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I. Introduction

The purpose of this talk is to give a brief review of some ideas 
which have played a certain role in recent developments of what we usually 
call Regge pole theory. These developments lead to a better understanding 
of the properties of "composite states" (what all known hadrons are be­
lieved to be) and at the same time resolve some difficulties that have 
accumulated in the past few years.

Historically, these developments originate from at least four 
sources.

1. It was discovered by Gribov and Volkov [1] and Goldberger, 
Grisaru, MacDowell and Wong [2] that certain constraints have to be 
imposed on helicity amplitudes if one wants to have the sacred principles 
of analyticity, crossing symmetry and Lorentz invariance to coexist peace­
fully. In Regge theory these constraints can be fulfilled only if one 
invokes several Regge poles and assumes some definite relations between 
their residues and/or trajectories.("Conspiracy" of Regge poles).

2. Model calculations showed ß,4] that the structure of the 
bound state spectrum in relativistic theories is more complicated than 
one would conjecture by a naive extrapolation from Schrödinger theory.

3. Toller and his group studied the group theoretical structure 
of scattering amplitudes C5) and discovered that a two-body, elastic 
scattering amplitude at vanishing momentum transfer admits a partial wave 
expansion according to the representations of the homogeneous Lorentz 
group instead of the "ordinary" partial wave expansion. Toller was the 
first to point out that this generalised partial wave expansion auto­
matically satisfies the kinematic'constraints discovered in [1, 2], by 
correlating an infinite number of "ordinary" partial waves.
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4. Freedman and Wang [6] tried to force an unequal mass, spinless 
scattering amplitude to have Regge asymptotic behaviour and found that this 
was possible only if several Regge poles were arranged according to the 
scheme described in [3, 53»

There followed an immense number of papers, at various degrees of 
mathematical sophistication and by now a unified pattern begins to emerge 
from these - at first glance uncorrelated - fields of research.

It turned out that the analyticity properties and group structure 
of scattering amplitudes are closely related to each other.and all the 
difficulties of Regge theory (expressed partly in the form of kinematic 
constraints, partly by the аррёагапсе of unwanted singularities in Regge- 
pole contributions) can be nicely resolved by essentially algebraic meth­
ods.

After a brief review of some aspects of the representation theory 
of the Poincaré group (P) we shall study the group properties of "compos­
ite states" and show how the diseases of Regge pole theory can be traced 
back to certain properties of their spin algebra (the little group of P.). 
This will give us immediately the recipe to cure the diseases, and at the 
same time it leads to some interesting physical consequences, of wnich a 
few will be briefly mentioned in the last section.

We shall toy to emphasize throughout the underlying physical ideas, 
often at the expense of mathematical rigour. Also, technical details will 
be omitted whenever possible, in order to make the presentation more 
understandable.

We have discussed all the ideas and results described here together 
with P. Surányi. The only reason why his name does not appear under the 
title of this report, is that he has not seen the present version of the 
MS and therefore cannot be held responsible for it.

2. Local representations of the little group

In this section we summarise some results which are well - known - 
or at least should be.

We require that our theory be invariant under inhomogeneous Lorentz 
transformations 5 these transformations are generated by the operators 
and M r  which satisfy the usual commutation relations (CR):
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t и* д ]  - <- (to)

Г N e , N-] = -i &jKM K
d a )

i- J g (ie)
С Mt, Fi] - * £ * Р к

[ M e , ? . ]  - о (if)

[ ^
(i^)

[ N i , P K] -
(ii)

;Неге we put Hj. « 5 6ij><  ̂ N t я M 0f)
We want to study irreducible states, i.e. those which transform 

according to an irreducible representation (IS) of the algebra (1).

Our main concern will be the relation of such irreducible states 
to analytic properties of scattering amplitudes, in which those states 
enter as intermediate states or exchanged ones.

