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(THEORY OE ZERO BIAS ANOMALIES DUE TO PARAMAGNETIC
IMPURITIES

Summary

Using Zawadowskifs approach to the tunneling phenomena the
anomalous tunneling due be paramagnetic impurities is investigated.
The tunneling current is expressed in terms of the local density of
states at the harrier which in turn is given in terms of the life-
time of the conduction electrons. To take into account the effect
of the Kondo scattering of electrons on paramagnetic impurities dif-
ferent solution for the life-time /e.g. resonant state or quasi-hound
state solutions/ are assumed and the resulting possible voltage-current
characteristics are discussed and compared with the experimental results
The role played by the impurities lying at different positions relative
to the metal-oxide interface is thoroughly investigated.



1. Introduction

Zero bias anomalies on transition metal - transition metal ox.
normal /non-transition/ metal diodes have been observed by Wyatt [1] a
Rowell and Shen [2] . Anderson [3], Appelbauro [4] and Suhl [5] have suggv
that the paramagnetic atoms inside the barrier play an important role in
bringing about these anomalies.

One of the authors [I6] has proposed that diodes composed of metal
- metal oxide - small amount of evaporated paramagnetic impurities - metal
be investigated with regard to possible zero bias anomalies. This type of
diodes has been studied by Wyatt and Lythall [7] and Mezei [8] and they
found anomalies similar to the ones observed on transition metal - transit-
ion metal oxide - normal metal diodes. Their experiments indicate that the
magnetic impurities at the barrier surface are responsible for a large
variety of the zero bias anomalies. The aim of the present paper is to
give a theoretical interpretation of the phenomena observed in diodes of
the second type, where the positions of those magnetic atoms which play
an important role in the effects are rather well determined.

The first accound of zero bias anomalies, observed on semiconductor
tunnel junctions [9j» tlo], is due to Hall, Racette and Ehrenreich [91*
They treated the problem in termB of the bulk density of states, which is
supposed to be modified by the existence of polaron states. Later it was
shown by Duke and Mahan [I1] that tgis picture is incorrect.

Various theories have been developed to explain different tunneling
anomalies, but it is common amohg them that the barrier and its surrounding
are the scence of the phenomena. Anderson [3] » Appelbaum [4] and independen-
tly Suhl [5] proposed an interpretation that emphasizes the importance of
the bound or resonant state on the magnetic impurity. They suggested that
the localized magnetic states in the barrier represent an easy route for
tunneling. This theory can explain zero bias anomalies with small relative
amplitude, but cannot explain the giant resistivity maximum observed by
Rowell and Shen [2] on Cr-CrO-Ag diodes and by Wyatt and Lythall [7] and
Mezei [8] on junctions containing magnetic impurities at the barrier. An
entirely different mechanism has been suggested by Duke, Silverstein and
Bennett [12]} they assume that the electron tunneling process is associated
with creation or annihilation of some quasiparticles, such as phonons and
magnons. The phonon processes have been studied by Mahan [13] too. However,
the estimated amplitudes of the magnon process are too small to account



for the observed effects. New anomalies have been observed by Jaklevic
and Lambe [14] on Junctions containing organic or inorganic molecules.
According to the theory developed by Marcus and Scalapino [I5]to explain
these anomalies, the excitations of the molecules give the important
contribution to the anomalous tunneling current. All the above mentioned
theories deal with tunneling processes associated with some elementary
excitation which is rather well localized at the barrier.

A different approach, which emphasizes the change of the electronic
energy spectrum in the barrier, has been suggested by the authors [6], [16]e
The change is the effect of the Kondo resonant scattering or the exista.nce
of bound states on the magnetic impurities near the barrier. The contribut-
ion of the Kondo effect to the energy spectrum is essential only in the
neighbourhood of the Fermi level; therefore, it may give rise to an obser-
vable effect at zero bias. The theory also can account for the giant
resistivity maxima. This approach was first used by the authors [16] to
calculate the tunneling current. More recently similar results have been
obtained by Appelbaum, Phillips and Tzouras [17]. Anderson [18] has also
pointed out, although from a quite different point of view, that the change
in the electron spectrum at the' paramagnetic impurities could be responsible
for the anomalies.

The two approaches outlined above are not mutually exclusive; they
rather correspond to physically different situations, which might be
classified into two groups:

1. Non-local effect or assisted tunrieling.

During the tunneling some quasiparticles /phonons, magnons/,
molecular vibrations, or localized magnetic states are excited. It will be
shown that these processes are important only if the selfenergy operator
corresponding to the excitations is non local in space. This is the case
if the subsequent interactions described by the higher order terms take
place at different points of the barrier or on different sides of the
barrier. A typical diagram corresponding to a second order contribution is
given in Fig.l. 1. The assisted tunneling processes appear as a new channel
through the barrier

This type of diagram has been calculated in ref. [12] and [13] consider-
ing the phonon assisted tunneling.

2 The importance of non-local effects in zero bias anomalies have been

emphasized by Appelbaum et al [17]e



2, Local effect or the deformation of the electronic energy
spectrum at the barrier.

In this case the interaction of the conduction electrons with the
localized impurity excitations leads to change of the electronic energy
spectrum in the neighbourhood of the impurities /Fig. 2/. If the energy
spectrum changes at the barrier, then the amplitudes of the electrons
penetrating into the barrier also change. Therefore, the overlap of the
wave functions of the left and right electrons will be modified. This
effect may be described by strongly energy dependent tunneling matrix
elements or by the local /i.e. not bulk/ density of states at the barrier.

The distinction of local and non-local effects is rather idealistic.
However, the above classification points out necessity for two different
theoretical treatments in the physically different cases. The aim of the
present paper is to work out the theory for local effects.

In the first part of this paper we investigate the physical meaning
of the density of states, p , in the formula

[?1enN 2a6 lE*eV)[nF (E)~nF (E+eV)]dE
/1

where | is the tunneling current and n® is the Fermi distribution function.
The density of states is usually determined from the experimental results,
using eq. /1/. Our investigation is based on a generalization of Bardeen’s
tunneling theory [19]. This theory s[20], which takes into account many body
effects by using Green functions is outlined in Sec. 2. The Green functions
are built up from the solutions of two particular problems corresponding

to- the metals on the left and right hand side of the barrier. The calculation
of the Green functions is given in Sec. 3» In the calculation the interaction
with the impurities in the vicinity of the barrier is described by a local
self-energy operator. In Sec. 4 we obtain a new expression for p , the
effective density of states appearing, in formula /1/. p is related to po,
the bulk density of states, by

P -
/2]
where Z is a renormalization factor. This function describes the energy
spectrum of the electrons at the barrier; it is expressed by the conduction
electron life time corresponding to the scattering on the impurities. In
°ec# 5 an average over the positions of the impurities is taken and the
dependence of the energy spectrum at the barrier on the distribution of the



impurities is carefully investigated. The coherence length introduced by
the authors [21] is discussed. It is found that the impurities inside the
coherence length measured from the harrier are the most effective /Fig.2./.

In the second part of this paper the characteristics of the tunneling
diodes are investigated, assuming different scattering amplitudes for'the
electron-paramagnetic impurity scattering. The relationship between the
assumed scattering amplitudes and the resulting diode characteristics is
discussed. No final conclusion can he drawn, since the problem of the Kondo
scattering [22] is not yet solved. The known approximations /e.g. the
Abrikosov-Suhl resonance [23] and the Kondo bound state [24]/ give quite
different results . Further experimental investigation of this type of
diodes, however, could give information on the scattering amplitudes.. This
information is not available from the measurements of other parameters
/le.g. bulk resistivity/, because most of those parameters depend on the
average of the scattering amplitudes taken over an energy interval of few
times the temperature around the Fermi energy.

In Sec. 6. some general properties of the diode characteristics are
given. The most frequently discussed scattering amplitudes are listed in
Sec. 7. The results derived in the perturbation theory of the third order
are summarized in Sec. 8. In Sec. 9« the characteristics are calculated on
the basis of different scattering amplitudes listed in Sec. 7» Also in
Sec. 90 the connection between the renormalized density of states and the
relaxation time is pointed out and the main features of the selfconsistent
theory are outlined. In Sec. lo. the effect of external magnetic field is
shortly discussed. The comparison of the experimental results and the
present theory is given in Sec. 11. In Sec. 12. the possibility of the
determination of the scattering amplitudes from the tunneling measurements
is discussed and the comparison of the present theoretical results and other
theories is given.

