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ABSTRACT
A hopping model of tunneling proposed by Caroli et al. is used 

to study electron-pseudofermion interaction in metal-insulator-metal junc
tions with magnetic impurity in either the insulator or the electrodes 
The contradiction between some earlier theories of zero-bias anomalies 
/Zawadowski et al. and Appelbaum et al./ is resolved. These theories appear 
as limiting cases of the hopping model theory of tunneling. Special atten
tion is devoted to the study of the dependence of the conductance charac
teristic on the spatial distribution of the impurities.

АННОТАЦИЯ

На основе модели, разработанной Кароли с сотрудниками для объясне
ния эффекта туннелирования, нами было исследовано электрон-псевдофермионное 
взаимодействие в диодах металл-изолятор-металл содержащих либо в электроде, 
либо в изоляторном слое магнитные примеси. Разработанные ранее теории с од
ной стороны Завадовского, а с другой стороны Аппельбаума привели к противо
речивым результатам. Наша обобщенная теория воспроизводит указанные теории 
как различные предельные случаи. Исследуется также зависимость вольт-ампер- 
ной характеристики от пространственного распределения примесей.

KIVONAT

A Caroli és munkatársaiáltal az alagútjelenség értelmezésére fel
állított modell felhasználásával az elektron-pszeudofermion kölcsönhatást 
tanulmányozzuk az elektródában vagy a szigetelőrétegben mágneses szennyezést 
tartalmazó fém-szigetelő-fém alagútdiódák esetén. Feloldjuk a zérus-feszült- 
ségü anomáliára Zawadowski és munkatársai illetve Appelbaum és munkatársai 
által korábban kidolgozott elméletek közötti ellentmondást. Ezek az elméle
tek a jelenlegi modell határeseteiként adódnak vissza. Tanulmányozzuk az 
áram-feszültség karakterisztikának a szennyezések térbeli eloszlásától való 
függését.



I. Introduction

Recently various theories have been proposed 
to explain zero-bia3 anomalies in the dynamical conductanc 
-voltage characteristics of metal-metal oxid-metal tunnel 
junctions, which contain magnetic impurities in the 
vicinity of one of the electrode-barrier interfaces.

According to the approach of Appelbaum /Appelbaum 
1966, 1967» Appelbaum et al. 1967, Appelbaum and Brinkman 
1970/ the tunneling current contribution due to the 
tunneling process assisted by magnetic impurities shows 
a conductance peak in the case of antiferromagnetic inter
action of the conduction electrons with the impurity 
spin this in turn becomes a resistance peak in the case 
of ferromagnetic coupling.

In another approach, that of Zawadowski 
/Zawadowski 1967, Sólyom and Zawadowski 1968 a, b,
Mezei and Zawadowski Í971 а,Ъ/ it was found that the 
amplitude of the tunneling current is determined by 
the local conduction-electron density of states /EDS/.
In this theory influence of the paramagnetic impurities 
manifests itself as a strongly energy dependent de
pression of the local density of states compared to the 
unrenormalized one. The results are just the opposite 
of that of Appelbaum /1966, 1967/« The conductance 
maximum is obtained for ferromagnetic interaction while 
the giant resistance peak is due to antiferromagnetic 
coupling.
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Recently a hopping model of tunneffing has been 
proposed by Carol! et al. /1967 a, b - referred to as 
CCNS in the following/. These authors have apCLied their 
theory to a few physical problems relevant to metal- 
insulator-metal /М1М/ tunnel junctions: tunneling through 
an impure barrier /Combescot 1971/» electron-phonon 
effects /Carol! et al. 1972/ and metal-semi-
conductor contacts /Combescot and Schreder 1973» 1974/•
The hopping model is based on the nonequilibrium per
turbation formalism of Keldysh /Keldysh 1965/ and does 
not rely on the transfer Hamiltonian approximation.
Because of the simplicity of the basic concepts all the 
intermediate assumptions and simplifications can be easily 
and clearly controlled and discussed.

The purpose of the present article is to apply 
this hopping model of tunneling on MIM tunnel junctions 
containing magnetic impurities and to compare the obtained 
results with the two different afore-mentioned approaches.

In Sec. 2. this formalism is used to calculate 
the general expression for the self-energy and thereby

the current up to the third order in perturbation theory. 
As the most simple case a one dimensional model with one 
magnetic impurity is treated. Using these self-energy 
expressions we considered first the case when the impurity 
is in the barrier. We studied also the dependence of the 
conductance on the position of the impuririty within the 
barrier. It was found that the hopping model approach is 
quite capable of including all contributions to the 
current obtained earlier from Zawadowski’s and Appelbaum’s
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approaches, as well as to give the explicit expressions 
for Appelbaum’s undetermined phenomenological parameters.

The case when the impurity is in one of the metal 
electrodes is considered in Sec. 3.

Our simple model is generalized to three dimen
sions and finite concentrations of impurities in Sec. 4.
In the Appendix we discuss a square barrier potential for 
a continuous model.

We remark that the zero-bias anomalies are caused 
by Kondo-type impurity scattering /Anderson 1966,
Appelbaum I960, 1967/, which occurs when there is a 
magnetic moment on the d-level of the impurities /the 
contribution to the current due to the magnetic impurities 
shows logarithmic voltage dependence, which is a particular 
case of the Kondo effect/.

This means, that the zero-bias anomalies are 
particularly interesting for studying the Kondo effect - 
the energy and momentum dependence of the Kondo scattering 
amplitude. In the following publication we used the non- 
-perturbative calculation for the scattering amplitude.л
There, we discussed in more detail the Kondo effect and 
made a comparison of the available experimental results 
and the theory.
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2. Tunneling current in MIM contacts containing mag
netic impurity.

2.1 Formulation
In this section we consider a simple one dimensi

onal tunneling junction containing magnetic impurity at 
an arbitrary position. The CCNS formalism which has been 
developed at lenght in the four articles mentioned above 
is used throughout this work. We refer to Caroli et al. 
/1972/ and directly use some of their results.

For an MIM junction the system can be divided 
naturally into three parts.

Let represent the last site of the left elect
rode ,ax. the first site of the insulator, and similarly, 
b denotes the last site of the insulator and /Ъ the first 

site of the right electrode. Then, our Hamiltonian is

H  ■=• H  u + Н ц +  Н ь  + Н с t H x♦ .
/2,1/

where

Pll

f
f"í-C P C J. /2.2/

Cp (Cp) is the electron creation /annihilation/ operator 
on site jo . W ̂ andHgare defined analogously with indices 
restricted to the right electrode and the barrier, 
respectively.
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H q, ~ T (ĉ Ĉ +Ĝ Cj-П" (СьС̂ +Ĉ Gb̂  /2. у
where T  and T  are transfer matrix elements which de
scribe the contacts between the electrodes and the barrier. 
We assumed that this H c which couples different parts of 
the system, involves only nearest neighbour sites.

Assuming that a magnetic impurity with spin S  
is located on site i and interacts through a local exchange 
coupling with electrons on site , this part of the 
Hamiltonian, using the Hondo type exchange coupling and 
Abrikosov’s pseudo-fermion representation for the spin, 
can be written as follows

- 1 1 . C t* K n Ci(, /2.4/

+-
G  г* and C  i are the electron operators taken at the 

impurity site, (X f and a  ̂  are the pseudo-fermion opera
tors, and 5 ^  are thé Pauli matrix and the spin
matrix, respectively.

The electronic current operator which describes 
the current across the barrier is given by

Introducing the correlation functions

q”- j (4Д1; = - i { е м с ]H'J} /2.5/
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which carry the information on the occupation of particle 
and hole states, the average current throught the junction 
may be written as

+ OO

Т Л Т г  /2.6/
In calculating these correlation function inQ^we 
suppose that the junction was biased pt \ ^  and U c
was switched on adiabatically.

