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Abstract

The relational data model was introduced by
Codd [1]- Since his fundamental paper was published, the
theory of relational databases has been the subject
of an iIntensive research during the past decade.

In this work some new results about keys and
superkeys for relation schemes, about the theory of
translations for relation schemes and about the

structure of minimum covers are presented.
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0. Introduction

The relational model of data was introduced by
Codd [1], Since his Tfundamental paper was published,
the theory of relations for data bases has been the
subject of an intensive research during the past
decade.

The paper of Delobel and Casey [2] can be con-
sidered as the Tirst major study on the functional
dependenc ies.

Significant advances in the theory were made by
Armstrong [15] and shortly thereafter, nearly simul-
taneously, by Fagin, [3], Beeri, Fagin and Howard,
[4]., Rissanen, [5], and Aho, Beeri, and Ullman [6],

Nowadays the Ffield 1is under an iIntense process
of development.

In Hungary, J. Demetrovics and his colleagues
also have important contributions to the theory of
relations for databases, specially to combinatorial
aspects of the theory. [7,8,9,17,18].

In this work we present in a systematic way
some selected new results concerning the theory of

relational data bases. These results either have



been published or will appear in [26-38].

This work consists of three chapters. In Chapter
1 we present some results concerning keys and super-
keys for the relation scheme S=<C,F>. Namely, a
necessary condition under which a subset X of C 1is
a key, a simple explicit formula for computing the
intersection of all keys for S, sufficient conditions
under which a relation scheme has exactly one key,
sufficient conditions for a superkey in a special
family to be a key, three algorithms for the key
finding and key recognition problems and so on ...

Chapter 2 is devoted to the so-called theory
of translations of relation schemes. The concept of
a translation of relation scheme seems to be useful
in the sense that it can reduce a relation scheme
to a simpler one, i1.e., a relation scheme with a
smaller number of attributes and with shorter func-
tional dependencies so that the key-finding problem
becomes less cumbersome.

On the other hand, from the set of keys of the
new relation scheme obtained by this transformation,
the corresponding keys of the original relation
scheme can be found by a single "translations".

In this chapter we present the main results



about the translation of relation schemes, give a
classification of relation schemes, 1Investigate the
so-called balanced relation scheme and nontranslatable
relation scheme and prove a theorem for key represen-
tation. In connection with these results, general
scheme for the transformation of an arbitrary rela-
tion scheme iInto a balanced relation scheme and for
the finding of all its keys are proposed.

In Chapter 3 results about the structure of
minimum covers will be presented.

The nonredundant and minimum covers have been
investigated in depth by Bernstein [21], Maier [22],
Ausiello et al. [23], and several useful properties
of them have been proved and used in various problems
in the logical design of data bases.

But few attention has been paid to the study of
invariants concerning the attribute sets of the left
and right sides of these covers. Moreover, the struc-
ture of right sides of FDs iIn minimum covers has not
been investigated.

In this chapter we establish the relationship
between the notion of direct determination and FD-
graph, prove some well known and new results con-

cerning direct determination, prove some additional
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invariants for covers and nonredundant covers, study
the structure for right sides of FDs iIn minimum covers.
Basing upon these results an algorithm for finding

the ™"quasi optimal™ cover (in the sense of effective
and economical memory management) 1is proposed.

This work has been written while the author has
been a visiting researcher at the Computer and Auto-
mation Institute of the Hungarian Academy of Sciences
during the years 1985-1986. The author has the chance
to work in the research group on the theory of rela-
tional data bases under the direction of Pr. Dr. Janos
Demetrovics.

I am indebted to him for several useful discus-
sions and for his excellent advice and support.

I would like to express my sincere thanks to my
Vietnamese colleagues Le Van Bao, Nguyen Xuan Huy,
Tran Thai Son, Dinh thi Ngoc Thanh of the Institute
of Informatics and Cybernetics, Hanoi Vietnam and
of course to Prof. J. Demetrovics, for that,with
great pleasure, they allow me to use some our common
results iIn this work.

Finally, special thanks are due to Drs. A.
Békéssy and-B. Uhrin and all members of the Computer
Sciences division of the Computer and Automation

Institute for their help and encouragement.






1. KEYS AND SUPERKEYS FOR RELATION SCHEMES

§ 1.1. Introduction

In relational data base design, functional de-
pendencies, 1in general, and keys for relation scheme
in particular play on important role.

Basing upon these notions, the normalization
theory has been the subject of an intensive research
during the past decade.

In this chapter, we present some results con-
cerning keys and superkeys for the relation scheme
S=<B,F> : a necessary condition under which a subset
X of n is a key, some sufficient conditions under
which a superkey in a special family is a key, a sim-
ple explicit formula for computing the intersection
of all keys for S, sufficient condition under which
a relation scheme has exactly one key, a criterion
for which an attribute is a non prime one and some
other results.

Basing on these results, some effective algorithms
are proposed for the finding of keys and for the key
recognition problems.

Finally some remarks improving the performance
of the algorithm of Lucchesi and Osborn [11] are also
given.

Some of above results are published in [26-31] .



§ 1.2. Basic definitions

In this section we give some basic definitions
and notation concerning the relational data model
(I12]; see also [13])-

Throughout this work, when we speak about a
set of tuples the word relation is used, while
speaking about structural description of sets of
tuples we use the word relation Scheme [14]. With
this approach, a relation is an instance of a rela-
tion scheme.

A relation involving the set of attributes
£2={A™ ,A2 ,...,An> IS a subset of the cartesian pro-
duct Dom (A x Dom (A2) x...x Dom (An) where
Dom (A") - the domain of Ai - is the set of possible
values for that attribute. The elements of the rela-
tion are called tuples and will be denoted by <t>.

A constraint involving the set of attributes
{A",A2/*== _ Anl is a predicate on the collection of
all relations on this set. A relation R(AMN,A2,.._,An)
fulfils the constraint if the value of the predicate
for R is 'true™.

We shall restrict ourselves to the case of

functional dependencies.



A functional dependency (abbr. FD) 1is a sen-
tence denoted by T:X =*Y, where T is the name of
the FD and X and Y are sets of attributes. A func-
tional dependency f: X Y holds in R (@@ where X
and Y are subsets of , iIf for every tuples u and
vEr, ux]= vIx] implies u[Y]= v[Y] (u[x] denotes
the projection of the tuple u on X) .

Let F be a set of functional dependencies. A
relation R defined over the attributes tt={A",A£,...,An)
is said to be an instance of the relation scheme
S=<fi1,F> iff each FD f6F holds iIn R.

The following Armstrong"s inference rules are
sound and complete for FDs”™ [15].

For every X,Y,Z*il,

Al . (Reflexivity): if Y*X then X-*Y.

A2 . (Augmentation): if X+Y then XUZ"NYUZ.

A3. ((Transitivity): 1i1f X+Y and Y+Z then X+Z

From the Armstrong®s axioms the following two
rules are easily derived:

Union rule: if XY and X+Z then X+YUZ

Decomposition rule: if X+Y and Z5Y then X+Z.

l)In fact we use here a system of axioms which 1is

equivalent to that of Armstrong.



Let F be a given set of FDs. The closure F+ of
F is the set of all FDs that can be derived from the
FDs in F by repeated applications of Armstrong®s
axioms.

It is shown in [13] that

(X+Y)ErF+ iff Y*X+
where
X+={Ai | (X+A1)*F+)
is by definition the closure of X w.r.t. F.

In the following, instead of »Y)6F+ and XUY,
we shall write X:}IY and XY respectively.

There is a linear-time algorithm in the length
of the description of the FDs, proposed by Beeri and
Bernstein [10] for computing the closure X+ of a
given set X (w.r.t. F):

1) Establish the sequence X~°/N XN, ...,
as follows:
X (0)=x.
Suppose X N 1s computed, then

X{+1) =xMU z®d
where
Z(@ =U Y§
ngx(D X_ﬁx(D

(X Y )eF



2) In view of the construction it is obvious that

Since B is a finite set, there exists a smallest
non negative iInteger t such that
x ()= x (t+1)
3 We then have

X+ = x<d .

Two subsets X and Y of U are said to be equivalent

under a set of FDs F, written X¥, if
X and Y -£*X .
It Is easy to show that

X «=*Y iff X+ = Y+.

Keys for a relation scheme
Let S—<II"F> be a relation scheme and let X be a
subset of R.

X 1s a key for S i1f it satisfies the following

two conditions:

(i) t X'<=X: X" % R

The subset X which satisfies only (@) 1is called
a superkey for S.

It is clear that

X is a superkey for S iff X+=R.



§ 1.3. Preliminary results

We are now iIn a position to prove some lemmas
which will be needed in the sequel.
Let S=<fi,F> be a relation scheme, where

A“{A—j’\A’\, cee AN } s

F={Lj-»R™ I i=1,2,...,m }

Without loss of generality, throughout this work
we use only sets of FDs in the natural reduced form,

i.e. those which satisfy the following conditions:

(i) LihRi=0 V i/j
D) it inj.

Let us denote

KS ={KhK is a key for S}
=fe\L* , i=1,2,...,m ;

I ={i Ithere is no j such that L”~OL"}

{1.2,...,m}

It 1s obvious that for every jfe{1,2,...,my LN
is a superkey for S.

We have the fTollowing lemmas.



Lemma 1.3.1.

Let S=<Q,F> be arelation scheme,

XY+ = (+Y)+  =(XY+)+

Proof

By the definition of the closure X+ of X,

It is sufficient to prove that
+

N S -
xyn =& .

obvious that

X,Y=i}; Then

-D

is

X+2 X .
Hence
X+Y 2 XY.
By the algorithm for the finding of the closure,
we have
YY)+ 2 (XY)+ a.2)
On the other hand, from
X — 31* X+ ,
we have
XY —-*r X+Y ,
or equivalently,
X+Y & O+ .
It follows that:
+tY)+ S ((XY)+)+ = (XY)+ .3



Combining (.2) and (1.3), we obtain (1.1). The

proof 1is complete.

Lemma 1.3.2.
For any 161,

is a key for S if and only if C"=0.

Proof.

If part: If Ci=0, 1.e. , then IS a super
key for S. Since i€l, it follows that for all XelL"
we have

X+=X<=L+,
showing that is a key for S. The only 1if part is

straight-forward.

Lemma 1.3.3.
Let K be any key for S=<ft,F>.

Then Z+A (K\2)=0 for all ZCK.

Proof.
Denote Y=Z+A(K\Z) .
It is clear that Y«Z+, YsK and

YAZ = 0.



Therefore we can write
K=Z}YIX (a partition of K)
and, by Lemma 1.3.1, we have
(ZX)+ = (@Z+X)+ = (Z+YX)+ @YX)+ = Q.
Since K Is a key, so ZX=K, showing that

Y = z+0(K\Z) = oO.

Lemma 1.3.4.
Let S=<ft,F> be a relation scheme.
If A6L and X -=a Y then
XN\{A> * Y\ {A}.
Proof
From X + Y it follows that there exists a

derivation sequence

{L. *# R. , L. > R1 Joee/ 3}
X1 11 2 2

such that

-4
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m
Since A?L = U L., from (1.4) we have
Jj=1 o
X\{a }s»L.
"1
K\{A}) R. s L
2
XM al}) R R. ...R. =Y\{A) ,
1\ 12 p
showing that
X\ {A} Y\{A)

Lemma 1.3.5.
Let s=<Q,F> be a relation scheme, X«fi. I A*X

*
and X\A m,A+) then X i1s not a key for S.

Proof.
By the hypothesis of the lemma
X\A * A
On the otherhand, i1t is obvious that:
X\NA * X\A.
Applying the union rule, we obtain
XNA * X.
Since A6X, i1t 1is obvious that X\AcX, showing that

X #s not a key. The proof is complete.

+~Here and in the following X\A stands for X\{A}.



Lemma 1.3.6.
Let S=<ft,F> be a relation scheme. Then any key
K for S has the following form
K = Ler
where X £ C , l1eil.

Proof
Let Kc be the set of all keys for S and K6KC.
IT K=1ft, then obviously
K:Ll.Xr V i1el.
IT Kei”™.,then by the algorithm for the finding of the closure
K+ of K w.r.t. F, there exists L.3 such that LéeK-
Consequently, there is iftl such that L"™aK.
Thus K err . ieil.

Now we have to prove that XASC”~. BY Lemma 1.3.1

we have

LJIr X|.<sﬁ(LJirX-) + = (LI.XI D+ =K+ = n = I=c_-. (1.5

By lemma 1.3.3

L* 0 (K\L) = L X .

I
o

On the other hand, i1t is clear the
L+n ci = O.
Hence, from (1.5) we have:
XI#CI-
The proof is complete.
Remark 1.3.1
Lemma 1.3.6 still holds if the set 1 is replaced

by the set {1,2,...,m}.



8§ 1.4. Necessary condition under which a subset

X of S is a key.

In this section we investigate the necessary
condition under which a subset X of 3 is a key and
prove a theorem which will be used as a basis for
the design of algorithms to find keys for a relation

scheme.

Theorem 1.4.1.

Let S =<ft,> be a relation scheme and X be a key
of S.
Then

SJ\R«X S (R\R) U (LOR) .

Proof
We shall begin by showing that
TARCX.
First we observe that XcXR. Since X iIs a key,
obviously X+=fl. Hence XR=f2. This implies that
T2\R «X ..
To complete the proof it remains to show that:

XS (W) U UR) . (1 .6)



It is clear that

Xcfi = (FR) U (LHR) U (RNL) . @.n
To obtain (1.6), we have only to prove that

X ft(R\L) = 0 .
Assume the contrary, that there exists an attribute
AEX, AfrR and AéL. Since X is a key, we have X = Q. .
Since A*L, we refer to Lemma 1.3.4 to deduce
X\{A) * \{A}

On the other hand, from A €L, and L s 3, we have
L S CNA. Hence fiA > L.

Applying the transitivity rule for the sequence
X\A f1- Q\A I;IL —>k R —5‘ A (since A6R) , we obtain

X\A * A with AfeX.
By virtue of Lemma 1.3.5, this contradicts the
hypothesis that X is a key. Thus we have proved
that 1f X is a key, then XO(R\L) = O.
From (1.7) we deduce that
XS (fi\R) U (LOR) .

The proof 1is complete.

Theorem 1.4.1 is illustrated by Fig.1.1 where
X 1s an arbitrary key for the relation scheme

S=<i2,F>.
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p 57 )
o oot

NREX XS(@\RU(LNR)

Fig.1.1

In view of Theorem 1.4.1., it is easily seen that
the keys for S=<ft,F> are different only on the
attributes of LOR. In other words, if and X2 are
two different keys for S, then

X-J\X2 e LOR and X2NkKX1 ¢ LrtR*

Let Kg denote the set of all keys for S, and ff (2
the maximal cardinality Sperner system on a set
Z [16] .

As immediate consequences of Theorem 1.4.1. and

results in [17], [18], we have the following

corrolaries.

Corollary 1.4.1

Let S=<fl,F> be a relation scheme. Then

# Ks < ft if (LOR) = Ch[h/2]
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where h=#(LOR) is the cardinality of LHR.

