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EXTENSION OP THE SL (2, c)SYMMETRY 
P. Burányi

Central Research Institute for Physics, Budapest, Hungary

Abstract

The SL (2,0 trajectory generating algebra /TGA/ is extended to a SL(2,C)* 
SL (6,0 algebra in a natural way. Axial-, vector- and pseudoscalar meson 
trajectory families are generated hy the same nrultipletj the pion Is auto­
matically a conepiring particle with Toller quantum number j =1. Gener­
alized su (6 ) relations for Lorentz-pqle residues are obtained.

I» Introduction and s l (2>c )l • sl (2,(^ Symmetry

Scattering processes, in which the mass of particles in the final state is 
equal to those in the initial state have an extra symmetry at zero momentum 
transfer. [1-4]. The group of this symmetry is defined as follows. If the 
scattering amplitude TPiP2 > P3 P4 is written after a formal crossing as

< " P2' P4 lT l Plf-P3> - <E,P' |t | EfP> - <p'|T|(E)| p> , /1/

where E «= р.,-рз - P4-P2 . Р“|/Р1+Рз/ > р'“^/-р2-р4/ » tben we can define
а SLUfC) group ub the simultaneous Lorentz-transformation of p and p' , 
leaving E unchanged. The scattering amplitude is Invariant under the 
transformations belonging to the aforementioned group, if e - 0 • Other­
wise it is invariant under a subgroup of SL(2,C ) only, namely under the 
little group belonging to E .If we denote the elements of the correspond­
ing SL(2,C) algebra by Myv , Myv = -М%;у ,y,v- о, 1, 2, 3,
we may write

[ T(0) , MMJ  * О . 1 2 /

States can be classified according to irreducible representations of 
SL (2,c) , labelled by the quantum numbers a and jQ [5].

\ v  = 2 M a+2) + 1o ] ' S vpk Mpv Mpv = 8ijo Ca + . Expanding
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the scattering amplitude, we find poles in the о plane after an analytic 
continuation [1-4]. These, so-called Lorentz-polee generate an infinite 
number of Regge-poles. The contribution of such a pole to the scattering 
amplitude can be written as [5]

 ̂pf 7 3 2 ' ^ 2  * *̂4*^4 IT (О) I р/ J ^

= < p' » s2,X2 j s4,X4 |{o,j0}, s',X' » s' > Dgxg'x' /3/

. ea lim (ő-о) <|íö,j0}, s,X } s I p » s ^ X ^  s3,X3 > +... j
a , jwhere T ° is defined asssr

в/ j
Tss' “ < {a' V  ’ ^'-m? s'l T <04{o,jo}r j,m; s > •

The két I p » slf X^; s3X3 > is a two- particle state with zero total fou 
momentum and relative momentum p “ (p,0,0,0 ) ; particles i having spin
and spin projection to the z aria,.» denoted by and X± respectively.
IÍо,jQ} , j ,m ; s > is the same type of two-particle state in SL(2,C) 
angular momentum picture, with total spin s and angular quantum numbers 
corresponding to the relative momentum {s»j0bj,m . The function 
Da ^° (g'-1g) is the matrix element of s l (2,c ) transformation g'-1g

^sAs'X' = <{o^ o }' u(g' g) I { o,j0} » s,X > )

where g and g' are boosts, transforming from p to p and from p' 
to p' , respective1 : j , Ca is the signature factor. The s and s'
indices of the matrix element of t (o ) indicate the s and s' de­
pendence of Lorentz-pole vertices. Lorentz-poles will carry a dependence 
only on a and jQ t/the Casimir-operators of the maximal conserved group 
SL (2,C ) . The role of s and s' can be understood very easily, if we
couple together the spins si»s3 arid. s2's4 ia the zer0 relative 
momentum frame

I p; e!X,e1,s2> = J C-sX Is1X1s2 - X2X - l )32 *2 |pis1,X1,s2X2 >

and expand in "angular momentum"
|p; s,X,s1,s2> |p2, -{aQ,0} , 6,p; s,A,s]L,s2 >

/the four- dimensional angular momentum has to be put into self-adjoint 
representations of SL(2,c) / . Putting the spin state i-nto a Weinberg-
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-type representation, [6] (s, - s} , we couple together the two s l (2,c )
states to give
Ip » {°,j0b  s,s1,s2 > - 7 <(o, job  j,m| {aQ,0} f,y; {s,s} sX >p»X
|p;{ao,0}, €,U; s,X,slfs2 > ,
where we denoted the Clebsch-Gordan coefficient of the Lorentz-group hy

