (9) in the right-hand sides we ob-
tain

400=Z {an«x (< 1+in (<)X}
P(r) -Z 1a:@X ()+g(inX ()},

G7)
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where

I'w =/067'L*4 )X (x)dx" (38)

RNW=JX(x")G (X ‘lui t X )fd

By setting i —"toué in (28) and using the representation
(18) in the right-hand sides and the decompositions (9) we ob-
tain

V(X) = ) 7L{Orr,(cul)* m(x)+iZ fat)y;m(x)}
~ (39)
p(x)= Z[aX,(cuXt, (X)+ .

where
*$m (x)= J & ix, x 'ioli)*X (x)dx |

(40)
X fd x|

By combining the relations (33), (37) and (39) we find
VEax)=Z X WAGA®), VXx)=Z~Ym(z)C (aui)
nl/z'z%x IAN), r (Z):%nx,,(X)a*(out), “n

xn W =X x) +Z BOYMNIMACI=Z bjw Inft, AL

Yra) = Xnw -X~w (T Rjoffm (X) = %’.ur(nln,)y,,,(X)*

ynmMmAX ( * ) - £ , U{dmm) fm(X)~22Uj(mIny 'f

N W +% <V« mMNe)Xm(X) =/Z mm)ffzg

Consequently the following anticommutators are differetit from
Zero:

$ =Pt Ih,vrd =1 «] (42)
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The generalized chronological coupling of the spinor fTield ope-
rators has, i1n accordance with (A.12), (37) and (39), the form

P*WVAj

y<>  =cui<d>T ft;/<?> = 3
S (*>4) , x’'>f,

Sb, y)F
~SHXy), TS ¥ e (44)

,Igr;xaTnT—l‘/’l))

moreover S #,yj satisfies the Green function Dirac equation
in the external field J ex*(x)

(id - eAegi(x) -m)Sax,y) = —S(x-y) (45)

and 1s the generalization of the Feynman causal Green function
for the present case.
One can express in terms of 3 N ( 4) the anticommutators

42)
JPn.(X) =— ijs dx, x'iin)f%  dx\

% ((*) = 1jfdt, ? "tanpf yn(x')dz;
Bnix)=1[K1?) 8an In, x) dx>,

% (*) =1J V (S') So(x'iMt,

the current operator J(X) reduced to the generalized normal
form with respect to the vacua” < 0/ /Ch N

J(x) =eM 2(x)$ >p(XQ+ I(x)]
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0(2)= ocad6lj(x)\oyn.Cv=UuirtfscxtX,

Sc(x, X) = £ [<jc(x+0, X) + Sc(x,x-bO]f
and also the amplitude £V. Indeed

Oi in Cly

) J(x) = L'eixjf ScfXj x ) =
0 R DAR)

where the operation Tr- includes alBo the coordinate integra-
tion. Then by using (36) we find

a- VA, s- & €Y

The perturbation expansion for the matrix elements of (21)-
type may be obtained by representing the S — matrix in the gene-
ralized normal form with respect to the vacua cu*<0/ and /0>in
This can be done, as it 1s shown In appendix A, with the help
of the usual Wick’s theorem far the T - products i1f instead of
the normal products and chronological couplings their generali-
zed counterparts are taken. Thus the problem reduces to calcu-
lating the matrix elements of the generalized normal products
of the following form:

Qicola<of], i@8) LN I%jct., R*@) )™ lom

It 1s evident that this matrix element is different from zero
iIT the sum of numbers of particles of each field In the i1nitial
and final states i1s greater than or equal to the number of ope-
rator functions of the given field iIn the generalized normal
producte
Consider the case when for each field operator V(X)f *Y(X)

A(z) taken from the generalized normal product there may be
found a corresponding operator CI+(in) , I*(Cn) £.+ from the
initial state or CL(cui)f é(oué), £ from the final state which
will cancel i1t after the commutation. Such matrix element can
be represented by the usual Feynman diragrams with the following
rules of correspondence:
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1. Electron in initial (final) state with the quantum num-
beTIl(T) is represented by the factor +Yn,x) (+ Ym (X)J

2. Positron in initial (final) state with the quantum num-
ber M Cm) is represented by the factor JPa (X) (~Vm(x)).

3. Internal electron line directed from the point X ' into
the point X is represented by the generalized coupling

-c Sc(X,x ).

4. To the closed electron line the generalized vacuum cur-
rent 3(X) 1is put into correspondence.

5. Contribution of every diagram contains the amplitude C*
of probability for the vacuum to remain vacuum as a factor*

The rest of the rules of correspondence are the same as tho-
se In the standard QED (Bogoliubov, Shirkov, 1959)«

In the case when the number of the spinor field operators
in the iInitial and final states i1s greater than that which is
necessary for the compensation of the generalized normal pro-
duct, the matrix element is equal to the sum of products of con-
tributions, coming from the Peynman graphs arising due to the
"interaction'" of the generalized normal product with the opera-
tors of the initial and final states, by the amplitudes
ILF(m e S,..IN ) coming from the noncompensated creation and
annihilation operators of these states.

2. Unitarity conditions

a) Consider fTirst the pfpblem of unitarity of the spinor
field evo3.ution operator M in an external electromagnetic
Tield.

The conditions (1.8), assumed for the spinors of the initial
and final states, ensure the unitary equivalence of the Un- and
Out —states operators. Therefore from (1.22)jit follows that
the existence and unitarity of the operator bl are connected
single-valuedly with the existence and unitarity of the opera-
tor V fixed by the conditions (1.34). The latter exists and
iIs unitary i1f the canonical transformation (1.29) 1s proper.
The question whether the linear canonical transformation of the
Permi-operators 1is proper may be solved according to the theo-
rems suggested in (Berezin, 1965» Kiperman, 1970) iIn the same
way as 1t 1s done iIn i1tem a) of Sec.l when iInvestigating the
transformatgon (1.14). Taking into account properties of the
matrices & (-U ) we obtain the corresponding criterion
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()

We will show that the left-hand side of the i1nequality repre-
sents the total number of particles created by the field. To do
this we calculate the absolute probabilities of electron creation
at the given quantum state H~ and positron creation at the gi-
ven quantum state By using the formulae (1.29) and assu-
ming that U iIs the unitary operator, we get

A= nr<K(°nod T (°ui)g (out).,
D9 1 € 1
N @)
(ou*UIO>, | ~ tn*OIU  dm(oufr)dmfiPui)bi/<z -
- mm,
2- loui®  ftout)... (ou-itf (otlIC)( (out).,,
3

K, (<i)Ulo>Tnl = Ixoil-IsCABEDIo> =

= & (~L)G -(+1-)}s

According to the Pauli principle, expressions (2) and (3) are
also the mean numbers of electrons and positrons created at the
given quantum state. Thus the total numbers of electrons ft*
and positrons IC created are equal to

n+={r (-l+)h~=H&(-U)eUI- )

respectively, and the left-hand side (1) really represents the
total number of pattides created. (It i1s possible to verify
that = so the charge conservation law i1s valid for this
case.) I,

Thus the operator 11 is unitary if the total number of crea-
ted particles is not equal to infinity. It is evident from the
physical consideration that the latter i1s always valid for a
system placed in a finite volume \/ and for a pair-creating
field acting during the finite time interval. If the external
electromagnetic field is such that at \/ “moq and during the
infinite time i1nterval i1t creats the infinite number of pairs,
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then according to the previous discussion the evolution opera-
tor 'l can not be unitary. N

Note, that the unitarity of the operator U for the case
of a constant electric field has been proved i1n (Nikishov,
1974)« However, the problem of the conservation of unitarity
under V c> and for the fTield acting during the infinite
time interval has not been iInvestigated.

b) Let us assume that the conditions under which the opera-
tor Zt 1i1s unitary hold. Then the scattering matrix iIn the
external field is unitary (see (1*20)) due to the unitarity of
the total evolution operator of QED (Bogoliubov, Shirkov, 1959;
Akhiezer, Bereztetski, 1963)

<w  » .
S+S =SSs+-—=T
e _
Write in the usual manner 3=J + cT'y then 1- T

If /ttt> is some initial state and {£ oui\} is a complete
set of final oquA — states, then one can get

ZIfoZU Thn?ZIn <w]Fflw>( (5)
f oull = couij U .
The perturbational analysis of (5) creates a number of diffe-
rencies from the relations which are usually obtained In this
way. The matter is that the propagators for perturbat%pn expan-

IE
sions of the matrix elements "0OtU\T h'n.> and <tnlIT
are different: i1n the first case i1t i1s the generalized chrono-

logical coupling (1*43)
<0 | r On9mv O9Mlo> -C~r=-1 X %

OUA?

and in the second case it is the chronological coupling of the
following form

in<°IT o) [M(x)io>M = - i X
Xo > x|t ®)

Xo<X._.",
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S*> (x.x") =/2 W (x)Yn (*m)

Besides, there arise singularities which are due to the possible
particle creation already in the zeroth order of the perturba-
tion theory with respect to the radiative interaction. To 1llu-
strate the abovesaid we will write the relations which follow
from (5) 1In a number of cases, corresponding to the different
choice of »7]-states. While doing so we will restrict ourselves
to the comparison of the left- and right-hand sides of (5) in
the second order of the perturbation theory with respect to the
radiative iInteraction.

a) Let lIN>= lO\yL$then

N /v
p*kitZ_lzi . (blty ZL SnJouij.~
CI,H /* -7~ ("1)-*1 £ f
rj*
V-1- —_
i-ij Q—
=2 @)

+ O — O

Here and elsewhere the following abbreviations are used:

m
1= - a"K A)

S T eTRY “
1 ?c

, R miC*l
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The left-hand side of (7) i1s the total probability of the photon
irradiation when electron-positron pairs are created from vacuum
by the external field to the lowest order of the perturbation
expansion,

b) Let 10%n then

S/l
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The left-hand side of (8) i1s the total probability of transition
from a single-electron state accompanied by the photon i1rradia-
tion and ci"eation of pairs i1in the external field to the lowest
order of the perturbation expansion,

c) Let /a4>* Cfa/ O then

(hf) | O (NJOLNN én O *
N{*){rx) i

Ny

'Iiifj(z)j)ix] dxjch io> jz= 2HL



27

The left-hand side of (9) i1s the total probability of the pair
creation by a photon in the external field to the lowest order
of the perturbation expansion.

The consideration presented here shows that the existence of
new channels, which i1s connected with the possibility of pair
creation from the vacuum by the external fTield, modifies the
calculation method of the total probabilities of transitions,
based on the unitarity conditions. The main special feature con-
sists here i1n that one should calculate the diagrams, which are
subject to cutting, with the aid of the electron Green function
A the latter differs from the causal Green function S , which
appears iIn the perturbation theory for the matrix elements of
transitions. Moreover, the external electron lines of the dia-
grams, which are subject to cutting, differ from the external
electron lines of the corresponding diagrams iIn the perturbation
theory for matrix elements of transitions.

In conclusion we will find, by using the definitions (1.43)
and (6), the ponnection between the Green functions S c(CLXD
and S (%/£)* Both the Green functions satisfy the same equa-
tion (1.45) and therefore they differ i1in a solution of the cor-
responding homogeneous equation

Scrz.*>) = (9),
M S*(X,X7) = 0>

By placing the complete set of In- states In the expression (I.
43) between the QUIi- vacuum and the sign of T* product and
using the relations (1.37) and definitions (1.24), we find

Zl. ur(oln K)inkOIQK @) b(ia) TSCOV(XX) 10> r
)

.Y s QAN K )+fit

One can obtain i1n the similar way

(12)
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For the external field in which the in - vacuum is stable, that
IS Invariant with respect to the operator i the difference
betw?&en Sc and sc disappears. In appendix B the functions b
and sc will be calculated explicitly in a number of configu-
rations of the external electromagnetic field.
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CHAPTER [1l1. QUANTUM ELECTRODYNAMICS WITH INTENSE
MEAN ELECTROMAGNETIC FIELD

8le Vacuum, i1nitial and final states

Here we will consider the problem of building of i1nitial and
final states for the processes iIn QED with i1ntense mean "electro-
magnetic field. When doing so we will start formally with QED
with the external current J(XO but without the external field.

Let and iour be the initial and final moments of time
which in the final expressions will be understood as moved to
infinitely remote future and past, resp. If the external current

iIs switched off i1n the moments > Loict and the mean values
of the electromagnetic Tield disappear one may as usual assume
that since the i1nteraction iIs sv/itched off when t + 00

the initial and final states are free states with, say, a defi-
nite particle number.

|o=Nct. €. 2.00 ()

Here {a\<x, + "are operators of creation and annihilation
of free electrons and positrons, {C* Cj are the photon crea-
tion and annithilation operators, /0> 1is the vacuum of free
particles Ne> /0>Ce/0>*y 10>ef 10)> are the correspon
ding vacuum vectors iIn the Hilbert spaces of states of the spi-
nor and electromagnetic fields, N iIs a normalizing factor.

Consider the case when the external current and the mean
values of the electromagnetic field do not disappear at tcn f
é eLi{ ., Note, that whereas the external current and i1ts values
at £Cn iou.é may given arbitrarily and the mean value
of the electromagnetic field at ten may be also chosen rather
arbitrarily, after that the mean value of the electromagnetic
field at iIs to be determined by the QED-equations and
initial conditions.

Assume that at the initial moment ten

<n>"/ =49/ x) n >/ =J ‘n(x) (?)
e Yen

where > *** gtands for the mean value. Define the vacuum at
the 1nitial time-moment as the state 10>th which minimizes
under the additional condition (2) the mean value of the total
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Hamiltonian of QED with the external current which 1iIs taken
at
We write the total Hamiltonian with the external current as

U, === W) @/v*m)FC):ck-21 nNE cn+e
LA

M tHAGYDH IxX)OMi)dx = F At v

A(x) =Z UVK)'?(c?xe“C)ﬂ. e ,

j&) =f[ V(x)h ¥)].
Then the vacuum /Z0/1- iIs Tixed by the conditions

<o/ ABKOQ1-Min > I=iCgny (0

NOIAG)ITE - A IlG)>  IrSOLIF/on > 6
where the operator
Rodr 3 V) cro ek T,

whould be normalized and belong to the Lorentz set. The latter
requirement is fulfilled automatically 1f dRA * (x) =0 and
we satisty conditions (5).

