

BUDAPEST

KFKI-71-8

PHENOMENOLOGICAL FORMULA FOR /n,2n/, /p,2n/ AND /p,3n/ REACTION CROSS-SECTIONS

Go yaaaada a hada afa L. Jéki

Central Research Institute for Physics, Budapest, Hungary Nuclear Physics Department

TANOVIN .

A strong N-Z dependence of the cross-sections for /n, 2n/ reactions has been shown by several authors [1-4]. The observation of systematic trends in this reaction can be of great importance in the calculation of unknown reaction cross-sections which are of interest in various reactor and engineering applications [64].

In an earlier paper on the existence of shell effects in the /n,2n/ reaction cross-sections, it was shown that the latter could be described at constant excess energy by the following formula |4|:

$$emp = \left[1 - C_1 \cdot f(A) \cdot exp\left(-C_2 \cdot \frac{N-Z}{A}\right)\right] \cdot C_3 \qquad /la/$$
$$f(A) = \left(A^{\frac{1}{3}} + 1\right)^2 \qquad /lb/$$

where

Ø

The agreement between measured and predicted values was very good for nuclei with $4 \stackrel{\ell}{=} N-Z \stackrel{\ell}{=} 21$.

In this paper the validity of this formula is extended to a broader range of nuclei and to other reaction types. According to the "independence hypothesis" of the decay of the compound nucleus [5], the formula is expected to be valid for /x,yn/ reactions in general, provided these reactions occur through a compound nucleus. Therefore an attempt has been made to describe the /n,2n/, /p,2n/ and/p,3n/ cross-sections. In the case of /x,2n/ reactions an excess energy of 3 MeV was choosen, i.e. $E_n = Q+3$ MeV. The /p,3n/ reaction cross-sections were calculated at the energies corresponding to the maximum cross-section values in the excitation curves, because very few data were available near the threshold energy.

Formula 1b had to be modified for /p,3n/ reactions. This is because in formula/la/, f(A) is connected with the absorption cross-section

$$f(A) \sim \left(A^{\frac{1}{3}} + \frac{\lambda}{r_{o}}\right)^{2}$$

where λ is the de Broglie wavelength and $r_0 = 1.2$ fm. Now $\frac{\lambda}{r_0} \gtrsim 1$ for 14 MeV neutrons and protons, but it is 0.64 for 35 MeV protons /35 MeV is the average of the energies corresponding to the maximum cross-section values/. Thus the calculations of /p,3n/ cross-section 3 were carried out using the modified form:

$$f(A) = \left(A^{\frac{1}{3}} + 0.64\right)^2$$

The interpretation of formulas /la, lb/ will be discussed elsewhere [8].

Most of the reported /n, 2n/ and /p, 2n/ data were measured at $E_n = Q + 3$ MeV; if not, the cross-section was obtained by extrapolation from the values measured at 14 MeV, using the Weisskopf formula [5]:

$$\sigma(n,2n) = \sigma_{c} \left[1 - \left(1 + \frac{E_{exc}}{T} \right) \cdot \exp\left(- \frac{E_{exc}}{T} \right) \right]$$
$$T = \left(\frac{E_{n}}{0.115 \cdot A} \right)^{\frac{1}{2}}$$
(2)

where

 σ_c was evaluated from the fit of /2/ to the excitation functions. The values of Q were taken from tables [6,7,63].

The /n,2n/ data were divided into four groups according to the neutron number of the target nuclei. For the other reaction types very few data were available, and so the fit was made for all the nuclei.

The best-fit parameters are listed in Table 1. The results of the calculations are listed along with the reported data in Tables 2-7. The results show the usefulness of the empirical formula /l/ for the calculation of the three cross-sections. Using the parameters listed in Table 1, the empirical formula gives the cross-section values at the given excess energy $/E_n = Q + 3$ MeV/ for /n,2n/ and /p,2n/ reactions and at the maximum cross-section values for /p,3n/ reactions. It is possible to evaluate the cross-sections at different excitation energies from Eq.2. Further calculations for other reaction types are in progress.