Corollary 1.4.2

Let S=<iil, be a relation scheme and X be a key
of S.
Then

# (FI\R)&# X <8 (A\R) +# (LOR) .

Corollary 1.4.3

Let S=<Q,F> be a relation scheme. If R\L ~ O
then there exists a key X for S suth that X1 (non
trivial key). Moreover R\Left\H, where H= U K is the
union of all keys for S. KEKS
Corollary 1.4.4

Let S=<ft,F> be a relation scheme. If LOR=0 then
#Kg=1 and Q\R 1is the unique key for S.

It 1s natural to ask whether the results
formulated in Theorem 1.4_.1 can be improved. The

answer 1is affirmative as it is showed by the following

lemma and Theorem.

Lemma 1.4.1

Let S=<B,F> be a relation scheme and X be a key



1é

for S. Then
XFARfi (L\R) +=0.

Proof
Suppose the statement is not true. Then there
exists an attribute A such that
ABGXNRN(L\R)+ .
Thus A*X, A€R, L\R mw A. Since A€R, it follows that
A 6 (L\R). On the other hand, it is clear that
L\RSFI\R.
Taking into account Theorem 1.4.1, we get
L\ Refi\ReX .
Thus
L\RcX\A (since A€EL"™R) .
It follows that
XNA * L\R * A
where AfeX.
By Lemma 1.3.5, this contradicts the hypothesis that
X 1s a key for S. The proof 1is complete.
We define
2L(L,R) = (L\R) 0 LR
It 1s clear that

a(L,R)s(L\R) 1R
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From this
xna.(L,R) =0 for every XéKg. Combining with

Theorem 1.4.1, the following theorem is immediate:

Theorem 1.4.2
Let S=<S7,F> be a relation scheme, and X be any
key for S. Then
(NR)SXS(FiI\R)U ((LOR\ a.(L,R) ) -
The following example where *(1 ,R)™0, shows that

Theorem 1.4.2 1is nontrivial.

Example 1.4.1
ft={A,B,H,G,Q,M,N,V,W}
F={A+B, B *H, G =%Q, V+W, W mV}
From this we have
L = ABGVW; R = BHQVW; LFftR = BVW;
L\R = A G; (L\R)+ = AGBHQ;
AL, = \RMH (OR) = {B} F O.

Remark 1.4.1
It is worth noticing that

(TAR)+ = (Q\(LUR) )il (L\R) + .



Therefore, if X is a key for S then obviously:
XNRA(B\R)+ = XARFI(L\R)+ = O,
and

GT\RU{ (LOR) \ (EHR) +3}= (AR U { (LOR)\ *(L,R)}

Remark 1.4.2
Using Theorem 1.4.2, the Corollaries 1.4.1,
1.4.2 and 1.4.3, deduced from Theorem 1.4.1 above,

can be improved, as well.

Theorem 1.4.3
Let S=<ft,F> be a relation scheme with
LAR={A A Lo L AP{AL, ... LA =R
H u2 n
Let us define
K@ = (f\R) u (OR) ,

/KGD\A  if  K(i)\A =
k(i+1) = ; i i

(K @® if  K(O\A m

i
with 1=1,2,.._,h.

Then K(h+1) 1is a key for S=<B,F>.

Proof
We shall begin with showing that

K (i+1) * K@)
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Two cases can occur:
«
2 1T KM At:r* AE then from the définition of
K@+1), we have

K(i+1) = K(i)
and 1t is obvious that

K@) ==K (@) .
b) 1If K@)\ A™ , we have

i
K(i+1)

K (D\A
On the other hand, 1t 1is obvi;us that
K(i)\Atr * K(i)\Afl
Applying the union rule, we get:
K{i)\A =* K ()
Therefore !
K +1) mK(i) .
So we have
K(th+1) *K(h) * ... *KQ@ -
From the above definition of K(i+l), it is clear
that
K(h+1)sK(h)e .._.skK() .
We are now in a position to prove the theorem.
As an iImmediate consequence of Theorem 1.4.1,

K@®=CGAR)U (LOR) 1s a superkey for S. On the other hand

K(h+1) * K(1)



20

showing that K(h+l) is a superkey for S too. To
complete the proof, it remains to show that K(h+1)
is a key.

Assume it is not. Then there would exist a key
for S such that XcK(h+1), and using the result of
Theorem 1.4.1, we have

T1ARsXeK (h+1)s(R\R) U (LAR) .
Clearly, there exists
At 6K(h+1 )n (LFtR)\X
¥ with 1£j£h.
From the definition of K(+1), we find
KCI\ALt -4 A
Since K(h+l)fiK(j)? it fgllows that
K(h+1)\A = A
On the other hand «K(h+1§\At_
Therefore °
X Atg
which conflicts with the fact that X is a key for

S=<Q,F>.

The proof 1is complete.
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8§ 1.5. The intersection of all keys for a relation

scheme

In this section we establish a simple explicit:
formula for computing the intersection of all keys
for a relation scheme S=<fi,F>, and a criterion under
which an attribute AMfi is a non-prime one. Finally,
another characterization for the intersection cf all
keys for a relation scheme 1i1s also given.

Let us denote by

K*KS
the intersection of all keys for a relation scheme

S=<ft,F>.

First, we prove the

Lemma 1.5.1.
Let S=<R,F> be a relation scheme.
Then

GOR=0.

Proof
It i1s sufficient to prove that for each AE-R rhere

exists a key K for S such that AfK.



In fact, from A6R we deduce that A belongs
some . Consider the functional dependency
Lr-le. (Hnﬁ.:oy

Hence AFIL".
It is easily seen that

LA\ (L-UR.) } * S,
and

A6L+ U (n\(LiURI)},

showing that MLAURMN)} is a superkey for S.

superkey includes a key K such that A?K.

Hence GOR = O.

Theorem 1.5.1
Let S=<fi,F> be a relation scheme.
Then

G=n\R.

Proof

to

As an immediate consequence of Lemma 1.5.1 we

have

GEFi \R.

On the other hand, by Theorem 1.4.1, it is easily

seen that

\RSG.
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Hence

G=n\R.

The proof 1is complete.

Theorem 1.5.2
Let S=<£2,F> be a relation scheme and let Aél.
Suppose that the following conditions hold for
all , 1=1,2,....,m
(i) AftLi LAA * A,
D) AELr A AfLj
Then A is a non-prime attribute, that is AéH

where H= L) K 1#s the union of all keys for S.
K«Ks

Proof

The proof 1is by contradiction. Assume the
contrary that A”H. Then there would exist a key K for
S such that A6K, and an L~ such that L"™«K.

(O |If AfiLj, then by the hypothesis of the theorem

(condition (i)), we have

LJ\A * A
Consequently
KNA * LJ\A * A,
which, by Lemma 1.3.5, contradicts the fact that K

is a key.
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@ If AfiLj , then by condition (i1) of the theorem,
we have A6Lt.
Since A6Lj,

L JSK\A
Hence

« k

K\A Lj wmA,

which contradicts the fact that K is a key. Thus AeH.

The proof is complete.

Example 1.5.1
2=(A1 ,A2/A™ "A4 A5 ARN

F={A] ™ A3A5 A3A4 A1A6" A1A5SA6 A3A4;
It 1s easy to verify that A® satisfties all conditions
of Theorem 1.5.2.

Therefore ANSH.

Theorem 1.5.3
Let S=<ft,F> be a relation scheme, and G be the
intersection of all keys for S. Then
G+\GeQ\H.
In other words G+\G consists of only non-prime

attributes.

Proof

First, we prove that
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(GAG)nK=0 for every K6K

IT it were not true, there would exist a key K. and
an attribute Aj such that

AJBG+, ASGG, AjﬁKf where Ki«KS'
It follows that:

AjéG+h (KAN\G) , GeKx.
This means

G+ (K+\G) / O,
a contradiction, by virtue of Lemma 1.3.3.
Hence

(GAGO (U K =0,

Oor equivalent?3€/KS

GH\GcTt\H.

Definition 1,5.1
An attribute A~€fi IS saild to be a deterministic

one w.r.t S=<fi,F>, if for every (L.I -*-iR. d«<F, A tR-_

3
implies AjéL”. In other words, A" is a deterministic
attribute i1ff whenever it belongs to the right hand
side of some FD, 1t must also belong to the left hand

side of this FD.

Let us denote by D the set of all deterministic

attributes w.r.t. S =<fi,F>.
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The following theorem establishes the relation
between the set of deterministic attributes D and G -

the intersection of all keys for S.

Theorem 1.5.4
Let S=<ft,F> be a relation scheme.

Then

Proof

First we prove that DsG. Suppose that A«D and
there exists a key K6Kg such that AiK.

Since K+=fi, so A#K+ . By the algorithm for finding
the closure of a set of attributes w.r.t. F, there
exists an index t and some FD (L™ -w R™) in F such that

L4 (£). A*L,, ABR; .
This contradicts the fact that A iIs a deterministic
attribute.
Hence, A*D implies A6K, VKeKg. In other words, A«G,
Consequently DfiG.
To complete the proof, it remains to show that GeD.
Were this TfTalse, there would exist an attribute A«G
and A2D. This means AeR”™ for some i. (From L¥RI=0,
it follows that AiL"N).
We arrive to a contradiction, since AeG=iAR implies

that a3rt+ for every i=1,2,— m. The proof is complete.
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8§ 1.6. Relation schemes that have exactly one key

Theorem 1.6.1
Let S*<fi,F> be a relation scheme. Suppose that
the following condition holds
Vi (R#L f 0 LAR = 0).

Then S has exactly one key and £7\R is this unique key.

Proof.
Let C =n\(LUR) .
Since L * R, we have
LUC + LURUC =R.

Let 1 ={iR#L + 0}

Evidently
U LftR = 0 (1.8)
i€l
and
LARS U R. 1.9)
i€l 1

It 1s obvious that

Ur. * LFftR.

i€l 1

On the other hand we have
Uur. * Ur.
161 1 i€l 1

Clearly we have together with (1.9)

N Lp + LOR.
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From (1.8), we have

U L.<=L\R.
iei
Hence
L\R * ~NL LFIR.
il -

It follows that
L\R > (L\R)U(LFtR) = L.
Using LUC < R, we have
(L\R)UC fi,
showing that (L\R)L»C \ R iIs a superkey for S.

By Theorem 1.4.1, S=<fi,F> has (fi\R) as the unique

Theorem 1.6.2
Let S=<f2,F> be a relation scheme, and X be a
superkey for S.

IT XhR = 0 then X is the unique key for S.

Proof
From XrtR =0, 1t is obvious that

X*FE\R.

key.

Since X is a superkey for S, there exists a key XsX.

Using Theorem 1.4.1, clearly
T2\RgX«XFi 12\R

showing that R 1s the unique key for S.



Theorem 1.6.3
Let S=<ft,F> be a relation scheme, and X be a
superkey for S.

Then X 1s a unique key for S i1Iff XAR = <>

Proof

The sufficiency of this theorem 1is essenuraily
Theorem 1.6.2. We have only to prove the necessary.
Let X be the unique key for S.

Then, by Theorem 1.5.1,

showing that XHR = O.

Theorem 1.6.4
Let S=<B,F> be a relation scheme wirh LAR =0.

Then (FIN\R)U(LAR) 1is not a key for S.

Proof
Assume the contrary that (IAR) o LFIR) is a key
for S.
By Theorem 1.4.1, it is obvious than
K= E\R) U (LAR) is the unique key for S and X musu oe
equal to G. On the other hand
K = (FINRNI/LFR) / (Ff\R) = G,

a contradiction. The proof is complete.



8§ 1.7. A special family of superkeys

In this section we prove some additional proper-
ties of keys and superkeys for relation schemes which
can be used for the design of algorithms for the finding
of keys for relation scheme. We mainly deal with the
special family of superkeys for S, namely the family

{LCi |i=1,2,...,m}.
Recall that
Cr=Fi\Lt, i=1,2,...im .

We begin with the following lemma.

Lemma 1.4.1

Let S=<ft,F> be a relation scheme.

Then V i~j, i,j€{1,2,...,mpLi (CYILJC”) is a super-
key for S.
Proof

In the case <2"=0, we have
L1 (CioLjCj)=L* .
But in that case, it is obvious that Li is a superkey.
We now consider the case 0. First, we will prove
that if C*0 then

CiftLjCj~0, Vj~i.
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In fact, assume the contrary that
= 0 with some 1"]}.
It follows that:
(CjOLj) U (C~Cj) = 0.
On the other hand
ci=(cinLj)u(cincj)Ucin(Lj\LJ)) =c™ 1M 17N),
showing that

C.«L+\L ..
1 J D

Thus
n\ c.?n\(L+\L
i ( J Q
or
L ,aL -C.
i* D1
The last set inclusion shows that is a super-

key, a contradiction. Therefore, if C~0 then
c.ftL.C. 7?0 .
1 3 3
Now, it is clear that

Consequently,

L_.iC.nL_.C_.) * (c-ncj.
On the other hand, we have:

Lj=(Lj\Ci) (LjOCi)5Li (CinLj)

cj=(@@\ci1) (C.nC.JelCCL)



Hence
Li(CiALj) (C~CjyIgLjCH.
Finally we have

Li<ci«Ljcj* - Ljcj
Showing that LM(CMALjJCj) 1is a superkey for S.

Lemma 1.7.2
Let K be any key for S=<ft,F> having the form

KZLQQ XeC

T
Then there exists JOQ/™i such that
KgL . (C .0 =C . ).
1 }Jd Jo
Proof

Assume the contrary that
Lztk*"L+(@CLjCj ), Vj"i,
or, equivalently
XACAL.Cj, Vini.
Then, Tor all jJ*i there exists an attribute

A.___ e (L+¥\L.)HX
(LAL)
Obviously we have:

L, X * L RTX'

1 1
Then there must exist p such that

LpSLlRIX



(Otherwise L™"X w+ ti, a contradiction)
Let A_ € (L+\L_)OX and let
ip P" P

X ,=X\{Ai }.
XP

Since AifiL , aoleLiRIX'- Therefore,. 1t 1is easy to

P
see that

LrX' * LXRi-X' * LIRILp% X= = LIRi_|p+X' .
Moreover A .6 L
1P R

Consequently,

L1X' * LI

showing that L~X is not a key, a contradiction.

X * ti,

The proof 1is complete.

Corollary 1.7.1.
The family
(LiCinLjCy) Jni,  1I<i, jéam}
can be used to find all keys for the relation scheme

S=<P ,F>.

Remark 1.7.1
Lemmas 1.7.1 and 1,7,2 have been proved (perhaps by different
methods) and used to design an interesting algorithm

to find all keys for any relation scheme [19].



Theorem 1.7.1

Let S=<ft,F> be a relation scheme. Suppose that

the following conditions hold:
@ Li(CinLjyCy) = LiC1, Vi=1,2,...,m,
(i) L.jOFh =0 Vj~i.

Then L7Ch is a key for S.

