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Abstract

The parent-daughter trajectory phenomenon is studied for spinless 
particles in the framework of the Bethe-Salpeter /BS/ equation. If the kernel 
of the equation satisfies some natural conditions, the partial wave ampli­
tude is shown to possess multiple poles in the £ -plane, corresponding 
to a Regge-pole family. Under the same conditions a perturbation formula 
is given for the derivatives of trajectory functions and residua at zero 
momentum transfer as a function of УС , the order of daughter trajector­
ies .





1 Introduction
л/ о/ -5/ 4/The existence of daughter trajectories implies the

existence of more particles with identical discrete quantum numbers, if 
Regge poles are linear for high momentum transfer and the daughters are 
parallel /or approximately parallel/ to them. However as far as we know 
SL (2,C) symmetry can state something about daughter trajectories only 
at t=0, namely here they are integrally spaced below the parent trajectory 
in the angular momentum plane. In this paper we shall show that group the­
oretical considerations can he extended to the derivatives of the amplitude 
at t=0*

A perturbation expansion was proposed in our first paper1^ about
this subject, without explicitly evaluating the perturbation formulae. In 

4/another paper one of us has given an explicit expression for the behaviour 
of daughter trajectories near t=0, for small violation of SL(2,C) symmetry, 
using the Fredholm method of solution of the BS equationl

of0 - ус +r°<i +  o ^ K - ^ X v e - x + ^ - t  f /1/

where the index X  enumerates the trajectories, 0(e is the place of the 
Lorentz-pole at t=0. Another proof for such a behaviour of daughter trajec­
tories for a special class of kernels was given as well^/.

In this paper first we shall discuss a fundamental question which 
was not investigated before. The four dimensional symmetry and the existence 
of Lorentz-poles implies the presence of daughter poles in the partial wave 
amplitude, T^ , only under two conditions»

1/ The possibility of continuing Tt to the left hand side of 
the complex t plane^ ^ . This is a trivial requirement as for t=0 all the 
even order daughters of any trajectory are situated on the left hand side 
of the line Ret = -1, due; to the Froissart bound.

2/ As Tj is represented as a sum over contributions containing 
only one pole, this sum should be at least convergent, if we want to be sure 
that TI itself has these poles. On the other hand the above mentioned 
series for Tj is a Gegenbauer expansion, the convergence of which is 
secured only for Re£ >-*h , even for functions analytic in the cos^ planed
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We shall show the convergence of the above series under fairly 
general conditions, nqt only for T{ at t=0, but for derivatives of ar_
bitrary order,

After such a preparation we are able to construct a method for 
calculating the >C dependence of the derivatives of <XK(t) and of the 
residue function. The dependence is universal in all cases /it is determin­
ed by the group structure10^ 11/', only some unknown parameters appear, 
which can be calculated easily for any given kernel.

In Sec. 2. we list our assumptions and after that we prove the 
existence of daughter poles in the partial wave amplitude. In Sec..5. an 
expansion for the derivatives of the partial wave amplitude is proved to 
exist and useful expressions will be given for parameters of the daughter 
trajectories. Sec.4. contains our main result: after a construction of a 
perturbation formula for the scattering amplitude, using the results of 
Sec. 3. we arrive at our perturbation expansion of the parameters of daugh­
ter trajectories.

A different type of treatment /working with the wave function 
instead of the scattering amplitude/ of the above problem, emphasizing the 
group theoretical features and an extension to fermion trajectories will be 
given in a forthcoming paper"1'*

2. The Existence of Daughter Trajectory Poles of Tt. near t=0

We discuss in this paper the scattering of spinless particles with 
initial momenta and pj, and final momenta p5 and p<, . We examin
the amplitude off the mass shell. The scattered particles may have different 
discrete quantum numbers. Introducing the independent four-momenta

psj(pl'Pi) ) P >ej ( P j “ P%) and Ef= P«+Pi = Р в  + Р« the BS equa­
tion for the scattering amplitude can be written as

