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ABSTRACT
A comparative discussion of SU/2/ and SU/1,1/ spinor algebras 

is presented. Spin coefficients are introduced both in the SU/2/ and in 
the SU/1,1/ formalism. While in the present paper a particular flat 
space spin— and coordinate frame is used, the fundamental relations are 
given in a covariant notation such that the method can easily be adapted 
to spinor fields in curved three-spaces also. The SU/1,1/ spim coeffi­
cients are used to obtain the stationary axisymmetric gravitational 
equations in a form where all the field quantities appear as spin coef­
ficients in a flat hyperbolic three-space.

РЕЗЮМЕ

В настоящей работе представляется сравнение спинорных алгебр su(2) и su(l,i). Как в формализм su(2), так и в формализм su(i,i) вводятся спиновые коэффициенты. Хотя в настоящей работе применяется специальная, ровная пространственная система спинов и координат, основ­ные зависимости даются в ковариантной форме, поэтому этот метод может быть применен и в случае искривленных трехмерных пространств. Благодаря применению спиновых коэффициентов su(l,l), стационарные, осесимметричные гравитационные уравнения приводятся к виду, в котором количества полей определяются спиновыми коэффициентами ровного трехмерного гиперболи­ческого пространства.

KIVONAT

Az SU(2) és Su(l,l) spinoralgebrák összehasonlító tárgyalását 
adjuk meg. Spin koefficienseket vezetünk be mind az Sü(2), mind az SU(l,l) formalizmusban. Noha e dolgozatban speciális, sima térbeli 
spin— és koordinátarendszert használunk, az alapvető összefüggéseket 
kovariáns alakban adjuk meg, ezért a módszer könnyen általánosítható 
görbült háromdimenziós terekre. Az SU(l,l) spin koefficiensek felhasz­
nálásával a stacionárius, tengelyszimmetrikus gravitációs egyenlete­
ket olyan alakra hozzuk, amelyben a térmennyisegeket sima, háromdimen­
ziós hiperbolikus tér spin koefficiensei adják meg.'



1. INTRODUCTION

The spin coefficient technique has Ъееп brought into being 
by the physicists’ struggle with the essentially nonlinear character 
of the gravitational equations of Einstein. The rapid increase of 
the area of its applications is due to the extreme flexibility lent 
to the method essentially by the alternative uses of spinor and 
vector pictures in visualizing the geometric meaning of spin coeffi­
cients. Since the time when Newman and Penrose'^ had developed the 
method, its uses have spreed beyond the theory of general relativity.
It is hard to give a comprehensive survey of all the papers involved2/in this field, yet I have tried.to list some of the references ' 
containing the essential results.

Although spin coefficients were introduced originally in 
the SL/2,C/ spinor calculus, their use has come to be extended to 
SU/2/ as well. The way of formulating the SU/2/ calculus^/ is easily 
adapted to SU/1,1/ spinors also. This will be done in the present 
paper. To facilitate comparison of the /already familiar/ SU/2/ spin 
coefficient formalism with the SU/1,1/ one, a parallel discussion 
will.be given of the spinor algebras /sec.2/, connecting quantities 
/Sec.J/, the dyad notation /Sec.4/ and field identities /Sec.5/* 
Although a particular flat-space coordinate- and- spin frame will be 
used throughout this paper, the covariant formulation of the basic 
relations opens the way for later applications to curved /Riemannian/ 
spaces. For the same purpose, the field identities given in Sec.5 do, 
in fact, contain curvature terms, although these are assumed to vanish, 
in all other parts of this paper.

In Sec.6 I use the SU/1,1/ spinor formalism to bring the field 
equations of the stationary axisymmetric vacuum to a form where all the 
field quantities are represented by spin coefficients. The research 
for the puzzling structure of the stationary axisymmetric gravitational 
equations has come into prominence since it was generally agreed'4'/ 
that the external gravitational field of black holes must be restricted 
by the requirements of time-independence and axial symmetry. We can use 
here a flat-space spinor calculus since, as Is well known, the field
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equations of the problem can be formulated on a flat "background"
5—space. As will be seen, however, the invariance of the field equa­
tions against changing the signature of the metric /thus turning the 
Euclidean flat space to a Minkowski-type hyperbolic space/ must be 
exploited in our construction. My final point will be the solution 
of the static subclass of the fields, using the method of SU/1,1/ 
spin coefficients.

