179

KFKI-73-59

TK 45.429

- J. Kecskeméti
- T. Czibók

A KINEMATICALLY COMPLETE MEASUREMENT ON THE D(n, np) REACTION AT  $\vartheta_n = 0^\circ$ 

A30

Hungarian Academy of Sciences

CENTRAL RESEARCH INSTITUTE FOR PHYSICS

BUDAPEST



# A KINEMATICALLY COMPLETE MEASUREMENT ON THE D(n,np)REACTION AT $\vartheta_n = 0^\circ$

to, sur measured or d'allo bus to the applied special geometry the experimental sectors over a large instrument the mhase spore, including several final state interaction regions as

us all lo solu

deon tria kovet

+13dtous

J.Kecskeméti and T. Czibók

Central Research Institute for Physics, Budapest, Hungary Nuclear Physics Department

PRIMERT

Зифференинальное сечение иля рединии р/л.пр/ обло измерено иля № ± 00. В силу использованной спениальнией геомет: рия, эиспречиенталаные ганиные рэспределяются и фолнари части фалает № пространотал, закиманное и себе наоколько областая взаимодействия дари вислопом и %овачном соотолным, в санке области, тыр кадаи другисструные процессы не доминирулт. Это изнасти, тыр кадаи другисструные процессы не доминирулт. Это иза возможность онверенить зараметры и-и распеяния бри янъких спортити и опеределять зараметры и-и распеяния бри янъких и вуслов-кухлонных и трехностичный оннах вутем срадания исие. - нуклов-кухлонных и трехностичный оннах вутем срадания исие.

#### ABSTRACT

The differential cross section of the D(n,np) reaction was measured at  $\vartheta = 0^{\circ}$ . Due to the applied special geometry the experimental data extend over a large fraction of the phase space, including several final state interaction regions as well as regions far from the dominance of the quasi-two body processes. This offers possibility to extract the neutron-neutron scattering parameters and to get simultaneously additional knowledge on the N-N potentials and on three-body forces in the frame of an exact three-body calculation.

#### KIVONAT

A D(n,np) reakció differenciális hatáskeresztmetszetét mértük  $v = 0^{\circ}$ -nál. Az alkalmazott speciális geometria következtében a kisérleti adatok a fázistérnek több végállapotkölcsönhatási, valamint a kvázi-kétrészecske folyamatokból nem dominált tartományát fedik le.

Exakt háromtest-számitások felhasználásával ez lehetővé teszi a n-n szórási paraméterek meghatározását és egyidejüleg további információk nyerését a N-N potenciálokra és a háromtesterőkre vonatkozóan.

#### РЕЗЮМЕ

Дифференциальное сечение для реакции D/n,np/ было измерено при  $\vartheta_n = 0^\circ$ . В силу использованной специальлной геометрии, экспериментальные данные распределяются в большой части фазового пространства, заключающей в себе несколько областей взаимодействия двух нуклонов в конечном состоянии, а также области, где квази-двухчастичные процессы не доминируют. Это дает возможность определить параметры n-n рассеяния при низких энергиях и одновременно получить дополнительную информацию о нуклон-нуклонных и трехчастичных силах путем сравнения экспериментальных данных с точным решением проблем трех тел.

## INTRODUCTION

In order to determine the low-energy neutron-neutron scattering parameters a large number of experiments on the  $n + D \rightarrow n+n+p$  reaction were performed during the last years. The method to extract these data was based on comparison of experimental results with theoretical calculations mainly in regions where the n-n final state interaction (FSI) is dominant, consequently, efforts were made to use a geometry which allows to detect events with small relative kinetic energy of the two neutrons.

Since the numerous kinematically incomplete measurements<sup>1</sup> didn't give unique results, mainly because of the insensitiveness of the various integrated theoretical differential cross sections to the parameters to be determined, it was necessary to perform measurements with uniquely defined kinematics. In a relatively small number of experiments<sup>2,3,4</sup> this requirement was met by measuring the coincident energy spectrum of two neutrons with two fixed detectors. In order to detect events dominated by the n-n FSI the two neutron detectors were placed close together in forward direction. Zeitnitz et.al<sup>4</sup> used a third detector too, which enabled them to measure the effect of the n-p FSI simultaneously. In their work the low-energy n-n scattering parameters were extracted by comparison with an exact three-body calculation.

