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ABSTRACT

The Quantum Chromodynamics with massless quarks and infinite number
of colors is represented as a theory of the noninteracting mesons which lie
on the rising Regge-trajectories.The perturbation theory for these trajecto-
ries is developed. The expansion parameter /effective coupling/ is calculated
and appears to be about 1/2. The expansion coefficients can also be calculated
analytically as functions of spin and other quantum numbers. The calculations
are carried through to the end in the zeroth and first order. The resulting
trajectories look reasonable and are in qualitative agreement with experiment.
The corrections from finite number of colors and from quark masses can also
be found, but are not considered here.

AHHOTALNA

KBaHTOBass XpomogMHaMuKa C KBapkKamy HyJ/ieBOV MaccChl MU 6GECKOHEeUYHOro uucna
UBEeTOB MNpeAcTaB/ieHA KakK Teopusi HeB3auMMOAENCTBYWWMX ME30HOB, Jiexaluunx Ha BO3-
pacTawnwmx Pepxe-TpaekTopuax. Pa3dpaboTaHa Teopuss BO3MYLEHUA ANA 3TUX Tpa-
eKTopuii. BbiuecneH napameTp pas3fiokeHus /appeKTuBHasi CBA3b/ KOTOpLI OKa3biBa-
eTcs ObTb 0KOoNMo 1/2. KoahhUuMEHTH Pas3/iIOKEHUS TOXEe MOryT OblTb BblUMC/EHb aHa-
NUTUYECKN KaK (YHKUUM OT CMvMHa U APYTrUX KBAHTOBLIX uUucesi. BbluMCrieHMS npogesiaHsbl
00 KOHUA B Hy/eBOM M MNepBOM nopsgke. [lonyyawuwmecss TpaeKTopuM OKa3biBawTCHA [0-
BOJ/IbHO peasibHbIMM M KadyeCTBEHHO COBMajawnT pe3y/bTaTamMy 3KCMEepUMEHTOB. [lonpaBku
M3-3a KOHEYHOro 4ucna LBETOM U KOHEeYHOl MacChl KBApKOB TaKXe MOryT ObTb Hailge-
Hbl, HO Mbl He paccmaTpuBaeMm 3Ty 3ajauy-

KTVONAT

Nulla tomegld és végtelen sok szinl kvarkot tartalmazé Kvantum Chromo-
dinamikat novekvd Réggé trajektoriakon fekvd egymassal kolcson nem haté mezonok
segitségével Irunk le. Ezen trajektoridkra perturbacidészamitast dolgozunk Kki.

A sorfejtés! paraméter /effektiv csatolas/ 1/2 koriulien addédik. A sorfejtési
egyltthatok is analitikusan szamithaték, mint a spin és mas kvantumszamok TFlgg-
vényei. A szamitasokat nulla-és els6 rendben végeztik el. Az ereményképpen
adédo trajektoriak megfelelbek és kvalitativ egyezésben vannak a kisérletekkel.
A véges sok szinb6l és véges kvarktomegb8l adédd korrekcidk szintén szamitha-
tok, de ezt nem vizsgaljuk.



INTRODUCTION

There are good reasons to believe that the hadronic
world 1is described by Quantum chromodynamics /QCD/ - tri-
colored quark - gluon gange theory 1iIn gauge invariant phase
/without Higgs phenomenon/.

Thus it is urgent to find a method of approximate
solution of this theory. Below we modify the method which
was originally proposed in [Ij . This paper should be
considered as a final version o-f Ci] .

To simplify the problem, let us neglect the quark
masses - for u , ci and a quarks it is reasonable,
and the heavy (:—quark do not participate in the low energy
phenomena, which we are going to describe. Afterwards the
quark masses can be taken into account perturbatively.

The more considerable simplification which also makes
sence is to tend to infinity the number Tllcof colors. The
calculation of diagrams 1in the ultraviolet domain indicates
that the ~-dependence 1is rather smooth - e.g. the coeffi-
cients of j6 -function vary within 20-30 % when AIcvaries
from 3 to 0O , and expansion of these coefficients in

rtc converges at =3 rather fast.
As it was pointed out by G.* t- Hooft [R] » at
00 the gauge invariant correlation functions /only thes
functions make sense in a gauge 1invariant phase/ can be

-1
expanded in flc > the expansion coefficients depending



on % ftc, where is the coupling constant.

Only planar diagrams with the minimal number of quark
loops /see Tig. 1/, contribute to the leading order in

rﬁ% , In the higher orders the blocks of planar diagrams
are combined into nonplanar ones.

The basic problem is to sum up the planar diagrams/ 1i.e.
to solve the theory at Oo , I"bc fixed. The 4 /1M ¢
corrections would then readily be found.

In the multicolor limit we expect to obtain some Kkind
of dual resonance theory/ as it was discussed in [2]. [3].
The correlation functions are expected to have only poles,
but not cuts.

We are not going to repeat all the arguments of these
papers,The major argument is that since there are no internal
quark loops, the mesons, which are Tl bound states, cannot
decay into mesons. The decay amplitudes are down by some
powers of fXc anc* 80 are the scattering amplitudes,The
possible purely gluonic states /glueballs/ are also stable
and do not interact at 00 -

In other words, the gauge theory at l-c= 00 is a theory
of free colorless mesons.

It would be true, however, only if the color is confined,
i.e, if these mesons do not decay into quarks and gluons.

In fact iIn any order in Mc /7 i.e. in each planar diagram
of fig. 1 such a decay takes place, but still we believe
that color 1is confined.

