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Abstract

The relational data model was introduced by 

Codd [1]. Since his fundamental paper was published,the 

theory of relational databases has been the subject 

of an intensive research during the past decade.

In this work some new results about keys and 

superkeys for relation schemes, about the theory of 

translations for relation schemes and about the 

structure of minimum covers are presented.
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O. Introduction

The relational model of data was introduced by 

Codd [1], Since his fundamental paper was published, 

the theory of relations for data bases has been the 

subject of an intensive research during the past 

decade.

The paper of Delobel and Casey [2] can be con

sidered as the first major study on the functional 

dependenc ies.

Significant advances in the theory were made by 

Armstrong [15] and shortly thereafter, nearly simul

taneously, by Fagin, [3], Beeri, Fagin and Howard, 

[4], Rissanen, [5], and Aho, Beeri, and Ullman [6 ],

Nowadays the field is under an intense process 

of development.

In Hungary, J. Demetrovics and his colleagues 

also have important contributions to the theory of 

relations for databases, specially to combinatorial 

aspects of the theory. [7,8,9,17,18].

In this work we present in a systematic way 

some selected new results concerning the theory of 

relational data bases. These results either have
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been published or will appear in [26-3 8] .

This work consists of three chapters. In Chapter 

1 we present some results concerning keys and super

keys for the relation scheme S=<C,F>. Namely, a 

necessary condition under which a subset X of C is 

a key, a simple explicit formula for computing the 

intersection of all keys for S, sufficient conditions 

under which a relation scheme has exactly one key, 

sufficient conditions for a superkey in a special 

family to be a key, three algorithms for the key 

finding and key recognition problems and so on ...

Chapter 2 is devoted to the so-called theory 

of translations of relation schemes. The concept of 

a translation of relation scheme seems to be useful 

in the sense that it can reduce a relation scheme 

to a simpler one, i.e., a relation scheme with a 

smaller number of attributes and with shorter func

tional dependencies so that the key-finding problem 

becomes less cumbersome.

On the other hand, from the set of keys of the 

new relation scheme obtained by this transformation, 

the corresponding keys of the original relation 

scheme can be found by a single "translations".

In this chapter we present the main results
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about the translation of relation schemes, give a 

classification of relation schemes, investigate the 

so-called balanced relation scheme and nontranslatable 

relation scheme and prove a theorem for key represen

tation. In connection with these results, general 

scheme for the transformation of an arbitrary rela

tion scheme into a balanced relation scheme and for 

the finding of all its keys are proposed.

In Chapter 3 results about the structure of 

minimum covers will be presented.

The nonredundant and minimum covers have been 

investigated in depth by Bernstein [21], Maier [22], 

Ausiello et al. [23], and several useful properties 

of them have been proved and used in various problems 

in the logical design of data bases.

But few attention has been paid to the study of 

invariants concerning the attribute sets of the left 

and right sides of these covers. Moreover, the struc

ture of right sides of FDs in minimum covers has not 

been investigated.

In this chapter we establish the relationship 

between the notion of direct determination and FD- 

graph, prove some well known and new results con

cerning direct determination, prove some additional
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invariants for covers and nonredundant covers, study 

the structure for right sides of FDs in minimum covers. 

Basing upon these results an algorithm for finding 

the "quasi optimal" cover (in the sense of effective 

and economical memory management) is proposed.

This work has been written while the author has 

been a visiting researcher at the Computer and Auto

mation Institute of the Hungarian Academy of Sciences 

during the years 1985-1986. The author has the chance 

to work in the research group on the theory of rela

tional data bases under the direction of Pr. Dr. János 

Demetrovics.

I am indebted to him for several useful discus

sions and for his excellent advice and support.

I would like to express my sincere thanks to my 

Vietnamese colleagues Le Van Bao, Nguyen Xuan Huy,

Tran Thai Son, Dinh thi Ngoc Thanh of the Institute 

of Informatics and Cybernetics, Hanoi Vietnam and 

of course to Prof. J. Demetrovics, for that,with 

great pleasure, they allow me to use some our common 

results in this work.

Finally, special thanks are due to Drs. A.

Békéssy and-B. Uhrin and all members of the Computer 

Sciences division of the Computer and Automation 

Institute for their help and encouragement.





1. KEYS AND SUPERKEYS FOR RELATION SCHEMES

§ 1.1. Introduction

In relational data base design, functional de

pendencies, in general, and keys for relation scheme 

in particular play on important role.

Basing upon these notions, the normalization 

theory has been the subject of an intensive research 

during the past decade.

In this chapter, we present some results con

cerning keys and superkeys for the relation scheme 

S=<ß,F> : a necessary condition under which a subset 

X of n is a key, some sufficient conditions under 

which a superkey in a special family is a key, a sim

ple explicit formula for computing the intersection 

of all keys for S, sufficient condition under which 

a relation scheme has exactly one key, a criterion 

for which an attribute is a non prime one and some 

other results.

Basing on these results, some effective algorithms 

are proposed for the finding of keys and for the key 

recognition problems.

Finally some remarks improving the performance 

of the algorithm of Lucchesi and Osborn [11] are also 

given.

Some of above results are published in [26-31] .
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§ 1.2. Basic definitions

In this section we give some basic definitions 

and notation concerning the relational data model 

([12]; see also [13]).

Throughout this work, when we speak about a 

set of tuples the word relation is used, while 

speaking about structural description of sets of 

tuples we use the word relation Scheme [14]. With 

this approach, a relation is an instance of a rela

tion scheme.

A relation involving the set of attributes 

£2={A^ ,A2 , . . . ,An> is' a subset of the cartesian pro

duct Dorn (A^) x Dorn (A2) x...x Dorn (An ) where 

Dorn (A^) - the domain of Ai - is the set of possible

values for that attribute. The elements of the rela

tion are called tuples and will be denoted by <t>.

A constraint involving the set of attributes 

{A^,A2/•••,Anl is a predicate on the collection of 

all relations on this set. A relation R(A^,A2,...,An) 

fulfils the constraint if the value of the predicate 

for R is "true".

We shall restrict ourselves to the case of 

functional dependencies.
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A functional dependency (abbr. FD) is a sen

tence denoted by f : X -* Y , where f is the name of 

the FD and X and Y are sets of attributes. A func

tional dependency f : X Y holds in R (fi) where X 

and Y are subsets of , if for every tuples u and 

v€ r , u [x ]= v [x ] implies u[Y]= v[Y] (u[x] denotes 

the projection of the tuple u on X) .

Let F be a set of functional dependencies. A 

relation R defined over the attributes t t= {A^,A£,...,An ) 

is said to be an instance of the relation scheme 

S=<fi,F> iff each FD f6F holds in R.
The following Armstrong's inference rules are 

sound and complete for FDs^ [15].

For every X,Y,Z*il,

A l . (Ref lexivity) : if Y*X then X-*-Y.

A 2 . (Augmentation): if X+Y then XUZ^YUZ.

A3. (Transitivity): if X+Y and Y+Z then X+Z 

From the Armstrong's axioms the following two 

rules are easily derived:

Union rule: if X-*Y and X+Z then X+YU Z 

Decomposition rule: if X+Y and Z5Y then X+Z.

1) In fact we use here a system of axioms which is 
equivalent to that of Armstrong.



4

Let F be a given set of FDs. The closure F+ of 

F is the set of all FDs that can be derived from the 

FDs in F by repeated applications of Armstrong's 

axioms.

It is shown in [13] that 

(X+Y)€rF + iff Y*X+ ,

where

X+={Ai |(X+Ai)*F+ )

is by definition the closure of X w.r.t. F.

In the following, instead of (X-»Y)6 F+ and XUY,
■kwe shall write X -*■ Y and XY respectively.

There is a linear-time algorithm in the length 

of the description of the FDs, proposed by Beeri and 

Bernstein [10] for computing the closure X+ of a 

given set X (w.r.t. F ) :

1) Establish the sequence X^°^,X^,..., 

as follows:

x (o)=x.
Suppose X ^  is computed, then 

X (l+1) = x (l)U Z (l)

Z (i) = U Y .
3

X .sx(l) ,Y .4x (l)3 - f
(X .-*Y . )€F 

3 3

where
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2) In view of the construction it is obvious that

Since ß is a finite set, there exists a smallest 

non negative integer t such that

x (t)= x (t+1)

3) We then have

x+ = x <fcl .
Two subsets X and Y of Ü are said to be equivalent 

under a set of FDs F, written X«h¥ , if 

X and Y -£*X .

It is easy to show that 

X «-*Y iff X+ = Y+ .

Keys for a relation scheme

Let S-<ÍÍ^F> be a relation scheme and let X be a 

subset of ß.

X is a key for S if it satisfies the following 

two conditions:

(ii) t  X'<=X: X' %  ß .

The subset X which satisfies only (i) is called 

a superkey for S.

It is clear that

X is a superkey for S iff X+=ß.
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§ 1.3. Preliminary results

We are now in a position to prove some lemmas 

which will be needed in the sequel.

Let S=<fi,F> be a relation scheme, where

^“{A-j^A^, • • • , A^ } ,

F={Lj-»R^ I i = l,2,...,m }.

Without loss of generality, throughout this work 

we use only sets of FDs in the natural reduced form, 

i.e. those which satisfy the following conditions:

(i) LihRi=0 V  i/j

(ii) if i^j.

Let us denote
m m

L = U  L. , R = U R.1 1 i=n i=i

K ={K|K is a key for S} s 1
=ft\L* , i=l,2,...,m ;

I ={i I there is no j such that L^OL^} 

{1 ,2 ,...,m } .

It is obvious that for every jft{1,2,...,m}^ L^ 

is a superkey for S.

We have the following lemmas.
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Lemma 1.3.1.

Let S = <Q,F> be a relation scheme, X,Y=i}; Then

(XY)+ = (X+Y)+ = (XY+)+ (1.1)

Proof

It is sufficient to prove that
. . + . + +(X Y) = (XY) .

By the definition of the closure X+ of X, it is 

obvious that

X+ 2  X .

Hence

X+Y 2  XY.

By the algorithm for the finding of the closure, 

we have

(X+Y)+ 2  (XY)+ . (1.2)

On the other hand, from

X — 31* X+ ,

we have

XY - *  r  X+Y , 

or equivalently,

X+Y &  (XY) + .

It follows that:

(X+Y)+ S  ((XY)+)+ = (XY)+ . (1.3)
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Combining (1.2) and (1.3), we obtain (1.1). The 

proof is complete.

Lemma 1.3.2.

For any i 6 I,

is a key for S if and only if C^=0.

Proof.
If part: If Ci=0, i.e. , then is a super

key for S. Since i€I, it follows that for all X e L ^  

we have

X+=X<= L ± ,

showing that is a key for S. The only if part is 

straight-forward.

Lemma 1.3.3.

Let K be any key for S=<ft,F>.

Then Z+ A (K\Z)=0 for all ZCK.

Proof.

Denote Y=Z+A(K\Z) .

