
J X  / 5  Ь - 0 3  ~f

KFKI-1977-19

A,A, MIGDAL

MULTICOLOR QCD AS DUAL RESONANCE THEORY

Hungarian ^Academy of S cien ces

CENTRAL 
RESEARCH 
INSTITUTE FOR 
PHYSICS

BUDAPEST



m i



KFKI-1977-19

M U L T IC O L O R  QCD A S  D U A L  R E SO N A N C E  TH EO RY
A.A. Migdal*

Solid State Physics Department 
Central Research Institute for Physics, Budapest, Hungary

Submitted to Annals of Physics

Permanent address: Landau Institute of Academy of Sciences, Moscow, USSR

HU ISSN 0368-5330



ABSTRACT
The Quantum Chromodynamics with massless quarks and infinite number 

of colors is represented as a theory of the noninteracting mesons which lie 
on the rising Regge-trajectories.The perturbation theory for these trajecto­
ries is developed. The expansion parameter /effective coupling/ is calculated 
and appears to be about 1/2. The expansion coefficients can also be calculated 
analytically as functions of spin and other quantum numbers. The calculations 
are carried through to the end in the zeroth and first order. The resulting 
trajectories look reasonable and are in qualitative agreement with experiment. 
The corrections from finite number of colors and from quark masses can also 
be found, but are not considered here.

АННОТАЦИЯ
Квантовая Хромодинамика с кварками нулевой массы и бесконечного числа 

цветов представлена как теория невзаимодействующих мезонов, лежащих на воз­
растающих Редже-траекториях. Разработана теория возмущения для этих тра­
екторий. Вычеслен параметр разложения /эффективная связь/ который оказыва­
ется быть около 1/2. Коэффициенты разложения тоже могут быть вычислены ана­
литически как функции от спина и других квантовых чисел. Вычисления проделаны 
до конца в нулевом и первом порядке. Получающиеся траектории оказываются до­
вольно реальными и качественно совпадают результатами экспериментов. Поправки 
из-за конечного числа цветом и конечной массы кварков также могут быть найде­
ны, но мы не рассматриваем эту задачу.

KIVONAT
Nulla tömegű és végtelen sok szinü kvarkot tartalmazó Kvantum Chromo- 

dinamikát növekvő Réggé trajektóriákon fekvő egymással kölcsön nem ható mezonok 
segítségével Írunk le. Ezen trajektóriákra perturbációszámitást dolgozunk ki.
A sorfejtés! paraméter /effektiv csatolás/ 1/2 körülien adódik. A sorfejtési 
együtthatók is analitikusan számíthatók, mint a spin és más kvantumszámok függ­
vényei. A számításokat nulla-és első rendben végeztük el. Az ereményképpen 
adódó trajektóriák megfelelőek és kvalitatív egyezésben vannak a kísérletekkel. 
A véges sok szinből és véges kvarktömegből adódó korrekciók szintén számítha­
tók, de ezt nem vizsgáljuk.



INTRODUCTION

There are good reasons to believe that the hadronic 

world is described by Quantum chromodynamics /QCD/ - tri- 

colored quark - gluon gange theory in gauge invariant phase 

/without Higgs phenomenon/.
Thus it is urgent to find a method of approximate 

solution of this theory. Below we modify the method which 

was originally proposed in [ l j  . This paper should be 

considered as a final version о -f Ci] .
To simplify the problem, let us neglect the quark 

masses - for u  , c i  and á quarks it is reasonable, 

and the heavy C -quark do not participate in the low energy 
phenomena, which we are going to describe. Afterwards the 

quark masses can be taken into account perturbatively.

The more considerable simplification which also makes 

sence is to tend to infinity the number П с o f colors. The 

calculation of diagrams in the ultraviolet domain indicates 

that the ^-dependence is rather smooth - e.g. the coeffi­

cients of j 6  -function vary within 2o-3o % when /̂ Ic varies 

from 3 to O O  , and expansion of these coefficients in 

r t c  converges at =3 rather fast.
As it was pointed out by G.* t- Hooft [ ß ]  » at

O O  the gauge invariant correlation functions /only thes

functions make sense in a gauge invariant phase/ can be
-1

expanded in flc > the expansion coefficients depending
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on % ft c, where is the coupling constant.
Only planar diagrams with the minimal number of quark

loops /see fig. 1/, contribute to the leading order in 
-1

ГЬС , In the higher orders the blocks of planar diagrams 
are combined into nonplanar ones.

The basic problem is to sum up the planar diagrams/ i.e. 
to solve the theory at Oo , l^bc fixed. The 4 / П с 

corrections would then readily be found.

In the multicolor limit we expect to obtain some kind 

of dual resonance theory/ as it was discussed in [ 2 ] .  [ 3 ] .

The correlation functions are expected to have only poles, 
but not cuts.

We are not going to repeat all the arguments of these 

papers,The major argument is that since there are no internal 

quark loops, the mesons, which are П  bound states, cannot 
decay into mesons. The decay amplitudes are down by some 

powers of f X c  anc* 80 are the scattering amplitudes,The 
possible purely gluonic states /glueballs/ are also stable 
and do not interact at 00 •

In other words, the gauge theory at П-с= 00 is a theory 
of free colorless mesons.

It would be true, however, only if the color is confined, 

i.e, if these mesons do not decay into quarks and gluons.

In fact in any order in П с / i.e. in each planar diagram 

of fig. 1 such a decay takes place, but still we believe 

that color is confined.

The renormalization group analysis shows that there 

is no contradiction between the apparent decay thresholds
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of the diagrams and the color confinement. Perturbation 

theory do not apply near the thresholds because of the 

increase of effective coupling in the infrared domain.