The renormalization group analysis shows that there

is no contradiction between the apparent decay thresholds



of the diagrams and the color confinement. Perturbation
theory do not apply near the thresholds because of the
increase of effective coupling in the infrared domain.

The perturbative cuts might appear to be seguences of poles
at closer examination.

The qualitative behaviour of the theory in the infrared
domain was studied iIn £4j within the framework of the re-
cursion equations. |If one may trust these equations /they
were shown to work within 20~30% for the known cases of
phase transitions [5] / there is effectively linear rizing
potential between colored objects, so that the color is
confined. The confining force depends exponentially on

- i/n A X mand thus cannot be seen in perturbation theory.
However, it appeared that the domain of the weak and strong
coupling overlap, so that the parameters of the solution

in the strong coupling domain can be found by matching with
the perturbation theory iIn the crossover domain of distances
of the order of exp

With this picture in mind we turn to the planar

diagrams of multicolor QCD.

I. Duality
In this section we try to find the precise formulation
of the overlap of the iInfrared and ultraviolet domains and

come to the Duality.



Let us take a simplest example of the 2-point function

“f4-io) >
/v

The renormalizability implies that up to normalization facto

this 1is a universal function of single variable
72/

where X is the normalization point, Ic 1is the momentum

in Minkovsci space,

N2
4 8Xr I3l

is the renormalized coupling, and

A™~e xpC a*) YA,

y(r 4 0O(X))y

In the last equation we omitted the factorVTOne can always
2.
redefine [. by adding O (A ) in such a way, as to make

this factor equal to 1

This definition of [. corresponds to the following

-funct 1on

AnM\- JMA_.=- f x (i- /57



There 1is no profound meaning iIn this choice of renormalization
prescribtion, but it iIs convenient to diminish the number
of unknown functions."4
Anyhow, from /2/ and /4/ we see that perturbation
theory corresponds to asymptotic expansion at large £ ¢ The

expansion parameter can be chosen to be [ , where

IPQV) = -1 /6/

At large -"t the effective coupling A tends to zero /asymptotic

freedom/

At -£=1,61 there is a spurious singularity which 1indicates
that some other definition of effective coupling should be used
at small "£/see fTig. 2/.

From the general grounds we expect that the 2-point
function do not have any branch points in i. , but rather is

mezomorphic:

b- Z. 44/ —+3m4

/8/

The poles correspond to meson masses

X
I am gratefull to K. Wilson and G.t Hooft for stimulating

discussions concerning this point.



M3 In/prn) 191
and the residues - to the couplings of these mesons
with the field

Now, 1is 1t possible to find the masses and the residues,
if we know only the coefficients of asymptotic expansion in
terms of 4 ?

This problem do not have a unique solution. We may
always add one more pole term to /8/, and the asymptotic
expansion would not change, since the pole term behaves
at -m£ *>CO as

1
é /10/

The general solution for the 2-point function consists
thus at sertain minimal solution plus arbitrary pole terms.
The minimal solution can be fixed by requirement of duality,
i.e, the fastest convergence to the perturbation theory at
-b oo .
Below we construct such a minimal solution - it approaches

perturbation theory as

-exp (- con,s-tvrtt) /n/

The additional pole terms with positive residues would

spoit the duality.



But why should we require the duality? We can only
give a heuristic argument. Imagine that we started from
the functional integral formulation of massive QCD at
finite number of colors. Then, as is now well-known Cel

appart from the powers of effective coupling, there would

also be nonanalytice contributions

ANk
Ee x p ( - ~ () 6 " 712/

due to gauge Tields with topological quantum number K=

We see, that the Mell in transform D (tD) of 2-point

function Of (90 co-tl ~
NO = $ D /13/
0-40°
has singularities at
OJ - - diNck/6 /14/

At fic*00all these "instanton” singularities move to infinity
and i1t is likely, that only the singularity at CO™O remains.
This i1s the mathematical TfTormulation of duality.

At the same time we see that instantons are lost
in 1/nC -expansion.

We expect, that nevertheless the color is confined
within Cyﬂ’\expansion—due to quantum fluctuations at zero
topological charge. But of course, the instanton contributions

should be added to VNCexpa nsion and it is not yet clear,

how to do it.



The fTollowing comment might also be usefull to under-
stand the meaning of duality.

The duality leads to analytic relation between the
hadron masses and quantum numbers - as it is disoussed below,
there are rizing Regge - trajectories, which, as a matter of
fact appear to be almost linear. This analytic behaviour
would be spoiled, if we add several pole terms.

Thus, the duality seems to be a reasonable physioal
principle to be added to the rules of perturbation theory
in order to obtain a unique solution.

In the next sections v;e modify the perturbation theory

as to incorporate duality.

I1. Meson Wave Function

Let us proceed with the quantum mechanical analysis of
color confinement in QCD we define in this section

the basic quantity - the relativistic wave function of meson.
Consider, say,vector mesons. As it was argued in 13),
C2), they consist of + gluons without additional quark
pairs and without gluon pairs.
It is plausible to oonjecture, that the meson state is

a superposition of gauge iInvariant string states



|
where -f and | =1,~3 are flavors, C is the contour,

connecting spacelike points X and ¥ , and 1t:orders the

matrices of gluon fields
/16/

along the contour (:..Apparantely the string state depends

on the whole contour, and the gluon field strength
fiLv = _ N RSLHN u A 717/

is a measure of this dependence. In principle we could have
considered the multiconnected contour - with separate closed
parts. At finite [1£ these contours would also contribute to

meson state, but at'f\r{X)they are absent.

