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ON TI'E INTRODUCTION OF LORENTZ-POLES
INTO UNEQUAL MASS SCATTERING AMPLITUDE

K. Szeg6 and K. Toth
Central Research Institute for Physics, Budapest, Hungary

Abstract

In this paper we suggest a new type of decomposition of the unequal mass
scattering amplitude. We introduce two non-commuting , non-disjunct
Poincaré groups, P+ and P~, both being sugroups of the P, ® P2 group
where P~ is the Poincaré group of the i-th particle; the P+ group is
identical to the group of the two-particle Poincaré transformations in the
direct channel. This decomposition of the scattering amplitude is a double
ohe, it runs in terms of the P+ and P- groups simultaneously. The end-
formula is valid for any s and t; in the equal mass case at t=0 it
gives back the usual one for Lorentz-pole contributions. This formalism
seems to be adequate for understanding the meaning of the spectrum generat-
ing group and for the treating the breakdown of the symmetry. The variables
of the expansion functions are defined unambiguously by the kinematical
variables and have branchpoints only at thresholds and pseudo-threshold, in
opposition to other approaches.



1. Introduction

During the lest .few years many attempts were done to eliminate the singu-
larity developing at wu=o in the' unequal mass scattering amplitude when
expanded in terms of Regge-poles. As to the root of the problem two ob-
servations appeared to be important:

1. The-contraction of the little group of the two-particle four-momentum
at zero energy,

2. The center of mass system turns out to be meaningless at that point
on the mass-shell.

The first phenomenon is unavoidable and expresses the fact that lightlike
Poincaré representations are essentially different from timelike or space-
like ones. The second point means that the four-momentum of two particles
having different masses can never be equal. This way, the partial wave
expansion of the scattering amplitude in center of mass system can not be
used for analytic continuation to zero energy, and the singularity found
there is not a singularity of the scattering amplitude, being outside of
the possible domain of the four-momenta.

The solution of the problem is to suppose essentially the same situation
as for equal mass scattering, namely, there exist families of Regge-poles
gathered in irreducible representations of the SL/2,C/ group. Phis was
first noticed by Freeduan and Wang, [1] a detailed analysis from group
theoretical point of view was made by Domokos et al. 12,53 and by Toller
and coworkers [tj . Annulier way to get rid of the singularity was found by
di Vecchia et al. [[»1 with the help of analytical method.

"Several attempts were made to use the notion of Lorentz pole at u”o.
Delbourgo, Salam and Strathdee published the first paper on it [61, a
different approach was elaborated by Domokos and Suranyi [71, and later

by Toller [8l. The analytical methods are poverful enough for this case as
well [5].

Let .alone the analytical approach, in the others either off-mass shell
amplitudes were necessary or there were problems with momentum-conserva-
tion. Here we present a method based on group theory without these defects.

The new idea in our method is that in the space of two-particle states we
introduce a P Poincaré group that acts on both particles and that can
step between the representations of the group of the well-known two-particle



-3_

Poincnré transformations /P+ group/. The scattering amplitude can be
expanded in terms of these groups simultaneously at any s, t values,
staying on mass-shell. This way we find the meaning of the spectrum generat-
ing group and can see the connection between equal and unequal mass case,
concerning the "additional symmetry" of the scattering amplitude at zero
energy.

2.1. The two-particle states

First we give a detailed description of two-particle states from the point
of view of Poincaré representations. The two-particle states are the
elements of a linear space, defined as the direct product space of one-
-particle states. The most usual and simplest way to enumerate the vectors
of the direct product space is to enumerate those for both particles, se-
parately. A two-particle state, denoted as XN p2 s2 X2 >

has 12 indices, namely the four-momenta p* and p2 , the spins and
s2 , the helicities X~ and X2 . In this space the Poincaré transforma-
tions are generated by the twice ten operators P)‘/, M3y Py I\/[)'V./ P'p
and are the four-momentum operator and angular momentum tensor for
particle 1. the double primed operators are the same for particle 2./ the
former representation diagonalizes the P and pjj operators. The indices

s and sO are the eigenvalues of the Casimir-operators vt and
w'ow! , Where
v u
wl ok Mip Pk 2.1/
The helicities X* and X2 are the eigenvalues of and . The irredu-

cibility of the representation space manifests itself in the fact that
beside s/ and b" the eigenvalues of the other two Casimir-operators

P~ P t and Pl] , are fixed: and p2 ~m2 . Tliere is 4
one more Poincaré invariant quantity: the sign of the eigenvalues of PO
For both particles we choose this sign to be positive, by convention.
However, this set of quantum numbers is not a practical one when we want

to exploit .the Poincaré invariance. Inhomogeneous Lorentz transformations
are primarily the transformations of space-time, consequently, the trans-
formations of the two-particle system as a whole, generated by the operators

+ " )
pM pV+ pu + My 12.2]

They form a Poincaré subalgebra of the direct sum algebra of P#, PJ, MyV»
Having no simple transformation properties under the transformations



of this Poincaré subgroup, and p2are usually changed to s,P,W,m,

to the eigenvalues of the operators p* , PN WA, w*or W8 <
respectively. The usefulness of s and W are obvious; P and in were
chosen for getting explicitly translation invariant basis vectors, but as
it will be shown, this choice is not the most adventageous one in some
cases, it is better to take the eigenvalues of the operators

1
4 evaK MEV MEK I2.31

where

1
M 2 gijk Mk

instead of P and m . This choice is built upon the SL/2,C/ part of the
Poincaré subalgebra. We write the appropriate set of quantum numbers as

i, a j, m; the eigenvalues of the operators enumerated in /2.3/ are-

ijo o, + 1, j(j + 1), m respectively. One more generalization

can be done in choosing the set /2.3/, namely, we can use the Casimir

operator of other subgroups of SL/2,C/ instead of ml c.f.

Appendix A.