2.1. Little groups

What are the quantum numbers characterising a state with definite 
four - momentum? This question leads to the concept of the little group 
(in the mathematical literatures the isotropy group of the four-momentum).
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The answer can he found by constructing the most general set of 
operator which commute with . For such a construction one has to go
"outside" the algebra (1) and consider elements of its universal envelop­
ing algebra (UEA). For physicists* purposes, a definition of the universal 
enveloping algebra is the following: consider not only the elements 
fp. » Mp,r» but their "ordinary" products, like ; F^P^
etc.and give a meaning to the commutator (the operation which played 
the role of the "product" in the algebra (1)) in the usual way, i.e. if A, ß, C are elements of the algebra, then AB is an element of its UEA, 
and

[А.В,с] Й  А ГБ,Cl * [A,c] B.
Now it is easy to show that

= "2 K r

has the property that

ts r->^] “ °-
Also, only three components of are independent since

b r Pj,= - о  , The operators S y  do not form a subalgebra of
the UEA of (1) by themselves, since

[Sr; Ps S... U)
However, if I consider only those states, which are eigenstates of 
I can regard the P, -s as C -numbers and then the jS.. do form anp-algebra.

By choosing a representative of for T5* jj О  , one can
verify that the algebra (2) is isomorphic to SU(2), E(2), SU(1,1)
respectively. Wigner achieved this by choosing the representative vectors
as (0 ,0 , o , w ) , ( 0 , 0 ,  p , p )  , ( 0 ,0 , p , o )  .
However, we cannot be satisfied with such a choice. Indeed,, our main 
objective will be to study the behaviour of (2) as the momentum changes 
continuously from the timelike region through the lightlike one to 
spacelike values.

A suitable choice is the following! =5 (0^0^ p ; |p,-L + W 3-1). 
(There are other choices possible, of course)
(We shall not be concerned with the exceptional case P  ш О because of 
reasons which will become clear later on.)
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Let us write out the explicit form of the with this choice:

JpV^ + Kp) ,

S =* -L M p4  w 11з P •
(We divided through all the operators by V M - P 1)"̂  1 because of dimensional 
reasons'.) Also, let us perform a similarity transformation on all the 
parameters by multiplying them through with ( w / ( p V v P  Г  , then we are 
left with the following algebra:

•S4- M,-vN1
Sj.- + irNt)

S - M3 1 *3)

S0= ,

C3)

where

Now, if I keep p  fixed, then

hrl <  i corresponds to timelike
|ЧГ1 «  1  corresponds to lightlike
brl >  1 corresponds to spacelike

.12, -г .momenta. {There is a branch point at VI a -p ~ ;  this is unimportant for us, 
since we shall be interested in the behaviour near W - o  ).

I have the CR between the independent operators ( s,, s Xts.) ■■
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[ s,, SJ = i (1 - ír1) s3 )

[s3>sj- i sx
4. ) (4)

The Casimir operator, 0 can be written as С =• 5 it is obviously
Poincaré invariant:

& V ; c ] ~  [ R , C ] - o .
(In fact, it is one of the Casimirs of (1), the other being

?.2.. Standardisation of the algebra of Winner oparators. Si*..

A representation of the CE (4) can be easily constructed; there­
by we shall obtain a representation of the whole algebra (1) if we start 
out (as we always did so far) from eigenstates of P ̂ .

Introduce S j . =  i S z > tken (4) is rewritten as

[ S3 )Sjd = i  St ) (5a) 

ÍS+, 5.1= 2 (i--J-l)Ss . 05b)
On introducing 3 = Ŝ vv, С 1 - ( £- О for Oa+£) and 3+ ^
with the definition: *±tU.-V*r -  S i  , I have

[h , 1±]' 1 it

(This standardised form of the CE clearly shows the structure of the 
algebra we just talked about.)

It is instructive to write out the value of the Casimir operator 
in terms of the .3- :

C = I (3v+5‘ + 6 3i) .
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The real question is nows what are the realisations of this algebra (5) 
we are working with, and how do they behave as 'V' passes through t i.
(A parenthetical remark is in order here. In our earlier work (7) we 
started from an explicit realisation of the algebra (5) for the timelike 
case and performed an analytic continuation afterwards. Although this 
procedure is, in principle correct, it gave rise to some misunderstandings. 
I am grateful to Professors G. Feldman and P.T. Matthews for some critical ■ 
remarks on this subject.)

2.3. Be presentations

The standardised form of the generators (6) allows one to construct 
the representations of the little group by entirely elementary techniques 
(NB that we are talking about the.little group and not about little groups 
corresponding to the different Wigner classes.)