The connected parts describe closed strings

TATT Tcexp(ts§- 08/

According to [3J the mixture of one closed string in
meson is of the order of n-g

Here we confine ourselves only to mesons. The dynamical
problem is to find the weights of various contours C of the
string in the meson state. The confinement corresponds to

supression of the long strings. The average length, as well

as the average amplitude of fluctuations iIs expected to come



lo

out 'N»g-ﬁ))M* — the only scale of our theory.
The bare strings, however, are infinitely thin, and

here comes the problem of ultraviolet divergences. One way

to deal with this problem is to use a lattice gauge theory
. Actually, the string states were Tirst considered
v;ithin the framework, of the lattice gauge theory I}Il.
But there is another way, which looks better, since it
preserves the Lorentz; invariance and locality.

Namely, we may introduce another equivalent basis

instead of /15/-the tensor states

where

721/

is the covariant derivative.

The relation between tensor and string states Iis as

follows: the state

/22/

which 1is superposition of tensor states, corresponds to a



string, composed from elements oLX @ yCXK Q_)

The C;—dependence of the string state appears here
because the tensor states are not symmetric iIn Lorentz indices.

This asymmetry is related to the field strength
K,] - 723/

Neither are the tensor states traceless. Altogether
this means that tensor states are reducible with respect to
Lorentz group.

The Lorentz irreducible tensor states can be obtained
by substracting traces in all possible ways and by symraetri-

zation and alternation.

Notice, that there i1s muoh more states, than in the

free quark model, where tensor states were traoeless and
symmetric from the beginning. The additional states are related
to the exitations of string.

In general we should also add the other Dirac matrices:

1, YF, Y?2X*,

for completeness of our basis. But the corresponding S, P, A, T
operators do not mix with V operators iIn the massless theory
untill the TaA -invariance is broken. We postpone the dis-

cussion of this breaking



The Lorentz-irreducible fields, transforming aooording

to representation

a ”
has P + 24- indices:

YA\ "=vv / h *4/4-

It is symmetric in all

A

in all pairs Clﬁ

*_.A'

and antisymmetric with respect to interchange inside pairs
d Ac
IT yields zero , when contracted with € ~ o] in any three
indices and is traceless in any two iIndices.
It is understood that some number JtT of indices

in /2o/ was contracted before symmetrization so that initially

there was

indices. Notice, that there sire many ways to contract 5.7T

indices from "_, and the resulting fields are different.

For brevity, we do not indicate this difference, and denote

the irreducible field by

/24/



Now we are in a position to discuss the divergences

and renormalizations since the irreduoible fields renormalize

multlplicatively

v “ (X ~b - jw v:i. c*) /25/
V*ee
In principle, the renormalization oonstant is a matrix
in a subspace of fields with given . It goes without

saying, that the fields are chosen so, that this matrix become

diagonal .

After renormalizations our basis

VrM o>

/26/

is free of ultaviolet divergences.
All the 2-point functions

- [dx ekk< o I T * I o >

/27/
depend only on scaling variable in /2/ /not counting the
trivial dependence on direction of , which iIs discussed
later/.

As for the connected many-point functions, they are

equal to zero at , since the factors \Aii\/ in 720/



are cancelled by the powers of N C> coming from the quark
loops only in the disconnected diagrams /see [ﬂ{l for more
details/.

The absenoe of connected many-point functions refleots
the conservation laws, characteristic for a free field theory.
Here it is the theory of infinite number of types of free
mesons. The number of mesons of each type is conserved. The
tensor basis /26/ is thus complete, iIn one-meson sector.

The meson states are obtained by orthogonalization:of tensor
basis.

We may introduce the meson wave function, as a set

of transition amplitudes from various irreducible tensor

states to the meson state

/28/

The meson state described by 4-momentum on the

mass shell

/29/

by tensor indices



(v)r _ /30/

W

by spin S and by internal quantum numbers J . we use the
standard representation for a particle with spin £ : the wave
function is symmetric and traceless with respect to & “ *&

and it i1s also transverse

Ky . = (o]
y qO1--< /31/

to become irreducible qD—tensor in the rest frame.

Together with Lorentz covariance it fixes the (t -

dependence of the wave function

/32/
Here ~(~qa)are standard orthonormal ized polynomials 1in
which are given by the group theory. We do not need their
explicit form so far.
The problem is to find the reduced wave function
*
and the mass spectrum.

The i1nput information is given by the rules of pertur-

bation theory for the 2-point functions and by the concept of

duality.



X
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I11. The Wave Operator

The relation between the meson wave Tfunction and the

2-point functions is given by the speotr 1 representation

mafex o TR

/337
Jw
It would be convenient to use the partial wave ex-
pansion
a - = X A A ) .
St S /34/

(KD g

here /¥ and fA are tne dimensions of operators \y*ana V ¥

respectively. The factor

-1 A-n'»
IKI lie) = N1</
735/

removes the kinematic singularities from the partial waves.

The partial functions
& = @

are supposed to be analytic at AL£-0

It will also play another role /see below/.
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There remains in /34/ the multiple pole at *r=o

/1 W+ NMepdi

The partial functions with different $ should obey oertain

/37/

conspiracy relations to cancell the poles at k=0 in the
D-function. Since the Feynman diagrams for partial functions
are determined up to addition of an arbitrary polynomial in
LG , we may always satisfy these conspiracy relations
without altering the singular parts of the partial functions.
In the following we always consider only singular

parts and do not care about conspiracy.

