
/ к  д о У 5 2 S

KFKI  

6 /1969

THEORY OF ELECTRON-ELECTRON INTERACTION 

AND SUPERCONDUCTIVITY IN DILUTE MAGNETIC ALLOYS 

ABOVE THE KONDO TEMPERATURE

3. Sólyom and Á . Zawadowski

HUNGARIAN ACADEMY OF SCIENCES 
CENTRAL RESEARCH INSTITUTE FOR PHYSICS

B U D A P E S T





THEORY OF ELECTRON-ELECTRON INTERACTION AND SUPERCONDUCTIVITY 
IN DILUTE MAGNETIC ALLOYS ABOVE THE KONDO TEMPERATURE

J. Sólyom
Central Research Institute for Physics, Budape st, Hungary

A, Zawadowski
Laue-Langevin Institut, Garching, Germany+

and
Central Research Institute for Physics, Budapest, Hungary**

Summary

The effective electron-electron interaction resulting from the 
virtual polarization of the impurity spin is investigated. Abriko'sov's 
pseudofermion representation of spin operators has been applied. It is 
pointed , out that the effective electron-electron interaction consists; 
of two parts: 1, elastic sf^cttering 2, inelastic scattering. The second 
part shows a singularity of new type as (w-to')”1 , where ш - ш' is 
the energy transfer between the two electrons. Both parts have been cal
culated in logarithmic approximation. In ;spite of the fact that the second 
one is found to be lower by one order of the typical logarithmic Kondo 
terms than the first one, both terms can be of the same order of magnitude. 
Studying the superconducting transition temperature Abrikosov and 
Gor’kov’s calculation is extended to include these interactions in any 
order of perturbation theory keeping the leading logarithmic terms. Our 
results are restricted to the temperature region well above the Kondo 
temperature. Considering the decrease of the superconducting transition 
temperature due to the magnetic impurities in the antiferromagnetic case 
the effect of the elastic scattering can be essentially reduced by the 
Inelastic one.

The main part of A.Z.’s contribution to the paper was carried out during 
a visit.
Permanent adress





I , Introduction

In the recent years there have been numerous attempts to in
vestigate the influence of magnetic impurities on the critical temper
ature of superconducting alloys. In the majority of cases, except for 
some dubious cases, the experimental situation is that the transition
metal impurities depress the superconducting transition temperature T .c
The first theoretical work is due to Abrikosov and Gor’koy [1]. Using a
ladder approximation and the Born approximation for the effective electron-
-electron interaction they have determined the decrease of T . After the
discovery of the Kondo anomaly [2] and the Abrikosov-Suhl resonance [3,4]
in the conduction electron - magnetic impurity scattering, Griffin [5]
discussed the effect of this resonance on T .c

Investigating the electron-electron interaction induced by the 
virtual polarization of the magnetic impurity spin, we have shown [6,71 
that this interaction consist of two parts. The first one plays role in 
the elastic scattering probesses, while the second one in the inelastic 
processes. The result in second and third order [6] is

v (2) . 
aßyö u,to / 1 .1/

and

,7(3) (V 0 x (to, a) =aßyö 4 J V .. + V.(3\  .. (U),w0elastic v inelastic v ' a o. r ay ß 5

where

/1.2/

V (3)
elastic 6м,ш' /1.3/

V (3)inelastic Csgw sgw') /1.4/

The diagram representation of the effective electron-electron interaction 
is given in Fig. 1. The results (l,.l-4) correspond to the diagrams of 
second and third order in Fig.2.a-c., where the dotted lines stand for the 
spin pseudofermions proposed by Abrikosov [3] . As we have pointed out the
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inelastic processes,show a new type of singularity (w - ш')-1 which can
be seen from eq. (1.4), In the case of antiferromagnetic s-d coupling the
inelastic interaction (1.4) is an attractive one. The elastic part of the
interaction, given by eq.s (l.l) and 1.5) is always repulsive. In Griffin’B
calculation [5] of T only the elastic scattering has been taken into ac-»c
count. We have called attention to the possible importance of this scat
tering in the change of the transition temperature T and calculated this 
change up to third order [6]. We. have concluded that the inelastic part 
of this interaction can essentially reduce the effect of the inelastic 
scat bering.

Recently Zuckermann [8] has given a general expression for the 
superconducting transition temperature in the limit of low impurity con
centration. In Green function formulation he has used Nagaoka’s decoupling 
scheme [9,10] for treating the Kondo effect and Hamann’s solution [11] is 
applied so his result is thought to be valid for whole region of temper
ature. He compared his results with our previous one and concluded that 
the inelastic part of the effective electron-electron interaction is in
volved, too. In the second and third order, however there are numerical 
differencies by a factor 2 and 4 between hie and our earlier calculation 
considering the effect of the elastic and inelastic electron-electron 
interaction, respectively. These differencies might be due to some algebra-cic mistakes or the decoupling procedure applied to the Green functions, 
where it is not clear which processes have been taken into account.

Making use of scattering theory on the base of generalized Suhl’s 
equations [4] Maki and Fowler [12] and generalizing Maleyev’s method [15] 
Ginsburg [14] have treated the problem. With the exception of Maki’s very 
recent result [15] for the gappless superconductivity these results do 
not contain the effect of the inelastic electron-electron scattering pro
cesses.

There are two aims of the present paper: 1, to reinvestigate our 
previous results [7] for the effectiv electron-election interaction, where 
some analytical properties of the electron -pseudofermion vertex function 
have been overlooked which results in a numerical mistake by a factor two, 
2, to calculate the change in Tc using an extension of Abrikosov and 
Gor’kov’s method [1]. The expressions of self-energy and vertex function 
derived by Abrikosov [3] will be used, therefore our results are valid 
only above the Kondo temperature Tg (T >> T^). In this limit the obtained 
formula agrees with the one given by Zuckermann [8] except for the factors 
mentioned above.
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In Sec. II. the formalism used in the paper is presented and it is 
shown that the effective electron-electron interaction must be calculated. 
Sec. III. contains this calculation. Both the elastic and inelastic scat
terings are investigated. In each case only the highest order logarithmic 
terms are collected. In Sec. IV. these expressions are substituted into 
the formulas given in Sec. III. to determine the change in T . In Sec. V.О
this result is discussed and compared with Zuckermann’s results [8] and a 
few speculations are given for the case Tc << T̂ ., The Appendices contain 
the investigation of the vertex function.