< |{o0fO} ,?,y ; {s,s} s, X > •

We did not indicate the dependence of the ket on the left hand side of the 
last equation on a0 , because a - jQ = ao is always satisfied. The 
introduction of labels {aQ,0} {s,s} instead of { o,j } corresponds
to the splitting of the generators of SL (2,c) into two parts

Myv L + syv yv /4/

Since the effect of the two SL(2,c) groups can be defined independently for 
the states in question,

[ Lyv ' V  ] - 0 /5/
is satisfied in the subspace in consideration.
A natural way of extending SL(2,c) symmetry is to assume that the opera­
tors s,jV commute with T (o) as well, thus Regge poles are calssi-
fied according to the representations of s l (2,c)l ® SL(2,c)g
Assvuning the existence of one pole, expansion /З/will take the form

< p'; s2,X2; s4,X4 | T(O)I p? sirXi; s3,X3 > 

< p'; s2,X2; s4,X4 |{оо,0},0,0; Ís b̂I sX' > D ^ q (g'-1g) / 6 /

S3
DsXsX' lim (о - o') t °°'s v о о /

< «VOJ, 0,0; { s,s>, s,X I p S1,X1; S3'A3> + ••

All the poles are now labelled by a and s . It is clear that one a poleоwith given s will correspond to a series of о poles with given 
jQ values and vica versa. More precisely a pole at'{o0,0},{s,s} gives 

usual Lorentz-poles at
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{a,j0} = t°0 + s»8) • fa0+s-l, s-1},...{oo-s,-s} .

Itt follows that with the exception of the trivial s - О case the leading 
trajectory (o -,o + s ) has j0= s ф О .On the other hand, we know
that leading boson trajectories are coupled to two pseudoscalar boson 
systems, so they have j *= О . This observation requires a slight gener­
alization of our symmetry scheme.by allowing representations different from 
is,^s} for s l (2,c ) s . Then if we choose a representation of the

type { s , 0> the leading Lorentz trajectory will have quantum numbers 
{oQ + S, 0} . However, a representation of SL(2,C ) , which is not of
the Weinberg-type [6] cannot realize on physical two-particle states. This 
can be prooved very easily by taking into account parity conservation. A 
state liej+Sj , Sĵ -Sj} ,s,A> s.^, b 2+0 has parity n(-l)B
by construction, where n is some internal parity independent of s and A .
On the other hand, states | s,A > constructed from a given pair of parti­
cles at rest have parity n independently of s and A . Degenerate parity 
doublets allow the construction of representations of the above type, e.g. 
the system of zero mass fermions /quarks or baryons/ can be classified accord­
ing to such representations of 4l (2,c )s . Because of universality, we may
assume that all Regge-poles are classified by the above group, while Regge- 
vertices which depend on the nature of external particles are not in­
variant under Sl (2,c )s transformations. Of course the Sb(2,c)M 
classification of vertices remains valid. When we go over to scattered 
particles of finite mass /from scattered particles of zero mass/ the par­
ity degeneracy will be resolved and the non-compact generators of s l (2,C)s 
cannot be defined any more /they do not commute with parity/. Nevertheless, 
generators belonging to the maximal compact subgroup su(2)s remain 
well-defined. So we can accept for particles of finite mass as approximate 
symmetry s l (2,c )l ® SL(2,C)S for the Regp^-trajectories and SL(2,C)M 
or Su(2)L c su (2̂  for the Regge-vertices,

As an illustration we may consider the pseudovector representation of SL(2,c)s

p |{oo,0 }, 0,0? {1,0 } , s,A > - - (-l)S I {co,0} 0,0 ? {1,0} , 0,0 > •

The three states corresponding to s * 1 can be constructed from a NU two- 
particle state, unlike the state s - O. The three s - 1 states are 
linear combinations of the statee appearing in the fQ , and f22
helicity amplitudes (7]» in NH scattering. A pole in the oQ plane cor­
responds to the following poles in the a plane
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{ao,0} ® {1,0} = {oo + 1,0) ® {oq ,1} ® Í0O, -1} » (oo -1, 0}

All the poles are coupled to the s = 1 states, which are physically 
realizable. If pions are coupled at zero momentum transfer, they are in 
the {oo, - 1} representation. Then the {aQ+l,0} representation 
corresponds to mesons. In exact SL('2,c)L ® SL(2,c) g symmetry
limit their distance in the a plane is exactly unity. The possible 
symmetry breaking mechanism will be discussed in section 3. If SU(2)0D
remains a good symmetry in the vertex functions, the ratio of the 
coupling of different Lorentz-poles is given simply by the Clebsch - (Jordan 
coefficients of the Lorentz-group.lt is worth while to remark that in our 
scheme conspiracies of the II. and III, class [7] appear necessarily 
together.