2. A SIMULTANEOUS INTRODUCTION TO THE ALGEBRAS OP SU/2/ AND SU/1,1/
SPINORS

In this section I shall present a parallel discussion of the 
elements of both SU/2/ and SU/1,1/ spinor algebras. The notation adopt­
ed here is chosen so as to be the most convenient possible for the spin 
coefficient technique, and follows closely the conventions of reference 
3* The parallel treatment of S U ^ 2^  spinor algebras is achieved by a 
double-rowed notation, where necessary. The upper row refers always to 
SU/2/, while the lower one is for SU/1,1/.

A one-index covariant spinor £д , is by definition, a quantity 
of two complex components /А = 0 ,1/ which transforms according to 
the rule

Here the transformation matrix has the forms6/

/ 2. 1/

r «“I —
1 p 1—ca

|u.B II

L A J
±5 CL

where the complex numbers a and 3 are restricted by the Uni— 
modularity condition

act + ßß = 1 /2.3/

The 2x2 matrices идв given by /2.2/ and /2.3/, inasmuch as the 
matrix multiplication is a group operation, constitute the group SU 
with the upper and lower signs in the definition, respectively.

The transformation rule of one-index contravariant spinors 
is given by

'Ш
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?A = 5В (и-1)вЛ f /2.4/

where u_1 is the inverse of и *

uAB (u-1)Bc - {j

Thus the contraction £A 5 is an invariant,

?A cA = 5r (u-1)ra uR/.-l'i A S  = R
A ?S * 5

/2.5/

R 12.SI

In accordance with the unimodularity of у , the rules for raising and 
lowering spinor indices ares

5A = ^  tl f = rB e^A  ̂ eBA /2.7/

Here the "metric spinor"

KJ - [•“] - [.; i] /2.8/

is left invariant Ъу spin transformations. Befinition /2,8/ implies

pAC a — jA e eBC - 6B /2.9/

There exists an other invariant spinor. In order to show 
this, we take the complex conjugate of Eq.s /2.1/ and /2,4/:

?B' /2 .10/

The priming of spinor indices indicates that complex conjugates of 
spinors possess different transformation properties. We now introduceAB 9the Hermitian two-index spinor a by

[ ■ " ' ] - ft ; ] •  /1.

Using the transformation rules /2.4/ and /2.10/ for spinor indices, 
we can easily check that aAB is invariant. By definitionAB 9a has the property
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CB' = + б С / 2 . 12 /А

We define the adjoint of a spinor

/2.13/

From /2.12/ it follows that by adjoining the spinor twice we again 
get 5a , however, in SU/2/, with opposite sign:

We also have the relations for the complex conjugates of contracted 
spinors:

3. THE CONNECTING QUANTITIES

The parallel discussion of SU/2/ and SU/1,1/ spinors will 
extend to this section also. We now proceed to investigate the

with considering local relations in the space. Thus all the following 
relations hold in an arbitrary but fixed point P of the space; there­
fore we will not be concerned whether not this space is curved. We 
shall assume that, at least locally, an appropriate coordinate system 
exists in which the metric takes the form

/2.14/

/2.15/

connection between SU spinors and geometric objects in a
three-dimensional space. Throughout this section we will be contended

+1
[*ij] = 11 * ^  = (det[gi;j])1/2 = 1. /3.1/

1

So SU/1,1/ spinors will be related to objects in a Minkowski-type 
3-space /with indefinite metric/.



In close analogy with the SL/2,C/ spinor calculUB^, we
introduce the connecting quantities , which are to be used laterABto relate spinors with tensors. The defining relation for the connect­
ing quantities can be taken as:

'iA u j в + ajA aiB ~ gij /3.2/

/Lower case Roman indices l,j,k,..« denote tensor components with 
values 1,2 and 3»/ In addition, the symmetry of одв in its spinor 
indices will be required:

°AB °BA /3.3/

An appropriate solution of Bq.s /3.2/ and /3*3/ is

Г i В 1 1 1Го ± il
L° a J Л [1 oj
Г 2 в]1 _ 1 Го ±il
L° A J /2 L-i oj
Г 3 в]I _ 1 IГ 11° a J Л Lo -ij

/3.4/

We see that for SU/2/ the connecting quantities are just the Pauli 
matrices divided by a common /? factor. The explicit form /3.4/ of 
the SU/1,1/ connecting quantities will be used in Sec.6.