II. The formulation of the problem

The considered system is a superconductor containing magnetic 
impurities with spin S at the positions Ёд. The Hamiltonian of this 
system is given by

H + H j +sd HBCS /2.1/

where

, V I d3k , +*o /■ J >,3 r’k aka J (2тг) ka aka

sd J
N

г Г d3k [ d3k'
n J / Отт ̂   ̂ /'У-пЛ 3

-i(k-k ') Rn + -
n ( 2 тг )J J (2 it )  '
a,a'

П aka aaa’ ak'a'Sn

and

BCS = — j g I d3k' Г d3k' + +_
J ak+ a-k+ a-k' 1 ak +(2тг у J (2ir)

/2.2/

/2.3/

/2.4/

H is the Hamiltonian of a free electron gas, where aja and ara are 
creation and annihilation operators for a conduction electron’of momentum 
k, energy and spina . Hgd describes the s-d exchange interac
tion between the conduction electrons and impurity spins with.the coupling 
constant J. ?aa, is the Pauli matrix and Sn is the impurity spin 
operator for which a pseudofermion representation [5] will be used, 
contain? the effective attractive electron-electron interaction via 
phonons.

As it was mentioned in the Introduction we will closely follow the 
formalism given by Abrikosov and Gorkov [1] extending the calculation to 
the higher order processes. After having linearized the Gorkov equations
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for Green functions ^ and У  in the vicinity of the transition temper
ature, they obtained (see eq. 11 of Ref. [1])

Aaß = |g| T I I Ч ш,у a <5'f> A*yX d3s /2-5/

where is the Green function of a normal metal in.the presence of magnet
ic impurities, Л^(г) is the space dependent gap, T is the tempera
ture and w = (2n+l) тгт in the thermodynamic Green function technique
[16] used throughout this paper. The bar denotes an averaging over the 
random distribution of the magnetic impurities.

The transition temperature T is determined as the highest 
temperature at which eq. (2.5) has a nonvanishing solution. Abrikosov and 
Gorkov [1] have elaborated a special diagram technique to average over the 
positions of the impurities. A quantity к has been introduc-
ed by the definition

1
V

ya (sfr) ^yX ^L,Xß (s,r') =

( 2 tt)
where

“ 6 J Ка,,а6 ()<1,к2) exp {ik^s-r) + ik2 (s-rO } d3k]L d3k. /2.6/

Jaß
О 1\ 
■1 Ol

and A* A*
Aaß = A 9 aß

aß

Kw,aß^pl,p2^ can 336 represented by the sum of the^diagrams in 
Fig« 5.« I where the lines correspond to the Green function ^(k) of the 
normal metal in the presence of impurities averaged over their positions and 
the shaded square corresponds to the irreducible part of the effective 
electron-electron interaction mediated by the magnetic impurities. ^ щ(к) 
has the form

Ч о о  - iwn-L - C / 2.7/

П -  . N i ( ä f  e(s+i) ,pt 1 +
2J p _ ■___о ln DN 1

-2
/2.8 /

К 1where С = ^  " eF and nj_ = 1 + and т1 is the electronic
life time due to the s~d scattering. According to Abrikosov’s [3] calcula
tion
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p mwhere ish is the number of impurities in unit volume, p = — is the
0 2tt̂

density of states per atom for one spin orientation and s is the value of 
the localized spine and D is the cut-off energy. This form of the life 
time is appropriate only well above the Kondo temperature T^. We will 
restrict our considerations to this temperature interval and to logarithmic 
approximation, therefore eq. (2.8) can be applied. We will see that if the 
superconducting transition temperature i$ of the same order of magnitude 
as the Kopdo temperature, a more precise expression of the life time is 
necessary.

The diagrammatic equation for кыаз given by Fig. 3* can be 
written analytically as

Кш,a$ (Pl'P2) = X  (Pi) X j P2) [Saß +

+ S o 1 T h  i + 52 " Pi ) d3Pi] 12.91

where vagxp stands for the shaded square. The momentum vari
ables are omitted because the.exchange coupling constant J in eq. (2.3) 
is independent of the momenta.

Our main task in the following is the calculation of the electron- 
-electron interaction due to the magnetic impurities.

The pseudofermion representation of spin operators proposed by 
Abrikosov [3] will be used. In this language the irreducible effective in
teraction V (w*,w') is represented by two solid lines connected by a 
closed loop of dotted lines. The crossing of two dotted line loops can be 
neglected as it has been pointed out by Abrikosov and Gorkov [1].

The lowest order diagram in V is of second order (see Fig.2.). 
The simplest way to take into account diagrams of higher order is to put 
the whole vertex instead of the bare one. This procedure leads to the 
diagram in Fig. A. The simplest diagrams obtained in this way are shown in 
Fig. 2. Another class of diagrams is illustrated in Fig. 5.a-c. In these 
diagrams the two solid lines are connected more than twice by the pseudo- 
fermion lines. It will be shown studying a few examples in Appendix I 
that these diagrams yield logarithmic contribution of lower power than the 
diagrams represented in Fig. 2., therefore their contribution will be neg
lected.
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III. The effective electron-electron interaction

As we have shown in Sec. II. the effective electron-electron in
teraction due to the virtual polarization of the impurity spin must be 
calculated in the special case, when the energies of the incoming electrons 
are ш and -ш respectively. Here we will deal with this interaction. The 
effect of hbcs has ^een taken into account in the deviation of eg..
(2.5) so in the present calculation only the influence of Hgd given 
by eg. (2.8) will be treated. The general irreducible vertex part for 
the eleötron-electron scattering which is to be calculated in the logarithm
ic approximation, is given in Fig. 4. Its analytical form is

ßA
Vaßyö О ' “ ') = - fs+T T I Гаеуп С1ш' lwlf iü)'' 1 <“ + Ш1 ~

Ш1

С1 +  Ш1 “ ignőe ("i w ' i (ш + Uj - ш') ? —iw', iWj)

where Г is the renormalized vertex of the s-d interaction and (lco)' 
is the pseudofermion propagator

The limit \ -+ °° must be taken to eliminate the contribution of the 
nonphysical states. After the analytic continuation iuĵ  z the sum
mation over the imaginary freguencies iw, = ттТ(2п+1) can be transformed 
to a contour integral around the poles in those regions where the con
tinuation is analytic. If one pole lies on a cut then it has to be treated 
separately.