T i p . p ’. F ) - K ( p , p ’, E )  +  j c / V '  R(Pip">E)T ( p ”, p\E),

where TiPiP’E) is the scattering amplitude, k( p, p’.ei is the kernel of the 
equation and |^(p,p'|Ef) is the free term or inhomogeneity. К and К 
differ in the product of propagators of the scattered particles. Throughout 
this paper we shall work in Euclidean metrics, assuming the posáibility 
of Wick’s rotation of the contour of integration in p ” . К and К are 
assumed to be even functions of E , otherwise we apply a transformation of 
the problem, described in the Appendix, which leads to an integral equation 
with a kernel, symmetric in E .
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2 9 2 2We introduce as independent invariants p * p , E = t.
Cp-p4 , p E  and p* El . Going into the CMS of scattered particles T  will 
depend on the following quantities:

P2", P'l> *  j s = < p - p ’>*, , P'1* ) P'Plt-
Our assumptions about the functions, K, R, and T are the fol­

lowing:

1. / T, К and К are analytic functions of t, pE, p*E if p 
and p’ are in the interval of integration and Itl < Í .

_ .2
2. / For |t|^£ T, К and К are analytic functions of s=^p-p*}

in the s plane with two cuts, they can be represented as

T / c  \ 4 7 ts(s\... ). -rj^ J Jtuiu]... ) _ c(u)
I ($>•••) «jr J S ' - S  7TJ u'+S+t + lp̂+lp!1 1/3/í* u,

with possible subtractions, sQ >  0, u0 ̂  0* Eor t=0 ^and are
polynomially bounded if s->»» : lts(S,...)|<C S“ , ltu(Ul...)l<C>U*
for some c, c* and <X , if p and p* are bounded. Similar representations 
are assumed to hold for the partial derivatives of T in the invariants 
pE and p ’E at t=0 and for К and К and their derivatives as well.

3. / We assume the boundedness of the kernel for i t u e * .

4. / The partial wave amplitude, which can be obtained from the
Froissart-Gribov form from eq.3. can be continued for arbitrary complex 
values Re t >  <X̂ , where is the power in the bound of the spectral
functions of К . We assume the possibility of continuing T g beyond this 
bound using a trick similar to that of Mandelstam’s one 8//. Tg is as­
sumed to be analytic near t=0 even for such values as well /except for
£ =  0<o“ ^C , when Tg has a pole at t=0/.

5. / For t=0, according to assumption 2. we can expand the ampli­
tude in Gegenbauer functions (cosTf ), where is the four dimensional
relative angle between p and p’. Using representation 3. we can define 
the positive and negative 0(4) signature amplitudes by

/4/

* U  ( Pl > P'1, S'J ± (du> D* ( iu (p\pn> u’)]'
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where is a Gegenbauer function of second kind. Representation 4. can
be used for an analytic continuation of T *̂>>~ in the half plane R e O > 0C 
Due to the larger analyticity domain of we can use the BS equation
for a further continuation. Of course in the region OC > (?e К >  <*i 
may have poles. We assume the presence of a pole in this region at n= 0C„ , 
and the possibility of continuing by some method to arbitrary negative
values of n. Similarly we assume the possibility of continuing the projec­
tions of К, К and of the partial derivatives of T, К and К in the 
invariants pE and p’E to negative n values. All these functions are 
assumed to be analytic at n= (Xe +k, where к is an arbitrary integer, 
k/0.

In connection with the above five assumptions we merely remark that 
assumption 1. can be proved if we restrict ourselves to normal singularities 
in the mass variables. Assumption . is not absolutely necessary, we could 
substitute it by weaker ones. We included it only for sake of simplicity.

After such a preparation we can prove the following theorem:

If conditions 1., to 5., are satisfied, then the partial wave 
amplitude has infinitely many daughter poles in the angular momentum plane, 
provided the Lorentz pole is not at integer or half integer values of n.

