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1. Introduction

In the first of this series of papers1 /hereafter

referred to as I/ on the problem of phase transitions in

one-dimensional metallic systems, the renormalization

group technique was used to determine the invariant coupling.

A particular Hamiltonian with two independent bare coupling-

constants was considered. In this model, electrons with

momentum near to +kQ /where kQ is the Fermi momentum/

interact only with electrons on the opposite side of the

Fermi "surface”, i.e. with electrons of momentum near

to -kQ. It was shown that the divergence obtained by Bychkov 
2et al. in the vertex fuction is an artifact of the 

approximation used. Going beyond the parquet approximation 

the invariant coupling remains finite and the singularity 

of the vertex is pushed down to co=0; there is no 

singularity whatsoever at finite energies or finite tempe

ratures.

Although the smooth behaviour of the invariant 

couplings indicates that there is no phase transition in 

the system at finite temperatures, in agreement with
3general arguments , the nature of the conjectural order 

that sets in at T=0 has still to be clarified. For that 

reason, response functions characteristic for the appearance 

of long-range order will be calculated. Three generalized 

susceptibilities, corresponding to three different types 
of long-range order, will be investigated: namely, super-
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conductivity, magnetic /ferro- or antiferromagnetic/ 

ordering, and static density waves, A singularity in any 

of these susceptibilities implies the onset of the corres

ponding ordered phase.

These quantities can be considered at finite temperature

T, as a function of T, so that a singularity at T wouldc
yield directly the transition temperature. As the typical 

logarithmic terms in the response functions are expected 

to depend symmetrically on T and on the frequency variable 

со , for the sake of convenience the calculations will be 

made at T=0, keeping со as variable.

The generalized susceptibilities describing the 

fluctuation of Cooper pairs and the propagation of magnetic 

and density waves are defined in Sec. 2. If a few terms of 

the perturbation series of these susceptibilities are known, 

this result can be improved by means of solving a Lie 

differential equation in which the bare couplings in the 

series expansion are replaced by the invariant ones. It 

will be shown that the susceptibilities, as defined, 

however, are not appropriate directly for such a treatment, 

and therefore auxiliary functions will be introduced which 

satisfy the requirement of multiplicative renormalization 

and which are closely related to the generalized suscep

tibilities.

That the solution of the Lie equation generates a 

better approximation than those terms of the series expansion
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which we start from, is due partly to the integration of 

the differential equation and partly to the use of the 

invariant coupling. In diagrammatic language it corresponds 

to the summation of a series of diagrams, starting from some 

elementary diagrams for the susceptibilities. In Sec. 3 the 

first-order corrections corning from the interaction of elec

trons are calculated. Using the result obtained in I for 

the invariant couplings, this first-order renormalization 

of the susceptibilities gives a fairly good approximation 

for repulsive /g^>0/ interaction. The case of attractive

/g^< 0/ interaction is more interesting as it was here
2that Bychkov et al. found a phase transition. It was shown 

in I that for g^< 0 first-order scaling; is a poor appro

ximation; via second-order scaling, though, it was possible 

to go beyond the parquet approximation for the invariant 

coupling. Thus in order to be consistent, the susceptibilities 

must likewise be investigated in an approximation in which 

the next leading logarithmic terms are abo collected. This 

is done in Sec. 4, where it is demonstrated that the 

susceptibilities diverge at c.vj=0 only. Depending on the 

sign and the relative value of the bare coupling constants, 

one or two of the susceptibilities diverges, indicating that 

at T=0 1he system tends to a superconducting or antiferro

magnetic state in which, iti certain cases, the period is 

doubled due to the formation of a density wave. These results 

as well as further problems are discussed in bee. 5»
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2. Response functions and Lie equations

To investigate whether there is any singularity in 

the response of the system to generalized external forces 

and to see what thé ground state of the system may he, 

Dzyaloshinsky and Larkin^ considered three generalized forces: 

1/ an external field creating Cooper pairs, 2/ a magnetic 

field with arbitrary wave vector, 3/ an external field 

inducing density waves with wave vector k.