Investigating the analytic properties of the continuation of the 
vertex function r(iw, ico{ ico£) and its spectral representa
tion Eliashberg [17] has proved that there are several cuts parallel to the 
real axis, where the imaginary part of one of the following guantities is 
zero s

a/ The freguencies of the incoming and outgoing lines 
iü), iü)jy iw' i (w + - со') = iw'

b/ the sum of the freguencies of the two incoming lines 
i (w + Шд) = i (u)' + 0)')

с/ the difference of the freguencies of an incoming and an out
going,line i(w - m') - i (ш" - сод) and i (as - u>') = i (со' - сод)
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We are interested in the cuts corresponding to the variable 
iu^ = z f which are situated on the horizontal lines

Imz — 0 , Imz - (ui' — w) , Imz = -ш , Imz = /3.3/

The cuts of the other vertex г (-iw, iCw+û -id'.) ;-ia>{itOj) are the 
same as determined by eq. (3*3). The cuts of the pseudofermion propagators 
occuring in eq. (3#l) are at the lines Imz = О and Imz = (ш ’ - u>) .

The sum in (3.1) can be transformed to integrals along these four 
cuts and still the contribution of the.points z = -io> , and z = iw' must 
be considered as it is shown in Fig. 6. The cuts Imz = 0 and Imz = (ш'-ш) 
will be called cuts of Bose type because they lie on lines Imz = 2n nT , 
while the cuts Imz = -w and Imz - w' will be called cuts of Fermi type. 
Denoting the contours around the cuts in the order given in (3• 3) by C-̂ ,
C2, Cj and respectively, we get
V 0 j. =aBy<5 4

евх 1 
28+1 jil с.I iff гаеуг) (iw'z? i«'» + z) ^(z)

• + z) Г„ . (-id), i(o)-a)')+z; -ia)'r z)

BAe T raeyn (id), -ito;2S+1
_ BAe . T Гaeyn (id), iw';2S+1

The integrals 1

J d z £ m -j dx [fO

Bn<$e

/3.4/

/3.5/
c . 3

where x=Rez and Imz is one of the four values given in (З.З).

In eq. (3.5) the Fermi distribution function, 'the veirtex function 
or the propagators may have cuts. If two cuts coincide, the following 
identity can.be used

Д {F (x) G (x)} = AF(x) G(x) + AG (x) F Cx) /3.6/

where
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ÄF(x ) = F(x + ie) - F(x ~ ie)

F(x) = i F(x + ie) + F(x - ie)
/3.7/

This formula can he generalized to arbitrary number of function with the 
result that in a product the cut of each factor must be taken multiplied 
by the average of the remaining part.

With the help of this transformation it is easy to show that the 
last two terms in eq, (3.4) will be cancelled by the contribution of these 
cuts of the Fermi distribution function. The contribution of this cut 
from the integral on is

2S+1 I 2tri l^F (x ~ iü) + ie) - np (x - im - ie)]
— 00

Гаеуп (iw'x-iüJ'’iü)' »“iw'+x) ̂ e(x-i(o) ̂  (x-iai') rgriőe ( -im,x-ia)' ;-id)' ,x-iw) 

Substituting the identity /3.8/

np (x + im + ie) - np (x + im - ie) = i ~  6(x) /3.9/

where 8~1/T and w is an odd frequency, into (3.8) the expression obtained
in this way cancels the second term in (3.4). Similarly the cut of the
distribution function on cancels the third term in eq. (3.4). This
means that in eq. (3*4) only the first term must be kept and only the cuts
of the vertex functions and the propagators must be taken into account.

•

We have shown [6] that the interaction in the Becond order given 
by (l.l) is purely elastic, in third and higher order the inelastic process
es contributes, too (see eq.s (1.2-4)). Their contributions contains lower 
power of the typical logarithmic term In , than that of the elastic 
processes. Although we will use a logarithmic approximation, also the 
inelastic scattering will be investigated. It will be shown that their 
contribution can be of the same order of magnitude as the corresponding 
term of the elastic scattering.
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A. Elastic part of the scattering

For the elastic scattering u> = w' , according to eq. (3.4) we
have

■V aßy6

= 2§TT j Í iff V z> Гаеуп<>'2'-1ш' 0  X . <z> X (z) * Г6пбе C"iw'z ? "iw'D-l Cj
where only the cuts of the vertex functions and the propagators must he 
considered. The second and third order contributions are given in (1.1-4). 
In the actual calculation it is easy to see that in logarithmic approxima
tion, i.e. when in each order of the perturbational calculation only the 
highest power of the typical logarithmic term In -yjy is kept, only the 
poles of the propagators must be considered. The contribution of the cut. 
of the vertex function is of lower order than the vertex function itself.
In other words this means that the imaginary part of.the vertex function 
contains lower power of in y-y- than the real part.

The propagators have double pole at z=A . Its contribution is
given by

e3A d г -
V a ß y ö 0 >  = " f s + I  d l  [nF (z) Гаеуп 0 , z ; i u > , Z) Г 6пбе z=A /3.11/

The derivative of Г with respect to z can be neglected in 
logarithmic approximation and after taking the limit A °° we get

V aßyö^“ -) = T 2S+1 Гаеул r gn ,$e X ;- i w ,\) /3.12/

According to Abrikosov’s calculation [3]

Г (iw, A; iu), A ) = Г Qio) (a S ) =аеуп 4 ' 4 ' ' ау cry
J J

' д ” D y - . ; - D- (“cT ■ r- 4 « Y  '3 -13'1+2 N P0 ln T^T 1+2 NpO 1П T

where in the last approximation it is supposed that |ш|^т , the thermal
smearing is taken into account and a new notation Г is introduced. This 
expression is valid well above the Kondo temperature T̂ -. Inserting eq. 
(3.I3) into (3.I2) we obtain

f -)2
V aßyö S <S+1) 7 ------------------ “ T T -  (°„y Sßfi) /3-14/

f1 + 2 Í po 1л TwT)
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where the identity

(»ay Ssn) (»ß« V )  " 3 3 (S+l) (2S+1> (»ay J6i) /3-15/

has been used.