At E=0 the BS equation has the following form

T0 (p.p') = К» (P’P')+ ÍK oW J ’T'íp ”, p’ ) dp". /5/
As ToCP'P'), I^q É P jP*) and K 0 ( | V )  depend on J P>1 

and ( P - P ')1 only, and the dependence on C p - p ’)* is analytic, they 
can be expanded in Gegenbauer polynomials^/

T 0 ( P l ) P a i t p - p ' ) l ) = x " [  T. <n+i> < < * r )  T 11' V ,л even

-t-T  Cn+i>cí cloít-jX ^ ’ CpV 1)], /6/rt = OCId '

Expansions 6. converge uniformly in the integration interval. Using 
the addition theorem of Gegenbauer polynomials^/ and exchanging the order 
of summation and integration in eq. 6 /this is allowed due to the uniform 
convergence and analycity of the series/ we obtain an equation for the 
amplitude T**
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t;j±(p*,pu)= /с *
•О /7/

+  (c/p-’ p " 1 V ' - ( p * \ p V .
и

Using assumption 3., expansion^. and the addition theorem we can prove 
easily that the kernel p n^ is bounded as well. The solution of
eq.7* can be written in the following form

r on ,t (p l> p ’V - { ” R n,±(p) рЖ ^ М р ' Щ  /V
where R^» — is the resolvent of eq.7* In what follows we shall write 
formally Tch>± e  RH>~ к©*'* • The aforementioned pole of the scattering
amplitude t ”'* is a pole of the resolvent operator.

The partial wave amplitude can be continued to the left half plane 
according to assumption 4. On the other handjfrom representation 6., we can 
project out tohe partial waves by exchanging the order of summation and 
integration /again this is allowed under the conditions of our theorem/ and 
obtain

Т„,<* УС ' ■>cwhere the functions Р№Х'‘(сл t )  are orthonormal in the interval 
Oi£ If4 < 0Г with weight function

Pl+* l t , S' £+1 , „ 4 /* • V i
( G s s r ) =  C « .  ССоь f t i n j O  

* 2  [ т г Т х Т н + ь )  1 ( i  + 1).
As T 0|j is an analytic function of pQ and p^ if |P0I < p and
|P01<P’ » it: can be expanded in a Gegenbauer series С Й '  (fr) for
complex t values as well if 8e t . Such an expansion coincides
with expansion 9. for integer values of t and it serves as an analytic
continuation of eq. 9 as well. As we remarked in the preceeding section,'the
daughter trajectories lie at negative values of { at t=0, so the poles of7 XT0 * at t + B will be.poles of T в as well if series 9.« °) v are convergent for such t values.
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In fact, expansion 9. remains absolutely and uniformly convergent 
for arbitrary £ values. In order to prove this statement we consider the 
part of the sum in eq.9. for which Pe£ and >C is even. Simi­
larly one can consider the part of expansion 9» in which "VC is an odd 
number. Using the spectral representation 4. it is easy to get an upper 
bound for T* if M  and p z <rN/ are satisfied^

I Т СЛ1± ( P S p’9 К  hic **
for some constant c . On the other hand for non integer C and even ?C 
we have the following bound for

I C ̂  * * I 4L ~̂~l ̂  m )
I w * n  I ^ tni ra+t) •

P C f ^ l in eq. 10 we
see that the m-th term in expansion 9* is majorized by

I + t+2*i p i t i é t  ( ^ ) |  <  —  2 ^ * *

k r w n f  r u i+ im + i )  L Ni J
for arbitrary | Et \  ̂ ^.1. • As tlie r*h*s. of eq. 11 is a term of a
convergent series in m, we have proved our statement about the absolute and 
uniform convergence of expansion 9. Thus we conclude that a pole of 
in the n plane at n= o(e induces poles of T in the £ plane at
£so(e , >C = 0,1,... . It is easy to see that the first terms

of expansion 9« which were neglected in our proof of convergence may have 
singularities /poles and branch points/ at integer and half integer values 
of n so in general such values of (Xe need further considerations.

