KFKI-1977-110

ILANIA FELDANY TK 155.057

SZABADOS L.

AZ NVH TERMOHIDRAULIKAI KISÉRLETI BERENDEZÉS III. RÉSZ MÉRŐSZAKASZOK ÉS MÉRÉSTECHNIKAI ESZKÖZÖK

Hungarian Academy of Sciences

CENTRAL RESEARCH INSTITUTE FOR PHYSICS

BUDAPEST

AZ NVH TERMOHIDRAULIKAI KISÉRLETI BERENDEZÉS III. RÉSZ MÉRŐSZAKASZOK ÉS MÉRÉSTECHNIKAI ESZKÖZÖK

Szabados László

Magyar Tudományos Akadémia Központi Fizikai Kutató Intézete 1525. Budapest 114. p.f. 49.

> HU ISSN 0368 5330 ISBN 963 371 358 7

KIVONAT

A cikk a modellezés és modellválasztás problémáival foglalkozik. Bemutatja az NVH berendezésen alkalmazott mérőszakaszokat, majd néhány speciális mérőösszeállítás rövid összefoglalását adja.

АННОТАЦИЯ

Статья занимается проблемами создания и выбора экспериментальных моделей для термогидравлических исследований реакторов ВВЭР. Описываются экспериментальные участки, применяемые в ЦИФИ на теплофизическом стенде, а также некоторые специальные системы исследований.

ABSTRACT

The problems of modelling and model selection are treated in the article. The test sections applied in the loop are described, and some special measuring setups are given.

1. A modellválasztás problémái

A termohidraulikai kisérleteknél, ha azok célkitüzése energetikai reaktorok tervezése, vagy továbbfejlesztése, alapvető szempont a modellhüség, vagyis az, hogy a kisérleteknél kapott eredmények, adatok a valóságosnak megfeleljenek, illetőleg azokat a lehető legjobban közelitsék. Ennek megfelelően, ha a müszaki adottságok megengedik, a valóságosnak megfelelő l:l léptékü modelleket épitenek, amelyekre jellemző a geometriai hüség, a hőfluxuseloszlás, a hütőközeg paraméterek azonossága.

Nézzük meg a modellezés szempontjából a VVER-440 és VVER-1000 reaktorokat. A reaktorzónában a legkisebb egység, amely viszonylag egyszerűen megadható perem- és csatolási feltételekkel a zóna egészéhez kapcsolható, a fütőelemköteg. Egy fütőelemköteg a VVER-440-nél 127, a VVER-1000-nél pedig 331 fütőelemrudat tartalmaz. Nézzük meg ilyen méretű modellek, mérőszakaszok vizsgálatához szükséges hütőközeg forgalom és teljesitmény adatokat. A VVER-440-nél a szükséges hütőközeg forgalom 117,5 m³/óra, a várható kritikus teljesitmény kb.15 MW, mig a VVER-1000 esetében a forgalom 544.9 m³/óra, a teljesitmény kb. 30 MW. Ebből a két adatból is látható, hogy az ilyen kisérletek végrehajtásához szükséges berendezés a VVER-1000-nél már 30 MW-os lenne és óriási költségeket jelentene, ezért a hőfizikus és a tervező számára csábitó természetes léptékü modellek helyett - mint a tervezői gyakorlatban általában - kompromisszumos megoldásokat kell keresni.

A szokásos berendezés nagyságok az l. táblázatban láthatók.