					Table 1					
The	best-fit	parameters	of	the	empirical	formula	111	for	different	types
					of reaction	ons				

		°1	°2	c ₃ mbarn	Ref. table
/n,2n/	N ≤ 28	0.085	20.0	550	2
	$28 < N \leq 50$	0.06	8.45	1900	3
the end	50 < N ≤ 82	0.06	9.5	2600	4
A LINE	82 < N	0.15	14.0	3500	5
/p,2n/	$24 \leq N \leq 124$	0.076	7.8	1800	6
/p,3n/	28 ≤ N ≤ 126	0.30	19.0	1500	7

Table 2.

Measured $/\sigma_m$ and predicted $/\sigma_{emp}$ values of /n,2n/ reaction cross-sections for nuclei with N ≤ 28

target nucleus	N-Z A	σm	σemp	Ref.
39 _K	0.026	15 <u>+</u> 1	20	66 M [*]
48 _{Ca}	0.167	$\begin{array}{r} 860 + 129 \\ 707 + 108 \\ 722 + 184 \end{array}$. 515	9 M 10 E 10 E
45 _{SC}	0.067	320 + 48 328 + 35 347 + 19 316 + 8	299	9 M 11 M 11 M 11 M
46 _{Ti}	0.043	145 + 7 135 + 8	147	65 M 11 E
	DATE OF THE OWNER	111 ± 3	the second second	11 E
51 _V	0.098	675 <u>+</u> 100	407	52 M
50 _{Cr}	0.040	64 + 3	98	11 E
52 _{Cr}	0.077	317 + 50 476 + 33	330	11 E 12 M
54 _{Fe}	0.037	50 + 5 134 $+ 3$	51.	53 M 9 M

*****M measured at $E_n = Q + 3 \text{ MeV}$ E extrapolated to $E_n = Q + 3 \text{ MeV}$

- 3 -

Measured	10 m/	and	predicted /		values	of ,	/n /	,2n/	reaction cross-section
			for	nucle	i with	28	<	$N \leq$	50

target nucleus	$\frac{N-Z}{A}$	σ _m	σemp	Ref.
55 _{Mn}	0.091	613 + 72 750 + 112	706	13 M 9 M
56 _{Fe}	0.071	440 + 88 500 + 40	479	ll M ll M
59 _{Co}	0.085	570 <u>+</u> 105	595	56 M
63 _{Cu}	0.079	495 <u>+</u> 74	486	9 M
65 _{Cu}	0.108	810 <u>+</u> 121	769	lM
⁶⁴ Zn	0.062	$\begin{array}{r} 254 + 50 \\ 288 + 43 \end{array}$	256	11 M 9 M
66 _{Zn}	0.091	550 <u>+</u> 83	586	9 M
70 _{Zn}	0.143	1065 <u>+</u> 130	1026	9 E
69 _{Ga}	0.101	690 <u>+</u> 65	669	56 M
71 _{Ga}	0.127	780 <u>+</u> 100	891	l M
70 _{Ge}	0.086	447 <u>+</u> 45	483	57 M
76 _{Ge}	0.158	1095 <u>+</u> 120	1096	57 E
75 _{As}	0.120	910 + 40 825 + 35	800	56 M 12 M
⁷⁴ Se	0.081	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	383	58 E 14 E 15 M
76 _{Se}	0.105	745 <u>+</u> 81	646	58 E
82 _{Se}	0.171	$ \begin{array}{r} 1170 + 50 \\ 1490 + 225 \end{array} $	1149	14 E 9 M
79 _{Br}	0.114	740 <u>+</u> 45	710	14 E
81 _{Br}	0.136	835 + 65 963 + 115	897	14 E 16 E
78 _{Kr}	0.077	288 + 20	284	17 E
80 _{Kr}	0.100	810 + 60	552	17 M
85 _{Rb}	0.129	$\begin{array}{r} 887 + 71 \\ 830 + 125 \\ 1099 + 55 \end{array}$	814	12 M 9 M 65 M

Table 3. cont.