In addition we shall need the Green’s functions

Я* * j (t,-t'J = -t -lV<[ci(y, c] ОД]V)
Я *  (t'j]+)  /2.7/

which contain information on the distribution of available 
states, and causal and anticausal functions

jKft'J =  - г < I

r ' r ' "  ............_  /2-e/
whereT  is usual time-ordering operator and T  orders 
the operators along the inverse branch of Keldysh’s 
contour. This means that \ and T  order the operators 
in just the opposite ways.

These functions are connected by the relations
q* = qc- q+ = - q% c,'
c,«= C,c- C f  = -
П  /2.9/

r T* In the notation of Keldysh the definitions of ^ and 
C^ are permutted.
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written as
In the Keldysh formulation the Dyson eqations may be

c „ +
я ' Л ...............

c 
о

/

V. ч  / 9.9., - Г  1 ‘

я  я

/2.10/
Following Keldysh we make a linear canonical transformation 
of these matrices, for example the matrix^*^.^cjbecomes

С 4-*4 _ (0 Я*\ ̂ 71 U-q7 Vi U T F j
where Au is the second of the three Pauli matrices

k* = (i o), ^  =

/2.11/

and

F  = q + t < T =  V  V

After that transformation equation /2,10/ reads as
/2.12/

/ 0 \ f 0 Cjq

\9 Ft _  / —
о ^ о ] / Л Г  ]/o o

V 9 r. f J  r  о / k r F
/2.15/

where

- i l -  L + * X ~  =  I % r / 2 . 1 V

t
K Our definition of X. is opposite to that of Keldysh and 
corresponds to Caroli et al. /1972/.
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Similar relations as /2.9/ hold also for the components 
of the self-energy matrix.

Dyson equations for Ц and L are then

/2,15/

and

я * - V /2.16/
We shall widely use these relations throughout this 
paper.

In calculating the current from /2.5/ we need 
Ц  which in turn will be calculated by treating H c and 
И х  as perturbations. The complete propagator ^  is 

obtained from the zeroth order Green function 4° byy
including the exchange interaction and the transfer
matrix elements T  and T, Taking first the transfer 
matrix elements T and T only and neglecting the ex
change interaction, the renormalized Green function is 
denoted by . This Ц  is total propagator of theI
coupled non interacting system: T andT are the elements 
of the self-energy

-  r . r  T<, , t V n r  о
Taking now into account the interaction with the magnetic 
impurity, the self-energy due to the exchange interaction 
should be calculated by having in the intermediate 
states. Let q denote the Green function where the self-

^ €JC УГenergy corrections due to Z_ are calculated with
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renormalized ^ functions. However there are no transfer 
matrix elements on the lines connecting the self-energy 
terms. This means that ^ propagator is defined with 
such diagrams in which the electron cannot cross the par
tition between different parts the system alone. However 
it is possible that the electron does that inside the 
s elf-energy

Since the interaction of conduction electrons 
with the localized spin is well localized /eq. (2.4)/, the 
self-energy is local and is localized
to site T- where the magnetic impurity is situated. Then

r ° • ^  V  .the electron propagator. which enters into the
contains only an even number of elements T and even
number of elements T  . This me^ns that if the site p

чis on one side of the partition and the site on another
side,the electron propagator can cross the partition and 
connect the sites only via the transfer matrix elements II
and T . 'This is very important for the calculation, 
because if the self-energy were non-local connecting the sites 
on different sides of the dividing line, the theory would 
become very complicate. iuthermore it has to be emphasized

irthat through the 2_ the Cj, propagator is
a propagator for an out of equilibrium
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system even if it is confined only to one electrode
£/for example q depends on the chemical potential

• <u jof the left electrode and through on the
chemical potential of the right electrode./

Proceeding as in the paper by Caroli et al.
/1972/ the current may be written as-

toО

Now it is possible to proceed on two different lines 
corresponding to two different regrouppingjof the terms 
in • One is to expand in powers of *T", T
and ^ , which would lead to equation /13/ of Caroli 
et al. /1972/. In that equation the interaction still 
appers both in and in /\ ( A  =  .'j
/That expansion of is of the form <*<*.*$ rf-f.

r t i* ( t Г л \ .
A  =  H  V  + 1адТ 1 , Т % Ч )Л  /

In this section we will proceed on another line. That 
is just equation /17/ of Caroli et al. /1972/

О  О  ÍjV;j VbAfz; A •18/
• ® where  ̂ are any sites in the insulator. Its advantage

is that it will enable us to see better the origin of diffe
rent contributions to the current and 
compare these contributions with the corresponding
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expression in the earlier theories of tunneling
junctions with magnetic impurities, This expression
for Яда, was derived ba using the %son equation
for Q" /2.16/ and the fact thattthe energy integration
in /2.17/ is confined to the region between and jK p.
That range of the energy variable oO falls into the

+forbidden band of the insulator and so • This means
that the requirement that ^  • /i,j are two points 
in the insulator/ be different from zero, necessarily 
involves the trip of the electron into electrodes.

2.2 The magnetic impurity in the barrier.
4-

2.2.1 The L "  contribution to the dynamical current.

Let us consider now the case when the magnetic 
impurity is in the barrier and suppose that the interaction 
of conduction electrons with the localized spin is of 
the form /2 Л/ •

From equation /2.18/ and /2.17/ it follows 
that only the second and the third term in /2.17/ give 
non vanishing contribution to the current.

First, we shall discuss the contribution coming 
form the third term of equation /2.18/:
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l ^ z i r T  / 2 -19/
In this paper we treat the exchange interaction in per
turbation theory up to third order in • /In a subse
quent publication we shall use a non-perturbative expres-

ел ysion for the scattering amplitude/. Since l— арреагз
explicitly in equation /2.19/ we may replace the factors 
/• r /•' Ч  ̂ p <k.o

and vj- by 4 av and 4  v'a which are zeroth
‘Corder with respect to -c. i, but contain the transfer

matrix elements  ̂ and T 1 / c,* is obtained by
inserting T  and T  on the ^ /. In the following

е д у
text the notation *— will be replaced by /.

Since the impurity is supposed to lie in the 
barrier and CJ ̂  become the free propagators
and (^°^/without T  and T  and without self-energy 
effects/.

Let us calculate the second and third order 
contributions to the self-energy using Abrikosov’s fic
titious fermion operator technique and the nonequilibrium 
perturbation formalism of Keldysh. /It is possible to 
use Keldysh’s formalism also for equilibrium problems 
and to get the same results in perturbation theory at 
finite temperature for Kondo scattering with Keldysh’s 
real time Green functions as with complex time variables 
with thermodynamic Green functions./

The second and the third order contributions to the
self-energy are represented in Pigs. 1. and 2 . a-b.
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making an expansion of the one particle electron 
^reen function /for example / in powers of He
and H I and using eq. /2.10/ we get / H e  is treated to 
all orders/

AD

Г ы н в д о й З ?

/00 C C r + 0 — +■ \H (u)viOA-bJL) ^ (uHÛ-U);.) <£(<*)<) ̂  (uJjiJ 1

\
f S (W+ UrWi)«tWl)il«z) Я (̂ tWrWAjJjjfaJ

/2.2о/
'̂or the sake of simplicity we dropped the site indices

/* Cfrom the self-energy and from the function Ц  •
/ А Ц  Я  and /L_ are taken at the position of impurity/. 
The fictitious fermion Green functions are given as

« L \ u » -  I r i i i L -  + -
u) - X  —  -г S 

4 (A.)
\  + i ̂

" A — i ̂  ui-/V + t$

<СЫ)= — -------  ; <?\u)_ы - Л - м Ь  > u) - Tv — * $
<jf(w) =  2 TTt Sí^-Aj^íA.)' - iiTt Sfw-AjU-

/2.21/
where \ is the energy of the pseudo-fermion, and in 
the final results Л oo .
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The same result can be achieved in another 
way which we sketch here. Prom Keldysh’s paper we know 
that the Feynman rules remain intaot in his technique,

we only have to associate with every line not a single 
Green functions but a Green function matrix and with 
every point a vertex matrix ̂ the form of which will 
depend on the type of interaction /two-particle, electron- 
phonon, etc./ In addition we have to take into account
the factor-Ifor points on the inversed branch of the 
contour C . This means that in the present case we 
have to associate with each solid line a matrix

í l* 
<r0 l<° Ci+° \ (~coJ and with each dotted line a matrix ^

Our vertex matrix has to have four indices /because the 
vertex has four legs/ and every index may take only two 
values í 1 and 2 /these values correspond to the points 
on direct and inversed branch of the contour C , respec
tively/. In addition, this vertex matrix has to take into 
account the factor - 1 for points on the inversed branch
of C .