1. Táblázat

	199	Müszaki adatok				
Ország	Intézet	Nyomás	Teljesit-	Hőmérséklet	Hütőközeg	Mérőszakasz
		kp/cm ²	kW	c°	mennyiseg m ³ /h	nossz mm
Szovjetunió	Kurcsatov	100	6000	310	100	2500
Szovjetunió	Krizsansz.	190	2000	550	-	2500
Franciao.	CENG	170	9000	352	100	5000
Olaszo.	CISE	250	12000	370	70	10000
NSZK	AEG	165	5000	700	-	1700
Svédország	ASEA	100	8000	310	-	4500
Svédország	Studsvik	155	5500	343	138	4000
Lengyelo.	Svierk	160	300	350	30	4500
Magyaro.	KFKI	160	2200	350	70	4500

TERMOHIDRAULIKAI KISÉRLETI BERENDEZÉSEK EUROPABAN

Az adatokból is látszik, hogy korszerü energetikai reaktorok esetében a berendezés nagyságok - de elsősorban a teljesitmény - a teljes modellhüség szempontjából korlátot jelent. A fütőelemköteg természetes nagyságánál általában csak kisebb zónarészletek vizsgálhatók.

A vizsgálható rácsok nagyságát a vizsgálni kivánt probléma is befolyásolja. Forrásos krizis /kritikus hőfluxus/ vizsgálatoknál adott berendezésen a rácsnagyság csak fele, harmada lehet, mint névleges üzemi paraméterek mellett, /lásd: az l. táblázat/.

A rácsnagyság megválasztását a gazdaságossági megfontolásokon tulmenően más tényezők is befolyásolják. Bizonyos rudszámon felül a rudak azonos körülmények között vannak, tehát sem elméleti, sem gyakorlati szempontból nem szükséges, hogy számukat egy bizonyos határon tul növeljük. Pl. a 19 rudból álló háromszög rácsban felépitett köteg az a legkisebb rácsnagyság, amely még rendelkezik hőátadási és hidraulikai szempontból olyan fütőelem csatornákkal, amelyekből a reális fütőelemköteg is felépül.[/]

A nagy fütőelemszámu kötegekkel végzett kisérletek méréstechnikai szempontból is rendkivül bonyolultak és olyan technológiai felkészültséget igényelnek, amelyek eszközés szakember igénye csak kivételesen jó helyzetben lévő kutató helyeken elégithető ki.

A modellválasztást természetesen befolyásolja a vizsgálni kivánt fizikai probléma és a kutatás célkitüzése is. A reaktorban lejátszódó fizikai folyamatok bonyolultak és összetettek. A fizikai alapjelenségek vizsgálatát pl. olyan

- 3 -

egyszerű modelleken célszerű végezni, amelyekben a jelenség "tisztán" - zavaró tényezőktől mentesen - jelentkezik. A kapott eredmények megfelelő kezdeti-, perem- és csatolási feltételekkel azután elméletileg általánosithatók olyan komplex geometriákra, mint a fütőelemkötegek. A reaktor termohidraulikai kutatásokban a célszerű és általában követett eljárás az, hogy az alapjelenségek ismeretében a kutatási téma nagyobb rudszámu mérőszakaszon végzett "globális" kisérlettel zárul és igy az elméleti általánositás gyakorlati- kisérleti igazolást nyerhet.

Ez a kutatási stratégia természetesen nem a reaktorkutatások jellemzője csupán. A modellválasztás fontosságát itt különösen az indokolja, hogy az energetikai reaktorok egységteljesitménye együtt nőtt a teljesitménysürüséggel, ugyanakkor növekedtek az igények a reaktorbiztonsággal szemben is. Az energetikai reaktorok harmadik nemzedéke 900-1300 MWe egységteljesitménnyel épül és nem kisérleti objektum. Hozzá kell tenni, hogy energetikai- kisérleti célra számos erőmü épült, gondoljunk csak a VVER tipusra, amelynek első egysége 210 MWe teljesitményű volt és elsősorban energetikai- kisérleti célokat szolgált. Ez is egyfajta modellkisérlet, ahol a modellhüség teljes, de az üzembehelyezést meg kellett előznie egy hosszu kisérletsorozatnak, amelyeket különböző - sokkal egyszerübb - modelleken végeztek. A munkát azonban nem tekinthetjük befejezettnek. A jelenségek pontosabb megismerése, a zóna "finom-analizise" egyidejüleg növeli az erőmű gazdaságosságát és biztonságát. Ezeket a célokat szolgálják azok a kisérletek is, amelyeket a következő fejezetben leirt mérőszakaszokon végzünk.