Proof
First, from condition (i) we can prove that
for every XeC”, L™X is not a superkey for S.
In fact, since ChALjC~Ch, Vj~i, it follows that
Cift(LALj)=0, Vj.
Therefore, 1i1f A6Ch then

{AFA(LX\Lj) = 0, Vj.

Let A be any element of C. and X=Ch\{A}. It is easy

to see that
*

ljx LIﬁx
Since LMRMNOCNM=0 (because L ANSL™) , ACCh, A6X, it
follows that

AG6L iR IX.
Now, suppose that there exists

LpSL gR pX = /i .

Obviously A«Lh and

*

LS(X LXRXX LXRXLthX'



It is clear that AérR”, otherwise A6(L*\L") , a
contradiction. By repeating the same reasoning,

can prove that

we

showing that for every XcCi, I™X 1s not a superkey

for S.

In other words, L~C™ contains only a key (or keys)

of the form chi with L'IggL-l-
By condition (ii), we have
LA\R = L/sSL\R.
On the other hand, from Theorem 1.4.1,
L\RSFt\R«K,  VKCKg.

This shows that L'iCi is a ke}j for S. Q.E.D.

Corollary 1.7.2
IT S=<Q,F> has a key K=L~"X with XeC”, then

exists jo7i such that

L (C )cL
5o 5o
Corollary 1.7.3
If Li(CinLjCj) = LiCi, i,
then E AH U k -

there



In other words, consits of only prime attributes.

Corollary 1.7.4

iIf jci|=t Vi=1,2, .._.in then is a key for
S iff there is no q, gq/j, such that LJCJ»L4C4-
Theorem 1.7.2

Let S=<f2,F> be a relation scheme, L"Z be a key

for S,

Then L~Z is a key for S.

Proof
It is easy to see that if L™Z is a key for S
and —*L . then L~Z is a superkey for S.
In fact, we have
LUZ LiZ A n.
Moreover, we can prove that for every Z"cZ, L~Z® 1is
not a superkey for S. Assume the contrary that L~Z*
is a superkey for S with Z"cZ.
It is clear that
=Lz )+ = (L*Z27) + = (L*Z")+ = (LxZ7) +

showing that L~Z 1is not a key, a contradiction.
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The condition LMOR™ = 0, Vh implies that = 0.
Hence chL\R.
Moreover, again by Theorem 1.4.1

L\R«Q\RSK VK«KS

showing that L~Z is a key for S.

Theorem 1.7_3§

Let s=<tt,F> be a relation scheme; X,Y,ZsQ,

X0Z=YhZ = 0. Suppose that the following condition
hold:
() X«t=*Y
(i1) for every X"eX with [X*] =1X1-1
there exists Y"cY such that Y"+-—-*X" ,
(i11) for every Y"cY with |y "=l |-1
there exists X"cX such that XiVY*

Then ZX i1s a key i1ff ZY is a key.

Proof
We begin to prove the "only if" part.
Suppose that ZX is a key.
Since X«*Y, Tfollowing the proof of theorem 1.7.2, YZ
is a superkey for S while YZ" is not for every Z"eZ.

In other words, YZ contains only a key (or keys) of

the form Y*Z with YT aY.



Now, we shall prove that for every YeY, Y Z is not
a superkey for S.
The proof 1is by contradiction.
Let Y"Z is a superkey for S with YcY "cY where
IY"I=1Yl-1. Taking the condition (iii) into account
we get

fF=(Y"2D) + = ((Y) +2)+ = ((XD)+2D)+ = (X"2) +
where X"eX, X" «—>Y",
showing that XZ is not a key, a contradiction.

Similarly, we can prove the "if part". The

proof 1is complete.

Corollary 1.7.5
Let S=<ft,F>bea relation scheme, N> *Lj,
[LiN=]LjI=1, L nZ =L Z = 0. Then L~Z is a key

for S iff L"Z is a key.

Proof
It iIs easy to verify that all conditions of

theorem 1.7.3 are satisfied.

Example 1.7.1
We take up again the example in [11] . According

to our notation, we have
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-{C,INP,T}X

F={N + I, 1 vN, NC + PT, PT + C}
It is easy to see that N «*1. So, using the algorithm
of Lucchesi and Osborn, after the keys IPT and IC
have been found, we can add immediately to the set

of found keys two new keys NPT and NC.

Theorem 1.7.4
Let S=<fi,F> be a relation scheme, and L~Z is a
key for S with ZzZdL™ = O.
If ZcCj, Lj< *Ln,
and
Lj (CjOLbCN-LjCj, Vh/]

then S has no key including L™.

Proof

The condition implies that L™Z is a
superkey for S.
From ZeCj , it follows that LjCj is not a key.
From Lj (Cjf>Lh Ch)-L~C™ and LjCj is not a key, by
corollary 1.7.2, we conclude that S has no key
including L~. Q.E.D.
u\C,I,N,P,T stand for Course, ID-number, Name,

Professor, and Time respectively.



8§ 1.8. Three algorithms

Basing upon Theorems 1.4.1. and 1.4.3, we now
propose some algorithms for the key searching and key
recognition problems. It is worth recalling that:

(@M X is superkey for S=<fi,F> iff X+=ft;

G X *Y iff  YaX+.

Algorithm 1.
Algorithm for finding one key for the relation
scheme S=<fi,F> , where
-{AJ A2, ,e== A"},
F ={Li - Ri |L"RKsSi, i=1,2,...,m},

LﬂR _{A, 7A1 7---1A1 }-
tl1 t2 Ti
The block schema of the Algorithm 1 is presented 1in

Fig. 1.2

Example 1.8.1

The following example illustrates the performance

of Algorithm 1.

Let S=<Q,F> be a relation scheme, where

={A,B,C,D,E,G}

F={B >C, C>B,A —+GD}
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YES

x:=XULNR) |®

@ ;=i

{

X:=X\{4,} | ®

® [X=xUa)
YES T
@ |i:=i+1
NO @
YES
@ X:=X
L OQ\R is the
@ X isakeyof S unique key of §
L s 1




42

We have
L=BCA, R= BCGD
TiI\R=EA , LOR= BC.
Since (INR)+ = (EA)+ = EAGDMt, (N\R) is not a key of
S=<fi1,F>. From the bloc the algorithm begins with
the superkey X= EABCe With A I:B, and AuZ:C, we have
the sequence '
X :=X\{B}= EAC; (EAC)+ = EACBGD =Q)
X :=X\{C}= EA ; (EA) + = EAGD 7 Q,,
X :=XU{C}= EAC; X := EAC.
We obtained a key for S, being X =EAC. Similarly, if
we start with the same superkey
X = EABC
but with A,I=C and A£2= B, then after the termination
r

of Algorithm 1, we obtain another key for the relation

scheme S=<f2,F>, being EAB.

Remark 1.8.1.2
Independently the idea of Algorithm 1 is quite
near to that of the algorithm Minimal key of Lucchesi
and Osborn [11]. However, there are two main differ-
ences :
1 Algorithm 1 is much more detailed and more easy
for implementation.

2) Algorithm 1 takes Theorem 1.4.1 into account and



thereofore only require O(JF ||l ]t1ar]) elementary
operations (comparison of two attribute names)
while algorithm
Minimal key require O(|F||B|2) elementary
operations.

(Here |F] denote the cardinality of the set F).

Therefore, as will be shown iIn the next

section, Algorithm 1 can be used together with

Algorithm 2 to improve the performance of the

second algorithm of Lucchesi and Osborn to find all

keys for a relation scheme.

Algorithm 2.
This is an algorithm for finding one key for
the relation scheme S=<ft,F> that is included in a
given superkey X.
Suppose that X is a key included in X. Then
XSX.
On the other hand, from Theorem 1.4.1.:
TARXS(FE\R) U (LOR) .
Therefore
Xc(FE\R) u (XFe(LOR) ) -
Thus we can start with the superkey

(FI\R) U (X0 (LFIR) )



for finding a key included iIn a given superkey X.
It is easily seen that Algorihtm 2 (see Fig.1.3 ) 1is
similar to Algorithm 1 but block 3 is replaced
by the assignment
= (A\R)U (Xn(LOR) )
with Xfe(LnR) ={A£ ...,A* I and there are, 1in
|

addition, some non significant modifications.



START

YES
X =Q\R

NO

X:=(\R)U (X nenN R))
where

XN(LNR) = {Alp "':Al}

& .

=1

y

X:= X\{Ah}

X:=XU{4,}

YES : .
r

ii=i+1

NO
YES
X:=Xx

Y ' i

X is a key of S included The given superkey ;I
in the given superkey X X is also a key

L l

END

Fig.1.3



Algorithm 3.
This is an algorithm for the recognition whether

a given subset X (XgS) is a key for S=<A ,F> (see Fig. 1.4)

Q\RS XS (@\R)U(LNR)

Y
Use Algorithm 2 for

finding a key X included

in the superkey X
S
y

X is a key of X is not a key
—-(Q F) of § =(Q,F)

@ |

Fig. 1.4
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8§ 1.9. Some remarks on the algorithm of Lucchessi

and Osborn

In [11] C.L. Lucchesi and S.L. Osborn gave a
very interesting algorithm to determine the set of
all keys for any relation scheme S=<A ,F>. The
algorithm has time complexity

o (If Tks IInl Cks I+ InD)#
(in our notation), 1i.e. it is polynomial in|R ], |F]
and |KO l.

We reproduce here this algorithm with some modifi-

cations 1In accordance with our notation.

Algorithm QL1

Set of all keys for S=<ft,F>;

Comment Kg is the set of keys being accumulated in

a sequence which can be scanned in the order in which

the keys are entered;



Ks «_>{Keyx) (ft,F,fD};
for each K in Kg do
for each FD (L+ 1t ) in F do
T LiD(K\R1);
test 4- true;

for each J 1in 0 do

if T includes J then test « false;
if test then Kg<- Kgu{Key (ft,F,T)}
end
end;

return Kg.

The following simple remarks can be used to
improve in some cases the performance of the algorithm

of Lucchesi and Osborn.

Remark 1.9.1

To find the Ffirst key for S=<ft,F>, instead of ft
it i1s better to use the superkey (FE\R)U(LAR) and
algorithm 1 in 8 1.8 and instead of the algorithm
key (ft,F,T), it is better to use algorithm 2 (8 1.8)
for finding one key for S included in a given super-

key T.

x)Key (Fi,F,X) 1is the algorithm which determines a key

for S=<ft,F> that is a subset of a specified superkey X.
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Remark 1.9.2
In 8 1.4. we have proved that
R\L s fI\H,
i.e. R\L consists only of non-prime attributes.
Therefore i1t RM9R\L then
R4k = 0, V K6K
and L.U(K\R.)2K.

0"

That means, when computing T=LiU(K\Ri), We can
neglect all FDs = Ri1 with R R\L, for every K«Kg.
Let us denote
F = F\{Lg —>RDIL_D —>R_3 6 F and RécR\L}
Remark 1.9.3
With a fixed K in Kg, it is clear that if
KFIRt = 0 then LMNiKXRAMNK .
In that case it is not necessary to check whether
T includes J for each J in Kg.
So, 1t is better to compute T by the following way:

T = (K\R.)uL..

Remark 1.9.4
The algorithm of Lucchesi and Osborn is partic-
ularly effective when the number of keys for S=<fi,F>

is small.



But, what information we need to conclude that the
number of keys for S=<BR,F> is small? There is no
general answer for all the cases and it is shown in
[20] that the number of keys for a relation scheme
S=<ft,F> can be fTactorial in |F] or exponential 1in
Ifi], and that both of these upper bounds are attain-
able. However, it is shown (in § 1.4, Corollary

1.4.1) that

where h is the cardinality of LOR. Thus if LoR has
only a few elements then it is a good criterion for
saying that S has a small number of keys.

In the case LOR = 0, TH\R is the unique key for S=<ft,F>

as pointed out in 8 1.4, Corollary 1.4.4.

Example 2.
Let us return once more to the example in [11,
Appendix 1] .
fi={a,b,c,d,e,f,g,h}
F={a *b, ¢c *d, e af, g h}
It i1s clear that for this relation scheme
LOR = O,

and it has exactly one key, namely aceg.
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Taking iInto account the Remarks 1.9.1, 1.9.2, 1.9.3

the above algorithm can be modified as follows:

Algorithm OL2.

Set of all keys for S=<ft,F>;

Kg 4~ {Algo 1X) (n,F,(JAR)O (LOR))}

for each K 1In Ki)do

for each FD (L; = Ry) in F such that
K\R. 7/ K do

T (K\R1)uLi ;
test « true;
for each J in Kg do

if T includes J then test«-— false;

if test then KO« KOUJAlgo2x”™ (Ffi,F,T)

end
end;

return K

) Algo 1 and Algo 2 refer to Algorithm 1 and Algorithm 2

in 8 1.8 respectively.
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2. TRANSLATIONS OF RELATION SCHEMES

§ 2.1. Introduction

In this chapter we shall be concerned with the
theory of so-called translations of relation schemes.
Starting from a given relation scheme, translations
make possible to obtain simpler relation schemes,
i.e. those with a less number of attributes and with
shorter functional dependencies so that the key
finding problem becomes less cumbersome, etc...

On the other hand, from the set of keys of the
relation scheme obtained in this way, the corres-
ponding keys of the original scheme can be found
by a single ™"translation".

In 8 2.2 we introduce the notion of Z-trans-
lation of relation scheme, give a classification of
the relation schemes and investigate the characte-
ristic properties of some special classes of Z-
translations.

In 8§ 2.3 some subsets of -the set of all
non prime attributes for a relation scheme S=</,F>

are described. They will be used in the reduction



process for relation schemes.

In 8 2.4, the properties of relation schemes
belonging to the class called balanced relation
schemes, are investigated.

In § 2.5 the problem of key representation will
be formulated and solved. A general scheme to trans-
form an arbitrary relation scheme into a balanced
relation scheme and to find all i1ts keys will be

presented too.

Finally in 8 2.6 we study some properties of the
so-called nontranslatable relation scheme.

Most of the results presented iIn this chapter

are published in [7],[81 [38]



§ 2.2. Translation of relation schemes

Definition 2.2.1
Let S=<ft,F> be a relation scheme, where
{A-jl&2" ***/An}
is the set of attributes,
F={Li @R+l Li,Ricii; i=1,2,...,m}
is the set of functional dependencies (FD) and Zft
be an arbitrary subset of .
We define a new relation scheme
S =<I2,> as follows:
i =fIN2 (=2 ,
F ={LA\Z RHAZ|(Ltx »R.)6F, i=1,2,...,m}
Then S is said to be obtained from S by a Z-trans-
lation, and the notation
S=<fi,F>= S-Z =<B,F>-Z

is used.

Remark 2.2.12
1) Depending on the characteristic properties of
the class Z chosen, the corresponding class of

translations has i1ts own characteristic features.

2) From the above definition, it is clear that,

after the transformation, F can contain the FDs of



the following form:

@ 0 +0;

am X 0 where Xgft, X="0;

(iii) 0> X where Xefi, X"O.
However, by the algorithm for the finding the
closure X+ of the subset x&Q, w.r.t.F (see § 1.2),
we observe that the omission of FDs of the form (i)
and (@i1) iIn F does not change Kg, the set of all
keys for S. Later, we will show that all FDs of the

form (iii) can be omitted too.