The elementary vertex matrix which satisfies 
the necessary conditions is of the form

/2.22/
where the superscripts in о correspond to pseudo-fermion 
lines and the subscripts to electron lines, t is the
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third Pauli matrix. For Я - Z. this vertex matrix 
is negative and that takes into account the above 
mentioned factor - 1 .

So, to find the expression corresponding to
a given diagram we need the usual Feynman rules ex
tended with the prescription to use Green function and 

vertex matrices.
The usual Feynman rules for our diagrams are 

given in Abrikosov’s paper /Abrikosov 1965/ and we shall 
write them again with only a slight modification /sinoe 
we are dealing in the coordinate space/.

a. / Each dotted line has its own frequency, and one
should integrate over these frequencies. The electron 
frequencies are determined by conservation rules,

b. / In calculating J>_ , /oi,̂ ' are the spin indices of
external electron lines/ one has to take the <*
component of the product of electron spin operators 
in the order of their position on the electron line, 

o,/ All the dotted lines corresponding to one impurity 
atom form together a closed loop. A trace is taken 
of the product of the impurity spin operators in the 
order of their position along the loop.

Using these rules and Keldysh’s prescription we get
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/the indices in this expression refer to matrix elements, 
the summation over the spin indioes being already 
performed/

Using /2.22/ it is easy to see that equation 
/2.2о/ and /2.23/ are in fact equivalent. One can see 
from equation /2.2о/ that inside a self-energy correc
tion the electron may cross the partition between diffe
rent parts of the system, because in the intermediate 
states the function contain the transfer matrix
elements T and T • But, sinoe the self-energy is local
Q  should oontain even number of T  and even number»

of vertices. From /2.2о/ and /2.21/ we get 
l1) + 1 .4 "to

2 . _  J S(S*t)C|- f u j

This result for 2— is independent of whether
the impurity is in the electrodes or in the barrier.

The only difference will be in the form of 
functions.

If the impurity is in the barrier we have 
r - °  -r2| rro I1 to то Л  toС,.г(ы)=Т к гьи|

/г. 25/
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/ ^ denotes the position of the impurity in the barrier/ 
The ourrent up to second order in may be cast into 
the form

< = ^ ] 5( W ^ T T ' |

'* OJ Slew) ( jjw) - /2.26/
/From now on we write the expressions for the ourrent 
and the conductance for both spin directions of the 
electron./

In deriving equation /2.26/ we used the fact 
that the propagators <j° do not contain a orossing of the 
partition, so for them the two electrodes are separately 
in thermodynamic equilibrium with chemical potentials 
/А-i. and /Ац. Then we can define densities of states 

at sites Ы  and fo by the relations

- v M

.to

f  _  - i- 1лМ )/Ъ ~  ‘ТГ U Лэ/(Ъ(Ь
Д о

/2.27/

The spectral densities ^ are related to the density
of states as follows!

Л - о
С и * 2 1 r i
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where j|L and ^  are the Fermi factors on the left 

and right hand side of the harrier, respectively. This 

contribution to the current corresponds to an elastic 
process. /We note that in the case of an electron- 

phonon interaction the contribution to the current 
oomming from X. corresponds to an inelastic process, 
in which a real phonon is emitted during the tunneling 
event./

The reason of this difference is that for a 
single magnetio impurity without external magnetic field 
no energy is required to change the direction of the 
spin.

ГО У° ЛО «0
The factor Hqxiib 4 bv n 4  describes the 

following physical situation: the electron goes from
4site a. to site x with energy interacts elastically 

with the magnetic impurity, and then goes to site b 
with the same energy; the return trip is just the 
reversed one because the exchange interaction is well 
localized.

The expression U, - И  SavMvtis the effective 
coupling between the two electrodes. It is energy de
pendent and very small. The square of that expression 
is essentially the "transparency" of the barrier.
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The two electrodes enter symmetrically in 
equation /2.26/ for the ourrent, as it should be.

If we want to oonsider in some detail the 
frequency dependence of the various faotors in equa
tion /2.26/, then we oould repeat the disoussion by
Caroli et al. /1972/. Exprim^tally zero bias anomalies 
appear in the range of lo-loo mV around V=0 either as 
a oonduotanoe or a giant resistance peak. These energies 
are much smaller than both the barrier height and the 
Permi energy for ordinary MIM junctions. We may there
fore neglect the frequence dependence of Q° 9° 
and the effective ooupling matrix element for
biases of interest for these anomalies. The change in

X r №)the dynamioal oonduotanoe Ö 4 due to "t*10 third
term of /2.18/ is given by 

<4, rll> a<S3xt>_ Hat iVícwitVV" IV” ■*„. _
бС1у*- ~7v~ r T " ^ sls '̂ 1

о
Л

/2.29/

where —  ------ —  is approximated by b(e~cO)
and e/V —  yUft Equation /2.29/ always corres
ponds to an inorease of the oonduotanoe.

If we compare that expression for the second 
order oonduotanoe with the corresponding one in the 
papers by Appelbaum /1967/ or Appelbaum et al. Д967/,
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we see easily that instead of their undetermined para

meter "T| we have an explioit expression for the 
effective ooupllng matrix element. /Knowing the wave 
functions of electrons in the electrodes and the insu

lator, and working in the continuous representation as 

described in the Appendix, we can calculate directly 
this effective ooupllng matrix element/.

As to the dependence of the oonduotance on the

position of the impurity in the barrier it can be shown
rr° г40that the expression ^  ^ ^  is roughly independent

of 1 /this is beoause Ц is an exponentially de

creasing funotion of the positions in the barrier/. It 

follows that the tunneling efficiency of an impurity in 

seoond order is roughly independent of its looatlon in 
the insulator.

The expression for the third order self-energy 
corrections corresponding to diagram /2а/ from Pig. 2. 
may be obtained from the afore-mentioned diagram rules.

г3 sts+<Je j 7 7 i f

• W ’ <Lr^) /г.Зо/
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The indices refer td> the matrix elements./ 
Explicitly it is

U u )

/2.31/
rJn the same way as for /_ we did hot write the site* 

indices.
The self energy can be calculated very easily 

from /2.31/ because (cjj are proportional to

L  H =  i 7 ,S ( s ^ q t ? « ) [ z p j g r  H i  -  X b & i ]

/2.32/
/ f denotes the principal value of the integral.
'i'he expression in the bracket of /2.32/ came from
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( £ W  ^ (У+^ы1)
) l'H V

Q CŰ(uJtA-^j
tc^-A - \$

by using /2.9/̂ the analytical properties of the func-
r rtion 'д and the dispersion relations for 4 .

In this calculation we did not specify the position of
the impurity and the same expressions are valid for the
case when the impurity is in the electrodes* The only

difference is in the form of the Ц  functions. Sub
ito

stituting /2.32/ with Ц given by /2.25/ into /2.19/ 
we see that as before only the second part of /2.25/ 
will contribute to the current. We obtain

( t H -  U h IÍi p V-L. - U R e - S T / ^ l  ■
/L Jltf w-fc J /2.33/

r-°Because of the discontinuity of 4 at the Fermi level
the factor P\-------- contains the dominant voltageJlTT io-b
and temperature dependence and accounts for the zero 
bias conductance anomalies.