3. A representation for the partial derivatives of T t. and of the Кекке 
pole parameters

For l >~3/2 we have representations of the partial derivatives of 
the amplitude with respect to the invariants t" j pi"é" } jp©pe*t j
which are similar to representation 9* On the other hand we can express the 
derivative at t=0 as

сПе j -  ^ T l l ' + pi  2Ü  f  . . / 12/
olt- 9 +  Ч “о ? р Н  • i,=o



- 7 -

In eq. 12. we distinguished between the total derivative and the 
partial derivative in t. Substituting the expansion similar to 9« into 
eq. 12. we obtain a representation for dTI f d-t for negative
values of t as well. The combinations p e pt+ (p ./p ) andPUV<,t(Po/p) , which appear in such a way, can be rewritten by 
making use of the recurrence relations of functions У which are
valid even for negative values of £

\ p t + K + i . e . 4 iff r c - n x  к +11 + 1)Г
Z Г t2) = 2 |(Ji+tH)Oi+t+2)

___________ /13/
I 1 Dt + X- iji , N \f ire (*+  21-h )
+ 2 ^ CZ) I CX4UCK+l + i) •

At the end we arrive at an expansion of c l T e / d t U - o  s  T .  e

Г „ ( й Л М * ) - 1  /w
—r* t+X, Í X'where can be expressed by the expansion coefficients of the

invariant functions appearing on the r.h.s. of eq. 12. By construction and—I— (4 X  * C 4* )i * Ifrom eq. 13, >-1,1 differs from zero only for — ~bt or
VC = yc' ± z and expansion 14. is uniformly and absolutely convergent.
In a similar way we may represent a derivative of arbitrary order of Tg 
at t»0 by a uniformly and absolutely convergent series:

T; e = 2- , r  Up) 1 *,e r '-p’J /15/
/ d <«T i -where T± ^ is defined aB(tt) tU*o*. is defined by eq. 15.,

it differs form zero if YC* = even and 2i are satisfied.

After this point we are allowed to work only with the expansion j C.*f4,^ as T v,t can he constructed from these func­
tions .

As we estabilished in the preceeding section, Tg has poles cor­
responding to a Regge-family at t=0. Then using assumption 4. about the 
analicity of T £ at t=0, Tg must have poles for Hrl as well,
where cf is some positive number. The trajectory functions and residua must 
be analytic functions in this region /the residua of daughter trajectories 
do not have the singularities discussed by Freedman and Wang3/ due to the 
different definition of t and the off-shell approach/.

We choose г and so small that inside the circle C defined 
by «Хо-Э'С + Г е ^  j the VC -th daughter pole is the only singular-
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ity of T £ and f* if ж < Т  .
Then we can evaluate the following contour integral

4 ( 1- « „ +х ) к T t tfÄ* t+V . P ,l, + )d i
С /16/

= T ^ ^ W S * )  ( ю  -  «xio))kf
where is the analytically continued projection of thp >C ^-th
residue function by the orthogonal functions P •
From eq. 16. we obtain easily the required representations of the derivatives 
of daughter trajectory parameters if we make use of the uniform convergence 
of the integral on the 1. h. s. of eq. 16.
Ф - у  l+Л, t+ V  . - *. V , t ПЛ.  ̂̂  ^ ) ̂4Ti e 1 P > P )d t = Ti,-л IP ) P j , /17/
vir

/ d \li) l (t~ °<«<rt)Tet<’*,Ct>c(p1iPu,rid t _
Lt / ф T t+><'(+K(rtpt«di =  * ° ’ /18/

C v
where we introduced the notation

<PVlH&) Tk W M L .