2. Az NVH berendezésen használt mérőszakaszok

A fent leirtaknak megfelelően a vizsgált fizikai probléma /a kutatási programban szereplő feladatok/ szerint néhány példán mutatjuk be az NVH berendezésen alkalmazott mérőszakaszokat.

2.1 19-rudköteg mérőszakasz

Az 1.ábrán látható mérőszakaszt az NVH-E hurokágba épitettük /I.rész 2.ábra/. A mérés célja turbulens keveredési vizsgálat /a fütőelemcsatornák közötti tömeg- és hőcsere/ a hütőközeg egyfázisu áramlása esetén. A rudátmérő és a rácsosztás a VVER-440 reaktornak megfelelő, mig a fütött hossz 1250 mm, a VVER-440 reaktor aktiv hosszának a fele. Az 1750 mm-es teljes hosszból 500 mm a fütés nélküli áramlás-stabilizáló szakasz. A fütött szakasz csövei rozsdamentes acélból, az áramlás-stabilizáló szakasz csövei vörösrézből készültek. A mérés céljának megfelelően a fütőelemek külön-külön füthetők és ezzel tetszőleges radiális irányu teljesitmény egyenlőtlenség hozható létre. Ennek megfelelően a távolságtartó rácsok szigetelő anyagból készültek. A mérőszakasz kilépésénél zavarmentes rácsot kellett biztositani /az ábrán "kilépő rács"/, abból a célból, hogy a fütőelem csatornákban a hütőközeg sebessége és hőmérséklete pontról-pontra mérhető legyen. Az áramkivezetés rudankénti szétválasztása a csövön belül történt az A és B részletnek megfelelően. Sebesség mérésére Pitot csővet, hőmérséklet mérésére termoelemet használunk. A mérésekhez készitett speciális méréstechnikai eszközt a következő fejezetben mutatjuk be. A maximális üzemi nyomás 10 kp/cm², a hőmérséklet 100[°]C, mig a forgalom 30 m³/óra.

- 5 -

l. ábra 19-rudköteg mérőszakasz

- 6 -

2.2 Kétcsatornás mérőszakasz

A 2. ábrán látható mérőszakasz helye az I.rész 2. ábráján látható "2" jelü hurokág. A mérőszakasz kétfázisu, keresztirányu tömeg- és hőcsere vizsgálatokra szolgál elsősorban, de használható egyfázisu vizsgálatokra is. A két csatorna a B-B metszeten látható egy-egy fütőelemmel. A fütőelemek átmérője és a csatornák hidraulikai átmérője azonos a VVER-1000 reaktor hasonló adataival, mig a fütätt hossz 1750 mm. A csatornák közötti válaszfal különböző mértékben lehet perforált /az ábrán 30%/, vagy képezhet különböző szélességű hosszmenti rést azzal a céllal, hogy a fütőelemcsatornák, vagy fütőelemkötegek közötti keresztirányu ellenállást modellezze. A hütőközeg a két csatornába külön-külön lép be, majd áthaladva a mérőszakaszon két ágon át távozik. A belépésnél a hütőközeg tömegsebessége és hőmérséklete /entalpiája/ azonos. A kilépés után ugyanezen adatok mérésével a keresztirányu tömeg- és hőcsere meghatározható. A csatornák geometriai szempontból azonosak. A tömeg- és hőcserét az egymástól villamosan elszigetelt fütőelemek külön-külön és különböző mértékü fütésével érjük el. Lehetőség van a hütőközeg sebességének korrelációs sebességméréssel történő meghatározására is.