Now, to perform the integration over £. in 
/2.33/ a cut-off parameter E o  should be introduced.
At this point there arises a question about the range 
of E and related with it the physical origin of that 
cut-off parameter. There are two sources which may de-
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tepmine the cut-off energy: the momentum dependence of 
the exchange coupling constant ^ tfc. /which was neglec
ted in the form of the exchange interaction that we used/ 
or the energy dependence of the bulk electron density of 
states. xhe problem of the momentum dependence of the 
exchange coupling constant is carefully discussed by

Mezei and Zawadowski /1971 a,b/ . xhey introduced two 
parameters Д  and D .Д is width of the energy region 
where changes and a cut-off energy D reflects the
band structure /the conduction electron bandwidth/. In 
terms of these parameters we shall make qualitative discu“ 
ssion about the range of our cut-off energy E0 .

Let us suppose for the moment that we start 
from the beginning with momentum dependent exchange coup
ling constant V -  / That can be taken into account 
following the approach of Zawadowski and Mezei /1971 a,b// 

For one impurity which lies well inside the 
insulator,the interaction of conduction electrons with 
the impurity spin is then very well localized, because 

of that localization the matrix elements are non-vanishing 
even for big momentum transfer and therefore there is 
no cut-off coming from (, ̂  . -̂ ut, on the other hand
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r-°we know that our 4 is proportional to the density 

of states in the electrodes. So, the best what we can 
do for the oase of one impurity deeply Inside the barrier, 
is to perform really the integration in eq. /2.33/ by 
taking the cut-off energy E о to be D , and to suppo
se that in that energy interval ^  and are contents.
If the impurity lies inside the metal , because of 
the overlapping of the neighbouring Wannierfunctions 

U  will change essentially in the region A  which 
is much smaller than b • This means that in the oase of 
one impurity in the metal we would need to take the cut
o f f  energy Eo to be determined by A f and ^  and S° 
to be constant in that region.

Since in our calculation we did not take into

account the momentum dependence of the exchange coupling 
constant we shall simply restriot the principal value 
integral in eq. /2.33/ to an energy region of width 2.E0 
oentered at the Permi energy £ p /all energies are 

measured from 6F /, E„ has to be taken as
for an impurity in the metal and as b — ^pfor an impurity 
in the barrier. In both cases,if we are interested only 
in a simple logarithmic term and want to make compa
rison with previous theories,we have to neglect the energy 
dependence of all factors in Ц  /in the range of £E0/



except the energy dependence of the Fermi function.
m/In fact that assd^tion is not so drastic since these 

factors, the energy dependence of which have been neglec
ted, are not singular anywhere in the range 2-E-o and 
moreover they are slowly varying function of £ in that 
range/

Then, this principal value integral gives logarith 
mic dependence. We may drop other terms which do not 
contain ||£) such as in eq. /2.33/ since these terms
are small compared to terms with and they cannot give
logarithmic dependence.

Taking the derivative with respect to the voltage 
and neglecting the frequency dependence of S? $°and ̂  in 
the integration over CO /that is quite justified since 
the range of U) is between and which is very small/
we may write the change in the dynamical conductance due to
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ti*)
in the form

/2 .JA/

where
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' £ n /2.34 a/

isAn interpolative approximation for

c(elAT)« - Ь' V Eo У where n = 1,35
/Appelbaum 1967, Shen and Rowell 1968/

/ Recently Wyatt and Wallis /1974/ have discussed 
this approximation for F(«KT} and performed numerical 

integration of eq. /2.34 a/ for different temperatures and 
showed that the interpolation function is most inadequate 
when eV ̂  i fe-T . /

We find again that the contribution to the
■r

dynamical conductance ooming from JE- corresponds to the 

Appelbaum expression /Appelbaum 1967/ and gives a zero 
bias conductance peak for J 0 i.e. the antlferro- 
magnetio coupling. Note again that we have an explicit 
expression for his phenomenologioal parameters.

Let us now consider the dependence of that 
contribution to the conductance on the position of the 

megnetic impurity in the barrier. As was mentioned before 

K r  is relatively independent of л* — the position of

impurity but the factors in the bracket of eq. /2.33/ 
strongly depend on it. If the impurities are only on one
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side of the barrier, let us say on the left side near 

the barrier metal interface, than J A t T  I C a l 1 ,
When the impurities are deeply in the barrier the oonduc- 
tanoe drops off rapidly with distanoe from the barrier- 

-metal interface /)^{aj oC e ^ 1“ for an impurity in 

the center of the barrier/.
After having discussed the contribution to the 

current from the^. term in detail we now return to equa
tions /2.17/ and /2.18/.

2.2.2 The 2. contribution to the dynamical ourrent

The seoond term in /2.16/ gives the following 

contribution to the ourrent /the first term in /2.18/ 
does not give any contribution/

(83 > = ^ j d « T  Y 1! И  -
/2.35/

Since the impurity is in the barrier we
have replaced ) by their zeroth order values

(<3/°л ) 811(1 used relations /2.27/ and /2.28/ in
deriving /2.35/.
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Making an expansion ofjCjctbJ to third order 

in the electron-pseudofermion interaction we get

г to to 0,0, .то ло r *.o /г Л и) ftu)Л

/2.36/

In order to calculate the second order contribution to
v rU)

/2.35/ and /2.36/ we need /_ to second order in
^ . Knowing that 2_ = 2_ “ Z. » using the relations

/2.2о/ or /2.23/ and performing the integration over 
СОл and COx in ^_C /for that integration we only

Q o and

relations /2.21/ we get
*(*0 .Л . \ rO

/2.37/
Another way to achieve the same result is to use Keldysh's 
linear canonical transformation /2.11/ after which the
matrix Cj° transformsto Cj 4 S ° )  , ^  trans-

/ n V r \ ' fctforms to 2. 5 [^ ü 0 ) and the vertex 2) /1
transforms to

C  - £“ - 1 
=  Ü  = * - s .«‘-ft

/2.38/
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We may write 51 as

x T  =- 1 л
Ttt T T

‘<̂/b
/2.39/

/ I means the transformed matrix./
Sometimes it is easier to make integration,

in the transformed form using the analytical properties
~r(a)°

of Lj
The second order contribution to the dynamical conductance 
may he written as

ь С -  ¥ Y s(h  *; с  T T l{ с ;г c  c c - * /2.4-0/
+ f-тO , 0.0  ̂0,0 (КО 1

4ft Hi i 5
Using relations

О ✓м-О Г0 />rO
M a i M i b  =  S - ь Ч «

/2.41/

we get

< =  ^ й г Y K i f e w /2.42/

We note that the expression in front of the bracket is just 
the conductance for the pure contact /without impurities/
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and the expression in the bracket is therefore the 
change due to impurities.

The total second order contribution to the 
conductance is given by

q V fi fi
/2.43/

Where the first termi^Utlis due to 21 . U>
Let us discuss now the dependence of ̂ (Vjon 

the impurity position in the barrier. In a recent work 
Appelbaum, and Brinkman /1970/ using a simple model for 
MIM contacts pointed out that if the impurity is found 
in the first atomic layer of the barrier, the interaction 
depresses the current. On the other hand the impurities 
deeper inside the barrier enhance the current. It is 
easy to get the same result from our calculations if we go 
to the continuous representation of this discrete model 
/see Carol! et al. /1971//« Moreover, we are able to figure 
out where these two different contributions come from 
and how far from the barrier-metal interface is the 
factor which gives a depression of tunneling current 
still effective. The different expressions for the propaga
tors in the continuous limit for the simple square barrier 
model are given in the Appendix. To simplify the cal
culation we shall divide our system into two halves only 
and locate the partition well inside the insulator
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/we now consider the case when impurities are on the 
left side only near the contact between the left elect
rode and the insulator/. Then, in the discrete represen
tation we may write.