4. Perturbation formulae for daughter trajectory paraméteres
+ V,Eqs. 17. and 18. can be used for the, determination of Л : v,Л1«»)7ч -r- t+Aii+V U*)Xand to; if we can calculate | • , . This can be done using the

r- ■ ^BS equation. As T, К and К are analytic functions of t they can be 
expanded into power series of t

T = T. *T.t +t; **♦...,
/19/К = Ко + Kit + K̂tS... ,

К = K0 + Ki* + К2 tl+ •• • .
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Substituting expansions 19. into eq. 2. we obtain equations for . We 
may write down the solutions of these equations in terms of K^, ]L and 
the resolvent of the equation at t=0, R.

T o  = R К ,  ,

T i  = R  K t +  RK.RKo ,

T t  = R Ki + RTRKotRKTK+RKRK,RKo,/20/

where the product of operators is defined as the product of the two corre­
sponding function and integration over the four dimensional p-space. The 
partial wave projection of eq. 20 may be expanded in the series of ortho­
normal functions P l+X|t ( P°/p) and p> t * * 11 £p0Vp')

T<TX = Rt+*K.t+\
- г -  D  t+A I Л + r>tf \  W rsl+Ъ1 Isi**'
I i(e, e К Ki,t + К n r\о ,

+ RtA /21/

<r
The product of operators in eq. 21. is defined as multiplication of the 
product of corresponding functions ,by p^ and integration over p in the 
interval 0 < P < ^ ^  + and Ki'i are defined
similarly to T 1 . They can be expressed by the expansion coef­
ficients of the derivatives of К and К with respect to invariants t.К С+.Л, c f /' _ ̂

connects only Д  and Л values, for which
/V — 7\ is an even number and l7\-9v'lé£i , the sums in eq. 21.

are finite.

Eq. 21. can be continued to arbitrary negative values of { .If we 
substitute it into eqs. 17. and 18. we arrive at our final resxilt. On the
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l.h.s. of eqs. 17. and 18. we have to extract the residua of simple and 
double poles of 1 <,e at £ “0(̂(0) . This can| be done using eq.
21. if we take into account that the poles of T Ä A,£fA come from the
poles of R * +A at B1Vo . Therefore we expand + * in
MacLorain’s series and and К; Г ' ^ in Taylor’s series'v jw
around < o) /according to assumption 5» R and the expansion coef­
ficients of the partial derivatives of К and К with respect to the 
invariants are regular functions of n at (i =r Qf„ except the simple pole 
of R *  . at <Y» /. The coefficients of recurrence relations are regular 
as well, if 0i„ is not equal to an integer of half-integer number.

Using Dirac’s notations we may write the series for R^ as follows

O  *  , _,1\ I W P 1) ><Wp'*) I Po L D  / rJ- M\ xГ  C p » p ) "  ------- n - < X , ----------  + K , i  Р/ РУ + - -  ,  / 22/

where I4>> is the solution of the homogeneous equation

I *i >  =  K*° I , ^ 4 4  =  < Ч > |  Р „ К Г ,

and P 0 is the product of propagators of scattered particles at E^O. 
Comparing eqs. 17. 18. 21. and 22. we obtain finally for the derivatives of

t'b') at t=0

со) = <ч>|рокС«:Хк>,
Of* (O) = < ^ |P o

4 - z < ^ i PcR X « R i  K ,X 'x n >>

+  2 <4>iPo k ^ ;:;z i r 2 r ; ; .1.; -  i ф >

+ 1 < ^ 1 Р . ^ Г П 1 , ^ >  >
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Similarly obtain the derivatives of the residua of daughter poles« As we 
know /and can he checked directly to any order in t/ the residua factorize 
into the product of two vertex functions. For the sake of simplicity we 
shall write the perturbation formulae for these vertex functions.

