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ABSTRACT

A comparative discussion of SU/2/ and SU/1,1/ spinor algebras
is presented. Spin coefficients are introduced both in the SU/2/ and in
the SU/1,1/ formalism. While in the present paper a particular flat
space spin— and coordinate frame is used, the fundamental relations are
given in a covariant notation such that the method can easily be adapted
to spinor fields in curved three-spaces also. The SU/1,1/ spim_ coeffi-
cients are used to obtain the stationary axisymmetric gravitational
equations in a form where all the field quantities appear as spin coef-
ficients in a flat hyperbolic three-space.

PE3IOME

B HacTosueil paboTe npefcTaBifeTCs CpaBHEHUE CMUHOPHBX anreoép
su(2) n su(l,1). Kak B dopmanu3m_su(2), Tak u B_hopmannu3m su(i,i)
BBOAATCA CNUHOBLIE KOI(MOUUMEHTb. XOTA B HacTosweih paboTe NpPUMEHAETCA
cneyunanbHas, poBHas MPOCTPAHCTBEHHAA CKWCTemMa CMWHOB M KOOPAWHAT, OCHOB-
Hble 3aBMCKUMOCTW [JANTCH B KOBapWaHTHOW (OpMe, MO3TOMYy 3TOT METOL MOXET
ObiTb NMPUMEHEH W B CNyvyae MCKPUBIIEHHLIX TPEXMEPHLIX NPOCTPAHCTB. bnarogaps
npuMeHeHui cnuHoBbix kKoadouumeHntos su(l,l), cTaumoHapHbe, OCecMMMeTphyHble
rpaBUTALMOHHbE YPABHEHWUSA MPUBOAATCA K BUAY, B KOTOPOM KONMYeCTBa MOMel
ONpefensinTCA CMUHOBLIMA KO3(DULMEHTaMU POBHOrO TPeXMepHOro runepbonu-
YeCKOro npoCTPaHCTBA.

KIVONAT

) Az SU(2) és Su(l,l) spinoralgebrak osszehasonlito targyalasat
adjuk meg. Spin koefficienseket vezetunk be mind az Su(2), mind az
SU(I,1) formalizmusban. Noha e dolgozatban specialis, sima térbeli
spin— és koordinatarendszert hasznalunk, az alapvetd Osszefliggéseket
kovarians alakban adjuk meg, ezért a mdédszer koénnyen altalanosithato
gorbult haromdimenzidos terekre. Az SU(I,l) spin koefficiensek felhasz-
nalasaval a stacionarius, tengelyszimmetrikus gravitacios egyenlete-
ket olyan alakra hozzuk, amelyben a térmennyisegeket sima, haromdimen-
zi6s hiperbolikus tér spin koefficiensei adjak meg.*



1. INTRODUCTION

The spin coefficient technique has been brought into being
by the physicists”’ struggle with the essentially nonlinear character
of the gravitational equations of Einstein. The rapid increase of
the area of its applications is due to the extreme flexibility lent
to the method essentially by the alternative uses of spinor and
vector pictures in visualizing the geometric meaning of spin coeffi-
cients. Since the time when Newman and Penrose"” had developed the
method, its uses have spreed beyond the theory of general relativity.
It is hard to give a comprehensive survey of all the papers involved
in this field, yet I have tried.to list some of the referencesZI
containing the essential results.

Although spin coefficients were introduced originally in
the SL/2,C/ spinor calculus, their use has come to be extended to
SU/2/ as well. The way of formulating the SU/2/ calculus”™/ is easily
adapted to SU/1,1/ spinors also. This will be done in the present
paper. To facilitate comparison of the /Zalready familiar/ SU/2/ spin
coefficient formalism with the SU/1,1/ one, a parallel discussion
will_be given of the spinor algebras /sec.2/, connecting quantities
/Sec.J/, the dyad notation /Sec.4/ and field identities /Sec.5/*
Although a particular flat-space coordinate- and- spin frame will be
used throughout this paper, the covariant formulation of the basic
relations opens the way for later applications to curved /Riemannian/
spaces. For the same purpose, the field identities given in Sec.5 do,
in fact, contain curvature terms, although these are assumed to vanish,
in all other parts of this paper.