It is clear that Y«Z+ , YsK and

YAZ = 0.
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Therefore we can write

K=Z}YIX (a partition of K)

and, by Lemma 1.3.1, we have

(ZX)+ = (Z+X)+ = (Z+YX)+ (ZYX)+ = Q.

Since K is a key, so ZX=K, showing that 

Y = Z+0(K\Z) = 0.

Lemma 1.3.4.

Let S=<ft,F> be a relation scheme.

If A 6 L and X ->■ Y then

X\{A> * Y \ {A} .

Proof
★From X + Y it follows that there exists a 

derivation sequence

{L. -* * R. , L. ->
X1 1 1 2

such that

R.l / • • • /
2

}

X gL,
1

x%  =  -i.

XR. R . 
12

• • • R .
V i 2  Li

P
XR. R.

L 2
... R . 3 1 *P

Y

(1.4)



10

m
Since A?L = U  L., from (1.4) we have

j = 1 0

X\{a } s»L.
'1

(X \{ A} ) R. s L
2

(X M a } ) R R. ...R. =>Y\{A) ,
1 '\ 1 2 p

showing that

X\ { A} Y\{A)

Lemma 1.3.5.

Let S = < Q ,F > be a relation scheme, X«fi. If A*X 
* +)and X\A -*■ A then X is not a key for S.

Proof.

By the hypothesis of the lemma 

X \ A  * A.

On the otherhand, it is obvious that:

X\ A * X\A.

Applying the union rule, we obtain

X\A * X.

Since A6X, it is obvious that X\AcX, showing that 

X is not a key. The proof is complete.

+^Here and in the following X\A stands for X\{A}.
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Lemma 1.3.6.

Let S=<ft,F> be a relation scheme. Then any key

K for S has the following form

K = L.X .l l
where X . £ C . , iei.l l

Proof

Let Kc be the set of all keys for S and K6KC .

If K= ft, then obviously

K=L.X .l l V  iei.

If Kei^.,then by the algorithm for the finding of the closure

K+ of K w.r.t. F, there exists L. such that L.eK.3 3
Consequently, there is iftl such that L^aK.

Thus K L .X . ,l l ' iei.

Now we have to prove that X^SC^. BY Lemma 1.3.1

we have

L+ X.<s(L+X.) + = (L. X . ) + = K+ = n = l !c ..I l i i  l i  l i (1.5)

By lemma 1.3.3

L* 0 (K\L±) = L ^ X .  = 0 .

On the other hand, it is clear the

L+n ci = 0.
Hence, from (1.5) we have:

X .«C . .1“ l
The proof is complete. 

Remark 1.3.1

Lemma 1.3.6 still holds if the set I is replaced

m}.by the set {1 ,2 ,...,
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§ 1.4. Necessary condition under which a subset 

X of S is a key.

In this section we investigate the necessary 

condition under which a subset X of SI is a key and 

prove a theorem which will be used as a basis for 

the design of algorithms to find keys for a relation 

scheme.

Theorem 1.4.1.

Let S =<ft,F> be a relation scheme and X be a key

of S .

Then

S]\R«X S (ß\R) U (LOR) .

Proof

We shall begin by showing that 

ÍARCX.

First we observe that XcXR. Since X is a key, 

obviously X+=fl. Hence XR=f2. This implies that

f2\R «X.

To complete the proof it remains to show that:

X S  (íi\R) U (LrtR) . (1 .6)
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It is clear that

Xcfi = (fí\R) U (LHR) Ü (RNL) . (1.7)

To obtain (1.6), we have only to prove that

X ft(R\L) = 0 .

Assume the contrary, that there exists an attribute 

A€X, AfrR and AéL. Since X is a key, we have X -> Q . . 

Since A*L, we refer to Lemma 1.3.4 to deduce

X\{ A) * \{ A}

On the other hand, from A € L, and L s 52, we have
★

L S  C2\A. Hence fi\A -> L.

Applying the transitivity rule for the sequence
£ k k k

X\A -*■ Q\A -»■ L -> R -* A (since A6R) , we obtain

X\ A * A with AfeX.

By virtue of Lemma 1.3.5, this contradicts the 

hypothesis that X is a key. Thus we have proved 

that if X is a key, then XO(R\L) = 0.

From (1.7) we deduce that

X S  (fiNR) U (LOR) .

The proof is complete.

Theorem 1.4.1 is illustrated by Fig.1.1 where 

X is an arbitrary key for the relation scheme 

S = <i2 ,F>.
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Fig.1.1

In view of Theorem 1.4.1., it is easily seen that 

the keys for S=<ft,F> are different only on the 

attributes of LOR. In other words, if and X2 are 

two different keys for S, then

X-j\X2 e  LOR and X 2NkX1 c  LrtR*
Let Kg denote the set of all keys for S, and f f  ( Z) 

the maximal cardinality Sperner system on a set 

Z [16] .

As immediate consequences of Theorem 1.4.1. and 

results in [17], [18], we have the following

corrolaries.

Corollary 1.4.1

Let S=<fl,F> be a relation scheme. Then 

#  Ks < ft if (LOR) = Ch [h/2]
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where h = #(LOR) is the cardinality of LHR.

Corollary 1.4.2

Let S = <ii!,F> be a relation scheme and X be a key

of S .

Then

# (fi\R)á# X <§ (A\R) + # (LOR) .

Corollary 1.4.3

Let S=<Q,F> be a relation scheme. If R\L  ̂ 0

then there exists a key X for S suth that X̂ fi (non

trivial key). Moreover R\Left\H, where H= U K is the
KéKSunion of all keys for S.

Corollary 1.4.4

Let S=<ft,F> be a relation scheme. If LOR=0 then 

#Kg=1 and Q \R is the unique key for S.

It is natural to ask whether the results 

formulated in Theorem 1.4.1 can be improved. The 

answer is affirmative as it is showed by the following 

lemma and Theorem.

Lemma 1.4.1

Let S = <ß,F> be a relation scheme and X be a key
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for S. Then

XftRfi (L\R) + =0.

Proof

Suppose the statement is not true. Then there

exists an attribute A such that

A6xnRn(L\R)+ .
★

Thus A*X, A€R, L\R -*■ A. Since A€R, it follows that 

A 6 (L\R). On the other hand, it is clear that

L\R§fi\R.

Taking into account Theorem 1.4.1, we get

L\ Refí\ ReX .

Thus

L\RcX\A (since A€L^R) .

It follows that

X\ A * L\R * A

where AfeX.

By Lemma 1.3.5, this contradicts the hypothesis that 

X is a key for S. The proof is complete.

We define

2L(L,R) = (L\R) +0 (LrtR) .

It is clear that

a(L,R)s(L\R) +n R
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From this

xna.(L,R) =0 for every XéKg. Combining with 
Theorem 1.4.1, the following theorem is immediate:

Theorem 1.4.2

Let S = <S7,F> be a relation scheme, and X be any 

key for S. Then

(i!\R)SXS(fi\R)U ( (LOR)\ a.(L,R) ) .
The following example where *(l ,R)^0_, shows that 

Theorem 1.4.2 is nontrivial.

Example 1.4.1

ft={A,B,H,G,Q,M,N,V,W}
F = {A + B, B -* H, G -*• Q, V -+ W, W -*■ V}

From this we have

L = ABGVW; R = BHQVW; LftR = BVW;

L\R = A G; (L\R)+ = AGBHQ;

3. (L , R) = (L\ R) +0 (LOR) = {B} f 0.

Remark 1.4.1

It is worth noticing that

(ÍAR)+ = (Q\(LüR) )ü (L\R) + .
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Therefore, if X is a key for S then obviously: 

XnRA(ß\R)+ = XARfl(L\R)+ = 0,

and

(i]\R)U{ (LOR) \ (£HR) + } = (Í2\ R) U { (LOR)\ *(L,R)}

Remark 1.4.2

Using Theorem 1.4.2, the Corollaries 1.4.1, 

1.4.2 and 1.4.3, deduced from Theorem 1.4.1 above, 

can be improved, as well.

Theorem 1.4.3

Let S=<ft,F> be a relation scheme with

LAR={A , A . ,...,A.}*{A1,...,A }=ß.H  u2 n
Let us define

K (1) = (fi\R) u (LOR) ,

/ K(i)\A if
k (i+1) = ; i

( K (i) if

with i=1,2,...,h. 

Then K(h+1) is a key for S=<ß,F>.

K(i)\A * 
i

K(i)\ A ■» 
'"i

/

Proof

We shall begin with showing 

K ( i+ 1 ) * K(i) .

that



19

Two cases can occur:
•ka) If K (i) \ A -7** A ,, _ , - . . ̂  .t. t. then from the definition ofi 1

K (i+ 1) , we have

K(i+1) = K(i)

and it is obvious that

K ( i+1) ->■ K ( i) .

b) If K (i) \ A^ , we have
i i

K(i+1) = K (i)\ A .
±

On the other hand, it is obvious that 

K ( i)\ A * K ( i)\ A , .t .l t .l
Applying the union rule, we get:

K{i)\A -* K (i)
l

Therefore

K (i+ 1 ) -*■ K(i) .

So we have

K(h+1) * K(h) * ... * K (1) .

From the above definition of K(i+1), it is clear 

that

K(h+1)sK(h)e . . .sK(1) .

We are now in a position to prove the theorem.

As an immediate consequence of Theorem 1.4.1,

K (1) = (SAR) U (LOR) is a superkey for S. On the other hand 

K(h+1) * K(1)
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showing that K(h+1) is a superkey for S too. To 

complete the proof, it remains to show that K(h+1) 

is a key.
Assume it is not. Then there would exist a key 

for S such that XcK(h+1), and using the result of 

Theorem 1.4.1, we have

ÍARsXeK (h+1)s(ß\R) ü (LAR) .

Clearly, there exists

A t 6K(h+1 )n (LftR)\X 
D

with 1£j£h.

From the definition of K(j+1), we find

K( j)\ At -4 A .
j j

Since K(h+1)fiK(j), it follows that

K(h+1)\A -*• A .
_j 3 

On the other hand X«K(h+1)\A

Therefore
t . 

3

X At .
3

which conflicts with the fact that X is a key for

S = < Q ,F> .

The proof is complete.
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§ 1.5. The intersection of all keys for a relation 

scheme

In this section we establish a simple explicit: 

formula for computing the intersection of all keys 

for a relation scheme S=<fi,F>, and a criterion under 

which an attribute A^éfi is a non-prime one. Finally, 

another characterization for the intersection cf all 

keys for a relation scheme is also given.

Let us denote by

K*KS
the intersection of all keys for a relation scheme 

S=<ft,F>.

First, we prove the 

Lemma 1.5.1.

Let S=<ß,F> be a relation scheme.

Then

GOR=0.

Proof

It is sufficient to prove that for each A€-R rhere 

exists a key K for S such that AfK.
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In fact, from A6R we deduce that A belongs to 

some . Consider the functional dependency 

L . + R., (L. n R . = 0 ) .l 1' l i
Hence AfiL^.

