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1. Introduction

In the fTirst of this series of papersl /hereafter
referred to as 1/ on the problem of phase transitions in
one-dimensional metallic systems, the renormalization
group technique was used to determine the invariant coupling.
A particular Hamiltonian with two independent bare coupling-
constants was considered. In this model, electrons with
momentum near to +kQ /where kQ is the Fermi momentum/
interact only with electrons on the opposite side of the
Fermi "surface”, 1.e. with electrons of momentum near
to -kQ. It was shown that the divergence obtained by Bychkov
et al.2 in the vertex fuction is an artifact of the
approximation used. Going beyond the parquet approximation
the invariant coupling remains finite and the singularity
of the vertex is pushed down to co=0; there iIs no
singularity whatsoever at finite energies or fTinite tempe-

ratures.

Although the smooth behaviour of the invariant
couplings indicates that there is no phase transition in
the system at finite temperatures, 1In agreement with
general argumentss, the nature of the conjectural order
that sets in at T=0 has still to be clarified. For that
reason, response functions characteristic for the appearance
of long-range order will be calculated. Three generalized
susceptibilities, corresponding to three different types

of long-range order, will be investigated: namely, super-



conductivity, magnetic /ferro- or antiferromagnetic/
ordering, and static density waves, A singularity in any
of these susceptibilities implies the onset of the corres-

ponding ordered phase.

These quantities can be considered at finite temperature
T, as a function of T, so that a singularity at TC would
yield directly the transition temperature. As the typical
logarithmic terms in the response functions are expected
to depend symmetrically on T and on the frequency variable
co , for the sake of convenience the calculations will be

made at T=0, keeping co as variable.

The generalized susceptibilities describing the
fluctuation of Cooper pairs and the propagation of magnetic
and density waves are defined in Sec. 2. If a few terms of
the perturbation series of these susceptibilities are known,
this result can be improved by means of solving a Lie
differential equation in which the bare couplings in the
series expansion are replaced by the invariant ones. It
will be shown that the susceptibilities, as defined,
however, are not appropriate directly for such a treatment,
and therefore auxiliary functions will be introduced which
satisfty the requirement of multiplicative renormalization
and which are closely related to the generalized suscep-

tibilities.

That the solution of the Lie equation generates a

better approximation than those terms of the series expansion



which we start from, 1is due partly to the integration of

the differential equation and partly to the use of the
invariant coupling. In diagrammatic language it corresponds
to the summation of a series of diagrams, starting from some
elementary diagrams for the susceptibilities. In Sec. 3 the
first-order corrections corning from the interaction of elec-
trons are calculated. Using the result obtained in 1 for

the i1nvariant couplings, this Ffirst-order renormalization

of the susceptibilities gives a fTairly good approximation
for repulsive /g”~>0/ interaction. The case of attractive
/g”~"< 0/ interaction is more interesting as it was here

that Bychkov et al.2 found a phase transition. It was shown
in 1 that for g”~< 0 first-order scaling; is a poor appro-
ximation; via second-order scaling, though, i1t was possible
to go beyond the parquet approximation for the invariant
coupling. Thus in order to be consistent, the susceptibilities
must likewise be investigated in an approximation in which
the next leading logarithmic terms are abo collected. This
is done in Sec. 4, where it is demonstrated that the
susceptibilities diverge at c.vjJ0 only. Depending on the
sign and the relative value of the bare coupling constants,
one or two of the susceptibilities diverges, indicating that
at T=0 lhe system tends to a superconducting or antiferro-
magnetic state in which, i certain cases, the period is
doubled due to the formation of a density wave. These results

as well as further problems are discussed in bee. 5»



2. Response functions and Lie equations

To investigate whether there is any singularity in
the response of the system to generalized external forces
and to see what thé ground state of the system may he,
Dzyaloshinsky and Larkin” considered three generalized forces:
1/ an external fTield creating Cooper pairs, 2/ a magnetic
field with arbitrary wave vector, 3/ an external field

inducing density waves with wave vector k.

Corresponding to these are three generalized suscep-
tibilities. Superconductivity is related to the formation
of Cooper pairs, which in turn can be described by the

following pair fluctuation Green®s function
® ,

B0 o=-idette. <ITLL cpt™CHbw 1 *Cyt ™) Y.