In accordance with the analysis of the previous sections
we look for the solution for ~-matrix iIn a raezomorphic form

= "VkM PIK"
Q ) /387

where Q. and are sojr_r|1e entire matrix functions, of h~.
The singularities of j"are the poles, coming from zeros of
def (X. There 1is an obvious relation between Q-matrix and
residues of these poles

Q (V) =0

/39/
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In terms of reduced wave function it reads

10-401

Q - 0 /40/

Q-matrix thus has a meaning of the wave operator and /4o0/
is the wave equation for our theory of free mesons. The P-
matrix governs the normalization of wave function.

Now let us try to construct the perturbation theory
for Q and P matrices.

This is not straightforward, since the original per-

N
turbation theory for ~ -matrix do not have a mezomorphic
form.

As it was discussed above, the original perturbation
theory 1is valid far enough from the positive heal axis in
complex k*-plane /fig. 3/»

The width of the nonperturbative strip is about

a V. k a) Jiv/

Our aim is to f nd an analytic continuation of pertur-

bation expansion iInto this strip, which continuation would

preserve the mesomorphic form.
We realize already that this continuation is not

, and look for a minimal solution in a spirit

of duality
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It will be convenient to proceed with an ordinary

perturbation expansion in X rather then in A Let us
take )( very small - this means that our normalization
point

/ M/

is very far from the forbidden strip.
We may calculate some number of derivatives of F “

matrix with respect to at normalization point, using

perturbation theory. When X goes to zero, the"number of
derivatives which can be calculated perturbatively goes to

infinity. This phenomenon will be discussed later.

Anyhow, suppose that we calculated derivatives
and let us construct the Pdde- approximant . the rational
matrix function n F n

= qow (KYryv (kr)
/43/

A
which reproduces IN*1 Taylor terms of £ —matrix near norma-

lization point

n + - N , 1.2 \2.A/-F1
Kkrn- t~] - 0 (14 £>)

/44/
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A A

The numerator and denominator Opa/ are AYTA degree

matrix polynomials in T( to be determined from Pade-equations

The last /7 equations determine G W since do not

contribute. Then the first A/+1 equations give an explicit

expression for Pm e In terms of dispersion integral

0] -

The 1integral cancels Taylor terms of Qw starting from
N Equation for Q/v reads
0 = (Ccindp %W /47/

° a O, o=
This equation implies, that Q~(krjis the orthogonal

polynomial with respect to matrix measure

nWfr*) (V+yl

749/

Suppose, that we substituted into 747/, /46/ several terms of
A

perturbation expansion for ;f -matrix

— e
! A+ e /507



A

and fOLﬂd several terms of perturbation expansion for QA /A

and

A ~  CO) £ N

0/ -- Qo+ A /51/

A A (0) A ©

Ras = PR/ + A Pv + < # /52/
At Tfinite this is some kind of phenomenologioal theory
with two parameters: AY and X . Apparantely, we should

tend K/ to infinity, and then the approximant would hopefully

converge to a mezoraorphic matrix function /38/.

Q (")
/537
Pilel)
/54/
This limit §s independent on X , but of course the critical
hl , after which Q and P approach the limit, do depend

on X -

As we show later

Naut = JwXxT /557

The delicate problem of extrapolation to [/ >A/Cijs considered
in the Section \ZTL

Prior to that we derive the rules of perturbation theory
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IV. Perturbation Theory For the Wave Operator

From the mathematical point of view we have the
following problem: to construct the perturbation theory for
the orthogonal polynomial, given the perturbation theory

for the measure.

There is no general theory for that, but in our case

such a theory can be developed.

Let us Tirst describe the ordinary perturbation

theory for the f-matrix.
In the zeroth order iIn X the theory 1is conformally
invariant . The 2-point functions of conformal tensors

have the standard form

/57/

n+ s Fil oy

being the normal dimension of operator V
r] / 59/

being the total number of indices.
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The substraction of traces and symmetrization /alternation/
is performed in the same way as for the operator \/
The normalization constans J2 = are irrelevant for

our purposes; we may use the normalization

B i | ol
- I /60/

The conformal i1nvariance i1s not at all trivial.

IT we simply take the operator, say the symmetric one

(\/r_ 5. eeea.v - tzA.ctd}® /61/

and calculate the 2-point function /one quark loop at X — 0 /,
it would not have the form /56/.
The conformal tensor 1is obtained from /61/ by adding

total derivatives, namely

AHckiir+ b.""&as .- - VS
*0-1-<
This relation was found by A, B, Zamolodckikov Zunpublished/.
In principle one may always find the conformal tensor,

starting from its expression at zero total momentum and
applying the conformal transformation. This transformation
would yield the derivative terms, like /62/. We are not going
to discuss the details here, since the explicit form of
conformal tensors would not be requized in the first order

calculations, which are described below.
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It is natural to expect that in the Tfirst order In
A- the conformal invariance will not break, but only the
normal dimension /58/ would be shifted by anomalous dimension

,El,/éEI,O: M, 4= 3+4 717 ==} Y//GS/

This conjecture can be verified by means of conformal
Ward 1identities, but we prefer the following heuristic
argument.