Corresponding to these are three generalized suscep

tibilities. Superconductivity is related to the formation 

of Cooper pairs, which in turn can be described by the 

following pair fluctuation Green's function
OO ,

д М  =  -i. Jette. <ГТ[ [ c p T ^* C-fb w  J  ' C y t  ^°) X /2.1/

The usual dynamical magnetic susceptibility the singularity 

of which indicates the appearance of a ferro- or antiferro

magnetic state is given as

U!
r ccofc

4 TÍS& Ulc p-t-k 4- C/pî/(o) Cpi.к 1"C°)]> /2.2/

Here the transversal susceptibility has been chosen though 

it is easy to see that the longitudinal one would give the 

same result. Finally, the response function describing the 

propagation of density waves in the system has the form

c p«c (t)c,,+koc &) } >. /2.3/
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We want to use the renormalization group method to 

get information on these response functions. As was 

remarked in I, once the invariant couplings are known 

any physical quantity can be determined by solving a Lie 

equation, provided this quantity obeys the multiplicative 

renormalization condition. Let us suppose that for a 

quantity A/со/, which may be a response function or a 

related quantity, the change of the energy scale given by 

the cut-off cOj, to to* and the simultaneous variation of 

the coupling constants in the way determined in I are 

equivalent to multiplication by a constant z, independent 

of n_> •

' I p \ > I u,i>V UJ* j I 43^ /2.4/

where z depends on g-̂ , gp, oo* and to* only. g| and g£ 

are given by the relations /1.3.11/. Introducing the notations 

to/uj* -x, to*/ lo-jj =t and differentiating the logarithm of 

eq. /2.4/ with respect to x, taking t=x we get

Эх , <3*. %) = /2.5/
W

In the same way as for the invariant coupling itself, 

this Lie differential equation generates a reasonable solution 

for Л/to/ when a few terms of the perturbational expansion 

at the cut-off are known, provided, of course, the invariant 

coupling- is small. This is not the case in the present 

problem for Сд </ 0, as the dimensionless invariant couplings
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become of the order of unity when x->0. Nevertheless some 

inferences can be drawn concerning the existence or non- 

-existence of phase transitions and the symmetry of the 

ground state.

3« First-order scaling for the susceptibilities

We are interested in the possible singularity of the 

system’s response to external forces and so must aim to pick 

up the most singular contributions in the susceptibilities. 

The wave vector к in ^/k,u>/ and IT/к, со / is fixed 

correspondingly. Since both functions are most singular 

for k=2I: , only this particular value will be investigated. 

Neglecting the electron-electron interaction, all three 

susceptibilities as defined in eqs. /2.1/-/2.3/ show 

logarithmic singularity for a one-dimensional electron gas. 

Diagrammatically, they are represented by the simple 

bubbles shown in Pig* 1. These bubbles are related to the 

Cooper- and zero-sound-type vertex corrections and,as was 

shown in I, both are logarithmic in one dimension.

In first order in the coupling constants the 

susceptibility diagrams are given by two successive bubbles, 

as displayed in Pig. 2. Here, as in I, the solid line 

stands for the propagator of electrons with momentum near 

to +kQ, and the dotted line represents electrons with 

momentum near to -kQ . The respective contributions of 

these processes are
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д М =  U  +• + ^  ^  + - , /3.1/

X(")SX(1V-W) = dr«rtK^  L ]' /3,2/
+ ] .  /з.з/

Due to the fact that the zeroth-order term depends

logarithmically on co/u^, neither of these susceptibilities

satisfies the criterion of multiplicative renormalization
q

in eq. /2.4/. As Zawadowski has pointed out in a similar 

problem, for the susceptibility of the X-ray absorption^, 

instead of the susceptibilities, auxiliary quantities can 

be introduced by differentiating with respect to из . 

These are the proper quantities for the application of the 

renormalization group method, since they satisfy eq. /2.4/.

In order to obtain series expansions starting with unity and 

normalized to unity at the cut-off, the following quantities 
will be defined

Д  ( CO) — — 7С O'
c) A (>o)

C°  -  Э CC • , / 3 . 4 /

X  Ы  = 2 . * 0-
^ % Ы

Э < 0  / / 3 . 5 /

—  t \ o> N1 ( 0 )|\j (,1 0 ) — 7ГО' CO —яг-----d CO / 3 . 6 /

Using th e  expans io n s  o f eqs. / 3 . 1 / - / 3 . 3 / ,  we g e t

Л  (со) -- i + *3*-) ^  ^  ц- ' - . / 3 . 7 /

f  M  -  < -  4 ;
a c2)

3>. U), + / 3 . 8 /
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N(u>j = i +  ̂  + -- /3 .9 /

The imaginary parts are not considered here as this low- 

-order scaling is not adequate to account for them. /The 

same situation occured in I in calculating the Green’s 

function and vertices./

Applying eq. /2.5/ to these auxiliary functions, we

have

—  д Ы  = -j ^  + (*)) ) /3.1о/

^  i u ^ U )  = - 7  7 3 - ^ х) > / з . и /

A  ^  n  ы  = -7 7 7  С ~ 1*- * /3.12/

The right-hand sides of these equations contain the invariant 

couplings which were calculated in I.