One problem arises from the change of P+, to the set /2.3/j vI and
w do not commute with them. However, the operators (w' + w"Vw' + w") ,
py - wW-) make complete again the set of the 12 commuting operators

being necessary to describe the two-particle states. We shall come back
later to these two operators. We note here only that they define "Lorentz
invariant quatum numbers", that is to say they commute with the generators
M . We shall denote the eigenvalues of (w' + w")(w' + w" ) and

% (w, " W) as E adn n e

Now let J1 be an element of the homogeneous Lorentz group generated by the

-s, and un(n+) the operator which represents JH on the space
spanned by the basis vectors Im m2 s2 s w+jQajm, E+A+>/m®, m2, s,, s2
later will be suppressed/. Obviously

U(V)l J - éJ'm' Cn+) 1-- - 3ooj m . /12.4]

where Dj°m'jm Is 31 SL/2,C/ representation matrix element, well-known
from the literature [14, 15» 16].

There exists another possible choice of quantum numbers and it 1B based
upon the fact that one can pick out a Poincaré subgroup different from

[2.2/;



Py p P'(; P1=F;)[' +F:’L’.’,1N- +71: - I¥\/ Mlzmi+w /12.5/

Here - Mi . We shall call this subgroup the P~ group, contrary
to the previous P group. An element of its homogeneous part, generat-
ed by the and fh operators, will be denoted by A~ , it is evident

we can define the analogons of the former (+) type commuting operators
changing the (+)type generators to (-) type ones. Denoting the new quantum

numbers as x, w , IQplprE /1, we can write the analogue of /2-4/ as
follows:
a(n )1 10plp. *Jou, di°l i, (a )leee> V 1'»'---» /2.61
Obviously, the representation functions D? . are the same as the
joo lv
D functions being the differential equations and boundary con-

ditions defining them quite the same.

How we summarize the commuting operator sets and quantum numbers we have
spoken about

Al PPy Wl PRG L VO P g PRV
m2 4

71 S1 S2 El

OBy WG pr W w

o/ PPy WONG . Py e WY
T w E 4 X2
+2 . 1 " LI "
dl PLPY WO, | MH2-N"7, MN  m+2, oo vyprwy)2 Py, glwywy)
S WH 0 O'CI) i m 7+ n+

e/ PPy WG . Me2N-2 MEN- M2 my (yi;/+quV\(;)2_ h (w :)
T W~ (%0 'p) 1 y Z~ A



As to the quantum numbers, we make some remarks:

1. As a consequence of the fact that the p+ and p~ algebras are not

disjoint, being P+P » MM , the quantum numbers g+ , ¢ and

[j,m/lr [1,y/ are the seme in the sets b/, c/ and d/, e/ respectively.

Uaturally, working with subgroups of SL/2,C/ being different from that of
M~-s | the appropriate Indices loose this property.

2. A Ji transformation leaves invariant the form (p'+p”j2 - (g' + g"j2
whereas A does the same for (p» - P”)2 - (g' +p")2 . The notions
"vector", "tensor" etc. are different for P+ and P groups.

3. In the sets a/, b/, c/ instead of X* and X2 one can use the quantum
numbers E+, JH or E, A respectively.

4. 1t is a highly delicate question to ask for the transformation from one
type of basis system to another one. This problem will be treated in the
Appendices.

To conclude the discussion of quantum numbers we deal with the eigenvalues

of (w6 + W) (w + w" and +w o+ w' . First it can be
RN AN Py 4wy * Wy

written on momentum States:

% hst> = 5 epvpK M/p p |psX> = S (p) |psX> 2.7/

The transformation property of the operator B”(p) under Lorentz-trans-
formations:

U(A) Sy(p) U-1(A) = LAA) Sv(Ap) /2.81

The notation is obvious. Being Ew' + w")2 and pa}'lw'y - w\'/',) covariant
eoperators we confine ourselves to their eigenvalues on "equal velocity
states" /the particles have the same velocity of opposite direction; see
Section 3«/. We use the phase convention of Jacob and Wick for two-particle
states [9] and write:

IPj AX-1» P2s2X2> = B1(a) R2(TT,Tr,0) B2(a) [mls1X1> ®(-I) Im2s 2 X2>

Here B and R are boost and rotation operators acting on one-particle
states. Let us introduce the following linear combination:

,aX

X1 X2 S1X1S2~X2



The linear combination is made by the Clebsch-Gordan coefficients of the
rotation group. These states are eigenstates of the operator P+ (w' - w")
Using eqs. /2.7/ and /2.8/ we find:

Py (W ~ Wy)IPIsl' P2s2;0X> =\ 62-2s(m2+m2) + Cmi-m2) [PIsl' P2s2'aX>

The situation is a bit complicated in the case of + V\rj2. After some
straightforward calculation we get the result :

WOP2 prsit P2s2, oX> gim](mi-m2) sx (sA1)
- m2 (ml-m2) s2 (s2+l) + WURICr+l | 6 , +

Nst fur?
2m™m?2 |

26 o L \ lp.,s.,p0s

y Cc
212 s1Xis2~X2 1 2 1 1 2 2

This result says that there is a one-to-one correspondence between the

“total spin” values a and the eigenvalues of the operator (vT + v*)2 ,
and its eigenstates are linear combinations of the states defined by eq.
12.9/1

misl' P2S2' A > - a ~Za ‘plsl' p2s2' oX>

(Wi + Wy)2 Iplsl' P2S2' IK> * Ipis].' P2S2 Ih> /2.111/

We mention that in practical cases /s-"O, Sg arbitrary} Sj=32=1/2; PpP2=0/
no diagonalization is necessary.

Similar results can be found repeating the calculations for the (-) type

operators (VT + g”v w*)2 > Py(W “ wy*«n the following, either'we are
working with the (+) type set of quantum numbers or with the (-) type one,
we shall use the symbols Z and A , omitting + indices. We think this
will not lead to confusion, however it do not mean at all that there is a

diagonality between Z+ and Z values, but J/i+ and A are essentially
the same, c.f. App.C.



3.1. The expansion of the scattering amplitude.

After theee preliminary steps now we concentrate to our very problem, to
the expansion of the scattering amplitude. Let us consider the scattering
process drawn in Fig.l. We should
s = (p~Pj)2 like to treat it at high values of s
supposing exchanged poles in the

t - (PI-p3)2 t-channel. Since we have the crossing
4 relation between s- and t-channel
Fig.l. M scattering amplitude [10]:

<PIX | ' ! 'X4> * A s s2 /\S-3 /\S-4
P2X2'TIp3A3" P4 X AIAL MM Adns "Adna

<pi Xi' P3X31T1 P2X2' P4X4>

where (PL+P2)2 = s (Pi + P3)2 =
El+p2 = 0 ; EI + P3 =° [/3.1.1/
/ c c\2
(PI1-P3) =t (Pi - p2) =s

Instead of expanding <Pl,p2|t|p3,p4>=Ffs in the crossed channel we shall
do the same with <p3,p3|1t| p3,p”> =f in the direct one. First we shall
take in its physical domain, and than we continue it analytically in
s and t to the physical domain of fs.