The usual dynamical magnetic susceptibility the singularity
of which indicates the appearance of a ferro- or antiferro-

maghetic state is given as

@ -,
w4l TIS& Ulcpus YO (rc)]> 72.2/

Here the transversal susceptibility has been chosen though
it Is easy to see that the longitudinal one would give the
same result. Finally, the response function describing the

propagation of density waves in the system has the form

¢ pe ()C o &) Yy>. /2.3/



We want to use the renormalization group method to
get information on these response functions. As was
remarked in 1, once the invariant couplings are known
any physical quantity can be determined by solving a Lie
equation, provided this quantity obeys the multiplicative
renormalization condition. Let us suppose that for a
quantity A/co/, which may be a response function or a
related quantity, the change of the energy scale given by
the cut-off o, to to* and the simultaneous variation of
the coupling constants in the way determined in 1 are
equivalent to multiplication by a constant z, independent

of n> e«

"1 > lu,p
VU]EJ\l 4u3”‘ /2.4/

where z depends on g“%, gp, o00* and to* only. g| and gf
are given by the relations /1.3.11/. Introducing the notations
to/uj* -X, to*/1og =t and differentiating the logarithm of

eq- /2.4/ with respect to x, taking t=x we get

Yy — /2_.5/
Ax . <3 h) W

In the same way as for the invariant coupling itself,

this Lie differential equation generates a reasonable solution
for /1/to/ when a few terms of the perturbational expansion

at the cut-off are known, provided, of course, the invariant
coupling- is small. This is not the case In the present

problem for Cg </ 0, as the dimensionless invariant couplings



become of the order of unity when x->0. Nevertheless some
inferences can be drawn concerning the existence or non-
-existence of phase transitions and the symmetry of the

ground state.

3« First-order scaling for the susceptibilities

We are interested in the possible singularity of the
system’s response to external forces and so must aim to pick
up the most singular contributions in the susceptibilities.
The wave vector Kk In ~/k,u>/ and IVk, co / i1s fTixed
correspondingly. Since both functions are most singular
for k=21: , only this particular value will be iInvestigated.
Neglecting the electron-electron interaction, all three
susceptibilities as defined in eqs. /72.1/-/2.3/ show
logarithmic singularity for a one-dimensional electron gas.
Diagrammatically, they are represented by the simple
bubbles shown in Pig* 1. These bubbles are related to the
Cooper- and zero-sound-type vertex corrections and,as was

shown in 1, both are logarithmic in one dimension.

In first order in the coupling constants the
susceptibility diagrams are given by two successive bubbles,
as displayed in Pig. 2. Here, as in I, the solid line
stands for the propagator of electrons with momentum near
to +kQ, and the dotted line represents electrons with
momentum near to -kQ. The respective contributions of

these processes are



a M = U +e + NN - . /3.1/
X(')SX(AV-W)=dratk™ L T 13,2/
+ ]. /3.3/

Due to the fact that the zeroth-order term depends
logarithmically on co/u”, neither of these susceptibilities
satisfTies the criterion of multiplicative renormalization
in eq. /2.4/. As Zawadowskiq has pointed out in a similar
problem, Tfor the susceptibility of the X-ray absorption”,
instead of the susceptibilities, auxiliary quantities can
be iIntroduced by differentiating with respect to n3
These are the proper quantities for the application of the
renormalization group method, since they satisfy eq. /72.4/.
In order to obtain series expansions starting with unity and
normalized to unity at the cut-off, the following quantities

will be defined

A (>9
A (O ——%o
cC -39CC- /13 .4/
N % bl
X bl = 2.*0 IC / 13.51
- \ \ (PNl(o)
|\J Elu) — 7ro m _ﬂ‘@' /3 6/
Using the expansions of egs. /3.1/-/3.3/, we get
n (co) - i + ) AN gt 13.71

a c2)
fvM - <- 4; 3> u), + /13.81



Nu>j = i+ ~ o /13.9/
The 1imaginary parts are not considered here as this low-
-order scaling is not adequate to account for them. /The
same situation occured in 1 in calculating the Green’s

function and vertices./

Applying eq. /2.5/ to these auxiliary functions, we

have

— ab = -~ + ™) /3.10/
A~ iuMU) =27 738 > /3. w7/
A "~ nwb = -7 77C ~ 1% * /3.12/

The right-hand sides of these equations contain the iInvariant

couplings which were calculated in 1.
Using the results of fTirst-order renormalization as

given in eqs. /1.4.11/ and /1.4.12/

% /13.13/

13.14]
N 4/\_

and inserting them into egs. /3.10/-/3.12/, simple iIntegration

gives
Vi @
il =U- $n— ., fO /3.15/
Vo))
- . . Qj Two\ /3.16/
dw =G BV X vy »
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where 06=(gl-2g2)/2x~ . Although the integration to get

the susceptibilities themselves cannot be performed
analytically, these forms are none the less sufficient

for us to be able to discern the singularities. Our result
does not agree completely with that obtained by Dzyaloshinsky
and Larkin™ when Umklapp processes are neglected in their
paper. The reason of this discrepancy will be discussed in

the last section.

