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ABSTRACT

A hopping model of tunneling proposed by Caroli et al. is used
to study electron-pseudofermion interaction in metal-insulator-metal junc-
tions with magnetic impurity in either the insulator or the electrodes
The contradiction between some earlier theories of zero-bias anomalies
/Zawadowski et al. and Appelbaum et al./ is resolved. These theories appear
as limiting cases of the hopping model theory of tunneling. Special atten-
tion is devoted to the study of the dependence of the conductance charac-
teristic on the spatial distribution of the iImpurities.

AHHOTALNA

Ha ocHoBe mogenu, pa3paboTaHHOl Kaponu c coTpygHukamm gns ob6bscHe-
HUA 3fpdeKTa TYHHEeIMpOBaHWsSi, HamM OblI0 MCCef0BaHO 3/1IEKTPOH-NCEBAONEPMUOHHOE
B3aumogeiicTBne B guojax MeTann-u30MaTop-mMeTann cogepxawux nvbo B anekTpoge,
nmbo B U30MATOPHOM C/l0€ MarHuTHble npuvmecu. Pa3paboTaHHbie paHee Teopun C Of-
HOV CTOpPOHb 3aBafOBCKOro, a C ApYyroli CTOpPOHb Annenbbayma npvBenun K NpOTUBO-
peuuBbiM pe3ynbTaTam. Hawa o0606WeHHas Teopusi BOCMPOU3BOAUT YKa3aHHble Teopun
KakK pasfnuyHble npejesibHble criydyan. lWccnepyeTcsa Takke 3aBUCUMOCTb BOJIbT-amrep-
HOV XapaKTepUCTUKM OT MPOCTPAHCTBEHHOrO pacrnpegeneHns npuvecer.

KIVONAT

A Caroli és munkatarsaialtal az alagutjelenség értelmezésére fel-
allitott modell TfTelhasznalasaval az elektron-pszeudofermion kélcsdnhatast
tanulmanyozzuk az elektrodaban vagy a szigetel8rétegben magneses szennyezést
tartalmazé fém-szigetel6-fém alagutdiddak esetén. Feloldjuk a zérus-feszilt-
ségu anomaliara Zawadowski és munkatarsai illetve Appelbaum és munkatarsai
altal korabban kidolgozott elméletek kozotti ellentmondast. Ezek az elméle-
tek a jelenlegi modell hatareseteiként adddnak vissza. Tanulmanyozzuk az
aram-fesziiltség karakterisztikanak a szennyezések térbeli eloszlasatol valo
flggését.



1. Introduction

Recently various theories have been proposed
to explain zero-bia3 anomalies i1n the dynamical conductanc
-voltage characteristics of metal-metal oxid-metal tunnel
junctions, which contain magnetic iImpurities iIn the
vicinity of one of the electrode-barrier interfaces.
According to the approach of Appelbaum /Appelbaum
1966, 1967» Appelbaum et al. 1967, Appelbaum and Brinkman
1970/ the tunneling current contribution due to the
tunneling process assisted by magnetic 1mpurities shows
a conductance peak in the case of antiferromagnetic inter-
action of the conduction electrons with the impurity
spin this 1iIn turn becomes a resistance peak iIn the case
of ferromagnetic coupling.
In another approach, that of Zawadowski
/Zawadowski 1967, SOolyom and Zawadowski 1968 a, b,
Mezei and Zawadowski 1971 a,b/ it was found that the
amplitude of the tunneling current is determined by
the local conduction-electron density of states /EDS/.
In this theory influence of the paramagnetic Impurities
manifests i1tself as a strongly energy dependent de-
pression of the local density of states compared to the
unrenormalized one. The results are just the opposite
of that of Appelbaum /1966, 1967/« The conductance
maximum s obtained for ferromagnetic iInteraction while
the giant resistance peak iIs due to antiferromagnetic

coupling.
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Recently a hopping model of tunneffing has been
proposed by Carol! et al. /1967 a, b - referred to as
CCNS in the following/. These authors have apCLied their
theory to a few physical problems relevant to metal-
insulator-metal /M1M/ tunnel junctions: tunneling through
an impure barrier /Combescot 1971/» electron-phonon
effects /Carol! et al. 1972/ and metal-semi-
conductor contacts /Combescot and Schreder 1973» 1974/~
The hopping model i1s based on the nonequilibrium per-
turbation formalism of Keldysh /Keldysh 1965/ and does
not rely on the transfer Hamiltonian approximation.
Because of the simplicity of the basic concepts all the
intermediate assumptions and simplifications can be easily
and clearly controlled and discussed.

The purpose of the present article is to apply
this hopping model of tunneling on MIM tunnel junctions
containing magnetic impurities and to compare the obtained
results with the two different afore-mentioned approaches.

In Sec. 2. this formalism is used to calculate

the general expression for the self-energy and thereby

the current up to the third order i1n perturbation theory.
As the most simple case a one dimensional model with one
magnetic impurity iIs treated. Using these self-energy
expressions we considered first the case when the impurity
IS In the barrier. We studied also the dependence of the
conductance on the position of the impuririty within the
barrier. It was found that the hopping model approach 1is
quite capable of including all contributions to the

current obtained earlier from Zawadowski’s and Appelbaum’s



approaches, as well as to give the explicit expressions
for Appelbaum’s undetermined phenomenological parameters.

The case when the impurity is in one of the metal
electrodes is considered in Sec. 3.

Our simple model 1is generalized to three dimen-
sions and finite concentrations of Impurities in Sec. 4.
In the Appendix we discuss a square barrier potential for
a continuous model.

We remark that the zero-bias anomalies are caused
by Kondo-type iImpurity scattering /Anderson 1966,
Appelbaum 1960, 1967/, which occurs when there is a
magnetic moment on the d-level of the impurities /the
contribution to the current due to the magnetic impurities
shows logarithmic voltage dependence, which is a particular
case of the Kondo effect/.

This means, that the zero-bias anomalies are
particularly interesting for studying the Kondo effect -
the energy and momentum dependence of the Kondo scattering
amplitude. In the following publication we used the non-
-perturbative calculation for the scattering amplitude-
There, we discussed 1In more detail the Kondo effect and
made a comparison of the available experimental results

and the theory.



2. Tunneling current in MIM contacts containing mag-

netic Impurity.

2.1 Formulation
In this section we consider a simple one dimensi-

onal tunneling junction containing magnetic impurity at
an arbitrary position. The CCNS formalism which has been
developed at lenght iIn the four articles mentioned above
iIs used throughout this work. We refer to Caroli et al.
/1972/ and directly use some of their results.

For an MIM junction the system can be divided
naturally into three parts.

Let represent the last site of the left elect-
rode ,ax.the first site of the insulator, and similarly,

b denotes the last site of the insulator and /b the first

site of the right electrode. Then, our Hamiltonian is

H f“ HU+Hu+ He tHC tHX
' /2 .1/

where

L

f'1-C PC J.
P11 /2 2/

Cp (Cp) 1s the electron creation /Zannihilation/ operator
on site p.W~andHgare defined analogously with indices
restricted to the right electrode and the barrier,

respectively.
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where T and T are transfer matrix elements which de-
scribe the contacts between the electrodes and the barrier.
We assumed that this H c which couples different parts of
the system, involves only nearest neighbour sites.