BASIC FORMULATION
2, General current formula

One of the authors [20] developed an approach to the tunneling
phenomena for metal-metal oxide-metal trunnel diodes.The Green functions
of this problem are constructed from the Green functions corresponding to
two particular problems, in which the metal on the left hand side /or right

Further literature can be found in ref. [23]



hand side/ is replaced by an insulator. The corresponding particular
problem is called the right hand side problem /or left hand side problem/.
The one-particle causal Green functions are introduced for finite temperatu-
res by

Gs.s-)*-*">=- "<Ti Vs >
« =7r,l

131

where r and 1 stand for the right hand problem and left h.p., respectively,
and s is the spin index. The expression of the current /at point x/ can be
considered as a response to the tunneling rate /at point y/. Thus the
expression for the i”*1 component of the current has been found to be

l.(x)=(C-R)e YL ifdft,/ d/o tim ;
S,S <Nyl X—X-

(y, (r

141

where the direction of an arrow above a differential operator indicates

the operand and the cyclic rule is to be followed in the absence of an
adjacent operand. The surface integral is to be taken on an arbitrary
surface S*in the barrier with surface element* df _. /see Fig.3»/« The
symbol /C — R/ stands for the replacement of the causal response function
by the retarted one. For the space-time vectors the four-component notation
is applied, y=/y y/ and the operation /r—1/ stands for the exchange of
the right and left indices.

The particular Green functions satisfy equations in which the
potentials are as illustrated in Fig.4./a,b. The potential of the right
hand problem is the same as that of the original one as shown in Fig.4/c
excepting the region of the metal on the left hand side. The selfenergy
operator 2Ir of the right hand problem is a sum of the self-energy
of the electron gas on the right hand side and the additional self-energy
3} coming from the region of the barrier and its neighbourhood

In the derivation of the current formula,eq. /4/ it is supposed
that the self-energy is a local function of the space variables inside

The value of the current density calculated by formula /4/ is independent

"Kke choice of the surface S up to the second order of the tunneling
rate, as it is shown in ref. 20 .



the barrier

r (x,*)=£. (xj x.-xj)dfx-n")
a /151
The locality condition iB well fulfilled, when the barrier self-

energy is due to the interaction of conduction electrons with localized
spins via the exchange interaction, given by the Kondo Hamiltonian [22]

®
N < b
. /6l
where - is the coupling constant, & and S are the spin matrices of the
conduction electrons and localized spins, respectively. The summation
index i labels the different impurities. The electron field operator
y (R is taken at the position of the ittL impurity. The exchange

interaction spreads over about one atomic distance and therefore the
locality condition is realistic. The spin-spin correlation of different
impurities is neglected. If the self-energy is non-local, eq. /4/ does

not hold and the present method cannot be applied without any modification.
This is .the case, when tunneling is assisted by some quasiparticle or
molecular vibration excitation which has been called "non-local barrier
effect™ in the introduction.

3. Determination of the particular Green functions
The Green function equations for the particular problems are
L . $ns,(y,x")ef*</ -

s's sJ s> S’S ()
=<Cx-X) ; ox= iyr

- = - VACx)/*
| dx,, 2m XZJ

Y
which have to be solved approximately.

We are interested in the effect of the'paramagnetic impurities put
into the barrier or its neighbourhood. The particular Green functions can
be determined in two steps namely taking into account

1, the self-energy £2~ corresponding to the electron-electron
interaction,

2, the effect of the impurities.

The electron-electron interaction seems to be not important for



the zero bias anomalies [4j,therefore it can be taken into account e.g. in
Hartree-Fock approximation. The Green function can be given in the first

step as
(o) b
G_S,S,jd:(xj>y A n,oc n S$S joc A .c< (X)
/8l

where the one-particle wave function X>a<satisfy the following Schrédinger
equation

—cC X
/| - 1 r * 21K o< Aex M A<
191/
with eigenvalues S ~ . The energy dependent term is
€o) [ N °PFAA ) + MIF(EN,) \ »
GA% S'<><f£T) : ¢ )
e 7 * ] s's /10/

where n”™ is the Fermi distribution function.

For the sake of simplicity we suppose that the barrier is transla-
tional invariant in the directions y and z. The wave vector parallel to
the plane of the barrier K[[ is a good quantum-number. The wave functions

TA\G: may be written in the form
M
ffL
11/

where . v [/x/ is the longitudinal component of the wave function, v is
a further quantum number antf. is the volume of the metal on side oc
Furthermore inside the barrier

1, pr

ve YEB, o<-/r

/112/al



with the damping factor Kj given by
2m [v + El
2m F

1121/
where BN is the Fermi energy and the potential V is the height of the
barrier taken to be constant. As it is well known only the electrons with
energy near the Fermi energy and with kK ~ O play an important role in

the tunneling phenomena, because the wave function of other electrons is
damped much more strongly in the barrier.

The next step is the determination of the Green functions in the
presence of paramagnetic impurities. There is a representation of the
Green function similar to the previous one given by eq /8/, but also
off-diagonal elements occur, i.e.

G(?,x]8) =Z X X7)G ,(£)XC<Z)-
’ 113/

The matrix element G X>(E) can be given in terms of the
spectral function pn”,(E) as

00

f-nf ()  nr(E)
E-E'+i6 E-E'-ie

OE"
1141

Perturbation theory gives incorrect results if it is applied to
the time-dependent Green functions at finite temperatures”™, therefore we
have to turn to the thermodynamic Green functions with complex time
variables [26], 7 (x={x,71)

. X7 = 1CO(T-T)

ts«@

d(T-7) 115/

The application of the thermodynamic Green functions with real time
variables may give wrong result in some special canes. Using them the

obtained life time is given by the correct one multiplied by an incorrect
factor /1-=2nF/E //.



where @=1iocn -i2.TTC2n + D) with n an integer. The spectral
representation of the thermodynamic Green functions is

afCOi'K(x’X'):EX-bN«(7)&0,<?‘ ! X/O<ex')
/16/al
with
a, a)-./
' tOJn>* \] LCO-E"
- /16/b/
where the spectral functions ®) are the same as in eq*/14/.

In absence of impurities the spectral function is obtained by
comparing eqs. /1o/ and /14/ as

o EyunrtK4(E-£ )

A A’
117/
from which the Green function cin is readily determined. The relation
of gf is expressed by the Dyson equation in symbolic notation
as
(0) (€0)]
%¢q cooi N B N4
/18/al

The concrete form of the self-energy £/ due to the impurities
will be discussed later. We only mention here that its imaginary part
exhibits the energy dependence characteristic to the Kondo scattering
while its real part is a smooth function of energy, which might be included
in the scalar potential V« . Thus we keep only the imaginary part of
ILg fo. the following.

For the sake of simplicity a random distribution of the impurities
is supposed in the planes parallel to the barrier. The self-energy averaged
over the positions of the impurities, £ depends only on the component
x of the space variable. The parallel momentum k( is conserved. Calculating
the matrix elements, of the Dyson equation, eq. /18/a/j with the functions
A , we have
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(K, , <& (*., 4 CU*>> ' > * ) % » « ,, V,\W)

/118/b/

The matrix element of the self-energy is

— H_ (Vi =fdEX(X) :
Lo IR AR, e ooy 0

) 2L D g (0

119/

where the thickness of tne metal sandwich is denoted by Ic't.//;‘/( \(;()
can be chosen to be real and positive in the barrier./ '

The contribution of an' impurity to the matrix element given by
eq. /19/ is very sensitive to the' relative position of the impurity and
the barrier, namely

1, if the impurity is inside the barrier or on its surface the
factor /r y(x} x) Ix £ B/ depends only on the energies fr
and «fv’ ¢ This dependence is very weak and the contribution is purely
imaginary,

2, if the impurity is in the metal sandwich its contribution to
the matrix element is an oscillating function of its distance from the
barriero The most slowly oscillating part of the matrix element is
proportional to

a cos[ (k] - kb) x] +bsin[(k} - Kpx]
20/
as it is shown in Appendix |I. These matrix elements are important only if
they are taken between electron states lying in an interval of width AE
around the Fermi energy, where AE is the energy region from which the
largest contribution to the Kondo scattering comes.