The arrangement mentioned above, however, has a serious disadvantage. The kinematics being overdetermined, the kinematically allowed region degenerates into a line in the  $E_{nl}-E_{n2}$  plane, severely reducing the accessible phase space in one arrangement. It was, however, pointed out by D.H.Wilkinson<sup>5</sup>, that it would be worthwhile to make measurements over a wide range of kinematical conditions, in order to check the interpretation method of Ref.4. It is also clear, that regions far from the FSI dominance might give information on the off-shell properties of the nucleon-nucleon interaction, and on the importance of the three-body forces.

Using the above mentioned geometry the extension of the measured phase space is time consuming because it would involve repeated experiments with different arrangements<sup>6</sup>. It is possible, however, to avoid this difficulty by choosing a special geometry, making the measurement kinematically determined, but not overdetermined, and thus allowing to measure in a much greater part of the phase space, including several FSI regions.

Let us consider the geometry shown on Fig.1. The D(n,np) reaction takes place in a deuterated scintillator, which measures the proton energy at the same time. A neutrons detector is placed in the direction of the incident neutron beam  $(\mathcal{N}_n=0^\circ)$ , fixing the direction of the detect-

- 2 -

ed particle and measuring its energy by time-of-flight method, as well. It can be seen easily, that the events detected in this geometry are necessarily coplanar, and the measured quantities enable us to determine the kinematics uniquely, except for the azimuthal angle of the reaction plane. In case of unpolarized incident beam and target, however, the differential cross-section is independent of this undetermined azimuthal angle, therefore the geometry of Fig. 1 enables us to make kinematically complete measurements. We notice that a similar symmetry exists for  $\psi_n=180^\circ$ . Our method seems to be very similar to that of Arai<sup>7</sup>, but in his arrangement  $\vartheta_n$  was not equal to zero, and thus the advantages of the above ment tioned symmetry were lost.

The kinematically allowed events cover an area of quasi-triangle form in the  $E_n-E_p$  plane (Fig.2). On the contour of this area we marked the points, where any two of the three break-up particles move together with zero relative kinetic energy. Two events, which in vertical direction are equally far spaced from the dashed line are symmetryc in the variables of the proton and of the undetected neutron.

The advantages of our geometry over that of the previous kinematically complete measurements are: i/ the possibility to measure in several FSI regions in one measurement with the same detectors. ii/ the region covered in phase space is some part of the  $E_n-E_p$  plane, while in the other case it was only a curve in the correspond-

- 3 -

ing E<sub>n\_En\_2</sub> plane. This involves more complete covering of the FSI regions as well as making measurements for from them. iii/ in our method one of the particles (proton) is detected in 4% solid angle with 100 % efficiency strongly reducing the necessary measuring time.

To try this method in practice we made a measurement at  $E_0$ =14.1 MeV bombarding neutron energy. The neutron beam was provided by  $T(d,n) \propto$  reaction. The D(n,np) reaction took place in an 1.5"xl.5" NE 230 deuterated scintillator, which served at the same time as a detector for the protons. The energy of the neutron was measured by time-of-flight technique using the associated  $\propto$  particle method. The start signal was given by the neutron detector (Ne 213, 3.5" long, 2" in diameter), while the stop signal was given by the  $\propto$  detector (NE 102A, 0.1 mm thick). The angular resolution determined by the detector sizes was about 2.5<sup>°</sup>.

