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ABSTRACT
The excitation of an H-atom by an incident moncxihromatic wave is 

dealt with using the two-body wave function of the atom. It is shown that 
this method gives results resembling very strongly the classical results 
obtained by H. Hertz.

АННОТАЦИЯ
Исследуется Н-атом возбужденный монохроматической волной. Н-атом 

описывается двойной функцией волны. Показывается, что полученные таким об­
разом результаты очень похожи на классические результаты, полученные Герцем.

KIVONAT
A monokromatikus hullámmal gerjesztett H-atomot vizsgáljuk. A H-atomot 

kéttest hullámfüggvénnyel Írjuk le. Megmutatjuk, hogy az igy kapott eredmények 
nagyon hasonlítanak a Hertz által kapott klasszikus eredményekhez.



The old theory of Bohr treated the H-atom considering both electron 
and proton as classical point particles. The wave mechanical treatment re­
places the point particles by waves, however, in most of the discussions of 
the H-atora the nucleus is still taken as point and only the electron is de­
scribed by a wave function. The latter treatment has its advantage as it leads 
to quantitatively correct result - in particular if we introduce the effective 
mass

ml m2m = -------
m^+n^

of the electron.

This one-body treatment of the H-atom is justified because of its 
success, however statement to the effect that "the proton can be treated 
classically because its mass is so much larger then of electron" must be taken 
with precaution. Indeed, it follows from the uncertainty relation that a proton 
confined initially to a region with linear dimension of the order of 
rQ = Ю '  cm would expand so that after 10 sec it occupies a region with 
linear dimensions of meters 1

The wave mechanical treatment of problems as one-body problem has in 
fact its strong limitations. We have shown /1/ that treating the Stern-Gerlach 
effect of H-atoms as one-body problem and supposing the motion of the electron 
to be described by a wave function ^(r,t) and the action of the proton as 
that of a classical point particle - this treatment leads to the incorrect 
classical result - i.e. it leads to expect that the atomic beam is being spread 
out continuously when traversing the inhomogeneous magnetic field. The observed 
effect is only obtained if we describe the H-atoms by two-body wave functions

'V (r,t) =  ф (£-^2 •

The above remarks make it worthwhile to investigate the treatment of the 
H-atom as two-body problem in some detail.
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The wave equation of the unperturbed H-atom can be written

where

H ip о = i1h$. /1/

/ la/

Stationary solution cf/1/ can be obtained in terms of centre of gravity and 
relative coordinates, i.e.

R = a.r, + a_r,— 1—1 2-
s = r, - r-— —1 —2

with
mva =  ;---  /v mi+ m 2

From /2/ it follows also

£l = R + a2 s_

-2 = R - al £3

v=l, 2

and
,6 ,3 ,3 ,3_. ,3d £ = d r^d £ 2  -  d R d s .

The stationary solutions of /1/ can thus be written

/ 3 /

^n£ (g,t) = <j;nie 1Ш'п£Ь

and

pn£ ^3721 (s) +7I T  e * ' w„o=u
Ü к?

m л —UJn 2 (m^+m2)

/4/

where (s) are eigenfunctions and the eigenfrequencies of the one-body
problem /with reduced mass/.
Further

2irt
/5/

where l are vectors the components of which are integers.



3

We note, that /1/ possesses no stationary solutions which can be 
normalized. However, if we take the H-atom to be enclosed into a cubic box 
with side length L, then we can suppose the stationary solutions inside 
this box to be given in a good approximation by /4/. Strictly certain small 
corrections in the vicinity of the walls should be applied, we neglect these 
corrections.

The functions £  ̂ form a complete orthogonal set of functions in 
terms of which arbitrary functions of £  can be developed inside the box.

Considering an electromagnetic plane wave falling on the H-atom 
enclosed into the box, the vector potential of the incident wave can be 
written.