In Sec.6 I use the SU/1,1/ spinor formalism to bring the field
equations of the stationary axisymmetric vacuum to a form where all the
field quantities are represented by spin coefficients. The research
for the puzzling structure of the stationary axisymmetric gravitational
equations has come into prominence since it was generally agreed"47/
that the external gravitational field of black holes must be restricted
by the requirements of time-independence and axial symmetry. We can use
here a flat-space spinor calculus since, as Is well known, the Tfield



equations of the problem can be formulated on a flat "background"
5—space. As will be seen, however, the invariance of the field equa-
tions against changing the signature of the metric /thus turning the
Euclidean flat space to a Minkowski-type hyperbolic space/ must be
exploited in our construction. My Ffinal point will be the solution
of the static subclass of the fields, using the method of SU/1,1/
spin coefficients.

2. A SIMULTANEOUS INTRODUCTION TO THE ALGEBRAS OP SU/2/ AND SU/1,1/
SPINORS

In this section 1 shall present a parallel discussion of the
elements of both SU/2/ and SU/1,1/ spinor algebras. The notation adopt-
ed here is chosen so as to be the most convenient possible for the spin
coefficient technique, and follows closely the conventions of reference
3* The parallel treatment of SU”2” spinor algebras is achieved by a
double-rowed notation, where necessary. The upper row refers always to
sus2/, while the lower one is for SU/1,1/.

A one-index covariant spinor £1 , is by definition, a quantity
of two complex components /A = 0 ,1/ which transforms according to
the rule

12.1/
Here the transformation matrix has the forms6/
—
r «“1 | e Q i
1UB; =
+5 (08

where the complex numbers a and 3 are restricted by the Uni-
modularity condition

a + B3 =1 /2 .3/

The 2x2 matrices naB given by /2.2/ and /2.3/, inasmuch as the
matrix multiplication is a group operation, constitute the group SU - ”J
with the upper and lower signs in the definition, respectively.

The transformation rule of one-index contravariant spinors
is given by



A = 5Bu-1)8N1 F /o 4/

where u_ 1 is the inverse of u *
UAB (u-1)Bc - {j /2.5/
Thus the contraction £A 5 is an invariant,
M A = BGIYIA By o T <N R 12.91

In accordance with the unimodularity of y , the rules for raising and
lowering spinor indices ares

A =~ d fA = KB SBA /2.7/

Here the "metric spinor"

KJ - [*“] - [; 1] /2.8/

is left invariant by spin transformations. Befinition /2,8/ implies

pAC A -— jA
e eBC - 6B /2.9/

There exists an other invariant spinor. In order to show
this, we take the complex conjugate of Eq.s /2.1/ and /2,4/:

2B" /72 .10/
The priming of spinor indices indicates that complex conjugates of
spinors possess different transformation properties. We now introduce
the Hermitian two-index spinor a by

[e""]-Tt ;1= /1.

Using the transformation rules /2.4/ and /2.10/ for spinor indices,
we can easily check that aAB is invariant. By definition
aAB9 has the property



cB* _ C
=+ 6A [2.12]

We define the adjoint of a spinor

/2.13/

From /72 .12/ it follows that by adjoining the spinor twice we again
get 5a , however, in SU/2/, with opposite sign:

/2.14/

We also have the relations for the complex conjugates of contracted
spinors:

/2.15/

3. THE CONNECTING QUANTITIES

The parallel discussion of SU/2/ and SU/1,1/ spinors will
extend to this section also. We now proceed to investigate the
connection between SU spinors and geometric objects in a
three-dimensional space. Throughout this section we will be contended
with considering local relations in the space. Thus all the following
relations hold in an arbitrary but fixed point P of the space; there-
fore we will not be concerned whether not this space is curved. We
shall assume that, at least locally, an appropriate coordinate system
exists in which the metric takes the form

+1
] = 11 * A = (det[gi;]D1/2 = 1. /3.1/

So SU/1,1/ spinors will be related to objects iIn a Minkowski-type
3-space /with indefinite metric/.