We can introduce a coherence length similarly to the super-
conductivity
"rF
ner 1211
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KHA 0
where V= is the Fermi velocity * If the impurity lies much
nearer the harrier than the coherence length , then the factor

given by eq. /20/ is positive and independent of indexes Kj and
for matrix elements taken between the interesting electron states discussed
above.

Thus the matrix elements given by eq. /19/ can be regarded to
be independent of the indices v and v ', if the impurities are inside
the barrier or in the metal not far from the metal-metal oxide interface.
In this section we investigate the former case. The role played by the
impurities lying in the metal will be discussed in Sec. 5» From eq. /19/
we get

I-B,co;cx(k' Y

. V) Eﬂ’/\ (x)dx ) E &) C (Icrx

[22]

where f is an averaged wave function taken at the Fermi energy and c/x/
stands for the impurity concentration. It is supposed to depend only on
the distance from the surface of the barrier, £7 fx> is the contribution
to the self-energy of one impurity in the space c|80int X.

For the calculation of the current given by eq. /4/ the Green
functions G or G with space variables lying in the barrier are needed,
which may be written as s

ClJ (x, x)=- H e L (* = tx)sr* Cx) Cll (k Y, V")
<KW, Y'
L he MO TN (k.)
1 T *,

123/

where we have made use of eqs. /11/ and /16/a/, moreover

f n and

bl ~

The spin polarization around the impurity becomes negligible outside of
a similar distance. See Nagaoka’s work, ref. [24]
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Taking the matrix elements of the Dyson equation, eq. /18/a/ and averaging
according to eq. /24/, by making use of eq. /19/ we have

n L ) Chu m(k.)
125/
where
oj mct ( b ‘/E'd \-
126/
The solution of equation /25/ is
/
77 - o
B,cui« <'§') Cf(jj-e< "7
1271
The spectral representation of the averaged Green function is
& (E_;tw>
-’ df-
5 2 ’A 2 LCO - £
128/
Comparing eq. /28/ with eqs. /Ib/a/ and /24/ we get
* - _
e = P e ke (£)
which is positive because it is symmetrical in the indices. 1291/

The spectral function can be obtained from eq. /28/ by the spectral
theorem

/ ?
. N Cf(k,, -Of (K
£07.)* oo /.«a(,-~ \egian gg_E-/d)ou

130/
The unperturbed averaged Green function, given by eq.-/26/ can be
calculated easily

/
q ? gy £ — =¥ >E£)

1GI - ET/(F; X E-£- 131/
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where Jbe«(*«,E) is the Parliia;L density of states for a given wave
vector IT . The first sum gives only a small contribution for E«E-p and

thus can be neglected. A detailed discussion of this approximation will
he given in Sec. 5* In this way we have

M2 (%) =*n?2 . F<He>
1321
where ?20=<<£,,) = &.«(I<, =2 (D) i*e* a weak dependence of
the density of states on the energy is assumed.

Comparing eqs. /32/ and /27/ and using the spectral theorem, eq./30/,
we get the following expression of the averaged perturbed spectral function

£ (?.;£) -

133/
where , which is a quantity of relaxation time type, is defined through
the purely imaginary self-energy as

1
Hn Cku)
1341

The derivation of formula /33/ is one of the crucial points of our theory.
Its generalization to the case in which there are impurities also in the
metal will he given in Sec. 5«

4. Expression of the total current

The total current can be determined by inserting the particular
Green functions given by eqs. /14/, /16/a/, /129/ and /33/ into the general
current formula, eq. /4/0 As it is shown in Appendix Il the current may be

expressed by the spectral functions <, ,EBE) /« =1,r/ in the
following way

T(v)="eEl T(kh)\ZdE 2c(kt] ENP*(Kh)E +eV) jnp(E)- np (E +ev)j
/135/

where T(k,,) is the tunneling matrix element and V is the applied bias.

This formula is a generalization of the-one valid in the free electron
model.



The spectral function ?2J-kn}E) has different physical inter-
petations for different systems as illustrated in Table 1.

TABLE |
Physical interpretation of the spectral function for different
systems
Formula Physical interpretation System
one particle density of free electron
Po states model
2tun ¢>in = tunneling density of strong coupling
states superconductors
=YLp(k,,, k1 ;E) P
K [27]
Plotal ~ .
> local density of states local barrier
=?20(k,1£)Z(K,Ii£) effects

The tunneling density of states has been introduced by Schrieffer,
Scalapino and Wilkins [271 for strong coupling superconductors. As this
gquantity reflects the spectrum of the bulk material, the summation index
V* may be replaced by the wave vector perpendicular to the barrier
surface , This density of states may be essentially different from the
usual one calculated from the dispersion relation of the one particle

excitations which enters the thermodynamic quantities of an interacting
electron gas'7

Recently is has been pointed out, that heat capacity of dilute magnetic
alloy in homogeneously polarized state is determined by the tunneling
density of states instead of the thermodynamic one, if the Kondo Hamilton-

ian assumed. J.S6lyom and A.Zawadowski, physica status solidi, to» be
published.
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In the case discussed here the spectral function cannot be replaced
hy the bulk one, because it is depressed near the harrier due to paramagne-
tic impurities. The measure of the depression is the renormalization factor

p (kn) E)
po £) /561
which in the present case according to eq. /55/ is
7+m'90, X €k,,)
rT« (kniE) /57

As it has been mentioned before, it

that contribute appreciably to the total current, therefore the renormalizat-
ion constant can be replaced by its value for k,= o, i.e.

is only the states with kK» o

ZJE) =0jE)~ (0)
‘o 27,,(B)
/581
where _O;E):T/\(E)
The corresponding density ofsstates is
. 1 rn /
r°; = K, =0) -=---=- =P
%0>°<( .=0) J pO pr° Ns t
/59/

where pQ is the Fermi momentum, po=

is the density of states at the
Fermi level,

Ng is the surface density of atoms which is defined taking a
surface orthogonal to one of the crystallographic axes in a cubic crystal
and z is a number of order unity.

Inserting eq. /39/ into eq. /38/ wo get the final results

. 0o/
LAY K (£)
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It is worth, mentioning that the renormalization factor always leads
to a depression of the density of states at the harrier and never to an
enhancemente /See Fig. 2/b./

5. Dependence of the renormalization factor on the positions of the
impurities

The renormalization constant Z/E/, given by eq, /4o0/ depends on the
relaxation time I , which is determined by the matrix element /19/. This
matrix element is composed of the imaginary part of the self-energy»

Im Ucu(R) i corresponding to one impurity.

is a functional of the energy spectrum PpCR;£)
of the electron density at the impurity site R through the intermediate
states. Using the Kondo Hamiltonian,eq. /6 /,we get the following structure

1411

where s is a function of co and a functional of its argument. Inserting
eq. /41/ into eq. /22/ we have

142/

In eq. /42/ the longitudinal components of the wave functions have been
replaced by the average value f taken at the Fermi level. This is a good
approximation provided the impurities lie nearer the barrier than the
coherence length £aE introduced in eq. /21/. The energy dependence of
the density of states at the impurity site R can be determined from the
Green function O as

1431
Making use of eq. /16/a-b/, /11/ and /29/ we obtain



- 18 -

We have derived a coupled system of equations consisting.of eqs.
/133/* 142/ and /a44/ for the renormalization factor Z/k,, ;E/ and for
y ;E/e Wk should determine p (k,,;E) from this system of equations
in a selfconsistent way which is important in all cases, where the relative
amplitude of the effect is not small /e.g. if Z/E/< 0,8 at some energy
values/e

For the investigation of the dependence of the renormalization
factor on the position of the impurities relative to the harrier we have
to recall that when solving the Dyson equation, eq. /18/b/ it has been
supposed that the matrix element n (k,.,y,y) given by eq./22/
is independent of the indices v and Vv' in an energy region near the
Fermi level. If the impurities lie inside the metal, the distance d of the
impurity from the surface of the harrier and the energy interval ne where
the matrix element is independent of v and v’ are connected by a
relation similar to eq. /21/. We require this jgpdependency for an energy
interval larger than kT, eV and kT#, where KT” is the energy interval in
which the Kondo scattering is effective. If the impurities lie'nearer the
metal-metal oxide interface than the Kondo coherence length £ ,
given by

KTH /45

the above supposition holds and this makes possible to write the second
term on the rigth hand side of eq. /25/ as a product.