The perturbative cuts might appear to be seguences of poles 

at closer examination.
The qualitative behaviour of the theory in the infrared 

domain was studied in £4j within the framework of the re­

cursion equations. If one may trust these equations /they 

were shown to work within 2o~3o% for the known cases of 

phase transitions [ 5 ]  /  there is effectively linear rizing 

potential between colored objects, so that the color is 

confined. The confining force depends exponentially on 

- i / n A X ■ and thus cannot be seen in perturbation theory. 
However, it appeared that the domain of the weak and strong 

coupling overlap, so that the parameters of the solution 

in the strong coupling domain can be found by matching with 
the perturbation theory in the crossover domain of distances 

of the order of exp
With this picture in mind we turn to the planar 

diagrams of multicolor QCD.

I. Duality
In this section we try to find the precise formulation 

of the overlap of the infrared and ultraviolet domains and

come to the Duality.



Let us take a simplest example of the 2-point function

'f 4-io) >
/ 1/

The renormalizability implies that up to normalization facto 

this is a universal function of single variable

/2/

where X  is the normalization point, lc is the momentum
in Minkovsci space,

Я M 2
8 х г / з /

is the renormalized coupling, and

Я ^ е х р С  я * ) / V

у (l 4 O (X)  )у
In the last equation we omitted the factorVTOne can always

2 v
redefine Д. by adding О  (  A  ) in such a way, as to make 

this factor equal to 1 .
This definition of Д. corresponds to the following 

-funct ion

Ал\- Jfi£L = - f x (i- /5/
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There is no profound meaning in this choice of renormalization 

prescribtion, but it is convenient to diminish the number 
of unknown functions.'4

Anyhow, from /2/ and /4/ we see that perturbation 

theory corresponds to asymptotic expansion at large £ ♦ The 
expansion parameter can be chosen to be Д  , where

]P(\) =  - 1 /6/

At large - " t the effective coupling A  tends to zero /asymptotic 
freedom/

At -£=1,61 there is a spurious singularity which indicates 
that some other definition of effective coupling should be used 

at small "£/see fig. 2/.

From the general grounds we expect that the 2-point 

function do not have any branch points in i .  , but rather is 

mezomorphic:

ъ- Z. 44/-t) -+CJ>na 4» Q /8/

The poles correspond to meson masses

x
I am gratefull to K. Wilson and G.t Hooft for stimulating 

discussions concerning this point.
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Mj - tj/л/ргл) /9/

and the residues - to the couplings of these mesons
with the field

Now, is it possible to find the masses and the residues,

if we know only the coefficients of asymptotic expansion in 

terms of Я  ?

This problem do not have a unique solution. We may 

always add one more pole term to /8/, and the asymptotic 

expansion would not change, since the pole term behaves 

at -■£ *-> CO as

é
- 1

/1о/

The general solution for the 2-point function consists 
thus at sertain minimal solution plus arbitrary pole terms.

The minimal solution can be fixed by requirement of duality, 
i.e, the fastest convergence to the perturbation theory at 

-b oo .
Below we construct such a minimal solution - it approaches 

perturbation theory as

-exp (- ccn,s-tVrt') /n/
The additional pole terms with positive residues would 
spoit the duality.
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But why should we require the duality? We can only 
give a heuristic argument. Imagine that we started from 
the functional integral formulation of massive QCD at 
finite number of colors. Then, as is now well-known Cel 
appart from the powers of effective coupling, there would 

also be nonanalytice contributions
_ 1L П к1

£  e x p ( - ~  (-■£) 6 • ^ /12/

due to gauge fields with topological quantum number /<,=

We see, that the Mell in transform Z) (to) of 2-point
function O f  (.90 co-tl ~/)(£) = $ CtOJ (-t)

0-4 0°
/13/

has singularities at
OJ -  -  d i П ск / б  /14/

At flc”*O0all these "instanton” singularities move to infinity
and it is likely, that only the singularity at CO^O remains. 
This is the mathematical formulation of duality.

At the same time we see that instantons are lost 

in i/nc -expansion.
We expect, that nevertheless the color is confined 

within d/fl̂  expansion-due to quantum fluctuations at zero 

topological charge. But of course, the instanton contributions 
should be added to Vnc expa nsion and it is not yet clear,
how to do it.



The following comment might also be usefull to under­

stand the meaning of duality.

The duality leads to analytic relation between the 

hadron masses and quantum numbers - as it is disoussed below, 
there are rizing Regge - trajectories, which, as a matter of 
fact appear to be almost linear. This analytic behaviour 

would be spoiled, if we add several pole terms.

- 8 -

principle to be added to the rules of perturbation theory 

in order to obtain a unique solution.

In the next sections v;e modify the perturbation theory 

as to incorporate duality.

II. Meson Wave Function

Let us proceed with the quantum mechanical analysis of 
color confinement in QCD v/e define in this section
the basic quantity - the relativistic wave function of meson.

pairs and without gluon pairs.

It is plausible to oonjecture, that the meson state is 

a superposition of gauge invariant string states

Thus, the duality seems to be a reasonable physioal

Consider, say,vector mesons. As it was argued in 13), 

C2), they consist of + gluons without additional quark
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where -f and i' =1 ,^3  a r e  f l a v o r s ,  C  i s  t h e  c o n t o u r ,  

c o n n e c t i n g  s p a c e l i k e  p o i n t s  X  and У  , and Tc o r d e r s  t h e  

m a t r i c e s  o f  g lu o n  f i e l d s

/16/

along the contour C . Apparantely the string state depends 

on the whole contour, and the gluon field strength

fjLv = _ ^  ß>L+t^ ß/u ^ /17 /

is a measure of this dependence. In principle we could have 

considered the multiconnected contour - with separate closed 

parts. At finite П £ these contours would also contribute to 

meson state, but at f\-oo they are absent.
The connected parts describe closed strings

T ^ T t  T c e x p ( t § -  Д 8 /

According to [3J the mixture of one closed string in
- 1

meson is of the order of n  c .