Assuming that a magnetic impurity with spin S
iIs located on site 1 and iInteracts through a local exchange
coupling with electrons on site , this part of the
Hamiltonian, using the Hondo type exchange coupling and
Abrikosov’s pseudo-fermion representation for the spin,

can be written as follows

c t* K n Ci( /2.4/

+
G r* and C 1 are the electron operators taken at the

impurity site, (XF and a " are the pseudo-fermion opera-

tors, and 57 are thé Pauli matrix and the spin

matrix, respectively.

The electronic current operator which describes

the current across the barrier is given by

Introducing the correlation functions

o’-jdat=-i {emc JH"J} /2.5/



which carry the information on the occupation of particle
and hole states, the average current throught the junction

may be written as

+@

TN TTr /2 .6/

In calculating these correlation function 1nQ”™we
suppose that the junction was biased pt\ N and Uc
was switched on adiabatically.

In addition we shall need the Green’s functions
Attt Mal,ddN

q* Q15D /2 .7/
which contain information on the distribution of available

states, and causal and anticausal functions

JKfFE*J = -r < 1

reTr " .. /2-e/
wherel is usual time-ordering operator and I orders

the operators along the inverse branch of Keldysh’s
contour. This means that \ and T order the operators
in just the opposite ways.
These functions are connected by the relations
q*=qc-g+ = - q¥% G~

c,«= C,c-Cf = -
Mn /2.9/

rT
* In the notation of Keldysh the definitions of ~ and

CN are permutted.



In the Keldysh formulation the Dyson eqgations may be
written as

/2 .10/
Following Keldysh we make a linear canonical transformation

of these matrices, for example the matrix”~*~_"~gbecomes

C 4-*4 O a*\

AN 71 U-q7 M~ UTFj
/2 11/
where Au Is the second of the three Pauli matrices
k*:(i O), N =
and
F = q+t<T: \Y \Y /2 12/
After that transformation equation /2,10/ reads as
/0 \ T0Cq o~o]/Nr ]/oo0
t / -
\O F VOr £ r o/k rF
/2.15/
where
-1l - L +*X~ = | W or /2 1V
t

K Our definition of X. is opposite to that of Keldysh and

corresponds to Caroli et al. /1972/.



Similar relations as /72.9/ hold also for the components
of the self-energy matrix.

Dyson equations for L and L are then

/2,157

and

A * - \V4 /2.16/

We shall widely use these relations throughout this
paper .
In calculating the current from /2.5/ we need

L which in turn will be calculated by treating H c and

NWx as perturbations. The complete propagator ~ 1is
obtained from the zeroth order Green function 4° by
including the exchange interaction Y and the transfer
matrix elements T and T, Taking first the transfer
matrix elements Tand T only and neglecting the ex-
change interaction, the renormalized Green function 1is
denoted by . This LU 1is total propagator of the
coupled non iInteracting system: T andT are the elements

of the self-energy

- r . r T<, ,t V n r 0

Taking now into account the iInteraction with the magnetic
impurity, the self-energy due to the exchange interaction
should be calculated by having in the intermediate
states. Let q denote the Green function where the self-

N € )
energy corrections due to Z are calculated with



renormalized N Tfunctions. However there are no transfer
matrix elements on the lines connecting the self-energy
terms. This means that ”~ propagator is defined with
such diagrams in which the electron cannot cross the par-
tition between different parts the system alone. However
It 1s possible that the electron does that inside the
self-energy

Since the interaction of conduction electrons
with the localized spin is well localized /Zeq. (.4)/, the
self-energy i1s local and i1s localized
to site T where the magnetic Impurity iIs situated. Then
the electron propagator. re - which enters into the mVo-
contains only an even number of elements and even
number of elements T . This me”™ns that i1f the site p
IS on one side of the partition and the site on another
side,the electron propagator can cross the partition and
Connecﬁ the sites only via the transfer matrix elements |
and 'F . his 1s very important for the calculation,
because 1f the self-energy were non-local connecting the sites
on different sides of the dividing line, the theory would
become very complicate. iuthermore it has to be emphasized

I
that through the 2 the @, propagator is

a propagator for an out of equilibrium
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system even 1f it is confined only to one electrode
/for example q£ depends on the chemical potential
of the left electrode and through- J on the
chemical potential of the right electrode./
Proceeding as in the paper by Caroli et al.

/1972/ the current may be written as-
o0

Now it is possible to proceed on two different lines
corresponding to two different regrouppingjof the terms
in e One 1s to expand in powers of *T', T
and ~ , which would lead to equation /13/ of Caroli

et al. /71972/. In that equation the interaction still

appers both in and iIn /\ ( A= -7)
/That expansion of is of the form XN
rt ~( t I no\ .
A = H V +1aaT 1, T% 4)n /

In this section we will proceed on another line. That

IS just equation /17/ of Caroll et al. 71972/

O O IJ\/"WA "4

where N are any sites iIn the insulator. Its advantage
is that 1t will enable us to see better the origin of diffe-
rent contributions to the current and

compare these contributions with the corresponding
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expression in the earlier theories of tunneling
junctions with magnetic impurities, This expression

for fpma, was derived ba using the %son equation

for Q" /2.16/ and the fact thattthe energy integration
in /2 .17/ is confined to the region between and Kp
That range of the energy variable o0 fTalls into the
forbidden band of the insulator and so ' = This means
that the requirement that ~ < /i1,jJ] are two points

in the insulator/ be different from zero, necessarily

involves the trip of the electron iInto electrodes.

2.2 The magnetic impurity in the barrier.

4
2.2.1 The L' contribution to the dynamical current.

Let us consider now the case when the magnetic
impurity is In the barrier and suppose that the interaction
of conduction electrons with the localized spin is of
the form /2/1/ =

From equation /2.18/ and /2.17/ it follows
that only the second and the third term in /2.17/ give
non vanishing contribution to the current.

First, we shall discuss the contribution coming

form the third term of equation /2.18/:
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1hzirT /2-19/

In this paper we treat the exchange interaction in per-
turbation theory up to third order 1in e /In a subse-
quent publication we shall use a non-perturbative expres-
sion for the scattering amplitude/. Since 61¥L appear3s
explicitly i1n equation /2.19/ we may replace the factors
Ar A4 h p %o

and vj- by 4 av and 4 Va which are zeroth
order with respect to E;i, but contain the transfer
matrix elements ~ and T 1 / c,* 1s obtained by
inserting T and T on the ~ /. In the following
text the notation GA%L will be replaced by /.

Since the impurity iIs supposed to lie iIn the
barrier and G~ Dbecome the free propagators
and (°™~without T and T and without self-energy
effects/.

Let us calculate the second and third order
contributions to the self-energy using Abrikosov’s fic-
titious fermion operator technique and the nonequilibrium
perturbation formalism of Keldysh. /1t is possible to
use Keldysh’s formalism also for equilibrium problems
and to get the same results in perturbation theory at
finite temperature for Kondo scattering with Keldysh’s
real time Green functions as with complex time variables

with thermodynamic Green functions./

The second and the third order contributions to the

self-energy are represented iIn Pigs. 1. and 2. a-b.
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making an expansion of the one particle electron
~reen function /for example / in powers of He
and H land using eq. /72.10/ we get / He is treated to

all orders/

P ¢ Pz wo
AD

5 379
et vBAOK 3" \fS WUrWiDavDika) 8 Ctirwaj Jj j Fad

/2 20/
~"or the sake of simplicity we dropped the site iIndices
from the self-energy and from the function GC -
/AL A and A are taken at the position of impurity/.