The problem can be greatly simplified if the real part of UJ
in eq. /31/ vanishes, i.e.

This is true if the summation over v extends to an energy interval af*
at least an order of magnitude larger than the energy intervals discussed
above, KTg-c<gE . Therefore we require that the matrix element

£ B (*/, "~ ) be independent o f’the indices + and w in the
energy interval nE around the Fermi energy. According to the above
considerations the maximal distance <*ax of theeimpurities from the surface
of the barrier is limited by the condition

d_ 1461

8
The definition of the Kondo temperature is KI,=1.14E/1, where E s given
by /53/. n 0 0
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where nw
At ﬂ£

This means that the distance d* must he smaller than the Kondo
coherence length RB.T by at last one order of magnitude.

If the thickness of the impurity layer on the barrier satisfies the
condition /46/, then the matrix element /22/ of the self-energy is
proportional to the impurity concentration. The amplitude of the zero bias
anomalies can be increased by evaporating more impurity atoms. It can be
shown, however, that in the limit when the metal on one side is a dilute
alloy with homogeneously distributed impurities the tunneling density of
states does not change due to the impurities. The present theory can not

be applied to the case in which the thickness of the impurity layer is
larger than

It seems reasonable that there is an optimal thickness of the
impurity layer, i.e. when the effect of the impurities is the largest.

In a dilute alloy the self-energy averaged over the positions of
impurities is independent of the space variables and according to eq./l9/

it is diagonal in the indices. The Dys«n equation, eq. /18/b/ is

T, W GsVig pkeyv)g  kovv
A47]

WL\%S ZB,tu(kIW)zzE’;IxJ(k’ «V,V) . Now the first term in the expression of
given by eq. /31/ cannot be neglected. Assuming that the exhange

coupling constant is independent of the' momenta the self-energy of the

electrons in a dilute alloy depends only on the energy. The spectral function

N .oo(E)=dx x,~ fAx* (EfV>" given by eq. /16/b/ can be calculated using the
spectral theorem, eq. /30/, and we get

Pa;*
+(Im Lc 148/
The tunneling density of states given in Table | is
I E,
-f? -
(E-f* ftf. 149/

Neglecting the energy dependence of the unrenormalized density of states
we get
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/50/

Thjs there is no hulk effect in the tunneling density of states due to the
impurities. This result suggests that the amplitude of the effect becomes
smaller if the dependence of the matrix elements /19/ on the indices y ,Vv*
starts to set in.

The problem of the impurities in the barrier is much more simple.
The deeper the impurity is in the barrier the more the averaged amplitude
of the electron wave function decreases. This amplitude occure in the self-
energy, eq, /42/ explicitly and in the argument of the function s through
the density of the intermediate states. Because the function s is of higher
order in the coupling constant, the impurities in the barrier far from the
surface do not give an essential contribution to eq. /42/. A rough estimate
rx the averaged wave function f as a function of the space variable measured
from the barrier surface shows that the impurities in the second atomic
layer of the barrier cause already very small effect.

This we may conclude that only the impurities found in the metal
sandwich inside the Kondo coherence length and in the first and second
atomic layers ofthe barrier are important from the point of view of the
local tunneling anomalies.

This change in the local energy spectrum of the conduction electrons
appears only in the range of the coherence length. This statement can be
proved using the accurate expression of the local energy spectrum

dkn2
P 1 &, rra@jnz 4<n,v,« >v<r’i E)fc (R)
151/
The product of the two wave functions is given by eq. /22/. They
can be replaced by the averaged wave functions if the space variable R is
inside of the coherence length. Outside of the coherence length the effect

of the impurities is destroyed by the interference of the wave functions
as illustrated in Pig. 2/b.

As we have seen homogeneously distributed impurities cause no ’effect in
the tunneling density of states. Therefore the inhomogeneous part ot

the distribution function appearing inside of the coherence length
contributes to the zero bias anomalies.
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CHARACTERISTICS
6. General behaviour of the characteristics

Now let us discuss the formula /35/ of the current There are two
possible construction of the samples. Namely, if

1, there are impurities only on one side of the barrier,

2, there are impurities on both sides of the barrier.

The first possibility is realized in experiments where paramagnetic
impurities are evaporated on one of the surfaces of the barrier [71,[8]
while the second one is the case of junctions with oxide layer consisting
of paramagnetic atoms or ions [1],[2].

At zero temperature the current formula, eq. /35/ is simplified to
the following one

I(v)~fdEo ,(E)Z.(E)o (£teV)Z (E+eV)
N > P'r /1521

where all quantities are taken k”~ 0 as in eqs. /38-40/.

An essential simplification appears, if there are impurities only on
one side of the barrier and the bulk density of states' of the metals can be
taken to be constants. Thus we get

1531

In general dynamical conductance can be determined by taking the
derivative of the current, eq. /35/» At finite temperatures this derivative,
however, contains integrals, which in general can be calculated only by a
computer. The case discussed above is an exception and we get the following
simple expression for dynamical conductance and resistivity from eq. /53/

T ey s =scy)
G(v) - e v) = V) A
SRR Ze(eV)  ssal
and
This is a good approximation at finite temperatures too, provided
eV > KT and the variation of the renormalization constant Z/E/ is small
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enough in intervals of the order KT, i.e. if

tJx KT «Z.(eV)
df E=ev

7, Scattering amplitudes

For the calculation of the renormalization constant eq, /38/ and
the characteristics we need analitical forms of the scattering amplitudes.
Here we do not want to give a critical discussion of the Kondo problem and
the determination of the scattering amplitudel0. Our aim is to give the
most important features of the dynamical conductance /or resistivity/ for
the typical scattering amplitudes, found in the current literature*

The simplest form of the scattering amplitude can he obtained in the
third order of perturbation theory, the applicability of which, however, is
very limited [23]. We shall discuss this case in Sec. 9»

Using nonperturbative methods a great variety of theoretical results
have been derived. These results especially for antiferromagnetic coupling
lead to different physical consequences. We restrict ourselves to three
types here.

1. Abrikosov type [23]: The scattering amplitude shows maxima at

energies —Eq corresponding to resonant scattering. The energy of the
resonance is

£* £ e*p{*TT
153/
where Ec is a cut-off energy determined by the band width and locality of
the interaction in space. The usually accepted values lie in the interval
loo meV<Ec <lo eV, where the upper limit corresponds to the band width and
the lower one to the locality [28]. The imaginary self-energy due to one
impurity at site R, is

/ 23p(R) Ec )2 / 23?%*(R)
+

_—
ImE, 2TJIR) N IEI

/561
where
-) s(SH)KTf<>($)
r (r) (o
/571

lo
See the current literature jn ref. [23-25]
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As compared to the original Abrikosov’s one this expression has
been completed by a further term containing the parameter jo to avoid the
occuring divergence. The parameter T has been estimated by iosida and
OKkiji [29] and found to be Ta=s(s+/)y ~ . The validity of the scattering
amplitudes, eqc /56/, is questioned this time for low temperatures kIF<fo 9
because of the apperance of an inadmissible complex pole of the scattéring
amplitude on the physical sheet.

When calculating the characteristics for different models we will

accept the scattering amplitude in eq. /56/ for the resonant scattering
model.

2, Suhl-Wong type [25]: There is a sharp maximum in the scattering
amplitude, but its energy is always comparable with the temperature. -«

5, Nagaoka type [24]s At low enough temperatures a quasibound state
of the localized spin and a conduction electron occurs. The transition
temperature corresponding to the formation of the quasibound state is

kTc ~ 1,1 £t

/581
and the imaginary self-energy is given by
- . 1 E°
Nc*.ExiECR frpfo>(R E2 +
) p fo>(R) oy

where, in Nagaoka’s notation, Eq =1/l

This solution exhibits a maximum in the scattering amplitude at
zero energy and it might be regarded as- some type of resonance with zero
energy.