<ro
CO

- 1 -  + ПО уэ 'TO
cc

/2.44/

lT and C denote the sites on either side of the new 
partition, ^ denotes the free one sided propagator. 
The propagator ^ for the left-electrode+the half of 
the barrier is easily expressed in terms of the corres
ponding ^ for the metal \Л and insulator 1 alone 
simple algebra gives

, tTOw? rl w О TO

/2.45/
Let us first see what happens when the impurity is at 
the contact between the left electrode and the insu
lator. Then, we may retain in /2.44/ only. In the

i *1
continuous representation this becomes

2. 'УЧ 'j

^  к-***.

/where "^-^-(4  ̂ t

distance,

/2.46/

is the interatomic
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The signs - and + in the denominator of /2.46/ refer
y? 0to retarded and advanced ^ functions respectively./ 

The first factor in the wavy bracket of the equation /2.43/ 
/which is the Z_ contribution/ becomes

I « т е  hk)\~ ( у / « -  . y j  -
к J  L * *  ] r> Ф ' Г 1 f  \г Л

1 (1 4 ) A  *■* jUHT V
/2.47/

This factor always enhances the current. 
On the other hand

—  L  \х2-(кг-<£)

1 U H T
/2.48/

Since, usually к , this factor is negative and reduces 
the current.
The sum of the equations /2.47/ and /2.48/

can be positive or negative, depending on the ratio —  . 
|cP , iIf ~r" L the absolute value of the negative term is

fb
larger than positive one, and therefore the sum is negative
The opposite case is for SLp >  V TIf the impurity is deeply in the barrier,then
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кBoth terms are now positive for all values of the ratio
о U

/ in these expressions denotes only the real part
of the propagator since there is no density of states in
the barrier in the energy range of interest. Then 

ao л c ° о .
" X i "  X <  * V 4  /

The condititon which gives the distance of 
the impurity from the electrode-barrier contact, so that 
the negative term is in absolute value just equal to the 
positive term, may be written as follow*

ло I b
гг

/2Л9/
or in the continuous representation,

I y (  r “ ' i >  - ч 1 = -  [ i f ( í - í - 4 w t - í - í

W  is the number of the interatomic distances measured 
from the metal-barrier interface.
This yields

Í4
/2.5°/

or -
X t 2%K

/2.51/
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The curve ̂ л0(х •=• —  ̂  defines the dividing line between 
the region in which the sum — \ -ь +■ )
is positive and the region in which this sum is negative. 
This negative sum is in accordance with the Sóiy0m- 
-Zawadowski theory.
They attributed the depression of the tunneling current 
to the corresponding depression of the electronic den 
sity of states in the neighbourhood of the impurities.

Going on to the third order contribution to 
/2.35^ we have to calculate 2-0»*]. *— is already
known, 2—  ) can be calculated easily from /2.31/.
So using the relation X. ~1— ~~ we obtain

iTiw) = l fS( S+ \)UгЯыА él. Síik - г (4* :V JiT w-t Jz? Ы - c

+ ( C^co)) t  г

/2.52/

1be same exspression may be obtained by making the 
integration in the transformed X  matrix which 
is given by expression /2.30/» where all matrices are 
replaced by the transformed ones.

ihe terms which contain the dominant voltage
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°1 U)
(X>-£

/2.53/
Adding the X  contribution we get the total third order 
contribution to the conductance from an impurity confined 
to the barrier as follows

4 V  >- (tV I c  |V
+ T Y  f m j

To
tT. *  TT  /2.5̂ /

Here there is a factor similar to that which determined
whether the tunneling current is depredsed or enhanced 

гin 4  . Therefore, a similar discussion concerning
r O)the dependence of the sign of Ц on the position of 

the impurity is valid here /only Ю 1 + № « ) 4 ( Q £ ) = .Л ̂ /
о  )X- which appears in /2AJ>' is
replaced by ( in /2«5V/ Also during the 
treatment of the 2_ contribution we have seen that 
due to the expression in last bracket in /2.5^/ the total 
conductance will drop off rapidly with the distance of the

and temperature dependence are
. • п ^ г - . с Г с ”  M t  ^ “^ N , 14 * 1  ^ + ^ |_ cnw))zV w -£ Ат- ~ ХЗ‘Г7 J
Introducing the cut-off energy E0 and using the same 
arguments as in derivation of the 1_ contribution we get
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impurity from t h e X ' M  or £ - H  contacts.

3. The magnetio impurity in the electrode

From equations /2.17/ and /2.18/ it follows 
that the current through junction in the case when the 
impurity is confined to the electrodes may be written as

0 > = т te |uV( Vй)
where the effective coupling matrix element is

/3.1/

uf-TT Cb
It was already mentioned that corres

ponds to such events that in the intermediate state de-
л Оscribed by Ц  the electron may cross the partition going 

to the right electrode. This means that depends both
on /Au and /Л & . The contribution of those processes 
where thi3 crossing really takes place is proportional 
t0 1 ° и ь Г  • Because is an exponentially decreasing
function of the width of the barrier, the above mentioned 
factor is very small and we may neglect this contribution. 
Then and 8X0 the propagators of two isolated
regions in thermal equilibrium with chemical potentials 
/At- and /Ur. respectively.
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From this consideration it follows that we 
may use relations /2.27/ and /2.26/ for the pro

pagators and write equation /3.1/ in the form

0 )  - T  1  l ^ a b l
r 2-

/3.2/

Now, we oan prooeed exactly in the way as it was done 
hy Caroli et al. /1972/ by making an expansion of 

in powers of ^ and T .
Instead of that we shall follow for the sake 

of illustration another way, which leads to the same 
result with the same effective density of states 
as theirs. The difference is that we make an expansion 
of in powers of Q  and X  instead of expanding in
powers ^  and T . Up to third order in the exchange

interaction
ir <r I* r*  ,0‘4hbl

ao чгл[1г)И1)] 
\ Л Ь  \ ЬЛ. x л

(V©
Л Л  ^

/3.3/

+ /Г|Л(г) 4,£\(3jwhere 2~~ ' 4=  r  v r and is the
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position of impurity in the left electrode; If the 

impurity were in the right electrode, we would have had a 

similar expression.

/3.4/

L<lW4L'r0 (q1"0 \4 ‘r[ (Utr^
KK  ̂о c*aJ 2—  v д /3.5/

Using the relations

ЛЬ
<Vo

T
_/TO _ <fO
Л«^ b

ao

с * °  ~  Т 1 ; п : ° л
^ А /I -p ̂ л» .io4- I

/3.6/

/3.7/
■<

^ tvo
and the symmetry properties Ч  д ^ -  
follows from the time reversal invariance of

r <vo /which 

$° propa
gators/, we may cast equation /3.3/ into the form
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\ С Г « 1С Г т у  1

After some algebra, the contribution to the dynamical 
current due to impurities in the left electrode may be 
written as

(Пг.) = ~ J  •]>){ |L(.) - Ц  /3_

where we introduced the effective densities of states
r'-’0 О f^  v ^ and the oorreotion as in Caroll

et al. /1972/

9/

\
* т У L i-T fcí TO

/з .ю /

* v - Jv4
, *r

U - T Y * * C f /3.11/

The second order contribution to the oonduotanoe may then 
be written in the form

(г) 17.<Л^п« r
/3.12/

where
Anti /rf*J \ f *> ( Си. А \ГТ ° t \ ^S ( S H j q xA(u>j.
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In the continuous representation of the simple
square barrier model as discussed in the Appendix we

(2 )would be able to plot the curve ŐG as a function of the 
impurity position. Instead of that the main feature of the 
behaviokr of that curve may be seen from the quite 
general discussion presented by Caroli et al. /1972/.
We shall repeat in main lines their arguments to have 
complete consideration of the effect of impurities con
fined to the electrode.