In close analogy with the SL/2,C/ spinor calculUB”™, we
introduce the connecting quantities B C which are to be used later
to relate spinors with tensors. The defining relation for the connect-
ing quantities can be taken as:

"iA ujs /3.2/
/Lower case Roman indices 1,j,k,..« denote tensor components with
values 1,2 and 3»/ In addition, the symmetry of ogB in its spinor
indices will be required:

An appropriate solution ofBqg.s /3.2/ and /3*3/ is

risl 1 Mo =il
lLad g B o

r2ell_ 1 ro =il
L°AJ /2 L-i Oj /3.4/

rsepl_ 1 1
Lo

lo a J N —ij

We see that for SU/2/ the connecting quantities are just the Pauli

matrices divided by a common /? factor. The explicit form /3.4/ of
the SU/1,1/ connecting quantities will be used in Sec.6.

Using the expressions /3.4/, we car. easily prove the covariant
identity

B C i C - 9 kC
Cin ajp - Y N - Qi Cijk °A ~ /3-5/

Another useful relation is obtained from /3 .2/ if we properly take
into account the straightforward identity®" eg m eCDj= O « Thus we have

°iAB OCD m - K"6AB eBD + 6AD eBC) /3.6/

There are two different ways of defining the adjoint of ag
we can take either -aBp, ag°" oiQ,P "or -agp, aBQ"6iQ,p"as the definition



of the adjoint quantities. In order to retain the customary defini-
tion of matrix adjunction in the representation used here, we put

/3.7/

Thus, by /3.4/, we are led to the adjunction properties of the
connecting quantities:

/3.8/

4. SPINOR BASIS AND SPIN COEFFICIENTS

A normalized spinor basis and spin coefficients for SL/2,C/
spinor fields were Ffirst introduced by Newman and Penrose”™. The
method was later extended to SU/2/ spinor fields by Perjés”. Since
spin coefficients refer to differential /nonlocal/ properties of
the fields, it is a relevant question whether or not we are consid-
ering spinors In a curved space. Although in the following we shall
confine ourselves to flat space, it is not hard to prove that all the
following relations remain valid in curved spaces provided partial
derivatives are properly replaced by covariant derivatives. This as-
sumes the introduction of covariant spinor derivatives, which, along
the lines of references 7 and 3, can be done without much diffi-
cultygl- In this respect the comparative /double-rowed/ treatment of
SUs/2/ and SU/1,1/ spinor calculi is of especial use, therefore it
will be maintained throughout the present section.

Let nA be an arbitrary one-index spinor which is normal-
ized by

+A

na T 1 /4.1/

We choose a basic spinor dyad such that

noA =J}A ° nlA ~ nA /4.2/

where nalJl / a= 0,1/ are elements of the dyad. This basis iIn the
spin space defines a complex vector basis in the 3-space according
to the relations



_ A+ iB
Z1 = ST A nB aA
i A i
1 - g e B /4.3/
_i +  +A i
m' = - nNn n-B'- OAI\ B

An equivalent, but more compact, notation for the basic vector "triad"
will also be used in the following;

am = (E1" mz" /4.4/

where m is a triad index.ranging over the values 0,+ and —. From the
adjunction properties /3 .8/ of the connecting quantities, we obtain
that N1 is a real vector and m" is indeed the complex conjugate
of m. The orthogonality properties of the basis follow from /3.6/
and can be summarized as

1 0 o
X
Z. Zni 3nn 0 0 #1 /4.5/
0 #1 o]
The physical components of an arbitrary tensor™- say T. ..,

are given by Tm}* = TMK zrﬁz"z&» and- conversely, as is easily proven,

the relations TA.N = TnilM also hold. Here we remark that
triad indices are raised and lowered by use of the trj.ad metric gS£
and its inverse g™n Zas given by /4.3//, respectively. In a similar
fashion, spinors *can be given in terms of their dyad components. For
example,
- a b -c
"ABC ~abc®" JIA nB nc
/4.6/
A B -c
kKabc® ~ABC" na % nc
/dyad indices are chosen from the lower case Roman letters a,b,c,...
and take the values 0 and 1/. The dyad components of a spinor, just
like the physical components of tensors, are invariant scalar quan-
tities. The algebraic properties of both spinors and tensors remain
unaltered when transvecting with the basis. Care should be taken,
however, of the order of dummy spinor indices /both ordinary and dyad/,
since converting the position of a dummy index pair results in a



change of sign, due to the skew symmetry of the spinor "metric”
/cf. Eq./2.8//.