First-order scaling yields a fairly good approximation
for g] >0 only, as in this case the invariant couplings
decrease from their bare value when the scaling energy
approaches the Fermi energy. For g”~>0 a singularity can
come from the factors (@j/coed only and thus, so far as
the dominant singularity is concerned, the susceptibilities
and these auxiliary functions behave similarly. In the case
gN > 292 n M exhibits a power law singularity at u)=0,
while for g < 2g2 “(W)and IT/o/ are singular. That means,
in the first case, that the system tends towards a super-
conducting phase, while in second the ground state is
antiferromagnetic with a period-doubled stationary density
wave. The wave vector of both the antiferromagnetic and

density wave states is k=2kQ.

For g~< 0 the results given ineqs, /3.15/-/3.17/ are

not satisfactory, since they have a singularity at finite to .
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This i1s a consequence of the singularity of the iInvariant
couplings as given in eqs. /3.13/-/3.14/» 1t was shown 1in

I, however, that this singularity is spurious, being due to
the logarithmic approximation alone# Going beyond the parquet
diagrams, in second-order scaling the invariant couplings are
smooth functions of the scaling energy and tend to a constant
value which, in the weak coupling limit ~/Vo- <€ 1 , IS

independent of the bare couplings

4" ™ /3.18/
LW 7o-
(@]
/3.19/
TCO—-

uJ —*0

The analytic expression of the invariant couplings is
not known explicitly in this approximation, nor can the
susceptibilities be giver in the whole range of energies.
Nevertheless, for @->0 an asymptotic form can be obtained

by inserting eqgqs. /3.,18/ and /3. 19/ into eqs. /3.10/-/3. 12/.

3
oc. oj to-—"0 ,
Aen /3.20/
CO
cel @ oc lon t-of /3.21/
3
N M cx Wy i i |of "0t /3.22/
This refsuit shows that for < 0, too, the singularity can

appear at co=0 only. AsS the dimensionless invariant couplings

are of the order of unity, higher-order corrections as well

should be considered: this will be done in the next section.
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4. Second-order scaling for the susceptibilities

In the preceding section the generalized susceptibilities
have been determined by means of a Lie equation in which
the right-hand side was replaced by a first-order expansion
in the invariant couplings. For an attractive interaction
this restriction to the TfTirst-order term is highly insufficient.
Since in the Lie equation f6r the invariant coupling we had
to go to at least the second order, to be consistent, the
susceptibilities, too, have to be calculated in the same

order.

The second-order diagrams of the generalized suscep-
tibilities are presented in Fig. 3* The vertices corresponding
to the interactions g~ and gg are commonly represented by a
point; moreover, as the spin orientations are not denoted,
the came diagrams /Fig. 3b/ can represent both ~(k(@) and
N(k, i0) . The first two diagrams in Fig. 3a and 3b have
three typical logarithmic integrations and are proportional
to bE'tAjj, . They are already accounted for by the Ffirst-
order scaling, because it sums up the leading logarithmic
terms; these graphs can in fact, be generated from the first-
-order diagrams of Fig. 2 by replacing the elementary vertex
with First-order vertices. This corresponds to the replacement
of the coupling constants by the invariant couplings in the

Lie equation.
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The new contribution comes from the self-energy-type
corrections. These are proportional to h/ co/mrs and therefore
are not negligible compared to the contribution of bubbles,
when the invariant couplings are of the order of unity.
Neglecting the imaginary parts, a straightforward calculation

gives up to second order

al) =- ~N 77 NoX
) h1.1/
. , < r r .-/4*2/
% ixuz~ - 3r;1*nx
- + N viv N 1/
Mtxi = 1+ Tttt *rx /4.7N/
The series expansion of the auxiliary functions follows
directly from these equations;
b 1 N *r
b - 1 + 4 +t) + TNZ14 + noo* /4.4/
/4.5/
%™>) - 1 -77"™ £-x *dv 1**"x ~dv 4 1+¢& ) ~ X
+ 77-3 4 iivXx + eme” /4.6/

M(Cx - 1 + + THN> n
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The third and fourth terms give no contribution in the
Lie equations, because, as was mentioned above, they
are already accounted for by the fTirst-order scaling.