It is easily seen that

L±l> {fi\ (L.UR.) } * SJ,

and

A6L± U (n\(LiURi) },

showing that ML^UR^)} is a superkey for S. This

superkey includes a key K such that A?K.

Hence GOR = 0.

Theorem 1.5.1

Let S=<fi,F> be a relation scheme.

Then

G=n\R.

Proof

As an immediate consequence of Lemma 1.5.1 we

have

G£fi \R.

On the other hand, by Theorem 1.4.1, it is easily 

seen that

Í2 \ RSG.
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Hence
G=n\R.

The proof is complete.

Theorem 1.5.2

Let S=<£2,F> be a relation scheme and let Aé1. 

Suppose that the following conditions hold for 

all , i=1,2 ,...,m

(i) AftLi L±\A * A,

(ii) AÉL. ^  A * L + .l ^  l
Then A is a non-prime attribute, that is AéH

where H= L )  K is the union of all keys for S.
K«Ks

Proof
The proof is by contradiction. Assume the 

contrary that A^H. Then there would exist a key K for 

S such that A6K, and an L ̂ such that L^«K.

(1) If AfiLj, then by the hypothesis of the theorem 

(condition (i)), we have

Lj\A * A

Consequently

K\A * L j\ A * A,

which, by Lemma 1.3.5, contradicts the fact that K 
is a key.
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(2) If AfiLj , then by condition (ii) of the theorem, 

we have A6Lt.

Since A6Lj,

LjSK\A
Hence

•k kK\A Lj -*■ A,
which contradicts the fact that K is a key. Thus AeH. 
The proof is complete.

Example 1.5.1

S2= (A1 ,A 2 / A^ ' A4 ' A 5 ' Aß ̂

F= {A-| ^ A 3A 5 ’ A3A4 A 1A6' A 1A 5A6 A3A4 ; 

It is easy to verify that A^ satisfies all conditions 

of Theorem 1 .5.2.

Therefore A^SH.

Theorem 1.5.3

Let S=<ft,F> be a relation scheme, and G be the 

intersection of all keys for S. Then 

G+\GeQ\H.

In other words G+\ G consists of only non-prime 

attributes.

Proof

First, we prove that
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(G+\G)nK=0 for every K6K .
If it were not true, there would exist a key K. and

an attribute A. such that 
J
A .6G+ , A.6G, A .6K . where K.«K_.
J 3 J i i S

It follows that:

AjéG+h (K±\G) , GeK± .

This means

G+n(K±\G) /  0,

a contradiction, by virtue of Lemma 1.3.3.

Hence

(G+\ G)0 ( U  K) = 0,
R€KSOr equivalently

G+\Gcft\H.

Def inition 1,5.1

An attribute A ^€fi is said to be a deterministic 

one w.r.t S=<fi,F>, if for every (L. -*■ R. )«F, A.tR.l i  3 -
implies AjéL^. In other words, A^ is a deterministic 

attribute iff whenever it belongs to the right hand 

side of some FD, it must also belong to the left hand 

side of this FD.

Let us denote by D the set of all deterministic 
attributes w.r.t. S =<fi,F>.
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The following theorem establishes the relation 

between the set of deterministic attributes D and G - 

the intersection of all keys for S.

Theorem 1.5.4

Let S=<ft,F> be a relation scheme.

Then

D=G.

Proof

First we prove that DsG. Suppose that A«D and 

there exists a key K6Kg such that AiK.

Since K+ = fi, so A#K+ . By the algorithm for finding 

the closure of a set of attributes w.r.t. F, there 

exists an index t and some FD (L^ -*■ R^) in F such that 

L.fiK (t), A*L., A6R..l* ' l l
This contradicts the fact that A is a deterministic 

attribute.

Hence, A*D implies A 6K, VKeKg . In other words, A«G, 

Consequently DfiG.

To complete the proof, it remains to show that GeD.

Were this false, there would exist an attribute A«G 

and A2D. This means AeR^ for some i. (From L î Ri=0, 

it follows that AiL^).
We a r r i v e  to  a c o n t r a d i c t i o n ,  s in c e  AeG=iAR im p l ie s  

th a t  a 3 r ± f o r  e v e ry  i = l , 2 , ---- ,m. The p ro o f  i s  c o m p le te .
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§ 1.6. Relation schemes that have exactly one key 

Theorem 1.6.1

Let S*<fi,F> be a relation scheme. Suppose that 

the following condition holds

V i  (R±nL f  0 L ^ R  = 0).

Then S has exactly one key and £7\R is this unique key.

Proof.

Let C =n\(LUR) .
★Since L -* R, we have

*LUC + LuRUC =ß.

Let I ={ i I R±n L + 0 }

Evidently

U  L.ftR = 0 (1.8)
i€I

and

LARS U R. (1.9)
i€I 1

It is obvious that

U r . * LftR. 
i€l 1

On the other hand we have

U l . * U r.
Í6I 1 i€I 1

Clearly we have together with (1.9)

U  L . + LOR.. ̂  1
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From (1.8), we have

U  L.<=L\R.
iei

Hence

L\R * ^  L.
i6I ‘

LflR.
It follows that

L\R -> (L\R)U(LftR) = L.
Using LUC •* Í2, we have

(L\R)UC fi,

showing that (L\R)L»C \ R is a superkey for S.

By Theorem 1.4.1, S=<fi,F> has (fi\R) as the unique key.

Theorem 1.6.2

Let S = <f2,F> be a relation scheme, and X be a 

superkey for S.

If XhR = 0 then X is the unique key for S.

Proof

From XrtR =0, it is obvious that 

X*ft\R.

Since X is a superkey for S, there exists a key XsX. 

Using Theorem 1.4.1, clearly

í2\RgX«Xfií2\R

showing that R is the unique key for S.
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Theorem 1.6.3

Let S=<ft,F> be a relation scheme, and X be a 

superkey for S.

Then X is a unique key for S iff XAR = </>.

Proof

The sufficiency of this theorem is essenuraily 

Theorem 1.6.2. We have only to prove the necessary. 

Let X be the unique key for S.

Then, by Theorem 1.5.1,

X = G = fi\R, 

showing that XHR = 0.

Theorem 1.6.4

Let S=<ß,F> be a relation scheme wirh LAR =0. 

Then (fi\R)U(LAR) is not a key for S.

Proof

Assume the contrary that (ÍAR) o (LflR) is a key 

for S .

By Theorem 1.4.1, it is obvious than 

K= (£2\R) ü (LAR) is the unique key for S and X musu oe 

equal to G . On the other hand

K = (fl\R)l/(LftR) /  (fí\R) = G, 
a contradiction. The proof is complete.



30

§ 1.7. A special family of superkeys

In this section we prove some additional proper

ties of keys and superkeys for relation schemes which 

can be used for the design of algorithms for the finding 

of keys for relation scheme. We mainly deal with the 

special family of superkeys for S, namely the family

{L^C i |i=1,2,...,m}.

Recall that
C^=fi\Lt, i=1,2,...im .

We begin with the following lemma.

Lemma 1.4.1

Let S=<ft,F> be a relation scheme.

Then V  i^  j  , i ,  j € {  1 , 2 , . . . , m}> L i  (C Y lL jC  ̂  ) i s  a s u p e r

key f o r  S.

Proof

In the case <2̂ =0, we have

Li(CioLjCj) =L± .
But in that case, it is obvious that Li is a superkey. 

We now consider the case 0. First, we will prove 

that if C ^ 0  then

CiftLjCj^0, Vj^i.
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In fact, assume the contrary that

= 0 with some i^ j .

It follows that:

( C j O L j )  U ( C ^ C j )  = 0 .

On the other hand
*

ci=(cinLj)u(cincj)U(cin(Lj\Lj)) = c ^ l ^ l )̂,
showing that

C . « L + \ L  . . i J D
Thus

n \  c . ? n \ ( L +\ L .)i J 3
or

L ,aL  -C . 
i *  D 1

The last set inclusion shows that is a super

key, a contradiction. Therefore, if C ^ 0  then

C . f t L . C .  ?0 . i 3 3
Now, it is clear that

* +
L .  L .l l

C .HL .C . -* C j f lL  .C . . i l l  1 3 1
Consequently,

L_.iC.nL_.C_.) *  ( c - n c j .

On the other hand, we have:

L j = ( L j \ C i ) ( L j 0 C i ) 5 L i ( C in L j )

cj = (cj\ci) (C.nC.JeL̂ Ĉ C.)
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Hence

Finally

Showing

L i(CiALj) (C^CjJgLjCj.

we have

Li<ci«L jc j' - Ljcj
that L^(C^ALjCj) is a superkey for S.

Lemma 1.7.2

Let K be any key for S=<ft,F> having the form

K=L.X, XeC. x 1
Then there exists jQ^i such that

KgL . (C .OL • C . ) . i i l l  Jo Jo

Proof

Assume the contrary that

L ±k ^ L ± (C L j C j  ) , V j ^ i ,  
or, equivalently

X^C^L.Cj, Vj^i.

Then, for all j*i there exists an attribute

A. e (L+\L.)HX . ij 1 1
Obviously we have:

L.X * L.R.X.l l i
Then there must exist p such that

L SL.R.X p l l
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(Otherwise L^X ■*+ t i , a contradiction)

Let A. € (L+\L )OX and let ip P' P
X ,=X\{Ai }.

XP
Since A.fi L , so L sL.R.X'. Therefore, it is easy toi p p i l ' 1P F ^
see that

L . X ' * L.R.X' * L.R.L R X' * L.R.L+X' .l x i  l i p p  l i p
Moreover A . 6 L 1 P P *
Consequently,

L.X' * L.X * t i,l l
showing that L^X is not a key, a contradiction. 

The proof is complete.

Corollary 1.7.1.

The family

(Li (Cin L jCj) | j^i, 1<i, jám} 

can be used to find all keys for the relation scheme 

S = <P ,F> .

Remark 1.7.1

Lemmas 1.7.1 and 1,7,2 have been proved (perhaps by different 
methods) and used to design an interesting algorithm 

to find all keys for any relation scheme [19].
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Let S=<ft,F> be a relation scheme. Suppose that 

the following conditions hold:

(i) L i (Cin L jC j ) = L iC i , V  i=1,2, . . . ,m,
(ii) L.jOFh = 0 Vj^i.

Then L.̂ Ch is a key for S.

Theorem 1.7.1

Proof

First, from condition (i) we can prove that 

for every XeC^, L^X is not a superkey for S.

In fact, since ChALjC^Ch, Vj^i, it follows that 

Cift(LALj)=0, Vj.

Therefore, if A6Ch then

{A}A(L*\Lj) = 0, Vj.

Let A be any element of C. and X=Ch\{A}. It is easy 

to see that

L.X * L .R .X .1 1 1
Since L^R^OC^=0 (because L A^SL^) , ACCh, A6X , it 

follows that

A6L iRiX.

Now, suppose that there exists
L , c L  . R . X , h/i . h” x l '

Obviously A«Lh and
* *L.Xx L . R . X x x L . R.L.R.X. x x h h
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It is clear that AéR^, otherwise A 6(L*\L^) , a 

contradiction. By repeating the same reasoning, we 

can prove that

showing that for every XcCi, I^X is not a superkey 

for S .