target nucleus	$\frac{N-Z}{A}$	σ _m	σemp	Ref.
87 _{Rb}	0.149	$\begin{array}{r} 1056 + 53 \\ 1290 + 195 \\ 1001 + 50 \end{array}$	972	56 M 9 M 18 E
⁸⁴ Sr	0.095	$\begin{array}{r} 380 + 50 \\ 395 + 75 \\ 380 + 10 \end{array}$	460	59 M 18 M 18 M
86 _{Sr}	0.116	$\begin{array}{r} 683 + 42 \\ 570 + 85, \\ 701 + 110 \end{array}$	679	18 M 9 M 11 M
89 _Y	0.124	751 <u>+</u> 80	731	4 M
90 _{Zr}	0.111	$\begin{array}{r} 608 + 30 \\ 885 + 4 \\ 800 + 120 \end{array}$	593	11 M 15 M 9 M
92 _{MO}	0.087	$ \begin{array}{r} 280 + 42 \\ 383 + 6 \end{array} $	278	9 M 15 M

- 5 -

T	a	b	1	e	4
-	-	_	_	-	AND INCOME.

Measured $/\sigma_m/$ and predicted $/\sigma_{emp}/$ values of /n,2n/ reaction cross-sections for nuclei with 50 < N ≤ 82

target nucleus	N-Z A	σ _m	σemp	Ref.
96 _{2r}	0.167	1197 ± 80	1628	51 E
100 _{MO}	0.160	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1541	9 E 60 E 51 E
96 _{Ru}	0.083	$516 \stackrel{+}{=} 70 \\ 494 \stackrel{+}{=} 30 \\ 411 \stackrel{+}{=} 90 \\ 545 \stackrel{+}{=} 55$	454	19 E 51 E 11 E 11 E
98 _{Ru}	0.102	863 ± 110 1012 ± 96	784	19 E 51 E
103 _{Rh}	0.126	642 ⁺ / ₊ 80 804 ⁺ / ₋ 80	1117	11 E 51 E
102 _{Pd}	0.098	541 ± 70 559 ± 45	672	19 E 51 E
110 _{Pd}	0.164	1348 [±] 80 1638 [±] 185	1523	20 E 51 E
107 _{Ag}	0.121	$\begin{array}{r} 782 \\ 630 \\ \pm \\ 141 \end{array}$	1016	36 M 61 E
108 _{Cd}	0.111	772 ± 100 490 ± 75	843	51 E 62 E
110 _{Cd}	0.127	1054 ± 150	1078	51 E
116 _{Cd}	0.172	$1442 \pm 102 \\ 1013 \pm 100$	1580	65 M 51 E
113 _{In}	0.133	1300 [±] 137 1492 [±] 110 1523 [±] 180	1134	21 E 20 E 22 E
115 _{In}	0.148	1320 [±] 166 1654 [±] 119 1581 [±] 110	1317	21 E 24 E 23 E
112 _{Sn}	0.107	900 \pm 100 1110 \pm 127 1530 \pm 229	739	19 M 12 M 9 M
¹¹⁴ Sn	0.123	$\begin{array}{r} 947 \begin{array}{c} \pm \\ 130 \\ 1082 \begin{array}{c} \pm \\ 130 \\ 1572 \begin{array}{c} \pm \\ 100 \end{array}$	981	19 E 51 E 25 E
120 _{Sn}	0.167	1240 [±] 210	1502	25 E

Table 4 cont.

