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I. Introduction

In the past two years the Regge theory has regained its reputation 
in physics. The engrowing number of experimental data could be 
fitted by it in very good agreement. In the same time great many 
physicists started again to investigate some bothering problems 
of the Regge theory, mainly those which brought the theory to a dead- 
centre some years ago. Some of the problems turned out to be "paper- 
tiger" /e.g. the shrinkage/ but others led to a better understanding 
of the problem. It became clear that the ordinary three dimensional 
partial wave analysis can be generalized as a decomposition of the 
scattering amplitude in terms of the irreducible representations of 
the little group, determined by the given kinematical situation.
This allowed to group the set of Regge-poles in families at special 
momentum configurations. It also became clear that the spin is not 
a trivial problem when reggeizing; the crossing relation forces 
conspiracies among Regge-poles. The unwanted singularity at s=o in 
the unequal mass scattering amplitude was also in the lamelight.
To make it disappear, required again conspiracies among Regge-poles.
It was very nice to see how the two types of conspiracies /due to 
the spin and due to the unequal masses/ were on the same footing 
how the types of constraints could be met by the same expression.

The aim of our paper is to give an introduction into the generalized 
partial wave analysis. After having summarized the kinematics we 
recapitulate the Regge theory and later discuss the four dimensional 
partial wave analysis of the scattering amplitude both in equal and 
unequal mass case. We examine the analytic properties of a norentz-pole 
contribution in detail. For those who are not familiar with the Lorentz 
group we have summed up its main properties in the Appendices.

Our primary point of view will be to get free from the unwanted 
s=o singularity; we shall not investigate the spin-type conspiracy, 
but/except in II.2./ we shall not neglect the spin of the particles.
We think our paper is closed in itself, but for those who are interested 
in every details we give the references to the original papers.

It was not our aim to publish new results here but we have tried to 
collect every important formulae for practical calculation. Here wef :
note that our formula for the boost function seems us to be the 
simplest we know.
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II.1. Kinematicв

Let us summarize first the kinematics of the quasielastic 
scattering of particles with different masses. /Everywhere in 
this paper the components of a vector will be given in the order 
/o,x,y,z/; gQO=l, gii=-l*/

Let it be /p1+P2/2= a, /р-^р^/^t, /p1+p4/2 = u
and because of the energy-momentum conservation Р4+Р2=“Р-з“Р4* 
We work in the CM system: p^= -p2 = /о,о,р/

P =
[s - (mi-m2)2][s - (m1+m2) 2] 1/2 2\ .. .

--------- 2 ^  '“'“l ,1Г>2 ' 14s

let us denote the angle- between p-̂  and -p^ by , then we 
can write j

s+nu-m»
Pi ~i » 0,0,p

2 /s
■P3 = [ — 0,p'sin-^ p'cos^,

P2 =
/ 2 2 s-nij+n^

2/s
0,0,-p / ; -p. =

( 2. 2s-m,+m. n л
------ -, O,-p'sinV,-p'cosv I /2/

\ 2/s

where

p ' = 7  л2/s
1/2 2 2 S f IHß t Itl̂j / з /

and

cos
I (t-u) + ( m 2 - m 2"3 4) ( - i  - 4 )

.1/2 / 2. 2\ .1/2 / 2 2s! A ^s,m1,m2j Д ^s,m3,m4 j
/4/
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It will be uaefull to introduce the variables q and q ’

V1 = P/2 + q p-j * P/2 + q ’

p2 = P/2 - q p4 - P/2 - q* /5/

It is obvious that

P = O, cos^= q q' / I s| I q'|/V Л/ 1 -V ' л/
Using the previous formula we can write

qQ = т2-т2 / 2/s’ ; |q| = p i q2= 2(m2+m2 ) -s / 4 /6/

the appropriate components of q’ we get by m-^-^m^, m2-*" m^ ,

We shall work in the physical t-channel CMS as well. For equal mass 
scattering the complex Lorentz transformation what connects the s and 
t channel CM systems is

О

О

\l st / tu
у (s-4)ft-4) У (s-4)(t-4)

\l su \l -uV (s-4)(t-4) CO 1 ft f

/7/

where R is a complex rotation around the x axis, В is a ^ z
complex boost along the z axis, and

. r ^ r
cosa = у 5^4 ! c°sy = | я

That is to say
C j--lPi = öl Pi we

if we apply 
obtain:

/7/ onto the momenta of /2/ for mi=l» and

Р° - (/t/2, 0» 0, pc) ; P2 = (-/t/2,0, -pc sin^c, -pC cosl^j

Р3 = (/t/2, 0, 0,-pc) ; P4 = ( -/t/2,0 , pC sinv̂ ,, pc cosv^j 78/

As we see, to different scattering angles in a given s-ehannel CMS



correspond different CMS’s in the t-channel. The appropriate value of 
the crossed parameters can be obtained from the direct ones if we 
exchange s and t.

Under the crossing the scattering amplitude behaves as follows!

<P1S1X1' P2S2X2 lT l p 3S3X3 ' p 4S4X4> = V j V ^ V ^  dv}X1 ( Xl') dv2X2^X2^ *

• dv3X3 (Х з) dv4X4 (X4)K plslXr  P3S3X3 lT l p2S2X2 ' P484X4> ;
191

sinX^ = 2m1 <p(s, t) /д1 2̂ (t,m2,m2 ) Д1 2̂ (t,m2,m4 j /cycle/ ;

ф 1 = stu - s^m2-m4 j^m2-m2 j - t ^m2-m2^ m 2-m4 ̂  - 

- (m2m2 - m2m2)(m2+m2' - m2-m2)

After having performed the complex Lorentz transformation we are not yet. 
in the physical domain of the crossed channel, to get there we have to 
continue s and t to their physical values. The whole process can 
be done without getting into trouble with singularities and cute.[l, 2 ]

Por convenience we introduce the к^ and к ̂  vectors of unit length, 
pointing into the direction

(ml-m2) _ , _ (m3~m4)
qy - / 10/

p p

respectively /Wightmann-Gärding coordinates/. As can be seen,

ko = ko = °* £ = aHal » k * = д ’/ l a ’l ln the CMS*

1.2. Three-dimensional partial wave analysis.

First we reconsider the steps of the Regge-theory to see the role of the 
formalism what will be used" later. For the time being we neglect the 
spin of the particles.