In other words, L^C^ contains only a key (or keys) 

of the form L(C. with L'«L..l i  l* l
By condition (ii), we have

L ĵ\R = L^sL\R.

On the other hand, from Theorem 1.4.1,

L\RSft\R«K, V K C K g .

This shows that L.C. is a key for S. Q.E.D.i i  J

Corollary 1.7.2

If S=<Q,F> has a key K=L^X with XeC^, then there 

exists jo7̂i such that

L . (C .ftL . C . )cL .C .i i i i i iJo Jo

Corollary 1.7.3

If Li (CinLjCj) = LiCi , i,

then „ „ = U  k .C ^ H
K*K,
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In other words, consits of only prime attributes. 

Corollary 1.7.4

If |Ci |=1 V i=1,2, . . . ,im then is a key for

S iff there is no q, q / j , such that L.C.»L C .J J 4 4

Theorem 1.7.2

Let S = <f2,F> be a relation scheme, L^Z be a key 
for S ,

L^ ̂  >Lj , L±HZ = LjhZ = 0,

L jh Rh = 0 V  h^ j .

Then L^Z is a key for S.

Proof
It is easy to see that if L^Z is a key for S

and — *L . then L^Z is a superkey for S.

In fact, we have
L . Z L.Z -*■ n.D i

Moreover, we can prove that for every Z'cZ, L^Z' is 

not a superkey for S. Assume the contrary that L ̂ Z' 

is a superkey for S with Z'cZ.

It is clear that
ii=(LjZ')+ = (L*Z') + = (L*Z')+ = (L±Z') + 

showing that L^Z is not a key, a contradiction.
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The condition L^OR^ = 0, V h  implies that = 0.

Hence L .cL\R.
3

Moreover, again by Theorem 1.4.1

L \ R « Q \ R S K  V K « K S

showing that L^Z is a key for S.

Theorem 1.7.3 * (i)

Let S = < tt ,F > be a relation scheme; X,Y,ZsQ, 

XOZ=YhZ = 0. Suppose that the following condition 

hold:

(i) X«t-*Y
(ii) for every X'eX with |X'| = 1X1-1 

there exists Y'cY such that Y'+—*X' ,
(iii) for every Y'cY with |y '| = |y |-1 

there exists X'cX such that XiVY* .

Then ZX is a key iff ZY is a key.

Proof
We begin to prove the "only if" part.

Suppose that ZX is a key.

Since X«-*Y, following the proof of theorem 1.7.2, YZ 

is a superkey for S while YZ' is not for every Z'eZ. 

In other words, YZ contains only a key (or keys) of 

the form Y'Z with Y'aY.
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Now, we shall prove that for every YeY, Y Z is not 

a superkey for S.

The proof is by contradiction.
Let Y'Z is a superkey for S with YcY 'cY where 

IY'I= IYI-1. Taking the condition (iii) into account 

we get
ft=(Y'Z) + = ((Y') + Z)+ = ((X')+Z)+ = (X'Z) + 

where X'eX, X'«— >Y',
showing that XZ is not a key, a contradiction.

Similarly, we can prove the "if part". The 

proof is complete.

Corollary 1.7.5

Let S = <ft,F>bea relation scheme, L^*_*Lj,

|Li\=|Ljl=1, L^n Z = L Z = 0. Then L^Z is a key 

for S iff L^Z is a key.

Proof
It is easy to verify that all conditions of 

theorem 1.7.3 are satisfied.

Example 1.7.1

We take up again the example in [11] . According 

to our notation, we have
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fi- {C , I, N , P , T } X)

F = {N + I, I -v N , NC + PT, PT + C}

It is easy to see that N «—*1. So, using the algorithm 

of Lucchesi and Osborn, after the keys IPT and IC 

have been found, we can add immediately to the set 

of found keys two new keys NPT and NC.

Theorem 1.7.4
Let S=<fi,F> be a relation scheme, and L^Z is a 

key for S with ZdL^ = 0.

If ZcCj, Lj< *L^,

and

Lj (CjOLbC^-LjCj, Vh/j 

then S has no key including L^.

Proof

The condition implies that L^Z is a

superkey for S.

From ZeCj , it follows that LjCj is not a key. 

From Lj (Cjf>Lh Ch)-L^C^ and LjCj is not a key, by 
corollary 1.7.2, we conclude that S has no key 

including L^. Q.E.D.

u \C,I,N,P,T stand for Course, ID-number, Name, 

Professor, and Time respectively.
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§ 1.8. Three algorithms

Basing upon Theorems 1.4.1. and 1.4.3, we now 

propose some algorithms for the key searching and key 

recognition problems. It is worth recalling that:

(i) X is superkey for S=<fi,F> iff X+=ft;

(ii) X * Y iff Y«X+ .

Algorithm 1.
Algorithm for finding one key for the relation 

scheme S=<fi,F> , where

- { A.J , A 2 , • • • , A^ } ,

F ={Li -> Ri |L^Ri<sSi, i=1 , 2 , . . . ,m} ,,

m m
L = U  L , R = U / 

i=1 1 i=1
Lfl R — {A, ,A, , . . . ,A, } .

t 1 t 2 T i
The block schema of the Algorithm 1 is presented in 

Fig. 1.2

Example 1.8.1
The following example illustrates the performance 

of Algorithm 1.

Let S=<Q,F> be a relation scheme, where

={A,B,C,D,E,G}

F = {B -> C, C -> B , A -+ GD}
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Fig.1.2
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We have
L=BCA, R= BCGD 

fi\R=EA , LOR= BC.
Since (ÍÍ\R)+ = (EA)+ = EAGD^ft, (n\R) is not a key of
S=<fi,F>. From the bloc the algorithm begins with
the superkey X= EABC• With A =B, and A, =C, we have

rl '"2
the sequence

X : =X\{B}= EAC; (EAC)+ = EACBGD =Q)
X : =X\{C} = EA ; (EA) + = EAGD / Q,,
X :=XU{C}= EAC; X := EAC.

We obtained a key for S, being X =EAC. Similarly, if 
we start with the same superkey

X = EABC

but with A, =C and A , = B , then after the termination
rl t2

of Algorithm 1, we obtain another key for the relation 

scheme S = <f2,F>, being EAB.

Remark 1.8.1. * 1 2

Independently the idea of Algorithm 1 is quite 

near to that of the algorithm Minimal key of Lucchesi 

and Osborn [11]. However, there are two main differ

ences :

1) Algorithm 1 is much more detailed and more easy 

for implementation.

2) Algorithm 1 takes Theorem 1.4.1 into account and
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thereofore only require 0 (|F | | | l a r |) elementary 

operations (comparison of two attribute names) 

while algorithm
2Minimal key require 0(|F||ß| ) elementary

operations.

(Here |F| denote the cardinality of the set F ) .

Therefore, as will be shown in the next 

section, Algorithm 1 can be used together with 

Algorithm 2 to improve the performance of the 

second algorithm of Lucchesi and Osborn to find all 

keys for a relation scheme.

Algorithm 2.

This is an algorithm for finding one key for 

the relation scheme S=<ft,F> that is included in a 

given superkey X.

Suppose that X is a key included in X. Then

XSX.
On the other hand, from Theorem 1.4.1.:

ÍAR«XS(ft\R) U (LOR) .
Therefore

Xc(ft\R) u (Xft(LOR) ) .
Thus we can start with the superkey

(fl\R) U (XO (LflR) )
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for finding a key included in a given superkey X.

It is easily seen that Algorihtm 2 (see Fig.1.3 ) is 

similar to Algorithm 1 but block 3 is replaced 

by the assignment

X : = (A\R)U (Xn(LOR) )
with Xft(LnR) ={A£

l
addition, some non

...,A^ I and there are, in 

significant modifications.
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Fig.1 .3



46

Algorithm 3.
This is an algorithm for the recognition whether 

a given subset X (XgS) is a key for S=<Ä ,F > (see Fig. 1.4)

Fig. 1 .4
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§ 1.9. Some remarks on the algorithm of Lucchessi 

and Osborn

In [11] C.L. Lucchesi and S.L. Osborn gave a 

very interesting algorithm to determine the set of 

all keys for any relation scheme S=<Ä ,F>. The 

algorithm has time complexity

o ( |f I |k s I |n| ( |k s |+ |n|))#

(in our notation), i.e. it is polynomial in|ß |, |F ] 

and |K I .O
We reproduce here this algorithm with some modifi

cations in accordance with our notation.

Algorithm QL1

Set of all keys for S=<ft,F>;

Comment Kg is the set of keys being accumulated in 

a sequence which can be scanned in the order in which 

the keys are entered;
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Ks «_>{Keyx) (ft,F,ft)};

for each K in Kg do

for each FD (L± -+ ft ) in F do

T LiD(K\Ri) ; 

test 4— true; 

for each J in doO
if T includes J then test «— false; 
if test then Kg<— Kgu{Key (ft,F ,T)}

end

end;

return Kg .

The following simple remarks can be used to 

improve in some cases the performance of the algorithm 

of Lucchesi and Osborn.

Remark 1.9.1

To find the first key for S=<ft,F>, instead of ft, 

it is better to use the superkey (ft\R)U(LAR) and 

algorithm 1 in § 1.8 and instead of the algorithm 

key (ft,F,T), it is better to use algorithm 2 (§ 1 .8) 

for finding one key for S included in a given super

key T .

x)Key (fi,F,X) is the algorithm which determines a key

for S=<ft,F> that is a subset of a specified superkey X.
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Remark 1.9.2

In § 1.4. we have proved that 

R\L s fl\H,

i.e. R\L consists only of non-prime attributes. 

Therefore if R^9R\L then

R.fkK = 0, V K6K .1 O
and L.U(K\R.)2 K.

That means, when computing T=LiU(K\Ri), We can 

neglect all FDs -> Ri with R R\ L , for every K«Kg. 

Let us denote

F = F\{L . -> R.lL. -> R. 6 F and R.cR\L} 
3 D D 3 3

Remark 1.9.3

With a fixed K in Kg , it is clear that if 

KflR± = 0 then L ^ i K X R ^ K .

In that case it is not necessary to check whether 

T includes J for each J in Kg .

So, it is better to compute T by the following way:

T = (K\R.)uL..

Remark 1.9.4

The algorithm of Lucchesi and Osborn is partic

ularly effective when the number of keys for S=<fi,F>

is small.
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But, what information we need to conclude that the 

number of keys for S=<ß,F> is small? There is no 

general answer for all the cases and it is shown in 

[ 20] that the number of keys for a relation scheme 

S=<ft,F> can be factorial in |F| or exponential in 

|fí|, and that both of these upper bounds are attain

able. However, it is shown (in § 1.4, Corollary 

1.4.1) that

where h is the cardinality of LOR. Thus if LoR has 

only a few elements then it is a good criterion for 

saying that S has a small number of keys.