We now define the SU spin coefficients by the rela-
tions

@i Tca)nb °CD nc tS 74.14

rabcd

Here we have used the notation

ar = 3/3x1 /4.8/

As 1is easily inferred from the normalization /4.1/ of the spinor
base, the spin coefficients exhibit symmetry both in their first
and the second pair of indexest

Fabed = Tbacd = Mabdc /4.9/

Further relations among the spin coefficients can be
deduced by considering their properties under adjunction. The rules
for adjoining dyad components are needed at this point. Consider,
for example, the dyad components of a one—index spinor, £ = 5- nz .
From /2.15/ we obtain

i)-14 14
@h <

The generalization of this pule for spinors with more then one index
is a straightforward matter.

/4.10/

Taking into account all their symmetries, there are five
independent spin coefficients altogether. We introduce an
individual notation for these, according to the table

ab oil
00 11
cd 1 of
00 1 -1- +1 -
/Ta +77T -7T
Tabed 01 W /4.11/
1Q - 2K +ITT + 2’K
11 1 s
+7/p - 2T -Tra



The 2*“1/2 factors here are introduced for practical reasons and the
simplicity thus attained in the expressions containing spin coeffi-
cients will become clear shortly»

There exists a close relationship between spin coefficients
and the well known Ricci rotation coefficients given by

Yo = @jm)2 mi * /4%12/

This is most easily seen by using the equivalent form of "u 7)»

Tabed= 2 OF1 <¥g =kg 35 cibp /4.13/
We have
N mn
-0 +0 + -
P \
0] K K e
GTE + D a T /74.14/
B 2 p T

Equation /4,14/ reveals the skewsymmetry of the rotation coeffi-
cients in their first and second indexes:

THE ‘wWmp /4.15/

Hence we see that the quantity e=y+ Q is purely imaginary, e = -é.

Like any tensor—type quantity, the vector operator of deriva-
tion can also be transvected with the basis to yield the scaler
operators

3 E 2y BH /4.16/

An alternative individual notation for the scalar derivative
operators will prove useful in the following, namely,

D At 21

zo 3i

6 =z+ o+ ml /4 177

6 =2z 3+ =il o+



Using the expressions /4.3/ for the vector hasis we have

D = 3i

6 = a' 2. /4 .18/
00 r

3= ¥ olx 3 -

5. THE FIELD IDENTITIES

Though this paper is devoted to the flat-space spinor
calculus, completeness requires the formulation of the field identities
for the more {general curved-space case:. Therefore, in tfte present
section we shall consider the 3-space to be a Riemannian one with
the metric signature (+,+,+) » as the geometric arena of the SU
spinor fields, respectively. The definition of the curvature tensor
Rijkl Siven the Ricci-identities

Vi[;j;kl 2 R ijk Vr /5.1/

where vz 1is an arbitrary vector field, and semicolon stands for
the covariant derivation operation.

The equivalence of dyad and triad formalisms allows us to
put down the Ffield identities in.the more simple triad notation.
Applying the Ricci identitiea /5.1/ on the basic vectors Z% and tak-
ing the "triad projections§7, we get -

Ymng;g Ymng;g Y mg YEng + YmnE (Y gg “ Y gg) +
/5.2r

* Ymg Ying = Pnngg

The curvature tensor of a three-space can he decomposed into the
Ricci tensor R~ = R”~*~  and the curvature scalar R = R” since
the conform tensor identically vanishes in this casel™. In terms
of triad components we have

Rmnpq ~mp Rng + gmqg Rnp gng Rmp + gnp Rmq
/5.3/

2 R("mq gnp  gmp gng )
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Another important relation is the commutation rule of the scalar
derivatives given by

fown NG T n Yn m ] |

As a simple example of manipulating with triad labels in the above
identities, we put down here the detailed form of the curvature

scalars

R=g U ROO + 2R, /5.5/

Combining /5.2/, /5»?/ and /5.5/» and using the detailed notation
for rotation coefficients and scalar derivatives /Eq.s /4.14/ and