All the differences with respect to the case 
when the impurities are confined to the oxide barrier arise 
from the fact that in a metal is oscillatory, /with
rapid changes of the phase of on the scale of /
The effective density of states and also con
tain some combination of X. дд and Т уч"Х.д д • The 
coefficients of fU. 2-ДЛ and Зллл 2_Гдд are 3*л — — ----

w (О "  m U - т Ч Д Г с ^ Гand^_  — Г~\г. respectively. These coefficients are ’(1—”T
energy independent /between^M^andyU^ / for MIM junctions.
They have approximatê  the same value which depends very
Btrongly on the special model used for junction. This

r r сг)consideration is applicable not only to 0 9 U but in 
the same way to as well /where this oscillatory
behaviour implies a variation of the sign of the
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logarithmic conductance anomaly with the position 
of the impurity in the electrode/, since the conclusi- 
ons above were drawn from the form of i.e.
The third order contribution to tie current from the 
impurities confined to the left electrode may by written
as

a  U4 Г..— ilt&A- ^  -
V) W t J \  JW- ^  1T Л

 ̂ f. A* ^ ^ ^ t(i7 • /
} I ~  w - t

We already Isolated here the term which contains the 
dominant voltage and temperature dependence, and in the 
integral over £, used the relation C j —  — 2 * Чдд(̂ ) 
which is valid for impurities confined to the left elect 
rode. In calculating the integral* we have to use a 
cut-off, similarly as in the derivation if equation /2.34/ 
from /2.33/»

Neglecting the energy dependence of
$4. integral over £ and that of 9 ^ H and

c; AN
н

in the integral over Ы  , we shall again obtain
a logarithmic behaviour in the conductance.
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4. Generalization to three dimensions and finite impurity 
concentration.

As in the paper by Caroli et al. /1972/ H o  
which describes the coupling between the electrodes and 
the barrier is assumed to be translationally invariant 
in the direction parallel to the interface. It means that 
the momentum component 1г,( is conserved during the 
transition from site to site and from site b 
to site (b . This approximation was carefully discussed 
by Combescot and Schreder /1973/ and they showed that as 
long as the tunneling involves small spreads of 
and with respect to the Brillouin zone and the band 
width the interface scattering gives a tunneling current 
which differs from the specular one / &ц is conserved/ 
by a multiplicative constant of the order of unity.

taken as
The transfer electrode-barrier coupling is then

Hc~" T.J + c b £/>, J
Л>,Ь /4.1/

where сЦЛ) lies in the first atomic plane of (4 ( M'J 
and in the first /last/ atomic plane of the insu
lator. Let us first consider an impure Junction with 
magnetic impurities located inside the barrier, with a 
random distribution in the '&) direction /plane parallel 
to the interface./ Making an averaging on the impurity 
distribution in the plane the system becomes
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translationally invariant along that plane and the 
density of impurities is a function of one space 
coordinate only, that of X . This distribution 
is given in the discrete site representation as CV 
and is kept undetermined in the calculation. We also 
confine ourselves to the case of low impurity con
centration so we suppose that the magnetic moments 
are independent of each other. Expression /2.19/ may 
be written as
O k t >  - с г .

A.
( .v -[ukO>] -o ^ 1
■ { - к Д , ) 1Л ч  } /4-2/

оwhere we took into account that the propagators 4
C° ■ Y '  •and ^  are tranelationally invariant. Z_ г г

is the contribution to the self-energy of one impu
rity at the place 'TV and it does not depend on 

,i .. Here we used the Fourier transforms vAlth res
pect to 4 and -2r -IT ( л* io ^

e x ^ V ( > u - b t ) }  а .з/
d г1| 12 и 1N э

The other contribution to the current can be obtained 
from a generalization of /2.35/ and /2.56/

O j>  К Ы и Ч
v ir^0 до ^ <\o +  л о  + ГП1М+1зуто

w ?aI
TÍui+híĴ

/4.4/
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In the case when the impurities are inside the left 
/or right/ electrode, their contribution to the current 
may be written as

Ь Л (  с д , ] ) - х
Л - О м ^ ]
Л A

А . У
where С\ is the concentration in the A  -th atomic
plane in the left electrode.

In perturbation theory which we used throughout
t-C-Othis article the first order self-energy 2_ is equal

to zero. Therefore up to third order in the electrode
and barrier effects are simply additive.

We know that the range of parallel momentum which
is involved mostly in tunneling is very small i.e. only
the electrons with energies near the Fermi energy and —>
with К  Ц —  0 play an importárat role in the tunneling
process. That follows because the wave function of other 
electrons is damped more strongly in the barrier. All 
the main features seen in 1-D case and for one impurity 
will therefore remain intact. This can be easily verefied 
going on to the continuous representation and performing 
the integration over the parallel momentum. F0r impurities 
confined to the barrier there is no destructive interference 
as in the metallic region, for the evanescent wave function 
has a constant phase G(V,T) is negative for impurities very 
close to the interface.

4

I

\

V
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otherwise it is positive. However, if the impurities are 
situated in the electrode region some question arise.
One question in how far from the metal-harrier interface the 
impurities may be /assuming a layer-like distribution 
parallel to the junction surface at distance from M  
contact/ so that the contact still "feels" their effect 
in the conductance. This question is connected with the 
problem of a coherence lenght and of spatial dependence 
of the electron density of states around the impurity layer» 
/We note that actually in expression /4.5/ there is some 
renormalized density of states at the place of V.-Icontact

r—''
i.e. cf /• To the extent that there is no damping
factor in the free electron propagators in the metal
/ Q"ro /, the renormalized density of states and the

* J. Л.
conductance due to the magnetic impurities will be an 
oscillating function of position. -Lf we take into account 
the momentum dependence of the exchange coupling ^ ̂  
and introduce correspondingly a cut-off Д  /wich will give 
the coherence lenght =■ / then the propagator

О will not be a simple oscillating function of 
the position A. but will contain some damping factors.
This damping will cause the renormalized density of 
states will consist of two parts, an oscillating and 
non-oscillating one. These results are in agreement 
with ^ezei and Zawadowski/l971 а.Ъ.Л
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for further discussion about the range and relative 
importance of these two parts in the renormalized density 
of states and their effect in tunneling anomalies we refer 
to Mezei and Zawadowski.

♦

I
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Appendix

Carol! et al. (1972) illustrated the general behaviour of 
& оthe propagator ч. for the region comprising one electrode and 

half the barrier by considering a square barrier potential for 
a continuous model. We will solve the equations for the free pro
pagators in the barrier alone and in the electrode alone, and 
show on one example how to go from an expression in the discrete 
representation to the corresponding expression in the continuous 
model using these free propagators.

For the free propagators in the barrier alone we have to 
solve the equation

(-б Н <*-i>

with the boundary condition that g°=0 if x or у «* 0 
and g° = 0 if X or у = L. The general solution is

^ -06p +■ ■£- KxJ (A. 2)

The coefficients A, B, refer respectively to x>y and*r T
x ■< y. They ate determined by the boundary conditions and the

оcondition that g is continuous at x = y, while .■ ■■ д hasЭ к
a discontinuity - m . The result may be written as

: 0 ^  ■Г- 1m hlyKx *<ч
*>KUL

). A m -  JöhJílbé—  äKK(L'x) ч < x (а.з)L tfK aMal
Solving the equations

(- — ------ ^ - r - u j P " 5 \ c t  \ (AH)V s_w S i  ix,«*) a
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with the boundary condition gro(x,y)=0 if x or у = 0 
we will get the free propagators in the metal alone.
The general solution is 

ryo
Ч (Л-5)

Gro has to satisfy the following conditions
(i) gro = 0  for X = 0
(ii) gro must be analytic when continued into the upper half
of the CO plane; it means that for x>y, = 0 . (iii) gr°
is continuous at x =. у while has a discontinuity

9 . These conditions are fulfilled by

r u  J 1«? >" a -x ' еч’ (-‘ « з  ‘<4
[_- hib ä-i • [ ч *  } x > ч

Now, we are able to transform every propagator, G0^, 
given in the discrete model into the continuous formv using 
for example the free propagators of the specific continuous 
model discussed here.