Definition 2.2.2
Let S=<II,F> be a relation scheme, and K be
the set of all keys for S. We define a partition

of fi as follows:

£EININ , such that

n(NG) = 0; 17 ; 1,j€{0,1,2}
where
f© =6 = Al K;
*«KS
y = U K\e = He;
K6KS

3 (0)=1AH.

Sometimes, Tfor the sake of simplicity, the notation



n =8I BDI B b

is also used.

Definition 2.2.3,
Let B be the universe of attributes,
XS1t, Xs2Q.
we define
XOOtt={XY |Y«Jt}
JIS)I={YZ Wi, Z«Ot}
Here XY stands for XuY.
Now, we give a classification of relation schemes
as fTollows:
X Q ={<B,F>|<BR,F> 1s a relation scheme};
1tl ={<B,F>1 <B,F>6 and B=LuR} ;
if 2 ={<BR,F>] <n,F>e£C, and L«R=R};
£ ={<B ,F>J <B ,F>«T£ and RoL=R};

if ={<B ,F>] <B ,F>«I£ and L=R=R}.

Following this classification, it is easiliy seen that:

a)X4e% 3 «%O

R)Ea*% 29£4*2
it

2. PP

Figure 2.1 shows the hierarchy of classes
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Fig. 2.1

The next lemma i1s fundamental

Lemma 2.2.1
Let S=<R,F> be a relation scheme,
and S=S-Z, Zeld
Then
a) X E Y implies X\Z g Y\Z,
b) X ; Y implies Xuz ; YUZ,
*

where x [ Y means (X -mY)*F

means (X  Y)«F

and similarly, X

for this chapter.

uf

F



Proof

For the part a) of the lemma, we shall prove that
Xp\ Ze (X\Z)~ (2.2.1)

where Xp is the closure of X w.r.t. F. (similarly for
A\2)~) .
By the algorithm for finding the closure X+ of X [13;

see also 8 1.2], with X7?0o)=X, (X\Z2)]o)= X\Z, we have
XpO\ Zc (X\Z2)p0) .

Suppose that

X\ ze a2y O, 2.2.2)
we shall prove that (2.2.2) holds for (i+1) as well.
Indeed we have

Xp1+1\ z = x~1*u ( U @) R MO\z =
L j«xF

L. > R_.)EF
( 5 3)

= u (U R\ s
Lol 3

(LS. —+ Rg)«F
@
c A\~ u (CUm R,\2)),

L f 1
3
. AR )(F

CF )

(by virtue of the inductive assumption (2.2.2))

On the other hand, from LjeXEIAand the 1inductive



assumption (2.2.2), we have:

LjXze xD\zg (xX\z)|D

Consequently,

xi,1+1) \ Zs(X\2)~-Dt ( U /i\ R=\2D) S

S (X\2)]|1+1)

Thus (2.2.1) has been proved.
Now, it is well known that
* +
X +Y <=>a Y e x_
F F
*

Hence, from X ? Y, we have

Y\NZSXp\Z S (X\2)~ ,

showing that

X\Z * Y\Z.
Similarly, for thg part b) of the lemma, we shall
prove by induction that
(2.2.3)

X~U Zc (Xud)p

By the algorithm for finding the closure X+
of X we have

X]Jou Z s (XUZ2) p0O)

Suppose that
X~Duzfr(Xaz)”n , 2.2.4)



we shall prove that (2.2.4) also holds for ((+D .

Indeed, we have:

XA+1)U Z =xi U (U .. RA\D)HUZ =
F F Lj\ZsX~X 3

(Lj\Z - »R. \2)eF

(xirdUz J v .R\D)c
LJ\NZ«X~1" J

e (Xqul) u ( U )
L \zsx|g><) IL
(by the virtue of the iInductive assumption (2.2.4)).
On the other hand, from L3\Z»X£iA and from
(2.2.4) we have
Lsx] D U ZS (Xuz2)"™x)

Consequently,

XM +1D)u z « (XUZ)™M)U( lJ n) R.)D s
~j\zsXpl D

£ XUDN, 1+1)

Thus (2.3.3) has been proved.
From X ? Y we have Y £ X3
F F
Hence
YUZ s X~ uZ s(XUz) * ,
showing that

XUz & YUZ.
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The proof is complete.

We are now In a position to prove the following

theorems.

Theorem 2.2.1
Let S=<R,F> be a relation scheme,
Z*G, S=<ft,F>= S-Z.
Then X is a key for S if and only if XnZ=0 and XZ

is a key for S.

Proof
We Tirst prove the necessity.
Suppose that X is a key for S. Obviously, Xsf2. There-
fore XftZ=0.
Since X is a key for S, we have

X n.

I
F
Taking Lemma 2.2.1 into account, we get

XZ £17=N,
showing that XZ is a superkey for S. Assume that
XZ is not a key for S, then there would exist a key
X for S such that

ZgX CXZ
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(The validity of the fTirst inclusion iIs due to the
fact ZcG - the intersection of all keys for 9S) .
Consequently, there would exist X?eX such that
X = X.Z, X.,nZ=0.
Since X Is supposed to be a key for S,
x1lz £ n.
Using lemma 2.2.1, clearly
x1Z\Z | fi\z,
F
that is
X. N ft
F
This contradicts the hypothesis that X is a key for 6
Thus XZ is a key for S.
We now turn to the proof of sufficiency. Suppose that
XAZ=0 and XZ 1is a key for S. We have to show that X
is a key for S. Since XZ 1is a key for S, we have
XZ | n
By virtue of lemma 2.2.1, we get
xz\z N on\z
Consequently (from XAZ=0):
X ft,
=
showing that X is a superkey for S. Assume that X is
not a key for S. Then, there would exist a key X for

S such that

X <X and X

Ty



Applying Lemma 2.2.1, it follows:
Xz I n z =n,
where
XZ eXZ.
This contradicts the fact that XZ is a key for S.
Hence X is a key for S.
The proof 1is complete
Theorem 2.2.2
Let S=<ft,F> be a relation scheme, Zgi2, zr»H=0 and
S =<n,F> = S-Z.

Then X is a key for ? if and only if X is a key for S.

Proof
First, observe that if X is a superkey for S then
after removing from X some non prime attributes, the
remaining part of X is also a superkey for S. In other
words, 1f X is a superkey for S, then with all ZsaA "
(equivalently ZftH=0), X*=X\Z 1is also a superkey for S.
Now we begin to prove the only if part of the
theorem.
Suppose that X is a key for S.

Obviously



By virtue of lemma 2.2.1, we have

XZ E 5z = n,
showing that XZ is a superkey for S. In view of the
above observation, we find that X is also a superkey
for S.
Assume that there exists a key X for S such that XcX.
Applying Lemma 2.2.1, we have

x\z € n\z

F
or
n.

This contradicts the fact that X is a key for S.

Hence X is a key for S too.

The if part.

Suppose that X is a key for S. We have to prove
that X i1s also a key for S. We have, by the definition
of a key

X I 3.
Applying lemma 2.2.1
X\Z I Q\Z = f.
Since ZnH=0, it follo;s Z0X = 0. Consequently
X £ fl,

F
showing that X is a superkey for S.
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Now, assume the contrary that X is not a key for S.
— N B
Then there would exist a key X for S such that XcX.

Obviously

X t n.
F

We invoke Lemma 2.2.1 to deduce
Xz 2] -,

showing that XZ is a superkey for S. %
Since ZnH = 0, using again the observation at the
beginning of this proof, we find that X is a superkey
for S, a contradiction.
Hence X is a key for S.
The proof is complete.

According to our notation it is easily seentthat

both Theorems 2.2.1 and 2.2.2 can be formulated in

the form of a single theorem as follows:

Theorem 2.2.3 [33]

Let S=<~,F> be a relation scheme, Z*fi, and

S=<f5,F>=S-Z.

Then:

(iv KO=K6 iff Vig 1 ((0)
(i Kg=z iff  ZcG.

Basing upon Theorem 2.2.3, in the following we
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investigate only the class of Z-translations with
N0, Z=2 2z, Z™ Z2=0, Z7sG, Z2"H-0.
Bearing this in mind, 1if

S=<ft,F> = S-zZ, S=<ft,F>,
then applying Theorems 2.2.2 and 2.2.1 consecutively
one after another to the Z2~translation and the Z"-
translation, we have: X 1is a key for S if and only if
Xrtz = 0 and XZ™ is a key for S.
For the sake of convenience we use in the sequel the
notation

<fi,> VF <n ,>
?=(z,zl)
where the meaning of g 1is obvious. To continue, let
us recall some results in § 1.4.
Let S=<”,F> be a relation scheme, where
2-{A" A2 ,eee/ ¢
F-{L+ ®mRi|Li,R W, i-1,2,...,m}

As usual, let us denote by

m m
L=U L., R=U R--
=1 1 i=1 1

Then, the necessary condition under which X, a
subset of fi, i1s a key for S iIs that

TO\Rsx«(FE\R) 1> (L<R) .
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For VgQ, we denote by V=Ft\V. It is easily seen that:
LUR*R\R«G;
L\R«Q\R«G;
RVLSH

Consequently (R\L)nH=0.

Moreover, we have the following lemma:

Lemma 2.2.2
Let S=</M,F> be a relation scheme, Z*G where G
is the intersection of all keys for S.

Then (ZX\Z)AH=0.

Proof
Assume the contrary that

(ZA\ Z)nH/0.
Then, there would exist an attribute A6Z+, AéZ and
AeH. Consequently, there exists a key X for S=<f2,F>
such that A6X. Since ZgX, A$Z+ and AfiZ, we infer
that

Z«X\A.
Hence X\A &> Z -mZ+ -m A, with A*X.
This contradicts the fact that X is a key for S
/see Lemma 1.3.5 in 8 T.3/. The proof is complete. It is
worth noticing that Theorem 1.5.3 is only aspecial
case of Lemma 2.2.2. From the results just mentioned

above, the following theorems are obvious.
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Theorem 2.2.4
Let S=<fi,F> be a relation scheme in ,
<ft,> =<B,F>- EUR
Then

<ft,~> <ft/F>
$ = (LUR, EUR)

where <~ "E>en

Proof
As pointed out above, LUR«G. Applying Theorem
2.2.1 to the Z-translation S=S-Z with Z=LUR, we have
<ft,> , — = <ft,>
? = (LUR, LUR)

Theorem 2.2.4 is i1llustrated by Fig. 2.2.

<5,T§“>=<Q,F>—Iﬁeff1

Fig. 2.2



Example 2.2.1

Let be given S=<fi,F> with

R={a,b,c ,d,e}, F={c = d, d e}
we have LUR = ab
Consider
<i2,F>=<ft,F>-ab.
Obviously
ft={c,d,e}, F ={c *d, d = e}

It 1s easily seen that c is the unique key for <fi,F>.

Hence abc 1is the unique key for <ft,F>.

Theorem 2.2.5
Let S=</,F> be a relation scheme in ,

<N F>=<12,F>-(LURU(L\R) ) .

Then
<ft,~> " ... -> <ti,F>
$= (CulTu (LSR) , LURU(L\R)J .
with
<i2,F>en
Proof

It is clear that
Z = LOR U (L\R) =n\R«G.

The Theorem 2.2.5 now follows from applying Theorem
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2.2.1 to the Z-translation S=S-Z. Theorem 2.2.5 is

illustrated by figure 2.3.

e

¢ = (LURV(L\R) . ,DURV(LAR) )
<Q,F> € Z, <Q,F> € ff;
Fig. 2.3

Theorem 2.2.6

Let S=<fi,F> be a relation scheme iIn

<~ ,F>=<n,F>-(LuRU ( R\L )).

Then

<ft,> = <ft,>
f=(LURU(R\L) ,LUR)

where <ft,~

»?
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Proof

As remark%g above, R\LgH-
Let Z= LORU(R\L) =Z1luZ2, where Z~LURSG, Z2=R\L,
Z2rtH=0. The Theorem 2.2.6 now Tfollows from sequential
applications of Theorems 2.2.2 and 2.2.1 to the Z2~
translation S"=S-7Z2 and the Z”-translation S/AS"-Z7
respectively.

Theorem 2.2.6 1is illustrated by Fig. 2.4.

Fig 2.4

Theorem 2.2.7
Let S=<ft,F> be a relation scheme in «£0 J

<fi,F> =<ft,F>- (LORU(LNR) U(R\L) ) .



Then

<ft,’> -—————- ) m/ <ft,>

£ = (LURUGCL\R) U(R\L) , LURU(L\R))*
where
<ft,> 6

Proof

Let Z= LURU(L\R) U(R\L) = z~Zz2,
where

Z1=LURU(L\R) =FI\R«G,
Z2=R\LSH or equivalently Z2nH = O.
It is obvious that <fi,~ is obtained from <o, ,F>
by the Z-translation. The method of proof 1is similar
to the one used iIn proving Theorem 2.2.6.

Theorem 2.2.7 1is illustrated by figure 2.5.

£s(l._yft UFEtW(L\R))

> 6 Z£0 <U ,F>

Fig. 2.5
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Similarly, we can prove the following theorems.
Theorem 2.2.8
Let S=<S2,F> be a relation scheme in

<IT2,’> =<fi,F>-(L\R) .

Then

<ft,F> => <ft,F>
f=(L\R, L\R)

where <fi,F> é "2

S

Theorem 2.2.8 is illustrated by Fig. 2.6.

/.
é ¢ --((:.\R)‘.(l..\m)7

,> 6 2£x

Fig. 2.6.

Theorem 2.2.9
Let S=<ft,F> be a relation scheme in

<n,F>=<ft,F>-(R\L) .

»?
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Then

<f,F> =><ft,F>
? =QR\L, 0

where
<ft,> € 3fj .

Theorem 2.2.9 1is illustrated by Fig. 2.7.

f = (R\Lj 0)

<fi,F>e i?a

Fig. 2.7

Theorem 2.2.10
Let S=<fi,F> be a relation scheme in «&*
<ft,F>=<R,F>-((L\R)U R\L)).
Then

<fi,F> ———— —- m A <ft,F>
g =( (L\R) UR\L) , L\R)



75

where

* N
1F>

Theorem 2.2.10 is illustrated by Fig. 2.8.

.

/ ¢ = ((L\R) U(R\L), L\R)ﬁ‘

< ,m>e g, <,P>e &
Fig. 2.8.

Theorem 2.2.11
Let <Q ,F> be a relation scheme in «T.
<fi > - (R\L) .
Then

<fi,> = = = = > F>
2 =(R\L,0)

where

"<$
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Theorem 2.2.11 1is illustrated by Fig. 2.9.