Since in most of the cases we shall have to do with non-unitary 
representations (Begge poles), it is more convenient to realise the algebra 
(6) by means of differential operators rather than by matrices (since the 
wave functions we shall be dealing with do not satisfy convenient boundary 
conditions and completeness relations). We start out from the "ordinary" 
unitary representations for the timelike case, ( £ *= + i.)and choose the
functions

Ao.(4e -4) (2j = integer)

as a basis. Then it is straightforward to show that we obtain a realisa­
tion of (6) by the following operators:

V  * (ot9e sU4 щ ~  “ 4 § ё ] + л ÍSeT (1_cos-9),

(£=+i)
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In order to obtain representations of the group generated by the SI 
it is sufficient to perform a transformation on the parameters.

In order to obtain a proper basis for any value of J (and hence, 
to be able to produce representations for the spacelike case, I'V’i > 1  (or 

) we^proceed by following Andrews and Gunson (8].

We define for arbitrary , J (not necessarily half-integer), the 
basis functions as follows:<£>Л (ф в -ф) ■-1 Vi-л* EZt СФ 0 -ф) >

,ndwhere the [“ -s are functions of the 2l kind.

For the reader’s convenience we quote the corresponding definitions 
from Andrews and Guneon, op. cit-.

(z - coŝ>).
For m  —  m  £ О  ; m  +  ПП* £ О  we have:

R i + r m i )  r C i - m M )
4

r()+rn+L) p (j-
F (-jtm

П  ( m - i m M j

To continue to other regions, use the following relations:

Region: Relation:

m - m 1
m + m ' >,0 rn,m

m - m *
+ m 1

< О
< 0

d i
№ro - m rm>

hn - m' ^  О

m + m 1 4 о
d1m m 1 d1-ho — mo
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Emm> = e  «rnrnií1).

< m,U)_ E — í e : 5 r ^ (J-m) ,й  -  dj , M ?I W "  Z s l n M j - m ) \  n n m  ♦n 'm  J

1
© mmi (z)=-j- [V(j+i™i) r(]-m*i) r(j+rrl+d) 1 jj

x F d s )17X7 U y  V ' Г Úja)
' I V *

/tcm (-^ 4oJi(j-m) e"^ (21))« dJ , (2) .
о. . , nr J J - m - m  j  mm1
*j=inteaer '

Products of the reduce with ordinary Clebsch-Gordan coefficients
(CGC) (Recipe: take Racah’s symmetrised expression for the CGC and replace 
the factorials by T"* -functions for arbitrary \ -s ). Thenj«+k .

m m ‘ j-_oo

Tbe^V-s are identical to the functions entering in Mandelstam’s Reggeiza- 
tion procedure.

The representations we obtained here are representations of the Lie 
algebra (5) of the little group. It is important to emphasize again that 
they are in general representations of the algebra and can be continued 
to global representations only in particular cases (eg. for &  real, one 
must have Slj ■= integer in order to preserve the topological properties 
of the group).
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2.4. Inclusion of space reflection

This is straightforward, for the generators (5), using ,
Ä ” Ь/» and elementary geometrical considerations for the Euler angles! 

under P , goes over to and goes over to JT-^ ; if - as in the
following - Д  means a helicity index, then Л  —г — Д  under P  . Thus
the functions v ,

-DJ‘(ф9)- 2 -i [i)jA (4 ® *- С-Ф.х--©, Ф)] (a)
form a basis with and P  diagonal. ( <7̂ is a'suitable phase
factor.)