Since mesons are coupled to two pseudoscalar mesons at zero momentum transfer, 
the p -trajectory family has jo=0 • Probably it is the leading family 
of a SL(2,C)g multiplet. If we try to find some trace of SU(6) sym­
metry /as we shall see later/ we have to put the p -family into a vector 
representation of Sb(2,c)s , for which

P I {oo,0}, 0,0 t {1,0}. s,A > - C-l)2 * * S |{ao,0} , 0,0 » {1,0} , s,X > •

Only the s=o state is coupled to the NlT system /this is the f-^ helic~ 
ity state/. The s=0 system is coupled to the {0 +1,0 } and {o0~l,0} 
families only. In the framework of the SL(2,c) L « s l (2,c )s symmetry
P -meson and pions are always in different multiplets\/their G-parity is 
different, but G commutes with SL(2,C)g generators/.

2. The Inclusion of Internal Symmetries

If we consider the scattering of zero mass quarks or baryons, we can define 
easily SL(б,c)g transformations /one may.think about an u(6,6)s 
extension of this group/, which commute with SL (2,c)L by construc­
tion. In this case we obtain a minimal trajectory generating algebra 
Sl (2,c )l ® SL (б ,c)g  ̂ [8]. This algebra is minimal in the following
sense* if T(o) commutes with s l (2,c)t ® G , where g is a

6,C)S , Gg contains at least one operator linearly
independent of the generators of Sl (2,c )s and su(3) , the internal
symmetry group, then SL(2,c)l c s l (6,C)s will commute with T(o) as well. 
This statement is a simple consequence of the equations
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[ т(0) , Myv] = о ,
[ т(о) , т* ] - о ,

and the Jacobi-identity for double commutators of the type [т (о), [мру»с8] I. 
and [ t (0) , [ t\  Gs ] ] » where- are the generators of SU(3) .
For particles of finite mass the parity degeneracy is resolved» so the max­
imal symmetry for the vertices will be the maximal compact subgroup of 
Sl (2,c)l ® Sb(6,c)g : SU(2)l ® SU(6)s ./which commutes with the
parity operator!/«

The trajectories, however, will be classified by the TGR Sl (2,c )l • s l (6,c)s
As evident from the above discussion, non-unitary representations realize 
for both commuting sUbalgebras; These are infinite-dimensional "self-adjoint" 
/j = о / for s l(2,c )l and finite-dimensional for Sl (6,c)s .

First we shall consider mesons. They are probably in а (б,б) /quark-
antiquark/ representation of SL(J fC)g . The (б,б) representation goes 
over to (б,6) under space reflection, thus, parity eigenstates can be 
constructed from the linear combination of these representations (б,б) 
Trajectory families corresponding to positive and negative parity combina-r 
tions will conspire with each other just like scalar and pseudoscalar 
trajectories in a jQ = 1 representation in usual Sb(2,c)M , This fact 
is a simple consequence of the equality

(<6,S| +<б,б|) T ( |б,6 > + | 6,6 >) = (<6,6 I - < 6,б|) T (|б,б>-|б,б>) =
= T (6,3) + тСб,б) .
For determining the appearing s l(2,c )m families, we reduce first the 
SL (б,C)g representations to Sb(2,c)s ® su(3) , then add the SL(2,c)g
to the Sl (2,c )l representations to give

. + + +
{o0,°} « (6,6)" = {aQ + l,o:}g © {oQ + 1,0}“ ® {aQ , 1 }“

+ + + + +
• {V “1}8 ® {0o'1}l * {ao' “1}1 * {ao - 1 >8 • {oo - 1 ' -  1}i »
where we denoted the representations of Sl (2,c)„ ® SU(3) by {a,j }TM o nwhere n is the dimension of the su(3) representation and the т sign 
refers to the internal parity. The representations with different т are 
of different C-parity /or G-parity/ as well. If the vector meson nonet is 
identified as {oQ+l,o}g and {0^ 1,0^  /so the aQ signature is 
even/, then {no+l,0}o and {ao+l,0}g give an axial-vector meson family



nonet, íao; ±i}~ and (oo ,± l}~ conspiring scalar and pseudo-
scalar meson nonets, {aQ,il}g an<̂  {oo,-l}* conspiring scalar and
pseudoscalar nonets of opposite G-parity, and some even lower lying vector 
and pseudovector nonet families.