Consider the theory with the large number iFLj of

flavors. As it i1s well-known, at

I+

/64/

where T-c is the number of colors, the first coefficient
of JS -function goes to zero, while the second coefficient
has the opposite sign, so that there exists the fixed point

Ajt

nc? ¥ o/ )

O

/65/

At the fixed point the theory is conformally invariant
For the gauge-variant Tields the conformal transfor
mations should in general be accompanied by the nonlinear
gauge transformations, but the gauge invariant fields

transforms by the linear law

—

[i« \Y; +
# /66/

TIKM <5 - an= +

-F (* UV ~— Ao
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where 5" is the generator of conformal transformations,
is the generator of Lorentz transformations and

A-e»is the renormalized dimension

b+tatAT 4T Kr+0acl ) A&7

The conformal invariance of the 2-point function

*~-n

/e8/

determines its structure /56/,

Sertainly, the conformal tensor is not the same as
at — 0- If contains the counter terms, which are pro-
portional to at small A * , These counter terms
remove divergences from the first order diagramms /see Tig. A/
for the symmetric tensor/, and make these diagrams conformally
invariant.

But the first order diagrams do not depend on ratio
nf /n C, since there are no internal quark loops. The external
quark loop only gives overall Tactor , which is removed
after normalization.

This means, that the same counter terms, which make
the 2-point functions invariant up to at the particular
ratio i Vn t . would make them invariant up to Ji at any

ratio, and 1in particular, at

n+/nc = o
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which 1Is our case. X/
It would be important to know the explicit form of

the counter terms, but for the Tfirst order calculation it 1is

sufficient to know the anomalous dimensions rc .

Those can be extracted from the vertices
y 1 ] L-II IT >
at zero momentum where the derivative terms are absent,

and the loop integrals simplify. For the symmetric tensor V *

the anomalous dimensions were calculated by Gross and VVilczek£93

(0] P-* >
+ ZARTUNETT)
m}i) 769/

Similar expressions can be obtained for the other anomalous

dimens 1ons.
Let us now turn to the -"e—-matrix.
Up to \ I untill there is conformal 1Invariance,

the -matrix is diagonal and have the following dependence

on k Z

x/Finally we are interested in the theory with 4 flavors

and 3 colors, but now we expand in ITic at /

charmed quark 1is neglected, being heavy/.
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A"R)"2 A2

Y= 'V AinnuA B Al

The coefficients ~j~SjAjcan be found explicitely from /56/
after transforming into momentum space and projecting to the
spin £ . Fortunately we do not need these complicated ex-
pressions.

The second term in /70/ with the normal dimension &*
is analytic in \c¢* and do not contribute to the Fourier
integral at X ~ 0 * We added this irrelevant term for
convencience - otherwise eingularity would appear at

The imaginary part of ~w hich enters in equation

for -matrix, has the simpler form
VAN —
> fa ™ 10) =
Thus we should find the orthogonal polynomial to the measure

fa U / ecw r127

Notice that s-dependence disappeared from the problem at this
order in [A. .
The corresponding polynomial reduces to Oacobi

polynomial (z*)

M) - 8/"v P N ' 11+
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/74/

The normalization factor here is a matter of convenience.
We are interested iIn large N and << i.e.
~2 => d. * In this limit tlie Oacobi polynomial reduces to

the Bessel function Clo]

0,uCkl) - ~n , 0 “H7ZMm)

/757
where

L4

nm=1 §f A X fejly bl

This is very interesting phenomenon: the original
scale JLL is renormalized, so that at large /V only y™t/an/
enters. As we see later, this will be also true in the higher
orders. a

The calculation of numerator ia now straight-

forward, and we find the approximaht

r N / - -it) N\

This is a mezomorphic function of K with positive poles

at

<t~ JL 7jfu)
A, /787

The branches of U-kVY/ are shown schematically at Fig 5.



29

According to general theory of Pade-approximants CMJ the
residues in these poles are also positive at V >-14
/one may verity it numerically/.

At N the scale N//jJJL tends to infinity and
the poles condence. The approximant /72/ approaches the

original function /70/ exponentially, since

/79/
V —> oo
At this order the critical value of N do not yet

display itself.
V, The Higher Orders

In the higher orders the ""-matrix will have the

structure

780/

where e is the part which is conformally invariant and
is the part which breaks conformal invariance. The
breaking starts from 2 as discussed above.
There would be two types of breaking terms
i/ Transitions between the operators with the same

number of fields % F , R e
11/ Transitions between the operators with the diffe-

rent number of fTields.
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The diagrams of the type i/ are indicabed at
Fig 6 o They exist also in the first order, but in the
first order they were diagonal in (;f, while iIn the higher
orders the nondiagonal terms would appear. In general these

terms would exist for arbitrary difference between and

The diagrams of the type 1i/ ore indicated,at fig. T
We observe, that each additional gluon line yields coupling

constant 7 X , since it should be absorbed by the quark

line.
The minimal number of gluon lines in the vertex is
equal to
A § /81/
Number counts the number of commutators
LA J = 5-v

Number X counts the number traces. Each trace gives at

least one gluon line, since

/TN T = 782/

according to equation of motion

/837

IT the numbers of lines are different iIn the left and right
vertices, then the additional lines would yield T X and
the amplitude would be proportional at least to
1 fT;
/84/
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Thus, if we start from the operators with Cj-t-0O > they
will mix with high operators only in high orders.

As usual, the Feynman integrals will give only powers
of 1C and , IT the dimensional regularization will be
used. The problem is to calculate numbers in front of these
powers of K and and 1O check, how these poles
are removed by renormalizations.

Presumably one can do it by hand in the second order
and in the higher orders the computer calculations are requized.
Suppose that we calculated the -"-matrix, to some

order iIn X

Then the problem is to find the wave operator to the

same order.