3. Partial wave analysis, single "particle" terms, pseudostates
*

This subject is by now well - known [9] and it means to decompose 
a scattering amplitude or vertex with respect to IR-s of the Poincaré group. 
Clearly, every matrix element of an invariant scattering operator, unless 
taken between one-particle states, transforms according to a reducible 
representation of the Poincaré group. Indeed, if we consider a two-particle 
state, it transforms according to (3 *4)®* (ßx"\) and similarly for many- 
-particle states.' The Clebsch - Gordan decomposition is the most conveniently 
written in a mixed basis, where the product state is characterised by the 
one-particle helicities, and’the "intermediate" state by the
projection of the spin onto a fixed axis, 4tv . Symbolically then we can 
write e.g. for a two-particle amplitude*

Pasv4 I "T \ p„s,Ai P A Ä . j < p3S5Л3 ^ \ \  x
><«yj>lc<pj<*pj m| $ s X 7  U )

The first and last factors are CGC of ̂  e< j o<' are degeneracy labels, the 
summation and integration goes over every dummy label. Further, by 
Wigner-Eckart

<«Vj4T|«pjm>- <<Х11ГГ(p*j)l|<*> ( pjnri;O0O| p'j'm';

(since T  is an invariant operator)
(2)
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and the reduced matrix element is what we commonly call the partial wave 
amplitude. Explicit forms of the CGC have been first calculated by loos [9]» 
The existence of a partial wave expansion for a scattering amplitude is a 
fundamental property and follows essentially from its Lorentz (i.e.
Poincaré) invariance and unitarity.

Now such a partial wave expansion is fine until I begin to combine 
it with some other properties of the shattering amplitude.

The properties which turn out to be "dangerous" are equally funda­
mentals they are: crossing and analyticity properties.

Instead of going into a full treatment of the problem, let ús de­
scribe the situation qualitatively.

I can perform a partial wave decomposition of a two-body scattering 
amplitude in three channels. In one channel the total four-momentum is 
timelike (this is the expansion we have just written down) while in both 
the other ones it is spacelike.

Now, since by assumption, a scattering matrix element (1) is an 
analytic function of the Mandelstam invariants with known analytic properties, 
there is a path in the complex &  space along which an expansion given 
by (1) and (2) can be continued to a spacelike expansion. (The helicity 
amplitudes we are working with have more complicated analytic properties 
than the spinor amplitudes - the so-called invariant amplitudes - do; a 
full analysis of these kinematic singularities has been given recently 
in the beautiful papers by Cohen-Tanondji et al [10]. Here we are concern­
ed with a slightly different problem;' it is the following.

In the process of continuing the scattering amplitude from a 
"direct" to a "crossed" channel, the structure of the little group changes 
from SU(2) to SU(1,) as shown by eqs. (2.5-6). Correspondingly, one must 
continue the expansion (1), (2) by means of the Watson-Sommerfeld method.
Now, unless the scattering amplitude is physically uninteresting, in the 
process of the Watson-Sommerfeld continuation one will pick up singular­
ities of the partial wave amplitude Cot'ii T 4 p V j ; i i o < >  , and we shall 
be interested in the relation of the singularity structure of the partial 
wave amplitude and its analyticity properties. In order to simplify the 
treatment, we shall assume that the singularities correspond to "bound 
states" in the two-particle amplitude.

What is a "bound state"?
Unitarity always allows us to write . <*) I I T  II o< >  in the forms
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<У ЦТ I I - 21<°<'|1Н»0<“><«,8Р‘1110<>
=-А-21 <«'[lNHc<‘><«“ll[D]ll0<>'

where A «  Det "р , and is the minor corresponding to
the element <4x41 D 11 0<> of the matrix £)k

We shall say that there is a hound state in the two-particle system 
we are investigating, if, (on writing p \ _  s ) A(s,j) has a simple zero 
in such a way that,

a) A(S,j) is regular in some (sufficiently large) domain in the 
' complex S,j space

h) The equation A ( s , j ) ~ o  can he solved either in the form 
5  ^  Cj ) or j « (X ( £ )

c) The residue matrix of the corresponding pole in T  has rank one 
(factorised residues).

The bound states defined in this way share many (although not all) 
properties of an ordinary particle.

In particular, one finds that the residue-factors in the T -matrix 
play very much the same role as form factors (or wave functions) of a 
particle; since the same hound state is coupled - through unitarity - to any 
physical particle system, (unless the coupling is zero because of some 
selection rule) which, by assumption form a complete set of states, one can 
even define a "state vector" to every point of the surface A ( S tj)«=0, 
in such a way that the residue factors can be considered as scalar products 
(i.e. "wave functions") in the usual way.