Using the expressions /3.4/, we car. easily prove the covariant
identity

в C
'iA ajB

в C 
'jA °iBo,, - Oj," 0J„“ = -S2 i e. kC

ijk °A ^ /3.5/

Another useful relation is obtained from /3.2/ if we properly take 
into account the straightforward identity®^ ед гв eCDj= 0 • Thus we have

°iAB 0CD ■ - K'6AB eBD + 6AD eBC) /3.6/

There are two different ways of defining the adjoint of сгд : 
we can take either -aBp, ад°' oiQ,P ' or -адр, aBQ'öiQ,p'as the definition
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of the adjoint quantities. In order to retain the customary defini­
tion of matrix adjunction in the representation used here, we put

/3.7/

Thus, by /3.4/, we are led to the adjunction properties of the 
connecting quantities:

a+ вiA + a В
iA /3.8/

4. SPINOR BASIS AND SPIN COEFFICIENTS

A normalized spinor basis and spin coefficients for SL/2,C/ 
spinor fields were first introduced by Newman and Penrose^. The 
method was later extended to SU/2/ spinor fields by Perjés^. Since 
spin coefficients refer to differential /nonlocal/ properties of 
the fields, it is a relevant question whether or not we are consid­
ering spinors In a curved space. Although in the following we shall 
confine ourselves to flat space, it is not hard to prove that all the 
following relations remain valid in curved spaces provided partial 
derivatives are properly replaced by covariant derivatives. This as­
sumes the introduction of covariant spinor derivatives, which, along
the lines of references 7 and 3, can be done without much diffi- 

9/culty ' . In this respect the comparative /double-rowed/ treatment of 
SU/2/ and SU/1,1/ spinor calculi is of especial use, therefore it 
will be maintained throughout the present section.

Let nA be an arbitrary one-index spinor which is normal­
ized by

nA
+AП 1 /4.1/

We choose a basic spinor dyad such that

noA =J}A ' nlA ~ nA /4.2/

where паД / a = 0,1/ are elements of the dyad. This basis in the 
spin space defines a complex vector basis in the 3-space according 
to the relations
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z1 = ST An + i В 
nB aA

iШ = A-n i В 
ПВ °A

-i + +A + i Вm = - n nВ °A

/4.3/

An equivalent, but more compact, notation for the basic vector "triad" 
will also be used in the following;

zm = (£Í' m±' /4.4/

where m is a triad index.ranging over the values 0,+ and — . From the 
adjunction properties /3.8/ of the connecting quantities, we obtain 
that Л1 is a real vector and m^ is indeed the complex conjugate 
of m^. The orthogonality properties of the basis follow from /3.6/
and can be summarized as

xz z . m ni 3mn
1
О
О

О о 
О ±1
±1 о

/4.5/

The physical components of an arbitrary tensor^- say T. .. ,
i i кare given by Tmr|̂  = Т ^ к zmz^zg» and- conversely, as is easily proven,

the relations T^.^ = TmT1̂  also hold. Here we remark that
triad indices are raised and lowered by use of the trj.ad metric gS£ 
and its inverse g^n /as given by /4.3//, respectively. In a similar 
fashion, spinors *can be given in terms of their dyad components. For
example,

"ABC'

Kabc'

a b -c^abc' ЛА nB nc

^ABC' A в -cna % nc
/4.6/

/dyad indices are chosen from the lower case Roman letters a,b,c,... 
and take the values 0 and 1/. The dyad components of a spinor, just 
like the physical components of tensors, are invariant scalar quan­
tities. The algebraic properties of both spinors and tensors remain 
unaltered when transvecting with the basis. Care should be taken, 
however, of the order of dummy spinor indices /both ordinary and dyad/, 
since converting the position of a dummy index pair results in a
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change of sign, due to the skew symmetry of the spinor "metric" 
/cf. Eq./2.8//.