The different imaginary self-energies are plotted in Fig. 3/a-c/.

8. Characteristics in perturbation theory

We treat the renormalization constant up to third order of perturbat-
ion theory. This problem has been investigated by Appelbaum applying the
tunneling Hamiltonian method [5], [4] and by one of the authors in the way
presented here [6]. The use of perturbation theory can be expected to be
justified if at all only for ferromagnetic coupling in which case the
problem of a resonant or bound state does not arise. It will be seen in the

next section that the validity of the results calculated up to third order
is restricted to high energies, the region of applicability, however, can
be extended by replacing the coupling constant and other parameters by

Further discussion can be found in Appendix I11.
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effective values. Appelbaum’s and the present results are compared in
Sec. 12.

For the determination of the self-energy we have to apply the
thermodynamic Green functions with complex time variables ™. The self-
energy operator ZI is calculated in Abrikosov’s fictitious fermion operator
technique [23]. The second and third order contributions to the self-energy
are given in Figs-. 4/a-b/, respectively. In these diagrams the propagators
of fictious fermions are represented by dotted lines while the solid lines
stand for the electron propagators.

After the analytical continuation in the energy variable the self-
energy up to third order is given by

Im Z <} h

160/

where eq. /57/ has been used. Eq stands for the cutoff energy.

The density of states at the site R of the impurity is expressed
by the averaged amplitude of the wave functions of the intermediate states
at the Fermi level as

161/
where

162/
and W is defined by < f )-0

The electrons on both sides contribute to the density of the inter-
mediate states as shown by eq. /60/. As only the impurities at the barrier
surfaces are effective, R has to be near one of the surfaces and the

contribution of the electrons on the -opposite side of the junction can be
neglected.

Hitherto the impurity site R has been fixed and now an average over
the possible impurity sites will be taken. It is worth mentioning that in
Abrikosov’s approach each self-energy term containing a fictitious fermion
loop is averaged separately.

The application of the time dependent Green function technique is respon-

sible for the occurence of some incorrect factors /I-2n-n/E// in the
works of ref. [6] and [16].
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According to eq. /40/, using the self-energy correction, eq. /eo/,
the first correction to the renormalization constant. Z/E/ is

Ns z ] 163/

where, from eq* /22/

"o =R cODICR) £ PN

2Tm a7, (R)

164/

Only the part of the renormalization constant containing the loga-
rithmic term characteristic to the Kondo effect is interesting. Using eqgs,
/63-64/ and /57/ this part, as generalized to finite temperatures, is
approximately given by

J

AZO(E) e PMSESH( @R e (RIFCR) pM (R Toqeyr ey

/165/.

The term log has been replaced by /og /£/f‘6<kT , Which is
a good approximation with the value oc = 1 as pointed out by Appelbaum [4],
The anomalous tunneling current due to the energy dependence of the
renormalization constant is

Ec

Al@B,(v)- %cfe.J(nF zlY E)*/U~*X
(3B.(Vv) 0 ( E ) ® 66/

If there are impurities only on one side of the barrier, the anoma-
lous part: of the conductance for large bias eV>kT, using eq, /54/, becames

AG@E) - AZfi)(e\/)

1671/
Using eq, /65/, we get the following ratio
AGn> - Niifff 3 Y J  fc
GO I Ns \NJ lev/
/ 8/
where the effective surface density of impurities, , 1S given by

Cirtto (Ri ~ f cWdR I ng)
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This is the actual density of impurities if the impurities are on
the surface of the barrier or in the metal,

N
The temperature dependence of the anomaly at zero bias can be
obtained if a new variable of integration, x= , is introduced in the
current formula, eq0 /66/. Using eq./65/ we get
Ac @
€9]

which shows a logarithmic dependence on the temperature. This result
corresponding to a conductance maximum for ferromagnetic and resistivity
maximum for antiferromagnetic coupling. This derivation suffers from the
weakness that the expression of the renormalization constant, eq, /4Yol/,
and the imaginary self-energy, eq, /56/, have been expanded into a power
series* These approximations are correct only for high energies or large
bias o

9« Characteristics in nonperturbative treatment

In the last section we obtained results containing logarithmic
terms, which are not small for energies near the Fermi energy and thus
showing the need of nonperturbative treatment,4as has been pointed out
by the authors [16]e

In this section the current-voltage characteristics are discussed
using different expressions for the electron life-time. Our aim is to find
the connection between the life-time and the characteristics.

a* Abrikosov type formula

The life-time corresponding to the resonance scattering can be

described by Abrikosov’s formula eq. /5/, which can be written in a more
practical form as

ImL _
lco =£ ~ if

171/
where the characteristic energy Eg/R/ is defined similarly to eg'. /55/
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According to eqs. /34/ and /22/ the imaginary part of the self-energy
occuring in the renormalization factor, eq. /40/, is

S(S +!'3(d R c<k) fk]ﬁ)(&{cﬁu. (R)
IEI+KT

1731

Considering impurities only inside of the metal we get P °JR")=?0
from eq. /61/ and EO/R/=EO0 from eqs. /33/ and /72/. The corresponding
expression for the renormalization factor is

-1
P _
Z(E) = - S(S +f)
4 " hmilceTf] *°
/74/
where is the surface density of impurities. By introducing the
following notations
KT eV 1= | / N1
| [— ) )y a = ——mm sCs+0 —
E, z >
/73/
eq. /74/ goes over to the somewhat simpler form
fog™Ccut +E ) +
L(E) - c o <
(o< ®E ) + TCZ 101 176/

ZIE/ is plotted for the cases of ferromagnetic and antiferromagnetic
coupling on Figs. 7/a-b/, respectively. Let'us discuss first the ferro-
magnetic case.

1, Ferromagnetic coupling: J > 0. From the definition of the para-
meter Eo, eq. /55/» follows that Egq» Ec, because--—- On the
other hand IEIKEc therefore £« 1 and tecl . According to eq. /76/ Z/E/
is a monotonically decreasing function of the energy. For t=0 Z/E/ assumes
its maximal value, MaxZ/E/=l, at £- 0 and its minimal one,

a*

MinZ/E/=l -j ™7 » at the cut-off energy, Ec. Wk can
estimate MinZ/E/”substituting reasonable values for the parameters,
namely K'=2, in the case of a monoatomic impurity layer a =5-lo and

(Mogq >25-100. Thus we get MinZ/E/>0,9 or at least MinZ/E/> 0,75» The
energy dependence of the renormalization factor is very smoothand the
relative amplitude of the effect is small.
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Two typical conductance curves corresponding to impurities on one
and both sides of the barrier are shown on Fig. 8/a-b/. The dynamical
conductance is plotted against the logarithm of the voltage in Fig. 9
ani the zero bias conductance against the temperature in Fig. lo. It can
bf seen that the conductance does not show an exact logarithmic behaviour
as a function of bias and tenf™erature, though it can be approximated
by simple logarithmic functions in restricted intervals, for the renormali-
zation factor, eq. /76/, is constructed from logarithmic functions.

In the following the possibility of fitting the non-perturbative
results, eq. /76/, by the perturbative ones, eqs. /68/ and /70/, is
discussed. First we determine the intervals of the variables in which the
results of third order perturbation theory are valid.

As it has been mentioned before the condition that the imaginary
part of the self-energy as well as the renormalization factor Z/E/ can be
expanded into a series in powers of the coupling constant is

2AN\ OM (R) Er
———————————————————— In---1« /
N IEI 1771
The energy interval, in which this condition is fulfilled, depends on the
value of the coupling constant. If the effective coupling constant
is large, eq. ™ 0,1 this condition is so strong that no energy region of
physical interest is included.