A mérőszakasz természetesen nem tekinthető olyan modellnek, amelyen kapott kisérleti eredmények közvetlenül használhatóak reaktorkörülmények között, de az egyszerü geometria kiválóan alkalmas arra, hogy a keresztirányu tömegés hőcserét - mint fizikai jelenséget - tanulmányozni lehessen. Szükség van tehát arra, hogy több rudat tartalmazó

- 7 -

2.ábra Kétcsatornás mérőszakasz

- 8 -

modellen is kisérleteket végezzünk, amelyen tisztázható, hogy az egyszerü geometriáju modell és a mérések kiértékeléséhez használt matematikai modell milyen hibával /korrekcióval/ reprodukálja a komplex reaktor geometriához sokkal közelebb álló mérőszakaszon kapott eredményeket. Ilyen fütőelemkötegre mutatunk példát a következő fejezetben.

2.3 2x5-rudköteg mérőszakasz

A 3.ábrán látható 2x5-rudköteg mérőszakasz helye az I.rész 2. ábráján látható PERF /rudköteg/ hurokág. A PERF elnevezés onnan ered, hogy a VVER-1000 reaktorban - a 440-el ellentétben - perforált kötegfalu fütőelemkötegek lesznek beépitve. [2] Az A-A metszeten látható perforáció lehetővé teszi a szomszédos kazetták közötti tömegés hőcserét, amelynek következtében a reaktor kilépő keresztmetszetében a hütőközeg radiális entalpia eloszlása egyenletesebb lesz. Geometriai szempontból és a rendszerparaméterek szempontjából a tényleges köteggel azonos modellen végzett kisérletek tervezési és biztonsági szempontból egyaránt közvetlenül használható eredményeket adnak. Az ábrán látható mérőszakasz főbb vonásait - müszaki terv szinten - a [3] tartalmazza és szovjet-magyar diszkussziók során kialakult KFKI változatnak tekinthető. Az 1. sz. kép a mérőszakaszt a szerelés adott fázisában szemlélteti.

A mérőszakasz alkalmas hütőközeg keveredési vizsgálatokra is, de elsősorban kritikus hőfluxus mérésekre készült.

- 9 -

(3. ábra 2x5-rudköteg mérőszakasz

l. kép A 2x5 rudköteg mérőszakasz szerelés közben A "csatornametszeten" jól látható a 2x5-rudat tartalmazó köteg, a távolságtartó ráccsal, ennek A-A metszetén pedig a cserélhető perforált kötegfal /30%-os perforációval/ . A keresztbe vonalkázott steatit szigetelés /A-A metszet C részlet/ a két rudcsoport villamos szigetelésére szolgál. Ugyancsak steatitból alakitottuk ki a csatornát is. Villamos szempontból a felső ⊕ pólus közös, mig az alsó ⊖ szétválasztott /villamosan szigetelt/, tehát az 5-ös rudcsoportok külön-külön füthetők és tetszőleges radiális irányu teljesitménygradiens beállitható. A fütött hossz 3500 mm.

Kritikus hőfluxus méréseknél a villamos fütő tápegységek 2100 kW-os névleges teljesitménye mellett a fajlagos teljesitmény max. 250 kW/l, a felületi hőfluxus 210 W/cm² lehet. A forrásos krizis fellépésekor a teljesitményt – a fütőelemek elégésének elkerülése végett – le kell kapcsolni. Erre a célra épitettünk az ausztenites szerkezetü, saválló fütőelem csövek falába kiégésvédő termoelemeket a B részletben látható módon.

2.4 7-rudköteg mérőszakasz

A 4. ábrán látható 7-rudköteg mérőszakaszt az NVH berendezésen az I. rész 2. ábráján látható "FÜTÖTT /rudköteg/" hurokágba épitettük be. A mérőszakaszt elsősorban tranziens kritikus hőfluxus mérésekre használtuk a szivattyukieséses üzemzavari állapot tanulmányozása során. A mérőszakasz VVER-1000 geometriában készült. A csatornafal rozsdamentes acél /lásd: "csatornametszet"/. Ugy gondoljuk, hogy a fent leirtak után további diszkusszió nem szükséges. A 2.sz. képen a mérőszakaszt szerelés közben, a 3.sz. képen a mérés utáni állapotban láthatjuk.