/4.17//, we obtain

Da - K + ea + tk - k2 + a(e+p)+ pa ™= < L /5 -6a/
Dp - K+ TK - KK + aa + p2 = - 1 Boo -(i+i)R+_ IS,.66/
Dt - 6e + KO - pK + Te - BK - Ta + TP =5 IS,.6¢/
|_\
3 . 1
6t + 6t + 80 - pp + 2TT + e(-p+p”) = 2 Eoo - (201K - IS.,6d7
Ga - 6p + TO - k @Gy + ar = Ro+ . IS..6e/
Similarly, the relations /5*5/ can be written as
(06 - 6D)F = +06F +(p+e)of + KD°F /5.7a/
(66 - 66 = +T6F * ToF + (pp"jD°Ff . /5.7b/

An application of the STI/2/ spin coefficient technique
relying mainly on identities /5.6/ and /5.7/ das been discussed
at length in Ref. 5. In the following section another example will
be given demonstrating the use of SU/1,1/ spin coefficients. So we
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now dispense with the double-rowed notation and from the next
section on we confine our attention to the SU/1,1/ spinor calculus
in a flat hyperbolic space.

6. APPLICATION OF STI/1,1/ SPIN COEFFICIENTS: THE STATIONARY
AJASYMMETRIC VACUUM

We are considering here the vacuum as one being described in
the framework of the general relativity theory. Under the assump-
tion of stationarity and axial symmetry, the vacuum field equa-
tions of Einstein considerably simplify. As Kramer and Neugebauer”/
have pointed out, the corresponding Lagrangian can be written in
the form

L = VAVA + VBVB - VCVC /6 .1/

where the field quantities A, B and C are invariant scalars in s
fictitious Euclidean 3-space, each of them being independent of the
azimuthal angle. The usual notation for gradient and Laplacian
operators / V and N1 , correspondingly/ will be adopted in the fol-
lowing.

Taking account of the constraint equation
A2 + B2 -C2= -1 /6 .2/

the field equations can be derived from the Lagrangian /6.1/ and
are of the form

AA = XA
[B = XB /6.3/
AC = xc

where X= L is the Lagrange-multiplier,

From our point of view, an essential remark is that the
field equations /6 .3/ are unaffected when changing the signature
of the metric from (+ +,+) to This can easily be seen if
we introduce, for example, cylindrical coordinates p, z, O,



X = p alng
Y = p cosp /6.4/
Z =1z

where X,Y, and Z are the usual Cartesian coordinates. In view
of the axial symmetry of the field variables, the g33 component
of the metric

/6.5/

does not enter the field equations /6.3/. Thus, in place of /6.5/,
it is permissible to take the metric

-1 /6 .6/
Next the coordinate transformation
X = p 3bp
y = p cbp 76.7/
zZ = Z
leads to the metric form
/16.8/

which has been used iIn previous sections when developing the flat-
space version of SU/1,1/ spin coefficient technique.

In the coordinate system /6,7/ we define a basic spinor
na with the components

/A+ 1 B
/6.9/
The adjoint spinor mA is given by
n® B, a® = (A - iB, C)/-1 O\= (<A + iB,C) . /6.10/

\0 1)
So ncA = (M, nA) [IB a properly normalized SU/1,1/ spinor base,

A 440 +1 2 2 9
nA n =n0 n + M =c -A -B =1 . /6 .11/
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In terms of the basic spinor ag , the field equations take the
spinor form

OnA = XnA 16.12/

with

- +A _ -BC +A
A= -VPAVR "~ ggc a9 1 3BC = 0BC Oi 76.13/

A more convenient form of the field equations is obtained
if we observe that

eBC eDE JTA ( 9BD 9CE + D 9BE ~ 9CE 9ED + 9BE 3Co")A “

/6 .14/
« (0 BE %D AEPrA
Multiplying both sides of Eq. /6.12/ by eBC euE , we get
(9CD 9BE 9BD 9CE ) pA 2 XnA eBC ®DE /6 .15/

We now proceed to obtain the spin coefficient version of the field
equations. Insertion of the Kronecker symbols