Since MH 1i1s recognized as 1nifinitely remote past time-mo-
ment one may as usual assume that the radiative interaction
between particles is effectively switched off at étft ¥ This
gives the reason to look for the vacuum /0>t among the vectors
which are the direct product of the vectors lof, and
taken from the spaoe of states of the spinor and electromagnetic
Tields, resp.

I* =1°& <l0o£ . (6)

In this case the problem (4)-(5) reduced to finding i1ndepen-
dently the veotor / >£n subjected to the conditions

in<Ol 10 ~ men @)
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£<0iM (x)\oy~/r(x)i J<oIME£)lo>*=.Mirfx) G)

and the veotor /Oﬁﬁz subjected to the condition

cn<’| <Kji I°%n - mm, ®
veA=f: V(%)(-iIVF-ed)inx)i-m)'V(x) :dz (10)
Yy
We look for the 0 >-n among the vectors that minimize the mean

value of the operator

= 3fj+Z.% xxK{2j?Jin) CK* i. (1)
where (Cn) are the undetermined Lagrange multipliers
which are to be found from the conditions (8)

t : i :

(f <OWj3 Neg| -min (2)

It 1s sufficient, however, to demand the minimisation only of
the transversal part of the mean value (12) sinoe the states of
longitudinal and time photons do not contribute iInto expression
(7) which as a matter of fact i1s to be minimized.

Let us diagonalize the operator (11) by the shift

(Va(cn) + (in)9 C?A =C?2x (in)-h 2*~ (in)

4 @)z

Kk KA
which 1s a canonical transformation. It iIs seen that due to the

(13)

above mentioned remark one may choose for/0>tn the vector sub-
jected to the condition

C-z\(in)lo>( - 0, n. (14)

It (i'n)j < oo the transformation (13) 1s proper and
equation (14) has the solution /0>f with the transversal part
lying in the original Hilbert spaoe. The operator of the proper
oanonioal transformation (13) can be found:

cKk (cn)”~bllcn))C~™rn

C$x(in) =D (iMi) d_U i (Kcn.)> Gs)
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1)(!')= expZ g xx{ c, A - C (16)

Consequently

Dh= BbC"Em)c\ (27)

The vector 10”cn iIs the coherent state of the free electromag-
netic field (Glauber, 1970). By substituting (17) into (8) one
gets:

£
Note, that when defining the vacuum vector /\-n we do not ex-

ploit explicitly any information about the value of the exter-
nal current at -¢. .1t 1s however, implicitly present iIn the ini-
tial mean values of the electromagnetic fTield (49 ‘n(x) 9 Ln(£)}
which are formed by the field for which the current at itn 1is
responsible and by the free initial field.

Y/e define the excited states of the electromagnetic field
above the vacuum (17) by requiring that the relations (8) are
fulfilled 1In these states while their energy differs from that
of the vacuum /0>til by the energy of the corresponding number
of photons. These states are

(>
\run) n'/=T)(r(cn)\n*=3(y.0n))MN j===~ 1o/ (19)
YA, Vnka
We call them semicoherent (Bagrov, Gitraan, Kutchin, 1976). It
is evident that 11,0” 1is a coherent state, XQ is Jl. -pho-

ton state. For the fixed £ the set [2tn '/ is complete and
orthonorraal. For the fixed A the completeness relation

j M A"1lr,n>*.<2,nl1= |

iIs fulfilled. The mean energy and the mean values of electrornag-
netio potentials iIn the state n/ are:

KICi'n), ML) /= yAR §

*’**J,Z !
K 'I(iI'n),n1I\(% )lI(cn),n'/ - J\in (X )r

kK 2('n), nIA(x)ljL(cn)tn /- J1‘n(x)
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The states /£ (cn)f N may be written as
N@a

m*), n n ] lo>?

/nn/v/ ‘a

To find the vector'/0>31 subjected to the condition ¢9) suffice
It to have the solution of the eigenvalue problem of the Dirac
Hamiltonian 1In the external field A tn& )\

K - X ft-. » ft,

2f3% -X °(-C fv

which obeys the following requirements:

1) +é&rt 0 Vb and there i1s a gap between the positive
and negative levels
I1) The spinors +vr\(&) Form a complete orthonormal set of the
functions in the space of X -dependent spinors
¢, i) om" , @~ ym>)=0v)= VOO
.. : 20
Z LXftX ft)rx ftx (*)]=4a(2-x) o)
I11) The spinors obey the condition
r%m (I(X,X)|*+ I(X ,X)l F}<~,l c21)
where
X (x)= A0

Indeed with the use of (20) let us decompose the spinor field
operators y(x ) and <p(z) 11nto sums of the solutions x m

V(2)~ £ {an dn)Xftta) Yn

VEO= 2 { @a O+ X)j-

Then the commutation relations for v (xjfézJda.nd eqs. (20) lead to

G2)

the fact that the operators (cL~ftn), CLttn), ( f(En),
axe Permi creation and annthilation operators. The Hamiltonian
(10) diagonalizes iIn terms OfF them

2- (iMUn(in)-_£ri & fcn) {c/l)I* Xf (23)
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Here X IS an undetermined constant. Consequently the vector
jo¥i1 satisfies the condition

an @ =3(oh=0 Vn . (2/0

Equation (24) has solutions i1n the original Hilbert space if

the operators {(L*(th G *U 'n ), C(cn)] are unitary-equivalent,
to a complete set of creation and annihilation operators for
which the vaouum vector exists (Berezin, 196.5). The set of crea-
tion and annihilation operators of free particles { Gff 0} (]

iIs an example of such a set:

nt)y=z.1da: X (z)"nf:(x)]j- (25)

The comparison of (22) with (25) gives via the relations (20)

(26)
AFM =a,9§, A-(J=4  A+=&, A-=A,

1 A ) Y- @syn*

The transformation (26) is proper and the unitary equivalence
needed holds if Y iIs a Hilbert-Schraidt operator (Berezin,
1965; Kiperman, 1970) which corresponds to condition (21) in

our terms. It follows from (23)-(24) that (df(in)9a(in)t fan), ifafy
may be referred to as creation and annihilation operators of

electrons and positrons i1n the iInitial time-moment A. , In ac-
cordance with this the states with definite numbers of electrons

and positrons at tin are built in the usual way.
The general form of the initial states with definite numbers

of particles at In accordance with the above mentioned con-
siderations must be as follows

Un >fcs@in), ., iM)...aY)..Joo.n , @7

Analogously one may build the final states at i . = under the
condition that the mean values are found:
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a >wl =N } <n>7 =1°% ; . (28)
N 4o0al
(The mean values (28) are, generally, different for different

/m> states. The problem of their determination i1s discussed
in Sec.2.) Then

Cijtjoui) ~2)(Z(cui))ezx 1>b | Zx (out).
(29)
CA(w-i) ~D(2(«utf)Cgx D~(i(oui))=Cm
@)=L ; (]
ouf<0l — *<0ID" (30)

$ /
Note here that from the fact that the vacua /0~ and bl<°1l

belong to the Lorentz set it follows that % (in*) - >~ (°Cn)
The electron and positron creation and annihilation operators

at are fixed by the decomposition
f(2) =H (am (ouiffi 0O+C(out) ~fin @)},
: L
V(x)=Z{am@b% (X)+im(out)ym(x)]I
where the spinors (2) are chosen from the solution of

the eigenvalue problem

W>v=vy°(-(y7-be ALll(x)-0T)
satisfying conditions 1) - 111).

oJolan @B)=+o!C(*“D=. , Vin .

Consequently the general form of the final states with a defi-
nite number OF particles at |. is

| = OMNQIQ-(Puf)~. tfa lU C(out)*>'t], (32)

out<Ol= auikQL =J < Ol .

For future 1t i1s important to note that the above i1ntroduced
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irt- and oui- creation and annihilation operators are inter-
connected by linear canonical transformations, these transfor-
mations being mere shifts for the case of electromagnetic field

operators.
2* Mean fTield iIn quantum electrodynamics

Consider here the problem of determining of the mean elec-
tromagnetic fTield In QED with the external current. We assume,
for definiteness, that the initial states maybe given in the
form (1.27)# Then the problem reduces to the calculation of the
following average

<A(X)M = <cn/djfz) I1Cn> , )

where X(X)=Uj (Uin )Ne )uy(y.n,and 'lly (éécn,) is the evolu-

tion operator of QED corresponding to the Hamiltonian 3fy (1.3)*
It 1s convenient to treat the proposed problem with functio-

nal methods* To do so let us add the terms, corresponding to

the interaction with the external sources 7(X)}"(X)> )

of the electromagnetic and spinor fields to the Hamiltonian

of QED with the external current J(X)

Jti 2K +I1(AD) +nx) S2R-+HANK)] OE.

Here and elsewhere we shall prime the quantities taken when
all the external sources are present* Denote as 'lly
the evolution operator corresponding to the Hamiltonian
(Vy = IAj (ioui iln) and introduce the generating functional
which depends on the doubled number of sources

Z 4 , < 0 1 h)u;a,i >no>n, @)

ZM
4 B

and may be also written In terms of the matrix of scattering
by the external sources in the Heisenberg picture (Pradkin,
1954; 1963a)

| "=ax<ois' I(iz pjs a jt g)io>int



37

= fexpl-ij[l(z) A (X)i- #(X)t(zM (z)W x)]d zl

b'~*(1?%)=m « y /; j[i(X.)A(X)+m)*2)+ 2(oc)m)]dz}T
fax) =) r/x) Uj(Uinm j=..., fe |

It is adopted here that the symbol T when placed to the
right of an operator functional arranges the operators invol-~
ved into 1t iIn the antichronological order. (The functional”?
in the form (3) was considered in (Fradkin, 1964) when the ge-
neralized unitarity relations for the exact Green functions we-
re being obtained.)

Define the Green functions as the functional derivatives
of the functional £ M with respect to all the sources by using

the relations

nH+Y£ /
A Ll *
- W = HoohOAC)ELN) a*)
=H)n+Vo ms 'f] fejfej... fewfej ... A(<)]t
<r A~ f e = 4
AixD)..JYL(xn)6 A1), ) dig (b)
-(N TFr% U7 fej... femjfej...fej T]fe
Then A X"y"1"J =
i 4.m]T,, nu-"'+nl” e+t n'+
_ H u Z 11}
?* N rtl sid )

4=1,2



38

ro/o0- Hi'r )io>On ©

The sign of the T —product in (56) acts both to the right and
to the left.

The Green functions (5) give the possibility to find the
expectation values of the Heisenberg operators with respect
to any th- states, for which the creation and annithilation
operators may be expressed explicitly through the field opera-
tors in the Schrodinger picture or, what i1s the same, i1n the
Heisenberg picture at r = ~or example we will get by using
the relations (1.22) that the mean field in the system with the
initial vacuum-state and in the system with an electron In the

initial state is

<AX) M= <0iA(@)loN = Q0L (X)>

v ©®)
<A (z2)>H=in<oian(in) A(X)c£(cM>.n~

~ fth () Moot 2x) @dud? |

respectively.
To determine the mean field (1) let us build the perturba-

tion theory iIn which the interaction with the external current
and the mean initial field i1s kept exactly. Por this pur-
pose represent the evolution operator Vy in the following way

),  U(in)=Tezpl-i j 1Vifrj
| &z >

in

_~
~

ST - Ji(?)ANK)x,

3 (ain) = exp(-i f 2(XIAHIXidXj Tezpf-ik [ JOOA ()*
+IY2) A () * 260 P09+ nx)]dx, 2

AKK) = @KOlA(X)|O¥n A (xi = A(xi- Al-(x)g

f
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wx)= IT Ut f(x)u/«*),
JOO=U"4ncn)j®® U(HD

N

VY Y
(cd-eAHz)-m)v(x)*ot afi(x)=J{x), ai(z) =o.
Then the generating functional (2) may be written in the form

Z l,-rj)”™~ (X jL s £ L, E 0 .)r

&'(1fp)=Tez/}-i(IA+fi? +Vii)]

[172) =ezpfiY1J +2?-+p<D).

IM
One can derive explicitly the functional £0 Dby using the

following formulae which are the generalization of the formu-
lae (A.16) and may be easily proved

~ <oiTf<fio>t v f = f'=<0i<p<pTio)>,
By deciphering the abbreviated notation for the case under con-

sideration we get

2 "=«p <\ scfi * T, - », -

ITTW. *IrBT,*1X1r10 W

where @ £
= iin<oiT v(x)yoj) io™a'

8T )= IOl P yq) TIO>ht
SH(xy) - i"O 1 ?(x) 4>0)) I0>n

C)
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gm Ul ) =C<oMy) YX)lo>.n;

4 fry)= - iircQLTR GORFPlo>.n

Do fry) - << Pon

4 Hfry)=-i,r<oli o |

YU ry)=cao<?i(y)lm\o>,n=-d/ V j

The final expression for £ may be written In a compact form
by 1ntroducing the matrix propagators and the vertex

(10)

Note, that the canodnical transformations connecting A

/0>ct with the corresponding free quantities are shift
transformations of the free creation and annihilation operators
of the electromagnetic field. Therefore the propagators (9) coin-
cide with the corresponding free propagators and are denoted
in the standard way.

It may be shown, for example (Bagrov, Gitman, Kutchin, 1976)

L, .;Dg"fr-)bJ(y)d<j+A(z)- (i2)

where A(z) is the vector potential operator in the usual inter-
actioh picture. Then from (7), (12) and (1.17) 1t follows that

AHz)=%1)'lifr-y)3(y)dy +Ain(x)t Riyz)=L<o/J)fz)io>h'
QA*(X)=J(X),0 1 V) =0, {3)
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ntri
where J1 (X) is a free electromagnetic field, which at the ini-

tial time-moment coincides with the mean field i1n the system

(see (1.2), (1-5))

Ainfz)L  -Jinx) | wis = AinX).