We now define the SU spin coefficients by the rela­
tions

rabcd = (3i т’с а)пЬ °CD лс t,S /4.7/

Here we have used the notation

д± = Э/Эх1 /4.8/

As is easily inferred from the normalization /4.1/ of the spinor 
base, the spin coefficients exhibit symmetry both in their first 
and the second pair of indexest

Г , , = Г, . = Г .. /4.9/abed bacd abdc

Further relations among the spin coefficients can be 
deduced by considering their properties under adjunction. The rules 
for adjoining dyad components are needed at this point. Consider, 
for example, the dyad components of a one—index spinor, £ = 5- n = .a. A a
From /2.15/ we obtain

(í;)- 1 4 1 4
(4h <

/4.10/

The generalization of this pule for spinors with more then one index 
is a straightforward matter.

Taking into account all their symmetries, there are five 
independent spin coefficients altogether. We introduce an
individual notation for these, according to the table

Гabed

ab oil 11cd 0 0 1 of
0 0 1 - 1 - + 1 -

7Ta + 7 T - 7 Г р
0 1 l - e - l -
1 OJ - 2 K + ITT + 2” K
1 1 1

+ 77p
l

- 2 T
----1 -
- т г а

/4.11/
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The 2“1//2 factors here are introduced for practical reasons and the 
simplicity thus attained in the expressions containing spin coeffi­
cients will become clear shortly»

There exists a close relationship between spin coefficients 
and the well known Ricci rotation coefficients given by

Y®  = (3j Zm ) Z2 Zni * /4*12/
This is most easily seen by using the equivalent form of 'u 7)»

1 оРЧ i „jTabcd= 2 °;q °cd 3j °ibp /4.13/

We have

GTE

N. mn 

P \
- 0 + 0 + -

0 К к e
+ p a -T
- 2 P T

/4.14/

Equation /4,14/ reveals the skewsymmetry of the rotation coeffi­
cients in their first and second indexes:

“Y. /4.15/THE ■ nmp

Hence we see that the quantity e=y+_Q is purely imaginary, e = -ё.

Like any tensor—type quantity, the vector operator of deriva­
tion can also be transvected with the basis to yield the scaler 
operators

3m E 2m 3Hm m l /4.16/

An alternative individual notation for the scalar derivative 
operators will prove useful in the following, namely,

D = zo 3i = A± Э1

6 = z+ Э± m1
6 = z* Э± = in1 Э±

/4 .17/
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Using the expressions /4.3/ for the vector hasis we have

D = 3i

6 = ia Э.oo i

3 = - i + о1Х 3i •

/4.18/

5. THE FIELD IDENTITIES

Though this paper is devoted to the flat-space spinor 
calculus, completeness requires the formulation of the field identities 
for the more {general curved-space case:. Therefore, in tfte present 
section we shall consider the 3-space to be a Riemannian one with 
the metric signature (+,+,+) » as the geometric arena of the SU 
spinor fields, respectively. The definition of the curvature tensor 
Rijkl Siven the Ricci-identities

Vi[;j;k] 2 R ijk Vr /5.1/

where v± is an arbitrary vector field, and semicolon stands for 
the covariant derivation operation.

The equivalence of dyad and triad formalisms allows us to 
put down the field identities in.the more simple triad notation.
Applying the Ricci identitiea /5.1/ on the basic vectors ẑ ; and tak-

57 —ing the 'triad projections^ , we get

Ymng;g Ymng;g Y mg Y£ng + Ymn£ (Y gg “ Y gg) +

+ y— y „ = Rmg ing mngg
/5.2/'

Rmnpq ^mp Rnq + gmq Rnp gnq Rmp + gnp Rmq 

2 R (^mq gnp gmp g nq ) ’
/5.3/

The curvature tensor of a three-space can he decomposed into the 
Ricci tensor R ^  = R^*^ and the curvature scalar R = R ^  since 
the conform tensor identically vanishes in this cáse1^ .  In terms 
of triad components we have
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Another important relation is the commutation rule of the scalar
1 ~*>fderivatives given by