LaRe 2
g =(R\Lr¢)
<Q,F> € :?;
«,F>6 I,
Fig. 2.9
Theorem 2.2.12
[

Let <ft,F> be a relation scheme 1in
<S,F> =<n#>-(L\R) .
Then

<ft,F> ~N o <ft,P>
£ =(L\R, L\R)

where
<fi,;> N «1

Theorem 2.2.12 is illustrated by Fig. 2.10.
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—>
¢ = (L\R, L\R)

<Q,F> & .‘fs G, 5> e L
Fig. 2.10
Combining Theorems 2.2.4 - 2.2.12, we have the

diagram of translations of relation schemes as

illustrated by figure 2.11.

CLVR,LWUR D

CLRIUR\LY, LNR)

al



Now, the following theorem follows from Theorems 2.2.1

2.2.2 and Lemma 2.2.2.

Theorem 2.2.13
Let S=<I3,F> be a relation scheme in

<Q,F>=<R,F>-{LURU(L\R) +U (R\L) }.

Then
SE ) 2
%- (LURUCL\R) U (R\L) , LURU(L\R) )
where
«,F> * &
Proof
Put Z= LURO(L\R] UEC\R) \  L\RJbEAL)=

= z,uz2,
where

Z1 = LURU(L\R)= I2\R «G,

Z2 = [ (L\R)\ (L\R)J U R\L) .

Clearly, by virtue of Lemma 2.2.2,
Z2nH = 0.
Now, by applying Theorem 2.2.2 to
<ft" ,F">=<ft,F>-72,
and then, Theorem 2.2.1 to

<fi ,F>= ' LFET>-Z1,
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the proof of Theorem 2.2.13 is Immediate.

Theorem 2.2.13 1is illustrated by Fig. 2.12

N = (OJRUCL\R)+U (R\L) , LURU(L\R) )

<ft,F>é <T.F> 6

Fig. 2.12

From the just mentioned results, we have the following

diagram of translations of relation schemes (Fig. 2.13)

Example 2.2.2
Let ft = abhggmnvwkl,
F={a b, b h, g q, kv #w, w vl}
we have
L=abgkvw; R=bhqwvl; R\L=hgl;

L\R=kga; (L\R)+ =kgabhq; LUR=mn;



(R\L) U (L\R) +U (LUR) = mnkgabhql
<fi,>=<ii,F>- mnkgabhql =
=<wv,{v *w, w V}> e
It is easily seen that v and w are keys for <UF>.
On the other hand
(LUR) u L\R) = mnkga.

Consequently, mnkgav and mnkgaw are keys for <ft,F.

Fig. 2.13
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8. 2.3 Subsets of

By the nature NPC of the problem [11], in opposi-
tion to G, we have not got the explicit expression for
the set (equivalently, for H - the union of all
keys for S) . Recall that BM"°~=R\H 1is the set of all
non-prime attributes for S.

However in 81.4 it is shown that
R"=R\LeRR(0)

The aim of this section i1s twofold. First we shall
prove that, after applying a Z-translation to a rela-
tion scheme S=<fi,F>, we can delete in the obtained
relation scheme S =<B,F>=<R,F>-Z all FDs of the form
0 —»X (X™0), while preserving Kg - the set of all keys
for S.

Secondly, we present a method for extending a given
subset of to a greater one. In doing so results
in 8 2.2 can be improved.

We begin with showing the following lemma

Lemma 2.3.1
Let S=<B,F> be a relation scheme.

Then
©
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Proof
IT A*R ' then there exists (W RM)6F  such that
A4R™, A6L™, L7sG. (Recall that F is in natural reduced
form, 1.e. R = or,nN=1,2,...,m, and
L+ALy  ifF iNj).
Let K be an arbitrary key for S. We shall show
that A6K. Assume the contrary that AéK. From AilL"

and ngK,. we have

Lifik\{A}= K".

Obviously:
Ly Ry ™44
K" w L_I
Consequently
K*= = {A}

Combining with K* = K=", we get
K* * K "({A }=K.
This contradicts the fact that K is a key.

Hence, VKeKg:A*K, i1.e. Aftf2(0).

Corollary 2.3.1

U R.SLJR-C’\(O)

Le=0 1 LecG 1
The proof 1is obvious.

This corollary shows that we can eliminate from a
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relation scheme all FDs of the form O Rr, while
preserving its set of all keys.
The following lemma gives us a constructive way fTor

extending a given subset of

Lemma 2.3.2
Let S=<ft,F> be a relation scheme.
For every XgG, Y , we have

(XY)AXSTT () .

Proof
If A6(XY)AX then A«(XY)+ and AiX
Suppose that A
Obviously AAY.
Since Ae(XY) +, so XY @mA.
From aSx , aSy , it follows that
AeXY.
Since A7i2n°” |, there exists a key K»Kg such that A*K.
Let K-=K\{Aj ., K aK.
It 1s clear that
YXK® * K "{A}= K,
showing that XYK" 1is a superkey for S. After removing
from XYK® the subset YgQne~, XK® is still a superkey

for S.



On the other hand, from X«G«K, AsX, we have
X*K\{A}=K",

showing that XK"=K*" 1is a superkey for S.

This contradicts the fact that K is a key for S.

Hence we must have A«i”™°~ . Since A is arbitrary, so
XY) A\ xeft (0) -

The proof is complete.

Corollary 2.3.2

(GR™)A G« {0)

Proof
By direct use of Lemma 2.3.2 with

X=G, Y=R"=R\LgFft(o0).

Example 2.3.1

We consider one example in which

R"e (GR")A\G«Q (0)
and so, showing that our Lemma 2.3.2 1is non trivial.
Let
i 123456789
F={137 + 2, 27+ 134, 1238+ 49, 7+ 23,
1458 + 236, 368 + 159}

we have:



6
L=U 1.=12345617S28
i=1 1
T
R=URh=12345609; R'=R\L=9
i=1 1

G =za\R =78
(GR')+=(7 8 9)+ =789 12 3 4.
(GR')H G = 1234909 .
Results in this section will be used iIn the next

section to improve the results In § 2.2.



8§ 2.4 The balanced relation scheme

Definition 2.4.1

The relation scheme S=<M,F> 1is called balanced

if the following conditions hold:

™ il
@ U L= U rp il

=1 1=1"
(i) L~R. =0,Vis1,2,...,m

Gii) \i, j=1,2,...,m, i~j implies

where

N A™}

F —{L R+ |L+,R Qr
In other words a balanced relation scheme 1is a
relation scheme in and in the natural reduced
form.

From Definition 2.4.1, we can prove the following

simple properties of a balanced relation scheme (b.r.s.)

Proposition 2.4_.1%
Let S=<f£2,F> be a b.r.s.
Then:
1. G=0;

2. IT B <@ then Kg={0};
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3. 0€KS iff KglIn2 ;

4. VZsii, S-Z i1s a b.r.s.

Proof
1. By the definition of a b.r.s., we have
G=F2\R =Fi\Fi=0.
2. IT (=0, it is obvious that Ks={0}.
The case [I12={A}.
From () (def 2.4.1), we have
R=L=12={A} .
From (ii) (def. 2.4.1), F contains only two FD: {A}» O
and O {A}, showing that O is the unique key for S.
3. Suppose |Kg]™2. Then 06Kg, since otherwise O
will be the unique key for S.
Conversely, suppose that 0?Kg. Then Kg has at least
two elements, since otherwise, If K ={K} then from
G=K and G=0 i1t follows that K=0, a contradiction.

4. This property is straightforward.

Theorem 2.4.1
Let S=<B@,F> be an arbitrary given relation
scheme (nhot necessary be in natural reduced form),
where
-{ANr2 LR AN,

F={L+ -mRi |Li,Rign, i=1,2, ._..,m}.



Then there exists a b.
KO: G<Bk5, where G 1is
for S.
Proof

Without

loss of generality,

r.s S=<fi,F> such that

the intersection of all keys

we can always assume

that, for the relation scheme S,

L.nR.=0,

(Otherwise,

F1={Li > RN\Li J(Li « Ri)éF,

we replace S by S*h=<fi,F*>,

i=1,2,...,m.

where

i=1,2,...,m}.

It is easy to show that F+=F* [13] and therefore
vV V
We construct the b.r.s. as follows:
1.C t
ompute .
= U L_; R»Ur. ; R"=R\L ;
i-1l i=1
G =fI\R ; Z= @GR
(It is worth noticing that
Z=(GR")+ = GU[(GR"DHACG]
= Z,uz2 |,
where = G,

2 =

(see § 2.3)).

[(GRO\ Gle”



Now, consider the relation scheme
S* =<fi",F"> =S

where =fi\z ,

F* o= {Ly—-»Ry 1i=1.,2,....m ]

with Ly = L \Z. Ry = R\Z

It 1s obvious that:

iI°RiI = 0 " i=1/2t e=- /
m »

V= U LI =L\Z and W = \J R" = R\Z.
=1 1 i=1 1

2. We shall prove that: Wi2"sW.V to deduce that
vV =n"=w. *
Indeed, 1f AftV, then A«L and AiZ .
It is obvious that Aéft.
Consequently A*ft\Z =fi".
Hence vqQ'.
Now let A«Q"=Ft\Z.
It follows that A*Z.
Since A*Z= (GR")+?GR", so
ASG and ATR".
By virtue of G=FiI\R, we find that AéR.
From A6R and A6Z, we deduce AeR\Z. Therefore iTgW.
Finally, if AfeW = R\Z, then A*R and A6Z. Arguing as

above, we get

A6G and ABR" (= R\L) =



Since A6R and AtR\L, we deduce Ael.
From A«L and AftZ, we have AelL\Z, showing that WcV.

Thus we have shown: L"=R"=ii".

3. IT there are several FDs iIn F" which the same left
side, we can replace them by a FD which has the left
side as the common one and its right side is the union
of the right sides of the relevant FDs.

It is easy to see that the above transformation
does not change the closure of F*, and thus, the set
Kg, too.

Denote by S, the relation scheme obtained from S*
after performing the above substitutions. It is clear
that S is the desired balanced relation scheme, and
by theorem 2.2.3

Ks = OftGj..



a9

§ 2.5. The problem of key representation

First, we give another characterization of
Z-translation of relation schemes, formulated in form
of Theorem 1.1 in [33].

Here we provide another proof of this theorem.

Theorem 2,5.1.

Let S=<ft,F> be a relation scheme, and ZgQ.
If S = S-Z =<ii,’>, (G&=I1\Z=2) then for every X*2
we have

Z Ol = (Xp - (2.5.1)

Formula (2.5.1) expresses the rértatidnship
between closures in the source relation S and 1in

the target one S.

Proof

First we prove that (ZX)*szZ(X)~
+ 7AN
Let A€(ZX)1= -
IT AezX then obviously A€Z(X)~ . We have only to
consider the case ASZX, 1.e. A6Z and AfcX.

From A«(XZ2)* , we have

2 SRR (2-5.2)

By virtue of Lemma 2.2.1, (2.5.2) implies

ZX\Z ~ A\Z,
F
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showing that AFt(X)-~.

Hence AftZz (X)~

Thus we have proved that

@X)psSz (X)~

To complete the proof, it remains to prove that

20 ~ fi(X)p
Let A RZ (05 -

Just like the above reasoning, we have only to

consider the case
AFtZX, i1.e. AftZ and AftX.

From AftZ (X)? and AftZ we get
A6 (X)~ , 1.e.

X * A.
F
By virtue of Lemma 2.2.1, (2.5.3)

«
zx v z{al}
or, equivalently
ZIAYS @0 p ,
showing that Aft(ZX)?

Thus Z (O~ S (ZX)p

(2.5.3)

implies

Combining these two results we get the required



equality (2.5.1).

The proof is complete.

Definition 2.5.1

Let S=<fi,F> be a relation scheme, where
E—{A-| t « e rAN}

F={Li #@R li=1,2,...,m}.
Let us denote by
®Eg={Li [i=1 ,2,...,m},

the set of all left sides of F.
Construct the directed graph as fTollows:

(13 c Si§ the set of nodes of |7g;

() (Li’L]) is an arc ofj iff LrsL and

b

there 1is no L, such that L  »L

L...
r ’k»j
LetmCg is the set of all terminal nodes of g, 1.e.,
nodes for which the outdegree 1is equal to zero. The

members ofi£g are called minimal left sides of S.

Lemma 2.5.1%

Let L. be an arbitrary element of JIT , and

S= S-(L-)p

Then the elements of L£H<b are superkeys for S.

Proof

Let Z= (Li)p Then VK€Kg ,



QLD+ Kp = @* =2 K~ =
= 77 =fi,

(L-K)p

(by virtue of Lemma 1.3.1 and Theorem 2.5.1), showing

that LMK is a superkey for S.

Theorem 2.5.2. (key representation)l
Let S=</",F> be a relation scheme.
Then each key for S can be represented in the form:
K=L K
1/

where L1 is a minimal left side of S, i.e. Li**% and

K 1s a key for the relation scheme S = S-fL.M)*

Proof

Let K be any key for S, i1.e. K«Kg.
IT K=ft then, of course, K contains all elements offf8.
It , SO KeK? =@ . That means, there exists LJ o
such that LK and R_.\K"0. (This follows from the
algorithm to find the closure of a set of attributes
w.r.t. F) .

Starting from the node L~ of the graph , we
move along the arcs until a node LMtlg is reached.
Obviously L~sL”™. Thus we have proved that:

VK.I(%, 1 0 such that LrﬁK

Let Z=(L)F.



If Z=zf, so, by lemma 1.3.2, is a key for S and we
have K=L~0. But iIn that case S=S-Z=S-fi=<0,(0->0}>,
and clearly 0 is a key for S.
IT Ze p we can write

K= Lx1K, i.e. K=L.UK, L~K =0.
We shall prove that K is a key for S.

By Lemma 1.3.3 we have

_+
(Li}Fn (K\Li)=z0K =0, (K=K\L<%)

Consequently
Kgz =fi.

Moreover, again from Lemma 1.3.3,

K=K\L =K\ (L)%
Therefore, by Lemma 2.2.1, K is a superkey for S.
Now, suppose that there is IU"eK and K" is a key for S.
Again, by Lemma 2.2.1, ZK'=(L1)T K* 1s a superkey for S.
Thus, using Lemma 1.3.1, we get

« =(zk™Ff =((1 )+P")+= @ k "»;
showing L™MK®" 1is a superkey for S. On the otherhand it is
clear that LIK'eK.

This contradicts the fact that K is a key for S. Hence

K*-K, 1.e. K is a key for S. The proof is complete.

Remark 2.5.1

Lemma 1.3.6 In 8 1.3 can be considered as an immediate



consequence of Theorem 2.5.2.

Remark 2.5.2.

In general, the converse of Theorem 2.5.2 1is
not true. It is quite possible that there exists
L.eifc that is not contained in any key for S, as

shown by the following example.

Example 2.5.1.
Let be given

R

12345

F={24 < 35, 15 a4, 53 + 124, 25 - 134}
we have
={24,15,53,25}.

The graph consists of all disjoint nodes (Fig 2.14)

24 15 53 25

Fig. 2.14

Direct computation shows that:
24) +=((B3)+=25+Q .
Therefore 24,53 and 25 are keys for S. On the otherh

hand:
(15)+=154/ n.
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It is clear that 15 is not contained in any key for
S because 152 contains the key 25 and 153 contains the

key 35.