It must he emphasized that eq. (3.14) is valid only in logarithmic 
approximation. In better approximation the vertex function must be replaced 
by a more precise form and its cuts must be taken into account, too.

B. Inelastic part of the scattering

From the third order calculations given by eq. (1.4) it is known 
that the inelastic contribution contains lower power of In -|-̂j than the 
elastic one. Nevertheless, the inelastic contributions can be of importance 
in the determination of the change in T . It is due to the fact that thisО
contribution /see eq. (1.4)/ has quite different structure exhibiting a 
new type of singularity (o' - w)“’1

In the present case ш f w' and the integrals in eq. (3.4) must 
be taken along the four horizontal lines. The vertices and the propagators 
may have cuts along the same line, but according to eq. (3.6) their contri
butions can be taken separately.

a/ First we investigate the contribution from the cuts of the 
vertex functions.

In the logarithmic approximation only the parquet diagrams are 
considered. The vertex can be separeted into three parts

Г = ro + Ai + Л2 /3.16/

ro=J/N (b'®) is the bare vertex, A^ and л2 are veitex parts which 
by cutting two parallel or antiparallel electron and pseudofermion lines 
fall into two parts. They are shown in Fig. 7.a. and b.

The cuts of Л-ĵ and Л2 are investigated in Appendix II. It 
is shown that the important cut of Лx wiiich gives the highest logarithmic 
contribution is along lmz=-w, where z is the analytical continuation of 
iü)l . Similarly in Л2 the important cut can be found along imz = w' . 

These contributions are calculated in Appendix III. and according to eq.s 
(A.III.3) and (A.III.4) they are for |x| < D
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ДЛ(х) = 2i lm ACx+ie) = 2nipQ Re Г(р, x+ ; x,AV 
laeyn laeyn aea'e'

(l - nF (x)) Re Г (x, A; O, x + A) /3.17/
a' e 'yn

and

АЛ(x) = 2i lm Л (x+ie) = -2тг ip Re Г (0,A;-x,x+A)
2aeyn 2aeyn ae'a'n

(l - np (x)) Re Г (-x,x+A;0,A) /3.18/
a'eye'

where x = z + im - A and x = z - im' - A, respectively.

First let us calculate the contribution of the vertex part . 
to,the effective interaction given by eq. (5.4). Considering eq.s (5.2), 
(3.4),.(5.5) and (5.7) and substituting the expression of given by
eq, (5.17) instead of the two vertex function one after the other, in 
eq, (5.4) one obtains

(Л.) BA
V o x  ( =aßyö 4 2S+1 2К  [7T1 J dx

n„ (x+A-iw) ДЛ. (x) — r— 7  T— - rQ . (2) +F 4 ' laeyn х-1ш' x-iw' Впбе

+ n_ (x+A-id)') Г (2х) ——т— г —F v ' qeyn x+ico x+i

2S+
8 А Г I е po J dx

x+id) u“lßn6e^X ĵАЛ.

_e(x+A)ß+i ( l  - n ( X ) )  .

(he Г , , (1) Re Г , , (I) ---- 1— г Г„ x (2) +[ aeae 4 a e yn x-id) х-iw Впбе

+ Г (2) --Í— Re Г. , , (1) Re Г , ,x (I) aeyn x+id) x+id) Bna e a e 6e J /3.19/

where for the sake of brevity the following, notations are introduced for 
the arguments
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(1) = (о, х+А; х, а) (1) = (х, А ; О, х+А)

(2) = (-iw, -iw' + х + A;-iw', - iw + х + А) /3.20/ 

2х = (iwf iw' + х + A; iw', iw + х + а )

The spin factors can be evaluated by using the first of the following two 
identities

ö . S ,) (o ,aa' ее ' 4 a'у W = S (S+l) 6 64 ' ay en ay Setî /3.21/

a f S , ) (a ,aa e ey 4 a y = s(s+i) 6 6 +4 ' ay en (°ay Sen^ /3.22/

and eq. (3.15)* The spin dependence of the vertex function can be given by 
the following representation

Г „ , = Г(о) 6 &ox + I^(ä SQJ  /3.23/aßyö ay ß6 V ay  66'  ' '

Similar representation holds for and Л2 , too.
It is easy to show that each term in eq. (3.19) can be written into the 
form

A 6a y  66 +B0ay u66 /3.24/

The spin factors of the two terms in (3.19) are very similar, be
cause one can be obtained from the other one by replacing a-<->6, е+-+П/ у«-*-б. 
As the final form (3.2A) shows this symmetry, the spin indices can be 
dropped for a time.

Furthermore, the symmetry relation

Г (iw-^, iw2; iw3 , iw^) = J Г (-iw^, ~iw2 ; ~iw3, -iw^) | X /3.25/

will be of importance, which is a consequence of the fact that in the 
thermodynamic Green function technique the energy variable iw is the only 
complex quantity. In our case Г (2) = (г(2х))Х .

In eq. (3,19) the expression between the curly brackets can be 
transformed as
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Ref Cl) Rer(l) ■̂ Ч—   т— у* Г (2) + — -4— г -4т~ Г (2Х):-1ш х-iw х+хш х+хш 4 '

= 2ReT(1) ReT(1) Re X “  1(0 X “” ICO г (2)

furthermore 

= 2Rer(l) Rer(T) .