The fictitious fermion Green functions are given as

«L\u»- lrinilL- + -
\ +1" u-X — 1S

4 (A)
"TA—-a1N ui-/V +t$

)= — e A <
bl=J1-Mm > LD-—TV—-

<jfW) = 2TTt STA-AjrTA)" - §iTt SFw-AjU-

/2 .21/
where \ is the energy of the pseudo-fermion, and in

the final results 00
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The same result can be achieved In another
way which we sketch here. Prom Keldysh’s paper we know
that the Feynman rules remain intaot i1n his technique,
we only have to associate with every line not a single
Green functions but a Green function matrix and with
every point a vertex matrix ~the form of which will

depend on the type of iInteraction /two-particle, electron-

phonon, etc./ In addition we have to take into account
the factor-1for points on the inversed branch of the
contour C . This means that in the present case we

have to associate with each solid line a matrix

<° H° [T
01l Cﬂkn}and with each dotted line a matrix £:<r

Our vertex matrix has to have four iIndices /because the
vertex has four legs/ and every index may take only two
values i 1 and 2 /these values correspond to the points

on direct and inversed branch of the contour (: , respec-

tively/. In addition, this vertex matrix has to take iInto

account the factor - 1 for points on the inversed branch
of (: -

The elementary vertex matrix which satisfies

the necessary conditions 1is of the form

/2 .22/
where the superscripts In o correspond to pseudo-fermion

lines and the subscripts to electron lines, t iIs the
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third Paull matrix. For A - Z. this vertex matrix
IS negative and that takes iInto account the above

mentioned factor - 1 .

So, to find the expression corresponding to
a given diragram we need the usual Feynman rules ex-
tended with the prescription to use Green function and
vertex matrices.

The usual Feynman rules for our diagrams are
given in Abrikosov’s paper /Abrikosov 1965/ and we shall
write them again with only a slight modification /sinoe

we are dealing iIn the coordinate space/.

a. / Each dotted line has i1ts own frequency, and one
should integrate over these frequencies. The electron
frequencies are determined by conservation rules,

b. / In calculating J , /o1, are the spin indices of

external electron lines/ one has to take the <*

component of the product of electron spin operators

in the order of their position on the electron line,
o,/ All the dotted lines corresponding to one iImpurity

atom form together a closed loop. A trace is taken
of the product of the Impurity spin operators iIn the

order of their position along the loop.

Using these rules and Keldysh’s prescription we get



- 16

/the i1ndices In this expression refer to matrix elements,
the summation over the spin Indioes being already
performed/

Using /2.22/ it is easy to see that equation
/2.20/ and /2.23/ are iIn fact equivalent. One can see
from equation /2.20/ that inside a self-energy correc-
tion the electron may cross the partition between diffe-
rent parts of the system, because iIn the intermediate
states the function contain the transfer matrix
elements -r and -r e But, sinoe the self-energy is local

Q should oontain even number of T and even number
»

of vertices. From /2.20/ and /2.21/ we get
n)+ 1 4 "o i
2. _ JS(S*M)C|- fu
This result for 2 is independent of whether

the iImpurity is In the electrodes or iIn the barrier.
The only difference will be iIn the form of

functions.

IT the Impurity is In the barrier we have

(:;]r(ii):fr2|rro L to I(T?Eb1f to

/r. 25/
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/ 7~ denotes the position of the impurity in the barrier/

The ourrent up to second order 1iIn may be cast into
the form
< =N 1 5WA~ATT"|

> QSey) (1IW- X

/From now on we write the expressions for the ourrent

and the conductance for both spin directions of the
electron./

In deriving equation /2.26/ we used the fact
that the propagators <g° do not contain a orossing of the
partition, so for them the two electrodes are separately
in thermodynamic equilibrium with chemical potentials

/A, and /AU. Then we can define densities of states

at sites b and 10 by the relations
.to

= " U e 72.27/

0
The spectral densities ’A are related to the density

of states as fTollows!

N-0
C un * 21ri
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where JJL and ~ are the Fermi factors on the left
and right hand side of the harrier, respectively. This

contribution to the current corresponds to an elastic

process. /We note that in the case of an electron-
phonon interaction the contribution to the current
oomming from X. corresponds to an inelastic process,
in which a real phonon is emitted during the tunneling
event./

The reason of this difference is that for a
single magnetio iImpurity without external magnetic field
no energy 1Is required to change the direction of the
spin.

0O ¥Y° no «O

The factor Hgxiib 4 bv n 4 describes the
following physical situation: the electron goes from
site a to site X with energy interacts elastically
with the magnetic impurity, and then goes to site b
with the same energy; the return trip is just the

reversed one because the exchange interaction is well

localized.

The expression U, - SavMvtis the effective
coupling between the two electrodes. It iIs energy de-
pendent and very small. The square of that expression

iIs essentially the "transparency”™ of the barrier.
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The two electrodes enter symmetrically in
equation /2.26/ for the ourrent, as 1t should be.

IT we want to oonsider in some detail the
frequency dependence of the various faotors iIn equa-
tion /2.26/, then we oould repeat the disoussion by

Caroli et al. /1972/. Exprim~tally zero bias anomalies
appear iIn the range of lo-loo mV around V=0 either as

a oonduotanoe or a giant resistance peak. These energies
are much smaller than both the barrier height and the
Permi energy for ordinary MIM junctions. We may there-
fore neglect the frequence dependence of Q° 9°

and the effective ooupling matrix element for
biases of interest for these anomalies. The change In
the dynamioal oonduotanoe é END due to '"®10 third

term of /2.18/ is given by

b oS HE VicitV V" IV, o

Cy= ~7Vv~r T"~sls™ 1 n
/2.29/
where — —————- — is approximated by b(e~c0)
and e/V — yuft Equation /2.29/ always corres-

ponds to an inorease of the oonduotanoe.
IT we compare that expression for the second
order oonduotanoe with the corresponding one in the

papers by Appelbaum /1967/ or Appelbaum et al. [967/,
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we see easily that instead of their undetermined para-
meter "T|] we have an explioit expression for the

effective ooupllng matrix element. /Knowing the wave

functions of electrons iIn the electrodes and the insu-
lator, and working In the continuous representation as
described in the Appendix, we can calculate directly

this effective ooupllng matrix element/.

As to the dependence of the oonduotance on the

position of the impurity in the barrier 1t can be shown

that the expression X-r?“ ré[) is roughly independent
of 1 /this is beoause LU iIs an exponentially de-
creasing funotion of the positions iIn the barrier/. It
follows that the tunneling efficiency of an impurity IiIn

seoond order 1is roughly independent of its looatlon iIn
the iInsulator.

The expression for the third order self-energy
corrections corresponding to diagram /2a/ from Pig. 2.

may be obtained from the afore-mentioned diagram rules.

Sstst<le j 7 ! 1 T

W <Lr”") ./
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The indices refer th the matrix elements./

Explicitly it is

Uu)

/2.31/
Jn the same way as for ;__ we did hot write the site*
indices.

The self energy can be calculated very easily

from /2 .31/ because (cjj are proportional to

L H = 175(sMqt?«)[zpjgr v i - Xb&il]

/2.32/

/ T denotes the principal value of the integral.