The experiment was performed on-line, using a small computer (TPA 1001). A triple coincidence between the above mentioned three detectors gave the gating signal to three analog-to-digital converters, which analysed the scintillation amplitude of the proton in the D target, the time of flight of the forward going neutron and the scintillation amplitude of the recoiled proton in the neutron detector. This latter was used for the purpose of a rise time correction of the time of flight<sup>8</sup>. All the events were stored on tape and afterwards analysed into a matrix of the neutron time of flight versus the proton

- 4 -

amplitude. The dimension of the matrix was 256 x 256 channels. During 230 hours of measuring time some 13600 events were collected with  $E_n > 1.7$  MeV over the kinematically allowed region for the D(n,np) break-up. A two-dimensional representation of the  $E_n > 2.9$  MeV part of the data is shown on Fig. 3.

The background was determined in a separate measurement by replacing the D target NE 230 scintillator with its non-deuterated variant of NE 231. It had a smooth structure (see Fig. 4) except for the peak at  $E_n=4.2$  MeV caused by the  ${}^{12}C(n,n^3\alpha)$  reaction. This is, however, mainly outside of the kinematically allowed region for the deuteron break-up.

The distribution of the deuteron break-up events shows a definite structure, namely, the events are concentrated mainly in three regions where the effect of the final state interactions is expected to be dominant, corresponding to Fig. 2. The n-n and n-p peaks at  $E_n=5.5$  MeV are relatively broad along the contour of Fig. 2 because the relative kinetic energy of the two nucleons varies very slowly in this direction. An additional enhancement is caused by the strong increase of the phase space density with increasing  $E_n$ .

The absolute value of the cross section can be determined by a comparison to that of the  ${}^{12}C(n,n;3\propto)$  peak at  $E_n=4.2$  MeV. Using a value of 9 mb/sr<sup>9</sup> for the peak cross section some differential cross section values (uncorrected for experimental resolution) at  $E_n=5.5$  MeV (see Fig. 4)

- 5 -

are as follows:

 $G = 17.4 \pm 1.7 \text{ mb/sr} \cdot \text{MeV}^2$  at  $E_{nn} = 0 \text{ MeV}$ 

 $d = 4.6 \pm 0.7 \text{ mb/sr} \cdot \text{MeV}^2$  at  $E_{np} = 0 \text{ MeV}$ 

 $\vec{n} = 1.5 \pm 0.4 \text{ mb/sr} \cdot \text{MeV}^2$  in the intermediate region. The proton energy integrated cross section is  $21.7\pm1.2$ mb/sr.MeV, which is in quite a good agreement with the value measured by Brüllmann et al.<sup>10</sup> at  $\vec{\mathcal{V}}_n = 7.5^\circ$ . The errors given are only the statistical ones, the reference cross section has an uncertainty of approximately 15 %.

We conclude that the present method can be used in practice. Since the experimental results contain several FSI regions as well as regions between FSI peaks, where no approximate method of calculation is known to work well, an exact three-body calculation is needed to extract the information contained in them.

The evaluation of the data is in progress at the University of Hamburg, using the method of Ref.4.

We wish to thank Professor I. Lovas for his stimulating interest and helpful conversations and Professor B. Zeitnitz and Dr. I. Borbély for valuable discussions.

The absolute value of the encast section can be decarmined by a comparison to had of the <sup>12</sup>O(A, A') of at it Mast.2 MoV. Using a value of 9 mb/ar<sup>9</sup> for the pack cross aschion some differential cross section values (uncorrect-

- 6 -

## References and comments

<sup>1</sup>S.Shirato, K.Saitoh and N.Koori, in Proceedings of the International Conference on Few Particle Problems in the Nuclear Interaction, ed. I.Slaus, S.A.Moszkowski, R.P.Haddock and W.T.H. van Oers (North-Holland, Amsterdam, 1972) p. 114. See also for further references.

- <sup>2</sup>R.Bouchez, S.Desreumaux, J.C.Gondrand, C.Perrin, R.Perrin and R.T.Cahill, Nucl. Phys. <u>A185</u>, 166 (1972)
  E.Dropmann, Nucl. Phys. <u>A193</u>, 610 (1972)
- <sup>3</sup>W.H.Breunlich, S.Tagesen, W.Bertl and A.Cholupka, in Proceedings of the International Conference on Few Particle Problems in the Nuclear Interaction, ed. I.Slaus, S.A.Moszkowski, R.P.Haddock and W.T.H. van Oers (North-Holland, Amsterdam, 1972) p. 100.