Let us write

/857

where J1 » 1is determined by /75/ with the corresponding index
V. j and let us substitute it together with 780/ into
Pade-equation /47/. The product of diagonal terms drops and

we are left with

+ ImMm% 3=0 /86/

where L= /-1, ee= % N}

RIF ~ ? !
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) %om
bn 1j - £j (KEZLL% /ss/

In the Appendix this equation 1is reduced to the form

2 [ 1V*

/no summation over / where GvK k b s the polinomial
of bl iU degree in K2 e The explicit expression for

is given in the Appendix. At large f\l this expression simlifies

CO
Q FAMIA~AFU+W) (Y -+11) .y

Here

Vo= /91/

Y- 792/
We may now write the following equation for Q -matrix

Q g b-) - Scj Ny (n) -h

00 ] ]
+ 7 tircLwQK (7)pK. (1) Ayjww) M p p |
where

f«j=

This still depends on , but the powerlike dependence

cancells so that only logarithmic dependence remains.

To see this property, let us recall, that the matrix
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elements of -"--matrix are proportional to

o] 1,0 i » .0 16,
+]Vvt-Vjl

j TNy )
IKI = (I<1) /957
where 0 corresponds to the normal dimension of operator
W . The perturbation theory gives also the corrections

Altogether we may write

"(77r) Ftd"Ta , £rv(~p -)) /97/

and we observe, that for

W < VvV 7
n A /98/

the powers of JI/ cancell 1in /94/, while for V* >

the negative power remains, so that these matrix elements

of %k t o] eio- /Now we see the iImportance of the

factor W in definition of partial amplitudes/.
The surviving matrix elements of JD depend on X

and £n . (vA).We may iterate /93/ in terms o f” and thus

find the corrections to the wave operator.

It is convenient to use diagrams, shown at Fig. &

The wave operator a. iIs represented as a line with

O - oav

The line with the square represents the r) matrix

a circle
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- =: £EHVj-Yc) [1jCn) / 100/
The line without arrow represents the diagonal term
"F — s ('LL) /1o1/
The line with arrow from left to right corresponds to
_ n~(n) / lo2/

The line with an arrow from right to left corresponds to

The u -variables are conserved iIn the vertices

AW

" /104/
-iTFWIZ A

and integration from zero to infinity is performed over free
variables *\J~

We Ffind

- o o o /105/

The arising integrals contain Bessel functions and powers of
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coming from the -matrix. The oscillations of Bessel
functions provide the convergence of the integrals, and
the 0 -functions 1iIn /1oo/ restrict the summation over inter-
mediate states, so that there is no sourse of divergences.

As a matter of fact, these 0 -functions leads to

asymmetry of the wave operator

- >V ] /106/

However, the theorems of Pade-theory Ne guarantee the
symmetry of the approximant, since the original perturbative

N -matrix is symmetric.
d 4/* = 1ji /107/

Now let us discuss the perturbation theory for
hadronic spectrum and for the wave functions.

IT we substitute /85/ into wave equation /4o0/, and
take iInto account /l106/, we come to the equation

<gp_

/ ~ 1108/

where XX ~ [1 <N /jJt} ~

%f:H')V’ 7109/
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and is the mass of meson. The sum over C includes

only states with

Vt-/ > v t- /HO/

I‘V/

Without additional term the wave Tfunction is simply

) r
= SN /111/

i C

X

up to irrelevant normalization.
We should apply the standard perturbation theory to

diagonalise -operator, 1i.e. to solve /108/ with the Tfc.H.S.

g ) X -

Then we should fot/nd the spectrum from

Ej G ) O /1137

In the first order in Qwe find

- - (K)+ ij (VI) /114/

/112/

or

Git w , - Qal.Ma

/AT ruivj-n /1157
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We see, that up to the mesons are described by the same
quantum numbers/ as the tensor operators. The mixing appears

in the second order in

y (J)- X. -(!l-£mm) G,u vM ).
NOANE M/
Let us summarize this section as follows: the main problem
is to calculate the diagrams of the ordinary perturbation

theory for -matrix - the corresponding terms in the wave

functions and the spectrum would then readily be found.
VI, The Physical Coupling

So far*we were unable to put

Al - 0 O /117/

Now we are going to rearrange the perturbation theory in
such a way, that this limit will exist in any order iIn new
expansion parameter.

The [/ -dependence of the terms of perturbation
theory 1is only logarithmic and it is natural to try to re-
normalize the coupling constant A as to eliminate this
dependence.

It is possible due to the following important pro-

perty of the wave operator: it depends only on two variables

. X0 & >~.a el

where A a/is the effective coupling, defined by the

equat ion

f C X N) ~ /119/
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At small

AN A- /120/

i -y-bvennl/
When [/ tends to infinity the effective coupling X n in®

creases and at

Ans L Ao,y 3= Kx) /161 /121/

there 1is singularity. The problem of extrapolation to larger
I\j will be considered below.
First let us prove the scaling property /118/.

To this end it iIs convenient to use the equation /93/ where

only the zeroth order term 1is included in , H.e.
my =V - P ~h2.~ 2 XT
/122/
The corresponding -matrix then starts from the Tirst order

in 4 and can be written as

A ; 7123/

where fim e is the full -matrix, and correspond

to the zeroth term iIn ct

/124/

Now, the renorma lizabi 1ity implies, that this -matrix

depends only on scaling variable (@ , i.e.

iv; - n,-(A w f »-a0 _.fv-m*/)) /125/
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Since there is no other dependence on ~ or A/ in the

equation /93/ with V-V , we conclude that the wave operator

depends only on 21 and A a/~
In order to obtain the expansion 1in terms of A.n/
one might have chosen the new normalization point for -

matrix!