"ITe expression in the bracket of /2.32/ came from
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(EW N (Y+"bi) Q CU(UJITA-"]
) I'H V tcM-A - \$

by using /2.9 the analytical properties of the func-

. . . . r
tion 0, and the dispersion relations for 4

In this calculation we did not specify the position of
the 1mpurity and the same expressions are valid for the

case when the impurity is iIn the electrodes* The only

difference is in the form of the LU functions. Sub-
ito

stituting /2.32/ with I| given by /2.25/ into /2.19/

we see that as before only the second part of /2.25/

will contribute to the current. We obtain

(tH- Un IipV-L. -URe-ST/”~1 =
/L JitF w-fc J /2.33/
_0
Because of the discontinuity of E at the Fermi level
the factor P\--—--—--—-- contains the dominant voltage
JITT 10-b

and temperature dependence and accounts for the zero
bias conductance anomalies.

Now, to perform the integration over £ 1In
/2.33/ a cut-off parameter Eo should be introduced.
At this point there arises a question about the range

C‘:E and related with it the physical origin of that

cut-off parameter. There are two sources which may de-
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tepmine the cut-off energy: the momentum dependence of
the exchange coupling constant ~ tic. /which was neglec-
ted 1n the form of the exchange interaction that we used/
or the energy dependence of the bulk electron density of
states. xhe problem of the momentum dependence of the

exchange coupling constant is carefully discussed by

Mezeil and Zawadowski /1971 a,b/ . xhey introduced two
parameters [ and D .[J 1is width of the energy region
where changes and a cut-off energy [)reflects the
band structure /the conduction electron bandwidth/. In
terms of these parameters we shall make qualitative discu“
ssion about the range of our cut-off energy EO -

Let us suppose for the moment that we start
from the beginning with momentum dependent exchange coup-
ling constant V - / That can be taken into account
following the approach of Zawadowski and Mezeir /1971 a,b//

For one impurity which lies well inside the
insulator,the interaction of conduction electrons with
the 1mpurity spin is then very well localized, because
of that localization the matrix elements are non-vanishing
even for big momentum transfer and therefore there 1is

no cut-off coming from ¢~ . ut, on the other hand
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r - - -
we know that our 4 iIs proportional to the density
of states in the electrodes. So, the best what we can
do for the oase of one impurity deeply Inside the barrier,

is to perform really the integration in eq. /2.33/ by
taking the cut-off energy Eo to be D , and to suppo-
se that in that energy interval ~ and are contents.
IT the impurity lies inside the metal , because of
the overlapping of the neighbouring Wannierfunctions

U will change essentially iIn the region A which
iIs much smaller than b e This means that in the oase of
one impurity in the metal we would need to take the cut-
off energy Eo to be determined by A f and ~ and S°
to be constant in that region.

Since in our calculation we did not take into

account the momentum dependence of the exchange coupling

constant we shall simply restriot the principal value

integral in eq. /2.33/ to an energy region of width 2.EO
oentered at the Permi energy £ p /Zall energies are
measured from G6F/, E,, has to be taken as

for an impurity iIn the metal and as b — “pfor an Impurity
in the barrier. In both cases,if we are interested only

in a simple logarithmic term and want to make compa-
rison with previous theories,we have to neglect the energy

dependence of all factors iIn L /in the range of £E0/
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except the energy dependence of the Fermi function.

/In fact that assgAtion IS not so drastic since these
factors, the energy dependence of which have been neglec-
ted, are not singular anywhere in the range 2£Eo0 and
moreover they are slowly varying function of £ in that
range/

Then, this principal value integral gives logarith
mic dependence. We may drop other terms which do not
contain |]£) such as in eq. /2 .33/ since these terms
are small compared to terms with and they cannot give
logarithmic dependence.

Taking the derivative with respect to the voltage
and neglecting the frequency dependence of S? $°and © in
the integration over CO /that is quite justified since
the range of U) 1is between and which i1s very small/
we may write the change in the dynamical conductance due to

ti*)
in the form

/12 N

where



“£n /2.34 a/

An 1nterpolative approximation for is

c(elATy« - b \/ 5 where n = 1,35

/Appelbaum 1967, Shen and Rowell 1968/

/ Recently Wyatt and Wallis /1974/ have discussed
this approximation for F(«KT} and performed numerical
integration of eq. /2.34 a/ for different temperatures and

showed that the interpolation function Is most iInadequate

wheneV ™ 1 feT 4
We find again that the contribution to the
N
dynamical conductance ooming from JE- corresponds to the

Appelbaum expression /Appelbaum 1967/ and gives a zero
bias conductance peak for J 0 1.e. the antlferro-
magnetio coupling. Note again that we have an explicit
expression for his phenomenologioal parameters.

Let us now consider the dependence of that

contribution to the conductance on the position of the
megnetic impurity in the barrier. As was mentioned before
K r is relatively independent of /& — the position of

impurity but the factors in the bracket of eq. /2.33/

strongly depend on it. If the impurities are only on one
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side of the barrier, let us say on the left side near
the barrier metal interface, than JAtT ICall ,
When the impurities are deeply iIn the barrier the oonduc-
tanoe drops off rapidly with distanoe from the barrier-
-metal interface /H)™aj o en¥ for an impurity in
the center of the barrier/.

After having discussed the contribution to the
current from the”~. term iIn detail we now return to equa-

tions /2.17/ and /2.18/.

2.2.2 The 2. contribution to the dynamical ourrent

The seoond term iIn /2.16/ gives the following

contribution to the ourrent /the first term In /2.18/

does not give any contribution/

&B>=rjd«TVY 1 n -
/2.35/
Since the iImpurity 1is in the barrier we
have replaced ) by their zeroth order values
<) 81 used relations /2.27/ and /2.28/ in

deriving /2.35/.
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Making an expansion ofjCjctbJ to third order

in the electron-pseudofermion interaction we get

r to to 0,0, .To nor *o /In) )N

/2.36/

In order to calculate the second order contribution to
v rU)

/2.35/ and /2.36/ we need /_ to second order in

N _ Knowing that 2_ =2 “Z. » using the relations

/2 .20/ or /2.23/ and performing the integration over

COn and COx In ~_C /for that integration we only
(0}
Q and
relations /2 .21/ we get

*C0 N \ ro

/2.37/
Another way to achieve the same result iIs to use Keldysh"s

linear canonical transformation /2.11/ after which the

matrix Cj° transformstoCj4 S ° ) , N trans-
/n V.r\ - for
forms to 2. 5 [~u0 ) and the vertex 2) A

transforms to

C -£“-1

= U = *'S.d‘—ft
/2.38/



- 29 -
We may write 51 as

X Tq.=
~Xffy
/2.39/

/ | means the transformed matrix./

Sometimes it iIs easier to make integration,

in the transformed form using the analytical properties
~r(a)®

of

The second order contribution to the dynamical conductance

may he written as

bC-¥Y sh »cTTKc;rc cc -* .4
£10 ,00~00 (01

+ AfFt Hi i5
Using relations
0O wmO M /A0
MaiMib = S -bY«
/2.41/
we get
< = "n\ur Y K ife w
/2.42/