1

*

1

15

target nucleus	N-Z A	σ _m	σemp	Ref.
121 _{Sb}	0.157	$\begin{array}{r} 1584 \ \pm \ 115 \\ 1369 \ \pm \ 93 \\ 1393 \ \pm \ 80 \end{array}$	1392	26 E 12 M 51 E
123 _{Sb}	0.171	$\begin{array}{r} 1329 + 80 \\ 1099 + 137 \\ 1962 + 200 \end{array}$	1530	51 E 12 E 23 E
122 _{Te}	0.148	1422 <u>+</u> 140	1272	51 E
128 _{Te}	0.188	1441 <u>+</u> 210	1667	51 E
130 _{Te}	0.200	1270 <u>+</u> 75	1764	51 E
127 _I	0.165	1432 + 80 1143 + 132	1454	51 E 11 E
124 _{Xe}	0.129	1021 <u>+</u> 110	1002	17 E
126 _{Xe}	0.143	1208 <u>+</u> 165	1187	17 E
128 _{Xe}	0.156	1333 <u>+</u> 170	1345	17 E
134 _{Xe}	0.194	1980 <u>+</u> 240	1701	17 E
136 _{Xe}	0.206	1501 + 100	1790	17 E
133 _{Cs}	0.173	$\begin{array}{r} 1347 + 75 \\ 1352 + 250 \end{array}$	1506	51 E 11 E
136 _{Ce}	0.147	1174 <u>+</u> 90	1184	51 E
¹⁴⁰ Ce	0.171	$ \begin{array}{r} 1531 + 100 \\ 1407 + 140 \\ 1540 + 111 \\ 1400 + 130 \end{array} $	1458	27 E 9 E 12 E 51 E
141 _{Pr}	0.163	1450 ± 144 1231 \pm 111	1360	12 E 41 M
142 _{Nd}	0.155	$\begin{array}{r} 1458 \pm 120 \\ 1831 \pm 200 \\ 1467 \pm 125 \end{array}$	1254	27 E 11 E 40 E
144 _{Sm}	0.139	$ \begin{array}{r} 1081 + 106 \\ 1600 + 240 \\ 1343 + 166 \end{array} $	1020	12 M 9 M 29 E
3.5.8		1110 ± 300		29 E

- 7 -

Tab	le	5.
Tan	トレ	

Measured $/\sigma_m/$ and predicted $/\sigma_{emp}/$ values of /n, 2n/ reaction cross-sections for nuclei with 82 < N

target nucleus	$\frac{N-Z}{A}$	or _m	^o emp	Ref.
142 _{Ce}	0.183	1434 + 300 1614 + 160 1756 + 170 1677 + 170 1525 + 170	1979	9 E 12 E 9 E 27 E 51 E
148 _{Nd}	0.189	1938 <u>+</u> 200	2071	11 E
150 _{Nd}	0.200	1986 + 300 1560 + 276	2263	29 E 29 E
154 _{Sm}	0.195	2025 <u>+</u> 900 1349 <u>+</u> 300	2150	ll E ll E
154 _{Gd}	0.169	1660 <u>+</u> 140	1558	27 E
160 _{Gd}	0.200	$\begin{array}{r} 1345 \ \pm \ 820 \\ 1327 \ \pm \ 300 \\ 1578 \ \pm \ 170 \end{array}$	2218	11 E 11 E 11 E
160 _{Dy}	0.175	1813 <u>+</u> 120	1680	27 E
165 _{Ho}	0.188	$\begin{array}{r} 1904 + 210 \\ 2503 + 55 \\ 1914 + 300 \end{array}$	1954	11 E 11 E 2 3
166 _{Er}	0.181	1778 ± 155	1786	27 E
170 _{Er}	0.200	1740 + 265 1103 + 500	2174	11 E 11 E
169 _{Tm}	0.183	1821 <u>+</u> 115	1833	27 E
170 _{Yb}	0.176	1889 <u>+</u> 110	1656	27 E
176 _{Yb}	0.205	$ \begin{array}{r} 1681 \pm 253 \\ 730 \pm 80 \\ 400 \pm 100 \end{array} $	2231	11 E 11 E 11 E
175 _{Lu}	0.189	1780 ± 170 1600 ± 300	1918	27 E 11 E
176 _{Hf}	0.182	$\begin{array}{r} 2033 + 115 \\ 1860 + 100 \end{array}$	1756	27 E 42 E
181 _{Ta}	0.193	$\begin{array}{r} 2438 + 200 \\ 1662 + 300 \end{array}$	1993	11 E 11 E
182 _W	0.187	1990 <u>+</u> 120	1843	27 E
186 _W	0.204	2130 ± 230	2187	43 E

and the second

Table 5. cont.