- 12 -

4. ábra 7-rudköteg mérőszakasz

- 13 -

2. kép A 7-rudköteg mérőszakasz szerelés közben

3. kép

A 7-rudköteg mérőszakasz mérés után

2.5 1-rud mérőszakasz

Az l-rud mérőszakaszt az I.rész 2.ábráján látható "l-rud mérőszakasz" hurokágba épitettük be. A vizsgált fizikai problémák: gőz-void, kritikus hőfluxus stacioner és tranziens üzemállapotban, valamint akusztikus és hőmérséklet zaj. A mérőszakasz a II. rész 4. ábráján látható. A rud ténylegesen 10 mm belső átmérőjü cső, a fütött hossz 2500 mm és a hütőközeg a csövön belül áramlik. A cső, mint a legegyszerübb geometriáju mérőszakasz, különösen alkalmas a fizikai jelenségek vizsgálatára és a kisérleti stratégiának fontos láncszeme. A II. rész ben éppen azért választottuk bemutatási példaként az l-rud mérőszakaszt, mert szinte valamennyi - a termohidraulikában feladatként jelentkező - fizikai probléma vizsgálható rajta "tiszta" körülmények között.

A 2. fejezet zárása képpen még elmondjuk, hogy az egyes mérőszakaszok leirásánál a vizsgált fizikai problémák közül csak azt emeltük ki, amire az adott modell elsősorban készült. Minden rudköteg mérőszakasz – elvben – ellátható olyan müszerezéssel, hogy valamennyi fizikai folyamat együttesen vizsgálható. Az ilyen univerzális modell azonban technológiai és méréstechnikai okokból gyakorlatilag megvalósithatatlan, a kisérleti eredmények értéke legalábbis kérdéses.

3. Távolságtartó rácsok

it.

0

A távolságtartó rács a reaktor zóna egyik legfontosabb szerkezeti eleme. A VVER tipusnál a választás a 2. fejezet rudkötegeiben is alkalmazott "méhsejt" tipusu rácsra esett. Nem ismerjük azokat a tervezési, kisérleti és üzemviteli tapasztalatokat, amelyek alapján ezt a tipust kiválasztották. A látszólag egyszerű szerkezeti elemnek azonban fontos szerep jut. [4] A távolságtartó biztositja, hogy a fütőelemrudak elmozdulása radiális irányban a megengedett érték alatt maradjon. /A "megengedett" értéket neutronfizikai és hőfizikai szempontok egyidejű figyelembevételével lehet megadni./ Az elmozdulás egyrészt a fütőelemrud kihajlása, másrészt a hütőközeg-áramlás által gerjesztett vibráció miatt jön létre. A megfelelő számu és konstrukcióju távolságtartó alkalmazásával az elmozdulás a kivánt értéken tartható.

Ráccsal szemben támasztott követelmények:

- kampányidény végéig tartó élettartam, korrozió állékonyság;
- a megadott türéshatárok között hézagmentesen rögzitse a fütőelemeket a rácsban;
- elmozdulás-mentesen vegye fel a fütőelemek vibrációjából származó tömegerőket;
- rugalmasan kompenzálja /tegye lehetővé/ a fütőelemek hőtágulását;

- két távolságtartó rács közötti fütőelem szakasz vibrációs frekvenciája és amplitudója megengedett érték alatt maradjon;
- hidraulikai ellenállása kicsiny legyen és legyen szimmetrikus, hogy ne okozzon nem kivánatos keresztáramlást;
- a relativ elmozdulások miatt a fütőelemek felületén a koptatásos korrozió a megengedett érték alatt maradjon, stb.

A nálunk használatos távolságtartó rácsokra látunk példát a 4.sz. képen.

4. kép Távolságtartó rácsok

4. Méréstechnikai eszközök

4.1 Sebesség- és hőmérséklet eloszlás mérése

A 2.1 pontban leirt 19-rudköteg mérésénél szükség van a fütőelem csatornákban a sebesség- és hőmérsékleteloszlás mérésére. A követelmény az, hogy adott időpillanatban a rudköteg teljes keresztmetszetének egy előre megadott pontjában hajtsuk végre a mérést. A sebesség mérésére Pitot csövet, hőmérséklet mérésre termoelemet választottunk.