We note that the expression iIn front of the bracket is just

the conductance for the pure contact /without impurities/
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and the expression In the bracket i1s therefore the
change due to Impurities.
The total second order contribution to the

conductance is given by

q v fi Fi
/2.43/

Where the first termi”™Utlis due to 21 . >

Let us discuss now the dependence of ~(Vjon
the 1mpurity position In the barrier. In a recent work
Appelbaum, and Brinkman /1970/ using a simple model for
MIM contacts pointed out that if the impurity is found
in the first atomic layer of the barrier, the interaction
depresses the current. On the other hand the impurities
deeper iInside the barrier enhance the current. It is
easy to get the same result from our calculations i1if we go
to the continuous representation of this discrete model
/see Carol! et al. /1971//« Moreover, we are able to figure
out where these two different contributions come from
and how far from the barrier-metal interface is the
factor which gives a depression of tunneling current
still effective. The different expressions for the propaga-
tors 1n the continuous limit for the simple square barrier
model are given iIn the Appendix. To simplify the cal-

culation we shall divide our system into two halves only

and locate the partition well inside the insulator



/we now consider the case when impurities are on the
left side only near the contact between the left elect-
rode and the insulator/. Then, iIn the discrete represen-

tation we may write.

CO
M w0
cc

/2.44/

IT and C denote the sites on either side of the new
partition, n denotes the free one sided propagator.
The propagator ~ for the left-electrode+the half of
the barrier is easily expressed iIn terms of the corres-
ponding for the metal V1 and insulator 1 alone

simple algebra gives

w21 0 TO

/2.45/
Let us first see what happens when the impurity is at
the contact between the left electrode and the iInsu-
lator. Then, we may retain in /2.44/ S only. In the

continuous representation this becomes

2. ™ 3
N\ K_*** .
/2.46/
/where "~-"-(4 N 1t is the interatomic

distance,



The signs - and + In the denominator of /2.46/ refer

y?0
to retarded and advanced * functions respectively./
The first factor in the wavy bracket of the equation /2.43/

/which 1s the Z_ contribution/ becomes

l«Te hk)\~ ( y/«- y) -

K e I
(. WUHT V

/2.47/
This factor always enhances the current.
On the other hand
- L \X 2-(KF<£E)
1 UHT
/2.48/
Since, usually K , this factor iIs negative and reduces

the current.

The sum of the equations /2 .47/ and /2.48/

can be pogitive or negative, depending on the ratio -

If lﬁ't 1; the absolute value of the negative term 1is
larger than positive one, and therefore the sum iIs negative
The opposite case is for

Slp > VT
IT the impurity 1is deeply in the barrier,then



K

Both terms are now positive for all values of the ratio
o]

/ in these expressions denotes only the real part

of the propagator since there is no density of states in

the barrier in the energy range of iInterest. Then
a2 nc° o .
"X1" X< *xv a4 [/
The condititon which gives the distance of
the impurity from the electrode-barrier contact, so that
the negative term is in absolute value just equal to the

positive term, may be written as follow*

o 1b
rr
/2N9/

or in the continuous representation,

ly (r «=i>-y 1l=-[if(i-1-4 w t-1i-

W is the number of the iInteratomic distances measured
from the metal-barrier interface.

This yields

14
/2.5°/

X t 2%K
or

/2.51/

Ve
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The curve VO(x =— ™ defines the dividing line between

the region in which the sum -\ b = )

IS positive and the region in which this sum iIs negative.
This negative sum is In accordance with the So6iyOm-
-Zawadowski theory.

They attributed the depression of the tunneling current
to the corresponding depression of the electronic den
sity of states iIn the neighbourhood of the impurities.

Going on to the third order contribution to

/2.35" we have to calculate 2-0»]. * is already
known, 2- ) can be calculated easily from /2.31/.
So using the relation X. ~1- ~— we obtain

Ty FESUSTAG. Sl @,

+ (C”co)) tr

/2 .52/

1lbe same exspression may be obtained by making the
integration in the transformed X matrix which

is given by expression /2.30/» where all matrices are
replaced by the transformed ones.

the terms which contain the dominant voltage
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and temperature dependence are

25T Kin " Gaw)zv w-£ AR Soxar7t o Y

Introducing the cut-off energy EOand using the same

arguments as iIn derivation of thel contribution we get

V)

&-£
/2.53/

Adding the X contribution we get the total third order

contribution to the conductance from an Impurity confined

to the barrier as follows

4V >

+ T Y
tr.* TT

@V k |V

fmj
o 125y

Here there i1s a factor similar to that which determined

whether the tunneling
in 2 . Therefore,
the dependence of the
the 1mpurity is valid
o] X-
replaced by (
treatment of the 2_
due to the expression

conductance will drop

current 1Is depredsed or enhanced
a similar discussion concerning
sign of EIO) on the position of
here /only 10 1 +Nh«) 4 (QE)l,\:/-
which appears in /2AJ>" is
in /2«5V/ Also during the
contribution we have seen that

in last bracket iIn /2.5~/ the total

off rapidly with the distance of the
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impurity from theX"M or £-H contacts.

3. The magnetio impurity in the electrode

From equations /2.17/ and /2.18/ i1t follows
that the current through junction in the case when the

impurity is confined to the electrodes may be written as

O>=1 te |JW( V ")

/3.1/
where the effective coupling matrix element 1is
It was already mentioned that corres-

ponds to such events that In the intermediate state de-
scribed by ﬂo the electron may cross the partition going
to the right electrode. This means that depends both
on /Au and /N1 & . The contribution of those processes
where thi3 crossing really takes place is proportional

t0 1°wnbl = Because iIs an exponentially decreasing
function of the width of the barrier, the above mentioned
factor is very small and we may neglect this contribution.
Then and 8X0 the propagators of two isolated
regions iIn thermal equilibrium with chemical potentials

/At- and /Ur. respectively.



From this consideration it follows that we

may use relations /2.27/ and /2.26/ for the pro-

pagators and write equation /3.1/ in the form

r 2z
0) - T 1 I1%abl
/3.2/

Now, we oan prooeed exactly iIn the way as i1t was done
hy Caroli et al. /1972/ by making an expansion of
in powers of N and T -

Instead of that we shall follow for the sake
of 1llustration another way, which leads to the same
result with the same effective density of states
as theirs. The difference iIs that we make an expansion
of in powers of Q and X instead of expanding iIn

powers ~ and 1- . Up to third order in the exchange

interaction

FQF?J'* r* ,0

ao urn[innd)] e
\/Ib \ bl A

N

/3.3/

+ O ANO ARG

where 2— = r v 4 and is the
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position of impurity iIn the left electrode; If the

impurity were iIn the right electrode, we would have had a

similar expression.

/3.4/

I<IWALT0 (1510 4 r[(Utr™

KK N0 ¢al 2— /3.5/

Using the relations

/T <©
b T 18 b
c*° ~ T1;nz:°

NA ﬁ— —i)/\fl)) .io /3.7/

A Ve
r Qo
and the symmetry properties 4 g~ - /which

follows from the time reversal invariance of $° propa-

gators/, we may cast equation /3.3/ into the form
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\Cr«lcrry

After some algebra, the contribution to the dynamical
current due to Impurities iIn the left electrode may be

written as

(Mr.)=~13 “1>){I)-4 /3_9/
where we introduced the effective densities of states

-0 0 i T i

N v N and the oorreotion as In Caroll

et al. /1972/

*TY Ll'Tﬁ: TO
/3.10/

U-TY **(Cf /3.11/

The second order contribution to the oonduotanoe may then

be written in the form

(D) 17 .</1™"n« r
/13.12/

where

Anti API \ f*gQOS'ﬁ}qufA'Ew)_ A



In the continuous representation of the simple

square barrier model as discussed In the Appendix we
would be able to plot the curve ('jG(Z) as a function of the
impurity position. Instead of that the main feature of the
behaviokr of that curve may be seen from the quite
general discussion presented by Caroli et al. /1972/.
We shall repeat iIn main lines their arguments to have
complete consideration of the effect of impurities con-
fined to the electrode.