One can obtain an analogue for-the Feynman representation
of the propagators (8), the first two of which obey the equa-
tion (1.1.45) with the external field A NX) while the last two
obey the Dirac equation (1.2.10) with the same TfTield. Note,
that the propagator 3° has been already mentioned in Chapter
I, Sec.2 iIn connection with the unitarity relations, and at the
same place their representation over the solutions of the Dirac
equation (1.2.6) was given. In the same way we get

>
(14)
& 1 o o]
j sH((4) > x°>4°,
Scuy)=
j ’
( w ), *°<y.
Here n (X) are the solutions of the Dirac equation in the
external field A* (X) satisfying at the initial time-moment
the conditions (X) -™Mn (x) where the spinors Jin(z)

are defined iIn Sec.l.

The representation (10) for the generating functional £
IS equivalent to the perturbation expansion and diagrammatic
technique for the Green functions (5)» wherein the iInteraction
with the current and the initial field is kept exactly. The sa-
me perturbation theory one can obtain by the straightforward
usage of the Wick technique and their generalization in the
sense of the appendix A, 1f one writes with the aid of (7) the
Green functions (5) i1n the form*":)

I) The construction of the perturbation expansion and diagramma-
tic technique for the Green functions of the type of 4 MO, /A,

in statistical physics was considered i1n (Keldysh, 1964) by or-
dering along a contour.
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n N

# LWV T®zjrfNV
1(1)... 1 @ )ITH)... Yx)Py1)..Y(yT$3E))... bl )b o X,

The diagrammatic technique iIn terms of the matrix quantities
(11) has the Feynman form. Thus» for example» the expansions
for the mean field i1 the cases when the initial state
Is the vacuum state or a single-electron state have, respecti-
vely, the form

h xti (15)

(16)

Here

= r
Y) N
= $b1YnN (2)6(x Qi Cn),

- e<rw

The shaded circles denote the sums of all the connected Feyn-
man diagrams with the corresponding number of the external li-
nes and with the matrix vertices and propagators (I11)*

For the generating functional one can get the following set
of the functional equations

came o OWHLQORRSE .

(ein-»'« ; an
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The equations (17) under /=4 coincide formally with the
equations for the generating functional obtained iIn (Fradkin,
1965a)= The equations (17) generate a set of equations for the
Green functions H. bet us introduce, as usual, the functional

W M-iiniM, 18)

which 1s the generating functional for the connected Green
functions, and the following definitions

Sw SwM
SIKIX)h*4*0  dJX)” 01b(x-)UL)1~Hu0

<r*wH (19)
= / i-1-
lij-p=c)
After the differentiation of the set (17) with respect to the
sources we get, by taking into account (19), the following

*—1rr® JSXX(XX)

1

ed*D)-" ¢1l-DhtJ\Jx})3ACry)= (D" ( £ 91,

0<+x (x) = (-)AL[IJU) +Ix(x)+teiifl2xk i*z)]. (20)

The set (20) i1s an analogue of the Schwinger set for the case
under consideration* It may be transformed, like in the usual
case, to the integral form

'm A'eiVv "-7 0 * e n
r i'fuj.x— OSif, (xy) a-i OX-ip, (X)) £ n
v ‘ 1cEfviB) ~ (]

60 (x-4).



[p (Xy)= d'jQdic/I

ty ) =r-in £E*//mE£* (xXX>) rzfil(ty jD tA (**) dxte,

a \ M - M x "*« 3/*
fd +I-|'),5ete 1Y)

~ ffx-y),
( (z) = /) 3(X) + TKi <A

Under T\*0 the iteration of the set (21), starting with the
bare Green functions, the vertex (I1) and the field 0(.%(X) =
b|))¢ﬂ/\f{2) leads to the correct perturbation expansions
for the corresponding exact quantities.

Let us now construct the effective action }ﬁ (d.) which is
connected with the functional W * by the Legendre transfor-
mation. (Later on we will put everywhere the sources pP andpp
equal to zero).

I’HJ) - 50e- VWM (22)

where the sources | in the right-hand side (22) should be
expressed through oC with the aid of (19)» From J¥1 -1
and the relation

<A(x)>fi= in<OIA(z)lo>.n = dl rz)I" ~cLt (z2)\.A0i  (23)

it follows that the column oA (X)n(-1)*"<A(X)>H gives the
extremum to the functional Thus the finding of the
functional r MU) is useful, in particular, since it enables
to get a closed equation for the exact mean field (23).

When obtaining the effective action for the mean field which
is related to the more complicated initial states with the non-
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zero number of charged particles, one should construct the
Legendre transformations of the higher order.

We will obtain the explicit form of the functional [*(0C)
in terms of powers of radiative interaction, the iInteraction

with the field A*(X) will be kept exactly. To do so intro-
duce the quantities

Z*=exp(EIA»)2M
wrcen” w Mi* - (24)

r d[)=rHi)=1d-W ",

We will get to the zeroth order with respect to the radiativai

interaction, by using the explicit form of the functional £
(10), the following

A r =eP (-Tim}), w* =1TT

oo . .
K _ A v © , VIR - 1jZ.

Por the quantities

/- uwl*u ulhwa)=TH1)-T(0*A)
we will get from (22), (24), (25)

(26)

One can show (Vasil*ev, 1976) that the Legendre transforma-
tion of the functional of the type of "W M leads to the sing-
le-indecomposable diagrams for the A[* only. Therefore we
get, TfTinally, by taking the single-indecomposable part of (25)

r HW = r~ (1)-~J .b 'lL - angle-ind.paxl aW"(I-D~a) (27)

The functional ' MBL) is equal to zero in the stationary po-
int since it coincides with IVH (1 =0)=0 in this point.
By doing the partial summing in (27) which i1s equivalent
to the exact keeping of the interaction with the whole field
(hy we get
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[ H -ru@=s" 9>

(28)

+ 1T Ifi A single-ind. vacuum diag. ~ W(SU))

SUc)
where
. -\ Al n
(18-e(-1) "
$ (H)U i)
SAUI) .-
Those external fTields, for which the Green functions are de-
termined, are shown as arguments In the matrix £(oc)

The two fTirst terms in the expression (28) correspond to
the one-loop approximation. The equations for the TfTields
oL,(X) and dz(%) are independent in this approximation

O oi4fx)= it bby S Qy}x\Ui) t
(29)
— D LX) - (x) ¥6 by £ X 1-<\2N)

N\

C
In view of the fact the functions E§: and S are de-
fined 1In the same way iIn the case when the time variables

are equal

SR@‘)O: AE S ¥*+0/x) + =

= S efcrx)- A~ [ s z(*+°,%)+ |
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It 1s clear that the set 29 has a solution
:k(?{) ::_{ /\

what 1s In conformity the expression {23 ) -
The equation (29) for the mean field can be rewritten iIn a

form

U OJCD-TIeDIN(2D12= 3 O*
.1 ,ireﬁ/\é , 4 r Wil<a) (30)

+ -teh *K)
h J
wnere bg_l....o
FKK*H.)= | b h Ydi {ScCK-i)K"SB O+
-hf w O-a) ;

new>* rffKj- nl1PrnrTcKji 1l kr fao

@

nbag>* 5 % P
-ti)"

In Eq. (31-33)

The program of renormalization and the subtraction of infinities
in the set of Eg. (2N and (30) can be performed by the same method
as i1In the usual set of Green-function equations in an external
Tfield /see E.S. Pradkin (1955) and (1965a)/. This i1s a consequence
of the reality of the renormalization constants and the infinite
mass corrections. Thus, for example, the renormalized equation for

the mean fTield o, (=>=<400 > has the form

30c)

nAC(0*Q A M~ACKr)~ 06 - K



In two-loop approximation we have

11 5 O CM(*bA*> - +

u ) riv
AN27MJi1b Nt
)
- S Kk} <P N yIAN lu»b) * IST ]
for

i c(C K 4) yitHt

tO>(y 1 fb>IX *X4 >  U<*>)7>CD fi)
J
3. Perturbation theory for matrix elements of

processes. Contact with the Furry approach in
and external field

Let us assume here that the i1nitial and final states in QED
with the i1ntense mean field are constructed In the way suggested
in Sec. | of this Chapter. Then the matrix element of arbitrary
process between the states "1.27" ,1.32" has the form

unJl).LAMN- E£>Vj. 1°>tw

Here ‘My* Uyfttvbytlis the evolution operator™ corresponding
to the Hamiltonian (1.31.(The unessential normalizing factor 1in
(1) are omitted.)

The problem is to construct the perturbation theory and
diagrammatic thechnique for the matrix elements( 1) under the
condition that the initial mean field and external current are
not small. At this stage we will consider transitions into the
final states with an arbitrary mean field. One may assume, that
experimentally the transitions iInto the state with the mean field
which equals to the exact mean field In the system at the final
time-moment, are measured. The one should determine this mean field
for example, with the aid of perturbation theory considered 1in
Sec.2 of this Chapter. Under this assumption the perturbation theoi

which will be constructed below IS, In a sense, 1Inconsistent since
It contains exactl

I Further the similar abbreviations for the evolution operators
and scattering matrices will be used.
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quantities which must be determined separately. However, this
Inconsistence 1s compensated for convenience because it 1is
possible to give the Feynman form to the obtained expressions.
In conclusion we will discuss the other possible approaches too.
Represent the evolution operator in the following way

UU@m hit u» Max'}
i " @)
A +N + +Jj(xjJI"x)dx,
S{nun) -Tezp [H11C,)A)A2\
I(x) =Jfa) - J1%), (3

W * U'lfiiib) fix) UHI@)  fix) e ... .
rv 4
AR - @

9
Here fg (X,) are G- numerical, generally complex vector potenti-
als whose form will be established below. The tildéd (*) Tfield
operators satisfy the equations

(1d-r AJx)-m)fix) =o,

HX) (Id+eA ix) 1) (5)
QA(Xfa), Q =0"3* "

Note, that for the complex A (X) the operators and S
are not, generally, unitary, although the total operator
is unitary* In this case the tilding (~) does not commute with
the Hermitian conjugation iIn the relations (4).
The transformation (2) leads to

out Ou*<OI6L(oui),.s ((ow),..C{ouf)...SC*Ln) “ £Wn)-*-&wthJ... !0>in)

®)
{@b),amn_ Crottifja U~ ifr-Eui-@ij —-C @i

aitr O 4 oM .

The matrix element (6) differs from the corresponding matrix
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elements of QED without the external current and with the 1ni-
tial and final states of the type (1) in that the creation and
annihilation operators as well as the vacuum vectors which
stand to the right and left of the S' matrix are different.
Therefore the direct application of the Wick®"s normal ordering
technique with respect to the one vacuum proves to be noneffi-
cient when calculating such matrix elements. In appendix A the
calculation technique of matrix elements of such a type 1Is sug-
gested. Now we use the results presented there. N
It follows from the structure of the operator 'll and the

nature of the connections between the Ctl~ and ou{— creation
and annihilation operators that the operators C*(out)t C(out),
and C*(T)f C(tn) are related by the linear canonical trans-
formation which is a shift. Such transformation always admits
a transition to the generalized normal form with respect to the
vacua ocu™Ol and /0>c. , The operators O*(out), A (out), i*(oui)f

T(oui) are connected with the operators CL*m)t GUCOX), t

((in) by the linear similarity transformation. Consider the

case when the latter admits a transition to the generalized
normal form with respect to the vacua 4.01 and /07,» (The ex-
plicit form of the corresponding conditions will be obtained
bglow. “"Then, owing to the linearity of the operators

LI fc) with respect to the creation and annihilation ope-
rators of Cn- type, the former may be represented in the follo-
wing way:

f(X)= VM(xj + 4>(X) = VH(x) + 4 (*W),
A (X) mJV<-m) + A wUX) «A " 1x),

$H LWIO>.n = f H(i)io>ib = A <)XIO>( =o0,

euUSI| 9 "Y*J ~out<dIPM(X) - =0

1°Vj =BUKOIi(z)io™.n

c>= lostyi =eiti<olUlo>,n (10)
where (; iIs the probability amplitude for the vacuum to re-
main vacuum to the zeroth order with respect to the radiative
interaction and when the external current and the exter-
nal fTield are present. To reduce the operator to

the generalized normal form with respect to the vacua ,SOLand
aue>
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"0>* and to represent after that the perturbation expansion
for the matrix element (6) by diagrams one needs to find:

- generalized chronological coupling of the~operators Jj(2);

- anticommutators of the operators V+(Z)t V (X) with

| &(ou(r) and of the operators EH(X)f VM(E) with
o+@), &(a) ;

- commutators of the operators A (X) with C(oul) and of the
operators A AUl with C+ (Cn);

- generalized chronological coupling of the operators VTZ)
and  Cp(y) ; n

- the amplitude (@, the field A (X),

- the amplitudes of relative probabilities of processes 1In
the presence of the external current J(z) and the external
field AMX) to the zeroth order with respect to the radiative
interaction:

U/itn..S.. KN...  %e/i..t . )— ouirOf &m(c) == (eut) == :
i
" Cutout) . admn-ioc;l

let us accomplish this program in the listed order.