Re Г(2) 2 2 x +ш 2 ,2
X  +0) СО — OJ

- 1шГ(2) 2 2 2, ,2X +0) х +ш
. х . (ш + ш') /3.26/

In logarithmic approximation the imaginary part of the vertex 
function can be neglected comparing to its real part, therefore only the 
first part of the expression (3.26) must be considered. As the vertex func
tion is a smooth logarithmic function on the energy scale iw ( or iw' ), 
we can apply the following approximation

2Ш 2 ^ sgtü lim ~~2~  ~2 = sgu) TTŐ (x) /3.27/x +0) e-4-o x +e
In this way, the first term in (3.26) can be written as

2тг аР-"шт ^sgw ” sg“') ReГ(1) Rer(l) ReT(2) 6(x) /3.28/

Inserting this result into eq. (3.19) and. in the case of small 
m and m' neglecting these variables according to logarithmic approxima

tion we get an expression between the curly bracket which is an even func
tion of the variable x. Therefore, np (x) can be replaced by 1/2, which 
arises.from the expression exp ( -ßx ) (1-Пу(х))=np(x). Considering (3.28) 
and (3.19) we set
(Л,)V t x (ш,ш') aßyö 4 ' 2S+1

1
ш-ш* (sgw - sgw') . /3.29/

• КеГаеа'е' ( 0 ' *;°, A ) Rel^, £ ̂  (о, X ;0, X ) Rergn6e (o ,A ;0, A)

According to (3.1З) and evaluating the spin factors by using the identities 
(3.21) and (3 .I5) we get

(Л.) S (S+l) 
3

1
ш-ш' (sgu) Оsgm') Г (а... аay ~ßö) /3.30/

.(лг)
This calculation can be repeated to obtain the contribution

V : f hue to the other vertex partaßyo
yielded as (3.30)

and the same result is



- 16 -

(л Л (aJ
V х = V /3.31/

The only (lifferenciee are that eq.s (5*18) and (3.22) must he used 
instead of eq.s (3.17) and (3.22) and the two changes in sign cancel each 
other.

The final expression of the effective interaction arising from the 
cuts in the analytical continuation of the vertex functions is

(A)
Va(3yő (w,Wf)

(A.) (A J 
V + V 2S (s+l) 1

TT f3 w-w' (sgw - sgw') /3.32/

Ъ/ Let us turn to the contribution of the cuts Corresponding to 
the Green function.

^  We have two cuts and C2 in Fig. 6. and the contribution.
V can.be written into a similkr form to eq. (3.19) making use of eq.s 
(3.4), (3.5), (3.7)
(ÍJ) BA r

Уаеу^Ш,Ш,) = 2S+T m  J dx nF(x+X) *

{Га£уп(3)Л^ (X) rßn6e(4) + /3.33/

+ 'аегЛ4*) TG7--1T« rw c  i 3X)}

where the arguments are

(З) = (iio, x+A; iw', i(.w-w') + x+a)

(3X ) = (-iw, 

(4 ) = (-iw,

x+A; -iw', -i(w-w') + x+a) 

i(w-w') + x+A; -iw', x+a)

(4X ) r (+iw, -i (w-w') + x+A; + iw', x+a)

From eq.s (3.2) and (3.7)

/3.34/

Д ̂  (x) = -2ttí 6 (x)
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and inserting this into eq. (3-34) we get

(<J) 1 1 /  , 4
Vaßy<5 } " “ 2S+1 iCai-io*) (j^eyn^ ГВпбе^4  ̂" Г аеуг/3*) ^пве^4*})

/3.36/
The spin factors of both terms can be calculated in a similar way 

as before. We get to the representation (3.24) ágain, which does not 
change due to the application of the operation a-<-+ß, y-*-+n . Applying
this operation to the second term of eq. (3.37)» using the identity (3.25) 
we obtain

v
в)

otßyö (“ »“ ') = -  öé2S+1 ю-oу lm Гг (з)а еул  4 ' ßpöe (4) х=о

Гоеу„(з) КеГВп«е(4) 4 Е е Г а Е у / 3 > lmreníe(4>)
/3.37/

х=о
Supposing that io and to' are small, we can take the limit 

<*> + 0 and <o' 0 in the vertex: functions. The limit of the real part
of the vertex is given by eq. (3.31). Making use of the representation 
(3.2.3) for Im Г and calculating the spin factors according to (3.15) we 
obtain

V(<j)otßyö k ' " ?  ■ -  s i r  4 ( 3"  r fo) Ö )  + Ы  Г (0) ( 4) ) х, о . (? ay oeJ)

/3.38/where the limit of Im Г must be determined. There are cuts in the
analytical continuations of the vertex parts and A, These cuts1 ----- "2
are on the real axis in the variables i(oo+z) and i(z-oo') » where the 
notations can be seen in Fig. 7.a.-b, and ioô  -+ z .- According to (3.17), 
(3.18) and (3.34)

1тГ ̂  \з) -lm Л^  (p+iesgto) | + lmA^ (o-iesgto')

and

«fa)
x=o ' x=o x=o -HPqCsgoj -  sgoo r) j,.

lmr (ĉ4 ) - lmA^ (o-iesgo)')
x=o lmA^ (o+iesgu)'^x=o x=o = -Trpo Csgu) - sgoo') Г"

/ 3.39/where in the last steps (3.21), (3.22) and (3.13) are used. Inserting’this 
results into (З.З8) and comparing with the eq. (3.32) we can find that we 
obtain just the same contribution as before

(<*)V (ш,ш') = V (л)
otßyö 4W' W /  votßyö (ш,ш') /3.40/

J
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с/ The Inelastic effective electron-electron interaction is ac
cording to eq.s (3.4-0) and (3.32)

vaßy 6 ( W, W') = 4S (s+l)
со— to ( s g io  -  s g w ' )  Г ^  ( a ay 36-) /3 .41 /

We have seen that the contribution of the cuts of the vertex func
tions and the propagators give the same result. In our previous paper [71 
we did not realize the importancé of the cuts of the vertex functions and 
only the contribution from the propagators was taken* Therefore the result 
obtained there for the inelastic part must be completed by a factor 2,

Inserting instead of Г the bare vertex J/N into eq. (3.4-1) we 
get back our previous result [б] (1.4-) obtained in the third order of the 
perturbation theory.