At the end of this process on both side of T in the twoparticle states one
particle is negative timelike. Toller showed [4] that such a functional
does not exist everywhere in the crossed domain though it is dense in it.
This way, in a more rigorous treatment our formulae ought to be considered
as means to define a functional, the domain of definition of what can be
extended to the whole region in question. However we note, our way of
speaking is accepted in physical literature, see e.g. [11] and many others.

During the analytic continuation the kinematical singularities could cause

trouble so we get rid of them, multiplying r with an appropriate
K(s,t) function. Its form for any definite process is well known [12].

fit = k(s,t) ffc /3.1.2/



In what follows we shall speak only about the right-hand-side ket of ff
to save place but we always mean the whole amplitude

The r.h.s. ket can be written as follows:

. + ; +
s 2~"2 -I0M2
Ip4X4' P2X2>CM * L' p4 1S4Md> ° L" p2 _1 1S2X2> = e
-icx.N'-ia_N"  -1TrMO 1w
e e e e Is4n4' S2X2> /3.1.3/
SpUAY . . .
The -1 phase factor is introduced for convenience./This agrees

with the Jacob-Wick phase convention [9Je /We introduce the notation

-iiT™' i ChVIA 5_-A 1o 2+/\4)
e e (<1 1 1 'Sy Pt S2%0" S4X4J S2- V |R>
13.1.4/
In eq. /3.1.3/ we can write
exp (~iad4N"') exp(-ia2N”")= exp ( -iotN*) exp (-iBN3) /3.1.5/
Inserting the last equation into eq. /3.1.3/» we get
-1oM3  -iOM2  -iaN3 -iBN~ /13.1.6/

Ip4x4’ = e e e e Ir>

dince.any general two—particlle state appears asA+|pﬁ9(, p~ZA~2'>CM /c.f.eq.
3.1.6./, it has the form nA |r> as well, where A+ is a general
homogeneous Lorentz transformation of 6 parameters /the last rotation gives
only a phase, 5 parameters are essential/, n is a (-) type boost of
one parameter, along the z-axis. /Wigner rotations are suppressed/. This way,
the exp (-iEN3) |r> is a good basis state for two-particle states in
that sence that any other state can be obtained by Lorentz transformation;
nay, a better base than the CM-states because we have trouble with the latter
at t-o. Another aspect of eq. 3*1-6.: any two-particle state is a function
over both the P+ and P~ group. Our expansion of the scattering amplitude is
nothing else but & simultaneous expansion in terms of these groups.
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One can easily check that in eq. 3*1«6.

m,,+m. ~
ch8 = T.ﬂ) Ch« = mmmmmmmeeee /t - [13.1.7/
2/m_2m4 2/tm2m4
Hence
8 = In A (T2-w4)2 +A - (W +i )¢ /3.1.8/
2 [ nl2ué
and there is a similar expression [or a . Now we continue analytically

in t. The way of continuation is drawn in Fig.2.

2 we continue from t'+ie, t' > (m9%m,)
(m-m.) L . , S0 1 4
2 < to t"-ie, O < t" < t> O .
% For the time being t" can not be
smaller than zero, because at t=o
Fig.2. singularities appear in ch a .During

the continuation t somewhere is real, we choose this point between the
threshold and. pseudo-threshold [10]. A glance at eq. 3*1.8. shows that
during this continuation we cross the cut of the In-function and we cross
the cut of orr of the square-roots, hence their relative sign alters.
This way, at the and of the continuation [ goes over to ts'+iir/2

where RB'+iir/2

chi' “ —-——— ~N(m2+m4) 2-t /13.1.9/
N
2/m2m4
Similarly for a : it goes over to a'+iTr/2 where
m -m e e
cha' = —~~zzzr * -t /3.1.10/
2/tm_2m4
We shift the effect of the iir/2 angles to |r > let alone a phase factor
it will alter the sign ot the mass of the crossed particle and does nothing
else. Denoting exp inN" |[R> - |r> we are left with the following

expression for f

t i 8"N~ i«"N* -ioM+ -ia'N* -18N-~
\ = <R' I e Te e R> /3.1.11/
ALN D3 M ¢ ¢ |

Vv



where  R" and a" can be got from and a' if
and

oSO t(s-u) + (mM*-m3)(m2-m4)

Supposing [t, m*v]*0 , the (+) type transformations can be added [14]:

As we see, the ugly singularity of t=o has gone away.

However it worth examining whether the supposition [t, = o0 below the
pseudothreshold is just a consequence of Lorentz invariance, or something
more. To see it, we make again the continuation without introducing a and
B . We begin with the following state above thresholds

-ia N' -ia N
e e |R> /3.1.13/
where
t +m - P t + m? - m?
ch . = , ch T e 7\ -
4 2ft m4 2 2/tm 2

During the same continuation as before ad4>-a4, a2”~a2H7T

We again shift the effect of & onto |r> that makes the sign of changed.
Since this causes a change in the sign of p2 as well, if we want to
maintain the condition we either have to introduce an exp - ittM
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factor or tot change the sign of N". We choose the latter, but this means
that under the continuation the (+) type and (-) type generators change
role. In other words: above threshold the [T, m ] = O condition means
Lorentz invariance, but below pseudo-threshold it is a new <condition that
we forced to make to maintain the analyticity of the scattering amplitude.
[Analyticity would require it only between lightlike two-particle states,
however we suppose it to be true as operator relation./ The fact that the
P+ and P~ groups change role is not so surprising. If t is below the
pseudo-threshold, the fs amplitude is in its physical domain, there the
Lorentz- transformations are generated by ! 03M and M2 0

In the amplitude the 2. and J. particles are crossed and as we have
shown this causes a change in the sign of the TP and PQ generators.