Here we confine ourselves only to mesons. The dynamical 

problem is to find the weights of various contours C of the 

string in the meson state. The confinement corresponds to 

supression of the long strings. The average length, as well 

as the average amplitude of fluctuations is expected to come
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out 'N» sjpfc) M* - the only scale of our theory.
The Ъаге strings, however, are infinitely thin, and 

here comes the problem of ultraviolet divergences. One way 
to deal with this problem is to use a lattice gauge theory

v;ithin the framework, of the lattice gauge theory [81.
But there is another way, which looks better, since it 

preserves the Lorentz; invariance and locality.
Namely, we may introduce another equivalent basis 

instead of /l5/-the tensor states

is the covariant derivative.

The relation between tensor and string states is as 
follows: the state

. Actually, the string states were first considered

where
/21/

/22/

which is superposition of tensor states, corresponds to a
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string, composed from elements oLx (1) у C&K (2.)
The C, -dependence of the string state appears here 

because the tensor states are not symmetric in Lorentz indices. 

This asymmetry is related to the field strength

LV̂Ц,] =  /23/

Neither are the tensor states traceless. Altogether 
this means that tensor states are reducible with respect to 
Lorentz group.

The Lorentz irreducible tensor states can be obtained 

by substracting traces in all possible ways and by symraetri- 

zation and alternation.

Notice, that there is muoh more states, than in the 
free quark model, where tensor states were traoeless and 

symmetric from the beginning. The additional states are related 

to the exitations of string.

In general we should also add the other Dirac matrices:

I , Уf , У? X* ,

for completeness of our basis. But the corresponding S, P, A, T 

operators do not mix with V operators in the massless theory 

untill the fa -invariance is broken. We postpone the dis­
cussion of this breaking
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The Lorentz-irreducible fields, transforming aooording 

to representation

a ,
has P  + 24- indices:

У-\ ' * ’/ V  / h
It is symmetric in all

A

° Ч / Ч -

in all pairs oifi
*.■ A '

and antisymmetric with respect to interchange inside pairs
d' Ac

If yields zero , when contracted with € ^ со| in any three 
indices and is traceless in any two indices.

It is understood that some number Jt T  of indices 
in /2о/ was contracted before symmetrization so that initially 

there was
P - +  +

indices. Notice, that there sire many ways to contract 5.ZT 
indices from ITL , and the resulting fields are different. 
For brevity, we do not indicate this difference, and denote 
the irreducible field by

/24/
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Now we are in a position to discuss the divergences 

and renormalizations since the irreduoible fields renormalize 

multlplicatively

v  ‘ (x) ~ b  - j w  v : .  с*) v * ♦ • /25/

In principle, the renormalization oonstant is a matrix 

in a subspace of fields with given . It goes without

saying, that the fields are chosen so, that this matrix become 

diagonal.
After renormalizations our basis

V г M  | o >
is free of ultaviolet divergences. 

All the 2-point functions

/26/

- [d x  ekx < o I T * I o >
/27/

depend only on scaling variable in /2/ /not counting the 

trivial dependence on direction of , which is discussed 
lat ег/.

As for the connected many-point functions, they are 

equal to zero at , since the factors Vjfv in /20 /
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are cancelled Ъу the powers of n c > coming from the quark 
loops only in the disconnected diagrams /see [$] for more

details/.

The absenoe of connected many-point functions refleots 

the conservation laws, characteristic for a free field theory. 

Here it is the theory of infinite number of types of free 

mesons. The number of mesons of each type is conserved. The 

tensor basis /26/ is thus complete, in one-meson sector.

The meson states are obtained by orthogonalization:of tensor 

basis.

of transition amplitudes from various irreducible tensor 

states to the meson state

We may introduce the meson wave function, as a set

/28/

The meson state described by 4-momentum on the

mass shell

/29/
by tensor indices
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(v)r - /30/

'w

by spin S and by internal quantum numbers J . We use the 

standard representation for a particle with spin £ : the wave 

function is symmetric and traceless with respect to &  “ * &

and it is also transverse
_  • • ' *

K y .  ф  =  о1 • • < /31/

to become irreducible on) -tensor in the rest frame.

Together with Lorentz covariance it fixes the (t - 

dependence of the wave function

= i m a )
/32/

Неге ^ ( ^ я ) а г е  standard orthonormal ized polynomials in 

which are given by the group theory. We do not need their 

explicit form so far.

The problem is to find the reduced wave functionI
* and the mass spectrum.

The input information is given by the rules of pertur­

bation theory for the 2-point functions and by the concept of
duality.
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III. The Wave Operator

The relation between the meson wave function and the 

2-point functions is given by the speotr 1 representation

» •
L L

J  { —  i i 'K'r О /  I  I i \Jm 2f"= X  CO .. 7Г S(Mj-k)
j w /33/

It would be convenient to use the partial wave ex­

pansion

a - = x Ä Ä )  •

. (l К I)
• / t Lf/here /} and дЙ are the dimensions of operators \y and V

s-m  s  

■ - f . , ,c L
/34/

respectively. The factor

-I Д-л'»
IK! lie) =  Л < Л /35/

removes the kinematic singularities from the partial waves. 

The partial functions

&  = (i /36/

are supposed to be analytic at /С — О  .

x It will also play another role /see below/.