In the case LOR = 0, ft\R is the unique key for S=<ft,F> 

as pointed out in § 1.4, Corollary 1.4.4.

Example 2 .

Let us return once more to the example in [11, 

Appendix I] .

fi={a,b,c,d,e,f,g,h}

F={a -* b, c -* d, e -*■ f , g h}

It is clear that for this relation scheme

LOR = 0,
and it has exactly one key, namely aceg.
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Taking into account the Remarks 1.9.1, 1.9.2, 1.9.3 

the above algorithm can be modified as follows:

Algorithm 0L2.

Set of all keys for S=<ft,F>;
Kg 4— {Algo 1X) (n,F, (JAR)0 (LOR)) } 
for each K in K doiD

for each FD (L. -*■ R . ) in F such that--- l l
K\R. / K dol —

T (K\Ri)uLi;

test «— true;

for each J in Kg do

if T includes J then test«— false; 

if test then K0 «— K0U|Algo2x  ̂ (fi,F,T)

end

end;

return K„.b

) Algo 1 and Algo 2 refer to Algorithm 1 and Algorithm 2 

in § 1.8 respectively.
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2. TRANSLATIONS OF RELATION SCHEMES 

§ 2.1. Introduction

In this chapter we shall be concerned with the 

theory of so-called translations of relation schemes. 

Starting from a given relation scheme, translations 

make possible to obtain simpler relation schemes,

i.e. those with a less number of attributes and with 

shorter functional dependencies so that the key 

finding problem becomes less cumbersome, etc...

On the other hand, from the set of keys of the 

relation scheme obtained in this way, the corres

ponding keys of the original scheme can be found 

by a single "translation".

In § 2.2 we introduce the notion of Z-trans- 

lation of relation scheme, give a classification of 

the relation schemes and investigate the characte

ristic properties of some special classes of Z- 

translations.

In § 2.3 some subsets of ^  -the set of all 

non prime attributes for a relation scheme S=<^,F> 

are described. They will be used in the reduction
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process for relation schemes.

In § 2.4, the properties of relation schemes 

belonging to the class called balanced relation

schemes, are investigated.

In § 2.5 the problem of key representation will 

be formulated and solved. A general scheme to trans

form an arbitrary relation scheme into a balanced 

relation scheme and to find all its keys will be 

presented too.

Finally in § 2.6 we study some properties of the 

so-called nontranslatable relation scheme.

Most of the results presented in this chapter 

are published in [7 ] , [8 ], [38]
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§ 2.2. Translation of relation schemes 

Definition 2.2.1

Let S=<ft,F> be a relation scheme, where

{A-j I & 2 ' * * * /An}
is the set of attributes,

F = {Li -*■ R± I Li,Ricii; i=1,2,...,m} 

is the set of functional dependencies (FD) and Zgft 

be an arbitrary subset of .

We define a new relation scheme

S =<Í2,F> as follows: 

ii =fl\Z ( = Z) ,

F = {L ±\ Z R±\ Z | (L± ■> R.)6F, i=1,2,...,m}

Then S is said to be obtained from S by a Z-trans- 

lation, and the notation 

S=<fi,F>= S-Z =<ß,F>-Z 

is used.

Remark 2.2.1 1 2

1) Depending on the characteristic properties of 

the class Z chosen, the corresponding class of 

translations has its own characteristic features.

2) From the above definition, it is clear that, 

after the transformation, F can contain the FDs of
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the following form:

(i) 0 -* 0;

(ii) X 0 where Xgft, X=^0;

(iii) 0 -> X where Xefi, X^0.

However, by the algorithm for the finding the 

closure X+ of the subset X&Q, w.r.t.F (see § 1.2), 

we observe that the omission of FDs of the form (i) 

and (ii) in F does not change Kg, the set of all 

keys for S. Later, we will show that all FDs of the 

form (iii) can be omitted too.

Definition 2.2.2

Let S=<ÍÍ,F> be a relation scheme, and K be 

the set of all keys for S. We define a partition 

of fi as follows:

£1̂ 1 ̂  , such that

n (l)r\ft(j) = 0; i^j ; i , j€{0,1,2 }

where

ft(2) = G = fl K;
*«KS

) = (  U K)\G = H\G;
K6KS

SI (o)=iAH.

Sometimes, for the sake of simplicity, the notation
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n = ß(o)| ß(1)| ß(2) |h

is also used.

Definition 2.2.3,

Let ß be the universe of attributes,

XSft, Xs2Q.

we define

X©0tt={XY | Y«Jt}

JltS)Jt={YZ \Y67Tt, Z«0t}
Here XY stands for XuY.

Now, we give a classification of relation schemes 

as follows:

X Q ={<ß,F>|<ß,F> is a relation scheme}; 

it1 ={<ß,F>l <ß,F>6 and ß=LuR} ; 

if 2 ={<ß,F>| < n ,F > e £ C , and L«R=ß};

£  = {<ß ,F>J <ß ,F>«í£ and RoL=ß} ;

if ={<ß ,F>| <ß ,F>«Í£ and L = R=ß} .

F o l l o w i n g  this classifi c a t i o n ,  it is e a s i l i y  seen that:

a ) X 4e % 3 fi « % 0 '

ß ) £ a* % 2 9 £ ‘\ * 2  ;
y )ifY,*44 2 3

Figure 2.1 shows the hierarchy of classes
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Fig. 2.1

The next lemma is fundamental for this chapter.

Lemma 2.2.1

Let S=<ß,F> be a relation scheme,

and

Then
★

S=S-Z, Zeß

★a) X F 
★

Y implies X\Z -y
F★

Y\Z,

b) X + 
F*

Y implies xuz ->
F

YUZ,

where X F Y means (X ->■ Y)*F and s imilarly, X ■f Y 
F

means (X Y)«F .
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Proof
For the part a) of the lemma, we shall prove that

Xp \ Z e (X\Z)~ (2.2.1)

where Xp is the closure of X w.r.t. F. (similarly for 

(X\Z)~) .

By the algorithm for finding the closure X+ of X [13; 

see also § 1.2], with X^o)=X, (X\Z)|o)= X\Z, we have

Xp0)\ Z c  (X\Z)p0) .

Suppose t h a t
(i) (i)X̂ , \ Z e (X\Z) ~ , (2 .2 .2)*F F

we shall p r o v e  that (2.2.2) h o l d s  for (i + 1) as well.

Indeed w e  h a v e

Xp1+1 \  Z = (X^1* U ( U (i) Rj ))\Z =
L j«xF
(L . -> R . )€ F 3 3

= (X̂ ,1 )\ Z) U ( U R.\Z) s
L .gxj,1 33 F

(i)
(L . -+ R. )«F 3 3

c (X\Z) ~ u ( U m  (R,\Z)),
L .fiXp 113 F
(L . ->■ R . )(F 3 3

(by v i r t u e  of the i n d u c t i v e  a s s u m p t i o n  (2.2.2)) .

On the other hand, fro m  L . e X - l ^ a n d  the inductivej F
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assumption (2.2.2), we have:

LjXze x̂ ,l)\ z g (x\z)|l) .

Consequently,

xi,1+1) \ Zs(X\Z)~l)t> ( U  / j \ (R • \ Z) ) S

S (X\Z)|1+1)

Thus (2.2.1) has been proved.

Now, it is well known that

* +X -+ Y <%=*>■ Y e= x_
F F
*Hence, from X £ Y, we haver
Y\ZSXp\Z S (X\Z)~ ,

showing that

X\Z * Y\Z.
F

Similarly, for the part b) of the lemma, we shall 

prove by induction that

X~U Z c (XuZ)p (2.2.3)

By the algorithm for finding the closure X+ 

of X we have

x|o)u Z s (XUZ) p0)

Suppose that

X~l)üZff(XüZ)^l) , (2.2.4)



60

we shall prove that (2.2.4) also holds for (i+1) . 

Indeed, we have:

X^1+1)U Z = xix) U ( U ... (R.\Z))UZ =
F F Lj\ZsX~X 3

(L j\Z — ►R..\Z)eF

= (xirX)U Z) (J M  .(R.\Z) ) c 
L j \ Z«X~ 1 ' J

e  (XuZ) pl) U ( U , . R. )
F L.\ZSXÍX) 113 F

(by the virtue of the inductive assumption (2.2.4)).

On the other hand, from L.\Z»X^i  ̂ and from3 F
(2.2.4) we have

Ljsx|l) U ZS(XuZ)^x) .

Consequently,

X^l+1)u z « (XUZ)^x)U( U n) R.) s
^j\zsXp1 D

£ (XüZ)^,l+1)

Thus (2.3.3) has been proved.
* , +From X t  Y we have Y £ X~ .
F F

Hence

YUZ s  X~ u Z s(XUZ) * ,

showing that

XUZ I YUZ.F
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The proof is complete.

We are now in a position to prove the following 

theorems.

Theorem 2.2.1

Let S=<ß,F> be a relation scheme,

Z*G, S=<ft,F>= S-Z.

Then X is a key for S if and only if XnZ=0 and XZ 

is a key for S.

Proof

We first prove the necessity.

Suppose that X is a key for S. Obviously, Xsf2. There

fore XftZ=0.

Since X is a key for S, we have

x Í n.
F

Taking Lemma 2.2.1 into account, we get

XZ £1Z=^,

showing that XZ is a superkey for S. Assume that 

XZ is not a key for S, then there would exist a key 

X for S such that

Z g X  CXZ
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(The validity of the first inclusion is due to the 

fact ZcG - the intersection of all keys for S) .

Consequently, there would exist X^eX such that 

X = X.Z, X.,nZ=0.

Since X is supposed to be a key for S,

x1z £ n.

Using lemma 2.2.1, clearly

that is

x1 Z\Z | fi\Z, 
F

X. ^ ft. 
F

This contradicts the hypothesis that X is a key for 

Thus XZ is a key for S.

We now turn to the proof of sufficiency. Suppose that

XAZ=0 and XZ is a key for S. We have to show that X

is a key for S. Since XZ is a key for S, we have

XZ | n

By virtue of lemma 2.2.1, we get

xz\z ^ n\z
Consequently (from XAZ=0):

X ft,
F

showing that X is a superkey for S. Assume that X is 

not a key for S. Then, there would exist a key X for

S such that

X <= X and X -t
F

cm
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Applying Lemma 2.2.1, it follows:

xz I n z =n,
where

XZ eXZ.

This contradicts the fact that XZ is a key for S.

Hence X is a key for S.

The proof is complete

*

Theorem 2.2.2

Let S=<ft,F> be a relation scheme, Zgi2, zr»H=0 and 

S =<n,F> = S-Z.

Then X is a key for ? if and only if X is a key for S. 

Proof

First, observe that if X is a superkey for S then 

after removing from X some non prime attributes, the 

remaining part of X is also a superkey for S. In other 

words, if X is a superkey for S, then with all Zsfi ̂  

(equivalently ZftH=0), X'=X\Z is also a superkey for S.

Now we begin to prove the only if part of the 

theorem.

Suppose that X is a key for S.