After having added the (+) type transformations in eq. 3*1*11* we insert
full systems of |+> and |-> vectors, and from A2 we go over to
E, A quantum numbers in |r> | R>:

fZAlIXs,t = | <misl Ei=*" “m3s3 E3“0" i:Al-> <-le \~> o
- 1gVvp -ixM~
<-[+> <+]e e e [+> <+|t|+> <+|->
-iR'N:
<h ->e<-e ST M8y E4=c2  _m2s2 £20°0 A

= -m3s3£3=0r EA|(m1l+m3) 2, 1QPIly, W, EA>

1P
e di°]/ (B") <(ml+m3) , 10P l'u, W,EA| t;jQajm, W+ E'A'>

* Djmj'm’ TE'A"E"A" Qaf ”~o'a' W

e <t, jOPj'm\ W+, E"A"|(m2+md)2, I'p"I"p", W , E*A>

dimi K (m2+#m4) ' 1gP'1"u'» W’ , EAYmis4p4=0,

-m2s2p2=0, ET>
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In eq. 3.1.14. the summation /if necessary, integration/ runs over both the
unitary and non-unitary representations of the (+) and (-) type Lorentz
group, since the scattering amplitude is not syuare-integrable in the
crossed channel. The Chlebsch-Gordan coefficients and the overlapping
function between the (+) and (-) type vectors are given in the Appendices.
The reduced matrix, element of T does not depend on j , mbecause of

the Wgner-Eckart theorem.

3-2. Behaviour at t=o, Lorentz-poles.

First we rewrite eq. 3*1.14. using the results of Appendix B and we
separate the unitary and non-unitary representations of A+

t oo 1p

f o dalJf3 I 10, (a™)
vV 1
rp'1

i a
< ml+m3 2, 1QplX, ..11,jQajm. .> ,m> (dh, £, X) <t ,joaj'm'. ny+m, zI'd)'I'X'..>

dI°E'A'a T sXs' X'~ ,w2” + non unitary terms

Now let it be t=o and m”=m”, mp=m*. As one can see from eq. 3*I*lo.

a' = a"=0, hence we can sum over the |-> type vectors. The eigenvalues
of the operators , pM(w”n-w”)  are zero since the components of the total

four-momentum are zero.

oo j,o0 1o
FEAE'A’ danJ C )EAE'A' TEE' *

+ non unitary terms

The assumption of the Regge theory is that if s+ ®some non-unitary
representations give the main contribution to the scattering amplitude and
everything else can be dropped. The fact what kind of representations does
appear, depends on t continuosly. This way, in eq. 3*2.1. we retain only
some non unitary term. une of these at t=o gives a sequence of Regge poles,
grouped in a Lorentz-family, as we know well from the "classical" papers.
Maybe this introduction of the Regge poles seems a bit artificial at first
sight, howevér we think it is Just that, what everybody expected.
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At t=o we know the interrelation between Regge- and Lorentz-poles, but we
do not know what to say if t/o. However, the most important observation
is that we need not say anything! If we pick up a Regge-£>ole at t=o0, this
pole through the overlapping function and through the d oP functions
defines a sequence of I...1_p...> vectors. These vectors do notlodlgpend
on t! But from these t independent vectors through t dependent d
functions and overlapping functions we get a lot of interfering Lorentz-
poles :

I .<t=0, jQajm..I(m1+m2)2 10ply..>d° (a(t=0)) d°<,(a(t))
v 1
I's
<(ml+m2) 2/ 10P I'p.-1 t,j*a'j'm'..> = f(jQafj'a",j,j',t..) [13.2.2/

This is not surprising, from the model of Domokos and Surdnyi we have got
something similar: to a pole of i0'° guantum number in the first order
of t poles with jo~If0; jO,o0-I quantum numbers are mixed. A detailed
evaluation of eq. 3.2.2. and further applications of the model will be
the topic of a forthcoming paper.

Finally, we make a short remark on the expansion of the scattering amplitud
The technique developed in the Appendices for working with the IG
/interpolating group, c.f. App.A./ makes us able to give a form for Lorentz
poles at t=o which is simpler, at least from a certain point of wiew, than
the previous one.

This alternative method for the expansion is based on the observation of
the former discussion that any two-particle state can be written as

Ipl SIXI? P2S2X2> = /4B Imis]/i' m2S2X2> = JI+ Imisi®i' m2s2*2? v>

We shall refer to the ket m2s 2X2; v> as "eldual velocity state"
The individual paricles of this state have the same velocity, determined
by the boost B*“. The states of this kind have total four-momentum
PO/1,0,0,v/, consequently, they can be expanded immediately using the IG
of "v-velocity" as subgroup of the homogeneous Borentz-group:

misix? ms2xe; v> ~ 1 f 611 6AY 6wl Is'W,joOlw, EN, v>
V Ip

Here the quantum number Wis defined as

w2 = p2 (1-v2) j (j+1) =p2(12-i (1-v2)

Now .we are able to write the expansion of the two-particle state in the



-1l n -

form:
joa _
IPiS1X1: P2S2Xe> % | <joal'y';0ljoaly;v> ppupey , (Af)]...jool"y";0;.. > .
joolp
1lpl1llyll
1L 6Mi 6A Xj-A wl

where <jQolu;O|j al'p'v>stands for the overlapping integral between the
states of SL/2,C/ representations with v=o and the actual v. In the t=o0
case it is the well-known E/2/AT/2/+->SU/l.,1/ function. Now the Lorentz-

pole part of the scattering amplitude can be written at t=o as follows!

/\0°
< T > pole I <jocl'u';0[joalu;l> T

ioa . . -
DI lp lly I <Jd1IJJ, ll]OOI u ,0>

It can be seen again that there is not any singularity in the pole-
contributions at t=o. For other values of t the form /3-2.2/ mu3t be
preferred because of the presence of the fixed 1 p values.