By using the explicit form of the operator 'tt and the ex-
pressions far the Ot and oai- photon creation and annihilation
operators one can find

1 -U (i-iin) +
V*Vvzj~nz fcV/cpe cn (Cn)en*>
12)

| m(X) = Z (zVicl*e iK® > c:ntmi) e?X -

The operators £*a(Cnit “ka (00") differ from the free opera-

tors A C only in the C~ numerical shifts. Therefore
[1'M = ¢ X 'ix-y). (13)
Demand
A 1IQ(X)-0, a4

-9
hy choosing the auxiliary field Ji (X) from the condition

nuw =e<rnium)lo> ~ (15)

Then the generalized chronological coupling of the operators
J (X) which are in the operator S will coincide, due to
(A12), (13), (@4), with the free chronological coupling



1 (X)A 14)= o*i<OITRGAA(Vio>C ; LCLUaCw), (16)

From (12) i1t follows that

[Ciap ] =aviote W

[A (1), Cox b VRN K L Az,

Consider the function S‘(X)X>} which is the X representa-
tion matrix element of the evolution operator of the Dirac equa-
tion with an arbitrary complex vector potential J1*(X). The func-
tion (rfafX) statisfies the Dirac equation and the condition

frtX,X")1zzS(X-X").
For 1t the relations

(18)

g-+(X,x'): & (x\ X), (19)

hold where the lower case asterisk iIndicates that the corres-
ponding quantity is taken for the complex conjugated potential
The function G-(Xfx') may be built using any set of so-

lutions of the Dirac equation in the "external field"”
ft"(X) if this set is complete and orthonormal at the time

ya bl ). 20)

* A
The properties of the function 6~(XtX') imply that the operators

wf), <P(X) obeying the equations (5 ) are connected for dif-
ferent time-moments by means of the function 6~ (X, X)

)= ) = M

Bgs, (21) allow us to find the connection between the operators
{a +bl), a(oui), I*(ou.t)t é(oui Jj and{&*(Cn)%CL({[iN)91*(tn)4 i(Cn)}%
Put | * in 2Dwrite the l.-h. sides with the aid
of the representation (4) and substitute the decompositions
(1.3 into them, while the decompositions (1.22) substitute

In the r.-h. sides. This yields:
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&=y &G Uari +& M ),

t*(t>ui)=-6 -(-U)CUin) * 6¥,

U‘I{Gj): a*d’I)G—u AV **) 67 -1 1
|/W) = av)o-CHrHER&I-1-),

réitun- hm @Fré&U .4 ) s
friifr)yr=/7/7"» dx\ (23)

Put i ~ , I f~ in (21), writ® the r.-h. sides with the
aid of the representation (4) and substitute the decompo-
sitions (1.31) into the r.-h* sides and (1.22) into the 1.-h.
sides. This yields

a @— £ a/t)a ¢ g7% /-] p.(G.I)t
g™fi'n)* Br(~!*) S(oui) i- i*(oud)f (24)

N - 1 Am+)(r(+1+ J+1 (oui) &('1+)>

(r) ~ @EDEC7.) +1@Dachy

The matrices fr('lt) and Gr(t!l~) statisfy the completeness and
orthogonality relations which are consequences of the (1.20)-
type relations for the functions +% (%) and * (X)>the pro-
perty (18) of the function G*(xt X,):

6 pu)&(.i*)+e (*i.)&(~ )=T1,G-(v+)fr(>r+)+&mé&/-iXo,

IO I,

Prom (19) it follows that Gfrit) = By applying
egs. (22), (24) one may fTind the amplitudes (11) of elementa-
ry processes into which charged particles are i1nvolved: scat-
tering, annihilation and pailr creation.

Urminy=«" 1IcKm, 2T~ Hm,

ur(ojn e) ={&I-h)&XI1%e (25)

urlif,Slo) = { fr " Xftr)frith)),

Prom (22), (24) and (25) i1t follows that



r-a _ Yo
Um(oul) - Zz-ur(miIn)an(i'n) -Z.U/fviSIO f/fcut) ,
(oui) A ( yan(in) < ji/tc ); 26)

IT(0ub)- A ur(mia)En(in) +Z .uT(s T!0)a"(ounn) }

an(c'n) aan.(jj(m In)ai, (out) - ZtLurioIC ”L(Cn)*

inc-m = Z WAVt +cut) * Z uf(om ©) ae(ca).

Relations (26) are the specification of the general represen-
tation (A.3) for the case under consideration. It Is seen now
that the transformation (22) admits transition to the genera-
lized normal form with respect to the vacua <>J and /0>M
if the inverse matrices Q~ (+/*) and 6~ '/-) exist, in full
accordance with the general requirement (A.4). With the aid
of (26) one can find and explicit form of the representation
(8) for the operators Y(%) and V7fc)* By setting I*""cn. il
(21) and using the decompositions (1.22) in the r.-h* sides
we obtain

- £ (anb /7 ,, W +C (<A

7
W) - Z- Rh @It Q)
where
AIX) = J&(X, X"i,n
(28)
Inll =JX X&(xGnt)FAEN
By setting [ ~Moui *n (21) & using the representation (4)
in the r.-h. sides and the decompositions (1.31) we obtain
<YUW= Z {artXnt 29
f(x>:%{AN9 *m @t (cnl)x/*@f
where _ _ - -
4 1X)= J&X, Z"KUDXC")clz",
4 IX)= T+ (X)X G0
Iri“our notations and Yr are not Dirac-conjugated to
and 4 in the general case of complex potential A9

By combining egs. (26), (27) and (29) we find
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=Z/nw 0,n»), <?Vxj=z 4 (X)) (* fa*J
r N\ *

VHOO=L MO TG, YS=E+K)I x) @uak

0 W*Jn@i-2vr(ojtk)-A(X)* Z.aiming X) oD

'Viix)=y T(X)~ z or(s mloby (X)= £ur/m/n) yn (x)t
S “ n

Yull-Yn, ) - Z.UIRe) A)sZ ur@in)~F &)
*fmx) =*VjX) * IguT{msIorfs(x) = 5 w(min )YnLl.

Consequently the following anticommutators are different from
zero:

?'% ) =*dr(x), CLhut),r% | =-£ w, @2

f a*(<®)]. *X W, (vHX), C <*)]+=1 <x) .

The generalized chronological coupling of the spinor field

operators has, due to (AN12), (27) and (29), the form
JV/Wt Wy

fix) $1$) = Qo IT) Wyllon-C;1=-CSax,yl, €8

SH(xy) ,x°>f, (34)
-S*(xy) , x°<yo.

i"-Vx~j-t FF "X

(xy) - C[ r<*I(XI, :ﬂ%)’a(X) In) ~<M(y)
Here £]: iIs the Green function for the Dirac equation
in the external field with the vector potential J1 (X)

(C$-e Agx)-m)Sx,y) =-S(x-y). €5

The anticommutators (32) can he expressed, as usual, In terms

of sc(r, \%)
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M (X)=-1Jsgx, £'@é)/yn (x")cff’
X (V~I\scU?iui) ry jx j)dx't
RBn (*) - iJj : &) SAX'l,n,x)d?>t

% (Xx) =-1j+1ZiZ")S C(X"{wt x)dx".

y*
Wow we are going to find QX considering Y(X) and >4‘ (X) as
independent functional arguments iIn the expression (10) we get
7 X =

a-i-Bxr 6A*(X) > -TzENnSi

fignre m=-; Amhy) =Dec(x-y)
SJfxtfty) ~ *

where the operation I'r i1ncludes also the coordinate integra-
tion, These equations and the condition

C0(3 =1 so0) -~ | ,
where iIs the evolution operator, corresponding to the free
Hamiltonian 3f0” Jfe + Jfj allow us to writel”
Co -0"<0juUO10>cneexp[-Tt én/ $T(j=J1?ro)} ~ (36)

Prom (15) and (36) i1t follows that

-4V & (x-$)3(y)dy +A ),
@GN

where

O _ A
tE7ic (X)+1J;«w])e~tKXdx (33)

1) Here the abbreviations of the type jJ(X)A(X)jX: YA are used
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(z)=o,

N : _in -4 I - If
A DN » DF A w L =A

licg),

’\B‘FI<°*')-) ~C< ISt A
n

The fTields /1 63 and .1, /K) obey the equations

a A9(xX) - 3(x) ' a Ao(x)-o.

One can see, that the amplitude CO factorizes

C=Cfal
cC:-£°1W Znpt-nen*L -— y oM
c! -,/ u,lo>" nixp L f JFU/])
vdiere the operators and correspond to the Hamlltonl*-
ans and Jf. The matrix elementsQJ<0iljk>fn and
cut<Qlle 70>*n “ ¥y be calculated:
vutiol Up [N - expY~ /- 12
> £ %
+ Zzx (°ui) An, ) Ht (40)
oJ<WUelo>e =dei&H-)I , -
“rt h=j*=o0

In the latter case we have used the results obtained in (Git-
man, 1977) (see also Sec*l, Chapter 1),

To determine the amplitudes (Il1) suffice 1t, In accordance
with the formula (A.17), to find all the generalized couplings
of the operators af(oiti), 6(ou.lt C(oiU), CL+Vn), 6*(in), CHCrX)
and the C- numerical parts of the operators £(oui) and C*(£n)
in the sense of the decomposition (A.5)* The generalized coup-
lings of the electron-positron operators are the amplitudes
(11) of the elementary processes In which electrons and posi-
trons are i1nvolved* Those of them, which are nonzero, are al-
ready determined by the expressions (25)* The C~ numerical
parts of the electron-positron operators are equal to zero.
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The generalized couplings of the operators C(ou4C (oui)

and C+ f C*(tn) are equal to zero since the and ouf-
electromagnetic fTield operators differ from free ones only iIn
G numbers* Due to the same reason and in accordance with the

formulae (A.11), (A.18) we have
@)= 6tAIEA+W(X*1°) WFol#)?) t = “1)

The quantities UX(KAIO) and UT(0[X9) (At))=It2) are the relati-
ve probability amplitudes for the creation and annithilation

of the transverse photon* In accordance with the definition
(11) they can be calculated by using the connections (1.13)»
(1.29) and the well-known property of the coherent states of

transverse photons

C+/2> = 11 +fr)/>" <ICm(i+&)<21>

Then 3
VU?MO) = - **('«), SInCo
Z Alrx(mi)
(42)
m
u(@iCA=3~ MiJiSU + OinCo
~CK(i-tcn)+CK X

= <« . ZenyZ*x(tn>- i3 (W gandx. (43

The matrix elements (39) may be represented by the usual
Feynman diagrams* For establishing the rules of corresponden-
ce one should represent the S~ matrix in the generalized
normal form with respect to the vacua oa<<3rZ and |0”*nt This
can be done with the aid of the usual Wick theorem for the
1:'products if instead of the normal products and chronologi-
cal couplings their generalized counterparts are taken. It is
useful to represent beforehand the operator of the current in
the generalized normal form:

J R=anfsed/ 1Y) + dbdt
2(X)* M 1<bl]<W\o>Cn"C;L=

Thus, the problem reduces to calculating the matrix elements
of the generalized normal products of the following form
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N

oui<olcl(oui)... g(ot4.i).4C(»nt)...tf(t,,)c*(i'n)’\B (cn)*" a*a'n),.'loyn .
It 1s evident that this matrix element i1s different from zero
iIT the sum of numbers of particles of each field in the Initi-
al and final states is greater than or equal to the number of
operator functions of the given field iIn the generalized nor-
mal product. A y

Consider the case when for each field operator Wx)94Xt A(X)
taken from the generalized normal product there may be found
a corresponding operator n%T)9t4i'nJ, C+ttn) from the initial
state or C{ouilt i(oui)t C(oui) from the final state which will can
cel 1t after the commutation. Such a matrix element can be re-
presented by Feynman diagrams with the following rules of cor-
respondence :

1. Electron in the initial (final) state with the quantum
number n(nQyis represented by the factor (X)

2. Position in the initial (final) state with the quantum
number !b[m) is represented by the factor JPn (X) (~ (2)).

3. Internal electron line directed from the point X' into
the point X 1s represented by the generalized coupling

-1 $c(x,xu.

4. To the closed electron line the generalized vacuum cur-
rent J (X) is put into correspondence.

3. Contribution of every diagram contains the amplitude CO
of probability for the vacuum to remain vacuum as a factor.

The rest of the rules of correspondence are the same as tho
se 1In the standard QED (Bogoliubov, Shirkov, 1959). Consider
now the case when the total number of operators iIn the initial
and fTinal states exceeds the one needed for the compensation
of the generalized normal product. Such a matrix element 1is
equal to the sum of products of contributions coming from the
Feynman graphs for which the "interaction" of the generalized
normal product with the operators from the initial and final

states is responsible by the amplitudes | *

coming from the noncompensated creation and annthilation ope-
rators of such states.

Let us i1ntroduce the exact Green functions, connected with
the coefficient functions of the scattering matrix S which
IS reduced to the generalized normal form with respect to the

vacua eu<OJ and /0>.
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il CV)out<oIT[WI.a  ht)-ENAG.JG,)JI>nc+-

=0«t<°ITr/xJ ... xmA)... Ptyn)MI)..J(2,)S\0>"C
(44)

The reduction formulae one can get by substituting the expres-
sion

S=L Sn9(xpw ffixi),.. XM  f(yn)Aizi)...A(h)]dxdydz

into the expression (44). For example

y*(x)*AW +£$(x-x")SH(x)dx"'& , J[-o=c-e’l,

h(x"Ma)- o) fziStyyJaxd

The Green functions (44) are the functional derivatives of the
generating functional £ "

%9~ cui<°l Uj (I, 2,)I0>Gr 19 =C,
9
V) Lt A ) rx (45)
*V + re./1V> 4P
_ VU 0
T SI(h)\uTjr=0
~S i
For the functional * one can get convenient representa-

tions which are equivalent to the perturbation theory with
respect to the radiative interaction.
I. Write

Wr -VLS\I*M<'ois'K»,n ,

S: PP GS + A

By using the formula (A.16) and the expressions for the gene-
ralized couplings (13), (33) we find
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29:exp(-iIM9)e><|oe#9 YA=£ reP(~i ‘PA@ ;\S' @)
a P
Il. By using the representation (46) for 22 and the for-
mulae (A.14), (A.16) we write

7*=> exp(-aA9)exp (1

‘oui<o!Texp{-i(jA +VI9+ 9P)$k»iH J t

where the quantities A are the classical functional arguments.
One may establish that

,u,<0/Tezp{-c(JAIiI-$7i?)}lo>"

- ) > >

where the quantities with the sub- or supercripts A\Q+/\ are
given by the formulae (4), (7), where A+A must be taken

as an external fTield. Let us transform the right-hand side of
the latter relation in accordance with the formula (A.16), then
it acquires the form

@ (A (A +A)>>
A
By replacing A by o™ 23S applied to exp (-11A) and talcing the

explicit expression (36) for (U into account we will obtain
1 oui<OW. 10 ep(-£ Irtj-iJAF-r? In

(48)
*exp(cjSe(A iJj-)?)

The fTormulae (47) and (48) are analogous to the corresponding
formulae 1n the theory with the external field (Fradkin, 1965a,
b; Batalin, Fradkin, 1970). Note, that the derivation presen-
ted here enables to write at once the explicit form of the
Green functions in the external Tfield, which are In the expres-
sions obtained. .