- 17 -

There remains in /34/ the multiple pole at

/1 \ Я-+ V + ̂Ф4 pf) 4 i
"к1

* г= о

/37/

The partial functions with different $ should obey oertain 
conspiracy relations to cancell the poles at k̂ =0 in the 
D-function. Since the Feynman diagrams for partial functions 

are determined up to addition of an arbitrary polynomial in 
/С* , we may always satisfy these conspiracy relations

without altering the singular parts of the partial functions.
In the following we always consider only singular

parts and do not care about conspiracy.
In accordance with the analysis of the previous sections

we look for the solution for ^-matrix in a raezomorphic form

=  Q ' V k M  P Í K ' ) /38/

where Q. and (P are some entire matrix functions, of h*.л
The singularities of jr are the poles, coming from zeros of 
de£ (X. There is an obvious relation between Q-matrix and
residues of these poles

/N Л

Q ( V ) = О
pote. /39/
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In terms of reduced wave function it reads

Q
L

1 Д - Д 1
- о /4о/

Q-matrix thus has a meaning of the wave operator and /4о/ 
is the wave equation for our theory of free mesons. The P- 

matrix governs the normalization of wave function.
Now let us try to construct the perturbation theory 

for Q and P matrices.

This is not straightforward, since the original per-
-Л

turbation theory for ^  -matrix do not have a mezomorphic 
form.

As it was discussed above, the original perturbation 

theory is valid far enough from the positive heal axis in 

complex k*-plane /fig. 3/»

The width of the nonperturbative strip is about

a V k a ) ,lii/
Our aim is to f nd an analytic continuation of pertur­

bation expansion into this strip, which continuation would 

preserve the mesomorphic form.

We realize already that this continuation is not

, and look for a minimal solution in a spirit
of duality
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It will be convenient to proceed with an ordinary
perturbation expansion in X rather then in A  Let us 
take X  very small - this means that our normalization
point

/ М /

is very far from the forbidden strip.
We may calculate some number of derivatives of :f “

matrix with respect to at normalization point, using 
perturbation theory. When X  goes to zero, the'number of

derivatives which can be calculated perturbatively goes to

infinity. This phenomenon will be discussed later.

Anyhow, suppose that we calculated derivatives
and let us construct the Pdde- approximant . the rational 
matrix function л f ^

=  Q w  ( к Ч R v  (к г)
/43/

A
which reproduces IN* 1 Taylor terms of £ -matrix near norma­
lization point

л  -r . л , l. 2 \ 2.А/ -f 1
К к г) -  t ^ ]  - О  (i4 £ > )

/44/
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The integral cancels Taylor terms of Q w  starting from
N Equation for Q/v reads

О  =  ( с й ф % И  /47/
°  a  Ö, •••

This equation implies, that Q ^ ( k r j i s  the orthogonal
polynomial with respect to matrix measure

n W f r * )  ( V + y J
/49/

Suppose, that we substituted into /47/, /46/ several terms of
A

perturbation expansion for ;f -matrix

— 7 A -r + • • •I t o
/50/

А  А

The numerator and denominator Од/ are ДУfA degree
matrix polynomials in f( to be determined from Pade-equations

The last /7 equations determine G W  since do not

contribute. Then the first A/+1 equations give an explicit 
expression for P m  • In terms of dispersion integral

O j  -  K
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and found several terms of perturbation expansion for a  /V■A
and

A ^  CO)
A

£  Л)
0 /  ~~ Q m  + /51/
A A (0) A  (>)

P  =1 А/ Рл/ + A P v  +  ‘ # /52/

At finite this is some kind of phenomenologioal theory 
with two parameters: /ч/ and X  . Apparantely, we should 
tend К/ to infinity, and then the approximant would hopefully 
converge to a mezoraorphic matrix function /38/.

P _  -
/54/

This limit is independent on X  , but of course the critical 

N  , after which Q  and P  approach the limit, do depend 

on X  •

As we show later

Q ( ^ )

P i l e 1)
/53/

NaUt = J w x T /55/
The delicate problem of extrapolation to Д/ >A/Cijs considered 
in the Section \Z T L

Prior to that we derive the rules of perturbation theory
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IV. Perturbation Theory For the Wave Operator

From the mathematical point of view we have the
following problem: to construct the perturbation theory for 
the orthogonal polynomial, given the perturbation theory
for the measure.

There is no general theory for that, but in our case 
such a theory can be developed.

Let us first describe the ordinary perturbation 
theory for the f-matrix.

In the zeroth order in X  the theory is conformally
invariant . The 2-point functions of conformal tensors
have the standard form

with
-I

/57/

П +  Si -f il /58/

. tbeing the normal dimension of operator V

n / 59/

being the total number of indices.
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The substraction of traces and symmetrization /alternation/ 
is performed in the same way as for the operator \ /

The normalization constans j?; • are irrelevant for 
our purposes; we may use the normalization

_  fit*'**i
-  I /60/

The conformal invariance is not at all trivial.
If we simply take the operator, say the symmetric one

(V г. э. • • • a. v  - tzA.ctd}^ /61/

and calculate the 2-point function /one quark loop at X — О  /, 
it would not have the form /56/.

The conformal tensor is obtained from /61/ by adding 
total derivatives, namely

^ H ' C k Í Í ^ '  Ь.'"& Э .  • * • - лУ**/е>2/
*o-1-<

This relation was found by A, B, Zamolodckikov /unpublished/.
In principle one may always find the conformal tensor, 

starting from its expression at zero total momentum and 
applying the conformal transformation. This transformation 
would yield the derivative terms, like /62/. We are not going 
to discuss the details here, since the explicit form of 
conformal tensors would not be requized in the first order 
calculations, which are described below.



24

It is natural to expect that in the first order in 
A- the conformal invariance will not break, but only the 
normal dimension /58/ would be shifted by anomalous dimension

Д/ДО= П, +• SL + 4 Г -+• } У/
6 /63/

This conjecture can be verified by means of conformal 
Ward identities, but we prefer the following heuristic 
argument.