4. Discussion.

In this paper we have given an expansion of the scattering amplitude in
terms of the borentz-group, without any restriction for the external
masses and for the invariant variables s,t. The expansion was made
possible by introducing the P+ and P~ groups and appropriate basis vectors,
and by the supposition [t, = 0. We suggest on the basis of eq.
/3-2.2/. that in our formalism the daughter trajectories are not parallel,
although, for the time being we have not verified it-. A nice feature of
the angles in eq. /3-1.9-10/ that they have singularity only at thresholds
and pseudothresholds, in opposition to the "old" formalism. The factoriza-
bility of residua and that the amplitude in the form /3-1.14/ met the
kinematical constraints need further investigations. We have not
introduced the signature factor into eq. 3-1.14-« To do it, we should

have followed the well-known way. [22]

At last we should like to enlighten why we have introduced the IG. To find
the overlap function <+|-> we needed the expansion of the "equal
velocity" two-particle state in terms of its little group. At that point
where the group structure changes much care should be administered to get
faithful representation, i.e. to avoid singularity in the representation
functions. Appendix A is essentially the description of this method both
for unitary and nonunitary representations. In the unitary case the
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dimension of the representations changes, this altering j value has no
physical meaning in our treatment. Had not we worked this way, a
singularity would have developed in <+|-> at t=o.

Acknowledgement.

The authors are indebted to Drs. A Frenkel, G. Gydrgyi, A. SebeBtyén
and P. burényi for valuable discussions.

Appendix A
1. The interpolating group.

It was proved in the former paragraphs that when investigating the
scattering amplitude it is extremely useful to work with other little
groups, that is with other subgroups of the homogeneous Lorentz-group,
than the usual rotation group. Now we give a detailed account for these
"unusual" subgroups and representations of the Lorentz-group, parametrized
making use of them.

As it is well-known, the generators of any little group can be found if
the operators

wp = ’é euvpK Mvp PK /A1l/

are taken on states having the special four-momentum which we want to
concern ourselves with. Specially, we want p to be:

P=P0/1,0,0,V/, IA2]
where pQ>o0 fixed, and o<v<<=°,

After dividing by pQ we get the three independent operators /since P W=o/

sIO) = Mk + vN2, s2(v) = M2 - VN1, s3(v) —MB IA3/

They can be used for generating the little group. Their commutation
relations read:

[sI" s21 = i(l-v2)s3, [siL, s3] = -is2, [s2, s3] = isl /A4/



-l is obvious from eqs. /Aj5/,/A4/ that Sj-s form subalgebra of the Lorentz-
algebra. At the points v=o0, 1 and /2 we have the well-known SU/2/, E/2/ T/2/
and SU/1,1/ algebras, and for different values of v the little groups turn
smoothly into one another. We shall call the group generated by - s
interpolating group /10/, because it "interpolates" between the timelike,
lightlike and spacelike little groups.

The general form for the group-elements is:

G = exp -i

3
|
i=

a s.(v)
1 1
The ranges of the parameters will be discussed later. It is easy to show

that the group can be parametrized in the Eulerian way, as it is usual
for the special cases v=o0,l,/2:

-i<>s3(v)  -10s»(y) —b's~(v)
G=c¢e e e J /AS5/

Namely, after simple calculations for v <1 we get:

-iEa-rSr -its3(v) ~ius2(v) -iys3(v) +iUS2(v) its3(v)

e e e e e e [A6/
where
1/2
t = arctga2/u” Y = (l-v2)(a2+a2) + a2
1 1/2
u arctga3 (1-v2)(a2+a?2)] [AT]
A'-v2

Now the composition rule is necessary for writing the elements /A6/ into

the compact form /A5/. It will be clear from the following that this rule
is the same as the one for the rotation group. In the case v> 1 the calcula-
tions can be carried out similarly.

2. The representations of the S~(v) algebra.

Before examining the representations of the 1G, we discuss the hermitian
representations of the Lie-algebra of the generators (v) It will be a
useful guide to get the representations of the IG. First we suppose
o£v£El and take the well-known Lie-algebra of SU/2/:



Next, we subject the J’s to a transformation:

A9/

here X = /l-v2 . The algebra of the operators Jj is the same as that of the
£>}fv)'8. Being the transformation /A9/ real and nonsingular except the point
A=0, we conclude that the algebra of S~(v)’s for o<v <1 has representa-
tions of the same kind as it has at v=0. Namely, all the hermitian
irreducible representations are finite dimensional. The linear space, on
which the representation is based, can be spanned by the eigenstates of

the operator as basis system:

s3(v) = |v; jm> =m |v; jm> /AL10/

where mis integer or half-integer. The different irreducible representa-
tions have different maximal weight, j=max/m/. We write also v as index
for the basis vectors, denoting the actual value of v for which we want to
represent the algebra of S| s. The eigenvalue of the Casimir operator
s2(v)+s2(v) + (lI-v2) s2(v) , a3 usual, can be used as characteristic
quantum number for irreducible representations:

5.2 + s—2 + (1—v2)1' v, jm> = (1-v2) j @G+1) Iv; jm> ATl

Writing like this the eigenvalue of the Casimir-operator, we lay stress
on the connection of the Sj(v) algebra with the one at v=o0. It is obvious
from the commutation relations that the operators s+(v) = SAv) - iS2(v)
are the raising and lowerirg; ones. The matrix form of the S”~(v)' s in the
v, jm> basis is:

2 r
<v;jmIS.lv,jm'> = i N1-v- /iG+D-m(m+1) Snm+l + /j +1) -m(m-1) émm 1

<viimis2jv,im'> - -i "V e cm@mel) mm 1 - i+ 1) -m@me) 67, M

<v,jm|s3]|v,jm'> = mémm, IA12/
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Now we turn to the case v=Il. It is highly an exceptional point being the
algebra /A4/ the not serai-simple E/2 AT/2/ algebra. This break in the
structure of the Lie-algebra is strongly correlated with the fact, that
the transformation / A9/ turns to be singular. Although the commutation

relations for the J°'s are formally the same as those for the S”(l)s,
we cannot get the representations of the”S .(lI) algebra identifying them
with those of the J°'s , that is to 3ay, writing simply v=I in formulae