Correspondingly, an infinitesimal Lorentz transformation on the 
physical states induces an infinitesimal transformation on the state vector 
of the bound state. Looking at the CG decomposition of T  (eqs 1. and 
2) and at the explicite form of the CGC one can verify in particular that 
the infinitesimal transformations of the little group are realised by the 
differential operators, , constructed in the previous Section.

As long as we consider infinitesimal transformations, there is no 
real difference between wave function which transform according to unitary 
or non-unitary representations of the little group. Differences arise only 
when 'we start considering finite transformations, since the wave functions [133
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corresponding to non-unitary representations do not satisfy proper boundary 
conditions, therefore in this case we shall speak about pseudostates.

In the following section we shall investigate the following problem: 
given the contribution of a pseudostate (or Regge pole, in more conventional 
terms) to the scattering amplitude, how does it behave when the mass of the 
pseudostate passes through zero. Before going into the investigation, we add 
a few remarks about the nature and importance of this problem. It is well 
known that when a pseudostate is exchanged in a scattering amplitude, (i.e. 
the contribution of the pseudostate is written in the form of a Regge-pole) 
the mass of that pseudostate is tied together with an external variable, 
namely the invariant momentum transfer. Therefore, depending on the external 
mass configuration, the point where the mass of the pseudostate vanishes is 
either on the boundary or in the inside of the physical region but (provided 
there are no massless physical particles) certainly in the inside of the 
regularity domain of T (or rather, of the amplitude freed of kinematics}, 
singularities).

We have seen in the previous Section that the sturcture of the 
(strictly speaking, complexified) little group changes as the velocity rtf 
раззее through one. Now, if one looks in particular at the form of the little 
group opearators expressed through the -a (eq. 2.6), it is evident
that the structure of the group (or algebra) changes discontinuously at 
h H * = l  . (The CR involve the step function <£ = .s<̂ n (l-ir2,)). The ques­
tion naturally arising is whether such a discontinuous change in the group 
structure as we pass through the light cone of the four-momentum of the 
exchanged pseudostate does not give rise to unwanted singularities in the 
scattering amplitude?

If the answer is in the affirmative (as we shall see, it is) then 
we either should abandon the concept of one-"particle" exchange at all- 
which is hard to do, since after all it is based on physically very clear 
concepts, or else, we should modify the group structure Of a "bound state" 
so as to make analyticity, unitarity and Lorentz invariance compatible.

4. The trouble on the light cone and how to avoid it

4.1. The trouble: contraction of the little group

Let us investigate the change in the structure of the little group 
as realised by the operators (2.6, 2.8). The corresponding operators 
can be defined as an analytic function of the parameter | « (L- 
namely



S <,2. ( ^

S,(!) -
Therefore, as J — ^ О , naively we would put ** °  5 of
course, whether limiting procedure is justified, depends on the way as 
acts on the basis vectors. There are several possibilities,

a/ If 3"i,z carries every basis vector into another one with a finite
coefficient, then the Lie algebra of the little group contracts 
(Wigner,Inönü [ll])into the algebra generated by the single element ^ .

Ъ/ If the coefficients in Ü l j m  >  are such that they tend to 
a finite limit as ^ О  , then the algebra contracts into E(2), 
as shown in Sec. 2.

Remark: case Ъ/ is realised in the Wigner-Inönü procedure of contrac­
tion by taking a sequence f n. — >• О and letting become a func­
tion of I in such a way that 2 j ( f O  = integer (n=l,2,....)
and JUm, 1+vj C f *v) = finite.

с/ Finally, it is possible that S - V  li has no limit as j - ^ O

Clearly, when we are considering our pseudostates, only cases a/ or 
с/ can be realised, since the Froissart bound on the scattering amplitude 
does not allow a Regge pole to go to infinity at zero mass (barring
pathological behaviours of the residues).

Now let us see how this situation is reflected in the properties of 
scattering amplitudes involving pseudostates.