Consider the theory with the large number iFLj of 
flavors. As it is well-known, at

n ±
n c /64/

where П-с is the number of colors, the first coefficient 
of JS -function goes to zero, while the second coefficient 
has the opposite sign, so that there exists the fixed point

Ä j t i
П с

) +  o ( / * ) /65/

At the fixed point the theory is conformally invariant 
For the gauge-variant fields the conformal transfor
mations should in general be accompanied by the nonlinear 
gauge transformations, but the gauge invariant fields 
transforms by the linear law

11КЛ! ‘ J  -  Я Л *  +  Í [ i « v  +
 ̂ #

-f (* U.V ~~ ^  ^
/66/
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where K  is the generator of conformal transformations,-a /"
is the generator of Lorentz transformations and 

A. ♦ is the renormalized dimension' c

ь + а.-1-я.т 4-л* кг + оc4 ) /67/
The conformal invariance of the 2-point function

* - и

/68/

determines its structure /56/,
Sertainly, the conformal tensor is not the same as 

at —  0 -  If contains the counter terms, which are pro­
portional to at small A *  , These counter terms
remove divergences from the first order diagramms /see fig. А/ 
for the symmetric tensor/, and make these diagrams conformally 
invariant.

But the first order diagrams do not depend on ratio 
n f / n  C , since there are no internal quark loops. The external 
quark loop only gives overall factor , which is removed
after normalization.

This means, that the ;same counter terms, which make 
the 2-point functions invariant up to at the particular
rat io i V n t . would make them invariant up to Д. at any 
ratio, and in particular, at

п+/пс = о
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which is our case. '

It would be important to know the explicit form of 
the counter terms, but for the first order calculation it is 
sufficient to know the anomalous dimensions r c  •

Those can be extracted from the vertices

у '  Ч ' 'T >

X /

p(p+i) о T  /Р-* >+  Z  Д й Т И ё + Т )
/69/

Similar expressions can be obtained for the other anomalous 

dimens ions.
Let us now turn to the -^•-matrix.
Up to \  I untill there is conformal invariance, 

the -matrix is diagonal and have the following dependence

on k Z

x/Finally we are interested in the theory with 4 flavors 

and 3 colors, but now we expand in ITic. at /

charmed quark is neglected, being heavy/.

at zero momentum where the derivative terms are absent, 
and the loop integrals simplify. For the symmetric tensor V *  
the anomalous dimensions were calculated by Gross and VVilczek£93
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A'ß)'2 A " “-2
=  f a  -  ( - f a  L>У V ^innüA V 7 /70/

The coefficients ^j^SjAjcan be found explicitely from /56/ 
after transforming into momentum space and projecting to the 
spin £ . Fortunately we do not need these complicated ex­
pressions.

The second term in /7о/ with the normal dimension &  ̂

is analytic in \c* and do not contribute to the Fourier 
integral at X  ^  О  * We added this irrelevant term for 
convencience - otherwise eingularity would appear at

The imaginary part of ^ w h i c h  enters in equation 
for -matrix, has the simpler form

Iw» f a  ( ^  i o) = fa t ÍS,A) ÚgJ /71/

Thus we should find the orthogonal polynomial to the measure

f a  И  И  e c w4 /72/

Notice that s-dependence disappeared from the problem at this 
order in Д. .

The corresponding polynomial reduces to Oacobi 

polynomial (  z * )

Г )  -  S'-A / " v  P ^ ' Í 1 +
N  ' N  A ' +  y > )  /73/
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with

V = А; - A /74/

The normalization factor here is a matter of convenience.
We are interested in large N  and < <  i.e.

*̂2 -> d. * In this limit tlie Oacobi polynomial reduces to 
the Bessel function C l o ]

0 , ч С к1) -  ^ л , 0 “ н ‘/м)
/75/

where

Л . ( и ) =  i f ^  X  fejű)-  Ы V/i I v  д а )  / V

This is very interesting phenomenon: the original 
scale JLL is renormalized, so that at large / V only y^t/д/ 
enters. As we see later, this will be also true in the higher 
orders. a

The calculation of numerator ia now straight-
forward, and we find the approximaht

Г Л / -  /-it1) \

This is a mezomorphic function of К with positive poles 
at

l < 1 ^  J L  7 j f U )
A, /78/

U'-- kV/ are shown schematically at Fig 5.The branches of
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According to general theory of Pade-approximants C M J  the
residues in these poles are also positive at V > - 4  
/one may verity it numerically/.

At N the scale Л//jJL tends to infinity and
the poles condence. The approximant /72/ approaches the 
original function /7о/ exponentially, since

V  — > oo
At this order the critical value of 

display itself.

N

/79/

do not yet

V, The Higher Orders

In the higher orders the ^"-matrix will have the
structure

v /80/

where ■+• is the part which is conformally invariant and
is the part which breaks conformal invariance. The

2breaking starts from as discussed above.
There would be two types of breaking terms 
i/ Transitions between the operators with the same 

number of fields %  f , ß  •
ii/ Transitions between the operators with the diffe­

rent number of fields.
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The diagrams of the type i/ are indicabed at
Fig 6 ♦ They exist also in the first order, but in the

• •
first order they were diagonal in C j , while in the higher 
orders the nondiagonal terms would appear. In general these 
terms would exist for arbitrary difference between and

The diagrams of the type ii/ ore indicated,at fig. т 

We observe, that each additional gluon line yields coupling 
constant 7 X  , since it should be absorbed by the quark 
line.

The minimal number of gluon lines in the vertex is
equal to

^  +  r /81/
Number counts the number of commutators

f^. J =  5 - v
Number X- counts the number traces. Each trace gives at 
least one gluon line, since

7 Л  Г  =
according to equation of motion

/82/

/83/

If the numbers of lines are different in the left and right 
vertices, then the additional lines would yield T X  and 
the amplitude would be proportional at least to

I -f T;
/84/
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«

I

«

«

Thus, if we start from the operators with C j - t - O  > they 
will mix with high operators only in high orders.