- 20 -

Az összeépitett Pitot cső - termoelem mérőátalakitó mozgatására az 5. ábrán látható méréstechnikai eszközt konstruáltuk, amelynek segitségével a mérőátalakitót r, 9, z koordináták mentén lehet mozgatni. A beállitási pontosság növelése érdekében közös tengelyre szereltük a Pitot cső - termoelem mérőátalakitót és azt a tüt, amellyel - egy a fütőelem ráccsal pontosan megegyező sablonon - a mérőhelyet be lehet állitani. A sablon a mérőhelyekkel a 6. ábrán látható. A mérőhely beállitása - a teljesen összeszerelt egységen - az ablakon keresztül történik olyan módon, hogy a megvilágitott rácsra a sablon pontos mását helyezzük és a sablont ugy állitjuk be, hogy a mérőátalakitó és a tü azonos helyzetben legyen. Az r, 9 irányu mozgatás mechanikus, mig a z irányu mozgatás pneumatikus uton történik. A Pitot cső külső átmérője 1 mm, falvastagsága 0,25 mm. A 0,25 mm átmérőjü köpenytipusu termoelemet a hossztengelye mentén felhasitott Pitot csőbe épitettük be az 5.képen látható módon. Az 6. képen a fent leirt méréstechnikai eszköz látható a sablonnal és ugyanezen a képen látható a 19-rudköteg mérőszakasz kilépő rácsa is.

6. ábra Beállitó sablon a mérőhelyekkel

Pitot cső-termoelem mérőátalakitó

6. kép

Sebesség- és hőmérsékleteloszlás mérésére kifejlesztett méréstechnikai eszköz 4.2 Kis átmérőjű termoelemek készitése

A VVER-tipusra jellemző geometriai sajátosság, hogy a fütőelemrács nagyon sürü: rudátmérő 9,1 mm, rácsosztás 12,2 ill. 12,75 mm.Ez a tény a méréstechnikával és különösen a termoelemes hőmérséklet méréssel szemben azt a követelményt támasztja, hogy a köpenytipusu termoelemek átmérője kicsiny legyen. A használható termoelem átmérők – a mérés céljától függően – 0,25 és 1 mm között változnak. Hozzá kell tenni, hogy megfelelő minőségü /köpeny-anyagu/ termoelemek csak tőkés importból biztosithatók. Rudköteg mérésekhez nagyszámu termoelemre van szükség és többségük csak egyszeri alkalommal használható, mert "meleg pontjuk" tönkremegy.

Termoelem melegpontok és más finommechanikai eszközök készitésére hoztuk létre a 7. képhen látható berendezést, amelynek alapja az MW-6 tipusu mikrohegesztő. Ezt egészitettük ki olyan eszközökkel, amelyek a rendszert sokféle feladat elvégzésére teszik alkalmassá. Az argon védőgázas ivhegesztő berendezés főbb müszaki jellemzői:

> Hegesztőáram: Nyitott hegesztőkör feszültsége:

Hegesztési idők / 4 fix és l folyamatosan változtatható/:

Hegeszthető méret: Hegeszthető hossz/átmérő: 0,2 - 6.0 A 0 - 150 V

0,4 - 4 sec Ø 0,25 - 3 mm 1,5m/0,25mm ill. 4m/0,5mm

- 25 -

.

.

40

8. kép Röntgenkép lezárt termoelemekről

A 8. sz. röntgen-képen a berendezésen készitett 0,5 és 1 mm átmérőjü termoelemek melegpontjai és a köpeny "lezárás" látható. A sötétebb tónusu részleteken a köpeny, ill. termoelem huzalok láthatók, mig a világosabb tónusu részletek a fémoxid szigetelést mutatják.