Let consider  ̂ as a simple example*
In the discrete model is given by the equation (2.45)

ro -а о
+

1 — - и > Г W
t o -  ^ c u -  9 i - ^ C

j —r-1 о _ ro
^ ' T

roX.
ro
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The continuous is given by
/V°- \ - < о IIXC.(X : ) =  &l.w \ ^ ̂  ̂ 

Ь 0
o W where €| • L - i f o(l)\ C L (A.7)

Then

L ^
т Ч У Ч ?  9l f)

(A.8)

£. is the interatomic distance and going on from discrete 
to continuous representation we need the "normalized" Green

s* n 1̂0functionü* LU (for the detailed discussion see Caroli et al,
tv*-(1971b). The transfer terms T or T ' are — ~z--rr2 ̂  t

Taking the limit l —Ю  and introducing our free propagators 
in the continuous model given by (A.4) and (A.7) into (A.9) 
we obtain the continuous ^

A
^ t,7 ) i K

И t oL - i Kx ieA +*
L_ K'iji (A.9)

This propagator is the same as the one sided propagator 
obtained by Caroli et al (1971b) (Their formula (A.4)).
In the same way we could evaluate the continuous ’non-equilibrium" 
propagator Gro (х^,х^).

5. Conclusions

In order to treat the effect of exchange scattering 
of tunneling electrons on magnetic impurities in a tunnel 
junction, we have used the CCNS theory and Abrikosov's
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fictitious fermion operator technique. We find that when 
the magnetic impurities are situated in the barrier region 
there are two different contributions. The first one (which 
is due to the term in the self-energy) leads to anЯ
enhancement of the "tunneling current to order Ĵ, (eq./2.29/) and
to a zero bias conductance peak for <^0in the third order 
of perturbation theory (eq.2.34)) Comparison with Appelbaum's 
theory (1967) shows that this contribution is just equal to his 
result (with one important difference that we have an explicit 
expression for his phenomenological parameters). The second

't'ÖLcontribution (which is due to the term in the self-energy)
is not always of the same sign. The region in which this con-

+-tribution has the sign opposite to that of the contri-
l< Fbution depends on the ratio ~x-- and is not larger than oneД f

atomic layer. Therefore only for impurities which are situated 
in the barrier close to the metal-insulator interface (not 
further than one atomic layer) the total second order (or third 
order) contribution to the current may be negative and reduce 
the current. This negative sum corresponds to the Sdlyom- 
-Zawadowski theory.

Regarding the relationship of these two contributious 
to the calculations by Appelbaum and by Zawadowski and Sdlyom 
we have to make several remarks.

Appelbaum's (1966, 1967) theory considers the magnetic 
impurities in the barrier as providing an easy way for the 
electron tunneling through the barrier and describes it by 
adding a phenomenological term to the conventional tunneling 
Hamiltonian. In the case of antiferromagnetic interaction 
the current obtained with such a procedure is always positive 
and that supported the idea of a "new channel". (A microscopic
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basis of this idea has been suggested by Anderson (1966)) .
Considering only the j_ contribution to the current 

for impurities in the barrier we have obtained exactly the 
same results as Appelbaum (with the same numerical factors) 
but with explicit expressions for his phenomenological 
parameters). We note that we used a microscopic theory which 
does not contain phenomenological parameters .

From the theory for electron-phonon interaction in the 
barrier (Caroli et al. (1972) we know that the Z_ term 
corresponds to an inelastic process in which a real phonon 
is emitted during the tunneling event. Furthermore, in the 
case of electron-phonon interaction (for phonons in the bar
rier not close to one of the electrodes) this inelastic 
current <1̂  ii<̂ which stems from УЦ_'~ dominates over the ela
stic current \6|e.̂ /hich stems fromV^1 .

In our case of electron-magnetic impurity interaction 
we have found that, for impurities in the barrier not too 
close to one of the electrodes, there are again two contri- 
buttons to the current: one from /_ and another one from 
21 . But both terms now correspond to elastic processes 
(if the magnetic moments are non interacting as we supposed) 
and in the second order of ^ both lead to an enhancement 
of the tunneling current (the impurities are farther than one 
atomic layer from the insulator-metal contact)and they are
of the same order of magnitude. If the impurities are still in

^rr'athe barrier but situated very close to one electrode the /L 
term in the second order of changes sing and becomes bigger
than the term (which is always positive) .
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In the third order of T the I*contribution leads to a zero
и r,cxbias conductance peak forl^U. On the other hand the 2_ term

leads (for each position of the impurity) to a zero bias 
conductance dip for<J<(0. But this /_ contribution in the third 
order of ^ is proportional to (]iv\ (see (2.53)) and there
fore becomes negligible except for the impurities which are 
very close to the metal-insulator contact.

This consideration shows that Appelbaum's original 
(1966, 1967) calculation of the current is incorrect since it 
does not include all important contributions to the current. 
Moreover, if follows that the notion of "assisted tunneling" 
is not well defined. In what follows we will show that the 
terminology as "non local effect or assisted tunneling" and 
"local effect or the change of electronic energy spectrum" is also 
incorrect and that it is impossible to make such a distinction.

Appelbaum et al. (1967) using a Green's function decou
pling scheme derived two terms, one negative term (which

ri cv.corresponds to our term) and one positive term (which co
rresponds to our contribution) , which means that their
calculation gives correct results for impurities very near to 
one electrode (but not for impurities well inside the insu
lator) . In their derivation they again introduced phenome
nologically the impurity spin-assisted tunneling channel as 
suggested by Appelbaum (1966, 1967).

In contradistinction, Zawadowski (1967) derived an
expression for the current assuming that the electron inter
action with impurities shows a local character. His calculation is 
microscopic, and no phenomenological parameters are introduced.
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Starting from the expression for the current Sdlyom and Zawadowski 
(1968 a,b) found that the amplitude of the tunneling current 
can be expressed in terms of the local density of states. They 
supposed that the exchange interaction coupling constant is 
momentum dependent and introduced an energy cut-off parameter 
which was assumed to be small compared to the Fermi energy.
The assumption that the cut-off parameter is small led them to 
neglect the real part of the free propagators with respect to 
the imaginary part. As a consequence of that approximation they 
obtained only a depression in the electron density of states 
and a corresponding depression in the tunneling current. The 
same calculations as that of Zawadowski was made by Appelbaum and 
Brinkman (1970) in their recent coordinate representation ver
sion of the transfer Hamiltonian theory. Without using a small 
cu-fc-off in the calculations of the free propagators, they succeeded 
in deriving correctly all terms for impurities confined to the 
electrode region or to the barrier (but not for the case when 
the impurities are so deeply in the barrier that we have to 
take both electrodes into account simultaneously and on equal 
footing. All these considerations can be easily illustrated 
on the second order contribution to the current. Let us write 
the total second order contribution in the form

< l (1)> =  f s t b  '-'dcturffiM -f )
t

■VICJО I 2_
b

ro
+- lJ

(5.1)

where
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G о t - ч и +• чк 1 С 1 $а° * ̂°Lb 1 С-г 1 ЦГ,- (5.2)

and "i" is the position of the impurity in the barrier. From
r ro(5.2) one may see that Ц £ is the propagator for a non

equilibrium system since it contains contribution from both 
electrodes, v/hich have different chemical potentials.
The term in wavy bracket \ ^  | is due to the contribu-

fc го fr oo \ i —  r,ation and̂L̂ — j L- ̂ J is due to the ^  contribution.
Their sum may be written as