Let us consider a | p^ , p2> two-particle state. Only 3 are independent 
out of its 8 components of momenta, if we are in an arbitrary CMS. /The 
.5 relations are p1 = , p2 = m2 , + p.2 = 0 . / The three indepen­
dent opes can be chosen ast P0>i^, Ф where t̂ 1, ф fix the direction of £./
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If we denote by § the unit vector parallel to the z axis, ana 
the rotation from the z-direction into the (O',<f) direction, a two-particle 
state hae the form I p0.p (0 , ф) £ >.It is obvious, that the group of 
the R-s is a little group of the P vector.

Making use of the rotation invariance of T, and the little group 
property of P, we can writes

< Р^Рз ITI P3»P4> = б(Р-Р') < PQ, R § ITI Pq, R' § > =

= ő(P-P') < Po, R" g |т I PQ, g > = F (p2 ,R") = F (P 2 ; ,  ф " ) /11/

This way, we can consider the scattering amplitude as a function over 
the rotation group. If this function meets some convergence criteria 
it can be decomposed hy the irreducible representations of this group. 
/We note that the decomposition of a function being defined over a 
group is called Pourier-transformation over the group, see e.g. [3] /

If f(g) = f (фх , ^  , ф2 ) is a square-integrable function over the 
rotation group, its decomposition is

f M ' * a )  - £  Í '  *1- ^ * 2 )  ■• n jinni
where Diran' l V  ' ^ ) - e 1(̂1т d^, (î) ei(f>2m ' is a unitary represen­
tation of the group, ,. are the Fourier coefficientsmin

( . i<t>1m 1Ф_т'
fmm' " •> f(9) e e 0ф 0ф

,G 2
f™ ’ “ > fmm- (^) d cosu

For scalar-scalar scattering obviously f , = f 6 6mm mo m'oso the Fourier decomposition of /7/ is simply

f (p 2,R-) . íf/р2) Px (cost?-) . J f{ (p2) Pl (kuk; )

- p l ( p 2) Pl (кц k J  /12/

because in our special frame ky = (0,0,0,l)
» 1.V

The f^ Fourier-coefficient is just the 1ъ partial wave amplitude»

F(R") = I <Po'R" § |P_rlm>< Prtlm |T |P I'm' ><P I'm'I P 8 >lml'm' 0 - о ° 0 o ' o A

' L - . '  <R") (l) b.l- V » '  • /“ /

< P0, 1 I ITI I 1,P0> = l f1 P1 (cos>)
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We need the rotation invariance at this point /when we find the physical 
meaning of f-j / again. We call the attention to it, because this is 
generally not emphasized.

Let us perform now the Watson-Sommerfeld transformation at the physical 
values of t and s /i.e. s> s , t.< 0/:

— 1/ 2+i°°

F (PlP2P3P4) = I ( 21+1) dl 
sirnr 1

-l/2-i°°

I *n
€ (2 V 1)
sinir an

/14/

e(p2-«„) ( - k „ V kv)

a is the place, ß is the residue of the pole, £ is the signature 
factor. After that let us go to the t-channel CMS; i.e. having done 
the complex Lorentz transormation /7/ we continue analitically in s 
and t.

F p>í Pf P2 PS ) - T ( P1 И  P1 kv) -
-  b (p ° 2 , o j  Pa ( - k J  K= kJ  ) /15/

0е- 2 сIt is obvious that p = p = s . What is R ? R was an element
pv uv c

of the little group of P., transforming к into k’ . So Rr- —g — у pv
will be an element of the little group of P . The little group of P 
was SO (j) , but of p£ is S0(2,l) . If all masses are equal, this
can be checked at once with the help of eqs. /7 ,8/

Pc H

o
о

-pcsin©

-pc(cos0 -l)

1
О

0
1

0
О

О
О

О cos© /2 -sin0 /2 с с

О sin0 /2 cos0 /2 с с

О
О

-2р sin0c/2
= UP

/16/

and as R left invariant P , Л  R<£ does the same for P'pv
U-1 dC"1 R cCu for pC* what is trivially an S0(2,l) transformation.

This way, what we have in eq./15/ is nothing else that the decomposition 
of the t-channel scattering amplitude in terms of the representations 
of the S0(2,l) group in the crossed channel /s-channel/.
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[L Is a striking feature that in eq./15/ together with the unitary 
representations of S0(2,l) appear some non-unitary ones as well. This 
is the consequence of the fact that in the given region of the s-channel 
variables /s< o, cos0 > 1/ the function is not square-integrable over 
the group S0(2,l) /if it were, unitary representations would be enough/, 
whereas in the physical domain of the s-channel it is /c.f. the cross 
section is finite/. However, the question arises how to decompose a 
"bad" function over a group. It has not been solved yet. The only compass 
we have are the experiments what we want to fit with the help of Regge- 
poles /i.e. nonunitary representations/.

At the direct channel partial wave analysis /PWA / we exploited the 
rotation invariance of T. To obtain the S0(2,l) decomposition we made 
use even of the analyticity of the scattering amplitude. As the elements 
of the above mentioned S0(2,l) group belong to different t values, 
it does not form a subgroup of the real Lorentz transformations.