The Lie equations in this approximation have the form

h KI.A x L—£ ~ O+r k 1tW IK-3; @ u u 311}, 74>t/

Here tlie invariant couplings obtained in the second-order
scaling have to be used. The latter being smooth functions,
a singularity can come only from the factor 1/x at x-0,

i.e. at to=0. Por o0-"0we have the asymptotic expressions

LH ~ 1w /4.10/
« TN /74 .U/

»
NM~Ww Ul > ") /4.127

In this approximation pa((o) and I[Zw/ are singular
at co=:0, indicating that the system tends to a ground state
which is superconducting with a period-doubled density wave
present. Two features are worth mentioning. First, a similar

result would be obtained if the calculation were carried
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out at finite temperatures,replacing co by T; this would
lead directly to the fTinding that there is no phase
transition In the system at finite temperatures* Second,

the exponents iIn the susceptibilities are universal numbers,
independent of the bare coupling constant values for weak
bare coupling* This scaling behaviour is analogous to the

Hondo problem7”‘8

, where, similarly, the invariant coupling
tends to a value of the order of unity which depends only
on the spin. Por g-~>0 iIn the present model and in the
X-ray absorption problem, on the contrary, where ghe

coupling remains weak, the exponents depend explicitly

on the bare coupling constants.

% DiIscussion

In this paper the response of a one-dimensional
system to external forces has been investigated by using
the renormalization group method. Three generalized sus-
ceptibilities have been considered: namely, the propagation
of Cooper pairs and of magnetic and density waves with wave
number k=2kQ. Singularity in these propagators would indicate
the formation of supercondiictivity, antiferromagnetic or

density wave states, respectively.

Llaking use of the results of 1 for the invariant
couplings, 1t turns out that these susceptibilities can have
singularity at © =0 only; in other words, in our model

system no phase transition can occur at finite temperatures.
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The singularity at T=0 and to=0 i1s of power law type.
Analogously to the X-ray absorption problem”, the logarithmic
terras in the perturbation expansion sum up to give a power
law behaviour. Depending on the sign and relative value

of the bare coupling constants, the system tends to a super-
conducting or antiferromagnetic state as T ->0. In some

region of the coupling constants a static density wave is
also present, leading to a doubling of the period of the
system. The phase diagram, displaying the response functions
which are singular in a given range of the couplings, 1is

shown in Pig. 4.

Pirst-order scaling works well for gn~>0, and expressions
/3.15/-/3.17/ yield a reasonable approximation. Por g-<O0,
however, the invariant couplings do not remain small and
arbitrarily high order terms iIn the Lie equations can give
important contributions. We went up to second order 1in
the Lie equations for both the invariant couplings and the
susceptibilities, and though our result is of only qualitative
nature, due to the neglection of higher-order terms, we
believe that the calculation iIndicates correctly that there
is no phase transition at finite temperatures, and that
at T=0 the singularity at cu=0 ie of power law type with
exponents independent of the bare couplings. The exponents
given in eqs. //].10/-//'.12/, however, are not precise.

We can only claim that in second-order scaling the system
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seems to become cuperconducting at T=0 with a doubled

period.

No comparison can be made with exactly solvable
one-dimensional models, because there is no exact result
for the ground state problem. In turn our method is not
suitable for determining whether or not there is a gap
in the excitation spectrum, for which exact statements
exist. Dzyaloshinsky and Larkin”™ investigated the ground
state problem iIn the parquet approximation, taking into
account Umklapp processes as well. The discrepancy that
they get a normal metallic phase for g~ >0 and > 2gp
probably stems for their neglection of the factors @YuwD)"
in eq. /3.15/. The parquet approximation is clearly

insufficient for g < O.

In the present calculation the electron-electron
interaction matrix elements have been chosen in a particular
form /see eq. /1.2_.h//, that neglects the scattering
processes in»which both incoming electrons are on the same
side of the Fermi surface, /i.e. their momenta are around
either -Ho or -k /, so that Umklapp processes have also
been ignored. The effect of these processes will be inves-
tigated in a later paper, going beyond the parquet approxima-

tion by use of a second-order scaling.