Finally, it can be mentioned that all of: the analytical properties 
can be taken into account in a formal way, if the contribution of the 
diagram in Fig. 8. is calculated with three vertices and only these poles 
are considered which arise from the denominators of the Green functions 
corresponding to the lines in Fig. 8.

IY. Change in the superconducting transition temperature

After having determined the effective electron-electron interac
tion due to the magnetic impurities, the next step is to calculate the
change in T . Starting from the formulas given by (2.5) and (2.6) the c
superconducting transition temperature can be obtained from the solution 
of

“ l®l Tc I T T Vаз ( 2 tt )

= g T У —C L (- чб  ш ^2тг J

With the supposition

After some algebraic 
following expression

Vaß(Pl' P2) e
- i ( p 1+p2) ( f - s )  3 3

d p1 d p, d s

i,aß Cpl' "Pi) dJpl /4 .1 /

К , „ = К . g „to aß 10 aaß we get

1 = I g IT
J- l К (Pi - p) ^

2 7 Í 0)
/ 4 . 2 /

manipulation the change in T can be given by thec
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ln /4.3/

where

к = 4— 1к ( р. - р ")ш . 2тг J ш v ̂1 г ; /4.4/

Making use of eq.s (2.7) and (2.9) and the identity

we obtain

/4.5/

V (ш,ии) denotes the interaction without the spin factors and is
the number of impurities. In the small concentration limit this equation 
can be solved by iteration. In the present case the first step of the 
iteration coincides with the logarithmic approximation. Inserting the 
elastic and inelastic pai’t of the interaction from eq.s (3.14) and (3.41) 
into (4.5) and keeping only the terms linear in the impurity concentration 
at the expansion of гц finally we get

where on the right hard side the second and third term corresponds to the 
elastic and inelastic scattering, respectively. The notation Г is given 
by eq. (3.13). Considering the identity [8]

- 8TT N. S (s + l) p Г T У ---r (sgoi - sgw ) -=-1— уi 4 y о L, ш-ü) v  ̂ 3 / 2 or. 0) 1 /4.6/

(ag“n - s^ k )  2ТГТ ■ 2T7T ’ О  +. ' n 1 1 n ' /4.7/

where

У (2n + l) = y ( n + l ) - 1 i ( l / 2 <) /4.8/

and Ч' (x) is the digamma function, we get for К ш
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Кш. 4ír N. s(s+l) p í 4 о ( 1 + 2po Г Y (2n + /4.9/

Inserting eq. (4.9) into (4.3) we get the final formula for T

ln
2 J pUU _ -L ' U

T 2 C T Nc n=o (2n+l)^
1 + --

N

Jp
4 + 8 V ( 2n + 1 ) N 4 '

. , 2JpO . D - 4
1 N 1П Tc J

О . D ln —  
Tr

- 2

/4.10/

The first term in the curly brackets arises from the elastic scattering, 
while the other one from the inelastic scattering. The expression for the 
change in T is essentially that obtained by Zuckermann [8] if theC T) ТЛ
approximation log Y T  ■ ^ log ---is applied. This approxima-

c c
tion is correct in the framework of logarithmic.approximation if n is ap
small integer. Due to the factor (2n+l)“ in eq. (4.10) only the small 
values of n play important role in the sum. There are some differences in 
the numerical factors. In Zuckermann*s notation the elementary vertex is

instead of ^ and comparing the results we must take this difference
into account. So we obtain that in our calculation the elastic contribution 
is 2 times, the inelastic contribution 4 times larger than those in 
Zuckermann’s paper. The reason of this difference is not clear, it might 
be the result of the decoupling procedure used in Kef. 8. or some algebraic 
mistake. In the second and third order eq. (4.10) reduces to the result of 
the perturbational calculation [6] and the contribution of the elastic 
scattering is in agreement with Griffin’s result [5]•

V. Conclusion

Investigating the effective electron-electron interaction due to 
the virtual excitation of quasiparticles e.g. phonons, in the second order 
of the perturbation theory the interaction is shown to be attractive, if 
the energy of the quasi-particle hw0 >> | ёк - ek+|<j , where f_k ,
and . ek+K are the energies of the initial and final electron states.
In the case of magnetic impurities without external magnetic field the 
excitation energy is zero and the interaction is repulsive in the second 
order. In higher orders, however, a new term appears which depending on the 
sign of the s-d interaction gives attraction or repulsion between the 
elections.



Our result in eq. (4.10) is valid only above the Kondo temperature, 
as we have used the vertex function proposed by Abrikosov [3]. For other 
temperatures the vertex function given by eq. (3.13) must be replaced by an 
expression which is valid not only in the logarithmic approximation. 
Nevertheless, we can make a remark comparing our result with that of 
Zuckermann [8].

Using the usual notation for the Kondo temperature

T„ = D e 
J\

2 J p

eq. (4.IO) can be written in the form
/5.1/

In Ni S Ŝ+1) - 1 1
poTc n=o (2n+l)2 ln2(Tk/Tc)

1 + * O+i)
1п (тк /т с)

/5.2/

Zuckermann [8] obtained a similar expression (see.eq. (4.18) in Ref. [8]) 
even for Tc << Tg. This shows that there is a symmetry in the change of Tß 
much above or much below T̂ .,

T
Eq. (5.2) is thought to be valid, when In2 ^  >> S(s+1)tt2 ,

which can be seen from e.g. Hamann’s solution [11]. Estimating the behaviour 
T

of In -я—  we obtain that T is always smaller than T , but the inelast- 
c 0 co

ic processes can essentially reduce (near to T£ almost the half of) the
effect of the elastic scattering. This is a consequence of the fact that 
the inelastic contribution has quite different structure from the elastic 
one. This shows also that the strict logarithmic approximation, where the 
inelastic processes are neglected compared to the elastic,ones, is appropri
ate only to estimate the order of magnitude of the effect. When T ^ T„,
the problem is not only to find an appropriate expression for the vertex 
function valid not only in logarithmic approximation. Another problem arises 
in this temperature region, namely to investigate the contribution of the 
diagrams (see Fig. 4.), where the two electron lines are connected more 
than twice by the pseudofermion lines. It is not clear, whether these 
processes are taken into account or not in a Nagaoka type decoupling proce
dure of the Green functions and therefore it cannot be taken for sure that 
the decoupling gives the proper change in T . The case T % T„ needs 
further investigations.
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Appendix I.