II.5. The spectrum generating group

An old problem of the ordinary Regge theory was to cope with the unwanted 
singularity at s=o. If the masses of the scattered particles are unequal 
from eq ./4/ one can see that if s -*-o, t ->-<» cose tends to unity instead 
of infinity, as it does in the case of equal mass scattering. The cos = 
=-l point is a singular point of the representation functions of the 
appropriate groups unless a is integer, so the scattering amplitude has 
developed a singularity. The first attempt to eliminate it was done by 
Freedman and Wang [4], but the very root of the problem and its remedy 
was found by Domokos [5] and Toller [6] and their coworkers. We shall 
follow the line of Domokos and Tindle. [5J

In the previous section we have shown that the Regge decomposition is
nothing else that the decomposition of the scattering amplitude in terms
of the little group of P .At s=o the P vector can be either aу u
zero-vector or a timelike vector, Its little group is SL(2,C) or E(2) , 
respectively. So at the critical point the structure of the little 
group has changed, that is to say it has contracted. It is proven that 
such a change in the group structure always creates singularities in 
the representations. Hence the remedy is to find a group what contains all 
the listed ones but does not contract in the examined domain of s. An 
appropriate choice is SL(2,C) itself. Accordingly, the only way to 
avoid the unwanted singularities at s=o if at this point the spectrum 
/i.e. the set o,f poles/ shows an extra symmetry. It is not necessary 
to demand this symmetry for the scattering amplitude Ъесаизе the back­
ground Integra] can be neglected anyway. However, it could turn out
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that this group is a symmetry group as it will be the case if the masses 
are pairwise equal. We shall call a group with the above mentioned 
property a spectrum generating group. What we have found now, can be 
told with other words as wellt at s=o the pole terms are forced to 
conspire in such a way that they form a representation of SL(2,C).
Thus, the poles will appear in families; the pole of the highest angular 
momentum is called mother, the others; daughters. /At this point we note 
that this conspiracy is due to the unequal masses. There is an other 
type of conspiracy among Regge-poles due to the spin of the scattered 
particles [7]. We shall not treat this problem here. However, our final 
form for the scattering amplitude will meet the "spin-type" constraints 
as well [8] ./

To have a better insight, first we consider the scattering of equal mass 
particles; here the spectrum generating group is a symmetry group at the 
same time.

II.4. Four dimensional partial wave analysis

Let из consider the | p^ ŝ  x-̂, P2 32 A2 > two-particle state. Instead 
of the 12 commuting operators ,p(l) w Ш  ^(l) p(l) ш(1)
(2) (2 ) (2) (2) (2) * v у » у »у ’ у %  * ŷ ' / we choose a base being labelled by

the following 12 commuting operatorst P^ = P^^ + pJ2  ̂ , Q p = P ^ - P ^ 2 ,
W W , P W , P W (l) , P W i2) ; ( W = W (1) + W (2M.У У ’ У P ’ U r У ’ у ! у V у у у /
The connection between the two bases is simple at rest;

|g, q, s A \1 X2 > = I < s2-A2 I s A P2S2X2 > 117 ̂

In the following we supress Â  Â  indices.

In the C№5 P^ = (Vs1, 0,0,0), if s -*■ 0, the little group of P y is 
SL(2,C); we want to decompose the two-particle state in terms of this 
group. First we seek an R transformation, R SL(2,C) , for whato p pqу = R,jV qv . As at s=o q =m ' > о /c.f. eq./6//, and as R does 
not make the lenght changed' § must have the form (/q^,0,0,0). 
However, as one can see from eq. /2/ q = ( 0,0,0, im), and there is 
no real SL(2,C) transformation connecting q and § but there is 
an 0 /4/ transformation /up to unitary equivalence/ of the required
property;
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I 0 \
1
0

0
\im / \

/i

/i

0
1 
о 
о

о
0
1 
о

/18/

We remind the reader the two little group, S0(2,l) and BO (3) /we have 
met when examining the ordinary Regge decomposition/t could he embedded 
only into the complex Lorentz group, L(C). The 0 (4) group what we 
have found now is a compact subgroup of L(C). As we are not in the 
physical domain of s , we have encountered with it instead of L(R).
A detailed analysis of 0(4) in this context can be found in a work 
of Freedman and Wang [91, here we give only the main points. An 
й(“ »0»Ф)'£ 0(4) transformation can transform a ß =( p^ ,0,0,0) vector 
so, that (R$) will point to © , ф direction, the magnitude of (R$)q 
depends on о /c.f. I.6./. We shall use the notation R(p) for this, 
if p = R$ . The 0(4) decomposition of a two particle state reads:

qp, s A> = R(q)| P y = O, §, sA> =

• I
{

Djmsxte)I

1
2tt/2s+T

Pp * 30 a m̂; 3 >
/19/

In eq. /19/ (q) is a finite dimensional unitary representation
of 0(4), representing R(q) , | 0 j m > is a basis vector of 0(4).

Using the addition theorem of Appendix A eq. /21/ and eq. /19/, the 
scattering amplitude will have the form:

_A_A,A. <P1S1A1' P2S2A2 p 3S3A3' p u su Au >iJ. Z J 4 s=0

lsl+s2l
1

|Si+Sij
.1

min (s,s')
i . л

r1
(2tt) S= I Sl-S2| s'=|s3-s<|| j0=min(s,s') 0=jo+1 /(2s+l) (2s'+lj

. <s1A1' s2-A2 I s A><sf a# I S3A3, s4-A4> Ds°srA,(R_1(q)R(q')j *\fg, (p2)

/20/
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When obtaining eq./20/, we have employed the result of II.5. that T is 
diagonal in the 0(4) quantum numbers at s=o ; the reduced matrix element 
of T is denoted by T^*^, •o jS

Now we perform a Watson-Sommerfeld transformation on the a -plane* If we 
discard the contribution of the semicircle at infinity and write separately 
the possible pole terms, the result will be quite similar to eq./15/.
The poles on the a -plane are called Lorentz-poles.

Similar as in the ordinary Regge theory, in the physical domain of the 
t- channel the W-S-transformed form of eq./20/ can be interpreted as a 
decomposition in terms of 0(3 ,1) group; the background integral runs over 
the Infinite dimensional unitary representations of 0(3,1), the pole 
terms appear to be non-unitary, infinite dimensional representations /redu­
cible if.a -j0 is integer/. The contribution of a Lorentz pole to the 
scattering amplitude has the formt

в2 -j* Jo
V(2s+l)(2s'+l) < S1X1' s2~X2 1 sAxs'A' j

V  / u. 0 q

• D R R , Г ,
sAs'A' 'i q q / s,s'

го°а» is the residue of the pole. In sec. II.6. we discuss how the 
argumenta of , , depend on the quantum numbers of the scattered
particles and in sec. III. we discuss its analitical properties.

A family of physical particles belongs to definite parity, so we ought
to have diagonalized T in parity as well. The method is again

л * 2̂  o' 4
analogous to what is used in ordinary Regge theory [10], for Lorentz 
poles it is described e.g. in [11]. An, other question we shall not treat 
here in detail either is the introduction of Lorentz signature, what can 
be found in [12].