On the other hand a formal fit might be derived which is valid for
a rather wide energy and temperature interval. Let us introduce an other

characteristic -energy parameter Ec lying somewhere in the middle of
the actually investigated energy interval. Eq e™ satisfies the following
inequality Ec. The typical logarithmic term in eq. /76/ can be
written in the following form

IE1+xk T

log (£ H0™®) - log ----------m-em -

iEl +< KT E
log +log Coeff
Ec,eff r 178/

where from the choice of Ec off follows that

log IE | KT « blqE)K'

Ec off B 1791

On the basis of eq. /79/ eq. /76/ can be expanded in powers of
It El-hex/<T

off and to the first order we get



a ir c, eff Ec. eff

i logA.c,jj\>ta ™+ x3 Ec.effy fa r-tx24 IE1+akT
\ EO J /80/

This can be compared with the expression of Z/E/ given by eq. /68/
after having it geheralized to finite temperature. Namely eq. /80/ can be
brought to the same form as eq* /68/ provided the parameters in eq. /68/
are replaced by effective ones* In this way we get the following expression

Z(E)=f-

'\bﬁ:)/\l 3 NI ¢ t-c, eff
- 0

WE) - ET P — tog
NJt O0OM IEI+ukl 181/
with
lo .
Zhff Po J -c, eff !
log
N log- E° \ Ac, eff
cefft 182/
where it has been supposed that log Ec.eff n lcr, ar
E.,

Though Ec eff. is much smaller than E , Jepp is of thé same order
of magnitude as J. The conclusion is, that the parameterst especially Ec‘
obtained by fitting the perturbative formula to the experimental data are
not realistic.

2, Antiferromagnetic coupling: J<0. According to eq. /59/ the
characteristic energy Eq has a very small value, EQ« Ec, and also can be
smaller than the temperature kT. The renormalization factor Z/E/ is
plotted in Fig. 7/b. From eq. /76/ follows that

hm_Z IE) -Um z (e) - /
E~Q £ for T=0 185/

The minimum of Z/E/ occurs at E=Eq and the minimal value is

Mm Z(E) = 5 ta< 1841

The larger the constant a or the higher the impurity -concentration,
the deeper the minimum.

Using the current formula, eq. /55/, and eq. /76/ for the renormali-
zation constant the dynamical resistivity has been calculated by numerical
integration. Typical characteristics are plotted on Fig. 11 for diodes
with impurities on one side of the barrier. These curves show that the
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minimum in the resistivity at zero bias corresponding to the maximum of
Z/E/ at E=0 can be observed only in those cases in which JKT <EQ because
otherwise the characteristics are smoothed out. A characteristic resisti-
vity curve is given in Fig. 12 for large bias on logarithmic scale. While
the occurence of a resistivity maximum which may have quite a large value
is a common feature of the curves shown on Figs. 11 and 12, the occurrence
of the local minimum depends on the parameter values.

The resistivity maximum is a consequence of the depression of the
density of electrons around the Fermi energy. If the depression is large
the change in the energy spectrum of the electrons can be expected to
cause an essential modification of the scattering amplitude too, Therefore
a selfconsistent solution would be necessary which is, however, not feasib-
le due to the fact that no analytical form of the scattering amplitude
is available for energy dependent density of states.

To illustrate the consequences of the selfconsistency we will
treat the problem in a crude approximation.

The scattering amplitude of an electron with energy E depends on
the density of states and especially on that of the most probably excited
intermediate states, whose energies are close to the incoming energy E.
We will consider the approximation in which the density of states in the
scattering amplitude at energy E is replaced by the renormalized density
of states taken at the same energy. This approximation is good if the
dependence of the renormalization factor on the energy is weak. The
characteristic constant Eq appearing in eq. /73/ becomes energy dependent

N
Eo &) = Ecg*®P
r\3\p0 k e ) /85
as a consequence of the energy dependence of the density of states. In
this way from eq. /74/ we get

z (BE) =1+
/ 86/
Solving eq. /86/ for the energy we obtain
o _ N azz
9B 2uwm i 1z F
1871

where eq. /85/ has been used |n the energy region where the effect of



the renormalization is large i.e. Z/E/ «1, eq. /87/ can be simplified to

N

«?/nPo

z(e):-
/ 88/

The dynamical resistivity at zero temperature can be obtained
using eqs. /54/ and /88/ as

189/

A logarithmic voltage dependence has been obtained, but its validity is
very limited due to the crudeness of the approximation made here.

The effect of the selfconsistency is illustrated on Fig. 13» where
schematic plots of the renormalization factor with and without talcing
into account selfconsistency are shown. By comparing the two curves the
following conclusions can be drawn:

1, the low energy region of the unrenormalized curve /E<EQ
shrinkes to so narrow a region that this part of the unrenormalized curve
plays only an essentially restricted role in the formation
of the selfconsistent curve, and as a consequence,

2, in the case of the giant effect only the maximum of the
resistivity can be observed at zero bias independently of the type of
the scattering amplitude used,

3, the low energy region of the scattering amplitude should be
studied by experiments with very small-relative resistivity increase
/in which case a selfconsistent treatment is not necessary/.

As to the temperature dependence of the giant resistivity maximum
at zero bias, on the basis of thermal smearing effect in an energy interval
of a few kT the following can be expected. The height of the resistivity
maximum is decreasing as the temperature is increasing in such a way that
the top of the maximum has an energy width of about a few kT, as it is
shown on Fig. 14. Moreover the dependence of the resistivity.on the
voltage at T=0 and on the temperature at zero bias can be expected to be
the same.

b. Suhl-Wong type formula.

A difference between the scattering amplitudes given by Abrikosov,
eq. /56/ and Suhl and Wong [23! appears only for antiferromagnetic coupling.
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In this case the maximum of the scattering amplitude occurs at. energies
comparable with the temperature. Thus, as we have seen before, the
maximum of the renormalization factor at E=o0 is smoothed out and only
a simple resistivity maximum appears in the characteristics.

c. Nagaoka type formula.

The determination of the renormalization factor using Nagaoka’s
scattering amplitude, eq. /59/» follows the line of the previous
calculations. Similar to eq. /73/ it is obtained that

/ i It E 2 i
— Rc(R)fA R)~T-~
2T.L. (E) 1) (R) ( +Et  pfo)CQ)
/90/
and the renormalization factor is given by
-1
Hagaoka N E -€£°
= ) 2 191/
which leads to a resistivity maximum at zero bias. The
relative amplitude of this maximum is
1
M,n (INoSooka ) =
( ) . 1921
The selfconsistent equation corresponding to eq* /91/ reads
E*(Z)
2-(B) 2 s E2+Elm)
193/

where Eq has been replaced by the energy dependent characteristic constant

EO/ z/ » given by eq. /85/. The solution of eq. /93/ in the approximation
ZIE/« 1 is

! E sN Of/ 1 y
og~ = — Zm . /oq Z
qE, 21J\9% \Z' 194/
which gives for the resistivity
: 21Hf0 eV
RCV) = y —qu
A EO 195/

We have obtained just the same voltage dependence as in the case of
Abrikosov’s scattering amplitude, eq. /89/. This result supports one
of the conclusions of the last section, namely that the giant resistivity

maximum is not sensitive to the actual form of the scattering amplitude
at low energies.
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Finally it is worth mentioning that Appelbaum, Phillips and
Tzouras [15] using a different method, have derived an expression for
the conductance in which the term due to the impurities is of the same
form as the expression obtainable from eq. /93/« However, the term
obtained by them increases the conductance of the .junction as compared
to the case without impurities, while in our case the total conductance
is less than the conductance of the pure junction. We will discuss this
guestion in more detail in the "Conclusions”.

lo. Characteristics in a magnetic field.

Appelbaum [4] has shown in perturbation theory that the effect
of an external magnetic field is the splitting of the peak at zero bias.
The new peaks appear at voltages +g/iH.A correct treatment of this problem
would require the knowledge of the scattering amplitude in an external
magnetic field. This problem has been treated by Abrikosov [23] in a
rough approximation with the result that the peak is broadened instead
of split. The only available results have been derived in the third order
of perturbation theory and their validity is very limited as it has been
discussed before. This theory gives just the same dependence on the
magnetic field as it has been obtained by Appelbaum. Moreover the depend-
ence on the voltage is also the same provided the asymetrical terms which
should not occur are left from Appelbaum*s formula.

The main features of the effect of magnetic field might be
understood in a qualitative manner as it has been pointed out by
Appelbaum [4] . The most important energy dependent terms of the scattering
amplitude are due to spin-flip scattering processes. These processes
might be frozen in by the magnetic field if the magnetic energy is larger
than the electronic energy. This may reduce the effect of the magnetic
impurities on the renormalization factor in the energy range E<”~ gH
leading to a splitting of the resistivity or conductance peak at zero
bias.