target nucleus	Z-N A	σ _m	σemp	Ref.
185 _{Re}	0.189	1666 <u>+</u> 600	1882	11 E
187 _{Re}	0.198	1560 ± 168 1341 + 410	2059	11 E 11 E
191 _{Ir}	0.194	1943 <u>+</u> 190	1954	27 E
198 _{Pt}	0.212	2580 <u>+</u> 1500	2281	11 E
197 _{Au}	0.198	$\begin{array}{r} 2158 \pm 180 \\ 1601 \pm 460 \\ 2418 \pm 200 \\ 2235 \pm 120 \end{array}$	2018	27 E 11 E 11 E 11 E
198 _{Hg}	0.192	2169 + 220	1882	27 E
204 _{Hg}	0.216	2160 + 160 2188 + 300	2321	27 E 30 E
203 _{T1}	0.202	$\begin{array}{r} 2043 + 120 \\ 1235 + 66 \\ 1570 + 210 \end{array}$	2075	27 E 11 E 30 E
205 _{T1}	0.210	1861 <u>+</u> 279	2215	11 E
204 _{Pb}	0.196	1966 + 110 1467 + 160	1948	27 E 9 E
209 _{Bi}	0.206	2155 ± 300 2380 ± 200	2126	ll E ll E
232 _{Th}	0.214.	1940 <u>+</u> 90	2166	44 M

target nucleus	N-Z A	σm	demp	Ref.
45 _{Sc}	0.067	12 <u>+</u> 4	144	31 M
48 _{T1}	0.083	73 <u>+</u> 18	297	32 E
51 _v	0.098	231 <u>+</u> 35	417	33 M
52 _{Cr}	0.077	91 <u>+</u> 24	153	32 E
56 _{Fe}	0.071	42 <u>+</u> 15	13	32 E
59 _{Co}	0.085	133 <u>+</u> 21	145	33 M
62 _{Ni}	0.097	240 <u>+</u> 57	254	32 E
63 _{Cu}	0.079	$50 \pm 21 \\ 43 \pm 15$	14	34 E 32 E
68 _{Zn}	0.118	410 <u>+</u> 200 508 <u>+</u> 117	420	31 M 32 E
69 _{Ga}	0.101	237 <u>+</u> 44	222	32 E
88 _{Sr}	0.136	400 <u>+</u> 70	432	45 E
89 _Y	0.124	264 <u>+</u> 46	280	35 E
93 _{Nb}	0.118	167 <u>+</u> 25	177	33 M
100 _{Mo}	0.160	103 <u>+</u> 14	581	46 M
110 _{Cd}	0.127	425 <u>+</u> 30	143	37 E
112 _{Cd}	0.143	470 <u>+</u> 20	318	37 E
140 _{Ce}	0.171	447 <u>+</u> 67	460	38 M
150 _{Nd}	0.200	200 <u>+</u> 30	686	39 M
168 _{Er}	0.190	430 <u>+</u> 200	522	50 E
181 _{Ta}	0.193	417 + 70	497	33 M
197 _{Au}	0.198	232 <u>+</u> 35	482	33 M
206 _{Pb}	0.204	530 <u>+</u> 70	510	47 M

					Table	0.							
Measured	1 / m/	and	pred	icted	1 / aemp	valu	es d	f	/p	,2	n/	react	ion
	cross.	-sect	ions	for	nuclei	with	24	1	N	<	124		

ablo

Table 7.

Measured $/\sigma_m/$ and predicted $/\sigma_{emp}/$ values of /p,3n/ reaction cross--section for nuclei with 28 \le N \le 126

1

0

ik.

target nucleus	N-Z A	σ _m	σemp	Ref.
51 _V	0.098	97 <u>+</u> 15	208	55
⁶⁵ Cu	0.108	165 + 25 145 + 23	267	34 48
68 _{Zn}	Ö.118	$\frac{-}{120 \pm 14}$	453	31
69 _{Ga}	0.101	65 <u>+</u> 10	63	49
71 _{Ga}	0.127	600 <u>+</u> 120	597	49
88 _{Sr}	0.136	470 <u>+</u> 120	649	45
89 _Y	0.124	385 <u>+</u> 46	409	35
112 _{Cd}	0.143	700 <u>+</u> 70	635	37
170 _{Er}	0.200	620 <u>+</u> 100	1127	-50
181 _{Ta}	0.193	1200 <u>+</u> 266	1061	28
193 _{Ir}	0.202	1000 + 200	1114	54
206 _{Pb}	0.204	890 <u>+</u> 135	1112	47
208 _{Pb}	Ø.212	980 <u>+</u> 150	1163	47
209 _{Bi}	0.206	820 <u>+</u> 145	1122	47