The contribution of a Regge pole to a two-particle scattering amp­
litude is proportional to the quantity:

^  ~  PisA  l p,<*<s), m  zr3s-h >  с (spö*

x< P m P*SA >  ; (i)
where the first and lest factors are CGC of the Poincaré group, ß  is a 
residue factor. If (as we want to assume) the pseudostate corresponding to 
the Regge pole is an eigenstate of parity, then the corresponding linear 
combinations of the CGC are just proportional to the functions 
defined in Sec. 2.
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<2Y*±The ос/ express the effect of a finite transformation generat­
ed by the algebra (2.5) (for the timelike case, a pure rotation in the rest 
frame), which brings the relative momentum over to a vector parallel to p  . 
If we denote the Euler angles of this rotation in the rest frame by 
( ф , е , - ф  ), and the polar angles of the relative momentum in the frames 
we have chosen (i.e. p 3 О  , fixed) by e> and ф ’ , then by elementary 
kinematics we find ф ' « ф  and 4g — • * ) / ( bß Jr (actually
the £)°* are linear combinations of two "ordinary" rotations, one by 
( 4 , © >  - 4  ), the other by ( 4 ,  1C-9, - ф  ■)).

If one works out the details, one finds that in the Eegge-pole con­
tribution there appears a singularity (a branch point) at' vanishing mass of 
the pseudostate, as a consequence of the contraction of the little group, 
unless the spin of the state at vanishing mass is physical ( 2. o((o) =
integer). [7].

In other words, one finds that for the known Eegge-pole (with the 
possible exception of the Pomeranchuk, provided it passes through exactly 
one) case с/ above is realised.

This means that the contracted little group cannot be represented 
on the pseudostates at zero mass - and as a consequence, there appear 
unwanted singularities in the scattering amplitude. (By "unwanted" we mean 
that the singularities in' question cannot be removed by factoring out the 
kinematic singularities of the helicity amplitudes, or in other words that 
they are present in the spinor amplitudes which are free of kinematic sin­
gularities.)

These singularities are indeed unwanted: -they appear at a point 
(vanishing invariant momentum transfer) which is an internál point of the 
regularity domain of the amplitude!

4.2. and how to avoid it: enlarging; the little group

Our problem is now to eliminate the unwanted singularities from the 
scattering amplitudes. Clearly, the singularities arise because the Eegge- 
-poles (and not some particular scattering amplitudes) have unpleasant 
properties; therefore a consistent elimination of all the unwanted singular­
ities is possible only if one changes the group structure of Begge-poles.

In ref C7J this was achieved on the basis of a no-contraction 
theorem [12]; we searched namely for the algebra which does not contract 
at and showed - in fact by inspection - that the spin group generat—



16

ed by the non-contracting algebra gave rise to well-behaved Regge terms in 
the scattering amplitude. Here we follow a slightly different approach [13], 
which has the advantage that it is both more rigorous and clearer intuitive­
ly. The final result is, of course, equivalent to the previously obtained 
one.

We saw that all our trouble came from the fact that the matrix ele­
ments of the operators of the little group were singular at |v| - l . In 
order to cure this disease, let us remember the definition (2.3) of the 
generators of the little group, and define the following operators:

M.-N* , R - M,+ 4..
SL “  K “ Nl •

(2)R
The three indepent operators -55^ can be expressed with these 

operators as follows:

5 =^(i+»-)E1+
S a = M 3 (as before).

In order to investigate the behaviour at ЯП« + £ , we introduce a 
parameter which is slightly more convenient than “VJ* We write namely

S3(A)=M3 , SM) - (e4 +* F j b  SJ.Ä) - (e^ A  F^x

with (and we didn’t give a new name to the operators S-/(f+U"))1+\T
Now, the crucial observation is the following, which we formulate 

in the form of a theroem.

Theorem

The contribution of a pseudostate is regular at " V « JL (i.e.
^ 1 = 0  ), if and only if the "wave function" of pseudostate furnishes a
representation of the operators



- 17 -

* 5 .(0 ) an, T / ' H [ d ^ L ] ^ o

as well as the algebra formed by taking all the possible commutators between 
them.

The proof of this theorem is straightforward and we skip it here, 
adding only three comments.

a/ Evidently, the last part of the statement is necessary since we 
have to generate finite transformation by "exponentiation".

b/ If the conditions of the theorem are satisfied then we can expand 
in a power series in every matrix element or equivalently, expand in
powers of Y\| = ̂  — p 2- , this is just what we need.