All the differences with respect to the case

when the impurities are confined to the oxide barrier arise

from the fact that i1In a metal iIs oscillatory, /with
rapid changes of the phase of on the scale of /
The effective density of states and also con-

tain some combination of X. oA and Tyu"X.aan =« The

coefficients of #L 2-A/1 and 3nmn 2Tap are 3*n — S —
(© ;

a-T
energy independent /between™M~andyU”™ / for MIM junctions.

" _ AN
andyy — [I\r. respectively. ?hese coefficigntngﬂé_c

They have approximate® the same value which depends very
Btrongly on the special model used for junction. This

consideration i1s applicable not only to 5-5€§) but in
the same way to as well /where this oscillatory

behaviour implies a variation of the sign of the
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logarithmic conductance anomaly with the position

of the impurity in the electrode/, since the conclusi-
ons above were drawn from the form of 1.e.

The third order contribution to tie current from the
impurities confined to the left electrode may by written

as

a udr.— 1lt&A- N -

V) w t J \

N £ AN N N 1(i7° /

yI- w-t
We already Isolated here the term which contains the
dominant voltage and temperature dependence, and in the
integral over £, used the relation C j - -2 *
which i1s valid for impurities confined to the left elect
rode. In calculating the integral* we have to use a
cut-off, similarly as in the derivation if equation /2.34/
from /2.33/»
Neglecting the energy dependence of
. integral over £ and that of 9MNH and

H

C AN in the iIntegral over bl , we shall again obtain

a logarithmic behaviour in the conductance.

Jw- ~

Yaa P
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4. Generalization to three dimensions and finite impurity

concentration.

As 1In the paper by Caroli et al. 71972/ Ho
which describes the coupling between the electrodes and
the barrier is assumed to be translationally iInvariant
in the direction parallel to the iInterface. It means that
the momentum component 1r,( i1s conserved during the
transition from site to site and from site b
to site (O . This approximation was carefully discussed
by Combescot and Schreder /1973/ and they showed that as
long as the tunneling i1nvolves small spreads of
and with respect to the Brillouin zone and the band
width the interface scattering gives a tunneling current
which differs from the specular one / & is conserved/
by a multiplicative constant of the order of unity.

The transfer electrode-barrier coupling is then

taken as

He™ T.J 296°3

b.b /4.1/

where cl/1) lies In the first atomic plane of (4 (M*J
and in the first /last/ atomic plane of the insu-
lator. Let us first consider an impure Junction with
magnetic Impurities located inside the barrier, with a
random distribution in the ") direction /plane parallel
to the iInterface./ Making an averaging on the impurity

distribution In the plane the system becomes
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translationally invariant along that plane and the
density of impurities i1s a function of one space
coordinate only, that of X . This distribution

IS given In the discrete site representation as CV
and i1s kept undetermined in the calculation. We also
confine ourselves to the case of low Impurity con-
centration so we suppose that the magnetic moments
are independent of each other. Expression /2.19/ may

be written as

Ok t> - cr.

( .v -[uk0>] -0 ~ 1

| { -k 4 )1y} 14-2]
where we took iInto account that the propagators 4O
and % are tranelationally Mhvariant. 2 rr
is the contribution to the self-energy of one Impu-
rity at the place TV and i1t does not depend on

J .. Here we used the Fourier transforms VAIth res-

pect to 4 and =& -T (7 D ~

ex™"V(>u-bt)} a .3/
d rj2mn 1Ns

The other contribution to the current can be obtained

from a generalization of /2.35/ and /2.56/

Oj> Kbl ny
\Y; irno oo ~ QAo+ no + meo

w Al

/4.4/
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In the case when the impurities are inside the left
/or right/ electrode, their contribution to the current

may be written as

n-om~]
A.Y

where C\ is the concentration in the A -th atomic
plane in the left electrode.

In perturbation theory which we used throughout
this article the first order self-energy E?O 1s equal
to zero. Therefore up to third order in the electrode
and barrier effects are simply additive.

We know that the range of parallel momentum which
is involved mostly iIn tunneling is very small 1.e. only
the elegtrons with energies near the Fermi energy and
with K U-0 play an importarat role in the tunneling
process. That follows because the wave function of other
electrons i1s damped more strongly in the barrier. All
the main features seen In 1-D case and for one impurity
will therefore remain intact. This can be easily verefied
going on to the continuous representation and performing
the iIntegration over the parallel momentum. FOr impurities
confined to the barrier there i1s no destructive interference
as in the metallic region, for the evanescent wave function
has a constant phase G(V,T) is negative for impurities very

close to the interface.
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otherwise 1t is positive. However, if the impurities are
situated iIn the electrode region some question arise.
One question in how far from the metal-harrier interface the
impurities may be /assuming a layer-like distribution
parallel to the junction surface at distance from M
contact/ so that the contact still 'feels" their effect
in the conductance. This question Is connected with the
problem of a coherence lenght and of spatial dependence
of the electron density of states around the impurity layer»
/We note that actually In expression /4.5/ there is some
renormalized density of states at the place of V.-lcontact
i.e. ch_ /= To the extent that there 1Is no damping
factor iIn the free electron propagators in the metal
/ (l}gl /, the renormalized density of states and the
conductance due to the magnetic impurities will be an
oscillating function of position. +f we take into account
the momentum dependence of the exchange coupling ™~
and i1ntroduce correspondingly a cut-off [ /wich will give
the coherence lenght - / then the propagator

> will rit ke a anpe callaay fudaon of
tepmstion A hewll aotan e capeg Bdas.
This damping will cause the renormalized density of
states will consist of two parts, an oscillating and

non-oscillating one. These results are iIn agreement

with "ezei and Zawadowski/Zl1971 a.b./



for further discussion about the range and relative
importance of these two parts in the renormalized density
of states and their effect iIn tunneling anomalies we refer

to Mezei and Zawadowski .
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Appendix

Carol! et al. (1972) 1illustrated the general behaviour of
the propagator %f)fbr the region comprising one electrode and
half the barrier by considering a square barrier potential for
a continuous model. We will solve the equations for the free pro-
pagators iIn the barrier alone and in the electrode alone, and
show on one example how to go from an expression In the discrete
representation to the corresponding expression In the continuous
model using these free propagators.

For the free propagators iIn the barrier alone we have to

solve the equation

(-6 H <>

with the boundary condition that g°=0 1f X or y &0

and g° =0 1f X or y = L. The general solution 1is

n o - - KxJ Q.2

The coefficients A, By refer respectively to x>y and
X K y. They ate determined by the boundary conditions and the

condition that g0 IS continuous at x =y, while m@n has

9 K
a discontinuity - m . The result may be written as
FIm ~ -HYK =y
*>KUL

?_. AW%— aKK(L"x) u < x @ .3

Solving the equations

\—/—S;v-——sf\i— r-ujP k@a ct \ (AH)



- 48.

with the boundary condition gro(X,y)=0 if xory =0

we will get the free propagators in the metal alone.