Let us suppose now that the impurity is closer to the left
electrode. In that case the third term in (5.2) will be of
the order of&^ ( L- is the depth of the barrier).
Since in (5.1) there is already a termfCj^ \oC ^-2KLj ,
the third term of (5.2) may be neglected with respect to the first 

Г rotwo terms. (, £ t may then be written as 
го л(”о -r-a „o. ro n ° '

ц “  “  ’ - 1- T V - 12
,roIn this approximation Cj ^does not contain the spectral 

density of the right electrode. Writing equation (5.4) in the 
continuous representation for the square barrier poten
tial model one has

(5.5)
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( is the position of the impurity and X - 0 is taken in 
the middle of the barrier). In that f orm Ц (/c ) is exactly
the same as the free propagator used by Sólyom and Zawadowski 
but written in coordinate representation, (See equation (8) by 
Sólyom-Zawadowski (1968) with functions given by their equation 
(11) and (A. 1.2)), or it is the same as Appelbaum-Brinkmann's 
left hand side propagator taken at the place of the impurity.
(Equation (2.18) by Appelbaum-Brinkmann (1970)X). We may call
Ci (XCXjVritten in the form (5.5) the one sided propagator and

' ' о  r °  P y0 ' \denote it as4(xCtXC)* Sólyom and Zawadowski did not use
in the coordinate representation but went instead to the momen
tum representation and neglecte the real part of the free 
propagator. Therefore, instead of equation (5.3) which we may now 
write with the one sided propagators as

(̂xĈ )|-t dCx̂ '/o) xo) ] Ä ixc/o )

they get only —
' <rO «2. . fO(We note that the similar factor, namely(£ê (X<l|*l)J~ Xi)j

appears also in front of the logarithmic function in the third 
order of perturbation calculation). On the other hand Appelbaum 
and Brinkmann's theory (that is nothing else than the coordinate 
version of Zawadowski's theory without neglecting the real part of th 
the free propagators) gives the sum 3vße.̂ (Xt **■) — (/C
in the second order of or ( (Z e ̂  (xO / j) ^ ,Xijj
in the third order of ^ correctly. It means that the Sólyom-

гоxThere is a difference in the numerical factors of Ц (Х*.хЛr L 'given by (5.5) and Appelbaum-Brinkman's Ц 0 given by their equation 
(2.18) which comes from different definition of the propagators.
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-Zawadowski theory (or its improvement the Appelbaum-Brinkman
theory) is correct for those impurities for which we may replace
r  4 0  i p  'Y °.Ц  — given by (5.2) with one side propagator Cj Lt,given by 
(5.4) or (5.5). If the impurities are at approximately the 
same distance from both electrodes than the second and the 
third term in (5.2) are of the same order of magnitude. The 
problem has to be treated as a true nonequilibrium problem in 
all steps and it is not possible to replace eq.(5.2) by (5.4).

Another useful illustration of these ideas may be achieved 
if in our calculation we divide the system from the beginning into 
two halves (instead of three parts as we had) by a partition 
located in the middle of the insulator).

Then, starting with equation (2.17) and making an expan
sion of in powers of T and , we may write the second
order contribution coming from an impurity situated close to 
the boundary between the left electrode and the barrier (either 
in the electrode or in the barrier) as

< v >  -
/ 5.6/Í and c denote the sites on either side of the new parti

tion and ^  denotes the one sidéd propagator.
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t-о
/ is the same as given by /5,V or ^ (ХЛ(ХС)
in the continuous representation. We assumed that the 
impurities are only on the left side of the partition 
and in the demoninator we replaced ^ cc and ^ £ /which
contain the interaction/ by and ^ ^  » since the
corrections to ^ cc ^ are °f the or<̂ er °f e>/» ^

This form of the current is quite similar to Zawadowski’s 
and Appelbaum and Brinkmann*s expression for the current. If 
it is calculated in the continuous representation, we will get

*«■ i U'nY e ‘ *• ^  -

r  I i. j ь I U y . ) - (- ~K1)

W  4t 2 £bL
\ ^ + 3-*

• ( [ < - / ) /  Ч ^ г ) ) J l

/5.7/
1'he same result follows from equation /5*1/ using the one side 
propagators /5»V or /5*5/ instead of /5.2/.
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The expression in front of the wavy bracket gives 
the current for the case without an impurity and expression 
inside the wavy bracket is the change due to the impurity.

The first summand in the square bracket is due to the 
X  '4 contribution ^ ^ Ц  ) +■ ('Cj* .j J and the second

one is due to the X  ~ term ) | *"* ^ rom Appelbaum
and Brinkmann*s equations exactly the same expression may be 
derived for since the propagators are the same/.

We remark that in /5*6/ is /. <j S( Ц Лг*
but for an impurity very near to the IM contact we may 
replace С ^ г- by the left side propagator 
This remark shows that for one impurity close to the contact 
the self-energy cannot sample simultaneously the chemical 
potentials in the left and the right electrode since the' 
propagation in the barrier is exponentially decreasing 
with distance into the barrier. In this way we came to the 
main point of this discussion, namely the fact that the 
notions '.'assisted tunneling" and "local self-energy effects" 
have actually no physical meaning in this problem and emerged 
only from approximate treatments of the nonequilibrium 
problem.

If the impurity is close to the electrode-barrier 
interface and the self-energy cannot lump together 
and ^ fi. , than the equation /5*1/ which collects the Í- 

contributions may be replaced by eq# /5*6/ in 
where only real and imaginary part of X appear.
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Therefore, for such an impurity it is not possible
<T — Г.to distinguish between the /. and /. contributions

T tBecause of that we cannot say that the J- contribution 
/which corresponds exactly to that what Appelbaum calls 
"assisted tunneling" /describes some "assisted tunneling" 
and that it opens a new "channel". If the impurity is deeply 
in the barrier then we have to retain equation /5*1/ with 
Ц  {г given by /5.2/, but again we cannot distinquish the
4- t к *1°'2_ term and 2- since they have the same sign and 

/in the second order of ̂  / they are of the same order
of magnitude.

In addition we discuss briefly the relative impor“ 
tance of the impurities situated in the barrier and in the 
electrodes. Carefull discussion and comparison with expe
riments will be made in a future publication, in which 
the non-perturbative expression for the scattering amplitu”

r 1*1 <r~ 131de is used instead of J__ + д  .
The contribution of the impurities confined to

"t г-the barrier region is to order  ̂ , approximately inde
pendent of the position and always positive /exscept for the 
first atomic layer./ When the impurities move into the 
metal, there will be a rapid /on atomic distances/ spatial 
oscillation in the dynamical conductance. These oscillations 
will produce a destructive interference and a sizeable 
reduction of the conductance. It .means that if the impu
rities are randomly distributed with respect to the
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metal-barrier interface the contribution of the
impurities situated in the barrier will be much

.г.bigger than the contribution of the impu
rities confined to the electrode region. The situation 
to order (j is different. It was shown that the (J 
terms drop off rapidly with increasing distance into 
the barrier /since the logarithmic function is multi“

I 1xplied by a factor of the form which falls off
very rapidly/. Therefore, the barrier impurities will 
not show such a dominant role in the logarithmic 
anomaly as they do in the second order term.
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Fig. 1
Self-energy diagram in second order. The propagators 
of fictions fermions are represented by dotted lines 
while the solid lines stand for the electron propaga
tors G.. /i is the position of the impurity/.

i* 2»

■к \
\ -M-> -v— 9— W

Fig. 2.a Fig. 2,b
Self-energy diagrams in third order.
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