In the case of the giant effect the importance of the electronic
intermediate states with very small energies is reduced as a consequence
of the deep minimum in the renormalization factor Z/E/ at small energies
as we have seen in connection with the selfconsistent treatment. On the
other hand the magnetic field is effective at small energies E<yuy, gH and
therefore the smaller the renormalization factor at small energies /or
the larger the resistivity maximum at zero bias/ the weaker the magnetic
field dependence of the characteristics.
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11. Comparison of the experimental and theoretical results.

In this section the result of the experiments performed until now
~111 i)e discussed» It will he se®n that the available results cannot
decide between the different scattering amplitudes discussed above.
Altough the recent measurements by Mezei [8] show that resistivity maxima
or minima can be found on similarly prepared junctions depending on the
impurity concentration, for the sake of clarity the small conductance
maxima and the giant resistivity maxima will be treated separately.

a./ Conductance maximum at zero bias.

Studying transition metal-transition metal oxide-metal diodes Wyatt
[1] , Rowell and Shen [2] have reported a series of experiments in which
zero bias conductance maxima have been observed at zero bias. In these
measurements the relative increase of the conductance has been smaller
then 20 % and the half width of the maximum has been a few meV.

Recently Mezei [B] has observed similar conductance maxima on
aluminium diodes containing chromium impurities at low impurity concentrat-
ion and found that the maxima are situated on a slightly asymmetric, wide
background curve with the resistivity maximum around zero bias.

On the basis of Appelbaum’s theory [4] Rowell and Shen [2] interpre-
ted their results as follows. The background curve is caused by non-
magnetic effects and the conductance maximum is due to an antiferromagnetic
coupling between the impurity and electron spins. Supposing local processes
only, which in the case of an exchange interaction is rather well justified,
in the third order of perturbation theory we have got a conductance maximum
only for ferromagnetic coupling. Furthermore Mezei*s measurements suggest
that the background curve is partly caused by the impurities. Three possible
interpretations are mentioned here, the second and third ones being
suggested by Mezei*s experiments.

1. The background curve has ng connection with the magnetic moments
of the transition metal atoms. The conductance maximum might be due to the
ferromagnetic coupling between the electrons and localized magnetic levels.
According to the results obtained in Sec. 9» these maxima may have an
amplitude of about 1520 % The shape of the conductance maximum can be
fitted by the result of the perturbation theory,eq. /68/, provided the
values of the parameters are changed according to eq. /82/. It is worth
mentioning that our results concerning the voltage and temperature depend-
ence of the conductance are the same as those obtained by Appelbaum [4]
on the basis of a non-local type mechanism, but the coupling constant
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and the overall sign of the effect are different in the two cases.
Pitting Wyatt’s results measured on Ta-TaO-Al junctions by formulas
/68/ and /70/ we get the following values for parameters

Z
-~ 0,105
s(s +f) 196/
and B*118j
£%,eff 9, £ meV LR

1971

The first result depends only slightly on theeuncertain quantities
under the cubic root and using eq. /82/ the following estimate of the
real coupling constant can be obtained

Jpc
N 0,1-0,03
N Jeff Po 2 log /o8l
where the value Eq = 104- 105 KT is us%-(affln the above fitting we were
able to avoid what has been a difficulty in Appelbaum’s fitting [6] ,
namely the use of an unreasonably small cutoff energy of 10 meV.

The effect of an external magnetic field on the tunneling characte-
ristics has been investigated by Shen and Rowell [30] . The observed
splitting of the maximum into two peaks is in qualitative agreement with
the explanation proposed by Appelbaum [4-1 and described in Sec. 10. A
guantitative agreement with the result obtained in perturbation theory
can not be expected as it has already been'discussed.

2. A part of the background curve can be understood by considering
Abrikosov’s scattering amplitude for antiferromagnetic coupling. For
Eq > 3 kT the calculated characteristics as shown on Pig. 8. have similar
energy dependence to the experimental results. No quantitative comparison
is possible, however, because the part of the background curve which is
not due to impurities cannot be separated. A’'further difficulty arises
from the need of a selfconsistent solution in certain cases.

3. In principle it might be possible that the superimposed
maximum and minimum would be the effect of two different zero bias anoma-
lies corresponding e.g. to two different types of impurities, or the
same impurity oxidized and without oxidization.

b./ Giant resistivity maximum.

First Rowell and Shen [2]- observed giant resistivity maxima



36 -

measuring Cr-CrO-Ag diodes, where the relative increase of the resistivity
has been about 50. Recently Wyatt and Lythall [91 have studied AI-A10-Ag
diodes containing titanium and copper ions, and Mezei [8] A1-Al10-Al diodes
containing Cr impurities and in both cases giant resistivity maxima have
been observed with a relative increase of resistivity of 25-200. In
magnetic field ho splitting has been observed. In Mezei*s experiment the
amount of the chronium has been controlled and the thickness of the
chromium layer was less than ten atomic diameters. Mezei has found a
gualitative correlation between the amplitude of the giant resistivity
maximum and its sharpness, namely that the maximum becomes sharper and
the amplitude higher as the concentration is increased.

Now we shall restrict ourselves to the discussion of the results
of the experiments in which the paramagnetic impurity atoms were at one
side the barrier. Some information can be obtained for the possible maximal
value of the resistivity peak at zero bias from the eqs. /84/ and /92/
assuming Abrikosov’s and Nagaoka’s scattering amplitudes, resp. For the
sake of simplicity we discuss only the T=0 case. First of .all an estimation
of the effective thickness of the impurity layer is needed. Using tlge value
E=20 meV, the coherence length calculated from eq. /21/ is ~ = 80 A

Therefore the impurities distributed within a thickness 10-20 atomic
diameters are inside the coherence length. The parameter a2 introducen by
eqg. /75/ may be estimated by taking S=2 and z=5 with the result an=5-**r"-

Tn the case of Abrikosov’s scattering amplitude the value of the maximum
according to eq. /84/ is

Max R(v) W5 M

R(v K* N, 199/
which with K2:2 is of the same order of magnitude as the observed relative
resistivity increase.

In the case of Nagaoka’s scattering amplitude the estimated maximum
is smaller, namely, using eq. /92/ it is
Thus a possible decision between different scattering amplitudes might
be made on the basis of the amplitudes of the maximum, for which, however,
very well controlled impurity layers would be needet.

Unfortunately the logarithmic voltage dependence, which has been
observed in some range of the applied bias is according to the eqgs. /89/
and /95/ quite independent of the used scattering amplitudes.



12. Conclusions

In this paper we have developed a theory of zero bias anomalies
due to paramagnetic impurities. First the local density of states
appearing in the expression of the tunneling current has been expressed
in terras of the life-time of the conduction electrons. It has been
shown, that the effect of the impurities is to diminish the local
density of states. Moreover as the Kondo scattering is very sensitive
to the enei'gy of the scattered electrons, the local density of states
will be energy dependent and this causes the anomaly in the current-
voltage characteristics of diodes containing paramagnetic impurities.
On the basis of the general theory we have shown which types of
characteristics can be expected assuming different scattering amplitudes
for the electron- paramagnetic impurity scattering /e.g. the resonant
state or quasi-bound state solutions/. Now we want to compare these
results with those of other theories.

As it has been duscussed in the ”Introduction” zero bias
anomalies can be caused by the excitation of quasiparticles or by the
scattering of conduction electrons on magnetic impurities. The former
case cannot be treated in the framework of the present theory thus we
will restrict ourselves to the discussion of the latter one. Appelbaum,
Phillips and Tzouras [17] have used the tunneling Hamiltonian method
in calculating the tunneling current and the conductance. They have
introduced two new, anomalous tunneling Hamiltonian terms /H9 and HX
in their notation/ which are due to impurity assisted nonmagnetic
tunneling and tunneling with spin flip, respectively. The latter term
is due to the nonlocal nature of the exhange interaction while the
former one is present in a local theory as well. They have found the
two terms lead to different consequences in the current-voltage
characteristics, thus e.g. in the local case the conductance maximum
appears for ferromagnetic coupling, while in the case of nonlocal
effect for antiferromagnetic coupling. Moreover the nonlocal term can
only lead to a relatively small increase or decrease of the conductance
and thus is incapalbe of explaining the giant resistivity maxima.