Corollary 2.5.1

Let LL*ﬁ)jS:S—(Li)P

Ir K*LI#H<% and except , K does not contain any other
minimal left side Lg*d% with j~i, then K is a key for

S.

Proof

By virtue of Lemma 2.5.1, K is a superkey for S.
Suppose that K"gK and K" is a key for S. We shall
prove that K*=K. Since L” is the unique element of
I , contained in K, so K" contains at most only L..

If K* does not contain L1 then

KHDp =k’
Thus K® must contain L1.

We have K "= LN K*.

Since K6L3©K6, K:LIK, K*KB'
From LIK':ﬁ'«K:L-K and LrnK' = LInK = 0, we deduce
K"eK. Since K" and K are keys for S, so

K*=K. Thus K'=K.



We are now ready to present a general scheme
to transform an arbitrary relation scheme ((in natural
reduced form) into a balanced relation scheme and to
find all its keys.

Let be a given relation scheme

S=<ft,F>
where
T={A../A
F={Li = Ri |JLi»Ri SBFi=1 r2
Step 1
m m
Compute L= U L.; R=EU Re;
i=I i=1 1
R"=R\L; G=Fft\R;
+
Z = (GR®)
Step 2

Define S=<ft,F>= S-Z
where
ft =ft\z;
F={Li\Z % R+\Z li=1 ,2;...,m} .
Eliminate from F all FDs of the form:
O0+0,0*X,X =0 N0

Thus we obtain the b.r.s S=<ft,F>.



Step 3
Find all keys for S.
Construct:
Jifg the set of all left sides of F; the graphing;

UC~ - the set of minimal left sides of F.

Let g ={Lhtr2r *Txt )

Compute Z1 = (LI)F , 1=1,2,...,kK
If IZ.=B then H,@ @;.
Denote by I1={j|zZj~ i} S {1,2,. ...,k

For Zg ,consider the b.r.s.
$. = s-z. y jei
3 3

Repeat the step 3 for the relation schemes %~ . Suppose

that at some moment we found all keys for , J*I.

={K@ KD p--,Wa)},yjéL

To complete the set Kg-, we perform as follows:

Consider sequentially the sets , For each jél,

t 12" »ee

@ It LE%QTA contains a key already found of KB’ so we
omit 1It;

Gamn If L3k{A contains no element of A~é but Lj then
LIK{3)« KS =

(ii1) Otherwise, use algorithm 3 in 81.8 to check

whether LEKQJ\ is a key.
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Step 4

Compute Kg = Gé&g =

Remark 2.5_.3.
Alternatively, to find all key* for S (Step 3),
we can use algorithm of Lucchesi and Osborn [11] or

algoritnm of M.C. Fernandez [19] for instance.

Example 2.5.2
Let be given S=<ft,F>, where
0=123456738,
F={13 * 27, 2 —=>134, 0 > 746, 145fi > 236, 213 > 4
36 > 157}
Step 1 L = 1234568 ; R = 1234567 ; R*= R\L *7;
G =01R = 8; Z = (78 + = 78.

Step 2 3 =<ft,F>, where 0=0\Z

123456,

P ={13 =% 2, 2 134, 213 > 4, 145 > 236, 36 + 15}.
Step 3 Find all keys for S.

~g={13, 2, 213, 145, 36};~s={2, 13, 145, 36}

The graph is shown in Fig. 2.15

2 13 1‘!"

Fig. 2.15
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We have:

(36)J = 123456 =0 36FtKg ; «145)J =0 s=*145«Kg

<13)f - 1234 t fi; (2)~ = 1234 + n.

Since <13)~ - . > WE have only to consider the b.r.s

$= S- (13~ =< 56,{5 =6, 6 > 5}>.
It is easily seen that K<j*={5,6}
Now, consider sequentially the elements of the two foil
wing sets: 13<£)Ky 3{135, 136} and 2 ={25,26%}.
Since 136936 being a key already found, so 136 1KO
Since each of 135, 25, 26 contains exactly one minimal
left side of S, so they are keys for S.

Thus Kg={36, 145, 135, 25, 26}

Step 4 K = G®KS ={368, 1458, 1358, 258, 268}.
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8§ 2.6. Nontranslatable relation scheme

In this section we iInvestigate some properties

of the so-called nontranslatable relation scheme.

Definition 2.6.1
Let S =<ft,F> be a relation scheme.S is called
translatable if there exists two subsets Z,Z"g0 such
that:
@ z ZnZ
(1) X 1s a key for <n,F> 1ff XnZ = 0 and XUZ™ 1is a
key for <ft,F>, where <n’fe=<ii/F>-Z .

Otherwise S i1s called nontranslatable.

Theorem 2.6.1
Let S=<C3,F> be a translatable relation scheme
with Z and 2~ defined as above (def. 2.6.1)
Then
H\G = M\G
where H and G (similarly for H and G) are the union

and intersection of all keys for S (S) respectively.

Proof

Let <n,F>=<n,F>-Z .
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Since X is a key for <2,F> iff XrtZ = 0 and XuZl is
key for S, it follows that:

H=HUZ1, Z"H =0

G=G0zZ1, z~"G =0
Hence

H\G

(HoZ)\ (Guz»)

H\G.

((HUZII\N ZI)\G
(by virtue of HOzZ"=0).
Combining Theorems 2.1.1) 2.1.2 with Theorem

2.6.1, the following theorem is immediate.

Theorem 2,6.2.
Let S =<£1,F> be a relation scheme.

<ft,~ 1i1s nontranslatable i1ff H=0 and G=0.

Theorem 2.6.3.
Let S=<i2,F> be a relation scheme,
S=<fi,> =<ii,F>- (GOH)

where H =tt\H.

Then:

a) <n,F> £ <ft,F>;
? =(GUH,G)

b) <2 ,F> 1s nontranslatable;

(o)) <n,F>€NC4 .
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Proof

Let Z = GOH = zZ"™JZ2,
where Z"~G, Z2 = H (clearly Z2nH = 0) .
Hence part a) of the theorem is obvious. To prove b)
we have only to show that

G =0 and H Fj

From a) it is clear that X is a key for S iff XAG = 0
and XUG is a key for S.

Therefore,

G

GUG, GAG

TRT
e L

H = GUH, GAH

Hence

®
Il

G\G = 0,

and

H = H\G
On the otherhand, we have

n =N\(GUH) = (n\H )\g =

= H\G = H.
To prove c) we have to show that
L =R =1/

where L (R) 1is the union of all left (right) sides

of all FDs in F respectively.
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It is known-[see 8§ 1.5] that
n\R = G.
Since G = 0, we have R =Q. To complete the proof, it
remains to show that
L = B-
Were this false, there would exist an A jFfi\L. Since
R =fi1, we have
A 6 R and AIlL.
From n= H, there exists a key X for S such that A 6 X.
Obviously X i“ﬁ-
Since A5L, i1t follows from lemma 1.3.4, that
X\NA * n\A.
From A6L, i1t follows that
LS O\A .
From this
XNA *n\A *L *R * A,
This contradicts the fact that X is a key for S.
(see § 3.1, Lemma 1.3.5).
Hence L = n.
The proof is complete.
From the proof of c¢) we conclude that all nontrans-

latable relation schemes are in -
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Theorem 2.6.4

Let S =<fi,F> be a relation scheme in «3%",
satistying the following conditions

@ urt =0, i=1,2,...,m;

(it) For each L~, i=1,2,...,m there exists a
ke¥ X1 such that L1QX1.

Then <ti,F> 1s a nontranslatable relation scheme.

Proof

By virtue of Theorem 2.6.2, we have to prove

that H =Q, and G = 0. In fact, from <fi,F>6 , we have
L=R=0.
From the hypothesis of the theorem, we get:
fi=L=LrJn L. c rLrJ] X .G H*n.
i=1 1-~1=1

Consequently H=0.
On the other hand, from G=0\R, and 2R, we have G=0.

The proof 1is complete.
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3. STRUCTURE OF MINIMUM COVERS

8§ 3.1 Introduction8

In most studies concerning covers TfTor functional
dependencies (abbr. FD), we usually start from a set
F of FDs over

A2« e ANGF

F={Li Ri|Li,Rififl, i=1,2,...,m)
and try to find a shorter representation for F, 1i.e.
a new set F* of FDs with either a fewer number of FDs
or a less total size such that F and F* imply the same set
of FDs.

So doing, several algorithms concerning relational
databases which start with a smaller cover will run
faster.

The nonredundant and minimum covers have been iIn-
vestigated in depth by different approaches in [21],
[22] , [23], and several useful properties of them
have been proved and used in various problems in the
logical design of databases.

But few attention 1is paid to the study of invariants

concerning the attribute sets of the left and right
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sides of these covers. Moreover, as pointed out by D.
Maier [22] , for minimum covers the problem is what sort
of transformations can be found for right sides of FDs.
This problem was not investigated.

In 8 3.2 we define several kinds of minimality for
covers and recall some basic results.

In 8 3.3 we establish the relationship between the
notions of direct determination and FD-graph. Some well
known and new results as well concerning direct deter-
mination will be proved.

In 8 3.4. we prove some additional 1invariants for
covers and nonredundant covers.

Finally, i1n 8 3.5 we study the structure for right
sides of FDs 1in minimum covers. And basing upon these
results, an algorithm for finding a 'quasi optimum"
cover (in the sense of economical memory requirement)

is proposed.



§ 3.2 Basic definitions and results

As usual, we will only consider sets of FDs 1in
natural reduced form (see 8 1.3) and we assume that

all attributes are chosen from some fixed universe n.

Definition 3.2.1
Two sets of FDs over n
F1 ={0|D = r|IDI i=1,2,...,m}
and
p =rT @) _ p@)I1 j_1o0 m ,
are said equivalent, written F1*F2, iIf F* = F =

IfT F]5F2 then F 1is a cover for F* with 1i,jé{1,2},

Definition 3.2.2

A set F of FDs 1is nonredundant if there is no
proper subset F* of F with F's F.
If such F" exists, F is redundant. F" is a nonredundant
cover for F2 if P 1iIs a cover for F2 and F1 1is non-
redundant.

Let F be a set of FDs over and let X mY be a

FD In F. Attribute A is said extraneous in X =Y if
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F\NX v YD UIX\NA > Y\APD+ = F+.

Definition 3.2.3. [24]

Let F be a set of FDs over ft and let X + Y be 1in

X &Y is left reduced if X contains no attribute A
extraneous in X =Y.

X + Y is right reduced if Y contains no attribute A
extraneous in X ->Y.

X Y is reduced if it is left-reduced and right
reduced and Y/0.

A set F of FDs is left reduced (right reduced,

reduced) 1i1f every FD in F is left reduced (respectively

right-reduced, reduced).

Definition 3.2.4
Two sets of attributes X and Y are equivalent
under a set of FDs F, written X «»Y, if X + Y and Y > X

are in F+ .

Definition 3.2.5. [22]
Given a set of FDs F with X =Y 1In F+.
X directly determines Y under F, written X * Y, if

X+ Y6 [f\Er )1+, where EI‘(X) is the set of all FDs
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in F with left sides equivalent to X.

That is, no FDs with left sides equivalent to X are

used to derive X —>Y.

Lemma 3.2.1 [13]

Given sets of FDs F* and F2 over n.

FA»F2 iffFEAFEF2+ and F25 B
Let |T] denote the cardinality of a set T. Let EF
be the collection of all non empty EP X)"s. (That

is, X is equivalent to some left side of an FD in F).

Lemma 3.2.2 [21]

If G and F are equivalent, nonredundant sets of FDs
and there i1s an FD X ->W Iin G, then there i1s an FD Y # z
in F with =Y under F.

Definition 3.2.6

A set of FDs F is minimum 1f there 1Is no set

G with fewer FDs than F such that G*F.

Definition 3.2.7

A set of FDs F is optimal if there is no set
of FDs G with fewer attribute symbols such that GiF.
(Repeated symbols are counted as many times as they

occur).



112

Theorem 3.2.1 [22]

Given equivalent minimum sets of FDs F and G,

[E OO &= |E X | for any X.
Thus the size of equivalence classes in

for all minimum F with the same closure

Remark 3.2.1 [22]

Let F and G both minimum, and look

and Eg X
ef(x) eg(X)
X1 "™ X1 Y1 -Y1
X2 " X2 Y2 - Y2
X_ VX Y + Y
P P P

Then for every X. in e,(X) X) there is exactly

J
This relationship allows X* to be substituted for

one Y., in e.(X) such that X, v .Y _and Y. v Xx_.
G i d d i

Y. without changing the closure of G and Y. for X.
in F since one left side can still be derived from
the other after the substitution.

Moreover we can arrange (number the Fds) such that
X
eF,(x) is the set of left sides of FDS in Et > -




113

the following relationship between eP(X) and eg((X)
holds:

XN—#p YN VI = 1,2,...,p -
Thus/without loss of generality, in studying the
structure of right sides of FDs in minimum covers,
we can assume that E},(X) and EO(X) have the

following form (i.e. er(X) = eG(X)).

Ef X Eg OO
Xq X4 sy
2-—-’X X2_-’Y2
X % X Y
B sl P e
where F and G are equivalent minimum CcoOVers.

Theorem 3.2.2. [25]
Let F = {X» Y™ i1=1,2,...,m} be a set of FDs
over n, and Srbe the set of all FDs X Y such that

there is a sequence of FDs in F

{Xi ~ Yi_ " 3=1/2,...,k, k>0}
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X 8X.
XY. aX.
X1 x2
XY. Y _..Y 3Y.
11 %2 xk

Then ?”iIs the smallest full family of FDs that
contains F, and each FD X -aYN |, YN s yn is

J J J
said to be used iIn the Armstrong-s der'llvation sequence

in F for X =Y.

Definition 3.2.8 [23]

Given a set of FDs F on n, the FD-graph Gp=<V,E>
associated with F is the graph with node labeling
function w: V P(n) and arc labeling function
w": E =+ {0,1} such that.

(1) for every attribute A&Q, there is a node in V
labeled A (called simple node) ;

(i1) for every dependency X = Y iIn F where |[x]] ™1,

there is a node in V labeled X (called a compound node)

(in1) for every dependency X =Y in F where Y=A" ... A"

there are arcs labeled o (full arcs) from the node

labeled X to the nodes labeled A™, ... ,A";

(iv) for every compound node 1 in V labeled AN...A®
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there are arcs labeled 1 /dotted arcs/ from the node
i to all simple nodes (component nodes of i) labeled
Al oo X

The set of fTull arcs /dotted arcs/ 1is denoted

EO (E.)-

Definition 3.2.9 [23]

Given an FD-graph =<V,E> and two nodes

i,J6V, a (directed) FD-path <i,j> from i1 to j 1is

a minimal subgraph Gp =<V,E> of Gp such that i,j*V

and either (i,jJ)«E or one of the following possibilities

holds:

(@ J is a simple node and there exists a node k such
that (k,jJ)6E and there i1s an FD-path <i,k> included
in GF (graph transitivity).