The contribution of a few diagrams of fourth, and fifth order

The aim of this calculation is to show that the contribution of the 
diagrams in Fig. 5» can be neglected compared to the leading logarithmic 
contributions of the diagrams in Fig. 4., which are proportional to 
Tnn n-2 D and J^ln11"^ — for the elastic and inelastic scattering,
J ln [-| M
respectively.

First we calculate the contribution of the fourth order diagram 
in Fig. 9. Except for the spin factors the contribution is as follows

= -e+A'T T3 .*„2 ° °  Í  p° ^  т ф х  т ф г  т ф

_______1 3 1 !
i (~o)+o)' -ш1+ш 2+ш з) “ A i (oi+io^-o^) -5^ i^oj-o^+o^) -?2
Performing the summations over the frequencies, taking the limit A 
and integrating over 5

D-£2-i(o)+o)')
i(4) - p2 Ko de

a
1

2 ioi+e2 im + c 2 In D - 5- + nF С"??) 1П

- In
e2+i (ío+ü)')

+ "f («2) ln |§=T3 + nF ( - h )  ln

F

D-iO)'

D+£ +i(o)+oo')

D+io)

d + e •

• /А.I.2/
Neither in the elastic i(w = w') nor in the inelastic i( ш ф ш') part a
term of type In ̂  appears in the limit тс>>тк . It means that the contri
bution of this diagram of fourth order can be neglected compared to the
diagrams shown in Fig. 4-. which in the fourth order yields a contribution 
4 2 D 4 DJ In — I and J ln,—I for the elastic and inelastic parts, respectively.

Next we investigate the diagram of fifth order in Fig. 10. Its 
contribution is proportional to

(5) = _ T4 £ p3 f d? f Jd£, ----- . 1 — —— — -—о J 1 J 2 J ^3 ioi^-A im2~A io^-A lm̂ -
1 26О3Ы4

_______ 1______ 1 1_______  ______ 1______^
^-oi+oi'+o^-o^+o^) -A i^-oi^+o^)-^ iC-oj+oo^-o^)-^ ' 1(64-0)2+0)2-0)3+0;4) -£.
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After a straightforward calculation we obtain

íE) - Pо j  « 1  Í <*«2 -f « 3  0  - "F ^  "FS;2) '

1 1 1_nF^l) 1_nF^2^ 1 1
i(.io'-(i))+C1-^2 iw-£j_+52+53 + 2 i“-?! i^,-?3 ^i+^2 ^2+^3

nF (5j)nF(e2) 1 1
+ ^i+^2 ■’■ш+^2 h ~ h

+ { similar terms with the change ш ++ ш' .} /А.I.4/

Performing the integration in the logarithmic approximation we
keep only the highest power of the typical In ~~ , In —  terms and the• |ш| Iw I
others like In ^7- In Í-— —  , In -д- ■ ■ will he neglected. In the

1 2 Delastic case the first term gives In . The second term gives the
^u i to I

same contribution with a negative sign, while the third term gives no
О Т )In -7=7- term. So the contribution of this diagram is proportional to Ы  •

J'̂ ln— A — , which can be again neglected.
M

As an example we will show the calculation of the second term. In 
the T=0 limit, after analytical continuation iw ■* w

1 о3 f át Í f d£ 1~nF ^ l ^  г~пР ^ 2  ̂ 1- п ^ з )  1 _1 ' 2 ^o j d?l j dC2 ] dC3 ü) - ^  ^-^2 ш -53 S2+?3
0 0 0

■ I »o f 1 a«2 f d«3 ( í r t  + « y q ) ( R c 7  + г
о
D

' 5  "o 1 (ш+?2)'
In /А.1.5/

Here the terms of type In —jt-— - have been neglected. In the 
logarithmic approximation this integral can be calculated as follows

12 po
,r 1 , 2 d?2 —2 In

0) M i d£2 , 2
2 ln 1 in2 D2D ln T“T
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It iß еаву to ßhow that the inelastic part is also proportional
at last to O'5In —2— and can be neglected. This will he demonstrated onш
the second term

1 '  7 °° Í d£l 1 dÍ2 j  dÍ3 é q ) ( ü k i + + 4 4 }

■ i  "о I di 2 ( h r ;  - h j ) ( ln ¥  + ln f ; ) ( ln ¥ * ■  + ln ц ) ’

- 3 » o h r  [ ( i - ^ ■ i n M j t a M i . J s a .

- ( l n M , ln J g h )  1 ( h  J g h  - !„2 M )

I  »0 s b - ( in ¥ i  - in  ¥ )  [ - 1 in2 ¥ I  + i in ¥ L in ¥
1 . 2 
6 ln

1 - 3  1
12 ко ш-ш7̂ In D - In LÜÜ

D
1 3 1 ,3
12 ü)-wf n

The ln —  terma disappear.и
The fifth order diagram Bhown in Fig,5»c. can be obtained from 

the fourth order diagram in Fig, 5»&. by inserting a vertex of second 
order instead of a bare vertex and therefore its contribution is at last
J 5 l n  - 2 -  .h|

So all the diagrams with more than two connecting pseudofermion
lines will be neglected

3|Q
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Appendix II.

Investigation of the cuts of the vertex function.

The simplest diagrams in Л1 are the chain diagrams (see Pig. 11.), 
Its contribution is given by

- (ij1 »r1 T”-x I к .N 0Jn . . . ш Jz  П

^,(iw2) ^  (^1' i (а)+ш̂ -ш2̂ J •••• ^  (iwn) ^  (?n-l' i(tü+ü)i“u,n)l ̂  =
.  j f i  n V*"1 L r  "F^l)-1 Hpfrn-l)-1N \N о \/ J =1 ••• ^n-1 ±((0+0)^ -A-^ ifw+a)^ -A-f^^ /А.11.1./

This vertex has a cut only along Imz= -ш.