Camparing their results with ours, there are three essential
differences. The first is due to the fact that they have started from
a nonlocal interaction while we have used a local s-d exchange inter-
action. As it has been shown this theory can explain at least
qualitatively all the experimental results /e.g. the giant resistivity
maxima/. As to the cases in which there is only a small change of the
conductance, experiments would be necessary to decide whether nonlocal
effects give -important contribution or not.
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The other two differences are connected with the use of the
tunneling Hamiltonian method. The tunneling current contribution coming
from the impurity assisted tunneling /ZE® and Hy' increases the current
of the pure junction. In the present theory the local density of states
decreases as compared with the unperturbed density of states and this
leads to a decrease of the tunneling current. The other problem connected
with the tunneling Hamiltonian method is that the coupling constants
T. T . TT-are undetermined phenomenological parameters and thus the
magnitudes of the contributions coming from the different parts of the
Hamiltonian cannot be compared while in the Green function approach
such problem does not arise. Appelbaum et al.’s result can explain the
observed large increase of the resistivity only in a very special and
unprobable case when T is much bigger than T.

The advantage of the present theory lies in the direct relationship
between the life-time of the electrons scattered on the paramagnetic
impurities and the diode characteristics. It seems to us that as the
problem of Kondo scattering has not been solved yet the measurement of
characteristics can prove to be a very suitable tool for investigating
this problem experimentally. Measurements at low enough impurity concentra-
tions and at very low temperatures could give valuable information about
the impurity-conduction electron bound state, if it exists at all. The
other problem worth investigating experimentally is the role played by
the impurities at different positions. Thus the investigation of diodes
with evaporated impurity layers of different thicknesses can be useful
to decide, whether the impurities outside thdé coherence length give
oontritmtion to the tunneling current or not.
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Appendix 1,

The explicit form of the wave functions e.g. of the right hand
side problem is given here. For the sake of simplicity we consider the
case of a square potential well

v x <0
X =
0 0 x >0 /IA1,1/

The eigenfunctions of the Schrddinger equation are given by

2 K,

r.o sinktx + cos kL x x?0
fox)- < ke*°a Ki
2 tom * X/
Aj+TF © x<0 IAL,2]

where the notations given by eqs. /11/ and /12/b/ are used.

The product of two wave functions securing in the matrix element
/19/ using /A1,2/ for x>0 s

W XA Yy )

2x1

jgin kA +—<XXLX 1 [sin I<jX +—- cos & xf7
k'f +X,2 0 kf +k,r

1 /A1,3/

Supposing a homogeneous impurity distribution in a region of the
metal at the barrier-with distance from the barrier not larger than d,
in the matrix element given by eq. /19/ the following integral occurs

foos(kj -K\Ox+ KLKj cos(KL -K[) x -

KE a1 g * N\ 1
—————— sin (kx4 Ix+—=sin(kt' KL)x dx /Al 4]
A \% .
ti.lah-\.sjn(ki - k)df -f—47,-0-COS(k1-k)d)
kx ~k/\ TG, , ke kL
where the inequality (kL *kd)d » / is made use of.
For the matrix element /A1,4/ simplifies to the

following one

2

r Tc/ a ; kL Kj

1t
* [ *] |
IML,5/
The integrand in eq. /A1,4/ is given by 7q /20/ as a function of
the difference of the wave numbers ki and
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Appendix 11.

The current formula /4/ derived by one of the authors [20] in a
Green function approach of tunneling may be written in matrix notation as

j = 2 C—R e - £
) e-o0 @ )J 2)[K at\\y,y"
Iyox o, -, (t)y-(r-nj _
[ Cor rsC [Ali,1/
where the tunneling matrix elements are
2m
IA 1L, 2/

Inserting the spectral representation of the Green function and
following the straightforward calculation of the original paper [20] the
following is obtained

1-b3reidE ~
J Vv C,r

P>+ v+ (B)(NF(£) - nF(E+eV)) /AL, 3/

The tunneling matrix element T depends very weakly on quantum
numbers v and ~’, therefore it may be written as

/
T 7> cf- ~
X, X 0@ 7a . > IA 11,4/
where the form /11/ of the wave function X is used.

The final result may be obtained by using /A Il,4/ and the definiton
/ 29/ of the averaged spectral function

b-Jie € jor 17.ax fr(ku;E +eV).
L

2A(K;E){nr(E)-nf (E*eV)}

which is just the formula /35/.

[A 11,5/

The averaged density of states £,(*,;Em) given by eq. /29/ can have
a much simpler form, if the Green functions are diagonal in the indeces
v and vy,

[A 11,6/
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and then we have

pCt,,;f):I; ?2U,,r;£)

TA11,7]
The obtained effective density of states is equal to the one derived by
Schrieffer, Scalapino and Wilkins [27], given in Table I, if the index v

is the wave vector perpendicular to the barrier surface, kz*

Appendix 111,

The effect of multiple scattering on the life-time of the
electrons.

Yosida and OKkiji [29] have shown that using Nagaoka’s equations[24]
the following expression can be obtained for the life-time of the electrons
for energies higher than kTQ

,/N°,nb.}r+
T N \E\] 1N/ [AI11,1/

where

/AL 2/

Abrikosov has derived a similar expression but failed in obtaining
the term s(s-fi) in eq. /AW ,1/, denoted by (-~ —Y Kr
in eq. /56/. Abrikosov’s expression of the self-energy is divergent at
some energy and he argued that the imaginary part of the vertex function
would be needed to avoid this divergencyf It will be shown here how to
obtain this term is Abrikosov’s approach. We do not want to claim that
the imaginary part of the vertex function is not important, only to show
that the divergency can be removed by taking into account multiple scatter-
ing.

When calculating the self-energy Abrikosov has neglected scattering
processes in which the electrons scatter many times on the same impurity.

The corresponding self-energy is given by

/I A11X13/
Considering multiple scattering on the same impurity a typical Green
function correction can be represented by the following diagram

“% — 2%
r 2"



where the subscript i at the self-energy diagrams denotes scattering on
the ith impurities. Calculating this type of diagrams first we have to
sum up the scatterings on the same impurity. The momentum variable of the
unperturbed electron Green functions connecting self-energy corrections
corresponding to the same impurity is free and after integration their
contributions is -1iapo . Taking into account this multiple scattering
the self-energy obtained by Abrikosov, given by eq. /AWl ,3/, has to be
replaced by the following one

. - - %
Z mep’en - L|| *Llfy"C Z1 E(qL q; -
1+ WporL
AL, 4/
Inserting /1111,3/ into eq. /AWl ,4/ we get for the lifetime the same

expression as in eq. /ALU ,1/.

The multiple scattering on the same impurity has to be investigated
in more detail.
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Figure captions

1. Tunneling of electron assisted by emission and reabsorption of a
quasiparticle.

2. /al Metal - metal oxide - metal junction with paramagnetic impurities
on one side of the barrier within the coherence length f
/bl Depression of the density of states within the coherence length,

5. Diagrams of the current in the second order of the tunneling rate.

4. Potentials of the /a/ left hand side, /b/ right hand side and /c/
original problems.

5. Energy dependence of the life-time of electrons according to /a/
Abrikosov, /b/ Suhl and Wong, /c/ Nagaoka.

6. Self-energy diagrams in /a/second and /b/ third order.

7. The energy dependence of the renormalization factor Z/E/ for /a/
ferromagnetic and /b/ antiferromagnetic coupling.

8. Voltage dependence of the conductance for ferromagnetic coupling if
there are impurities /a/ only on one side of the barrier, /b/ on both
sides of the barrier.

9. Voltage dependence of the conductance on logarithmic scale /see Fig.
8.al.

10. Temperature dependence of zero bias conductance in the case of
ferromagnetic coupling if there are impurities only on one side
of the barrier.

11. Voltage dependence of resistivity for antiferromagnetic coupling
if there are impurities only on one side of the barrier.

12. Voltage dependence of resistivity on logarithmic scale /see Fig.11./

13. Schematic plot of the renormalization factor Z/E/ taking into
account the self-consistency /solid linel/.

14. The decrease of the height of the resistivity maximum due to the
thermal smearing.
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