/A12/. This phenomenon i3 called contraction? in particular we have seen

the E/2/AT/2/ algebra to be the contraction of the SU/2/ algebra. The
problem arising from the fact of contraction is that the simple limit at

v=Il gives unfaithful representations of the "contracted" algebra being not
zero operator only J°”, the representative of the subalgebra with respect

to which the SU/2/ algebra was contracted, For achieving faithful representa-
tions a standard method is to choose a divergent sequence of j’'s, too,

when going to v=l. Namely, taken

j p/ll-v2 or /A13/

where pis a positive number and [c] denotes the integer part of number c,
we get the matrices:

lim <v;jmlIS,lv;jm'> 2 p AM'm-1 + Am'm+1n

v+l

j>m

lim <v;jmIS9|v;jm'> ' . lim <v,jm|s3|v; jm'> = m6
v+ 5 2 P ("m'm+1 Am'm-I) v+

] =00 J =00

These matrices are hermitian, commute like the elements of the
E/2/NT/2/ Lie-algebra. Consequently, we reached the result: the S..(I)
algebra is represented by hermitian operators on an infinite dimensional
linear space spanned by |pm> basis vectors. For every value of p we
have two kinds of representations depending on whether the eigenvalues of
are integer or halfinteger. These representations are irreducible for
anyzpositive number. The Casimir-operator sl2(l)+s§(l) has the eigenvalue
p  when acting ont these basis vectors. An alternative definition for
the eigenvalue of the Casismir-operator instead of /AIll/ is:

[s2(v) + S2(v) + (lI-v2) s2(v)| Iv;km> = |k2 - i(l-v2)| |v;km> [A15/
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We changed here the index j in the basis vectors, too. The connection
between j and kK can be written as follows:

jo= -\ + —2 k IA16/
[1-v
The index k has its advantage in becoming a continuouszone when going to
v=Il, being the distance of its possible values [1-v , and remains
finite not like j does, being its limit the actualp we want to roach at
v=I.

We do not repeat the discussion for the case v >1, we write only the two
main properties:

S3(v)|v;jm> = m|v;jm>

[[S2(v) - S2(v) + (v2-1) S2(V)] Iv,jm> = (v2-1)j (j+1) Iv;jm> IALT]

The possible values of j and m, the types of SIT/1,1/ representations are
well-known [14]. Attention must be paid again to the point v=I. Here we
get the E/2/NT/2/ algebra as the contraction of the SU/1,1/ algebra. The
way for getting faithful representations is the same as in the former cabe.
It is noteworthy that we cannot reach the same representation of
E/2/NT/2/ using different kinds of SU/1,1/ representations at the limiting
procedure. Namely, we can get the principal series of E/2/1T/2/ using that
one of SU/1,1/, but we cannot get any representation of E/2/NT/2/ from the
discrete series of SU/1,1/. Writing again not j but j=- yi- y*3~rk with
continuous real parameter k, we see K is the most convenient parameter for
distinguishing the irreducible representations.

,3. The unitary representations of the IG.

We have worked with the algebra rather than the finite group elements. Now
we apply the results for getting the unitary representations of the one-
parameter group elements:

u(0; v) = exp -i0S2(v)

It is certainly true, that the unitary representations can be created on
the linear spaces defined in the previous part. To do this we follow the
standard way described e.g. in [11]. That is, we seek the solution, regular
at A=o of the differential equation:
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4z, Actgd d | _X§ lmZLFm‘Z 0
,do do sin"G

Here and hence forth we use the notation : a = a/l-v2 = aX =alkK
In eq.A.18. d'f"|>n/, stands for the matrix element:

<v;km| exp -i0S2(v) |v; km'>

The equation /A18/ can be solved easily displacing singularities to 0,1
and @® in the variable z=cos0 when it c'-.sts hypergeometric form. The
solution for the case m>m’ can be wr'ytten as : /for the case m>m’ we
must simply change m and m’/

A 1y \ (m-m’)

I+cos0 1-COS0

F + mf m + KK ; m w+ 1; 1-COS0

/

HereY/k ,v:m,m’/ is a normalization factor defined to be 1 for m=m’.
Obviously, /A19/ gives the well-known SU/2/ functions for v=0 and the SU/1,1/
functions fbr v=/2 except for that our notation is j=1/2+k and j=1/2+ik,

/A19/

respectively. In the limit v=I it can be written:
gm “m Y- 5 m'-m+l; | /A20/
dm™ (O)V/2>F P -1 mm) ( b ! !
k+p

and from Hansen’s formula [21]

lim -b; «c; r Jc ! (2]
i e (c) Je_t (2/x)

we get again, that

lim d o §©) = dp 0) " iy .m&0)

v-*|

_*_p
Here Jn/x/ denotes Bessel-function of the first kind. This result means
that the solution /A19/ gives the E/2/NT/2/ functions, too. The normaliza-
tion factor jf/k,v;m,m’/ is determined from /A12/:
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We have not spoken about the ranges of the group parameters.

Remembering to the procedure which gave connection between the representa-
tions of Sj(v) s for various V’s and those of S”(0)’s or Sj (/2)’s, it is
evident that

al. if O<v <l -iricialime;-iriagiit

b/. if 11V -°° < 0oc < & -it £ «2 £ n

In terms of Euler-parametersi

al. if 0 <v <1 0 <0 < e , 0 1 D/ < 2ir

b/. if 1 £V 0 <0 <wm o< ,p' < 27

The properties of the SU/2/z SU/1,1/ and E/2/01 T/2/ functions are well-
known. Being the functions given by /A19/, in a very simple connection with
these special cases, it can be justified even directly, that the whole
group is covered when taking parameters from the ranges specified, and it
is covered only once.

The invariant measure for integration over the IG is:

du  —----—-- ij K sinG d0 o) &>
8rr
The normalization:
for Of v <1
for v > 1

This choice gives the usual measures in the SU/2/, SU/1,1/ and E/2/ T/2/
cases. The orthogonality relations are:

(p-0'®d") Dmi® O '0'«»') dwv 2j+1 m™Tm mm'

if o<v<4di, and



*B,®") oliv (®.9)X) d,v m K2
Ry, ( ) ( ) (oiery ™ mm

if v>1 and we deal with the principal series.