- 28 -

4.3 Térfogati gőztartalom mérőberendezés

A reaktor termohidraulikai kutatások fontos részterűlete a térfogati gőztartalom meghatározása. A számos lehetséges mérési eljárás közül a gammasugár gyengülésen alapuló módszert választottuk [5] . A módszer ismert, azonban a magas - elektromos és mágneses háttérzaj miatt a mérőlánc kialakitására és a zavar elháritására nagy figyelmet kellett forditani. A mérőösszeállitás vázlata a 7. ábrán látható. A detektor talliummal aktivált nátriumjodit kristályt tartalmazó ND-130-tipusu fotoelektron sokszorozó, amely egy KFKI gyártmányu NK-225 tipusu nukleáris spektrométerhez csatlakozik, az időmérés pontosságát frekvencia-generátor alkalmazásával növeltük, a mérőláncban jelentkező egyéb hibaforrások /szcintillációs kristály hőmérséklet ingadozása, erősitő instabilitása, stb./ kiküszöbölésére KFKI gyártmányu NN-206 tipusu analóg spektrum stabilizátort használtunk. A számlálási hiba ezek után + 0,2%-ra adódott. A mérőösszeállitás müszeres része a 9.sz. képen, mig a sugárforrásnak /Cs-137/ és a detektornak az l-rud mérőszakaszra telepitett megoldása a 10.sz. képen látható.

ŵ.

.

7. ábra A gőztartalom mérőberendezés blokkvázlata

- 29 -

9. kép A térfogati gőztartalom mérő berendezés müszerezése

10. kép

A térfogati gőztartalom mérő berendezés az l-rud mérőszakaszon

5. Az NVH berendezésen eddig lefolytatott kisérletek

1975 évi üzembehelyezést követően az NVH berendezésen a következő kisérleteket hajtottuk végre:

- egy- és kétfázisu nyomásesés mérések;
- hütőközeg keveredési vizsgálatok;
- hőmérséklet- és akusztikus zaj mérések;
- térfogati gőztartalom mérések;
- kritikus hőfluxus mérések l-rud mérőszakaszon állandósult állapotban;
- kritikus hőfluxus mérések l-rud mérőszakaszon teljesitmény és áramlási tranziensek esetén;
- kritikus hőfluxus mérések 7-rudköteg mérőszakaszon áramlási tranziensek esetén;
- kritikus hőfluxus mérések 2x5-rudköteg mérőszakaszon állandósult állapotban.

A kisérleti tapasztalatok és a felsorolt mérések eredményei igazolták, hogy az NVH berendezés a tervezett kutatási program végrehajtására alkalmas. Ezt bizonyitja - egyebek mellett - a szovjet partner-intézetekkel létrejött tudományos együttmüködési szerződés is.

- 32 -

6. Irodalom

- Szabados László, Ézsől György: Hütőközeg keveredési vizsgálatok 19-rudköteg mérőszakaszon.
 2. Hőfizikai Szeminárium. Budapest, 1978. március 20-23. /publikálás alatt, oroszul/.
- [2] Szabados László és mások: A VVER-1000 tipusu reaktor termohidraulikai kisérleti programja és a kisérletek néhány eredménye.
 2. Hőfizikai Szeminárium. Budapest, 1978. március 20-23. /publikálás alatt, oroszul/.
- [3] Müszaki feladatterv kritikus hőfluxus vizsgálatára készitendő mérőszakaszokról a VVER-1000 tipusra. Moszkva, 1976. /orosz nyelven/.
- [4] L. Szabados, L.M. Kovács: RKVI, Computer Program to Determine Vibration Characteristics of Fuel Rods in Parallel Flow. KFKI-72-21.
- [5] Windberg P., Baranyai G., Maróti L., Szabados L.: Térfogati gőztartalom mérő berendezés fejlesztése és alkalmazása. II. Rész. KFKI- Atomenergia Kutató Intézet, Budapest, 1977.

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Szabó Ferenc Szakmai lektor: Perneczky László Példányszám: 150 Törzsszám: 1977–1280 Készült a KFKI sokszorositó üzemében Budapest, 1978. január hó

62.507