This is not true for arbitrary vertices, hut it is shown that 
only this Cut gives important contribution in logarithmic approximation. 
Let us see the third order vertex shown in Fig. 12. The contribution of 
this diagram is as follows

f 4 á ? ’o *2 I Í
ш2 ,ш3

d?2 dC3

3̂ (iü)2^’̂  (1а)3)^(^1' i (ш+со̂ —й^ )}^ (c2' i(w+Wj-ш^) /А.II.2/

Performing the summation over the frequencies o>2 and ш3 , in 
the limit A °° we get

nF ^i>
dC2 ico1+C1-C2-X

1-пр(^2)1
Í ((D+Uj) -52-X /А.11.3/

The cuts are at lmz=0 and Imz= -w . At the first cut
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лд I3 - - (я)3 "о í d«i « 2  "р<4) x+ie+£1-£2 x-ie+^-í^
1-nF&2')
ioj.+x-50 v 2

- 21' (i)3 po í d«l « 2  \ ^ д) ä ( H t r t ) /АН.4/

where x = Réz - A  and the operation A is given by eq. (3.7)• Substi
tuting this expression into the effective interaction, the contribution of 
this cut in the corresponding fourth order.diagram (diagram in Fig. 4., 
where the upper vertex is given in Fig. 12. and lower one is a bare vertex) 
is proportional to

exV v [ 2¥I 2”‘ (if »o j d«l d«2 "f («l) T ^ 2)2S+1

(x+Ci~52 ) Пр (x+x) x jj-Ljj-j-

= 2S+1 (n ) Po Í d^l d52 nF ̂  2 ̂ 1-nF ̂  l)) i(w-w') (l'2h 1 ~

2S + 1 (jj) Po l d?l (1_nF ^ p )  i (ш-ш') CpAi(ш'-ш) D-^+i (w'-w) 
/А.II.5/

This integral gives no term of lnr|~|- type. On the other hand the cut at 
Imz=-w will give logartibmic contribution. Along this cut

D

ЛЛ1 " ~{ílPl\dKl d?2 x-iÜ+q-?2 (1_nF ̂ 2^)(x+Te-?2 " ^Ге-Ч2) =

= Zítt^ I 4) p2 J' d?1 d?2 (l - npC?2)) б (x - C2) /А.П.6./

The integration with respect of yields the typical logarithmic term. 
Supposing that ш = (2n+l) ttT v T i.e. n is a small integer we get in 
logarithmic approximation

ДЛр3 (x) =
log if D > IxI > О

О otherwise
/А.II.7/
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Inserting this expression into the effective interaction (3.4) this 
logarithmic term will not be affected.

From this calculation we can learn that in the important
cut, which gives the logarithmic term of highest order, is along Imz = -<o 
and the contribution of the other cuts can be neglected. We can see further 
that in logarithmic approximation only the Imaginary part of Â  contrib
utes to АЛ1 . as

ДЛХ = 2i lm (x + ie) /А.11.8/

what can be proved very easily.

Similarly in i\2 the important cut belongs to the variable 
i(w-m') and in the z plane it lies along the line Imz= ш',
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Appendix III

Calculation of the vertices at the important cut

As it is shown in Appendix II the important cut of is in
the variable i (to + ) and arises from those pairs of an electron
and pseudofermion lines at which Л-̂ can he cut into two parts. One can 
verify in.logarithmic approximation that АЛ.̂  at the cut is pure 
imaginary. In the following the imaginary part of Л-̂ will he calculated. 
To get the highest order of the logarithmic terra we must calculate the 
imaginary part of the contrihutions of each pairs of two lines and the 
real part of the other parts of the diagram. It can he carried out in a 
formal way calculating the diagram in Fig, 7.a. In this calculation only 
the real parts of the vertices are to he considered.

The contribution of the diagram in Fig. is

Tpo £ ] d^l Гаеа'е' (ia)' 1ш1? 1 (ш + “i " ш 2 ^ ' icü2 ) *
Ш2

e (iw2) ̂ a, 1 (ш + •- w2)) ra'e'ßn С1 (ш + “i " ' it02;
and performing the summation

-po Í  dei  гаеа'.е' С±ш' iu i'- 4 ' dC“ + -  ? i )  •

• -X-£ V e ' ß n  i Ca) + wl) -

/А.Ill.1/

/А.Ш.2/

Supposing that ioi and 1ш' are of order T they can he replaced by 
zero if the thermal smearing is considered. We are interested in the 
imaginary part of the analytical continuation of Л-̂ (i ш1 -*• z) along the 
line z= -ito+x Л+ ie . According to the consideration given here we obtain

± Гаеа' e ' (°'х+Х'*х'Л )

lm AlaeYn(x±ie) = \ • (l - nF (x)).

‘ Re Га'е'уп (x 'X'*°'x+0

V.

for |x| < D

/А.111.3/

О for IX I > D
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Similar calculation for Л2 on the line z=iw' +x+ Л ,+i e (i 
yields

lm Л» (x^ie) = + p f Re Г , , (О, A;-x ,x + a ') .2a e y n4 ' ae  a n ' '  J •

• C1 ■ V x)) Re га 'еуЕ' ( - x ,x +A;0,a)
if x < D

where the identity n„(-x)=l~nff(x) is used.

(u^-w') •+ z

/A.Ill.4
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Figure Captions

Fig. 1. Diagram of the effective electron-electron interaction

Fig, 2. Electron-electron interaction diagrams of second (a) and of 
third (h-c) order

Fig. 3. Ladder diagram

Fig. h. Diagram of the electron-electron interaction to be calculated 
in logarithmic approximation

Fig. 5. Diagrams of the electron-electreon interaction to be neglected 
in logarithmic approximation

Fig. 6. The cuts on the complex energy plane

Fig. 7. Vertex corrections of parquet type

Fig. 8. Diagram which can be ordered to the correct result in a formal 
way

Fig. 9. Correction of fourth order

Fig.10. Correction of fifth order

Fig.11. Vertex correction of ladder type

Fig.12. Third order vertex correction of parquet type.
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FIG. 7.

FIG. 8.

a, b,

FIG. 11.
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