Using the results of first-order renormalization as 

given in eqs. /1.4.11/ and /1.4.12/

& /3 .1 3 /

/3 .1 4 /
 ̂ 4^-

and inserting them into eqs. /3.10/-/3.12/, simple integration 

gives

U -  3l\ 7ГО-
, _ Vi / _ OC

Д = и —  f 00 
’ \ ) ) /3 .1 5 /

^1 £
 

. I
l (1 -  -31V 71 *r V Q j f CO \

^л / V CO„ / »
/3 .1 6 /
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KJ ( о) -  [\ üi lЯ O- vv hi ) 34 / hi )°" /3.17/
Wj> ) V ) /

where 06= (g1-2g2)/2 x  ̂  . Although the integration to get

the susceptibilities themselves cannot be performed 

analytically, these forms are none the less sufficient 

for us to be able to discern the singularities. Our result 

does not agree completely with that obtained by Dzyaloshinsky 

and Larkin^ when Umklapp processes are neglected in their 

paper. The reason of this discrepancy will be discussed in 

the last section.

First-order scaling yields a fairly good approximation 

for g]_>0 only, as in this case the invariant couplings 

decrease from their bare value when the scaling energy 

approaches the Fermi energy. For g ^ > 0  a singularity can 

come from the factors (uj/co-oJ only and thus, so far as 

the dominant singularity is concerned, the susceptibilities 

and these auxiliary functions behave similarly. In the case 

g^ >  2g2 л М  exhibits a power law singularity at u)=0, 
while for g^ < 2g2 (̂(w) and IT/co / are singular. That means,

in the first case, that the system tends towards a super

conducting phase, while in second the ground state is 

antiferromagnetic with a period-doubled stationary density 

wave. The wave vector of both the antiferromagnetic and 

density wave states is k=2kQ.

For g^< 0 the results given ineqs, /3.15/-/3.17/ are 

not satisfactory, since they have a singularity at finite to .
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This is a consequence of the singularity of the invariant 

couplings as given in eqs. /3.13/-/3.14/» It was shown in 

I, however, that this singularity is spurious, being due to 

the logarithmic approximation alone# Going beyond the parquet 

diagrams, in second-order scaling the invariant couplings are 

smooth functions of the scaling energy and tend to a constant 

value which, in the weak coupling limit ^/Vo- <£. i , is 

independent of the bare couplings

L *VV
О

4' м7ГО-

тсо-UJ -*0

/3.18/

/3.19/

The analytic expression of the invariant couplings is 
not known explicitly in this approximation, nor can the
susceptibilities be giver in the whole range of energies. 

Nevertheless, for со —> 0 an asymptotic form can be obtained

by inserting eqs. /3.,18/ and /3. 19/ into eqs. /З.Ю/-/3. 12/.

ос. Д  ( o j)
3 to —  ̂О , /3.20/

t c M (u.) oc CO

(Oj)
|оЛ t_> — О f /3.21/

N  M CX t\J (u ) ) Ä i
3

|of to —  ̂О t /3.22/

This re£suit show s that for < 0, too, the singularity can

appear at co=0 only. As the dimensionless invariant couplings

are of the order of unity, higher-order corrections as well 
should be considered: this will be done in the next section.



11

4. Second-order scaling for the susceptibilities

In the preceding section the generalized susceptibilities 

have been determined by means of a Lie equation in which 

the right-hand side was replaced by a first-order expansion 

in the invariant couplings. For an attractive interaction 

this restriction to the first-order term is highly insufficient. 

Since in the Lie equation fór the invariant coupling we had 

to go to at least the second order, to be consistent, the 

susceptibilities, too, have to be calculated in the same 

order.

The second-order diagrams of the generalized suscep

tibilities are presented in Fig. 3* The vertices corresponding 

to the interactions g^ and gg are commonly represented by a 

point; moreover, as the spin orientations are not denoted, 

the came diagrams /Fig. ЗЪ/ can represent both ^ (к(о) and 

N(k,io) . The first two diagrams in Fig. 3a and 3b have 

three typical logarithmic integrations and are proportional 

to be" to/ujj, . They are already accounted for by the first- 

order scaling, because it sums up the leading logarithmic 

terms; these graphs can in fact, be generated from the first- 

-order diagrams of Fig. 2 by replacing the elementary vertex 

with first-order vertices. This corresponds to the replacement 

of the coupling constants by the invariant couplings in the 

Lie equation.
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The new contribution comes from the self-energy-type 

corrections. These are proportional to h/ со/игв and therefore 

are not negligible compared to the contribution of bubbles, 

when the invariant couplings are of the order of unity. 