The functional £ satisfties the functional equations
(2.17) under A -i%O0One can get from these equations in the usu-
al way the equations for the Green functions both in the diife-
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rential functional and i1n the iIntegral form. To do so the fol-
lowing quantities should be i1ntroduced

v iin2f
9
ST() =0 M2 SISk j= =0 = o @)
SZW
[t-t« , =7 *>m

which make sense under 1(z)*0:

M*)1190= < aw>?= **<SiT Jf*>3I°>ai-cm

N <fiwm )S\o>,n.r - (so)
& ITAGSS BI<OITAG)SIEHC™*

siXV O - wicslr*@frytf 10&m

The corresponding equation for these quantities will have, for-
mally, the form (2.20), (2.21) if one puts there /1= does
away with the matrix indicies and replaces dA(X), (*i <f),

Sp. C‘,}D by Q(),)@(Z,}D ,2(X,y) respectively. The ite?

rationof the set of equations starting with the bare quantities
H?(X), S4X,y),j)<0<iy} where S((X,y) is the Green
function in the field A?(z) Ileads to the correct perturbation
expansions for the corresponding exact quantities. Thus, the
complex Ffield cL(X) parametrizes the Green functions

Y)e
Let us construct, with the aid of the Legendre transforma-
tion of the functional the effective action (cL) (La-
ter on we will put everywhere the sources and £ equal
to zero.)

rc )= n -w?

where the source | in the right-hand side should be expressed
through oC with the aid of (49). From =J and the first
relation (50) it follows that the field <A(X)" gives the ex-
tremum to the functional I *(£). Thus the finding of the func-
tional r*U ) iR equivalent to the establishing of the closed
equation for the fTield The explicit form of the func-
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D

tional / (d) one can obtain in the similar way as in Sec.2.
When doing so we will keep exactly the interaction with the
field A" or with the field oC The final result has the form:

single-ind. FHtA W %J—a@—

= In-n9an-A\1tncO+1z i
D SQAT)

-single-indecomposable vacuum diagrams [ A/~ (Sc(ol))

where
<T=ct-A9, hWOw 9-JAS-itne0- £ i | "

and Co is fixed by the expressions (36), (39), (40).

Let us i1nvestigate, at last, how the above suggested appro-
ach to QED with the intense mean field i1s related to the Furry
approach to quantum electrodynamics with the external field
(Chapter 1).

Consider the perturbation expansions with respect to the
radiative interaction, for the matrix elements (1), (6) in the
approximation in which the mean field at the final time-moment
Is taken to the zeroth order with respect to the radiative
interaction (Sec.2), that 1is

JIO)™>+ R 3)AXNINQD). (51)

Having the specific expression for the mean field available,

one can obtain all the needed iIn the perturbation theory compo-
nents. By setting é- i\/ltt in (51) and using the formulae (28),
(30) we will get the guantities (Here and elsewhere
zero on top means that the corresponding quantity Is determined
by the mean field (51l)»)

<4 / i\ 4 r | ont *tn)

0ee dz &
izV/c ~

By substituting (62) into the formula (37) we get
Ae (x) = Atn(x) +J Do (x-x")"(z")dz",
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By taking into account that DA(X—X:D'l'D*O("‘X.): D**(X—X-)f

(Bogoliuhov, Shirkov, 1959) we obtain
(53)

Thus, the auxiliary classical field n (X) is real in this
case and coincides with the mean field of the zeroth order ap-
proximation.

The amplitude (see (39)» (40)) may be iIn this case eva-
luated explicitly, their modulus is equal to unity (the photon
vacuum turns, to the zeroth order with respect to the radiative
Interaction, again into the vacuum during the evolution)e

G4)

By substituting (52) into the expressions (42), (43) one can
maJce sure that the relative probabilities Uf(icA/O) and

UX(OIX?) of creation and annihilation of transverse photons
are equal to zero. Therefore the coupling (41) has the form

(55)

If the quantities A (X) , Cf> 9°U a have the form (53—
55)» the perturbation expansions for the matrix elements of the
process (1) coincide completely with the corresponding expan-
sions for the matrix elements (1.1.16) 1In Furry approach to QebD
with the external field (61). Thus, from the viewpoint of the
treatment, which i1s based on the mean field conception and dis-
cussed iIn this Seotion, Qep with an external field describes
the calculation of matrix elements of transitionsto the zeroth
order with respect to radiative corrections, which determine
the changing of the mean field (51) at the final time-moment.
This statement may be the basis of one of the possible i1nterpre-
tations of Qeb with the external fTield.

It 1s useful to represent the matrix element (1) In the fol-
lowing way:

67
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_ & (0*+)>-Cj?ALu i)™ C 2 /A (oufy.>Rs/(ou.i)...a+t(oul)*

*'ee 10\at "
In the form (66) 1t 1s represented by the sum of products of
the coefficients Q which take 1nto account the difference
between the real mean field at the final time-moment and the
field (6G1)» by the matrix elements of QED with the external
field (51).

The coefficients Q may be calculated with the aid of the
formulae (A.17), where the nonzero components are

a,n(W) am,(QUI)= 6~ L(f-

és(oui)L(oué)= &-I(-i-)SS>

am(oLLt)is(oui)=
1/vwwd

& (;N T™h=Jd* k (X" Mfjxid x,

Mi<O!Cn (out)\6&a£E0)O0O>o0onl =L jcui)-2 *{ouil

_i<0\Cfx (Oili)!l - igA(out)-
O*t<olo> ,, det&(-/-)expZ.

ZAi,2

+ T, (out))"
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APPENDIX A. GENERALIZATION OP THE WICK TECHNIQUE TO
UNSTABLE VACUUM

In a number of cases when the vacuum vector is unstable with
respect to the creation of particles i1t appears that the matrix
elements of prooesses and Green functions of quantum field theo-

ry have the following typical form

<ola."TFMa+,Jo>f 0)

where {ct"Cl} is a complete set of creation and annihilation
operators, fO> is the corresponding vacuum vector (<XO> ~0),
f(X) are the field operators in some representation where they

are linear with respect to the operators {(2+a} F-(f) is
an arbitrary operator functional admitting the series expansion
in powers of ~ ft} iIs a set of operators related with the

operators {AH Ci) by a similarity transformation of linear type

@)

a =V RaV=<Pi ci+Y1<?+],
NY -a M =Xa +%andr,
[a,a+] =1 fa,aj = [a*,

<0/ —<OlVyand V s, generally, a nonunitary operator. Consi-
der here the generalization of the Wick technique whioh makes it
possible to calculate efficiently such matrix elements.

We say that the transformation (2) admits a transition to a
generalized normal form with respect to the vacua <dl and /> if
the explicit and single-valued representation

£=Aa +6a ++t

a+= Ca + 6a*-tS 33)
Is possible. To make 1t possible the existence of the matrix
oI enough. Indeed, if one consideres equations (2) as a
set of linear equations for one sees that the solution

may exist if

00

deil[T ¢r)-~ae*b*°-

IT the condition (4) holds then

&0
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o= £ B-XB\ |-x A
C--. T4 a<ir'. ¢ -SrY -

In the case the transformation (2) i1s canonical the Bose-type
matrix 1 always exists (Berezin, 1965). It may be
not the case, however, for a Fermi-type canonical transformation.
IT the linear similarity transformation (Z)admits a transi-
tion to a generalized normal form with respect to the vacua<bt/
and 10> then any field operator Wz) linear in {(X* QJ may be

represented i1n the form

&(X)=<fH(xX)-t-F(EXZ) + <ffox(z) , 5)

=0, PR lod>t ()

At the same time

[ VHY), THK, M (4] c=0
b ~L @)
[HOe, MM 1 - number
(The quantities in the Permi case belong

to the Grassmann algebra).

The proof of representation (6)-(6) i1s based on the remark
that with the aid of eqs. (8) any operator linear in {CL"Ct]
can be linearly expressed only in terms of the operators Q and

d+ the commutators or anticommutators of the operators ( and
O0* being C numbers due to (2). It is evident that IS
the part of the operator that contains only the operators
@ and V3 (X) is its part, containing only a*. The second re-
lation In (6) i1s obtained by averaging (5) between different va-
cua with the usage of the first two properties iIn (6).

The form whose every term has all its operators " (*(X) placed
to the left of all i1ts operators iIs called the generali-
zed normal form of the operator functional FW),

The product of operators H{X) is called the generalized normal
product 1f i1t i1s reduced to the generalized normal form with all

the commutators or anticommutators between )
being considered zero while the reduction is being performed. The
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generalized normal product will be denoted by thé symbol NQ»ee)
It Is evident that

~ﬁ - fo\
<o\N Il MIO>=<o0i0o>-n T (X] : 8
L=i (=
The functions
YY ¥eijj = f/x) W )-bl f0J), ©
PAAAS
W) wy) = 7Fin) Voj)- AR, ), (10)

will be called, respectively, the generalized coupling and ge-
neralized ohronological coupling* Relations (7) indicate that
the couplings (9), (10) are C- numbers and may thus be represen-

ted as follows

- <O\W )W O X010 >1f1%) (11)

Wpfty) = <o IT) TIo><ojoF—  TQ). (12)

Evidently one can use, by replacing the normal products and
couplings by their generalized analogues, the conventional ver-
sions of Wiok’s theorem in order to reduce an arbitrary operator
functional F(V) to the generalized normal form. The correspon-
ding functional formulations are similar to the usual formula-

tions and have the form
Sym F(<f)=fiexp$E £ . pM> (13)
TF('f)- Nexpjff fy F(f). (14)
By combining (8) with (13), (14) we obtain

SIStfm F(fjNe=<5lo>expjA <fjA .Fm ffsf(et > (15)

<o\TFit)lIo>=<0/0>e xp j-L fo IL F(H)j» A (16)

The formulae obtained allow us to calculate the matrix elements
which have the form (1)* To do so one should, evidently, reduoe
T-F(i) to the generalized normal form with the aid of (14),
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substitute 1t Into (1) and perform, as usual, corresponding com
mutations. As a result the problem reduces to the calculation
of matrix elements (1) where They also may be calcu-
lated by reducing the product of the operators < ...0*... to
the generalized normal form. By using the suitable functional
formulation of Wick’s theorem (Vasil’ev, 1976) we will get the

formula

Thus the i1ndicated matrix elements may be expressed in terms of
oouplings of the operators (If Q* and their C- numerical parts,
in the sense of the decomposition (5)> only. All these values
may be expressed iIn terms of the similarity transformation coef-

ficients (3):

is =@- X%'VXT,

ata+=-9° %
ﬁu | 2 r> (18)

N 4=
<O\aw>=-x0;4+1,

<oiatio>=-<p-I(Z2"
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APPENDIX B. GREEN JUNCTIONS IN AN EXTERNAL
ELECTROMAGNETIC FIELD*”

81. Introduction

In the present paper all the Green functions mentioned iIn chap-
ters I, 11 are derived explicitly in an external field, being the
combination of a constant and uniform field and a plane wave fTield.
A brief review of the well-known works, as well as the definition
of the scalar Green functions iIn the quantum field theory frame
and their representations over the solutions of the relativistic
wave equations are given in Sec.l. In Sec.2 the Green functions
for the scalar 040 with a constant and uniform electric field are
obtained. This simple example i1llustrates the calculation method
of the Green functions. The Green functions for the spinor QED with
a constant and uniform electric field are obtained In Sec.3* In
Sec.4 a complete and orthonormal set of the solutions of the Klein-
Gordon and Dirac equations for a field, being the combination of a
constant and uniform field and a plane wave fTield, 1i1s derived. With
1t’s aid the corresponding Green functions are obtained In Sec.5«
The results are given iIn the form of proper time contour integrals.
In Sec.6 the operator representations ior the calculated Green func-
tions are given.

Some of the obtained here Green functions were calculated earlier
for specific external fields. Thus, the explicit expression for the
anticommutator function B(X9X) in a constant and uniform electro-
magnetic fTield was obtained In (Fock, 1937) by the proper time me-
thod™\ The same result was obtained in (Geheniau, 1950; Geheniau,
Demeur, 1951; Demeur, 1951) by solving of the equations forJ)(X9X")
and ((XfX") with a given initial condition and also in (Belov, 1975)
by the Maslov canonical operator method. The Green function "c(X X'j
in a constant field, and also in a field of a plane electromagnetic
field was obtained by Schwinger (Schwinger, 1951) by the proper
time method. The functions S C(X9Xt) andD(X9Xt) in a constanty

* The work is carried out in common with Gavrilov S.P., Shwartsman

Sh.M., Wolfengaut J.J. (Dept, of Math. Analysis, Pedagogical Inst._,
6?4044 Tomsk, USSR)

Notations for Green functions see iIn I1,11.



Tfield were calculated i1In (Geheniau, 1950; Geheniau, Demeur 1951;
Deraeur, 1951) by using the explicit form of Gr(X,X) andDCXjX") and
in (Nikishov, 1969; Narozhny, Nikishov, 1976) by the summing over
the corresponding solutions of the Dirac and Klein-Gordon equa-
> C(XfX{Of the scalar field in a

plane wave field was obtained in (Fradkin, 1965; Barbashow, 1965)
by functional methods. The general solution for the Green function
S (Z,X) of the Dirac equation iIn an arbitrary external field was
obtained for the first time iIn (Fradkin, 1966) in the form of the
path i1ntegral over the classical trajectories vand Grassmannvariab-
les. Y/ith 1t’s aid the explicit expression for the Green function
ESC(*,*') of the Dirac equation in a plane wave field was calcula-
ted in (Fradkin, 1966). The Green functions [3 Xt Xf) andD GX9X*J in
a plane wave field were obtained also In (Reiss, Eberly, 1966) by
the straightforward solving of the nonhomogeneous equations. In
(Oleinik, 1968; 1969) the function S X X} is calculated in a uni-
form magnetic field and a plane wave fTield, propagating along the
magnetic field. The Green functions D (XfX) and SMXfX | in an ex-
ternal fTield, being a superposition of a constant and uniform
electromagnetic fTield and a plane wave fTield, are obtained iIn (Ba-
talin, Fradkin, 1970) by the functional method. In (Narozhny, Ni-
kishov, 1976) the functions J)CXfXD and Sc(Xfx') in a constant and
uniform electric field combined with a plane wave field are obtai-
ned by the summing over the solutions of the corresponding relati-
vistic wave equations.