с/ The case ЛГ —* — 1. can be treated analogously by changing the 
roles of the E c  and F"c . The problem is now to find' the algebra in ques­
tion and its representations.

Evidently, -  , S 3( o ) - M j  generate
the little group of a single pseudostate at _A = О  ; further we
have

V = f a  tJ-fjz, т Д о , ( к .
The commutators can be worked out by using the definition (2) and 

the standard CR of the Lorentz group. As a result, we need one more ele­
ment besides the operators we had so far. We have namely:

(3)

у  - [E i,У  -• * N , >

CEmУ  - [Pl, EJ =■ 2iM3• )

[Em Eil ~ [ЕмУ =■ Lm„ N J” О

К E J” - E ,  , [Hi, F J - - у

[M„,EJ- i Ei , [Им У  - '•Fi
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1—1 JZ- ,ЕЛ--Е, , 1 Exl — E-х,

[N3f R] - +l Fi. > !X,Fx]=-Fx .

We recognize the CR of the algebra SL(2,C) in a root vector basis.

In order to show that a single "ordinary" pseudostate in general 
does not span a representation of (3) it is sufficient to observe that 
e.g. the operator does not commute with the Casimir operator О  at
^  о  > indeed, С  (Д - о) Z'-' El/' +■ E l  , and j )

• Z i  ( i e . , M s5 -  ^  o .
Representations can be constructed, however, by taking "ladders" of 

irred\icible representations of the little group, and this leads in a 
well-known way to the "families" of Regge intercepts at zero mass.

In order to represent space inversion ^  , a doubling of the num­
ber of states is necessary. Indeed, using again the relations

[ P  , M ;] -  Í P , N í ? = o ,
one finds that if we build up a representation of (3) based on a ladder 
of IR-s of the algebra E l , E x , M i  , then space reflection brings 
it over to a different ladder based on the IR-s of the (isomorphic) 
algebra R ,  E l , . It follows in particular that if one labels the
IR-s of SL(2,C) by the two quantum numbers JoJ) , then a ^pace-
reflected representation is characterised by *-Jo)and parity eigen­
states can be constructed by forming suitable linear combinations of the 
basis vectors. This parity doubling was again and again discovered and 
re-discovered (and mystified) by various authors working on the so-called 
conspiracy-theory of Regge poles. (Sometimes one wonders how useful this 
"neo -primitivism" in the physical literature really is: there exist some 
b'hirty-or-so pages long papers v/hich effectively could be substituted by 
a single refei’ence to a good graduate text on group theory.... )

ч
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5• Selected topics from the theory of "conspiracy"

It is impossible to review in a paper of this size all the results 
which emerged from the idea of Begge-families, conspiracies, etc. We can 
but briefly mention a few — and perhaps not the most commonly known - 
aspects of the theory.

5.1. What is a "particle"? Lorentz poles

We have shown in the previous section that in order to secure the 
correct analyticity properties of scattering amplitudes, the bound state 
contributions must span a representation of SL(2,C). We did not prove, 
however that they must span an irreducible representation. Nevertheless, 
dynamical models snggest to consider a set of states transforming according 
to an IE of SL(2,C) as representing .a single - "particle" "state" , in 
other words to consider the various IE-s of E(2) contained in the 
IE of SL(2,C) as various states of the same "Lorentz-pole" (as opposed 
to a Eegge-pole), or "particle". (The reader should recall the analogous 
situation in - say - the nonrelativistic domain, we say that "the electron" 
of spin 1/2 has two states, with "spin up" and "spin down" instead of 
speaking about an "up-electron" and a "down-electron" although the "up-elec­
tron and "down-electron" transform according to different IE-s of U(l), 
both contained in in.© single IE of SU(2). In the presence of a magnetic 
field, SU(2) is nn even a symmetry group of the. problem! However, there 
again come analytic arguments, starting like: "If I turn off the 
magnetic field, . ..* "etc.).