Neglecting the imaginary parts, a straightforward calculation 

gives up to second order

a U) = - ^ 177 ^ х
h 1.1/

• . , < г г . - / 4 * 2 /
% í x U z ^  - з г ; 1 * ^ х

- + ^ v i v  ^ 1 /

M txi = 1 + ■*" T t t  *~.гх /4.^/

The series expansion of the auxiliary functions follows 

directly from these equations;

ъ I \i * г
Ы  - 1 + 4  +^t) + T^Z1 4  + ^  *

%(*) - 1 - 77 ^ £- x * d v  1* ^ x ~ d v  4 1 + <̂ ) ^ X

M ( X /  -

+  7 7 -J 4  iivx + •■ •'

1 + + T ^ >  ^

/4.4/

/4.5/

/4.6/

tc
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The third and fourth terms give no contribution in the 

Lie equations, because, as was mentioned above, they 

are already accounted for by the first-order scaling.

The Lie equations in this approximation have the form

h KlLA ' x L-£ ̂ (’) + r k iW !(x|-‘3;(<l̂ u u ‘3;'<«1]], /4>f/

Here tlie invariant couplings obtained in the second-order 

scaling have to be used. The latter being smooth functions, 

a singularity can come only from the factor 1/x at x-0, 

i.e. at to =0. Por oo-^0 we have the asymptotic expressions

Д Н  ~  Í W  /4.10/

«  T i M  / 4 . Ц /

N M ~ W ( U | > ^ )  /4.12/

In this approximation д((о) and IT/ю/ are singular 

at co=:0, indicating that the system tends to a ground state 

which is superconducting with a period-doubled density wave 

present. Two features are worth mentioning. First, a similar 

result would be obtained if the calculation were carried
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out at finite temperatures,replacing со Ъу T; this would

lead directly to the finding that there is no phase

transition in the system at finite temperatures* Second,

the exponents in the susceptibilities are universal numbers,

independent of the bare coupling constant values for weak

bare coupling* This scaling behaviour is analogous to the 
7 8Hondo problem * , where, similarly, the invariant coupling

tends to a value of the order of unity which depends only

on the spin. Por g-^>0 in the present model and in the

X-ray absorption problem, on the contrary, where the»
coupling remains weak, the exponents depend explicitly 

on the bare coupling constants.

•3« Discussion

In this paper the response of a one-dimensional 

system to external forces has been investigated by using 

the renormalization group method. Three generalized sus

ceptibilities have been considered: namely, the propagation 

of Cooper pairs and of magnetic and density waves with wave 

number k=2kQ. Singularity in these propagators would indicate 

the formation of supercondiictivity, anti ferromagnetic or 

density wave states, respectively.

Llaking use of the results of I for the invariant 

couplings, it turns out that these susceptibilities can have 

singularity at со =0 only; in other words, in our model 

system no phase transition can occur at finite temperatures.
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The singularity at T=0 and to=0 is of power law type. 

Analogously to the X-ray absorption problem^, the logarithmic 

terras in the perturbation expansion sum up to give a power 

law behaviour. Depending on the sign and relative value 

of the bare coupling constants, the system tends to a super

conducting or antiferromagnetic state as T ->0. In some 

region of the coupling constants a static density wave is 

also present, leading to a doubling of the period of the 

system. The phase diagram, displaying the response functions 

which are singular in a given range of the couplings, is 

shown in Pig. 4.

Pirst-order scaling works well for g^>0, and expressions 

/3.15/-/3.17/ yield a reasonable approximation. Por g-^< 0, 

however, the invariant couplings do not remain small and 

arbitrarily high order terms in the Lie equations can give 

important contributions. We went up to second order in 

the Lie equations for both the invariant couplings and the 

susceptibilities, and though our result is of only qualitative 

nature, due to the neglection of higher-order terms, we 

believe that the calculation indicates correctly that there 

is no phase transition at finite temperatures, and that 

at T=0 the singularity at cu=0 ie of power law type with 

exponents independent of the bare couplings. The exponents 

given in eqs. //]. 10/-//!. 12/, however, are not precise.

We can only claim that in second-order scaling the system
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seems to become cuperconducting at T=0 with a doubled 

period.