The Green functions of the spinor QED are defined by the rela-
tions (1.1.43), (1.2.6), (1.1.27), (11.2.14), and they may be
expressed in terms of the solutions of the Dirac equation (1.1.44)

(1.2.7, (1.1.27), (11.2.14).
The Green functions of the scalar QED are defined like 1In the

spinor case:

Xf(x,x')= CA<OITm)f*(x)lo>.naC.’

(1)
ir (*.x) 0b,x)=-lafo \b x) m )io\n-c;t
£(*,*)-cvw .rw ], (2)
XHX, IJXOM MX0>,,, 5 *(X,X> -i£0]| r

o o(x,x")="<.01T$(X) f+(x)W>.n ®3)
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b \ x)- LMoif f(X)*(x")lo>h=i)dxx")-1i(x-x])B(x, x), (@)

Here V (X) is the scalar field operator satisfying the K%g;n—
Gordon eguation in the external electromagnetic field J?e (X)
and the commutation relations

hx)X(x' =0, frr*>"' N+X>1 =-iS @x-x'
X)Xy s @ T do X35 188Xy
Fl- P oy = =

~ LI sorr LB is the evolution operator of the scalar
field interacting with the external field, /0MFf /0>td are ‘the
vacuum vectors of out- and,in-partioleg, /7. — {D'N9>HL

The functions D (2,%), Dq2,x') and DQXJX/) are the partial

solutions of the nonhomogeneous Klein-Gordon equation

(g ZX)-m*")D(x,x') = -isl'€x-x"), B(xx')*"0c(xx)p c(x,x"')) = (5a)

(M n(x)~Tr 3 c(x,x') =8 (x-x"). (5b)

The rest funcﬂions satisty the homogeneous Klein-Gordon equation,
The function J)(Z,X') satisfies the initial condition

) <**)1 - 94 (xM)1=-18FHx-2Z2"). (6)
190 2 nxo "o Xo

Likewise the spinor case, the Green functions (1) - (4) may be

expressed iIn terms of the solutions of the Klein-Gordon equation
in an external electromagnetic field. To do so we will use the

decomposition of the scalar field operators V(X) over the com-

plete and orthonormal set of solutions | (x)] (1+¥n &)})

describing particles (+) and antipartioles (-) under XO-++gq,
(XO0—-«=):

(*I'n,*b)a (T», T,
Itin ') =i t*cz) (Lfc-zeR, (Xj) m, (X) dxf
Zrt(*)X (*")-"t(x)-Y ;(x")}x mx, =0,

z (N (*)x w0 4 (%) ~C ()7 - 100X

Similar conditions are valid also for {+ (X)} Thus we get

Ve(*r,*')= o(L.)b-(k(-pb*(x,I"), 0
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) ~(x,x)~< 2LV,,(x)uj(n 1K)YK (x 9

3*(x, x ) :—iré~m\} . . F) ~9%%(
J)(x,x)= Z {yn(X) X * (x "(xX)Y/1x)} ( €))
) dx,X')= B(yo)b=(x,x)~ &(-ydB*(x,X"), D
d UX,X‘):I iZ tfIx)X (x")) @
3 ~X)= 6(-yOB (x,x")-9(y ®
a (X,x')=5*2zX"Yx Da(x,x"), 3
a<az-0 - @ (X)) aoctnK)Xix'") C o
1 c(X,X") = beO,XDHHBMex.x") . (5

Here nl(nll), aj(olnti) are the matrix elements for the proces-
ses of the single-particle scattering and annihilation of two
scalar particles In an external field.

82. Constant electric fTield. Scalar case

By calculating the Green functions of the scalar QEI) 1IN a con-

stant and uniform electric field we Vill trace the train of rea-
soning, which enables to get by using the complete sets of the
solutions of the K-G (Klein-Gordon) and Dirac equations the pro-
per time integral representations for the Green functions.

Let us choose the vector potential as A ~
W - =0 . For our purposes the most convenient are the com-
plete sets of the solutions of the K-G equation which have a
semiclassical form (Narozhny, Nikishov, 1976):

N-,A X)=bW etrtxpl-C (*% .)-fa X | (0

% PiA(x)=°(K]C A~ -1 N1 (xy* -%-Ah(x]= %-Nn (x)

Cft-fac I III|B~q(**c), on (ti !l:tnm.jtcTO(J_rf") X —~
J 2 - ’ \ef

€1 )
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5 = f —ehx=, 31 2CH. 3 j*/\ eE: . PA(o/llfbz0)

For definiteness we will consider B£>0 In this case the eig-
nes nt" in (1), (2) correspond to the sign of the kinetic momen-
tum HM under -*t 00 #

In (Earozhny, ITikishov,T976) 1t is shown, that the solutions
(1),(@) one can express in terms of the solutions of the other

g 5 e (TXEE)*T HS PPN
>P+PZ —pB
| | ©)
H(p3ip.)=exp{-i
s vw = &e *3A[tn-iis7; Yp/x)* €

$=(eer*(ef£zBpi)
The solutions (4) can he got (Narozhny,1968) i1n the slow chan-
ging electric field limit from the asymptotically Cal
free solutions, what enables to establish their classification
by the energy sign under XO0-*£ 00%Thus, follow (Narozhny, Niki-
shov, 1976) we satisfy ourselves that the classification of the
solutions (1), (@) i1nto the particles and antiparticles i1s equi-
valent to the usual classification.

The solutions (4) are orthonormal, and since
(0/0]

-1 AMTt ,fL) dPi - Z
from (3) follows that the so3.utions (1), (2) are orthonormal too:

O m * ,

62

-y , T Y - (P “(Bb)

(+ "&fart 1l )~0-

On making sure that the solutions (1), (2) form the two comple-
te and orthonormal sets {tfn(X)}t {*fnll ) we will use them to
construct the functions (1.8), (1.14), taking i1nto account that
(Narozhny, Nikishov, 1976)

AR Iy p/pt’) =S aei (5 - ~PlI-pl)c.
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v(olpJt »> P.'P/pr) = P-)Sn,(pL-pl )Cpl e '~ IA*D
Then
00 eEx
$7x, X)=j | e(x, < 1 Ypdb, -f (X <)
ebEX- n,, -0- %
G)
~ 400

9
AN-hpJdx)'K Phu'ly ©

We will get the proper time iIntegral representations for the
functions (7)), (8) by transforming the ya integration into iIn-
tegration over S

s="[(en(txif-en(iZ-)]t ij=F +feiy.r (10)
Yit = d/4- :
and doing the A and A integrations,
v -
Let us consider first the functions X,X) Suppose
f; >0, then »S-JL _j and then we get from (7)
N
; Dt(X,x') =J S ) d S *$-<0, (see Tig.D)UD
where
{e (x,x,'s) = Z"eES'shrebEsexf{-tmh -
~<m iL~ (i2)

For +Y- <0, 3=~ (Cnlp j- tX6 (tTIL)) sad

+5 Cx,x)= f (E(zZf xts)ds,+Y- <° (IS (

By combining (I1), (13) and replacing the contour (3?F with
the T €T (see Tig, 1 and fi1g.3) we get

SD “fr,1 9= J /e (i,a b - @F~y . ) (X i @4)
N
Let us now consider the function D a(x,X13. If y/ then
S - 1- a 17¢J1 ?11 ), 8n@ tben we obtain from (8)
~7eB Ix oy 7/
fig.i
ba(x,x')= \J tefl y_.<o (see Tig-1) @s)

ra
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For >0, S=7-(fnJ"j-IT-trd (-Tii)) thon

e (X, XO)™ J L(XfX'S)ds, 4 >0 (see fig.2) (16)
ar+C3
By combining (15), (16) and replacing the contour "*/"3 with

the [\ N (see fig.f and fig.3) we get (see aCb0O 626))
bAX/x")A ft( (X x\S)ds+ &(yb)rfj i(x,x'ts)ds. an
r< a

By evaluating the functions (14), (17) we supposed POy
therefore we should make sure that these functions with arbit-

rary X} X/ vreally satisfy the K-G equation.
The function (X}x] S) (@2) coincides with the well-known

(Fock, 1937} Schwinger, 1951) solution of the K-G equation with
the proper time:

uds (x, x\Vs)~-(9Kr)-Ttn(e(xx,s)
Then by using the representations of the delta functions
‘ss10n @ = BOOR-Xp) 439D
we get
(9 X rg (x,x[s)ds:-S(%—x)> (zo)
(P £x)-Tn/™e(x,x\s)ds =IS W(x—-X4 G1)
r
OV m D 4 & Xts)ds- E)S@H
= iS(btf<93)le (*,*'),
(9Fx)-m"J 4 Ki6(y,.)6(y+)/ 7 (X, x93
| A

— Zi6o(M)d (% )N (x>x")>

24)

By evaluating (21)-(23) we separated the singularities 1iIn
the integrals over the contours [ and explicitly:

£(x,xts)ds = 0(yi)R(xtx')+ (29))



saa . S)as* #(fi-ft) [$(yo) +fify-0)] ; fexkn,9rs

where (2e)
R(*,X')?i K €Xh)

Is the Riemann function iIn the Fock representation (Fock, 1937)

and contours i} Ma are given in fig.4, The equality (25) is

valid obviously for y*® O and equalities (26) are for O])
Moreover, for y ~++Q we have

O(f)- 1% 135(y).

28
S (f) = 2x [B (Y0-0) +s (-y.-0)] 1%jO (X f) - 9
By taking (25),¢Ainto account, we represent (14)(t\én the form
fb 4 i, (x> x> s)ds - &(*(*>xI1 9ds

/>C r
Now @t iIs easy to show, by using the relations (20)-(23) and

(26 ), that the functions (17)» (29) satisfy the K-G equation
for arbitrary X,X ' and therefore they are just the functions

we have i1ntroduced in (7)» (@)*
In conclusion of this section we will note, that by using the

representations (29) one can obtain the commutator function

T(X,X) = ) Hx,xfLl.) Ue *>s)ds (30)

which, as 1t is clear from (25)» (28), satisfies the conditions
(1,6), and the Green function $ CfXfx")

Dx,* ']~/ 4 (& s)ds GO

which satisfies the equation (1.5a). The representations (30)»
(31) coincide with Fock (Fock, 1937) and Schwinger (Schwinger,
1951) representations respectively. These results have been ob-
tained in (Gavrilov, Gitman, Shwartsman, 1979a).

83 . Constant electric field. Spinor case

Let us show that the evaluation of the Green functions iIn QED
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with a constant mid uniform electric field reduces on the whole
to actions we have already performed iIn the scalar case.
Tire complete S¢ts of the S0.'Intions of the Dirac ennuii on

with the vector potential g™ *—-aA/ X*« -Ajt -0 which
are similar to (2.1), (2.2) and have a sornielassical forn, are:

IbHP*r. m=Ir X PPm T(hPi+"Td" (x)]all f
_ W L t(IPl+m)s " 61
4
HPP-Pipjx* B pAx), Of-Ji.jdp ® w ~xK
CO
BXPc UX 14 Ink$ )-IpAxxy
_an . .-i
4/ /.*1, T- W
/o1
Ul = - _
M-1= x1 O
-1

In (Narozhny, Uikishov, T976) 1t i1s shown, that the following
conditions are valid

Hw o =(iuE) [ T U(peeodh>-, @

-.T £

;8e=-iftefj~V- ra, :r€
By using (2.8) we get from (4) the inverse relation, similar to
23

io ~ o W= N*Pss) t$r@Afc.

The solutions of the Dirac equation

W1 rg=[t Jpp (X) +(4px+T)~<pplUlur- o
*YpX )= W 1 ®&X mpFCO] U

are classified (Narozhny, 1968) with respect to the energy sign
of asymptotically free solutions, which In the slow changing
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field limit coincide with (7). Thus i1n the spinor case the classi
fication (1) with respect to the sign of the kinetic momentum
under X _ —*+ 00 is equivalent to the usual classification. Sin-
ce the solutions (?) are orthonormal, we get from (6), (2.5)

that the solutions (1), (2) are orthonormal too:

Ot«™ - foa-"-v-vits, " . (82)
(8b)

Taking i1nto account (Nikishov, 1969)

AP-PIPz rlpjpjp/z )=Jp _-p_)S( N8rx ,
v(olP-PLR, pVB'r'):-Gfa-pI) 8 % ~p')8b|'dp';e ?

for the Green functions (1.1.44), (1.2.11), which are constructed
with the aid of the solutions (1), (@), we will gets

FelF JERE PG, ©
SMX - ik, o

+00
‘N (*><?-)iZ jjP S /i Yuprl(xK % Br(*). an
Let us calculate the sum in (IIl)
Zutu;=Lg=, ca)
and note that N
a ., - (13)
= [ 2c~» +(Ld+m)J c*un fiT~)

Since

() +ROM X-A\lr (e
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one can express (11) through (2.9) by using (12)» 03):

- N 0O
n (X>K ty - +(<P(§)+m)[ttii;aC+ b i>c <aeli'-
£ 2cE/('n (+%-)) “ & <+% )l , 0f )
By making the substitution of variable S"C| and i1ntegratin

over /A)\( and F\’/ one can use completely the remits of the pro
ceding section:

174
S~(xtx')= (R(x>x "t
- ¥ (xXXy-.J B> tpi$E(x,z;9)ds, 4
pC r
Sa(z,x') ~ (P(r)*T)bax/x'), (10)

SAfx, x")  Jijr mE <s)ds +(I)’,)Pfa ge (%, x[ s)ds,

b (/X,Xés) r g e (x,xY). (19)

Here fjg (xfx[s) coincides with the well-known (kock, 1937;
Schwinger, 1951) solution of the Birac equation with the pro-

per time:
a

$)-- ] (20)

Since the differential part in [P*(X)~ is the
same as in the scalar case, all the reasons prooving the va-
lidity of the representations (17), (18) for arbitrary CX 1
are perfectly the same.