4. The IG as subgroup of the Lorentz-group. The representations on four-
vectors.

In the previous section we have discussed some of the properties of the
IG. Now we turn our attention to the Lorentz-group. As it is known, its

lile-algebra is spanned by the 6 generators M, commuting as:
[A21/
i =1,2,3
If we introduce
srv) =M +VN2 , S2(v) =M vNI S3 - M8 nzz2/

we get just the same “ie-algehra we examined previously. With the help of
eq. / A22/ we can write an IG element in the 4x4 representation:

exp (,-iaS") exp (-iRS2) exp(-iyS3) + S(a,B,y) =

K2 ty 2cosfSr Kv sinB cosy -KVv sinB siny -K2v (1-cosR)
Kv cosa sinf cosacosfcosy-sinasiny -cosacosBsiny-sinacosy -KcosasinB
KV sina sing sinacosfcosy-cosasiny -sinacosBsiny+cosacosy -KsinasinR
k2v (i-cosRB) K sinB cosy -K sinf siny K2 (cosl-v2]

This representation is analytic for v=I:
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¢ 5 R 0 52 1

R 1 0 - B

) ) \1 0

32 B 0 L -, IA23,al

In the previous section we have learned a method for getting faithful
representations after contraction. The representations were unitary there,
but their dimension altered with v. Here an other method is exhibited: we

do not make the dimension changed, but we always take non-unitary representa-
tions. L can be immediately seeen, that the matrices /A23/ do not change
the vector /1,0,0,v/.

The elementes of the “orentz-group are usually given in the Euler-
parametrized form:

SIBMA -iyNA  -iBMA -jelr 1Mt
T —e e e e e e IA24]

/INp or N, are a3 good as in this formula In some cases we prefer N#, in
other ones N”/. The question arises whether any other little group can be
used for Euler-parametrization instead of the rotation group or not. The

answer is affirmative. To see it you must take the normal form

A = expe- ct M, S.N.) - exp(- i ykGk)

where GM=M* and G™3=N* /i=1,2,3/. In the vector space G’s we perform a
non-singular transformation G’=UG, where

Comparing with eq. /A22/: G|=S*, As U is regular for any v, there
is a one-to-one correspondence between the elements exp(-ijG and
exp( -iy'G" . The way to get the Euler-parametrized form is similar in both

case. As a consequence we shall write the elements of the orthochronous
Lorentz-group in the form:



03 -10S?  -if.Nj -icS3 “iBS2 _:iyS3
e 0 e €

K . e e
0 <0,B < 7k2 if v <1
O < ¢,a,y < 2fr, O1 f < °
O<0,H<m if v > 1

Tb will nob be um3eloss to classify the orbits for A/ /Orbit is the set of
poirus Agq where q is a fixed four-vector and the parameters of A run
through all the possible values./

To achieve the classification we must solve the equation:

Av (¢",0,£,a,3,y) q

where P=/P0* psinw coBp , psinu BpNg , pcosm /is an optional
four-vector? According to the value of p there are three cases:

p2 >0 Po = /p2 cha' p = /p2 sha'

2

P =0 Po = P:ea

2 _ \ .

P <0 Po = /-p2 sha p —/-p2 cha /A26/

We choose q as qo/l,0,0,V/, Then the parameters a, 3 ,y are irrelevant.
Working with the four-dimensional representation we get: h- ",

p -v p cosio
chfE = + v

p— KV {ch£(l-co0s®©) + v2 cosG - 1} = sinw - ActgO cosm

/A27/

0 . . p
If V< 1/p >0/, there is no problem with eq. /A27/. For v>1/p <o/ we
have to allow both Q>0 and gqQ< o to cover thé whole orbit. In a similar
way we can find the Av transformation which connects two fixed four -
vectors g*=m-"/chn 0,0,shn /, g”m~/chn 0,0,-shn / with any p-~p2Pair

satisfying /q-*-gq~/*- [Pp+pp/2* Our notation is now v= (ul+42) @l+qg2)o’
That is, we are looking for transformation with the property:
Pr=Ar g*> P2 =Av/"2* sketcil way of the calculation only:

first from the equation P~A+Pp~v [/ 3p+I12// we as in eq. /A27/.
Then



Ayl(®'0'i)(pl"P2) = s(a,B'Y)(ql-q2) [A27a/
gives a and. 3 Y remains unconstrained.

5. The function <jookm; v|jo ak'm';v'>

As is well-known, to label the irreducible representations of the horentz-
group one needs four quantum numbers. Besides the eigenvalues of the
Casimirians I\/f-NZ, MN we can choose those of the Casimir-operato-r of a
subgroup and M* Namely, we can choose as subgroup the IG, and the basis
vectors can be labelled as |jookm;v> In the following we find the quantity

<joakm;v| joak'm';v'> = <kv|k'v,>

We apply the method described by Delbourgo et al. [20]. The basic equation
is

-HN ~ixAJA

-iXBIB -in(Nr M2) -iaN3
€ e € €

e A28/

Here cfg, Jg are the S2(v) generators with ¥Ya, Vg, respectively.

In some cases xAtakes all its possible values butxgcover only a part of its
domain of definition or vice versa. In these cases an additional factor
exp -item2 is needed. In the 2x2 representation eq. /A28/ reads as

J 12 o sx 1VA . ‘A 1 VB XB al? al
cosxalz TYT sin y  ©0S l+vB SIn 2 ¢ = ne
-?/2 1+VA . XA 1+VB . xb -a/
o e TYT sin 2~  ©08 1“V_ sin 2 ©0S o e



hence

1+v

1+VA 1+VB 1+VA | B .
tg sin XA Ay SIN g
1 VA X- VB B
1-VE ,-5/2 ‘A XB 1 VA 5/2 [ Xf _ .a
1+v, © cos sm l+v7 6 sin 7 COS =€ N 1.y (1+VB cosxB)

IA30/

As it can be seen, the aforementioned problem arises in eq. /A30/ if either

Yn or vR or both are bigger than >1 . Adding exp/ -iirM2 | r *h*s*
we get
1+v
A o 1_VA - @ I+vB
A 1-v, '9 rAr; sinxa LT, sinxB
/A31/

With the same trick as in ref. 20 we get:

dkymk '™ - N 1 dxB dmj (xb) dmjVv (xa) exP *fc"1) IA3 2]

We do not go intro more details, they can be extracted from ref. [20]. W
note, that in the case or/and Vg bigger than 1I,d Do0 splits into two

irreducible representations according to eq. /A30/or eq. /A31/.