Since the Lorentz quantum numbers of the p -meson and pion trajectory 
families are op -o,54 and од =-o,o2 , respectively, their difference is
less than unity, thus the SL(6,c )s symmetry must be broken even for the 
trajectories.

The vertices are invariant only under su(6)g • If we decompose the(б,6 ) 
representation into su(6)g representations of definite parity we obtain

(б,б)+ « (б,б)~ = 35+ ® 35“ ® 1+ ® 1

A 2J2 representation of definite parity is composed from both 
representations of definite parity. Only the states of positive parity are 
coupled to ВБ systems.
By coupling the positive and negative energy baryons at rest, we obtain 
the su(6) representations 5 6 ® 5 6 = 1 * 3 5 ®  4o5 e 2695 . Representa­
tions 1 and 25 give a projection to the (б,б) representation. The elements 
of the above su(6) representations will be the different helicity states. 
In contrast with static su(ß) , pseudoscalar meson pairs are coupled 
to the p -trajectory. The two-meson system contains the Д2, representa­
tion of SU(6)S and the p -trajectory is coupled only to the 

s = о state (jQ « Ol)-

As far as the baryons are concerned, they can be put into /56,1/ and /1,56/ 
representations of SL(6,c)g . Then we get the following s l (2,c )m 
families

{oo,0} ® [(56,1) e (1,56)] - <o0 + I , + £ >lo . {ол + i , - 4 }

* {ao + ! •  \  }lo • {ao + Ь  Í  + ^>2' 2 Jlo lo

lo

2'io * to° - 3' - *

{ao +
1
2' 8

{aо 1
2' ® {aо

Our notations are similar to those used for the description of boson 
trajectory families. The reprr entations {oq+ |, -  1} and {oq + I, ± ^}g 
can be identified as the known decuplet and octet trajectory families 
[9,10,11].
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An interesting consequence of this classification scheme is that the ДОfamily has quantum number !jQ | = , which forbids its coupling to the IIN
system in the symmetry limit. However, even s l (2,c ) m is broken for the 
д residues due to unequal masses. Another consequence of this classifica­
tion is that the Д trajectory functions aÄ(w) cannot b'.*e a linear 
term in their Taylor-expansion [9,10], a fact, which was observed in various 
experimental fits [11,12].

If the SL(б, c)_ symmetry were valid at non-zero momentum transfer, then ьat the point о =0 -as easy to check from the Clebsch - Gordan coefficients - o 3 + 3  1 + 1all representations but {a + - -̂ } and {cr + , - ■=) would.
r  о 2 2 lo 0 2 2 8decouple, that is to say, we would get back the multiplets (and their 

parity partner) belonging to the usual ^6 representation of su(6) .

The coupling of Lórentz-pcles to different two-particle states can be given 
most easily by writing down the contribution of a Sl (2,c)l ® Sb(6,c)s 
pole to the scattering amplitude of particles a and 0 going over to 
particles у and б , as

<p' ; s' , A' ; A  ITI p s,A ; A > =

= I < p' ; s',X', A I {oQ,0}, 0,0 ; B', s',A', A > f(B')
B,B',<r,jQ / у /

< B', s', X', A I C, {s1 + s2, s1 - s2> , s', X', A >

oj0
<{oo,0},0,0; C, {s1+s2,s1-s2} , s' , X', A| {a,jo>, s',X'; A > DgXs,x, (g' ĝ )

< «,*,» I {V 0>, 0.0, c, {.1+.2, в1-.2} , S,A, д ,

< C, ÍS.J+S2, Sj-Sj,} , s, X, A I B, s, X, A> f(B)<{ao,0}, 0,0; B,s,X,A| p; s,X; A>

In eq. 7 we used the following notations; A stands for the su(3) quantum 
numbers (Casimir-operators ánd sub-quantum numbers Y, I, l3 ). B,B* and 
C denote the SU(б)g and s l (6,c )s representations in questión, respec­
tively.

The first and last brackets under the sum in eq. 7
transition matrix elements <{a ,0},0,0| p> = СГ9„1 ■o' 1 c 2П
coefficients of su(6)s

are the products of 
and Clebsch - Gordan2П
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<B,s, Л, А I ay; s, X, A >  j 

f (в) is the reduced vertex function.

The second brackets towards the centre of the expression on the r.h.s. of 
eq. 7 are the transition matrix elements from su (6)g representations В
and B* to Sb(6,C) representation C . The brackets next to the function
ojoDsXs'X' are the P1,0«11-10̂ 3 of transition matrix elements from SL(6,Cjg 

to SL(2,C)g ® SU ̂ representations and Glebsch - Gordan coefficients of the 
Lorentz- Group.