Writing the solution of the inhomogeneous equation as 

T  = 1Í ^ > < M L E .  ♦ ter„s reguiar at f , * * £ * )
1 { - « « W  *

where | + а д >  is the solution of the homogeneous equationl+i*» -
1We expand | 4 ч * ) >  in powere of t

|44-t)> = |4/o> + l+4>t +
and can be represented as a series of functions
It is easy to see that l+t> has only a finite number of expansion coef­
ficients different from zero

• 1 4 0 =  ,

\^ >  = I  P*’+is >"’-*(&) I %‘ >,
S*-l '

1 4 0  r f l  p«**1*»"-“ ($ )  I 4£>
/24/

ir-L

The expansion coefficients are expressed by R and K^, • as follows

14,°> = R4 I4> + i

1 % > -R“”'1 к.,*;;:?ю, /25/

# » / *i ̂ sAs we remarked earlier, we can calculate co) and I 4^  >
only in the case of knowledge of R and Ki< Nevertheless the general ЭС 
dependence of them is very simple, it comes entirely from the ЪС dependence 
of coefficients in the recurrence relation 1J.
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<X* (о) = Си +  Ь С<х0~ъс)(<х*-к+'1) }
(X* (о) ss С + d  Lo<0-Zt)CQ/0-dt + 1)

•V е  Ыо- Х + А)Х + l$t0(o~K+ 0<£с0 ),
о

\У° >  =  I < Х >  +  >

+ £ (1*о-*+£т>,
\l/j (*о-*Х*в-хн) 

И д  /  ~  y v 1 o(oCof0-M)

l ' O - ' j p Ц - х - и У ч о - а с + ^ У  i 
O H e + O t ^ o f A )  A -1

/ 2.6/

(or0-^ -^ o -^ )Ws
0(o C ^ o “ ^) ' ^

<&-»iX<v.+3) / ,  ’
«
»

where a, b, c, d, e, f and И > ,  I ( b > ,  n f > 5 iS> are some
independent constants and constant vectors.

__Conclusion

To summarise, we have established that at nonzero energies the 
families of Regge trajectories can be classified according to a broken 
SL(2,C) algebra. The symmetry breaking term has a'definite transformation 
character under the spectrum generating algebra of Regge poles at zero 
energy and therefore - at least in the framework of the perturbation formal­
ism - we can make quite definite statements about the behaviour of Regge 
poles and their residues near the "symmetry point". In particular, we red*-Zj. /erived the "mass formula" of ref. and established that the Regge vertices 
can be represented as the superposition of a few irreducible representations 
of SL(2,C) .

No attempt was made in the present work to push the theory to the 
point where comparison with experimental results is possible? our aim was 
rather to explore the analytic structure of the relevant Green’s function 
necessary to apply the analytic theory of group representations W  ; this 
could be done without taking into account the complications arising from
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the spins of external particles. In our subsequent paper we shall take for 
granted the analyticity properties derived here and develop the group 
theoretical formalism to the point where the interpretation of the results 
and comparison with experimental data is possible.
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A p p e n d i x

Assume, that К and К depend on the sign of pE and p’E. Wien 
we define K— , Ri and by symmetrizing and antisymmetrizing in E,

K ±(P,P',E)= K(P>PM=)±K(P>P’>-E') ,
The amplitudes T^ satisfy the following equations

T* = К* + K+T* +K"TT
Assuming the existence of the resolvent

R+ -  (4 -  К + Г 1 and making use of eq.l. we can

express T

as T “=R+K"+R+K"T+.
We obtain the following eq. for T+

T +=k + + K+T +t k-r+k-tVí<-r+k:/2/
The solution of eq, 2. can he written as

T  + = RK+ + RK'R+K" ,
where R =  ( / I -  K + - K ”  R + K - ) - 1 .
We can see that R and so eq.J. is symmetric in E, 

Similarly we obtain for T~

T" = RK"+ RK" R + K+. /4/

As the resolvents appearing in eqs.3.and 4. are identical, the same poles
give contributions to both amplitudes. The Regge-poles depend only on 2 _E = t , the residua of poles in T , however, has a linear dependence on 
E , The problem of giving a perturbation formula for this vertex function 
will not be discussed in this paper.
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