REFERENCES

[1]	J. Csikai and G. Pető, Phys. Letters, 20, 52 /1966/
[2]	P. Hille, Nucl. Phys., A107, 49 /1968/
[3]	S. Chatterjee and A. Chatterjee, Nucl. Phys., A125, 593 /1969/
[4]	A. Ádám and L. Jéki, Acta Phys. Hung., <u>26</u> , 335 /1969/
[5]	J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, J. Wiley and Sons Inc., New York, 1962
[6]	R.J. Howerton et al., Report UCRL-14000/1964/
[7]	J.H.E. Mattauch, W. Thiele and A.H. Wapstra, Nucl. Phys., 67, 32 /1965/
[8]	L. Jéki , Gy. Kluge and A. Lajtai, to be published
[9]	Gy. Csikai, Magy. Fizikai Folyóirat, <u>16</u> , 123 /1968/
[10]	P.N. Tiwari and E. Kondaiah, Phys. Rev., 167, 1091 /1968/
[11]	M. Borman, Nucl. Phys., <u>65</u> , 257 /1965/
[12]	M. Borman, A. Behrend, I. Riehle and O. Vogel, Nucl. Phys., <u>All5</u> , 309 /1968/
[13]	H.O. Menlove, K.L. Coop and H.A. Grench, Phys. Rev., 163, 1308 /1967/
[14]	B. Minetti and A. Pasquarelli, Nucl. Phys., Aloo, 186 /1967/
[15]	A. Abboud et al., Report IBJ-1105/I/PL/1969/
[16]	J. Csikai, M. Buczkó, Z. Bődy and A. Demény, Atomic Energy Rev., 7, 93 /1969/
[17]	E. Kondaiah, N. Ranakumar and R.W. Fink, Nucl. Phys., Al20, 337/1968/
[18]	L. Husain, A. Bari and P.K. Kuroda, Phys. Rev., Cl, 1233 /1970/
[19]	J.K. Temperley, private communication /1970/
[20]	B. Minetti and A. Pasquarelli, Zeitschrift für Physik, 207, 132 /1967/
[21]	W. Grochulski et al., Report IBJ-1172/I/PL /1970
[22]	H. Rotzer, Nucl. Phys., Alog, 694 /1968/
[23]	B. Minetti and A. Pasquarelli, Nucl. Phys., All8, 449 /1968/
[24]	R. Prasad and D.C. Sarkar, Nucl. Phys., A94, 476 /1967/
[25]	S. Lulič et al., Nucl. Phys., <u>Al19</u> , 517 /1968/
[26]	B. Minetti and A. Pasquarelli, Zeitschrift für Physik, 217, 83 /1968/
[27]	W. Dilg, H. Vonach, G. Winkler and P. Hille, Nucl. Phys., All8, 9 /1968/
[28]	C.L. Rao and L. Yaffe, Can. J. Chem., <u>41</u> , 2516 /1963/
[29]	M.P. Menon and M.Y. Cuypers, Phys. Rev., 156, 1340 /1967/
[30]	G. Pető, P. Bornemissza-Pauspertl and J. Károlyi, Acta Phys. Hung., 25, 91 /1968/
[31]	T. McGee, C.L. Rao, G.B. Saha and L. Yaffe, Nucl. Phys., A150, 11 /1970/
[32]	B.L. Cohen and E. Newman, Phys. Rev., 99, 718 /1955/
[33]	G. Chlodil et al., Nucl. Phys., <u>A93</u> , 648 /1967/
[34]	J.W. Meadows, Phys. Rev., <u>91</u> , 885 /1953/
[35]	G.B. Saha, N.T. Porile and L. Yaffe, Phys. Rev., 144, 962 /1966/