The general solution 1is

no
4 V15

Gro has to satisfy the following conditions

O) gro =0 for X=0

D) gro must be analytic when continued into the upper half

of the CO plane; 1t means that for x>y, =0 . () gre°
IS continuous at x =y while has a discontinuity
9

. These conditions are fulfilled by

ru J :k<?>-- ax 'ed’ («3 <4

[- hib a-1 = [u* } x>u

Now, we are able to transform every propagator, GO,
given In the discrete model iInto the continuous formwvusing
for example the free propagators of the specific continuous
model discussed here.

Let consider N as a simple example*
In the discrete model Is given by the equation (2.45)

a e

ro M>_FW
+ - to- “cu- 9i-
J +1 o n
/\'T
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The continuous IS given by

Mxc.:Y= ey AR where €l -L- TT\o(D
b 0 A.D

Then

TUYY? a
A-®

£ 1s the Interatomic distance and going on from discrete
to continuous representation we need the "normalized” Green
functioﬁﬁ*{hJIOCRN'the detailed discussion see Caroli et al,
(1971b). The transfer terms T or T " are — % Er
Taking the limit 1-10 and introducing our free propagators
in the continuous model given by (A.4d) and (A.7) into (A.9
we obtain the continuous ~

A Nt oL -iKxi
N - A+ e
7)) WK T i -9
This propagator is the sane as the one sided propagator
obtained by Caroli et al (1971b) (Their formula (A.49).

In the same way we could evaluate the continuous hon-equilibrium

propagator Gro (X™,xM).

5. Conclusions

In order to treat the effect of exchange scattering
of tunneling electrons on magnetic impurities in a tunnel

junction, we have used the CCNS theory and Abrikosov®s
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fictitious fermion operator technique. We find that when

the magnetic impurities are situated In the barrier region
there are two different contributions. The Tfirst one (which

IS due to the term iIn the self-energy) leads to an
enhancement of the "“tunneling current to order ’S,ﬂ (eq./72.29/) and
to a zero bias conductance peak for <™0in the third order

of perturbation theory (eq.-2.34)) Comparison with Appelbaum®s
theory (1967) shows that this contribution iIs just equal to his
result (with one important difference that we have an explicit
expression for his phenomenological parameters). The second
contribution (which is due to the mterm in the self-energy)
iIs not always of the same sign. The region In which this con-
tribution has the sign opposite to that of the * contri-
bution depends on the ratio ';E—F— and s not larger than one
atomic layer. Therefore onlyﬂfgr impurities which are situated
in the barrier close to the metal-insulator iInterface (nhot
further than one atomic layer) the total second order (or third
order) contribution to the current may be negative and reduce
the current. This negative sum corresponds to the Sdlyom-
-Zawadowski theory.

Regarding the relationship of these two contributious
to the calculations by Appelbaum and by Zawadowski and Sdlyom
we have to make several remarks.

Appelbaum®s (1966, 1967) theory considers the magnetic
impurities in the barrier as providing an easy way for the
electron tunneling through the barrier and describes it by
adding a phenomenological term to the conventional tunneling
Hamiltonian. In the case of antiferromagnetic iInteraction
the current obtained with such a procedure is always positive

and that supported the idea of a '"new channel'. (A microscopic
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basis of this i1dea has been suggested by Anderson (1966)) .

Considering only the j_ contribution to the current
for impurities in the barrier we have obtained exactly the
same results as Appelbaum (with the same numerical factors)
but with explicit expressions for his phenomenological
parameters). We note that we used a microscopic theory which
does not contain phenomenological parameters .

From the theory for electron-phonon interaction in the
barrier (Caroli et al. (1972) we know that the Z_ term
corresponds to an i1nelastic process in which a real phonon
IS emitted during the tunneling event. Furthermore, iIn the
case of electron-phonon interaction (for phonons iIn the bar-
rier not close to one of the electrodes) this iInelastic
current <I*iKwhich stems from Y|> dominates over the ela-
stic current \B6|e.~/hich stems fromV~ 1 .

In our case of electron-magnetic Impurity interaction
we have found that, for impurities in the barrier not too
close to one of the electrodes, there are again two contri-
buttons to the current: one from /_ and another one from
2l . But both terms now correspond to elastic processes
(if the magnetic moments are non iInteracting as we supposed)
and in the second order of ”* both lead to an enhancement
of the tunneling current (the impurities are farther than one
atomic layer from the insulator-metal contact)and they are
of the same order of magnitude. If the iImpurities are still iIn
the barrier but situated very close to one electrode the Jra
term In the second order of changes sing and becomes bigger

than the term (which is always positive) .
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In the third order of T the I*contribution leads to a zero
bias conductance peak fo rMI"U- On the other hand the 2_r’c1>:(erm
leads (for each position of the iImpurity) to a zero bias
conductance dip for<J<(0. But this /_ contribution in the third
order of ~ 1is proportional to (J)M\ (see (2.53)) and there-
fore becomes negligible except for the impurities which are
very close to the metal-insulator contact.

This consideration shows that Appelbaum®s original
(1966, 1967) calculation of the current iIs iIncorrect since it
does not iInclude all important contributions to the current.
Moreover, i1f follows that the notion of "assisted tunneling"
iIs not well defined. In what follows we will show that the

terminology as ''non local effect or assisted tunneling and

"local effect or the change of electronic energy spectrum” is also

incorrect and that 1t i1s impossible to make such a distinction.

Appelbaum et al. (1967) using a Green"s function decou-

pling scheme derived two terms, one negative term (wWhich

ricL
corresponds to our term) and one positive term (which co-
rresponds to our contribution) , which means that their

calculation gives correct results for impurities very near to
one electrode (ut not for impurities well iInside the insu-
lator) . In their derivation they again introduced phenome-
nologically the impurity spin-assisted tunneling channel as
suggested by Appelbaum (1966, 1967).

In contradistinction, Zawadowski ((1967) derived an
expression for the current assuming that the electron inter-
action with impurities shows a local character. His calculation

microscopic, and no phenomenological parameters are introduced.
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Starting from the expression for the current Sdlyom and Zawadowski
(19688 a,b) found that the amplitude of the tunneling current

can be expressed In terms of the local density of states. They
supposed that the exchange interaction coupling constant is
momentum dependent and iIntroduced an energy cut-off parameter
which was assumed to be small compared to the Fermi energy.

The assumption that the cut-off parameter is small led them to
neglect the real part of the free propagators with respect to

the i1maginary part. As a consequence of that approximation they
obtained only a depression in the electron density of states

and a corresponding depression in the tunneling current. The

same calculations as that of Zawadowski was made by Appelbaum and
Brinkman (1970) in their recent coordinate representation ver-
sion of the transfer Hamiltonian theory. Without using a small
orfc-off In the calculations of the free propagators, they succeeded
in deriving correctly all terms for impurities confined to the
electrode region or to the barrier (but not for the case when

the impurities are so deeply In the barrier that we have to

take both electrodes into account simultaneously and on equal
footing. All these considerations can be easily i1llustrated

on the second order contribution to the current. Let us write

the total second order contribution in the form

<1 @= fstb "-"dcturffiM -f )
t G-D

avicd® = - !

where



- 54.