() j is a compound node with component nodes m”™,..._ .
and there are dotted arcs gm™)...,{J.mr) In Gp
and r FD-paths <i ,m”~<1i, mr> included 1iIn Gp

(graph union).

Definition 3.2.10. [23]

The closure of an FD-graph Gp=<V,E> is the g-raph
G? =<V,E+>, labeled on the nodes and on the arcs, where
the set V is the same as in G.,, while the set

E+=(E+)qu (E+)” 1s defined in the following way:
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(E+)1 = {(i,j)]i,jéV and there exists a dotted
FD-path <i,jJ>};
(E+)o ={(,))]i,jev, ((,]J) € (E+t)1 and there exists

a full FD-path <i,j>).

Definition 3.2.11 [23]

Two nodes 1i,j In an FD-graph are said equivalent
if the arcs (i,J) and ((,i) both belong to the closure
of G’F" Fur thermore a node 1 of GT is said to be

r

equivalent to a node j of GJ’; where G= iIs a cover of Gj\l,

(i.e. F+=F+) 1if 1,J are equivalent in some cover of Gp .

Theorem 3.2.2 [23]

Let GT_ =<V,E> be the FD-graph associated with
the set F of FDs, and let G’|§ = <V,E+> be i1ts closure.
An arc (1,jJ) 1is in E+ if and only if w(i) w@) is 1In

+
F .

Theorem 3.2.4 [23]

A nonredundant FD-graph GF=<V,E> is minimum if and
only if it has no superfluous nodes.

Recall that a node 16V is superfluous if there
exists a dotted FD- path <i,j> where j is a node of

V equivalent to i.
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8§ 3.3 Direct determination and FD-graph

As shown iIn 8 3.2, the notion of direct determi-
nation was introduced by D. Maier [22] to study the
structure of minimum covers. Using direct determination
he showed it is possible to find covers with the smallest
number of FDs in polynomial time.

In [23] , G. Ausiello et al. presented an approach
which 1i1s based on the representation of the set of FDs
by FD-graph (a generalization of graphs). Such a represen-
tation provides a unified frame-work for the treatment
of various properties and for the manipulation of FDs.
However, the notion of direct determination in Iits
relationship with FD-graph is not explicitly presented.

In this section, we establish the relation between
FD-graph and direct determination, and prove some well-
known and new properties concerning direct determination.
First it is worth giving a few comments on the definition

of an FD-graph (Definition 3.2.8).

Remark 3.3.1
The Definition 3.2.8 1is reasonable and concise
in the sense that the FD-graph G1= includes all the

“"meaningful parts™ of the closure of the set F of FDs.
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On the otherhand, with the FD-graph, we can provide
a simple and unified treatment of all properties of
sets of FDs.

Following the definition of a FD-graph, 1t is
clear that every compound node has at least one out-
going fTull arc.

However, in [23,p.755] we found the following
observation:

“"Finally we may observe that by definition of FD-path,
a compound node without outgoing full arcs can only be
either a source or a target node of FD-paths to which

it belongs™!

Part (i1) of Lemma 1 23,p.757) touches the same
problem. Let us see it:

“(i1) |If Gj. be a subgraph of G such that all
arcs in E-E are dotted (i.e., G™may contain compound
nodes not in GE but no more full arcs) and (i,jJ) is
in (E+)o [(E+)1J, then (1,)) is in (E+)Q [(e)N".
(where 1i,j are two nodes belonging to both V and V) .

It is obvious that, strictly following the
Definition 328 there is no possibility that GjJ- may
contain compound nodes not in Gg but no more full arcs.

And 1t iIs easy to show that under these conditions the
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subgraph coincides with G£ _In that case, part (ii)
of Lemma 1 is trivial.

How to overcome these difficulties? A natural way is
to think that a FD-graph G?<ﬂ/,E> associated with F 1is
defined by Definition 3.2.8 precisely to: an arbitrary
finite number of different compound nodes which do not
correspond to the left side of any FD in F, together
with the dotted arcs from each of them to its corres-
ponding component nodes.

In out opinion, the view just presented above must be
mentioned explicitly after introducing the™ definition
of the FD-graph.

In so doing, according to the necessity, we can
freely add to an FD-graph some new compound nodes
without outgoing full arcs i1f it makes easy to prove
a certain required property.

In fact, this technique was often used by the
authors of [23].

By the above reasons, it would be better to
remove part (ii) from Lemma 1 in [23], changing it

into a remark.

Definition 3.3.1

Given an FD-graph Gp=<V,E> and a node i*V with
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at least a full outgoing arc. A strong component of
Gp with representative node 1 is a maximal set of
pairwise equivalent nodes which contains i, denoted
by SC (@) -

Notice that every node in SC(i) has at least one
full outgoing arc.

The following lemma is obvious.

Lemma 3.3.1
Given an FD-graph G?<V,E>, a node ifev, its
corresponding strong component SC(i) and two nodes
J, k such that j is equivalent to 1. (J not necessarily
belongs to SC(i), 1i.e. j can be a compound node with-
out outgoing full arc that we add it to the FD-graph.
The same situation can happen with the node k too).
Then w(J) w(k) 1f and only if there exists
a dotted FD-path <j,k> containing no full outgoing arc
from any node of SC(i). In other words, the dotted
FD-path <j,k >contains no intermediate nodes that are
nodes In SC(i). In that case, for sake of simplicity,

we write < j x> ko>

Example 3.3.1

Given P = ABCDEIH
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F={A -mBCH, BC -mA, AD = El, EA ID}
It is easy to verify that
Ep (AD) ={AD -w El, AE = DI}
and
BCD «-*AD
The corresponding FD-graph r with an added node

BCD (without outgoing full arc) is shown iIn Fig. 3.1

-
DR
- -
-
- .

;.._

]
'
[
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SC @ n where w (in AD
w (i2) EA.
We find that
BCD * H

BCD * AD

Lemma 3.3.2
Given an FD-graph Gp =<V,E>,
two equivalent nodes 1i,j«V and are two nodes

equivalent to 1 and J respectively.

i o<1- S§W@ gus ang <31 3¢
then k>.
Proof

Since 1 and jJ are equivalent nodes, we have

SC (1) = SCA)
Merge two FD-paths <iA-n§%($)and <N _____§§&£)
appropriately at component nodes of which are

intermediate nodes of FD-path <jA——%5£i;k>, we
obtain the FD-path < i1 - > k>

In other words, from

w(i)«——>* w(il)« *w(jl1), wii™ ~-wij”™ and

w(dg”™) v w(k), we have w(”?) w(k) . Notice that the

above lemma corresponds to [22, Lemma 5],
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Example 3.3.2

Take up again the Example 3.3.1 /Fig 3.1/ we
have BCD * AD,
and AD *mH.
Since A 1s the unique component node of AD that 1is
an intermediate node on the FD-path <AD N H>,
we will merge two FD-paths <BCD,AD> and <AD,H>

at A to obtain the FD-path <BCD,H> such that BCD * H

Lemma 3.3.3

Given an FD-graph Gp =<V,E>, 1*V iIs a node having
at least one outgoing fTull arc® and i1 1is equivalent
to 1 (iQ can be an added node to the FD-graph without
outgoing full arc). Then there exists jJ«SC(i) such

that <i = C o

Proof

Suppose that 1Q6 SC(i). Otherwise, take jsiQ and
the lemma is proved. Consider the dotted FD-path <iQ,i>
In the case, there is no intermediate node in <iQ,i >
that is node of SC(i) then 1 is the node to be found.
Otherwise, suppose 17eSC(1) is an iIntermediate node

of <iQ,i>. Now we have only to consider the FD-path

X e corresponds to some left side of a FD in F.
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<iQ,il>. Repeat the above reasoning for <iQ,i">.
Finally, we will find the required j such that
<i1 j>. Q.E.D.

Notice that the above lemma corresponds to [22

Lemma 6].

Lemma 3.3.4
Let GT =<V,E> be a minimum FD-graph (i.e. F 1is
minimum), and 16V iIs a node with at least one outgoing

arc. Then in SC(i) there exists no j47j2° j 2 such

that <j» — j2>>

Proof

Assume the contrary that there exists j ,j26 SC (1),
J™J 2 such that there is a dotted FD-path from j”~ to j2-
Since j”™ i1s equivalent to j2, j~ is a superfluous node.
We arrive to a contradiction. (See Theorem 3.2.4)

Notice that the above lemma corresponds to [22,

Lemma *7] .

Definition 3.3.2
An FD-graph Gp is nonredundant if F Is non-

redundant.
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Given two FD-graphs G_ and G,, ,G, is a cover of
F1 F2 F2
Gp if F2 is a cover of F1.

Lemma 3.3.5
Given two nonredundant FD-graphs G~ and G_ , where
F1 F2

G is a cover of G,,
F2 F1

Fl “« W = S 2 =<v2 "V
Let ™ and 12 be two equivalent nodes iIn and V2
respectively with at least one outgoing full arc,

(P-2,Ci2» be a arc of E2 with p2é SC™2"(i2)
IT (il,p2) 6E2 then <p2 s£iUHIi> q >

Proof

Since (in,p2)6E2, by Theorem 3.2.3, there is a
FD-path in GF from I to p2.
Now assume the contrary that the FD-path in G_ from
p2 © g2 has an intermediate node j~cscin ap 1
The presence of the FD-path <j~, 17> shows that p2 is
equivalent to 1™, 1.e. p2€ SC(Z)(iZ), a contradiction.

Q.E.D.

) SC M and sc @ refer to G, and G, respectively,
F1 F2
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Theorem 3.3.1

With the same assumptions as in Lemma 3.3.5,
if we replace in Gp all nodes belonging to QZCD(iA)
together with theilr corresponding outgoing arcs by
all nodes in SC(Z) (i2) together with theilr corresponding
outgoing arcs, then the new FD-graph is a cover of G;:1
Proof

We have only to prove that for every full arc
gl1.k™)€ E1 with jJ™6 S:CD (i1) there is a FD-path
<j1.,k*> in the new FD-graph.

By the Lemma 3.3.5 we have just the required result.

Remark 3.3.2
Theorem 3.3.1 can be formulated iIn an another
form as follows:
If F1,F2 are nonredundant and equivalent sets of FDs,
then
F,SIFI\NE QOQ}E, X)*F,\E (XIE X)-
1 1 F1 F2 Z F2 F1

We close this section with the following useful

lemma:

Lemma 3.3.6

Let V =aW be an FD in F+ and let X =Y be
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an FD in F that participates in the Armstrong®s
derivation sequence for V =*\W.
Then we have

V %X, VY mW6(F\{X + Y}) +.

Proof
Let GF =<V,E> be the FD-graph associated with F.
From V -+ W in F+ it follows that there is an FD-path
<i,jJ> from 1 to j, where w(i)=V, w(@)=W.
Since X Y6 F takes part in the derivation sequence for
V =W, the nodes p and g with w(p)= X and w(q)=Y-are interme
diate nodes on<i,j>.It is clear that the FD-paths <i,p>
and <q,j> contains no outgoing full arcs from node p.

Q.ED.

Example 3.3.3
Reconsider the Example 3.3.1 (Fig. 3.1) We have
BCD wHIiF+ ,
(BC + A) 6 F participates in the derivation sequence
for BCD > H.
It is clear that:
BCD = BC 6 (F\{BC A})+ and corresponds to the
FD-path <BCD , BC>;
BCDA = H6 (F\{BC -w A})+ and corresponds to the

FD-path <BCDA, H >.
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8§ 3.4. Some additional iInvariants of covers for

functional dependencies

Let F be a set of FDs on tt.
Let us denote by
AF ={it—»Ril(Li—*Rt)6 F and JLN=1J
the set of all FDs in F with left side consists of
only one attribute, and by
UC (AF).{A«Li|(Li + R.)6 AF}Si!

We have the following lemma:

Lemma 3.4.1

Let Fj and F2 be two equivalent sets of FDs on ft
:iLi]} » rI|1» 1i-~] }>
::{|£2) —-n-fZ) tm * ~
Then

(OF.) =<£(AF2).

Proof
The proof is by contradiction.
Without loss of generality, suppose that there exists

Lj1)= A.  «~(AF,) \ 2C (AF2).
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It is easy to show that
<] <1> «
In fact, it is obvious that
‘110 o
On the other hand, we have

1P )0 R. () =0,
3 3

(Fi ,F2 are 1in natural reduced form)
Hence ui JJ-* « _] 11 >’2 m
Showing that
P<1>- Ej1> s F2 -
a contradiction. The lemma is proved.

Example 3.4.1
Let be given
Ti= ABODE
F1 ={A BC, AD >CE},
F2 ={A >B, B vC, AD =~ CE} .

We have

SC carD)
L @r2)

Hence F1n F2=*

{A},
.83 *C @rny.
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Lemma 3.4.2
Let be given two equivalent sets of FDs on ft
F1 ={n{1* v r}D |i=1Tkx },

F2 ={112 - r{2 |i=ITk2 }.

Then
R(F1) = R(F2)
where R(Fj) = i r|~ , j=1,2 .
i=1
Proof

We Tirst show that RtF*eRjFj).
Let A€ R(F1)
It follows that there exists
L<1> * R<l» with R = ax
Since F~a F2, we have
a1 =AX) 6 F2
or, equivalently
AX S ¢{}))Ez = lil)u je«réz)) ;
*«{1,2,...,1"}
Oh the other hand
axol: " =0,
showing that ATiIR(F2).
Similarly, we can show that R(F2)«R(F")

Hence RiF*) = R (F2).
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Example 3.4.2
Let be given
ft = ABCDE
£1 =(A > BC, AD - CE}

, =(A >BD, AD -mCE}

F
We have
R (F~) = BCE i BCDE = R (F2).
Hence FANE2.

Remark 3.4.1

Lemma 3.4.1 1is equivalent to the assertion that
for a given FD-graph Gr =<V,E> associated with the
set of FDs F, all covers of = have the same set of

simple nodes without outgoing arcs [23].

Theorem 3.4.1
Let Fy and F2 be two equivalent and nonredundant

sets of FDs on ft

Fi={L{D - R{D i="7kj }, j=1,2

Then
LGEL\NRE™) = L(F2)\R(F2).
Where
L(F.) = Uj Lfp) , j=1,2
3 i=1
ki t o\
R(F.D = U rD , j=1,2.
J i=1 1
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Proof

First we prove that

1 FOD\1I F2) R(F1).

Let A 6 L(FI)\L(F2), i.e,

A*L (F~) and A6L(F2).
Then there exists

(L«ll . r{1))6 F1

with Ljl1}= AX, X0,
(This follows from A«L(F2) and Lemma 3.3.1).
Since F* is nonredundant, it follows that LAD b

must participate In some derivation sequence for some

Gaﬁz) RHZ» 6F, (see Theorem 3.2.2).
So we have
2 p €D
LD

1 <2)r<1) z3
)rxf Z:

5D gl R<D rI13 1 (D = AX,

172 r 1D 11> R<tiia > L (D
xt 1 1t+2

1D r 1D RT1) R<1>R<I)
"t+2 H - h
SO

as Ih2» rf_j> R<11
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Since A€L(F2)/ 1t is obvious that AfeR(F").
Thus we have proved that
L (F1)\ L(F2)S R(F1).
Similarly, we can prove that
1 F2)\1 (Fl)c R(F2).
On the other hand, by Lemma 3.4.2,
R(F2)=R(f 1).
Consequently,
L (F\R(F1) ={[L(FD\L(F2)]\R(FL)}
U{I[L(F)NL(F2)T\R(F1L)}=
=[L(F1)OL(F2)]\R(F1)

=[L(F1)OL(F2)]J\R(F2)

L(F2)\R(F2).