A (r,t) 1- i(Kr -fttK = тг A e —  +С.С.2 —о / 6 /

respectively

-i (К Г e ---v nt)J

The effect of the electromagnetic wave can be described by a perturbation 
operator P and thus the perturbed atom obeys the wave function

(H + P) ф = irnj/ /7/

where

„ „+ -lilt - ißtP = P e + P e , / 8 /

with
2

Iv=l

P+ = I P and P = lv=l

Thus the perturbation consists of four terms corresponding to the actions of 
the wave on the electron and on the proton /v = 1,2/ and also corresponding 
to the frequencies. of the electromagnetic wave. We have explicitly

+ + i fC r
PV = _ V  gradV /9/

with ß = ---- and e, = -e_ = charge of the electron. We have neglectedv 2m C « -!• 2
here terms inv A . The solution of /7/ corresponding to a state

Ao = О

can be written as
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Ф,noio , -1Ш „ tЬ „ е п £ n^i о о ,о о ' 1 10а/

where

, 1 i К R
Ч*о Фо (s) , /ЮЬ/

and

Ш  . аША. ni. О о о /Юс/

Thus the perturbed solution can be written wheh neglecting terms of higher
order in A —о

I .  -iw t + -i(w +Si)t, - -i(w -fi)tФ ^ п Л  e ° + a e  ° + a e  о no о / 10/

Inserting /10/ into /7/ we obtain differential equations for a . Developing 
the latter quantities in terms of the eigenfunctions Фп  ̂ we can write

± r ± 1 = I е  nniyni / И /

where

,± = ^ni P ^nn^n d -"ni Tn L n (ш -w „ ±ft)о ni '
/ 12/

The integrals in the denominators of /12/ can be worked out in a straightfor­
ward manner and thus we obtain the perturbation of the wave function by the 
incident electromagnetic wave.
Let us write

+ _ Г * ±iKr ,
^vni J ̂ ni e vgrad ф „ d r1 * V Yn-iо о

/13/

thus

'ni
l(ßl£lni+ ß2 £2п^^с 

( ^ - “ni ±i»
/14/

The integral on the right side of /13/ can be transformed into one with 
variables R', s'. By using /3/ we have

grad£i = «j. |r + |s and grad^ = a. 32 3 R dS
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As can be seen at once the integrations over s' give two kinds of terms 
of the form

ф ; (s ') (s')e±ictv(- d3s % О /15а/

and

where

(s') gradg, Фо (s')e+^av (iS s')d3s *s K £n 1 /15b/

Hn = Ф„ (s') grad ф (s')d3s'/ n /16/

is proportional to the dipól moment of the mixed state with components Фо
and ф . n

The approximations /15/ are valid if we consider exp(ia2Ks) to be 
a function which varies very slowly as compared with ф о (s) or ф^ (s). The 
latter assumption implies that

X »  rH

i.e. the wave length X of the incident beam is large as compared with the 
Bohr radius r„. Inserting /15/ into /13/ we findП

,n£
. 1 ч V + l 1

=(_1) b ? d3R' /17/

Inserting /17/ into /14/ and neglecting the dependence of ш  ̂on Si and
thus writing or „ ~ ш we obtain nx, n

„± _ iß —о Pn
'ní. тб ш - ш  ±П L o n

1 L(iSo-KÄ) d3R /18/

where 6 2mc

The summation of H in /11/ can be carried out in a good approxima 
tion. We may write

I
l
e-iK,(R'-R> a= Li 0(R'-R)
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and thus

Je1«  [eiC'Ko-il’11']«' d3E,.L3ei(K0±jpR

we find thus that

± _ , __ß у ^ £ п ^ фп (- } _i(íL.±iS)R1 79/2 ш -ш ±П ^ /19/
n o n

We can write as a good approximation

-1 - ~1(b-‘0 S  Jc* ф „ (.,a = e -o / 20 /

where

. iß_ 9 / 2 0) -a) ±Í2L ' o n ( ^ P j /20а/

It is apparent that the terms in /14/ correspond to various wave numbers 
Кд but the sum of these terms gives in form of a Fourier synthesis tferms 

with wave number К of the incident radiation.