Salam et al [131 following the line of Toller [6], try to avoid the complica­
tions due to the analytic continuation, and they introduce the scattering 
amplitude as a function over the group 0(3,1) in the crossed channel.
It can be done, because the < Pp * Pp |T J Pj ! pj > amplitude in the 
crossed channel, but at s = ( p® + Pp) " £ sQ > 0, t = (Pp-Pp)^ < 0 
can be roughly written as < -p^;p2 111 p^l-Pp* where the <-p^; p2 I 
state is not physical, i.e. -p^ negativ timelike vector. If P2~P^ = 0 
/t=o/, then by eq. /5/ q=q* what presupposes that cos 0= 1, 
m-ĵ = m^, m2 = m^, as can be seen from eqs. /1/, /2/, /3/. This way
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pl+p3 = P+2q = (s+m2-m2//s,0,0, Д1/2 (s,m2,m2 ) / /ej ; (рх+рз)2 = 4m2

Now pio+p3o^2ml > 1 80 ttds vector can be obtained from a timelike unit
vector with the help of a real Lorentz-transformation. Hence the scattering 
amplitude is a function over 0/5,1/, and if t=o, using only the Lorentz 
invariance of T, it can be decomposed in terms of the irreducible represents 
tion of the Lorentz group. Having crossed eq. /20/ we get back their results 
in the appropriate domain of s and t .

11,5» If masses are unequal ...

Last /but not least/ we discuss the general mass case. As we have learnt 
from the previous sections, now SL/2,C/ is not a symmetry group, what it 
was in the equal mass case. The only way to avoid the unwanted singularities 
at s=0 is to classify the spectrum according to this group. The method is 
elaborated in (5), we follow the steps of this work.

The contribution of the Regge poles to the scattering amplitude is

a. (s)
h W i  ~  I eW 3>4 ( S'“1(* )) в »з-а,л -х2 (k » k) и  ’/

where
pole

5^ “ 1 - exp -ilia /sinllâ  

We can write Ax-A2 = x • Хз-Л4 “ x‘

T, I ß1 e^1^2^3^4poie” i,m - Г 2 Л3Л4X1 X0 i

DX-m (k R k) • (k I k)
Íim

<P,q,sA I Pa, mA>. ß*A, A, X3X4
Pa^ mA' I Рсц s' A' >

^Sl^l' s2-X2 ÍsX> • s3^3 » s. —x/, >
/23/

The statement that the spectrum is classified according to SL/2,C/, or what 
is the same, the poles "conspire" to give the basis of SL/2,C/ representa­
tions, means that at s=0 the set of poles can be grouped into subsets, 
and for each subset
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and

ai2

ßA A A1A2 (s=0, a )ß
к'

v °0i lDm

/ 24/

Л3Х4
з=0, a. J =ltr '

l <ailr m l D0 <7. 3m> < : a, цт | a. m >:m < u J u к

where <j0oj'n| or/in > is a generalized Clebsch-Gordan coefficient,
decomposing an SL/2,C/ basis vector to SU/2/ or SU/1,1/, respectively. If 
we write back eq. /24/ into eq. /23/:

TA, A 0 A A,
1 2 3 4pole 13m

г , D0ai j a
I <PqsA |P,a.Dojm ,s > .Г ° ■Г °

• <P/o±jojm,s' I p q's'A' > .

. <s1A1, s2-A2 I sA>< s'A'I s3A3, ŝ -Â . > /24/

Зп0
Remembering to eq. /19/? <P,q'sA  ̂ P'^oa^m's >~ DSAjm (q ) and applying 
the addition formula of eq. /А.21/, we get:

'A1A2A3A4 ~  £ <S1A1' s2 A2 I sA>< S 'A' I S3A3' s 4_A4 > *
pole

■ -Ier. X- Г*'1 » .) г3°° г У  . ( sAs A' V q q / s s’ * /25/

As we have seen now, the leading pole terms of the scattering amplitude 
have the same structure, both in equal and unequal mass scattering, however 
the values of their parameters are different. As we shall see in the next 
section, eq./25/ is regular around s=o.

We ought to tell, there are some tricky steps in this derivation of eq. /25/. 
E.g. eq. /19/ is valid at s=o. At this point q is singular in the general 
mass case. To avoid the singularity we got to b = o  + e . But there q 
is not independent of a and P^ , if we are on the mass shell; so we have 
to go off-shell. As far as these delicate steps are concerned we suggest 
the reader to turn to the original papers [5].
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Up to now we have seen how the SL/2,C/ non-unitary representations are 
built from SU/ljl/ ones, I.e. how a family is built from single poles - from, 
daughters. This procedure is reversible, we can decompose an SL/2,C/ rep­
resentation into SU/1,1/ ones, to get back the contribution of a single pole 
to the scattering amplitude, or to calculate the coupling ratio of the 
daughters. For the details see [14] and [151.

II.6. The D-fuuotion parameters
j 6"In what follows we give the parameters of the functions. We choose

the z axis to be parallel to the incoming particles, hence

q = U (a) § * q' = U ( g.-Л ф) §

The form of the U matrices are given in the Appendix, together with their 
formula of addition. As we have told there, the formulae are good both for 
0/3,1/ and 0/4/.

Now we apply them for

cha

Let us assume that mi > m2

= chB

m, > m. then 3 4

cha =
2 2 

m l - m2
/s [2 + m. - s]

а-а
1а I lqf

cos

sha =
/[> “ (i«! - m2) 2] [s~ (тх + m2) 2]

fs~ [2 (m^ + m2) - s]
/26/

chß cha I1 ml * m3
shß sha 1lm l + m4

where s > О , and
s

COS 6’ .=s /27/
^[s'(ml"m2)^ [s-imi+m2)2]

nu/i=l,.... 4/ in tb formulae /26/ and /27/ will denote the physical
masses of the particles scattered. Thus when realizing the expansion /25/ of 
the scattering amplitude at least what concerns the functions . uL j
we exchange two limits. Our procedure is firstly a technical simplicitywe



14 -

2 2do not want to introduce two complex variables instead of - m2 and
m2 - m2 . This way we are led to the correct t0-1 behaviour and 3 4

moreover we can get formulae depending on s . These may be advantageous 
in a theory with broken SL/2,C/.