As usual, the Feynman integrals will give only powers 
of 1C and , if the dimensional regularization will be
used. The problem is to calculate numbers in front of these 
powers of К and and to check, how these poles
are removed by renormalizations.

Presumably one can do it by hand in the second order 
and in the higher orders the computer calculations are requized.

Suppose that we calculated the -^-matrix, to some 
order in X  .

Then the problem is to find the wave operator to the 
same order.

Let us write

/85/

where Л »  is determined by /75/ with the corresponding index 
V  j and let us substitute it together with /80/ into 

Pade-equation /47/. The product of diagonal terms drops and 
we are left with

+ Irn %  3 = о /86/

where L =  Л/Ч- 1, ••• % N }

Rtf ~ ?  *к4 /87/
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b n  Í j  -  £ j ( K Z/ jLL*)
%■ /88/

In the Appendix this equation is reduced to the form
2. / 1 V *

/no summation over / where G v K k b s  the polinomial 
of Ы  i U degree in K.^ • The explicit expression for 
is given in the Appendix. At large f\! this expression simlifies

со
Q  -jdMJ A ^ f u + W )  (У  -+ II) /9о/

Here

U  =

i y  -
/91/

/92/

We may now write the following equation for Q  -matrix

Q (j  Ы - )  -  S c j  Л у ( и )  -h

oo

+ Z  tfdircLwQK (7f)pK. (1J) Ayjww) M p p l
where

f « j =

This still depends on , but the powerlike dependence
cancells so that only logarithmic dependence remains.

To see this property, let us recall, that the matrix
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elements of -^--matrix are proportional to
о I , 0 °i , ,0 I ö ,+ | V t. -Vjl т л у  )

|K| =  (l<1 ) /95/
. Оwhere corresponds to the normal dimension of operator

W  . The perturbation theory gives also the corrections

~ 0 -
Altogether we may write

' ( ’7 7 r ) F tJ' Г а , £ г ъ ( ~ р .)) /97/

and we observe, that for

W  <  V ’
^  ^  V  /98/

the powers of Л/ cancell in /94/, while for V *  >  

the negative power remains, so that these matrix elements
of О  tend to zero. /Now we see the importance of the * llyl-U-A'lfactor |KJ in definition of partial amplitudes/.

The surviving matrix elements of JD depend on X  
and £ n .( v A l) . We may iterate /93/ in terms o f ^  and thus 
find the corrections to the wave operator.

It is convenient to use diagrams, shown at Fig. &

The wave operator a is represented as a line with 
a circle

О =  Q q W
The line with the square represents the ? matrix

/99/
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• =: £ H V j -Ус\) li j C n )  /100/

The line without arrow represents the diagonal term

"f — S lJ ('LL) /lol/

The line with arrow from left to right corresponds to

-  Л ^ ( и ) / 1о2/

The line with an arrow from right to left corresponds to

•----- *— J  -
The u  -variables are conserved in the vertices

\A/4W. 

- i r - W  A

и /104/
ir-u/

and integration from zero to infinity is performed over free 
variables *\J~

We find

-f- • • • /1о5/

The arising integrals contain Bessel functions and powers of

3 n U
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coming from the -matrix. The oscillations of Bessel 
functions provide the convergence of the integrals, and 
the 0  -functions in /loo/ restrict the summation over inter­
mediate states, so that there is no sourse of divergences.

As a matter of fact, these 0  -functions leads to 
asymmetry of the wave operator

Ч -  > V j /1об/

However, the theorems of Pade-theory №  guarantee the 
symmetry of the approximant, since the original perturbative 

^  -matrix is symmetric.

d  4/* =  iji /107/

Now let us discuss the perturbation theory for 
hadronic spectrum and for the wave functions.

If we substitute /85/ into wave equation /4о/, and 
take into account /1о6/, we come to the equation

where X X  ~  Д1 • N  /jJ t}  ^

%f  = H ' ) V ’

(J)
/ — ^  / 1 0 8 /

/109/
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and is the mass of meson. The sum over C includes
only states with

V t- /  >  v t - /Но/
'“V/

Without additional term the wave function is simply

Ü )  r
Xi = sn /111/

up to irrelevant normalization.
We should apply the standard perturbation theory to 

diagonalise -operator, i.e. to solve /108/ with the fc.H.S.

Ф
Ej (и) X .

Then we should fot/nd the spectrum from

Ej ( m ) о
In the first order in Q w e  find

- Л̂ - (к) + Qjj (и)
o r

üiü“ -  Ш )  - Qä!2 ^ ä
/ л ' . r u í V j -Г)

/112/

/113/

/114/

/115/
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So far*we were unable to put

A l - o o /117/

Now we are going to rearrange the perturbation theory in 
such a way, that this limit will exist in any order in new 
expansion parameter.

The Д/ -dependence of the terms of perturbation 
theory is only logarithmic and it is natural to try to re­
normalize the coupling constant A  as to eliminate this 
dependence.

It is possible due to the following important pro­
perty of the wave operator: it depends only on two variables

Q ,  'jzQ &  > ^ - л / )  / н е /

where A a/ís the effective coupling, defined by the
equat ion

f C X N) ~ /119/

We see, that up to the mesons are described by the same
quantum numbers/ as the tensor operators. The mixing appears 
in the second order in

y ( J ) -  X .  - ( ! - £ ■ ■ )  G u A v M ) .
^ Av/£‘ /Н6/

Let us summarize this section as follows: the main problem 
is to calculate the diagrams of the ordinary perturbation 
theory for -matrix - the corresponding terms in the wave 
functions and the spectrum would then readily be found.

VI, The Physical Coupling
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At small

A/V
Я.

i - у - ъ е п л /
/120/

When Д/ tends to infinity the effective coupling X n  in‘ 

creases and at

1 - 1 1Ад/ ^ 9. ) t J =  K x )  / 1 6 1 /121/

there is singularity. The problem of extrapolation to larger 
I\j will be considered below.