Obviously

X .
F

1
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By virtue of lemma 2.2.1, we have

XZ I; 5z = n ,F
showing that XZ is a superkey for S. In view of the 

above observation, we find that X is also a superkey 

for S.

Assume that there exists a key X for S such that XcX. 

Applying Lemma 2.2.1, we have

x\z -t n\z
F

or

n .

This contradicts the fact that X is a key for 

Hence X is a key for S too.
S.

The if part.

Suppose that X is a key for S. We have to prove 

that X is also a key for S. We have, by the definition 

of a key

x I ß.
Applying lemma 2.2.1

X\Z I Q \ Z = fi. 
F

Since ZnH=0, it follows ZOX = 0. Consequently

X £ fl,
F

showing that X is a superkey for S.
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Now, assume the contrary that X is not a key for S.
— ^ ■»Then there would exist a key X for S such that XcX. 

Obviously

X t n.
F

We invoke Lemma 2.2.1 to deduce

XZ rí Z. “ ,F
showing that XZ is a superkey for S. %

Since ZnH = 0, using again the observation at the 

beginning of this proof, we find that X is a superkey 

for S, a contradiction.

Hence X is a key for S.

The proof is complete.
t

According to our notation it is easily seen that 

both Theorems 2.2.1 and 2.2.2 can be formulated in 

the form of a single theorem as follows:

Theorem 2.2.3 [33]

Let S=<^,F> be a relation scheme, Z*fi, and 

S = <f5,F> = S-Z.

Then:

(iv K =K~ iff Z*ft(0)o o

(ii Kg = Z iff ZcG.

Basing upon Theorem 2.2.3, in the following we
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investigate only the class of Z-translations with 

Z^0 , Z = Z Z^ , Z^ Z2 = 0, Z^sG, Z2^H-0.

Bearing this in mind, if

S=<ft,F> = S-Z, S=<ft,F>,

then applying Theorems 2.2.2 and 2.2.1 consecutively 

one after another to the Z2~translation and the Z^- 

translation, we have: X is a key for S if and only if 

XrtZ = 0 and XZ^ is a key for S.

For the sake of convenience we use in the sequel the 

notation

<fi,F> Vf <n ,F>

?=(z,z1)
where the meaning of g is obvious. To continue, let 

us recall some results in § 1.4.

Let S=<^,F> be a relation scheme, where 

í2-{A^ ,A 2 , • • • / r 

F-{L± -*■ Ri|Li,R ÍÍ , i — 1,2 , . . . , m}

As usual, let us denote by

m m
L = u L. , R = u R- •

i=1 1 i=1 1
Then, the necessary condition under which X, a 

subset of fi, is a key for S is that

ft\Rsx«(ft\R)i> (L«R) .
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For VgQ, we denote by V=ft\V. It is easily seen that: 

LüR*ß\R«G;

L\R«Q\R«G;

RVLSH

C o n s e q u e n t l y  (R\L)nH=0.

Moreover, we h a v e  the following l e m m a :

Lemma 2.2.2

Let S=<^,F> be a relation scheme, Z*G where G 

is the intersection of all keys for S.

Then (Z+\Z)AH=0.

Proof

Assume the contrary that

(Z+\ Z)nH/0.

Then, there would exist an attribute A6Z+ , AéZ and 

AeH. Consequently, there exists a key X for S = <f2,F> 

such that A6X. Since ZgX, A$Z + and AfiZ, we infer

that

Z«X\A.
Hence X\A -► Z -»■ Z+ ->■ A, with A*X.

This contradicts the fact that X is a key for S 

/see Lemma 1.3.5 in § T.3/. The proof is complete. It is 

worth noticing that Theorem 1.5.3 is only a special 

case of Lemma 2.2.2. From the results just mentioned 

above, the following theorems are obvious.
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Theorem 2.2.4

Let S=<fi,F> be a relation scheme in , 

<ft,F> =<ß,F>- EUR
Then

<ft,F>

where < ^ F > e ^

$ = (LÜR, EUR)
<ft/F>

Proof

As pointed out above, LUR«G. Applying Theorem

2.2.1 to the Z-translation S=S-Z with Z=LUR, we have

<ft,F> , -- ==b> <ft,F>
? = (LUR, LUR)

Theorem 2.2.4 is illustrated by Fig. 2.2.

Fig. 2.2
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Example 2.2.1

Let be given S=<fi,F> with

ß = {a,b,c ,d,e}, F = {c -* d, d e} 

we have LUR = ab

Consider

<i2,F> = <ft,F>-ab.

Obviously

ft={c,d,e}, F ={c -* d , d -*■ e}

It is easily seen that c is the unique key for <fi,F>. 

Hence abc is the unique key for <ft,F>.

Theorem 2.2.5

Let S=<^,F> be a relation scheme in ,

<^,F> = <Í2,F>-(LÜRÜ(L\R) ) .
Then

<ft,F> ■ ...... -> < t i ,F >
$= (CuITu (LSR) , LURU(L\R)J .

with

<i2,F>e^

Proof

It is clear that

Z = LOR U (L\R) =n\R«G.

The Theorem 2.2.5 now follows from applying Theorem



70

2.2.1 to the Z-translation S=S-Z. Theorem 2.2.5 is 

illustrated by figure 2.3.

Fig. 2.3.

Theorem 2.2.6

Let S=<fi,F> be a relation scheme in

<^,F>=<n,F>-(LuRU ( R\L )).

Then

<ft,F> => <ft,F>
f = (LURÜ(R\L) ,LUR)

where <ft,F>
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Proof

As remarked above, R\LeH.•* *"
Let Z = LÖRü(R\L) =Z1ü Z2, where Z^LURSG, Z2=R\L, 

Z2rtH=0. The Theorem 2.2.6 now follows from sequential 

applications of Theorems 2.2.2 and 2.2.1 to the Z2~ 

translation S'=S-Z2 and the Z^-translation S^S'-Z^ 
respectively.

Theorem 2.2.6 is illustrated by Fig. 2.4.

L L

Fig 2.4

Theorem 2.2.7

Let S=<ft,F> be a relation scheme in • £ 0 J 

<fi,F> =<ft,F>- (LÖRÜ(LNR) Ü(R\L) ) .
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Then

<ft,F> --------  ■■ / <ft,F>
£ = (LüRü(L\R) U(R\L) , LURÜ(L\R))*

where

<ft,F> 6

Proof

Let Z = LURU(L\R) U(R\L) = Z ^ Z 2,

where

Z1 =LÜRÜ(L\R) =fl\R«G,

Z2=R\LSH or equivalently Z2nH = 0.

It is obvious that <fi,F> is obtained from <0, ,F>  

by the Z-translation. The method of proof is similar 

to the one used in proving Theorem 2.2.6.

Theorem 2.2.7 is illustrated by figure 2.5.

L = A

. ------ >
£s(l.yft UftW(L\R))

,F> 6 Z£0 <Ü ,F>

Fig. 2.5
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Similarly, we can prove the following theorems.

Theorem 2.2.8

Let S = <S2,F> be a relation scheme in 

<IT2,F> =<fi,F>-(L\R) .

Then

<ft,F> => <ft,F>
f = (L\R, L\R) 

where <fi,F> é ^ 2
Theorem 2.2.8 is illustrated by Fig. 2.6.

,F> 6 2£x

Fig. 2.6.

Theorem 2.2.9

Let S=<ft,F> be a relation scheme in

<n,F>=<ft,F>-(R\L) .
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Then

where

<fi, F>
? = (R\L, 0)

=><ft,F>

<ft,F> € «3fj .

Theorem 2.2.9 is illustrated by Fig. 2.7.

--------------
f  =  (  R \ L j  0 )

<fi,F>e i?a

Fig. 2.7

Theorem 2.2.10

Let S=<fi,F> be a relation scheme in «5^ 

<ft,F>=<ß,F>-((L\R)ü (R\L)).
Then

<fi,F> ----- -- ■ ^  <ft,F>
g =( (L\R) U(R\L) , L\R)
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where

, F> * ^

Theorem 2.2.10 is illustrated by Fig. 2.8.

Fig. 2.8.

Theorem 2.2.11

Let <Q ,F> be a relation scheme in «T. 

<fi , F> ,F> - (R\L) .
Then

<fi,F> = = = = >  ,F>
? =(R\L,0)

where

'<$ .

r*i
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Theorem 2.2.11 is illustrated by Fig. 2.9.

Fig. 2.9

Theorem 2.2.12
rLet <ft,F> be a relation scheme in 

<S,F> =<n#F>-(L\R) .

Then

<ft,F> ^  <ft,F>

where

£ = (L\R, L\R) 

<fi,F> ^ «^1

Theorem 2.2.12 is illustrated by Fig. 2.10.
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nr «V ä /
L : R sJQ.

Fig. 2.10

Combining Theorems 2.2.4 - 2.2.12, we have the 

diagram of translations of relation schemes as

illustrated by figure 2.11.

Fig. 2.11
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\

Now, the following theorem follows from Theorems 2.2.1 

2.2.2 and Lemma 2.2.2.

Theorem 2.2.13

Let S = <Í3,F> be a relation scheme in 

<Q,F> = <ß,F>-{LÜRÜ(L\R) +U (R\L) } .

Then

<S7 ,F> =  -
% - (LURU(L\R) Ü (R\L) , LURU(L\R) )

where

<f2 ,F> * &

Proof

Put Z= LÜRO(L\R| U [(L\R) \  (L\RjJo(É?\L) =

= z,uz2,
where

Z1 = LÜRU(L\R)= Í2\R «G,

Z2 = [ (L\R)\ (L\R)J U (R\L) . 

Clearly, by virtue of Lemma 2.2.2,

Z2nH = 0.

Now, by applying Theorem 2.2.2 to 

<ft',F'>=<ft,F>-Z2, 

and then, Theorem 2.2.1 to

<fi,F>= ' ,F'>-Z1,

so 
i
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the proof of Theorem 2.2.13 is immediate.

Theorem 2.2.13 is illustrated by Fig. 2.12

0

^ = (OJRU(L\R)+U (R\L) , LURU(L\R) ) 

<ft,F>é <?T,F> 6

Fig. 2.12

From the just mentioned results, we have the following 

diagram of translations of relation schemes (Fig. 2.13)

Example 2.2.2

Let ft = abhgqmnvwkl,

F={a b , b h, g q, kv -*■ w, w vl}

we have

L=abgkvw; R=bhqwvl; R\L=hql;

L\R=kga; (L\R)+ =kgabhq; LUR=mn;
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(R\L) U (L\R) +U (LUR) = mnkgabhql .

<fi,F>=<íí,F>- mnkgabhql =

= <wv,{v -* w, w v } > •

It is easily seen that v and w are keys for <ÜF>. 

On the other hand

(LUR) u (L\R) = mnkga.
Consequently, mnkgav and mnkgaw are keys for <ft,F>.