Thus from /20/, /10/ and /10b/ we get for the wave function of an H-atom 
perturbed by a monochromatic wave

, / I . i(KR-nt) . -i(KR-ÍJtK i(K R-w t)ф = (Ф0+Ь (s)e v ' +b (s)e —  )e 4Clo- q / 21 /

where

and

1
3/2 cp0(s)

+ гч +b (s) = ) c <p (s) . 
n=fO

/for c^ see /20а/ /.
»The electron density can be obtained by integrating ip ф over the 

proton coordinate

Р х (г) ф  ipd' -2
— 1= —

/ 22 /
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Similarly the electron current density

i-^r) = —iß1 j (ф grad^-ij/grad.^ )d £2 m. cг1=г 16 7 I A ( ф ^d3r2 £l=£
/23/

Introducing /21/ into /22/ and /23/ we obtain terms proportional to the fol­
lowing integrals

Don cp (s)«p (s)e d3r_о — n — —2
-1=— /24/

and

on  ̂ "4" * ОФ (s)grad (<p (s)e-1^-)d г,-1 n ~ —1~— *
The latter integrals can be worked out in a good approximation if we change 
the integration into s and put

R = r^-a2s and d3£2 = -d3s.

We thus get

D = e on
ikr сро (8)Фп(£5)е ia 2&*- d3£

and as we have shown already in connection with /15а/

D = 0. on

Similarly, since from /2/

grad = a.grad +grad —-1 -L -K S_

we have

gradr^(eî -<pn(s) ) = (jK.a^n (s)+gradg(pn(s) Je1 —  

and thus in the same approximation as /15b/ we have

T _ „ iKr_I = e —  p .on ^n

/ pn is given in /16/ /.
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We find in a good approximation

pP(r)= -epx(r)=
L /25/

and

where

with

m^c

к =

E =

. E -E1 + _ 4 _  I — D.
L m , .2 „2( CO -Q) ) -fto n 7

iiw , E = ho о n n

/26/

/26а/

The electromagnetic field propagated inside the box satisfies the 
electromagnetic wave equation, i.e.

V2a - -Ц- A = - 4iri, (r) . c I 27/

In this way we obtain from the perturbation calculations of the two- 
-body wave function the results obtained by H.Hertz from classical consider­
ations. The new feature of the wavemechanical treatment is that the "oscilla­
tion strength" introduced by Hertz can be calculated from the perturbation 
matrices.

The interesting feature of the consideration is, however, that while 
the one-body treatment makes to appear the classical considerations only qual 
itatively correct - the two-body treatment leads exactly to the classical 
result obtained from the model of the "harmonically bound electrons".

It is interesting to extend the above consideration to cases where 
the density p^(r_)4* constant. The simplest case is a state which is a super 
position of states corresponding to atoms with translational motions, thus we 
may put

Y = e^-^ov— a)ovt4, /28/

where
wov

ov M
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with M =

Indeed, /28/ satisfies the perturbed wave equation if small terms 
are neglected - the latter are due to the fact, that the effective frequency 
acting on the moving atoms differs from Í2 by the Doppler shift corresponding 
to their translational velocities.

Working out the electron density corresponding to the mixed state, 
we find using the method above that

^1(-) = - 'Fd3r9 [ = I у у* expiif(K -K -K)r+(w -w -Í2)t||-2 L3  ̂ 'v'y *4 [_ ov -op ov о у _JJ
r^=r ' ̂

The latter density shows strongly fluctuations in space and oscillations with 
frequencies around U  . /If we take the as wave numbers of thermal veloc­
ities then we can suppose Kqv ~ К to appear in the thermal spectrum, never­
theless because of the large mass of the H-atoms wqv << Í2 /. Thus the fre­
quencies appearing in the spectrum correspond to the original frequency 
fi with Doppler broadening.

Indeed, if we have for a particular value of v

thus

K. ~ K

ЫV
kft

M  C 2
n<<n

2Since 1ifi/Mc • is the ratio of the energies of the incident photons and the 
rest energies of the H-atoms.

The current intensity of the electrons in the mixed state is obtained 
similarly. Using the formalism explicitly for the state we find for the elec­
tron of the mixed state /neglecting Doppler shifts/

2
i1(r)= e-у  р1(г)А(г)к 

Me
where к has the same value as before. We see therefore that the incident 
wave produces oscillations with current densities equal to that obtained by 
the classical theory even in the case where the atomic state is not a stationary 
one but shows fluctuations of density.
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