X8 “an .28 /6.16/

in the expression /6.13/ for A gives

A = Babc rlabc /6 .17/

Next we contract the field equations /6*15/ with nA Q? Q? qg nE
After rearranging properly the derivative operators and making
use of /6.17/* we arrive at the set of spin coefficient equations

%d Toabe ~ bd ocace ~ Toabr Te'cd ~ Toacr Ie'bd

T rr_ -rr )+r,,
anr( b cd c bd Orbe W cd — rOrce a bhd

par

+ 2 eaebc 6dc.rOpgr 11 /6.18/



in the detailed notation we can write the above form of the field
equations as

Dk - 26p = a(k-t) + p(k+T ) - 2kKp /6_19%a/

De - 26T -pp + oa + 2TT - TK + TK - 2ep . /6.19b/

In addition, we have the spin coefficient equations arising from
the field identities /5.6/ with the lower signs /corresponding to
SU/1,1/ on imposing the flat-space condition Bu = Os

Da - 6k = -(p+tp)a - 26a - KT + K2 /6.20a/
Dp - _6k:-1)2— aa - KT +kk /6.20b/
Dt - 06e=-PT + OT - ko +p< +(<-T)e /6.20c/
6r + 6T=pp - aa - 211 +e(p-p) /6.20d/
6p - Ga=20T - K(p-p) - /6._.20e/

The set consisting of Eq.s /6.19/ and /6.20/ is comple-
tely equivalent to the stationary axisymmetric vacuum equations
/6 .3/. The most interesting feature of the present formulation
of the problem is that the gravitational field quantities are
represented here merely by spin coefficients and we do not have any
additional terms in the field equations. This situation is to be
compared yith the STJ/2/ spinor form of the stationary gravitational
equations™ , in which the excess of a complex vector field appears
in the spin coefficient version of the field equations.

Although a more detailed study of the structure of field
equations /6.19/ and /6 .20/ lies beyond the scope of the present
paper, it is perhaps useful to depict here the way of manipulating
with SU/1,1/ spin coefficient equations on a very simple example.
Let us take the class of solutions for which

e=T=0, KK p-=5 /6.21/

holds. Using the representation /3.4-/ for the connecting quantities
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and taking the spinor basis as in /6.9/» we can prove that conditions
/6 .21/ are characteristic to the static axisymmetric fields withlg/

B = 0. Without, however, relying on the detailed structure of the spin
coefficients, we can find the solution of the field equations /6 .19/
and /6.20/ by imposition of /6.21/. We find that Eq.s /6.19b/, /6.20c/
and /6.20d/ are identically satisfied. The remaining field equations
are

Dk -26a= -OK + OK /6.22a/
Da -6K = -(at+a)a + K2 /6.22b/
6a -6a = k(a-a) - /6.22c/

Comparison of Eq.s /6 .22b/ and /6.22c/ with commutators
/5 .7/ shows that the former are just the integrability conditions
of a real scalar field ¢ such that

K = 0, a= 6p - /6.23/

Further, taking the sum of Eq.s /6.22a/ and /6.22c/, and inserting
/6 .25/, we obtain

@ - 66 - 66)p = 0 , /6.24/

which is the Laplace equation written down in the spin coefficient
notationl{v. The solution of our problem is thus reduced to finding
the solutions of the equation

Nno =20 /6.25/

where, owing to the axial symmetry required for any solution ¢ , no
matter what signature is chosen for the metric.

In our representation, as is easily seen, the scalar ¢
should be identified with -2fn(A+c) , hence it is not hard to prove
that the procedure given in the above example is the spin coefficient
version of obtaining Weyl*s static axisymmetric solutions"I”.
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Jdd - 66 - 66 + (p+tp)D - (k+1)6 - (K+T)6]H = O .

In obtaining /6.24/, conditions /6.21/ and /6.23/ have been used.



[4]
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For-the conventional solution procedure, see, for example,

J.L» Andersont Principles of Relativity Physics /Academic

Press, 1967/t p. 393* Two erroneous sentences, however, should
be ignored here; namely those preceding Eq. /11-5.8/, since

this condition, being trivially satisfied by the field equations,
makes no restriction on the field quantities.
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