The anticommutator function

& (X, x'y -1 (9(xh T)n{x,x’) &1)
r
constructed by means of the representations (17), (18) satis-

fies the condition (1.1.25), and the Green function

~Ix, X)=(9(X)tm)ACz,x% &CXy'yjfe (x,x',S)d$, (©2)

satisfies the equation (1.1.45).
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84. Combination of a constant field and a plane wave
field. Solutions of the Klein-Gordon and Dirao
equations

Let us obtain two complete and orthonormal sets $HK(X)]

semiclassical form solutions of the K-G and Di-
rac equations i1n the field

+fa (nzA @)

where F iIs a constant and uniform field, moreover the inva-

riants F Yad N = p ** ={£,uMp F *P)
do not vanish together, and tb is the isotropic vector (trr=0)
satisfying the equation f 'F] and

“f(®) is the transverse plane wave field: M~ f ~(NX) =

= MY - 0.

Let us choose the reference frame in which the electrio
and the magnetic fields from F are collinear, then they have
tge same direction as the space part of the propagation vector
; we will choose this direction as the direction of the
unit vector ;

N =fa, - />"> - W fafa -
fa =f fa Sy

fa =nfi3 fa-~ fa , n = r jn
The solutions of the semiclassical form of the K-G and Dirac
equations iIn the fTield (2) with the vector potential

Jfa(x)= fa (x)+fa(x) +A3 )t

fa (x)= fafa(i,o,0, 1)> fa (xy HXtfat,
AuUNe-) - (o, At (x.\ Ate-)t °)

are obtained iIn (Bagrov, Gitman, Jushin, 1976) (see also
(Borgardt, Karpenko, 1974)). We represent them in the follo-
wing form: the solutions of the K-G equation are”®

2) Here and elsewhere we will often omit the matrix indices
what corresponds to the matrix notation, for example

JI(*-)FK(x_)=R Ax.)FM KJIx )

fa:



~Aptn (x)’ te )de-tinx**-’ @)

and the solutions of the Dirac equation are

+%. AAT (x)zz LT+ U A (*)+,n)x_le ~'i Pfo (+'F-)Ur X

Ep.n ™ %tx )
Clb)

t% n w~(rle:tp{-ig b , iI"en.kjL)+b\% *.yC K(x-y-KL},
77 t Lu

\n (x) - { Zn+ypr | ,

% IX). W<ET*W>r

, <> "k . U (W '* 0 f)+eW (§F)]i-kf,

+K (x-)-" Jexp {- -jfta "}e.A (*)c-d r.

Here ft , pX tbVOO are 1he eirgenvalues of operators which are
integrals of the motion, moreover - 00< A.f p <+c¢49u=0,l Z
The eignes "1 In (4) correspond to the sign of the kinetic

momentum under X ->f oo (CE”*">0), We define the solutions

(4) as analytic functions of X” what is valid ifJI(X?) is a
piecewise continuous function ana the integral over T conver-
ges uniformly. Since we always suppose a rather intense decay
of the plane wave under 9 these conditions hold. We
will choose the principal value of the logarithmic function in
the same way as in the plfveceding sections, that i1s so that
tri (+Ji_) - Cn IA -!+iTi'Of-i"The contours iIn the integrals over
V and the arguments JI~ are shown in fig.5.

The solutions (4) may be expressed through the solutions
of the other form like iIn the case we were concerned with the

electric field only:
1 f00

; IE (zU E)z MR ¢CQdo™ G)
Oo 3

where



)

Here the quantum numbers indices Rrl, Bnr are omitted to
emphasize the fact that the integral transformations (5), (6)
are the same both fotx the solutions”™of the K-G equation and the
Dirac equation. The saddle points X give the main con-
tribution to the integrals (6) under X0->x 00 (compare with
(Narozhny, Nikishov, 1976)). Since the plane wave vanishies from
+¥ (2) under JI_ —> £ 00 the solutions (X) reduce to the
already studied (2.4), (3.7) under Xc~+ * 0° 3". Thus (x)
(~¥p (X)) from (4) do describe the particle (the antiparticle)
under (Xo~** 49), The normalizing integrals for the so-
lutions (4) do not depend on the Xo and therefore they may be
evaluated In the same way as the normalizing integrals for the
solutions (2*1), (3.1):

n, +PpJpi *nl v -I P-)"Pt ~Pz)$ntt\

AN Mapnnr, PJpJdn'z* 72« 3(p_-pJ)0(px- P)SnNn'*zi' -
In the electric fTield the solutions (2.1), (3.1) form a complete
set: 'fpM(X) if <O and+ (X) if >0 that is for
the solutions (2.2), (3.2) we have

4'fp_(x)=0, g>y p (X)=0/

The plane wave and the magnetic field are not capable to violate
this characteristic of the solutions of the semiclassical form,
therefore we will assume that the solutions (2.2), (3.2) descri-
bing the particle under X0-*>+00 and the antiparticle under
X0-+-00 in the field (2) also satisfy the conditions (8). We
could verify this assumption by straightforward calculations with
the functions (4), but 1t is unnecessary at this stage since the
corresponding proof will be given iIn the frame of the general
proof of the complegeness of the sets being used, after the Green
functions DfXiX" &.(X, X1 are constructed. To define comple-

tely the functions {"(z)} {HK(X)] ve ML = e relations

3) The presence of the magnetic field together with the electric
field results in the substitution (ZT)-* —« [P n(X%),
AXR~*]iL AL, O-*Nnr = 1 where b + for

the solutions of the Dirac equation and 7=0 Tfor the solutions
of the K-G equation.

% (8)



which are valid Por the complete and orthonormal sets of solu-

tions

F(2)= *DB(+1H)+y(x36(-1+),
r €))

T CO=Y () 6IM-)+FCIG(1)F -20)=2Y 1) h-) +y (1),

where = +Ji for the solutions of the Dirac equation, p=-i
for the solutions of the K-G equation, and the coefficient mat-
rices {j(~I+)-&*(+1~) satisfy the conditions

W +)6(+1+)+W+1-)6(~1%)= (+D *1 ,
GPU )&(+!1*)+W M -W -1*) =M (10)

GUHGCI-h ?2G (+1-)e(i-)=G(HH& W + *G (% )E (-!-)
It 1s obvious from the explicit form of the functions (4) that
the conditions (9) are diagonal at any rate with respect to the
quantum number /L what makes it possible by using (8) and (9)
to get the solutions of the K-G equation

1lla
yrnrie>,
and the solutions of the Dirac equation ’
[(*> - =)+ + |*
ni( WX-)I+fyz) G(+ 1*)]pp nt (11b)
Y PNIN1L(X)= W
O @ W] P-P+tnZ
Since below we will make sure that the solutions ~ (J/p_)
form a complete set over the X0-Corl$i. together with the
solutions I+fp 3 an” together with them only, the ortho-
normality relations are valid:
»  -"P.p'nl ofapt NX <421

The orthonormality of the solutions (11) follows even from the
properties of the coefficients GGU) (10) by taking i1nto ac-
count (9, (), (12):

(Yp. AN >-%JIp'n)Hr - ~AP-~P-)*(PL1-Pi")Inn

@13)

(Yp.P.nx, Yppp'n'r)~
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85. Combination of a constant field and a plane wave
field. Green functions

By using the complete sets of the solutions of the K-G and
Dirao equations, which are obtained in Sec.4, we will get all
the Green functions for the scalar and the spinor QED, whioh were
mentioned iIn Sec.l for the field (4.1).

The calculation method of the Green functions in this field
does not differ from the preceding case. Therefore we will give
the final results only:

S-(x,x")=(9(x )+m)AX
+S*(xtz") =] ¥8)ds-9(t$J$(T,t',s)ds , ©
pC n
SC(X,X') = (9(1c)+m)Ac(x,x'), ¢)
A X ,x")=1Q(x,x',s)ds;
pc
Sa(x,x,)= (?(xX)+m)&a(x,x"), ©)
(X, XD- S)ds+ 0(C%) v 9, S)ak;
« Ch A « Xa
S t(x,X)= (9(X)+m)&-(x,x")f 00
?0E(X,x")=J 9 (X,x\ s)ds-OftuO)U (x,x[s)ds-W y|f 9 ft
G 7 r ()
S(x,x)= (P(z)tm)&c(x,x")r
| dx,x")=12J 9(x,x\s)ds-603)
_ p pa
SIt,X") = (B(xhm)uBxtx\ )
¥ (*,x)~3$9(*,x\Ne -1l 3)J 9(x,x;s) -f*x,x's)di;
UR n M F i
A&X) AC@DHMEX,ZIC £(x,x)= L ) J9(x,<s)ds @
where
$(*>*"s)=[exp(ieFM, j+ (J 4 3#e eR

@)



86

etey ,
I(*><*)= w e H 3)Efw r exP (-1T
©)
+fy MeF1 PL.ZI(yFE)edkeEs-Lif(\\*i(s))c eHs}]
gi Q10)
X (u)=xL +y_izl , "I0U € A(x.Cuped

<p(sS):je A(X_(u))[eA(xJu)<-eFLru))du-, = C2Cj-

0 N
and the contour <Cn see Tig*5#
The function 97 ,x',s) satisfies, as it will be shown in

Sec,6, the Dirac equation with the proper time

i ag(x,x'f S)=-(92x) - m y f x
the funotion <E{X]X7S) satisfies the K-G equation with the

proper time
Ids4 (x,x\s) =- (9I(x)-ml)((x,x's)
The Green functions for the scalar QED one can obtain from
(D-(7) by means of the substitutions

§ (z,x',s)-r4fax",$)

Note also, that the relations (2.25)-(2*27) for the functions
0)-(7) iIn the field (4.1) are valid too.

The function (7) satisfies the usual conditions over the arbit-
rary space-like surface. This verifies completeness of the set
of the solutions (4.4), (4.9) over the arbitrary space-like sur-
face.

By eliminating the plane wave from (7) we will get the expres-
sion obtained by Pock (Pock, 1937). By eliminating the plane
wave or the constant field from (2) we will get the Schwinger re-
sult (Schwinger, 1931)* It i1s also iInteresting to note, that

0 (P SCX)-9(=psy , x% Ky-)SIX,X)- =/ ISR

that is the funotion Sc(X, X in the field (4.1)
for the usual QED and for the QED on a null-plane (Rohrlieh,1970;
Kogut, Soper, 1970; Bjorken, Kogut, Soper, 1971; Neville, Rohr-
lioh, 1971).

It 1s easy to represent the expressions (8), (9) in the 1inva-
riant form:
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$(*,x",s)=[exp{] MBi) s) * (nil)je eFs

* JE}%EE{)CjAA (: n X ( ) :) N !' ”ﬂj)
ee(ny) J

"(xX's)=0 £ £ 5w ~ np irw -

&)

~ij(ytL(s))e Fdk&Ps (y * 1(s)) +1 pa)};
P(s)= $eB(nx(u)) [eR(nx(u)) +eFi{u)]du,
()™ 0N\ < T MU ReINX(UT))du

s=c\f?h~fi'-'pY /i [SJz+fptT]'}
where X iIs ~“the gauge function of the vector potential
AM(zy. %= S'Ajimdx* the integral being taken

along a straight line. Note, that (irM"Batalin, Fradkin, 1970J9H) )\
the Green function Sc(X, X*) in the field (4.1) was obtained P*tst i
in the form of a proper time integral of the function which in
fact coincides with (11).

To write the Green functions (1)-(7) iIn the iInvariant form
one should replace the function g(th',S) by the expressions
(11, (12, and in all the contours B by £

86. Operator representation of the Green functions

Let us show that the function fI(X,x\S) (5*8 ) coincides
with the transformation function i<Xlexp[iSEP-m2J XX

which for the field (4.2) may be obtained by the Schwinger me-
thod (Schwinger, 1951).
Consider the matrix element

A
| f iP*
<xiU(s)lx"'>=<xcs)ix'(o)>, U(s)~elL , 0)
where the operators of momentum Jju and of coordinates sa-
tisfy the usual commutation relations:
and IX'> is the normalized eigenvector of -

X Ix'> = X 'x > , <XjX>-S M(x-x") .
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Let us introduce operators of momentum and coordinates 1in the

Heisenberg picture:

X MS)* V-faX'Ufil X»(ofaXxM Xt-X°tXJ X ~(0OX,xr>Q,
9 3(s)=W 1s)?/'l/(s), 9 R«»~9I3 N(oftg.o),

which satisfy the equations

UA g)MM @)
dﬂ w L]
d%¢(s)
ds~=ze™ (OP (s)+i(Ne)-13s)Ws)'W(. )
where S-F*+fa o L i s jJ ) , fa(S)= V{;‘,)t [9%)J¥ (i)

The function (1) satisfies the Schrodinger equation

to<'X(S)Ix'(0o)>"r-<(S)I 00

and the equations, connecting tile operator 9u with it’s coor-
dinate representation:

( teges -CAJ (x))<x(s)ix'(0)>=<xa)i

©))
(- g X -eAN(X))<zZ(S)ix'(0)>=<x(s)IMojix'(0)>t

and also the boundary condition
Um xxix"(0)>=d X (6)
S— to "

where one should proceed to the limit along the real axis.
By solving of theequations (3) we get

P (i)=-e"'zefs 31(,>), )
1et.1"'rr1?ehie-aaie dul.
Uu
C)
9(o=e T % (0)+r B* 0 W )% In)+
+c  (P-P)Xe-~z{eF*eetue d-i(X- ®)
du J J>

and by substituting the expressions”~"9) into the equations (P)
we obtain

X.(s)-X-(0)=Ar-fi-e )9 (0), (o)
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XxtsyXjonrJ-feM jflfoi-zjduWezem al il A A ] 6 d
O O CtU' J

X, (S)-X. (0=t (zteit)9tfo),r{0ffc ie rll- ereka) <

@2)

[reld *T™ ~(n bl (X43),e-r )
from where come the commutation relations 0A
[X-(s), X.(0)]=[x_(s,)) <E(<>)}= [X.(0)t9(0)]= o,

(3)

DOm,x(M] -1 m

If we write the operators %(0) in terms of coordinates
X/JJ.(S) ,Xrl/l (O vrith the aid of relations (10)-(12), we will
get, by using the commutation relations (13) the following

Xl h"0) > =X Ix" (0)>.{ M ("I +
adJn i
+ 41in 22HS % (S)+izEcihcEs i-ieHclpeHs-t
* eHZ*-UEA-Ui0GA*)nda(ri)}, ZeF(s-4) (u)
1
ZeSLLi
-1

tis)=L(sU”-(t- elecs)eAixL),
where the functions L(S)} X.(U) are defined in (6.1(5).
One can verify that the following identities are valid:

ezHz -
xi-Us))2
4sin 2Hs y )

- ey Az
4t [~ @++(s))ZgeHs +1ijeFi(s) + ()]

where (S) is defined in (5.11)» and
-of(s)[eHZSUE<i3c(jI0 1 3xeX(X-bZz fs)I =i ~ jj->

ur(s)=exp((eEoL3-te.HZ')s) + (t<’..p)y e ePS" (16)
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,\tbe-ZeFue w  -JAdu-

du esy-
By substituting the expressions (15), (16) into (14) we will ob-
tain the solution of the equation (4):

<xX(B)1x'(0)> = crx/x)ur($)exp{-c~ efs -
fa +KstfctyeUs +*ye Fitshi <P(s)-£En(sheFsU ncH i)}*

where QRis an arbitrary function of Xj X 1which we will
determine by satisfying the equations (6) and the boundary con-
dition (6):
— 3 e™H

Cx?;)C)_Ei «al - <i8)
Here the fynction X under an arbitrary gauge of the vector po-
tential v w of the constant fie™ci 1Is represented as the iIn-
tegral along a straight line: Xe-/ AFNEDdX which results in
the eég{essi?r % — Xg-+‘%x in the case of the vector potenti-

n _
als XQ, Thus we have obtained

zj s}~i<zjexp{is[$)Z-m Z}ix'>. 09)

To calculate the radiative corrections it i1s often conveni-
ent to use the operator technique (Schwinger, 19735 Baier, Kat-
kov, Strakhovenko, 1974, 1975)* The starting-point of this cal-
culation method is the representation of the Green functions as
matrix elements of an operator, where the states are numbered
by the space-time coordinates (Schwinger, 1951)7:

S(x,x") =<xISIx">,
S=(s- 1G 5F S* S* s*).