Got-un #4K 1C 1EC*b1CT U[,- ©2

and "1 1s the position of the Impurity iIn the barrier. From
(G.2) one may see that ITI,'E) iIs the propagator for a non-
equilibrium system since it contains contribution from both
electrodes, which have different chemical potentials.

The term in wavy bracket \ ~ |is due to the contribu-

tonadPe ; "Y' is dete » “Caotriation

Their sum may be written as

Let us suppose now that the impurity is closer to the left
electrode. In that case the third term in (G.2) will be of

the order of&” ( .- 1s the depth of the barrier).

Since in (5.1) there is already a termfCj~ Xt N_2KLj ,

the third term of (6.2) may be neglected with respect to the first
two terms. E '©t may then be written as

o w

ro n(’o -ra,,0. ro n
y « - LTv-12

In this approximation er’Qdoes not contain the spectral
density of the right electrode. Writing equation (G.4) In the
continuous representation for the square barrier poten-

tial model one has



- 55

( Is the position of the impurity and X - O is taken iIn

the middle of the barrier). In that form U (/c ) 1Is exactly
the same as the free propagator used by S6lyom and Zawadowski
but written in coordinate representation, (See equation @) by
Solyom-Zawadowski (1968) with functions given by their equation
Q) and (A-1.2),or 1t 1s the samne as Appelbaum-Brinkmann®s
left hand side propagator taken at the place of the iImpurity.
(Equation (2.18) by Appelbaum-Brinkmann (1970)X). We may call
a (XCXjvritten in the form (6.5 the one sided propagator and
denote it asA3{xC¥C* Solyom and Zawadowski did not use " Y° =
In the coordinate representation but went instead to the momen-
tum representation and neglecte the real part of the free
propagator. Therefore, instead of equation (56.3) which we may now

write with the one sided propagators as

NOCH |-t /o) x0) ] A ixc/0)
they get only -
" <10 .
(Me note that the similar factor, narely(Ee"O<I]*DJ~ Dj

appears also in front of the logarithmic function iIn the third

order of perturbation calculation). On the other hand Appelbaum

and Brinkmann®"s theory (that is nothing else than the coordinate
version of Zawadowski®s theory without neglecting the real part of th
the free propagators) gives the sum 3ve. Gt - «

in the second order of or (e~ Q07/)) n (7]

in the third order of ~ correctly. It means that the Solyom-

ro

XThere 1is a difference iIn the numerical factors of L (X* X1

given by (.5 and Appelbaum-Brinkman®s LI O given by their equation
(2.18) which comes from different definition of the propagators.
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-Zawadowski theory (or its improvement the Appelbaum-Brinkman
theory) 1s correct for those impurities for which we may replace
[| *Z given by (5.2) with one side propagator ¢ 'Lt,given by

G4 or (6.5. ITf the impurities are at approximately the

same distance from both electrodes than the second and the

third term In (G.2) are of the same order of magnitude. The
problem has to be treated as a true nonequilibrium problem in
all steps and i1t i1s not possible to replace eq.(6.2) by (G.4).

Another useful illustration of these i1deas may be achieved
iIT In our calculation we divide the system from the beginning into
two halves (instead of three parts as we had) by a partition
located In the middle of the insulator).

Then, starting with equation (2.17) and making an expan-
sion of in powers of T and , Wwe may write the second
order contribution coming from an Impurity situated close to
the boundary between the left electrode and the barrier (elther

In the electrode or In the barrier) as

<V> -

e n _ _ , /5.6/
Il and c denote the sites on erther side of the new parti-

tion and  denotes the one sidéd propagator.
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L2

/ iIs the same as given by /5,V or ™ (XI(XC)

in the continuous representation. We assumed that the
impurities are only on the left side of the partition

and in the demoninator we replaced cc and ~ £ /which
contain the interaction/ by and ~ A~ » since the
corrections to ™ cc are °f the or<er °f e/ N
This form of the current is quite similar to Zawadowski’s
and Appelbaum and Brinkmann*s expression for the current. IT

it 1s calculated 1In the continuous representation, we will get

@& 1 U"NYe ‘% N

r I L jolU y) - (- KD

W 4t 2 £bL

\ Ay 3

e ([<-1)/ Y4 ~r))dl

/5.7/
1"he same result follows from equation /5*1/ using the one side

propagators /5»V or /5*5/ instead of /5.2/.



The expression in front of the wavy bracket gives
the current for the case without an impurity and expression
inside the wavy bracket is the change due to the impurity.
The first summand In the square bracket is due to the
X %#contribution ~ ~ Ll )@ CCj*.Jj J and the second
one 1s due to the X ~ term ) I** ~ rom Appelbaum
and Brinkmann*s equations exactly the same expression may be
derived for since the propagators are the same/.

We remark that in /5*6/ i1s /. 9 S( U Jir*
but for an impurity very near to the IM contact we may
replace C™~r by the left side propagator
This remark shows that for one impurity close to the contact
the self-energy cannot sample simultaneously the chemical
potentials iIn the left and the right electrode since the*
propagation in the barrier is exponentially decreasing
with distance into the barrier. In this way we came to the
main point of this discussion, namely the fact that the

notions ~."assisted tunneling” and "local self-energy effects
have actually no physical meaning in this problem and emerged
only from approximate treatments of the nonequilibrium
problem.

IT the 1mpurity is close to the electrode-barrier
interface and the self-energy cannot lump together
and ~ & , than the equation /5*1/ which collects the I-

contributions may be replaced by eq# /5*6/ 1In

where only real and imaginary part of X appear .



Therefore, for such an Impurity it is not possible
to distinguish between the 7T__ and /-E contributions
Because of that we cannot say that the j;t contribution
/which corresponds exactly to that what Appelbaum calls
"assisted tunneling” /describes some 'assisted tunneling”
and that 1t opens a new 'channel™. ITf the impurity is deeply
in the barrier then we have to retain equation /5*1/ with
UL {r given by /5.2/, but again we cannot distinquish the
éit term and 5;&? since they have the same sign and
/in the second order of ~ / they are of the same order
of magnitude.

In addition we discuss briefly the relative impor*
tance of the impurities situated iIn the barrier and iIn the
electrodes. Carefull discussion and comparison with expe-
riments will be made in a future publication, in which
the non-perturbative expression for the scattering amplitu”
de 1s used instead of .ij?h Eaxﬂ .

The contribution of the impurities confined to
the barrier region Is to order K- , approximately inde-
pendent of the position and always positive /exscept for the
first atomic layer./ When the impurities move into the
metal, there will be a rapid /on atomic distances/ spatial
oscillation in the dynamical conductance. These oscillations
will produce a destructive iInterference and a sizeable
reduction of the conductance. It .means that i1If the Impu-

rities are randomly distributed with respect to the
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metal-barrier iInterface the contribution of the
impurities situated In the barrier will be much

bigger than the T contribution of the impu-
rities confined to the electrode region. The situation
to order ( is different. It was shown that the (
terms drop off rapidly with increasing distance into
the barrier /since the logarithmic function is multi“
plied by a factor of the form ! D(which falls off
very rapidly/. Therefore, the barrier impurities will
not show such a dominant role iIn the logarithmic

anomaly as they do In the second order term.
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