<sup>4</sup>B.Zeitnitz, R.Maschuw, P.Suhr and W.Ebenhöh, ibid. p. 117.

<sup>5</sup>D.H.Wilkinson, ibid. p. 191.

3

業

X

1

<sup>6</sup>An alternative possibility is presented by M.W.McNaughton, R.J.Griffiths, N.M.Stewart, J.A.Edgington, M.P.May, I.M.Blair and B.E.Bonner, ibid. p. 108. In this work several pairs of detectors were used simultaneously.

7E.Arai, Nucl. Phys. A160, 161 (1971)

<sup>8</sup>A. Adám, L. Jéki and G. Pálla, KFKI Közl. <u>16</u>, 231 (1968)

- 7 -

## References (continued)

<sup>9</sup>G.A.Grin, B.Vaucher, J.C.Alder and C.Joseph, Helvetica Physica Acta <u>42</u>, 897 (1969)

<sup>10</sup>M.Brüllmann, H.Jung, D.Meier and P.Marmier, Nucl. Phys. <u>All7</u>, 419 (1968)

A. EDROREZ, S.DEAREMARAN, T.O. Gondrezd, O.Perrin, R.Perrin
and R.T. Cabill, Mucl. Fines. <u>1185</u>, 166 (1972)
A.Dropmenn, Mucl. Fines. <u>1192</u>, 610 (1972)
W.R.Breunlice, S.Tegessen, V.Sertl and A.Chelupka, in
Proceedings of the International Conference on Few
Farticle Problems in the Nuclear Interaction, ed. I.Slava,
B.A.Mozakowski, R.T.Haddock and W.T.H. van Oars (Morth-Helland, Amsterian, 1972) p. 100.

B.Seitaitz, R.Maschuw, P.Suhr and W.Thenhöh, 151d. p. 119.

D.H.Wilkinson, thid. p. 191.

C

2

An alternative possibility is presented by M.W.McNaughton. R.J.Griffichs, M.M.Stawart, J.A.Edgington, M.F.Mey, 1.M.Sisir and D.F.Banner, ibid. p. 108. In this work several pairs of detectors ware used simultaneously.

B.Arai, Maol. Phys. A160, 161 (1971)

84. Adam, L. Jekt and G. Falls, KEAT KON1. 15. 231 (1968)

### Figure captions

- Fig. 1 Schematic experimental arrangement: 14.1 MeV neutrons produced by  $T(d,n) \propto$  reaction bombard a deuterated scintillator. The break-up proton is detected inside this scintillator, while one of the neutrons is detected by the neutron detector placed in the direction of the incident beam ( $\sqrt[4]{n} = 0^{\circ}$ ).
- Fig. 2 The kinematically allowed area in the  $E_n E_p$  plane (lab system) for  $\mathcal{N}_n = 0^\circ$ . The two contour lines correspond to the collinear events. At the marked points the denoted pairs of nucleons have zero relative energy. The dashed line is a symmetry axis: two events, which in vertical direction are equally far spaced from it are symmetric in the variables of the proton and of the undetected neutron.
- Fig. 3 Two-dimensional representation of the experimental results in the  $E_n-E_p$  plane. The measured matrix is compressed into 64 x 64 channels. The peak at  $E_n = 4.2$  MeV corresponds to events from the  $12_{C(n,n,3\alpha)}$  reaction. The deuteron break-up events are concentrated mainly in the FSI dominated regions with a wide smearing along the contours.
- Fig. 4 One-dimensional representation of the measured events between E<sub>n</sub> = 5-6 MeV, projected to the E<sub>p</sub> axis. The two peaks show the strong effect of the n-n and n-p FSI, respectively. The dashed line represents the background.

1

0

- 9







1

Ó

Fig. 2

- 10 -



- .11 -

Fig. 3

\$

.



Fig. 4

-

0

e

- 12 -