/126/
The coupling iIn this point coincides with Av *
In practice, however, it would be easier to use
the expansion in ~ as discussed iIn the previous section

and then substitute

.*B
A - apz ~ YOB bun + /1277

The terms with /1 1 should cancell in any order in n/
due to renormalizability.

Thus we find

Lo

Q1] - m + fA* a Jly + 7128/

My - fa (vF) + K XJ TAfy-) + **] /1297

The mass spectrum has the structure

M > = Al b . /130/

The perturbative expansion /129/ corresponds to asymptotic

expension of (. (X) at large argument.
J
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We are interested iIn the opposite limit where we expect

¢.60 tiYy /131/
d

X-»<?
I _
A/ —" 00

In principle one may try to check this behaviour by extra-
polating sufficiently large number of terms of expansion.
In practice, however, it is sufficient to consider the ratios
of masses, since the overall scale is unknown.

We TFix the mass of the lighest J* -meson and

consider the perturbation theory for the ratios

M i
/1337
M 16 U.. .(«L W . (1)

We used the fact that ™ -meson is coupled to vector current

/134/

which has V =1 end

/135/

o

*T
The anomalous dimension is anbsent, because vector current

is conserved. One can see it directly from /69/ at p —

The wave operator in /128/ may also be expressed in

terms of since

OK = + N
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Now the/\/ -dependence enters only in the effective coupling

"N

Out this coupling is singular at J/-* , It would
be reasonable to express it terms of some physical
quantity which coincides with Ajy at small , but do
not have singularity at t

In other words, the physical coupling constant should
be introduced instead of A// -+ The author apologices, that
the physical coupling was not introduced from the very be-
ginning, but in the beginning there, were no physical
quantities to define the physical coupling. Now we have the
spectrum and may try to define through the properties of the
spectrum.

There are various possibilities.

One may define the physical coupling as an

effective coupling, corresponding to the scale " f m*-

mo, ) 2 (*) /137/

This A j? can be related to A"

% WK) a

*th»)i"U~(Ci)+o(bl)] /138/

or
/139/
One may expect, that at N-*>0& this tends to constant,

According to /132/
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P'bp) /140/

This physical coupling is calculable 1in principle,
but iIn practice it will remain as a phenomenological parameter.
This definition was used in earlier version of this paper
/. -

But there is another possible definition of physical
couplings when it can be calculated explicitely at A/= OO.

Namely, let us consider the slope of ~ -

trajectory at J> -mass. It can be calculated pert irbatively

in terms of from 7129/, /769/

d = - —1%
¥ Vess A v
*L,xU)-+ 0C*2)} /1417

/142/

There are also higher terms iIn A*/ in /141/, which cen be
calculated from the higher terms in /129/.

Now we may convert the expansion /141/ as follows

An/ ~ Ays + 0 (®Xijp ) 7143/

where
°(p 7/ N1
\J /144/
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This definition of > is convenient for extra-
polation to N —» GO since _if the slope tends to
finite limit at bl OO0 then the physical coupling tends to

calculable number

K r ano s

The qualitative dependence of [ p N/ 1s shown
at Fig.9.
We may now expend the wave operator and the mass
spectrum in Ajo , It we substitute /143/ into /133/.
At N= 02 we find finally
HI = -»M1 -f jv +
No 1)) 4. /146/
This is a numerical expansion, which might appear
to be asymptotic. The experience with £ -expension
shows that sometimes the few first terms yield the reasonable
approximation espessially i1t the Pade-Borel transformation
is applied.
Anyhow, one should calculate the next term in /146/
and see, what happens. If it will come out to be smaller then

the first term, than our approach would be reasonable.
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VII, Discussion

Let us discuss the properties of the spectrum
which we obtain in the Tfirst order in physical coupling
constant.

First of all, where is dependence of the mass on
spin 3 ? The first order formula /146/ depends only on
quantum numbers of the operator but not on spin
of meson.

However, at given number

m.= P+ 7%
4 i 0

/147/
of components of tensor the spin 5 cannot exeed m
/148/

0

1
For larger values of $ the ~ -polynomials are equal to zero
It means that each mass is degenerate - it corres
ponds to daughter mesons with sping /148/,
In the second order this degeneracy will split, since
the -matrix in /93/ depends on spin S

Next, we observe that iIn the zeroth order there is

additional degeneracy - the mass depends only on

o _ i} -
= n: + %24 /149/
This degeneracy is split already in the first order, since

the anomalous dimensions depend on ®eParate/y*
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The fTormulas of the first order coincide with those of
previous paper [ij . The procedure of higher order calcula-
tions which was proposed in [I] , had several flaws, which
we improved here. There was no cancellation of factors of
AA[ in higher orders in [ij and no restriction of summation
over intermediate states. Here it was achieved by iIncorporating
the factor 1J = in the partial amplitudes. The treat-
ment of Goldstone paeticles was also incorrect in [1]
This problem will be discussed in separate publication.
Also in [I] the number of colors f\c\ves bakén to be 3
rather then iInfinity. As It was discussed above, we expect
the mezomorphicity of 2-point functions only for f)c-00 ,
The Ync corrections come both from ordinary diagrams /which
was bakén into account in CO /, and from the decays of
mesons to mesons. The second correct ions will be discussed
elsewhere.

Finally the coupling constant was fitted to experi-
ment in TO , whereas here we propose to use the different

definition which leads to the value /7145/ at N —00

The best fit of £1J corresponds in our notations to

~  *A /150/ .