5*2. Where are Begge’s daughters? The trajectory formula

The analogy with the nonrelativistic problem just mentioned, lead 
us to speculate [4,14] about the fate of "daughter"-trajectories as one 
goes off the point W=0. It is clear from model calculations that the 
family of trajectories can no more be described by an irreducible represen­
tation of SL(2,C) (if it is at W=0), but by a reducible one. Fortunately, 
the operator which perturbs the W=0 representation has simple transforma­
tion properties: it is just a four-vector, and therefore quite definite 
statements can be made about trajectories and residues^ In particular, the 
known nucleon and delta trajectories (and the others, so far not known) 
form one family in the sense that they shrink to a single IE of 
SL(2,C) at Щ0.
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If I expand the trajectory function in powers of the mass (á la 
Chew-Frantschi), a four parameter formula describes an infinite family of 
nucleon trajectoires. Fitting in four known states we were able to predict 
the masses cf all the known х=х/^ jlim reasonances within зоте 15 percents 
and the intercept of NioC at £  = -0 to about the same accuracy (provid­
ed one is willing to accept the fits to backward. Itfsl scattering.... ).
The situation is similar in the 1=3/2 channel [15]» and somewhat less 
spectacular, but still encouraging with the strange baryon resonances. So, 
it seems that those daughters have been living with us all the time - we 
only did not recognise them.

5.3. Partial wave expansion with respect to a non-invariance group;
SL(2.C) as a Trajectory Generating Algebra

The group we just found and which classifies the Regge trajectories 
(in the sense that the individual pseudostates should be put together to 
form the rungs of a ladder) is - generally speaking - not a little group 
of the four-momentum transfer. Indeed, unless the masses of external 
particles joining a Regge vertex are equal, the momentum transfer vector 
is lightlike at "fc=0 but not a null-vector. Therefore the term "trajectory 
generating algebra" was proposed for SL(2,C) in this role: its operators 
when applied to a pseudostate, produce another one, not identical to the 
original.

Nonetheless, the contribution of the Lorent?,~pole can be cast into 
a form which is strictly analogous to an ordinary Regge-pole contribution.
The only problem is to couple a two-particle state (transforming according 
to a product representation of (P ) to a pseudostate
being related to the eigenvalue of the Casimir operator £,z f and Mj 
in the usual way.
Now the kinematic part of the bracket jrr>l р„в,Д, can be
determined according to the same Frobenius-Jacob-Wick- method as one has 
learnt it in constructing the CGC of .

1. One recouples the product state into states of the type 
I  ̂P j ™  >  where CJ, is the relative momentum, S  a total spin (de­
fined by ordinary angular momentum coupling from in
the frame where &  ” ° J p j ™  the total momentum, angular momentum and 
its projection, respectively.

2e One generates ( P j m >  by a boost u % ) from a standard
I Ы. ( L. Cĉ )) ( o^~ о  j "P' j m  >  =  1 ^ ,  P j ~ >  •
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J. One uses the fact that is a basis vector of an
IR of SL(2,C), i.e. finally

? j m> = 3) ^  ( L(&) 4 V >
J

where the factor contains normalisation factors and the "radial part"
of the wave function, i.e. the reduced matrix element. Hence the contribu­
tion of a Lorentz-pole - after performing standard manipulations - to the 
scattering amplitude will appear in the form [7, 16].

I -  3 ) ' ^  ( L - ^ s l U - í * ) )
sW

i.e. precisely as if the amplitude were invariant with respect to SL(2,C). 
Indeed, what we find is that from the point of view of hound state contribu­
tions the behaviour of the amplitude is uniform on the whole light cone 
(the apex of the light cone, where the little group is SL(2,C), not being 
a distinguished point).

This has as a particularly pleasant consequence - among other things - 
that a Lorentz-pole contribution is stable with respect to small variations 
of the external masses, whereas a single Regge-pole contribution is not.
(A single Regge-amplitude would lead to the absurd result that while a 
neutral § - contribution to NN scattering behaves as -S at
t = 0  , the corresponding charged g -contribution to charge exchange

scattering does not, eince the mass of the neutron differs from that of the 
proton by a few MeV-s!)

6. Some philosophy

"I have come to agree with his (M.von Lane’s) answer that the re­
cognition that almost all rules of spectroscopy follow from the symmetry 
of the problem is the most remarkable result". (E.P. Wigner, Preface to 
the English Translation of his "Group Theory"). Perhaps further comments 
are unnecessary.
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