The theorem is completely proved.

Example 3.4.3
Take up again the Example 3.4.2
n = ABCDE
F1 ={A BC, AD - CE}
F2 ={A BD, AD + CE}
We have
L(F1)\R(F1) = AD/A=L(F2)\R (F2)

Hence FNieF2.
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Theorem 3.4.2
Let F~ and F2 be two equivalent and nonredundant

sets of FDs over 12,

Fj =ajj) > Rl |i=1*Tkj}f j=1/2.
Then

L (F1)UR (F1)= L(F2)uR(F2).

Proof
We first prove that
L F L)UR(F.,) « L(F2)]uR(F2).

By Lemma 3.4.2, we have

R(F1) = R(F2)s L(F2)R(F2).
We have to prove

L CJ)E L(F2)uR(F2).
Following the proof of Theorem 3.4.1 we have

L (F)\L(F2)c R (F1).
But R(F1) = R(F2).
Therefore

1 FD\I F2)s r (F2)
Hence

L (F1)c L(F2)UR(F2).
Thus we have proved

P EDur @Gl F2ur F2).
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Similarly, we can prove that

L(F2)u R(F2)c L|F1)u R(F1).
Combining these two results, we get

L (F1)UR (F1) = L(F2)U R(F2).

Q.E.D.

Theorem 3.4.3
Let Fi and F2 be any two equivalent, nonredundant
and left reduced sets of FDs on #
Fij={L{J) - RID Nli=1~j> , j=1,2 .

Then L(F1) = L(F2).

Proof
Assume the contrary that
L (F1) 27°L(F2) .
Without loss of generality/ let
AfcL (F1) and AEL(F2).

It follows that there exists

L‘1> R£1> with 1]D = AX, X?2Q0.

Since A€L(F2), by Lemma 1.3.4 (see 81.3) , and from
<1>A F+
1 e F2

we have

X m RP "6 F* (since F2=F*) *



This means that in F* we can replace AX is’(l) by
{1) . ) +

X +r! without altering -

We arrive to a contradiction because, by the hypothesis

of Theorem 3.4.3, F1 is left reduced.

Thus we have L(FM)=L(F2)-e- Q.E.D.

Remark 3.4.2%

(i) Basing on the results of this section we
can conclude that, after removing all extra-
neous attributes, the sets L(F) and R(F) are
the same for all equivalent sets of FDs on ft

(if) The 1invariants jJust have been established can
be used, for iInstance, as a simple criterion
to check whether two sets of FDs are not

equivalent.
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8§ 3.5 Structure of minimum covers

In [22] the notion of equivalent classes of
left sides EF(X) has been i1ntroduced by D. Maier,
and it is shown that for any equivalent minimum sets
1 and F?’ |Epi(X)| =IEF2(X)] for any X. (see

Theorem 3.2.1 and Remark 3.2.1). D. Maier also proved

of FDs F

that for each FD X.i _>X‘ieEF 1()() there exists a unique

Yr ;>ﬁ.6 E

= 5 () such that Xr*ﬁﬁYr. Therefore Yr

(resp X)) can be substituted for X~ (resp Y») without
changing the closure of P (resp. F2), 1i.e.

[{FI\(Xi —+x+) Ju(Yi _,X.) ]8F1

and

[{F2\ (Yx—+Y1) >Y+)k F2.
So, the structure of left sides of FDs iIn minimum
covers has been described quite well. In this section
we 1investigate the structure of right sides of FDs
in equivalent minimum covers, and try to find a certain
sort of transformations for right sides. In studying
the structure of right sides of FDs in minimum covers>
by the results of D. Maier just mentioned above,we can
assume that all equivalent minimum covers have the

same set of left sides.



138

Denoted by LE"EI'X) and RE"\_I'X) the sets of attribu-
tes iIn left and right sides of FDs in Ep (X) respectively
and instead of [F\{X— XFju{ X —* X\ZQj, sometimes for
sake of simplicity, we write F\/X-—>ZQj if ZQgX and
X -*X e F.

We begin with the following fundamental theorem.

Theorem 3.5.1

Let P and F2 be two equivalent minimum sets
of FDs, X1—-»-16 Ep OO ,
Z «Xn and Z nRE = 0.

1 ° ’rfz(x)

o
Then there exists Z such that

xlz ~ xlzo« IFI" (X1- Zoi]+ =
ZQ and Z are said to be equivalent via X©

Proof
Since X1—>X.16 EFl(X)’ there exists
x1 Y iSEf2().
First of all, we show that X — >X~ must participate in
the Armstrong®s derivation sequence for X" — and
vice versa. Assume the contrary that X~N— »X/® does
not participate iIn the derivation sequence for X" —

So
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Since and F2 are nonredundant, X ®» cannot
be derived from F~\ ) . On the other hand, by

2 F2
Theorem 3.3.1,

F2SF 13TFINEF~ () }U EpAQX) 3{F2\EF2 (X) JOEF 1 (X)

it follows that there exists Xy =X e E . O that
participates iIn the derivation sequence for X ->
By Lemma 3.3.6 we have
1 = XRO[FIN{X1-y X1, xk_~Xk7" .
But, iIn that case, we have
(FN\{x1 vxr xk =>xk}Po{xk = xIXk}aF1
which contradicts the fact that F* s minimum.
Thus Xi * X must participate in the Armstrong®s
sequence for X Z* Y~ | and In turn, Xp YN must
participate in the Armstrong®s derivation sequence for
X~ X~ _ By Lemma 3.3.6, we have:
X1X1 ® Y16{FI\(X1 + X1)}+ and
Xlyl v xle {F2\A(X1-»Y1) }.

M M _ %
Now we can split X.1 -)1X- into X OZ and X —>X1\LZO.

1 1

IT X > Zg does not participate in the Armstrong®s
derivation sequence for X~AY™ @ XN  then Y™ Is the
required Z. Indeed, 1In that case we have

X1Y1 = Zo«[{FIN(X1-+37") Jop1 - (XI\Zo)}]+

Moreover,
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X1X1 = YI6{FIN(X1L A X1) WS [{FIN(X1 + X,)JUIX.,-*~ /Zq)¥] +.,
X1 + (XINZQ)6 [{FI\(X1 ->X1)}u{X1l -vXN\ZQ¥ and
XNZq mX~XN can be derived from XN * XI\Zq, so
using the transitivity rule, we get:
X1Zq + Y 16[{FIN(X1 + X1)Iu{X1l + XI\ZQ}¥+

Now consider the case where X* ZQ participates
in the derivation sequence in F* for XAYy»a N
Since XYM = X~éF*, 1t can be derived from FDs
in F2, which iIn turn can be derived from FDs in F~/.

So there exists at least an FD X2 Y2 in F2
such that X2 Y2 participates in the derivation
sequence iIn F2\(X* = Y~ ) for XYM - XN, and X 2 ZQ
will participate In the Armstrong®s derivation sequence

in FN for X2 Y2e

By virtue of Lemma 3.3.6, we have:
X~AY1 =+ X2 and X2 > i€ Fi*
And from X~ ->Y~feF2sF”~, we conclude that: X2e_ X1

So (2 +»Y2)e EpMX) =

By the hypothesis of the theorenm,
Z,0 reFZ(X) = 0.
It follows that
X2 =>Y2 t X1Y1l > X

Moreover, by Lemma 3.3.6 , we have

X1IX172 * Zofg[R2X{Xl -V X2 *V 7+
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Two cases can be happen:
If XJ * Zqg does not participate in the derivation
sequence for XNYNY2 ZQ 1in , we prove that
Y-j¥2 is the Z to be found.

Indeed, we have XAYAY2 2 ZQ6[FA\(X"— »ZQ)1.

Moreover, using an argument similar to the one given at
the beginning of the proof, we can prove that X/~—*X*
must participate iIn the Armstrong®s sequence for X" —
J=1,2,..., p- So, Ffrom X1Zo-~"Yx [F (X" -*2Q)]+, i=T,2,

we have: X A AY26 [FA\QN—*Zq)J*

Now consider the case where X1 ZQ participates in
the Armstrong®"s derivation sequence iIn F* for XAYAY2
Similarly as before, there exists
X3 v Y36[EFA(OX)\{XL Y1, X2~ T2N
such that X3 Y3 participates in the Armstrong”s
derivation sequence for X~AYNY2 Z0Q .

The process continues. But as [JE_ (X)]<+“Oso it

must be finished at step h, wher;2 halE, O I.

At that moment, we have "2
X1@2—V *V

and X12ZQ (r1i.. * ZOH +

The proof is complete.
The theorem shows that attributes of the right

side of an FD X, = X. belonging to ) iIn a
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minimum cover F can be di vided iIn two classes.

The Tirst class consists of 1nvariant attributes,
that is, they must appear in right sides of FDs in
evejy E Q) where F . Is any minimum cover equivalent
to F. Tﬁé second cla:lss consists of all attributes

that belong to a set ZO eXx where X.I X.I eE,F(X)

11-
such that 3 Z /7, and X;Z«*X Z4[ {F\(X4 = Z }1+.

For attributes of the second class, we have:

Corollary 3.5.1.
With ZQ and Z as determined in Theorem 3.5.1.,
we can replace Zg in (X1 X”7~eF by Z and doing so,

we obtain an equivalent minimum cover.

Proof

The proof is straight-forward.
From X 2 ZgEF and X.jZo —+Z6[F\X™ * Zq]jve obtain
X~ #* 7 and conversely, from X = Zand

XNZ Zg € (F\{X*» * Zg}p + we obtain X > Zq.

Remark 3.5.1 .

From Theorem 3.5.1 and Corollary 3.5.1, we found the
transformation rules for right sides of FDs in
equivalent minimum covers as follows:

First, there are attributes of right sides that can be



replaced by equivalent sets via left sides. Such
transformations can be done iIn a single FD too.
Second, there are attributes of right sides that
are invariant (i.e. always present) and only change
places in right sides of the equivalence class.

In that case, transformation must be done simultan-

eously 1in several FDs of the equivalence class.

Corollary 3.5.2.

Let Z,c X1 where X —*X-IGErDA(X) and Z, gR\L.
Then In any minimum cover F2aF”~, we have

zosREF (X).
2

Proof.
First observe that if there exists Z such that
(X™2q = 2) € F+, then there exists an FD (Y = W)*F
such that Y0Zq"O.
Thus
Therefore all attributes in R\L belong to the first
class, i.e., invariant in equivalence classes of
equivalent minimum covers.

Let Ep(X) is the set of following FDs:
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x1 >V

X2 ~ X2X*"

X XK -
where X, cLEp (O and XjdLE.(X) - 0.

We can split E,|,(X) into

X.
X2 X2
Xk * Xk
X1- X
X2 « X2
X% =X

Consider the first k FDs. They can be replaced

by the following FDs while not altering the closure,

X . _ *X.
X2
X . X
12 13
X %X
K 11

(ir 12w g
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Let A be any attribute iIn REF (X). Then, there
exists 1 such that Aijx% . If A6x11ﬁLEF(X), then
there exists j such that Aéxi
With any p, 1l1lapadk, p~j, we can construct a new cover

equivalent to F by replacing E,(X) by:

where (p, j, i3, i4

permutation of (1, 2, k)

After reducing right sides, if A Is an invariant
attribute, A must belong to the right side of the
FD that has p as index.

IF A6XALEFf () then with any p, 1%)%, we
can construct a new minimum cover equivalent to

F by replacing E?iX) by:

X1 "™ X2X2



After reducing right sides, iIf A is an invariant
attribute, A must belong to the right side of the FD
in Er(X) that has p as index.

For these reasons, we say that invariant attrib-
utes iIn right sides can be distributed enough freely
in right sides of FDs in E?IX)-

However, FDs i1n an equivalence class must satisfy

the following property.

Property 3.5.1
__l
Let E_E(X) = {Xj ->X_J U—I'?k}.
ThenVi 3jJ such that

* X~AB6[{F\ET (X) )Uin - Xi}]+

Proof

Let be given arbitrary 1 ,p. By Theorem 3.2.2.

we have

Xiwh.] e .Wh gXp

where (& Wh )& F, t=i7&.
T t
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Choose zZ» = WM € Ep(X) with 1 as small as passible.
With such Zh , we have the required result. In the case,
such Zhl doei not exist, Xp is the required Xj'

Thus, iIn spite of the relative arbitrary distrib-
ution, each right side of an FD in the equivalence class
must carry enough information such that, together with
FDs 1in FXE?fX) , an FD of the form ()(_I A/Xf)6F+ can be
derived, ensuring the equivalence of left sides.

Finally, using the results just mentioned in this
section, we can iIntroduce the notion of "quasiaptimal™
cover. In [22] Maier defined the optimal caver (see
Def. 3.2.7) and shown that the optimal cover prablan
is NP-complete.

However from the point of view of effective
memory management this does not mean that there iIs no
problem to be discudsed, even in the case this optimal
cover is found.

Consider k FDs of Er(X) in a minimum caver.

E; 00 ={X; 5§ XX* 1=l Kk}

IT we replace Er(X) by

3r L X X J

then, for k first FDs we have only to take care of

(to manage) their left sides, iIn apposite af the case
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of EF(X) we must manage both of left and right sides

of all i1ts FDs.

k
Moreover with zZQC U X~, 1f there exists ZeLE,F
such that
XiZ0~X,Z6[F\{X. + 209"
k
then we can replace X1 =+ U X-© by the FD:
k i=1 1

X. >U X"\Z and still obtain an equivalent cover.
1 i=i 1 -
We close this chapter with an algorithm to find

the ™"quasi optimal' cover, in the above sense.

Input: The set G of FDs.
Output: The “(@est optimal™ cover F with F+ = G+
Method
Step 1: From G, find the minimum cover F* = MINIMIZE
[see 22] .
We obtain the equivalence classes E &7),--.,BE &)
with the corresponding sets of FDs.

{xji >x} | i=1,k1}

Step 2: For each equivalence class E~ (X1)
1
1= 1,25 0w yS

Set M. = RE. (%Y} \i*
1 F,

For i=1.kﬂ_, consider X"I%XT'-

X) L is the union of all left sides of FDs iIn F
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vV A6 Xj

IT A€LE,, (X1) we omit it,

If A6LE ") then for each ZsLE (X")W check
* 1

1 M
whether

N2 v A € [F\{X» =A}]+ 2
if true then we omit it

ifT false then = MMIAY.

Step 3: At the end of Step 2 we obtain

for each

equivalence class, and F is the following cover:

S

F=U x> xi, ,x2 e XX 5 X]X) +urs
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