Another problem open to question 10 the relation ox

the renormalization yroup technique to direct diagram

cimmation. Pirat-order scaling is undoubtedly equivalent
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to the logarithmic approximation,, but the comparison
of second-order scaling with diagrams, and the attempt
to determine the vertex as a function of several variables,

needs further investigations.
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Figure captions
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1.
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Zeroth-order diagram of response functions:

a/ Cooper-pair Tluctuation, b/ transverse magnetic
susceptibility, c/ density fluctuation. The arrows
show the spin direction. Solid /dotted/ line stands
for the propagator of electrons with momentum near

to +k0 /-k J.

First-order diagrams of response functions: a/ Copper-
-pair fluctuation, b/ magnetic susceptibility,

c/ density fluctuation.

Second-order diagram of response functions:
a/ Cooper-pair fTluctuation, b/ magnetic susceptibility
or density fluctuation. The iInteraction vertices gN

and g2 are commonly represented by a point.

Phase diagram of the system at T=0. S=superconductor,
PD S= period-doubled superconductor, PD AF= period-

-doubled antiferromagnet.
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ABSTRACT

The results of the preceding paper for the invariant coupling are
used to calculate some response functions in a one-dimensional metallic
system.Three generalized susceptibilities, characterizing the possible super-
conducting, or antiferromagnetic, behaviour of the system and the appearance
of density waves, are calculated by means of the Lie equations of the re-
normalization group. Due to the non-singular behaviour of the invariant
couplings, the response functions can diverge at w = 0 only, and this
singularity is of power law type. Depending on the sign and relative value
of the bare coupling constants, the model system tends to superconducting
or antiferromagnetic order at T = 0. In certain cases the period of the
system is doubled.

PE3IOME

B npepgpiayweli pabote ObUM MOSyYeHbl BbPaXEHUA /11 UHBapUaHTHbIX
KOHCTaHT CBA3W, KOTOpble WCMONb3YWTCA B HacToslWeil paboTe AnA onpegene-
HUS GYHKUMA OTKAMKA OJHOMEPHOW MEeTa/l/IMYECKOM CUCTEMbl. WccnepoBaHbl Tpu
06006LEHHbIX BOCMPUUMUYMBOCTM Ha OCHOBE YypaBHeHust [l rpymnnsl peHOPMUPOB-
KA, KOTOpble MOryT oOxapaKTepu3oBaTb BO3MOXHOE CBepXnpoBojslee WM aHTu-
(heppoMarHMTHOE rMoBefeHe CUCTEMbl WIM Xe OHW MOryT YyKa3aTb Ha MosiB/ieHve
BOMH MM/IOTHOCTU. TaK KakK VMHBapuaHTHble KOHCTaHTbl CBSA3WM He VMEWT CUHIYIsp-
HOCTel, (YHKUMM OTK/IMKA MOryT WMETb PacXOAMMOCTb TOMbKO MpU W = 0, W
NOABNANWAACHA CUHIYNSAPHOCTb B 3TOM C/lyyae VMEEeT CTeneHHbli xapaktep. B 3a-
BMCUMOCTV OT 3Haka W OT OTHOCUTE/NIbHOIO 3HAYeHUs KOHCTaHT CBA3W B MOAenu
NOSBNSETCA WM CBEPXMNPOBOASAWLMIA WM aHTUDeppOMarHUTHbIA NMOPSAOK NMpy T = O °K.
B HeKOTOpbIX Cryyasx nepuog, CUCTeMbl YABavBaeTCs .

KIVONAT

Az els6 részben az invarians csatolasra kapott eredményeket felhasz-
nadlva valaszfuggvényeket hatarozunk meg egydimenzidés fémes rendszerekre. A re-
normalasi csoport Lie egyenlete segitségével harom altalanositott szuszcepti-
bilitast vizsgalunk, melyek a rendszer esetleges szupravezetd vagy antiferro-
magneses viselkedésére jellemz6k, vagy suruséghullamok megjelenésére utalnak.
Az invarians csatolasok nem szingularis volta miatt a valaszfiggvények csak
© = 0-nal divergalhatnak és a szingularitas itt hatvany jellegli. A csatolasi
allandok eldjelétbl és relativ értékétdl figgéen a modell vagy szupravezetd
vagy antiferromdsneses rendet mutat T = 0 -n&4l. Bizonyos esetekben a rend-
szer perioddusa megkétszerezdédik.
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