@)

Here we will obtain the operators S for the Green functions
calculated iIn this paper* Note, that all the obtained Green
functions have the following structure

S(x,x")=. (<P(X)+m)t\(x,x")t

h(*, %) - £ A Ul)1 9(x>x",s)ds, (2D
J K]
whereJ 1 and /7y are the given functions and contours, and
4) The notation of the operator has here the same iIndices as the

corresponding Green function*
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fi(X} Sj Is, as it has-been shown, the matrix element of the
operator W(S): OﬂOItS(P—m*')}- Then the corresponding ope-

rators are

Wl
S-(e+T){\ t &=iZ.Jdsj B (K)EL W (s)elkdd K
jomees

@2)

Pé (K) = No 7 fijim y

By evaluating B (iC) for the obtained here Green functions we
will get

AG=J W(s)ds, (23

Ac=JwWorfs-~7/cfcoeslraxT )e - ‘Tax
ran ~00 24)

AC:’E]M Mds-tﬁgLi‘,gEL-e itn\B)eLrD(CLVV(S)dﬁ (25)

. <wIW(s)ds-£j7fds) -ferjre*  XWis)e* X (s)
pc —co
- ITX0 D
r q) )
&a=i JW(s)ds+™NJctsJ j» e m e’'“"* Gs)
ra, 6@ _©0 >
@©
on* =J W(s)ch-"JdsJ
"Wh "o° (29)
3. (dsH® A - - TIC.ppede 11-cCrl!

rar - r-ts / |
The operators (23)-(25) are i1Inverse to the operator g'liz
and the operators (26)-(29) are orthogonal to i1t. The operator

il (23) coincides with the Schwinger representation (Schwinge
1
1951) of the 1i1nverse operator —jr///
The operator (28) oontains the factor € and there-

fore vanishes when eliminating (ty*0o) the electric field. As

one can represent the operator [Jc (24) as [] y

then 1t coincides when eliminating the electric field with [,
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Pig*5a Contour for +K @9 €D

w |
Pig.5b Contour for m—b x(:é

Fig.6
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APPENDIX C. RADIATIVE EFFECTS IN A CONSTANT
ELECTRIC FIELD 1

In Chapter 1 the rules for writting out the matrix elements
of transitions in Furry picture and the formulae for calculating
the total probabilities of transitions with the aid of cutting
the diagrams are given for the external pailr-creating fields* By
using these formulae we will calculate here the total probabili-
ty of the photon irradiation from the vacuum accompanied by crea-
tion of pairs and the total probability of transition from a sin-
gle-electron state accompanied by the photon irradiation and cre-
ation of pairs for a constant electric fTield,

a) The total probability of the photon irradiation
from the vacuum in the electric field accompanied
by creation of pairs.

It follows from the unitarity condition (1.2,7) that the
gquantity sought, which we will denote by P iIs equal to the
following

L E

L— Jrii¢ O=HHASA xz" ) F1Sdzdx
@)

v / > v VvV
L =—£J30XGc-Z)XX) dxdxl,
M
Let us calculate the vacuum current $fa) (1.2.7)

JO~ km 3/x*) - fan X).

=/ nx1i Y,
By choosing Sc in the form (B.3.22), $” in the form (B.3.18)
and using the formulae (B.2.26a)”and (1.2.10) "Ne will get the
representation of the function S” which is convenient for the
case under consideration.

SC(X,z%a (9 ( X ) -tfl°fl 3 IX x)) ®)

S - VS.P, Savti toly*|
" The work i1s carried out by D.m .Gitraschwartsman. Sh.M. and

Wolfengaut J.J. (Dept, of math. Analysis.Pedagogical Inst.,
634044 Tomsk, USSR)
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Al XYY I/ (XS)E-E.)8C AECXXeXH
it©=defs, A)- shets,

With its aid ve will getl)
3 (o) =ZielBFOALOX 3 + ©IT
3+ (X, Xp=4ie Bicii xJ k=i,z,
g}(x,x') = zee [$t(X)&+(x,X")-9+ £x)if.(x,x")]

X (X)=EDbkK> k*1)
at - Al ,x )t "n

It may be shown by using the explicit form of the function
X 4c(Z,x', $) that (x) \ (X ,X 9~ y K, this yields

K-itZ and that (S€€ ow\d
Lj N &(xz's)dsjh
d Na
g £
] _ @
N (GSeS) Ep{- TS + BGE-
ha
K
The two first terms iIn (4) vanish when ~* XN and the lat-
ter integral may be calculated with the aid of the residue me-
thod:
et O (SShebEdylp{-Ins + efs-<f
ax?

I) The notations and definitions of appendix D are used.
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Finally we will get
J(X) %g(i I\/IeKr.e‘r&S/' (5)
Here T Is the time iInterval i1n the course of which the elec-
tric fTield acts. (We will, as usual, assume
The expression (6) i1s the mean current of particles crea-
ted by the electric fTield fro% the vacuum.
In view of the fact that J (x) does not depend on the space-
time variables there 1s no i1rradiation of the photons with

£ £ 0 by the vacuum current Ehis leads to the fact that
the i1maginary part of the dragram L i1Is equal to zerP- There-
fore 1t 1s not necessary to calculate the dragram i, In the
case under consideration. #

Consider the calculation of the diagram L, To do so we
will use the representation of the function £& following from
the relations (1.2.30), (B.-3.22) and (B.3N18)

Sdz,z")=(9(X)+m)[<)Ix,x'h (6)
6c(x,x")- f (xx's)-9(y3)(cls)ft (xtx,)d s
c "
tc(s)(t (xx$)cLs. (& 1 oc<flr) @)

The contours arising here and below are defined by the figures
(1-6) of the appendix B.

We will get by calculating the trace, which appears in the
expression (2) for £ the following

»

N+*h{jS dzx')x Scedg*W e @)
flt * 1emzirl(zz")frl (xIx)= oy f  dst
/4n=*
mild)/A(tx3

1, *% Z % (X)&Ixxd (2 % QI[Z 1XX"J=
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/%9 L | #.< s b

pep* 3
/B ~3LO) (TN (X =D~ Al Tax)& FoBHX D)

ALy e a kOLN  (ur
yljpdpgs"_{cg_(l:lsﬂl 1**% ) 1 (X'XSt)

p21l (sB1) ‘*oheM\o- y,*2&M eE s/fel

<X ftzV = 60 (xx') 1 GZ(XX

JNote, that the expression (8) is even with respect to J?-jc *

and substitute D& (Xx-Xx') taken in the form Z&fXo-xJhiTu-jc}
into (2), By performing 2* and X integrations in (2) we will
get

27
7 =-z1i e*vl(?E) dsi { dS si™n — “exP{-1m2=®

(W4 o eer 9 49 mheEs+

1 T & £ -
1 * te-a, JI
a« +¢7 g _aE (ctkeEs” + ctheEsT) . ©
P * atvn I_ 10>

b) The total probability of transition from a
single-electron state accompanied by the
photon irradiation and creation of pairs#

It follows from the unitarity condition (1.2#8) that the
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quantity sought, which we will denote by where 1 iIs the
total combination of quantum numbers of the i1nitial electron
in the electric fTield, the electron being described by the

asymptoilc expressions for the functions fuozfI (B.3*1)
under PO is equal to the foltowing:

an
1 a9 2]
e = &*10@&X " HNftty SA2X) KA Johok™t (12)

el (UXXKK-x) J(X)ct*z, d*x'.

The dragrams Z and M do not contribute to r£ due to
the pace-time invariance of the current Y(X) and the diagram
i has been calculated in the i1tem a) of this appendix.

Let us calculate the expression within the curly brackets
in the integrand in (12). When doing so we will_ choose the func-

77 v
tions £ in the form (6), and the functions % in the form
(B.3.1).
Mo=4 (U 34 (XD« +

[<P N Ip\ X Y@Q<z( x , m ™ 04 PAZ)
L 9(X)&+(i, x )i

Wi “ftj /(LM —<*£ ftIft. ft, * 'h

*a k) &ICHFIXT)COBIPM)GH, X)JE

Mj > imA i$>~\x)i$>*i(x') + ~ L(X Pp~(Z")]&t (7,X'It

Here 1*+ | is the spin quantum number. The functions t faj
are defined in%éB 3.3) and depend on the quantum numbers ﬂ_ 0I5>l1

Z

To do the and X integrations it is convenient to choo-

se the proper time representation for J)cfj[ jr~ in the expres-
sion for ;
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VE(E-*) > (faB i1 r <&M T K)

Here we have introduced the photon mass J, since the diagram
M contains an infrared divergence*

The final result has after the 1integrating the following
form:

-nX
M - )< M e >,

I s\

o1>fV 1] .

G p

2 T exf>{-iR\ -»=* )J/

ZA cNzcesr-jt > sh&

, , s <+eEs,(dh.e.£sl1+1
Z*= 7eEszcAzeEs| f-shzeEs . . ( )

3 * x5 | +e£Sz(c{ke.Esx-1) =
)4
pe= p +ryrT M : (14)
. * %
Here we denoted the divergent integral Efé%% b”VJJ*' bY
<

It may be shown (Nikishov, 1970) that from the conservation law
for the creation of a pair accompanied by the photon i1rradia-
tion it follows that the Ky integration may be replaced by
the integration, so that S iIs equal to”r , Whe-
re X- *fL efac_ (see appendix b)) By studying the classical
analogue of the quantity 3U one can make sure that S IS
the time iInterval, i1n the course of which the field acts, mea-
sured 1n the units of the proper time of em electron in the
electric fTield.
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c) Discussion

For the pair-creating fields the calculation of the total
probabilities based on the unitarity conditions differs iIn prin-
ciple from the case of the fields which do not product pairs.
This difference is in that one should calculate the diagrams
which are subject to cutting with the aid of the noncausal Green
function o , Therefore 1t seemed to us to be of iImportance to
check the results obtained in this way by the straightforward
summing of the probabilities of transitions, that i1s by the
straightforward calculation of the left-hand sides of the uni-
tarity conditions (1.2.7) and (1.2.8). It is convenient to per-
form such checkinf? after a certain transformation of the left-

hand sides of the relations (1.2.7) and (1.2.8). Namely, let
us express the functions 4Y and in terms of the func-
tions +T in accordance with the relations (1.1.41) and use
the completeness of the o0ut - states. Then

(15)

(16)

Here we have chosen the vacuum current U he equal to zero,
what i1s valid for the constant electric fTield.

We have carried out the straightforward calculation of the
quantities F) and Pg by using the formulae (15) and (16).
The results of this calculation coincide with the expressions
obtained by using the unitarity conditions. This coincidence
is the direct proof of the unitarity of the $ — matrix to the
first order of the perturbation expansion.

Note now, that in (Baier, Katkov, Strakhovenko, 1974; Ritus,
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1978)2)}mhe mass operator

for a constant field was obtained, which was then averaged over
some solutions of the Dirac equation, these solutions were ei-

genfunctions of the mass operator. The result obtained in this
way has, when only the electric field is present, the following

forms r r r
<M > =*- J jd-h ™ tei sz
Hr rC pjc ) (as)

(M(St iIs defined by the formula (14))

The expression (18) i1s i1In the second-order radiative correc-
tion to the scattering of an electron i1n the electric field,
which 1n accordance with the results obtained in Sec,l of Chap-
ter 1 has the form

oui<olam (@.DS™k

a9

The vacuum current </ is equal to zero in the electric field,
therefore the diagrams Al ma and L should not be considered.
The dragram njn can be expressed in the case under conside-
ration in terms of <Al ~ i1n the following way:

hmix <n>!mr\ u*

where

and Cv and bW(mIn) were calculated, for instance, in (Niki-

2) We do not touch here the papers related to the calculation
of the radiative effects in the fields which do not creat pairs.
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shov, 1969; Narqﬁhnxs(Nikishov, 1976).

The diagram i, C# was calculated in (Ritus, 1979, 1977)
for a constant field. The result of this calculation for the
case, when only the electric field i1s present, 1is given by the

formulae (9 ) where the & and integrations are perfor-
med along the contours [ Cc only. Note also, that in the elec-
tric field L Cy I1s,In accordance with the results of Sec.3

of Chapter 11, the second order correction to the effective
Lagrangian for the Tfield
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