We continue from the physical region through values Jms > 0  to the 
vicinity of s = o , remaining in the region t < о , in accordance with 
our picture where the "partial wave" expansion is made in the s-channel 
and here the Regge poles mean bound states.

Let the sign of the square root be positive in /26/ and /27/» and 

0 < s < min
( 2  2\2 (  2 2\2(ml ” m2 ' Vm3 - m 4 j
( 2  2 \ ' / 2 2 > f2 (ml + m2/ 2 \m3 + m4 )

and let us choose t < О so, that |cos0g | < 1 he fulfilled. Applying
the formulae of addition /А21/, the arguments of the function

DÍ°!s 'X' ( UIq' % ) -  Í

are the followings

/28/

ch£ _________u - t___________
/[2 (m2+m2) •rs] [2(m2+m2)-s]

/29/

sh£ = ^ m l + m 2 ~ m3 ~ m 4)2
/[2(m2+m2)-sJ[2(m2+m2) -s]

( m )l̂2 )-s] - (m2-m4)(u-t)

/[s-(m3-m4)2] [s-(m3+m4)2] [(m^+m2 - m2-m2)2 - 4ut]

/30/

sin x = 2 \J Ф (s, t) ’ 2(]2 , . m0 + m ) -
[s-(m3-m4 )2] [s-(m3+m4)2] [(m2+m2-m2-m2)2 - 4ut]

соэф = - cosx

sinij; = sinx

ni­

ni .

m,

m ,
/

/ 31/



where

Ф(е,С) = stu - s(mj-mp(m^m24) + (mj-it^-ir^+mj^mj-mj mj);

All the square roots in /29/-/31/ are positive in the domain chosen for s 
and t , For other values of s , t the argumehts of B(U^' ULq) • »  
defined by the analitic continuations of formulae /29/-/31/.

For the case of equal masses our condition /28/ makes no sence, and only 
the prescription lcos08l < 1 has to be considered and the analogons of 
the expressions /29/-/31/ are derived by extending the addition formulae 
/А21/ to 0/4/. The same expressions are got by extending /29/-/31/ to the 
case n>3=m4 , in accordance with the results of Domokos and
Tindle [5] who have shown that at least concerning the Regge-poles there is 
no difference between the cases of equal and unequal masses.

We note that by the sole inspection of /28/ it may seem that the choice 
t < 0 has an essential role. Actually this is not the case as a choice 
of u < 0 together with |cos0s | <1 would lead to an approach of s = О 
through s < 0 retaining ch£ > 1 .

III. Some analytic properties and asymptotic behaviour

Let us consider now the contribution of the Regge-poles of the scattering 
amplitude in the crossed channel.

The Regge-poles in the direct channel for s = о are the following!

< p3 s3 V  p4 s4 X4 lT l P1 81 *1» p2 s2 X2 > pole
_ / \ 1 - exp (-in оДв))= lim I  ß(s, a 4 (s’)]  ----- - 4 1 ' -

+0 i 4 1 /s-*-o 
Jms-H-o 
Jmt-*—о

sinn (s)

x  I  < s
jj' 3X3'S4~X41 jX >DjX,j'X' ( I sixi» S2~X2> * ,32/

j0ai(8)/ Л
Our aim is to examine Dj x , for the case S'K5 /Jms-+-o/,t-x»/Jmt-H-o/ 
For this end we quote some well known facts concerning the crossing of 
helicity amplitudes [1].

A helicity amplitude may be built up of invariant amplitudes combined with 
kinematical factors. For example in the case of s-t crossing we have 
to continue anal,itically from the region of the э-channel remembering that 
the physical amplitude is the limit s+ie , t-ie in the s-channel
and is the limit s-ie , t+ie in the t channel, respectively. This
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prescription means that when crossing one intersects the real axis. We may 
do the continuation so that Jms = -Jmt be always fulfilled, thus the path 
of continuation intersects the real g-t plane. If this crossing point is 
chosen to be inside the triangle of the Mandelstam plane defined by 
s < bq, t < tQ h < u q then the crossing of any cut of the amplitude is 
avoided. /Неге sQ, tQ and uQ are the branching points of the lowest 
unitarity-cuts Of the s,t,u channels./ One may be sure, that such a path 
of crossing does not lead Onto an unphysical Riemann sheet.

When performing the crossing in the expansion /32/ the aforementioned points 
should be taken into account. As there are some restrictions for the path 
of continuation attention must be payed for the kiriematical singularities 
emerging in the expansion. As the singularities of the Lorentz residuum 
ß(s»ai C3 i) are unknown, ß(s=o, <^(0 )) is a parameter fitted to experi­
mental data, and its values for the s and t channels are generally not 
the same.

Note from the formulae /30/, /31/ that for the variables x and 
I cos x |f |cos^ I 1 or, in the equal mass case, |sinx| , jain^ | -»1 are 
fulfilled independentily on the path of continuation, thus they have no 
significance for the high-energy behaviour in the t channel. Examine now 
the variable

K - n-Si_ [ч-t - V("i +m2 - ”r m5)2 - 4“<=]2
-.] ' '

for the case s =; 0 and . The sign of the square root in the
t(u) _ channel is defined by the path of continuation. Expanding the 
square root in terms of 1/t about s=o we get»

[t + |t| i sign(t) MtiülH mH )  j 2
. 2t---------- /34/

(тЪт2)(т3+m4 )
where the upper sign is to be taken if the cut of the square root is cross­
ed and the lower if not. As there is no constraint on the choice of the 
crossing point within the triangle in the Mendelstam plane the asymptotic 
expansion e.g. in the t channel may emerge either at x ^ t2 or at 
X ~  1/t .In the appendix it is shown that

ejpj' lx) 'Njx->o
i/2 (ib-jj -o+l)

if M >  j0

1

(

«

c

jyj' (x) lj°"°j'yj (I)

and
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This shows as

, V
juJ’ («)- ,Jo°

'juj'
i

j °r°7<■>
that for both cases we get the t0-1 behaviour for the contribution of one 
Lorentz-pole. If we introduce mirror poles similarly to the expansion given 
by Toller C6] in the equal mass case, writing thus the functions of second 
kind instead of . the cases x * о and x -*■ « get distinguished

J и / J M
i.e. in one case the "poles" and in the other the "mirror poles" give the 
usual Regge-behaviour.