Fig. 2.13
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§. 2.3 Subsets of

By the nature NPC of the problem [11], in opposi

tion to G, we have not got the explicit expression for

The aim of this section is twofold. First we shall 

prove that, after applying a Z-translation to a rela

tion scheme S=<fi,F>, we can delete in the obtained 

relation scheme S =<ß,F>=<ß,F>-Z all FDs of the form 

0 — ►X (X^0), while preserving Kg - the set of all keys 

for S.

Secondly, we present a method for extending a given 

subset of to a greater one. In doing so results

in § 2.2 can be improved.

We begin with showing the following lemma 

Lemma 2.3.1

Let S=<ß,F> be a relation scheme.

Then

the set (equivalently, for H - the union of all

keys for S) . Recall that ß^°^=ß\H is the set of all

non-prime attributes for S.

However in §1.4 it is shown that

R'=R\Leß(o) .

(o)
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Proof
II

If A*R then there exists (L^ R^)6F such that

A4R^, A6L^, L^sG. (Recall that F is in natural reduced 

form, i.e. R^ = 0^,^ = 1 ,2 , . . . ,m, and 

L ±^Lj if i^j).

Let K be an arbitrary key for S. We shall show 

that A6K. Assume the contrary that AéK. From AiL^ 

and L.eK, we havel* '
LifiK\{A}= K' .

Obviously:

L. R . * { A }l x * 1

K' ■* L.l
Consequently

K' * {A}
★Combining with K' -> K ' , we get 

K' * K '(J{A } =K.

This contradicts the fact that K is a key. 

Hence, VKeKg:A*K, i.e. Aftf2(o).

Corollary 2.3.1
U R.s R.c^(o)

L.=0 1 L.cG 1x x~
The proof is obvious.

■

This corollary shows that we can eliminate from a



83

relation scheme all FDs of the form 0 R . , whilel
preserving its set of all keys.

The following lemma gives us a constructive way for 

extending a given subset of .

Lemma 2.3.2

Let S=<ft,F> be a relation scheme.

For every XgG, Y , we have

(XY)+\XSÍÍ(0) .

» Proof

If Aé(XY)+\X then A«(XY)+ and AiX 

Suppose that A .

Obviously AÄY.

Since Ae(XY) + , so XY -*■ A.

From a Sx , a Sy , it follows that

AeXY.

Since A?i2^°^ , there exists a key K»Kg such that A*K. 
Let K ' =K\{ Aj , K'aK.
It is clear that

YXK' * K ' { A } = K,

showing that XYK' is a superkey for S. After removing 

from XYK' the subset YgQ^°^, XK' is still a superkey

for S.
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On the other hand, from X«G«K, AsX, we have

X*K\{A}=K',

showing that XK'=K' is a superkey for S.

This contradicts the fact that K is a key for S. 

Hence we must have A«i^°^ . Since A is arbitrary, so

(XY) +\ xeft (o) .

The proof is complete.

Corollary 2.3.2

(GR') +\ G«^ {o)

Proof

By direct use of Lemma 2.3.2 with 

X=G, Y=R'=R\Lgft(o).

Example 2.3.1

We consider one example in which
R'e (GR')+\G«Q (o)

and so, showing that our Lemma 2.3.2 is non trivial. 

Let

fi = 1 2 3 4 5 6 7 8 9  

F={137 + 2, 27+ 134, 1238+ 49, 7 +  23,

1458 + 236 , 368 + 159}

we have:
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6
L = U  l . = 1 2 3 4 5 6 7 8  

i=1  1
t

R = Ü R h = 1 2 3 4 5 6 9 ;  R ' = R \ L = 9
i=1 1

G = a \ R  = 7 8

( G R ' ) += ( 7  8 9 ) + = 7 8 9 1 2 3 4 .

(GR' ) +\  G = 12 3 4 9 0 9  .

Results in this section will be used in the next 

section to improve the results in § 2 .2 .
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§ 2.4 The balanced relation scheme

Definition 2.4.1

The relation scheme S=<^,F> is called balanced 

if the following conditions hold:

TW 1*1
(i) U L.= U r . =il;. , l . , l1=1 1=1

(ii) L^R. = 0 , V is 1,2 , ... ,m;
(iii) \/i, j=l,2, . . . ,m, i^j implies .

where

^ A^ }

F — { L R± |L± ,R Q, r

In other words a balanced relation scheme is a 

relation scheme in and in the natural reduced

form.

From Definition 2.4.1, we can prove the following 

simple properties of a balanced relation scheme (b.r.s.)

Proposition 2.4.1 * 1

Let S = <£2,F> be a b.r.s.

Then:

1. G=0;

<1 then Kg={0 };2. If ß
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3. 0€KS iff I Kg Î 2 ;

4. VZsíi, S-Z is a b.r.s.

Proof

1. By the definition of a b.r.s., we have

G=f2\R =fi\fi=0.

2. If ß=0, it is obvious that Ks={0}.

The c ase Í2={A}.

From (i) (def 2.4.1), we have

R=L=Í2 = {A} .

F r o m  (ii) (def. 2.4.1), F conta i n s  o n l y  two F D : {A}-»- 0 

an d  0 {A}, showing t hat 0 is the u n i q u e  k e y  fo r  S.

3. Suppose |Kg|^2. Then 06Kg, since otherwise 0 

will be the unique key for S.

Conversely, suppose that 0?Kg . Then Kg has at least 

two elements, since otherwise, if K ={K} then from 

G=K and G=0 it follows that K=0, a contradiction.

4. This property is straightforward.

Theorem 2.4.1

Let S=<ß,F> be an arbitrary given relation 

scheme (not necessary be in natural reduced form),

-{A^ ,^ 2  , . * . ,A^} ,

F={L± -»■ Ri |Li,Rign, i=1,2, . . . ,m} .

where
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Then there exists a b.r.s S=<fi,F> such that 

K = G<Bk ~, where G is the intersection of all keysO O
for S.

Proof

Without loss of generality, we can always assume 

that, for the relation scheme S,

L.nR.=0, i=1,2,...,m.

(Otherwise, we replace S by S^=<fi,F^>, where 

F 1 = {Li -> Ri\ L i |(Li -v Ri)éF, i=1,2 , . . . ,m} .

It is easy to show that F+=F* [13] and therefore

v v
We construct the b.r.s. as follows: 

1 . Compute m.
= U L . ; R » U r . ; R ' =R\L ;

i=1 i=1

G = fl\R ; Z = (GR')
(It is worth noticing that

Z=(GR')+ = Gu[(GR') +\ G]
= Z,u z2 ,

where = G,

Z2 = [ (GR') \  G]e^ (° 
(see § 2.3)).
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Now, consider the relation scheme

S' = <fi', F ' > = S

where =fl\z ,
F' = { L' — »Ril l ] i=1 ,2 , . . . ,m j

with Li =l : L . \ Z , Ri = R.\Z 1* ' 1 1
It is obvious that:

Li°Ri = 0 ' i = 1 / 2 t • • • /m »
V = U  Li = L\Z and W = \J  R' = R\Z. 

i=1 1 i = 1 1
2. We shall prove that: V«i2'sW«.V to deduce that

v =n'=w. '
Indeed, if AftV, then A«L and AiZ .

It is obvious that Aéft.

Consequently A*ft\Z =fi'.

Hence Vq Q, ' .

Now let A«Q'=ft\Z.

It follows that A*Z.

Since A*Z= (GR')+?GR', so

ASG and AÍR'.

By virtue of G=fi\R, we find that AéR.

From A6R and A6Z, we deduce AeR\Z. Therefore ÍJ'gW. 

Finally, if AfeW = R\Z, then A*R and A6 Z . Arguing as 

above, we get

A6G and A6R' (= R\L) •
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Since A6R and AtR\L, we deduce AeL.

From A«L and AftZ, we have AeL\Z, showing that WcV.

Thus we have shown: L'=R'=ii'.

3. If there are several FDs in F ' which the same left 

side, we can replace them by a FD which has the left 

side as the common one and its right side is the union 

of the right sides of the relevant FDs.

It is easy to see that the above transformation 

does not change the closure of F', and thus, the set 

Kg, too.

Denote by S, the relation scheme obtained from S' 

after performing the above substitutions. It is clear 

that S is the desired balanced relation scheme, and 

by theorem 2.2.3

Ks = OftCj..
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§ 2.5. The problem of key representation

First, we give another characterization of 

Z-translation of relation schemes, formulated in form 

of Theorem 1.1 in [33].

Here we provide another proof of this theorem.

Theorem 2,5.1.

Let S=<ft,F> be a relation scheme, and ZgQ.

If S = S-Z =<íí,F>, (5=Í1\Z = Z) then for every X*2

we have

Z (X)| = (ZX)p . (2.5.1)

Formula (2.5.1) expresses the róíatiönship 

between closures in the source relation S and in 

the target one S.

Proof

F i r s t  we p r o v e  that (ZX)*sZ(X)~ .
+ ^L e t  A€(ZX)_ •r

If AeZX then obviously A€Z(X)~ . We have only to

consider the case ASZX, i.e. A6Z and AfcX.

From A«(XZ)* , we have
ZX t, A . (2-5.2)F

By virtue of Lemma 2.2.1, (2.5.2) implies

ZX\Z ^  A\Z,
F
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X f  A,

showing that Aft(X)~.

Hence AftZ (X)~

Thus we have proved that 
(ZX)pSZ (X)~ .

To complete the proof, it remains to prove that

Z (X) ~ fi(ZX)p

Let A ft Z (X)~ .r
Just like the above reasoning, we have only to 

consider the case

AftZX, i.e. AftZ and AftX.

From AftZ (X)~ and AftZ we getr

A 6 (X)~ , i.e.

X * A. (2.5.3)
F

By virtue of Lemma 2.2.1, (2.5.3) implies
•k

ZX t  z{a },r
or, equivalently

ZÍ A} S ( ZX) p , 

showing that Aft(ZX)^ .r
Thus Z (X)~ S (ZX)p .

Combining these two results we get the required
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equality (2.5.1).

The proof is complete.

Definition 2.5.1

Let S=<fi,F> be a relation scheme, where

£1— { A-| t  • • • r A ^  }

F={Li -*■ R I i= 1 ,2, . . . ,m}.

Let us denote by

®£g={Li |i=1 ,2 , . . . ,m},

the set of all left sides of F.

Construct the directed graph as follows:

(1) is the set of nodes of |^g ;1) £ s i!
(2) (L.,L.) is an arc of iff L .sLi j  j b  i and

there is no L, such that L .»L, »L . .l k j

L e tm Cg is the set of all terminal nodes of g , i.e., 

nodes for which the outdegree is equal to zero. The 

members ofi£g are called minimal left sides of S.

Lemma 2.5.1 * 1

Let L. be an arbitrary element of JÍT , and 

S= S-(L.)p .

Then the elements of L OK~ are superkeys for S.1 O

Proof

Let Z= (Li)p Then VK€Kg ,
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(L.K)p = ((L.) + K)p = (ZK)* =Z (K)~ =
= ZZ =fi,

(by virtue of Lemma 1.3.1 and Theorem 2.5.1), showing 

that L^K is a superkey for S.

Theorem 2.5.2. (key representation). l

Let S=<^,F> be a relation scheme.