'ftnwn ^;п;т n Yn m ] I

As a simple example of manipulating with triad labels in the above 
identities, we put down here the detailed form of the curvature 
scalars

mn
R = g mn = Roo ± 2R+- /5.5/

Combining /5.2/, /5»?/ and /5.5/» and using the detailed notation 
for rotation coefficients and scalar derivatives /Eq.s /4.14/ and
/4.17//, we obtain

Da - ŐK + ea + tk - k2 + a(e+p)+ pa II 1 +* + /5. 6a/

Dp - ŐK + TK - KK + aa + P2 = - 1 Вoo -(i+i)R+_ IS,.6Ь/

Dt - 6e + ко - рк + те - вк - та + TP 1os°1II IS,.6с/

őt + 6t + ao - pp + 2тт + e(-p+p') = 1
2 Eoo - (2Í1K - IS.,6d/

6a - 6p + TO - k (p-C») + ат = Ro+ . IS.,6е/

Similarly, the relations /5*5/ can be written as

(D6 - 6D)f = ±oóf ±(p+e)óf + KD'f /5.7а/

(бб - б6 )vf = ±T6f * Töf + (p-p'jD'f . /5.7Ь/

An application of the STI/2/ spin coefficient technique 
relying mainly on identities /5.6/ and /5.7/ das been discussed 
at length in Ref. 5. In the following section another example will 
be given demonstrating the use of SU/1,1/ spin coefficients. So we
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now dispense with the double-rowed notation and from the next 
section on we confine our attention to the SU/1,1/ spinor calculus 
in a flat hyperbolic space.

6. APPLICATION OF STI/1,1/ SPIN COEFFICIENTS: THE STATIONARY
AJdSYMMETRIC VACUUM

We are considering here the vacuum as one being described in 
the framework of the general relativity theory. Under the assump­
tion of stationarity and axial symmetry, the vacuum field equa­
tions of Einstein considerably simplify. As Kramer and Neugebauer^/ 
have pointed out, the corresponding Lagrangian can be written in 
the form

L = VAVA + VBVB - VCVC /6.1/

where the field quantities A, В and C are invariant scalars in я 
fictitious Euclidean 3-space, each of them being independent of the 
azimuthal angle. The usual notation for gradient and Laplacian 
operators / V and Л , correspondingly/ will be adopted in the fol­
lowing.

Taking account of the constraint equation

A2 + B2 - c2 = -1 /6.2/

the field equations can be derived from the Lagrangian /6.1/ and 
are of the form

ДА = XA
дв = хв /б.з/
ДС = xc

where X = L is the Lagrange-multiplier,

From our point of view, an essential remark is that the 
field equations /6.3/ are unaffected when changing the signature 
of the metric from (+ + , + ) to This can easily be seen if
we introduce, for example, cylindrical coordinates p, z, Ф,
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x = р э1пф
У = p cosф /6.4/
Z = z

where X,Y, and Z are the usual Cartesian coordinates. In view 
of the axial symmetry of the field variables, the g33 component 
of the metric

/6.5/

does not enter the field equations /6.3/. Thus, in place of /6.5/, 
it is permissible to take the metric

-1

Next the coordinate transformation

/6.6/

x = p эЬф 
у = p сЬф

leads to the metric form
z = z

/6.7/

/ 6 .8/

which has been used in previous sections when developing the flat- 
space version of SU/1,1/ spin coefficient technique.

In the coordinate system /6,7/ we define a basic spinor
na with the components

/А + i в
/6.9/

The adjoint spinor n+A is given by
tAn - nB, a.AB' = (A - iB, C)/-1 o\= (-A + iB,C) .

\ О 1 )

So ncA = (nA , nA ) ÍB a properly normalized SU/1,1/ spinor base,

/ 6 . 10/

-f A 4*0 +1 2 2 9nA n = n0 n + П = c - A - В = 1 . /6.11/
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In terms of the basic spinor ад , the field equations take the 
spinor form