Ag an illustration let us take the NN forward scattering»' mi » m, 
i=l,2,3,4 , in the в and u-channel the process is an NR -*■ NR scat­
tering, in the t-channel it is NN ■+■ NN. The crossing point must be chosen 
inside the following triangle in the Mandelstam plane / w is the maes of 
the pion»/

s $ 4у 2
t i 4m2 /35/
u < 4m2 .

For the points of the triangle smln =-4y2 , tmin=4m2-8ii2, =4у2 .
Taking s and t as independent variables let us examine the branching 
points of the square root in eq. /33/• There is a branching point on the 
complex s plane the position of which depends on the value of t, B*»4m2-t 
For the region of the triangle the position of the branching point varies 
between smax=8y and 8т1п=0 • ^  таУ ъ® seen taking the actual
values of the masses of the pion and the nucleon that the coordinates 
/ s, t / of the crossing point can be chosen so that the cut of eg,./33/ 
be or be not crossed. Eq. /34/ gives that in the first case x ~  m4/t2 
and in the second x ~  t2/m4 if s = O, t °° .

As the behaviour of the functions is similar for x О and
x “ it also follows that the singularities of the residue-functions 
;(s) must not depend on the choice of the crossing point.

IV. Summary and outlook

'iu summarize we may say that there are two approaches to the question of 
Locentz-poles. Toller’s one is from the side of generalized partial wave 
analysis. He applies a very large amount of mathematics. It directs the 
attention to the very difficult problems of Fourier-analysis on non- 
-compact groups. New mathematical theorems would be needed on this subject. 
Another difficulty is that this approach needs more than the usual premise 
about the invariance of scattering amplitude under Poincaré-group. People 
/at least we/ are not very familiar with the meaning of invariance under 
complex Lorentz group.
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The approach of Domokos and Tindle and its reformulation by Domokos [22] 
is a rather elegant approximation to the subject, to see the main point in 
it is less tedious than in the former case. They need only the fundamental 
principle of analiticity and the natural requirement on getting a minimal 
non-contracting classification group. Nevertheless, we think that for the 
"practical life" it is very ueeful to know the steps of Toller’s approach, 
at least so much as we have presented here.

In the future, in our opinion, we shall have a more unified picture of Regge- 
poles. Of course the s=o point has a distinguished role,because the SL/2,C/ 
symmetry is badly violated at other points, but it would be nice to have a 
more uniform technique for working at least near s=o • The first step 
was taken by Domokos and Surányi [20] and by Salam and Strathdee [23].
Domokos and Surányi have worked out methods for breaking the symmetry and 
have got nice fits for Regge trajectories of IIN resonances [21]. The 
last two authors have achieved the same results for the symmetry breaking, 
working in the field theoretical Born-approximation. They applied it only 
to extract general outgrowths for the scattering amplitude similar to 
Domokos and Surányi who did the same with Bethe-Salpeter equation of arbi­
trary kernel, satisfying only general conditions. The most interesting thing 
in Salam and Strathdee’s work is that they describe the objects in a field 
theoretic language.

A further possibility to enlarge the symmetry group with the SU/3/ group.
The first step was already done [24], [25] the previous results are promis­
ing.
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Appendix A.

ft_ have seen that the representations of the elements of the proper homo­
geneous orthocronous Lorentz group play an important role in the proceed­
ing argumentations. We shall simply call this group the Lorentz group as 
no other Lorentz group as the inhomogeneous or the one containing refloca­
tions will be spoken about.

In the following we encounter.some properties of and facts about the Lorentz 
group and its representations. For further details and proofs see e.g. 
refs. [17], ПЗУ, С19].

The commutation rules of the generators = -J can be written in the
following form

J Apl ^ f^ v A  J yp 9yA J vp + ^yp  J vA ~ J y x l  * M l /

Introducing M-! = i t /i,k,l= 1,2,3/

we get the usual SU/2/ Lie algebra
and N, 'oi

[m ± , Mk] = i eikl Jkl

and

[Mi r Nk] = 1 eikl N1

/А2/.

/A3/

which shows that the generators N± apart from sign and factor 
constitute an irreducible vector-operator triplet with respect to the 
algebra /А2/, and the relation

[“i- v l ■* eikl M 1 /A4/

expressing the non-compactness of the Lorentz group. 

The Casimirians of the group sire
1 T yv_ 2 2 _ ,2 , 2 .2 J yv J ~ —  = jQ + CJ -1 1 Tyv TAp

4 eyvAp J J = M ijQa./А5/
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The unitary irreducible representations are infinite dimensional and may be
grouped in two classes

a. / principal series: jQ = Reo =0, -“<Jma + °°

b. / supplementary series: jQ=0; о < Reo < 1; Jmo = 0 .

The finite dimensional /except the trivial one are non-unitary/ representa­
tions are characterised by jo=0,^, 1,... ; o=jQ+n, n>l . For all the other 
values of о we have infinite dimensional non-unitary representations. 
Strictly speaking the unitary representations mentioned above are the one 
valued representations of SL/2,C/ which is the so called universal covering 
group of the Lorentz group.

An element of a representation, corresponding to a pair of values jo,^ 
may be characterised by the SU/2/ quantum numbers, corresponding to the 
generators M , M3 .We shall denote such an element by |j0o;jm > . 
Solving the algebra /А2-А4/ of the generators we get their matrix elements:

M - |j0o: jm> *

M 3 I j0o; jm> =

N - I jo 05 jm> =

S5 N3 |joo; jm>

/(j+m) (j-m+l) I jQa; jm±l >

m|joa; jm >

Í у < jm, 111 I j' mi]*$2 
j —j—1 ’J

j + 1 -4 <
" I  < jm, 1 0 |j' m >p^

jQ at j' mil > 

|jQa ; j'm >

where

/А6/

/А7/

,J+1
j /(2j+2)(2j+3)

[(j+l)2 -a2][(j+l)2 -j2]
1/2

P33 = i3o °
c

2

2

^2j (2j-l) (i2-°2b w 0)]
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In the relations /А7/ the remark, folloving eq./АЗ/ is manifested.