This 1is almost twice larger then /145/ but the tra-
jectory is not so sensitive to Flp so that our value 1is

also not bad.
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The Fig. 10 shows the first order -trajec-

tories at two values of A™>

N 10.33 1

1 0,83 J /151/

The trajectory for our value /145/ lies in between. The lower
branches corresponds to the second roots of Bessel function.

The other trajectories were also considered in [1]
and the agreement to experiment was achieved at «8%
but we do not reproduce these results here, since the second
order corrections in may change the the situation.

The only thing which can be said now is that the
qualitative properties of trajectories are correct. The
quantitative predictions can be given only after calculation

the corrections from AN/le anc* ear¥ masses.

Acknowledgements

A lot of people helped me with suggestions and
critical remarks.
First of all 1 should mention A. Zamolodchikov,
Yu. Makeenko and M, G. Shmidt, whose assistence cannot be
overestimented, both in theoretical aspects and in calculations.
My friends from Landau Institute: A. Belavin,
E. Bogomolny, S. Kochlatchow and A. Polyakov also contri-
buted implicitely to this work Zeven if they disagree

with me iIn some points/.



I was also influenced by G. Preparata, K. Wilson and

G,"'t Hooft and thank them for interesting conversations.
I an also greatly indebted to A. Zawadowski,

I. Kuti and other members of Central Research Institute

for Physics for their kind hospitality during my stay here

and for their aid iIn preparations of the manuscript.

References

j A. A_. Migdal “Hadronic Spectrum in QCD.l. Regge
Trajectories of Mesons, Chernogolovka preprint

duly 1976, and Proc, of Tbilisi Conference 1976.
[2]  G."t Hooft, Nucl. Phys. B72, /1974/ 461
[3! G- Veneciano, TH 2200, CERN 26, duly 1976
[43 A_A. Migdal, Sov. Phys. OETP, wvol. 42, No, 3, p-413
£5} A, A. Migdal, Sov. Phys. CJETP, vol. 42, No. 4, p.743
[6} A, M. Polyakov, Nordita-76/33, October 76.
173 K.Wilson, Phys. Rev. Dio, 2445 /1974/

[el 3. Kogut, L, Susskind, Preprint CLNS-276 August 1974

9 D. 1. Gross, F. Wilczek, Phys. Rev. 09 /1974/ 980.
10 G. Beitman, A. Erdei, Vysskie transcendentnye
funktsii, t P. Fizmatgiz 1974.

11 0. Zinn-Oustin, Phys. Rev. CI, 3, May /1971/



48
Appendix

Green Tfunction of Pade equation

Here we solve the equation for self-energy part Q

T (Qu Q

Q{/E+1)L+1

/AL L/
/= M M+A71, . MFL
The function
nl; c ,m*=f N
is supposed to be known.
Here we do not assume that M=N,
We return to a contour integral equation
(db Q) TOSHDIAS n
jjdbnia) JiTif71 - /A"3/
and look for a Green"s function which satisfies the

equation

( i-~v SHIt) _ _ Ct§°
J3csrmy (oL o +i DLH ALY

In terms of the Green®s function the solution for

has the form
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0/t) = IA5/

_ 2
4 11U C-*¥?)*
We understand, that the solution of homogeneous equation 1is
included in y\v inks).
Let us check, that the solution for the Green®s function

is given by the following Mellin-Berns integral

Mvbir- f & -ffe) fif
G-1-JJ JMibru -2 /A 6/

where

., r(M+v+1-1) T(-2)

+(r- r(M+1-v-2) r(A/+1-2) IA.T/

Contour @ encloses the poles of -kz-jJat 2 H 0/1j. 3
N, while the contour encloses the poles of 4./-£C"r*¥*)

at H M*‘I-Vj e« <00 . When we substitute

/A_6/ into /A.4/ v/ integrate first over

(dA&TF/mtr 1" R a\2,VFlj

/A_8/
Then the integral over r? has the form
\db _ i m &(L-v-2;vfF i)
I «ri z~~z"™ [A-9/
The function in /A_.7/ was chosen in such a way

that the integrand in /A.9/ reduces to the rational Tfunction

i fien T " @B

fc'itd t "h+i /A 10/
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This function decreases as 2 at infinity and has only

one pole 2 — 2/ outside the contour Q, , Thus the integral

in /A.9/ 1is given by the residue at this pole

- E(u'v~2j*-n) /A.1l/

Then -ffeO cancells and the remaining integral over

reduces to

- + b>)"r 18 (L*v~-* »v 1) =

* (+iIVLEU)Y

which is the r.h.s, of /A.4/. Thus /A.6/ is the solution.

t .
As it should be both (3~ t'b j't) and (-£.) in /A.5/
are polynomials in of A/ th degree.

Let us now investigate the solution in more detail.

If we represent /£ — 2.) in /A.6/as a integral

(H-r) - - 3B. @+9° " fazs/

0

then the Green®s function reduces to the following

£ @D FREDO) @+t)is)

/A_14/

Fix) - j 9.K2) X2

/A_15/
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®60-Y-i , /4. 16/

These function may be expressed in terms of hypergeometric

function F(a,b,c,z)

F/M-FA/F1)

FT"AM,V~M, -/4-", X]
r(n/-m;r(m-"-1)

/A17/
fYv-M f/v)
iy XVTEIM -
q>0<)=(-i)v pCn/tv) rYv-M-1) *
- /A .18/
. FfIM+A-v, =)
Now, let us tend N N/ to infinity. Then we may use
in /A. 15/, /A. 16/ the asymptotic form of
to - cCc-HIW )
/A .19/

which reduces F _and (p to the Bessel functions
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