First let us prove the scaling property /118/.
To this end it is convenient to use the equation /93/ where 
only the zeroth order term is included in , i.e.

■y *=. V  —  P  ~h 2.^ -2- XT /122/
The corresponding -matrix then starts from the first order
in Я  and can be written as

A; _ /123/
where -fr■ • is the full -matrix, and correspond
to the zeroth term in c t

/124/
Now, the renorma lizabi 1 ity implies, that this -matrix 
depends only on scaling variable (2) , i.e.

i v ;  -  л,- ( A w f ») - д . f v - m * / ) ) /125/
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Since there is no other dependence on ^  or А/ in the 
equation /93/ with V — V  , we conclude that the wave operator 

depends only on 2Л and A a/-
In order to obtain the expansion in terms of А.д/ 

one might have chosen the new normalization point for -  

matrix!

I
/126/

The coupling in this point coincides with Ял/ *
In practice, however, it would be easier to use 

the expansion in ^  as discussed in the previous section 
and then substitute

A  -  Ад/ ^ у д  I u n  + • * в
/127/

The terms with Л 1А/ should cancell in any order in 
due to renorma1izabi1ity.

Л/

Thus we find

Qij - ■ +  Я* я  Л у  + «•«

Mj - fa (vf) + К  Xj ТА f y - ) + * •*]

/128/

/129/

The mass spectrum has the structure

М > =  А !  ф .
' U  л/1 v  ' л/г /

/130/

The perturbative expansion /129/ corresponds to asymptotic
expension of (p. (x) at large argument.

J
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We are interested in the opposite limit where we expect

ф .6 0 ti /у

м

d  Х - » < ?  
I

А/ —  ̂оо> íj /*/ч>м

/131/

/132/

In principle one may try to check this behaviour by extra­
polating sufficiently large number of terms of expansion.
In practice, however, it is sufficient to consider the ratios 
of masses, since the overall scale is unknown.

We fix the mass of the lighest J* -meson and
consider the perturbation theory for the ratios

M i

M U .  (<L) W * .  ( 1 )
/133/

1 f> . . . .

We used the fact that ^  -meson is coupled to vector current

which has V = 1 end

*T =  °

/134/

/135/

The anomalous dimension is anbsent, because vector current 
is conserved. One can see it directly from /69/ at p —

The wave operator in /128/ may also be expressed in 
terms of since

OK = + ^
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Now the/\/ -dependence enters only in the effective coupling

' 'N
Out this coupling is singular at Л/-* , It would

be reasonable to express it terms of some physical
quantity which coincides with Äjy at small , but do
not have singularity at t

In other words, the physical coupling constant should 
be introduced instead of A// • The author apologices, that 
the physical coupling was not introduced from the very be­
ginning, but in the beginning there, were no physical 
quantities to define the physical coupling. Now we have the 
spectrum and may try to define through the properties of the 
spectrum.

There are various possibilities.
One may define the physical coupling as an

effective coupling, corresponding to the scale " f  ■ * -

m , )  ? ( * )

This A  j? can be related to A ^

%  W K ) a
* tf h » ) i ' U ^ ( i ) + o ( b l ) ]  /138/

/137/

or

/139/

One may expect, that at N-*>o& this tends to constant,
According to /132/
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Р Ъ р ) /14о/

This physical coupling is calculable in principle, 
but in practice it will remain as a phenomenological parameter. 
This definition was used in earlier version of this paper 

/1/. -
But there is another possible definition of physical 

couplings when it can be calculated explicitely at A/= OO.

Namely, let us consider the slope of ^  -
trajectory at J> -mass. It can be calculated pert irbatively 
in terms of from /129/, /69/

d p  =  ~~r% w ' d )f \/.e //>=i A  v
* „ x U ) - +  0 ( * Z ) } /141/

/142/

There are also higher terms in A*/ in /141/, which cen be 
calculated from the higher terms in /129/.

Now we may convert the expansion /141/ as follows

Яд/ ~  Яуэ +  0  (fXjp )

where
° (p  // ^  "IЛ/2 J

/143/

/144/
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»

«

k r a n o /145/

The qualitative dependence of Д_р Л/ is shown 
at Fig.9 .

We may now expend the wave operator and the mass 
spectrum in Ajo , it we substitute /143/ into /133/.
At N =  ОЭ we find finally

Hi = -»Mi  -f j v  +
№ il) (4.) /146/

This is a numerical expansion, which might appear 
to be asymptotic. The experience with £  -expension 
shows that sometimes the few first terms yield the reasonable 
approximation espessially it the Pade-Borel transformation 
is applied.

Anyhow, one should calculate the next term in /146/

4

and see, what happens. If it will come out to be smaller then 
the first term, than our approach would be reasonable.

This definition of Д̂ г> is convenient for extra­
polation to N — ► GO since _if the slope tends to
finite limit at Ы OO then the physical coupling tends to 
calculable number
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VII, Discussion

Let us discuss the properties of the spectrum 
which we obtain in the first order in physical coupling 
constant.

First of all, where is dependence of the mass on 
spin 3 ? The first order formula /146/ depends only on 
quantum numbers of the operator but not on spin
of meson.