As to a finite element of the Lorentz group has six Euler-parameters it can 
be represented in the following forms

5 = g J ei) 9у (Ф1) 9z (ei) 5Z(0 9 y (ф2) gz (e2)
where the parameters may take the values

О < 0̂ , , 02 < 2П ; О <t>2 < П; О £

and g ,g mean rotations about the axes z and у , respectively? z _ у
whereas gz means a Lorentz transformation along the z axis.

It may be seen that as the matrix elements of g^ and gz are known from 
the theory of the rotation group it is only the matrix elements of g 
that must be calculated. For this purpose we write down the relations

1CN -iCN *
e ° M - e J = M - ch£ - iN - sh£

i e*±5N3 N _ d i?N3 
N3 “ Ж  6

/А8/

the first of which may be verified by taking derivatives with respect to 
£ of any order at 5=0 the second is obvious. Introducing the nota­

tion:

,jo 0 i  \ i?N.
d jmj' ( 0 -  <J0 o; 3»|e - jQ о ; j'm >

and taking matrix elements for the eqs. /А8/ after we have multiplied the 
first by e 3 on left we get the following system of equations

/(j'-m)(j'+m+l) dj°+lj, - i sh? < j-1 m, 1 l|j m+1 > S ̂  mjf-

i shg<j+l m, 111 jm+l> mj,= [/(j-m)(j+m+l) ch5+ish?<jm,11|jm+l>?3] ,

/ U '+«>)( D'-m+l) - ish5 <j-l m, 1-11 j m - l > ^ -1 d ^ °  mj , -

= [/(j+mXj-m+l) ch5+ish5<jm,l-l| jm-l>^]d^,
/А9/

j+1 j oish£<j+l m,l-lIj m-l>5 . d °
3 j+1 mj

<j-i », xo|jm >f3 1 a^° nj. + <j+! n,io|j„>f a^° mJ,

. /r d 30 . .
1/2 d5 djmj' “ <*n' 1 О Ijm> ? j dj°° ч djmj'
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Here we took account of the eqB. /А6-7/.

We see that the system is a complicated system of differential and recursion 
equations. It seems more useful to get second order differential equations 
which can be done in a lot of ways: differentiating equations of eq. /А9/ 
and making tremendous amount of substitutions with adequate values of j 
and m at the end we are led to the equations

d r
+ 2cth$ - (j2 +a2-l-m2) - l(j+l) ~2m2+j > (j' +

d£ sh2£

= cthg 
sh£ j+m+l)( j'-m) (j '+n.+ l)d^°° ,

m(ff  + othi) D Я Jo Js.lt)jmj'
/А10/

2shC y^j+m)^ j-m+l)(j '+m)(j'-m+iy d ^  ., - \/(j-m)( j+«+l)f j'-m)(j jm+1j'

A more elegant way to get these equations is to take matrix elements of the 
expressions

в"* N3 M2 - N2
-i SN-

M N
2 2and remembering that M -N and M.N are Casimirians of the group /А5/ 

on one side, and applying repeatedly eqs../A8/ on the other. We stress that 
the system /А10/ is not equivalent to the system /А9/ as in deriving /А10/ 
information is lost.

Both the systems /А9/ and /А10/ are very involved in the general case, and 
though the solution of the system was already given by a number of authors, 
a really compact and easily treatable form is ßtill lacking. Toller was 
able to get an expression for the functions d..°j, by means of another 
reasoning.

We shall strive to solve the system /А10/ for the case m = j j'>j /it
is obvious that in the general case |m| < j,j' / . If m ф j we may use
the second equation of /А10/ to get the actual function d"*00 fromj_ jmj'the known form of н ° .Djj'
Let us suppose that Rea = 0  ' i.e. we are interested in the functions of 
the principal series. Our result will be apt to continue to other values 
of a /e.g. integer/ as well. Introducing the variables x=e“2  ̂ we get 
the following equation:
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4x2 ■—  + 4x 
dx 1 - (j+ i) i g ]  §; + [a(3+i) -

■2V  i S  * j’(i'+1) + J - Go + 02 + 0 djjj- (*1 “ 0
М11/

We want to construct a solution which is regular in the point X = 4 .It 
is easy to see that the solutions have the form

\ (j+j +o+l)
( l - х У ,-; i f ( l - x ) / A12 /

z ( l - z )  f "  + [c -  (a + b + l)  z] ' f ' -  a b f  = О. /А 13 /

The values of the three parameters are

a = j ' + j Q+ l ,  b = j '+CT+l, c = 2 j '+ 2

showing that the equation is of the so called degenerate type; it has two 
linearly independent solutions denoted by u3 and ug of the well known 
Rummer series [18]t

u3 = l “ 2) 1 C ( 1 -Z ) C 3 1 F ( a + l - c ,  1 - b ; a + l - b ; )  /А 14 /

u6 = z 1 c ( 1-Z) C a b F ^ l - a ,  1 -b ;  c+1- а -Ь ;  1 -z  )  /А 15 /

A l i n e a r  co m b in a tio n  r e g u la r  i n  th e  p o in t  z=o i s  o f  the  forrni

f  ( . )  -  . ‘ ' H  Г Ы Г И  „ .  Ь-0 Г ( с ) Г й - ь )
Г(.)Г(с+1-а-ь) 6 Г(с-а)Г (a+l-b) 3 ' '

As a+l-c = j - j'<o and i-a = -i'-i <0 the hypergeometrie functions /А14/О J J о
and /А15/ are expressible using the Jacobian polinomials [18]

(a ß) (п+а\/, , \n . 4
Pn ' W  =\ n / ( 2  + 2 У/ F ("n' "n-ß »• + 1 > £гг) /А17/

(arß) /n+ß\ Л  1 \ n / v

Pn (y ) = ( n ') ( 2 У ~ 2 J F ( _n' “n~a ! ß+1; ) •

where f(z) is a function which fulfills a hypergeometric equation in the 
variable z = 1-x :
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To get normalization constants we have two relations:

( x - -  V

I ( ^  («) &  («> -  ■ f hiixKaiiil, «(io-jc).m о 16x J J -I - a JoJoо

By means of these we get the form, corresponding to that used in the liter­
ature .

aV U ) , f a + l H 2 3 4-l) r f 1+jn+o) Г (l-^g-o) x Mi9/
^o Г (l+j+a) Г (l+j '-a )-,1/2

[ r(2j+l) Г ( j ' +j+l) Г (j * -jQ+j) Г ' +jQ+l)
r(j'-j+i)r(j-jo+i)r(j+joti)

{ xH r v - ) ( l . x) V J -х i - v - v d  f e y

We must stress that the normalization relations do not make the normaliza­
tion constant unambiguous. An additional phase factor

e r (l+i-p) г (l+j'+o) 1/2
Г (l+j+o)r (l+j'-a) j

would be needed to be in agreement with eqs. /А7/ and /А9/,

Let us define the functions singular in the point x=l :

Л °  /_\ - /(2j+l) Í2j'+l) r(l+jo+Cf)r(l-jo-o)
jQ + a  ' r(l+j+a)r (l+j'-a) x

' г (2 j+i) r (j'+j+i) г (p' ~ jQ+i) г (jf + jp+ij I 1/2
L r (j'-j+i)r(j-j0+i)r(j+j0+i)
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•J 0
These have the same relationship to the functions djjj' as those of
Toller’s second kind boost functions to the first kind ones [6]:

i aJ гло■ f„\ _ / v , r(l+j-p) ril+l'+g)
djjj'^  ̂ jjj'^  ̂ r^l+j+a)r(^l+j'-a)

It may be seen from eq. /А19/ that

ejj?"°(x)jjj'

’o° / 1
djjj' X

It also may be seen that for

d3° °' djjj'
x -*■ О

(x)

D оd.°., (x)
|(m-j -o+l)
Xг о if m > j > 0  о

Having got the explicit form of d. (£ ) we turn our attention towardsJraJ í -1 \the calculation of the Euler parameters in °(,ULq' ULq / • This might be
done by means of the composition or multiplication law of the Lorentz 
group, by means of which one is able to write down the Euler parameters of 
two subsequent Lorentz transformations as a function of the two transforma­
tions. The similar law of the rotation group is well known [171* It may be 
seen easily from the parametrized form of a Lorentz transformation that the 
main problem is to calculate the parameters Ф, 6, x as a function
of a , ß , у i.e. to solve the equation

-1ФМ, -iőN, -ixM, -iaN- -IBM- -íyN ,
e e e = e J e 2 e 3

Using the defining representation for each of the matrices m 2 , n 3 we get
a matrix equation. The composition law may be written down at once:

chő = cha chß + cosg sha shy ; shŐ > О

в1пф = sing shy 
shő

cos ф = sha chy + cos g cha shy 
shő

sinX = ~sba slnß 
shő cosx = cha shy + cos g sha chy 

shő /А20/

It is interesting to note that just as in the case of 0/3/ these formulae 
also may be got by trigonometrical Consideration, only in this case the 
trigonometry of a hyperboloid of two surfaces must be applied.

All the remaining operations which are needed to the full composition law 
of the Lorentz group are the operations well known from the theory of 0/3/.
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As to the transformation involved in formula /25/ some minor alterations 
are needed when formula /А20/ is applied to it, i.e.

_x ißN3 i05M 2 -iaN3 -iXM2 “i5N3 -1фМ
Lg, = e e e = e e e i

ch£ = cha chß - cos0g sha shß ; sh£ > О

sin© sha 
s in x = ----------

sh£
cos x = cha shß - c o sQq sha chß 

sh£

simp =
sin© she s
sh£ cosip =

chß sha - cos© shß aha s _______
sh£

/А21/

Appendix В

For the sake of easier understanding we quote some interconnections between 
the groups su(2) and su(l,l) } 0/4/ and the Lorentz group.

Let us consider the following matrix

/

g (<* //ifi1) =

Cos Tj- ß e ¥ a+y)

i . f 1 1 (“-y)-sin j 5 e

/В1/

where -2тг <a+y, a-у £ 2u .If -l < z= cosß < 1 , the matrix
g(a, ß,y'j is unitary and unimodular, i.e. it is the element of SU(2) 
in its defining representation. If z > 1 then we get the matrix»

a b
b* a:

which is unimodular, and is an element öf SU (l/l) • The group SU(l,l')
is non-compact /In /В 4 / the region of parameter ß is unbounded/ with
unitary representations which are infinite dimensional apart from the 
trivial one. Let j label an irreducible representation and m characterise 
an element of it. The classification of the representations of su (l,l) 
are the following:
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I. Unitary representations:

a. / principal series: j is complex ; Rej = - j
m — О / 1 / ”21 • • •

_ + 1 + 302Г m 2 r ~ 2 ' •••
b. / supplementary series: jmj = 0, - -i < Rej < о

m — О/ — If “2/ •••
c. / discrete series: j = - j , -1, - 1 , ...

with two possible types:

j+ : m = -j, -j+1, ... 

j" : m = j, j-1, .. .

d. / scalar representation: j = m = o.

II. If j is differing from those of I. then the representation 
is non-unitary.

The matrix elements of su(l,l)are of the form:

D™' ( * . «. . ) - • « L. U)  •
here

О < у < 4 Tr
О < v < 2 тт 

О < £ < 00
and the functions d^, (5) may be calculated from the corresponding 
functions (cosó) of su(2 ) by setting Cos6 > 1 and by continua­
tion to the actual value of j .

The connection between 0/V and the Lorentz group is similar; taking e.g. 
a Lorentz transformation along the axis zs

/cha О О sha \
V 0 1 0  0
v 0 0 1 О

\ sha О О cha .\ /
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If we make a pure imaginary we get a matrix which is equivalent to the 
usual 0/4/ rotation matrix

/ cosß О 0 sinß \
О 1 0  0
О 0 1 0

^-sinß О О cosß ,
the matrix of equivalence being •

(1 О о о \
п = 0 1 0 0О 0 1 1

\о О О -1 / .

The connection between the representations of 0/4/ and the Lorentz group 
is quite analogous to that between su(2) aJid su(l,l) •
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