No comparison can be made with exactly solvable 

one-dimensional models, because there is no exact result 

for the ground state problem. In turn our method is not 

suitable for determining whether or not there is a gap 

in the excitation spectrum, for which exact statements 

exist. Dzyaloshinsky and Larkin^ investigated the ground 

state problem in the parquet approximation, taking into 

account Ümklapp processes as well. The discrepancy that 

they get a normal metallic phase for g^ > 0 and > 2gp 

probably stems for their neglection of the factors (â /u>D)" 

in eq. /3.15/. The parquet approximation is clearly 

insufficient for g-̂  <  0.

In the present calculation the electron-electron 

interaction matrix elements have been chosen in a particular 

form /see eq. /1.2.h//, that neglects the scattering 

processes in»which both incoming electrons are on the same 

side of the Fermi surface, /i.e. their momenta are around 

either -i-ko or -k /, so that Umklapp processes have also 

been ignored. The effect of these processes will be inves

tigated in a later paper, going beyond the parquet approxima

tion by use of a second-order scaling.

Another problem open to question io the relation ox 

the renormalization yroup technique to direct diagram 

cimmation. Pirat-order scaling is undoubtedly equivalent

4

*
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to the logarithmic approximation,, but the comparison 

of second-order scaling with diagrams, and the attempt 

to determine the vertex as a function of several variables, 

needs further investigations.
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Figure captions

t

Fig. 1. Zeroth-order diagram of response functions:

a/ Cooper-pair fluctuation, b/ transverse magnetic 

susceptibility, с/ density fluctuation. The arrows 

show the spin direction. Solid /dotted/ line stands 

for the propagator of electrons with momentum near 

to +k0 /-k J.

Fig. 2. First-order diagrams of response functions: a/ Copper- 

-pair fluctuation, b/ magnetic susceptibility, 

с/ density fluctuation.

Fig. 3* Second-order diagram of response functions:
a/ Cooper-pair fluctuation, b/ magnetic susceptibility 

or density fluctuation. The interaction vertices g^ 

and g2 are commonly represented by a point.

Fig. 4* Phase diagram of the system at T=0. S=superconductor, 

PD S= period-doubled superconductor, PD AF= period- 

-doubled antiferromagnet.
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ABSTRACT

The results of the preceding paper for the invariant coupling are 
used to calculate some response functions in a one-dimensional metallic 
system.Three generalized susceptibilities, characterizing the possible super
conducting, or antiferromagnetic, behaviour of the system and the appearance 
of density waves, are calculated by means of the Lie equations of the re
normalization group. Due to the non-singular behaviour of the invariant 
couplings, the response functions can diverge at ш = О only, and this 
singularity is of power law type. Depending on the sign and relative value 
of the bare coupling constants, the model system tends to superconducting 
or antiferromagnetic order at T = 0. In certain cases the period of the 
system is doubled.

РЕЗЮМЕ

В предыдущей работе были получены выражения для инвариантных 
констант связи, которые используются в настоящей работе для определе
ния функций отклика одномерной металлической системы. Исследованы три 
обобщенных восприимчивости на основе уравнения Ли группы ренормиров
ки, которые могут охарактеризовать возможное сверхпроводящее или анти- 
ферромагнитное поведение системы или же они могут указать на появление 
волн плотности. Так как инвариантные константы связи не имеют сингуляр
ностей, функции отклика могут иметь расходимость только при ш = о, и 
появляющаяся сингулярность в этом случае имеет степенный характер. В за
висимости от знака и от относительного значения констант связи в модели 
появляется или сверхпроводящий или антиферромагнитный порядок при т = о °к. 
В некоторых случаях период системы удваивается.

KIVONAT

Az első részben az invariáns csatolásra kapott eredményeket felhasz
nálva válaszfüggvényeket határozunk meg egydimenziós fémes rendszerekre. A re- 
normálási csoport Lie egyenlete segítségével három általánosított szuszcepti- 
bilitást vizsgálunk, melyek a rendszer esetleges szupravezető vagy antiferro- 
mágneses viselkedésére jellemzők, vagy sürüséghullámok megjelenésére utalnak. 
Az invariáns csatolások nem szinguláris volta miatt a válaszfüggvények csak 
to = O-nál divergálhatnak és a szingularitás itt hatvány jellegű. A csatolási 
állandók előjelétől és relativ értékétől függően a modell vagy szupravezető 
vagy antiferromásneses rendet mutat T = 0 -nál. Bizonyos esetekben a rend
szer periódusa megkétszereződik.
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