ДпА = XnA / 6 . 12/

with

A = -VnA Vn+A _ .ВС +A
- 9BC ПА 9 Л ЭВС ■ 0BC 9i /6.13/

A more convenient form of the field equations is obtained 
if we observe that

eBC eDE Лг,А ( 9BD 9CE + 9CD 9BE ~ 9CE 9ED + 9BE ЭСо')ЛА “

“ 2(: - Э _  э— )r'ACD BE BD °CEI
/6.14/

Multiplying both sides of Eq. /6.12/ by eBC euE , we get

(9CD 9BE 9BD 9CE ) pA 2 XnA eBC ®DE /6.15/

We now proceed to obtain the spin coefficient version of the field 
equations. Insertion of the Kronecker symbols

x В aB
«А * "ад " /6.16/

in the expression /6.13/ for A gives

A = rn , r.abc Oabc 1 /6.17/

Next we contract the field equations /6*15/ with nA n? nC n? nEa d c a e
After rearranging properly the derivative operators and making 
use of /6.17/* we arrive at the set of spin coefficient equations
Э , Г - Э Г  — г г r — г г r . cd Oabe bd Oace Oabr e cd Oacr 1e bd

+ Г (r r - r r )Oaer\ b cd c bd / + Г _ ГŐrbe щ cd Orce a bd

+ 2 eOaebc 6dc.r0pqr 11
pqr /6.18/
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in the detailed notation we can write the above form of the field
equations as

Dk - 2бр = a(k-t ) + p (к+т ) - 2кр /6.19а/

De - 26т = -pp + оа + 2тт - тк + тк - 2ер . /6.19Ь/

In addition, we have the spin coefficient equations arising from 
the field identities /5.6/ with the lower signs /corresponding to
SU/1,1/ on imposing the flat-space condition Вш  = Os

Da - бк = -(p+p)a - 26a - кт + к2 /6.20а/
— 2 - -Dp - ők = -p - aa - кт + kk /6.20b/

Dt - óe = -PT + ÖT - ко + p< + (<-т)е /6.20с/

6т + 6т = pp - aä - 2тт + e(p-p) /6.20d/

őp - őa = 2от - к(р-р) . /6.20e/

The set consisting of Eq.s /6.19/ and /6.20/ is comple­
tely equivalent to the stationary axisymmetric vacuum equations 
/6.3/. The most interesting feature of the present formulation 
of the problem is that the gravitational field quantities are 
represented here merely by spin coefficients and we do not have any 
additional terms in the field equations. This situation is to be 
compared with the STJ/2/ spinor form of the stationary gravitationalX /equations'" , in which the excess of a complex vector field appears 
in the spin coefficient version of the field equations.

Although a more detailed study of the structure of field 
equations /6.19/ and /6.20/ lies beyond the scope of the present 
paper, it is perhaps useful to depict here the way of manipulating 
with SU/1,1/ spin coefficient equations on a very simple example. 
Let us take the class of solutions for which

е = т = о ,  к = к, p = 5 /6.21/
holds. Using the representation /3.4-/ for the connecting quantities
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and taking the spinor basis as in /6.9/» we can prove that conditions12//6.21/ are characteristic to the static axisymmetric fields with /
В = 0. Without, however, relying on the detailed structure of the spin 
coefficients, we can find the solution of the field equations /6.19/ 
and /6.20/ by imposition of /6.21/. We find that Eq.s /6.19Ъ/, /6.20с/ 
and /6.20d/ are identically satisfied. The remaining field equations 
are

Dk - 26a = -0K + 0K /6.22а/

Da - 6к = -(a+a)a + к2 /6.22b/

6a - 6a = к (a-a ) . /6.22с/
Comparison of Eq.s /6.22b/ and /6.22с/ with commutators 

/5.7/ shows that the former are just the integrability conditions 
of a real scalar field Ф such that

к = Оф, a = бф . /6.23/

Further, taking the sum of Eq.s /6.22а/ and /6.22с/, and inserting 
/6.25/, we obtain

(dd - 66 - бб)ф = о , /6.24/

which is the Laplace equation written down in the spin coefficient 
1-5/notation ' . The solution of our problem is thus reduced to finding 

the solutions of the equation

ЛФ = О /6.25/

where, owing to the axial symmetry required for any solution Ф , no 
matter what signature is chosen for the metric.

In our representation, as is easily seen, the scalar Ф 
should be identified with -2fn(A+c) , hence it is not hard to prove
that the procedure given in the above example is the spin coefficient 
version of obtaining Weyl*s static axisymmetric solutions'1'^.
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