However, at given number

m.= P + ?-%.
</ i 0

of components of tensor the spin

/147/

5 cannot exeed m

1
9 о

/148/

For larger values of $ the ^  -polynomials are equal to zero
It means that each mass is degenerate - it corres

<J
ponds to daughter mesons with spins /148/,

In the second order this degeneracy will split, since 
the -matrix in /93/ depends on spin S

Next, we observe that in the zeroth order there is 
additional degeneracy - the mass depends only on

° = ЩП: + % Zj /149/

This degeneracy is split already in the first order, since 
the anomalous dimensions depend on ®eParate ŷ*
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The formulas of the first order coincide with those of 
previous paper [ i j  . The procedure of higher order calcula­
tions which was proposed in [ l ]  , had several flaws, which 
we improved here. There was no cancellation of factors of 

f\[ in higher orders in [ ij and no restriction of summation
over intermediate states. Here it was achieved by incorporating

I ̂  "* I
the factor 1 J  in the partial amplitudes. The treat­
ment of Goldstone paeticles was also incorrect in [l ] .
This problem will be discussed in separate publication.
Also in [l] the number of colors f \ c \ves bakén to be 3 
rather then infinity. As it was discussed above, we expect 
the mezomorphicity of 2-point functions only for f ) c - 0 0  ,
The Уп с corrections come both from ordinary diagrams /which 
was bakén into account in C O  /, and from the decays of 
mesons to mesons. The second correct ions will be discussed 
elsewhere.

Finally the coupling constant was fitted to experi­
ment in to , whereas here we propose to use the different 
definition which leads to the value /145/ at N  — 0O .

The best fit of £ 1 J corresponds in our notations to

~~ * ^  /15о/.

This is almost twice larger then /145/ but the tra­
jectory is not so sensitive to Яр so that our value is
also not bad.
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The Fig. io shows the first order -trajec­
tories at two values of Д^>

Л  _  I 0.33 I 
l 0,83 J /151/

The trajectory for our value /145/ lies in between. The lower 
branches corresponds to the second roots of Bessel function.

The other trajectories were also considered in [1] 
and the agreement to experiment was achieved at • 8 $

but we do not reproduce these results here, since the second 
order corrections in may change the the situation.

The only thing which can be said now is that the 
qualitative properties of trajectories are correct. The 
quantitative predictions can be given only after calculation 

the corrections from  ̂^ /Ле anc* eiuar*< masses.
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Appendix

Green function of Pade equation

Неге we solve the equation for self-energy part Q

T cU  ( Q,u _ Q
O ( É +  1 ) L+1° V /А. 1/

/_ =. M-tM; M + A/'l , .. . M-f 1
The function

n Í ;  c!  ,■*=£ ^

is supposed to be known.
Here we do not assume that M=N,
We return to a contour integral equation

( d -Ь Q (t) f t)V•+ £(t) Sto. ДУ> _ n
jjdbnia) JiTif71 '  /A'3/

and look for a Green's function which satisfies the
Иequation

(  i ~ ^ V SHit) _  _  (~ t(j°
J 3.cSt'nn)/ (Í4- t)L+* (yl+i,)L+i /A 4/

In terms of the Green's function the solution for 
has the form
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o / t ) =  (*4№ 2  /A5/•i i u  C-*?)*
We understand, that the solution of homogeneous equation is 
included in y \ v i n k s ) .

Let us check, that the solution for the Green's function 
is given by the following Mellin-Berns integral

M\v Ыг- f di/_L_ -ffe) flf
G-l-JJ J ^ i b r u  г-2' /A 6/
where

,, . r(M+V+l-l) Г(-2J__
+  ( г ' r ( M + l - V - 2 )  Г(А/+1-2) /А.7/

Contour (2. encloses the poles of -kz-j at 2  1=1 0 /  l j .  >,

N, while the contour encloses the poles of 4./-£С"г**)

at H  M+l-Vj • # « •f* oo . When we substitute
/А.6/ into /А.4/ v/e integrate first over

( dÁ&íf Ли t Г 1'1- ß a-V-2, Vf 1 j
' /А.8/

Then the integral over г? has the form

\ d b _  i m  & ( L - v - 2 ; v f  i )

I  « r í  z ~ ~ z ^  /A-9/

The function in /А.7/ was chosen in such a way
that the integrand in /А.9/ reduces to the rational function 

ч М+А/ L-i Ы _ j

Lillái fi (t-г) f"| (l-v-г)П(г-»г)
fc*Ltl t ^ h ± i  Ъ -О /А.Ю/
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This function decreases as 2  at infinity and has only 
one pole 2  —  2 /  outside the contour Q, , Thus the integral 
in /А.9/ is given by the residue at this pole

-  E ( u ' v ~ 2 j  * - n )  /А.11/

Then -ffeO cancells and the remaining integral over 
reduces to

-  + ь>)' г 1 ß  (L'v ~-* » v  1 ) =

* . ( , + i V L- U ) v
which is the r.h.s, of /А.4/. Thus /А.6/ is the solution.

t .
As it should be both (3^ t'b j ' t )  and (-£.) in /А.5/
are polynomials in of А/ th degree.

Let us now investigate the solution in more detail.

If we represent /£ —  2.) in /А.б/as a integral

, -1 7» ,a - г -1(H-г) - - JMS. (<L + S) /a. 13/
О

then the Green's function reduces to the following 

o°£ (</£) jets f((Ht)o+s)) Ф ((l+t )(i+s))
V ° /А.14/

Fix) -  j g .K 2 )  X2
C /А.15/
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Ф б о - Ч - Й у  ̂ /А.16/

These function may be expressed in terms of hypergeometric 
function F(a,b,c,z)

Г / М -f A/f 1 )
г(л/-м;г(м-^-|)

F T " А/, V ~ M , -/4-^, xj

q > o < ) = ( - i ) v xv'*'M f Y v - M  f/v)
рСл/tv) rYv-M-i) *

. FfM+A-v, -î)

/А.17/

/А.18/

Now, let us tend /V)  ̂Д/ to infinity. Then we may use 
in /А. 15/, /А. 16/ the asymptotic form of

t o  -  с - н Г W  )
/А.19/

which reduces F . and (p to the Bessel functions
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Fig. 1

Fig- 2
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Fig. S
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