< iao,0} ,0,0 ; {s-j+s^ s -j-Sj}, s ,X |{a,jQ}, s,X > •

Using the known expressions for the above matrix elements we obtain

< p'; s', X '; A IT I p ,• s , X ? A >

= Т Л ?   ̂ (a +l)(2s +l)(2s +l)[(o+l)2 - j2] f(B') f(B)(2П)2 B,B',a,jo4 °
< ; s',X' ; A | B', s',X', A > < B, s, X, A | ay i s,X ; A > / 8/

D°j° sXs'X' )

where we expressed the Clebsch - Gordan coefficients of the Lorentz-Group 
by 6j coefficients [13].

3. Symmetry breaking

As we have seen, the Sb(6,c)s symmetry of Regge trajectory families 
is broken. First we shall consider the symmetry breaking mechanism for the 
Sl (2,c )l ® SL(2,c)s group. Since tbe symmetry breaking operator has to be 
invariant under s l (2,c )m , the most general form of a symmetry breaking 
operator is

T' = I
b,j }where T . „s; D,m -

of representation

a^ m 'c»j.
{cr,j0} {a,j }T T /9/

is a scalar operator under s l (2,c )l eû d a tensor-operator
{a, i } under S L ^ c V  »while TT .' 0 is аu 'в- ьгдду.
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scalar operator under Sb(2,c)s and a tensor operator of representation 
{a , jQ } under sl (2,c)L . Since the realized SL(2,c)g representations
are of finite dimension, only few terms of sum 9» will give a contribution 
to a matrix element of the type

< I т' I ' ^'m > =

У < ia,j0} ' jfm Î ao'0} ,i',y'? {s.,+s2 » si“s2-}l»y»s,A,£',y' ,s',A'
, s',A' >

/ 10/

< {ao#0} , £',y'; {s -̂ +82, s^ S j ) ,s ',A'| T'| {ao,0} , !,y ; {s^+82, ), s, A>

< iao,0} , l, у?, {s-̂ +̂ z s^-s2} s,A I{a,jQ} , j,m > •

The first order perturbation to the Lorentz-poles is given by the expression
[9,10]

o' = a + a < (a,jQ} , j,m |T'| {a,jo} , j,m > • /11/

Using equations 9. and 10. we can obtain for o' in a straightforward way
K /2 N+M Oo/2j ( a o / 2 ^  ° 0 / 2 )

= °  + I  M V m "o a+jo o-j« ' I 1 2 'N,M l_Sj. Sl J ( s2 s2 J
where the constants cN M give the weight of the representation {n ,m } 
in the perturbation operator, t0 is the signature of the pole in question. 
E.g. a cr PyP'v type coupling of s l(2,c )l and Sb(2,c)s corres­
ponds to the {1,-1} representations of the perturbation. If one assumes 
the presence of only one irreducible representation in the perturbation 
operator, one can get useful relations among the perturbed a values of a 
Sb(2,c)s multiplet.

In the framework of the SL(6,c)g symmetry we can construct at first 
operators which break Sl (6,c ) but commute with Sb(2,c)0 , The
degeneracy between the (б,б) and ( 6 , 6 )  representations can be resolved by 
a (21,2l)jtype two-quark - two-antiquark perturbation, which Contains the scalar 
representation of Sb(2,c) ® su(3)and gives a transition between (б,б) and 
(б,б)

If we want to break SL.(2,c)g as well, we can put the symmetry breaking 
operator into simple representations of Sl (6,c )s , e.g. (35,1), from which 
we may project out su(3) singulet representations and couple with an ident­
ical Sl (2,c )l representation to give a s l (2,c)m scalar.
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4. Discussion

The application of the above described, symmetry scheme to actual processes 
will be discussed in a forthcoming paper. We hope to extend our considera­
tions to non-vanishing momentum-transfer [9*10] as well. For non-vanishing 
momentum transfer, in the C.M.S. of the t channel we hope to classify 
trajectories according to the representations of Su(2)L ® su(6̂ , the maximal 
compact subgroup of our TGR, just like in' the case of TGR s l (2,c )m , when 
at non-zero momentum transfer the remaining symmetry was the maximal compact 
subgroup of the TGR, SU(2)M

We mention that Salam et al. [14] tired to extend Sl (2,c)^ symmetry in 
an entirely different manner by embedding Sl (2,c)m in a higher group , 

Sl (6,c )m and continuing some of the Casimir operators of the latter' 
to complex values.

The author is indebted to Drs. A. Frenkel, A. Sebestyén, К . Szegő and 
К. Tóth for valuable discussions.
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