L.A. Rayburn, Phys. Rev., 130, 731 /1963/ [36] K. Otozai et al., Nucl. Phys., 80, 335 /1966/ [37] M. Furukawa, Nucl. Phys., A90, 253 /1967/ 38 J. Olkowsky, I. Gratot and M. LePape, Nucl. Phys., 24, 84 /1960/ [39] R. Graetzer et al., Nucl. Phys., 76, 1 /1966/ [40] [41] J.M. Ferguson and W.E. Thompson, Phys. Rev., 118, 228 /1960/ M. Hillman and E. Shikata, J. Inorg. Nucl. Chem., 31, 909 /1969/ [42] A.A. Druzinin et al., Yadernaja Phys., 4, 515 /1966/ [43] J.P. Butler and D.C. Santry, Can. J. Chem., 39, 689 /1961/ [44] D.R. Sachdev, N.T. Porile and L. Yaffe, Can. J. Chem., 45, 1149 /1967/ [45] J. Delaunay-Olkowsky, P. Strohal and N. Cindro, Nucl. Phys., 47, 266 [46] /1963/ [47] R.E. Bell and H.M. Skarsgard, Can. J. Phys., 34, 745 /1956/ [48] R.A. Sharp, R.M. Diamond and G. Wilkinson, Phys. Rev., 101, 1493 /1956/ [49] N.T. Porile et al., Nucl. Phys., 43, 500 /1962/ G.V.S. Rayudu and L. Yaffe, Can. J. Chem., 41, 2544 /1963/ 50 [51] W.Lu, N. RanaKumar and R.W. Fink, Phys. Rev., Cl, 350 /1970/ [52] J.R. Williams et al., Trans. Amer. Nucl. Soc., 9, 251 /1966/ [53] S.R. Salisbury and R.A. Chalmers, Phys. Rev., 140B, 305 /1965/ 54] G.R. Grant and L. Yaffe, Can. J. Chem., 41, 2533 /1963/ S. Hontzeas and L. Yaffe, Can. J. Chem., 41, 2194 /1963/ 55] [56] P. Jessen et al., Compilation of experimental excitation functions of some fast neutron reactions up to 20 MeV. Hamburg, 1965 57 R.E. Wood et al., Phys. Rev., 154, 1108 /1967/ 58 P.V. Rao and R.W. Fink, Phys. Rev., 154, 1023 /1967/ 59 P. Strohal, N. Cindro and B. Eman, Nucl. Phys., 30, 49 /1962/ P. Cuzzocrea and E. Perillo, Nucl. Phys., AlO3; 616: /1967/ 60 [61] P. Cuzzocrea, E. Perillo and S. Notarrigo, Report INFN/BE 867/13 62] Y.W. Yu and D.G. Gardner, Nucl. Phys., A98, 451 /1967/ 63 C. Maples, G.W. Goth and J. Cerny, Nuclear Data, A2, 429 /1966/ 64 S. Cierjacks, Second Conf. Nucl. Data for Reactors, Helsinki, 1970. Preprint IAEA/CN-26/113 65 R.J. Prestwood and B.P. Bayhurst, Phys. Rev., 121, 1438 /1961/

[66] M. Bormann et al., Nucl. Phys., <u>63</u>, 438 /1965/

ABSTRACT

A phenomenological formula is suggested to calculate /n,2n/, /p,2n/ and /p,3n/ reaction cross-sections which gives good agreement between the calculated and measured values.

PEBKME

Предлагается феноменологическая формула для вычисления сечений реакций /n, 2n/, /p, 2n/ и /p, 3n/, которая приводит к хорошему совпадению расчетных данных с измеренными.

KIVONAT

/n,2n/, /p,2n/ és /p,3n/ reakció-hatáskeresztmetszetek kiszámitására összefüggést adunk meg, amelynek segítségével jó egyezést kapunk a számitott és a mért értékek között.

61.873

Printed in the Central Research Institute for Physics, Budapest Hungary Kiadja a KFKI Könyvtár-Kiadói Osztálya O.v.: Dr. Farkas Istvánné Szakmai lektor: Pálla Gabriella Nyelvi lektor: Timothy Wilkinson Példányszám: 215 Munkaszám: 5397 Készült a KFKI házi sokszorositójában F.v.: Gyenes Imre Budapest, 1971. február hó Annual Property in

1

常

-