Appendix B. Generalized partial wave analysis.

In this’section we compute the <s, jockm, w, ZA p» p2 X* X2 > matrix
element. We do it in several steps, defining successively the following
functions /P=p-~+P2» Q=Pi~p2/ :

<P WW3 X2| P Q xx x2> , <P WW8 ZAl P w w3 xL x2>

<s, jQa km, W ZA| P WW8 ZA>

a.l <P WWB \1\21P QX X>

This matrix element is nothing else what appears at the partial wave
analysis in terms of the little group of P. W and are the eigenvalues
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of the little group Casimirian and a diagonalized generator, respectively.
The PWA is elaborated in detail e.g. in [17] for SU/2/ and in [11] for all
the other case, for E/2/nT in [19] also.

All the IlpgXjA2> vector can be obtained from a standard one |POXA"2>
with the help of a little-group transformation Rw:

IPQX1X2> = Rw |p8x1X2> /B.1/

8can be chosen e.g. 8= Q =o0. The representations of the little group
X
form a full system: y

WoiIf}

I D’; (0,0,0) D* (p,0rdp) v 6 (b-d') 6 (p-p’) 6 (0-07) Is.2]

If the group is not compact £ means integration and summation as well
w

over all the unitary representations. With eq./B.2./ the following

operator-equality could be proved:

H(H.0,0)= 1\ dG($100K) DT (9,0,6) D (.0\¢") R (10 >)

wot
/B.3/

where <3c(,0,h) is the group measure. Let’s define

[P N aBnl>2> - dG D’ (Rw) - 1/ilSs 2 2y /B'4"

J A ("s,ml,m2]

here =s.
We see at once that the integration over & can be performed and this
fives relation between R,X1X2 .So R is "superfluous" in the ket
PWaBX~X2 > . This is the consequence of the fact that fo fix the
direction of Q in lpgX-, X2 > two angles are enough..This way, we

omit R on the lhs. of eq.B.4. Inserting eq.B.4. and eq.B.3. into eq.B.l.,
we get:

/s

N4 6B, F(x1x2) IPAMBXI X2 Dw” R (*'8) /B.5/

I (2wWH+1)
wwh

f(xix2) means either X~-X2 or X +X2 depending on the group
structure.



b./ <p ww3 \1 >2| PW w3 £/

This discussed in sect. 2., here we only repeat the results

SiXis Xo

<XIX2 [iA> = | Als, /B.6/

I
S
c./

The method is similar to that one used in a./. AIll the |pQX1X2>
states can be obtained from a Eixed one |P8x}xz> o gy homogeneous
Lorentz transformation, where P=qo/1,0,0, v/ md Qx=Qy=0, as we have

discussed it in sect.3«lI»s

S
alPQx”, soki DRpg 9X'X2 (12 /8w ux 1B.7/

The ~ Lorentz transformation is0 Euler-parametrized in terms of the

S (v)group, the little group of JP vector; the k quantum number in

| j 0akm> is the eigenvalue of the Casimirian of the little group, c.f.
Appendix A The analogue of eq.B.3. here is

30

' 30
s j ~okmk'm’ dA Dymk: m (/1) Dk rme (JT7) A /B.8/
0

Here again £ could mean integration, e.g. over a t
Applying the resfllts of a./, we can write

P8x1x2> | 2\W+1 4.£-||t?4 w X' X1V 1B.9/
w

As the Casimirians of the ijorentz group do not commute with Wb,
/the eigenvalue of that is X?/, in eq.B.9. it is necessary to perform
the eq.B.6. type diagonalization. Since

dA Dkuk.'u'(A) A 19 wx SA> = 83w0y . p jQaku, W £1>  /B.10/

we can write at last:
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°jrnWA dX'X1 dA'x2

I
%&g:%ln

, . 5" /s
Th |A1X2> <AE A" |ENT> (j* - 02)

/B.11/
Al/4

Appendix.. C. Evaluation of the overlap function

s, jQ@jm, WF E+/H1 T, I0ply, W, E A >

We shall

use the shorthand notation
question.

<+|-> for the matrix element in

<H-> = | RfH A5y ayhp <FIP1XL P2X2> <PIXL P2X21 > 6 (p+2~s) 6 (p“2"s)

I d3Pl d3p2

<joajm| jQajvm> <s,joojvm, W+, [IAIp~ P2A2>
J Plo p2o
<P1X1 P2X2 IT' loplvl W' Z~A > <]-oplyp llopllJ> 6 6
/C.1/

where P=P1+P2, p0=Pi0-p20, £~ = Pp+ P2« Jvand \ are the
eigenvalue of the Casimirian of the little group of P+ and P~,
respectively. The quantity <j|jv> , <1 |I> is known from eq. A.32*
Inserting eq, B.ll. into eq.C.l. and performing the substitution
we can writes

/
<Hl > - A1/4(5XA1/4/(,(), dA D&'-v (jo- °2(1o - p2

Dj°mW+A+ h +) Dj (N*) <1V|1> i (p2-s) T (p“2-T)

{ -<tVuinj> iAW 4?2x- 10 «XJA4prrxry
(I

1C.21

Here the parameters of A and Oo° ©2

depend on the parameters of A
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2 . .
We need eqg.C.2. only at T =/m™m2/ . The [A(t) factor in the nominator
seems to give a zero here, but a similar factor in the scattering amplitude

/that appears in <717, 7», p-~-0, p,=0|...1Qpljj...> c.f. eq. J.1.14./ just
cancels it out, so we need not bother ourselves for that. At T =/m™+ mo/”
v*=|, hence <1 |I> ~ 1what makes eq.C.2. simpler.

To find out the explicit dependence between the parameters

of JH and n we use eqs. A 27, A.27/a with
px= /" (mp 0 ,) p2= 1" (-m2, 0)"

2
the n parameter of the fixed g" 2 vectors is s=m"%m,j'-2m’\m20h2n
To get 0" and ©2 , we have to write

+ —+aS3 -i6S2 -iyS® ~i5N* -i0S2 -i<P>S
n =e e e e e e

13 e'iaﬂ'\él’ . 33 e'ia'z{\'s’ e-iagl\g_ e—ia,%,

in the form e

We do not go into its detail here.
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