Then each key for S can be represented in the form:

K = L . K i /
where L. is a minimal left side of S, i.e. L.**£ andl i S
K is a key for the relation scheme S = S-fL.^)* .

Proof

Let K be any key for S, i.e. K«Kg .

If K=ft then, of course, K contains all elements offf8 . 

If , so KeK* =ß. That means, there exists Lr J o
such that L ^ K  and R_.\K^0. (This follows from the 

algorithm to find the closure of a set of attributes 

w.r.t . F) .

Starting from the node L^ of the graph , we 

move along the arcs until a node L^ftüg is reached. 

Obviously L^sL^. Thus we have proved that:

VK.KC , such that L .fiKÍD 1 O 1
Let Z=(L±)f .
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If Z= fi, so, by lemma 1.3.2, is a key for S and we

have K=L^0. But in that case S=S-Z=S-fi=<0,(0— > 0 } > ,

and clearly 0 is a key for S.

If Ze p we can write

K= L± IK, i.e. K=L.üK, L ^ K  =0.

We shall prove that K is a key for S.

By Lemma 1.3.3 we have 
. +

(Li} Fn (K\Li) =ZO K  = 0, (K=K\ L ±)

C o n s e q u e n t l y

KgZ =fi.

Moreover, again from Lemma 1.3.3,

K=K\L.=K\(L . ) *  .-L ± r
Therefore, by Lemma 2.2.1, K is a superkey for S.

Now, suppose that there is ÍÜ'eK and K' is a key for S. 

Again, by Lemma 2.2.1, ZK'=(L.)* K' is a superkey for S.
1 r

Thus, using Lemma 1.3.1, we get

« =(z k ')f =((l .) + i?')+= (l .k '»;
showing L^K' is a superkey for S. On the otherhand it is 

clear that L.K'eK.l
This contradicts the fact that K is a key for S. Hence 

K'-K, i.e. K is a key for S. The proof is complete.

Remark 2.5.1

Lemma 1.3.6 in § 1.3 can be considered as an immediate
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consequence of Theorem 2.5.2.

Remark 2.5.2.

In general, the converse of Theorem 2.5.2 is 

not true. It is quite possible that there exists 

L.eüfc that is not contained in any key for S, as 

shown by the following example.

Example 2.5.1.

Let be given

ß= 1 2 3 4 5

F={24 •* 35, 15 -*■ 4, 53 + 124, 25 -> 134}

we have

={24,15,53,25}.

The graph consists of all disjoint nodes (Fig 2.14)

24 15 53 25

Fig. 2.14

Direct computation shows that:

(24) += (53)+= ( 2 5) + =Q .

Therefore 24,53 and 25 are keys for S. On the other 15

(15)+=154/ n.
hand:
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It is clear that 15 is not contained in any key for 

S because 152 contains the key 25 and 153 contains the 

key 35.

Corollary 2.5.1

Let L . * £  j S=S-(L. ) t  .-L o 1 r

If K*L.#K£1 o
minimal left

and except , K does not contain any other

side L .*«2̂  with j^i, then K is a key for 3 ö
S .

Proof

By virtue of Lemma 2.5.1, K is a superkey for S. 

Suppose that K'gK and K' is a key for S. We shall 

prove that K'=K. Since L^ is the unique element of 

Í  , contained in K, so K' contains at most only L..

If K' does not contain L. thenl
(K')p = k '

Thus K' must contain L..l
We have K ' = L^ K '.

Since K6L.©K~, K=L . K , K*K~.3 - 0  1 o
From L.K'=K'«K=L.K and L ,nK' = L.nK = 0, we deducel i ,  l l
K'eK. Since K' and K are keys for S, so

K'=K. Thus K ' =K.
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We are now ready to present a general scheme 

to transform an arbitrary relation scheme (in natural 

reduced form) into a balanced relation scheme and to 

find all its keys.

Let be a given relation scheme

S = <ft,F>

where

ft={A../A

F={Li -* Ri |Li»Ri Sßfi=1 r2
Step 1

m m
Compute L= U  L .; R= U R •;

i=l i=1 1

R'=R\L; G=ft\R;

Z = (GR') +

Step 2

Define S=<ft,F>= S-Z

where

ft =ft\Z;

F={Li\Z -*• R±\Z I i=1 ,2 / • • • r m} .

Eliminate from F all FDs of the form:

0 + 0,0 -* X,X -> 0 (X̂ 0)
Thus we obtain the b.r.s S=<ft,F>.
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Step 3

Find all keys for S.

Construct:

jjf g the set of all left sides of F; the graphing;

ÜC~ - the set of minimal left sides of F.

Let g ={L^ t ^ 2 ' *’* ' } *
Compute Z. = (L.)~ , i=1,2,...,k .1 1 r
If Z . =ß then L . c K~ .l l ̂  S
Denote by I={j|Zj^ fi} S {1,2,. . . ,k)

For Z . ,consider the b.r.s.3
$. = s-z. y jei .

3 3

Repeat the step 3 for the relation schemes % ^ . Suppose 

that at some moment we found all keys for , j*I.

= {K(j) ,K^j) , . . . ,K^j)}, yjél.
jKV

To complete the set Kg-, we perform as follows:

Consider sequentially the sets , for each jél,

t 1 (2  ̂»••

(i) If L.K^-^ contains a key already found of K~, so we3 t a
omit it;

(ii) If L.k | ^  contains no element of ^ ~  but L. then3 t a j

LiK{3)« KS •
(iii) Otherwise, use algorithm 3 in §1.8 to check 

whether L .K^-^ is a key.3 t
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Step 4

Compute Kg = Gé&g •

Remark 2.5.3.

Alternatively, to find all key* for S (Step 3), 

we can use algorithm of Lucchesi and Osborn [11 ] or 

algoritnm of M.C. Fernandez [19] for instance.

Example 2.5.2

Let be given S=<ft,F>, where 

0 = 1 2 3 4 5 6 7 8 ,

F = { 13 -* 27, 2 ->134, Ő -> 746 , 145fi -> 236, 213 -> 4 

36 -> 157}

Step 1 L = 1234568 ; R = 1234567 ; R' = R\L *7;

G =01R = 8 ; Z = (78) + = 78.

Step 2 3 =<ft,F>, where 0=0\Z = 123456,

P ={13 -*• 2 , 2 -*■ 134, 213 -> 4, 145 -> 236 , 36 + 15}. 

Step 3 Find all keys for S.

^g={13, 2, 213, 145, 3 6 } ; ^ s={2, 13, 145, 36}

The graph is shown in Fig. 2.15

Fig. 2.15
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We have:

( 3 6 ) J = 1 2 3 4 5 6 = 0 36ftKg ; « 1 4 5 ) J = 0 s = * 1 4 5 « K g

< 1 3 ) f = 1 2 3 4  t fi; ( 2 ) ~  = 1 2 3 4 + n.

Since <13)~ = <2 > ; , we have only to consider the b.r.s

$ =  S- ( 13) ~ =< 56,{5 -*• 6 , 6 -> 5} > .

It is easily seen that K<j*={5,6}

Now, consider sequentially the elements of the two foil 

wing sets: 13<£)Ky ={ 135, 136} and 2<S>
Since 136g36 being a key already found, so 136 Í K Ő . 

Since each of 135, 25, 26 contains exactly one minimal 

left side of S, so they are keys for S.

Thus Kg={36, 145, 135, 25, 26}

Step 4 K = G ® K S ={368, 1458, 1358, 258 , 268}.

={25,26}.
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§ 2.6. Nontranslatable relation scheme

In this section we investigate some properties 

of the so-called nontranslatable relation scheme.

Definition 2.6.1

Let S =<ft,F> be a relation scheme.S is called 

translatable if there exists two subsets Z,Z^gO such 

that:

(i) Z Z ^ Z

(ii) X is a key for <n,F> iff XnZ = 0 and XUZ^ is a 

key for <ft,F>, where <n’,fr> = <ii/F>-Z .

Otherwise S is called nontranslatable.

Theorem 2.6.1

Let S = <C3,F> be a translatable relation scheme 

with Z and Ẑ  defined as above (def. 2.6.1)

Then

H\G = M\G

where H and G (similarly for H and G) are the union 

and intersection of all keys for S (S) respectively.

Proof

Let <n,F>=<n,F>-Z .
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Since X is a key for <f2 ,F> iff XrtZ = 0 and XuZ1 is a 

key for S, it follows that:

H=HUZ1, Z ^ H = 0
G=GOZ1, Z ^ G = 0

Hence

H\G = (HoZ1)\ (GüZ^) =

= ( (HUZ1 )\ Z1 )\ G = H\G.

(by virtue of HOZ^=0).

Combining Theorems 2.1.1) 2.1.2 with Theorem 

2 .6 .1, the following theorem is immediate.

Theorem 2,6.2.

Let S = <£1,F> be a relation scheme.

<ft,F> is nontranslatable iff H=0 and G=0.

Theorem 2.6.3.

Let S=<i2,F> be a relation scheme,

S = <fi,F> =<íí,F>- (GOH) 

where H =tt\H ..

Then:

a) <n,F> £  <ft,F>;
? = (GUH,G)

b) <i2 ,F> is nontranslatable;

<n,F>€^C4 .c)
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Proof

Let Z = GOH = Z ̂ U Z 2 , 

where Z^G, Z2 = H (clearly Z2nH = 0) .
Hence part a) of the theorem is obvious. To prove b) 

we have only to show that

G = 0 and H =jj .

From a) it is clear that X is a key for S iff XAG = 0 
and XUG is a key for S.
Therefore,

G = GUG, GAG = 0,
H = GUH, GAH = 0.

Hence

G = G\G = 0,

and

H = H\G
On the otherhand, we have

n =n\(GUH) = (n\H )\g =
= H\G = H.

To prove c) we have to show that 

L = R = ÍÍ /

where L (R) is the union of all left (right) sides 

of all FDs in F respectively.
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It is known-[see § 1.5] that 

n \ R = G.

Since G = 0, we have R = Q. To complete the proof, it 

remains to show that

L = Í2 •

Were this false, there would exist an A jfi\L. Since 

R =fi, we have

A 6 R and AÍL.

From n = H, there exists a key X for S such that A 6 X.
★ -VObviously X -* fl.

Since A 5L, it follows from lemma 1.3.4, that 

X\A * n\A.

From A 6 L, it follows that 

L S 0 \ A .

From this

X\A * n\A * L * R * A.

This contradicts the fact that X is a key for S.

(see § 3.1, Lemma 1.3.5).

Hence L = n .

The proof is complete.

From the proof of c) we conclude that all nontrans- 

latable relation schemes are in •



106

Theorem 2.6.4

Let S =<fi,F> be a relation scheme in «3^, 

satisfying the following conditions

(i) Ljrt = 0 , i=1,2,...,m;

(ii) For each L^, i=1,2,...,m there exists a 

key X. such that L.cX. .1 l 1“ l
Then < t i,F> is a nontranslatable relation scheme.

Proof

By virtue of Theorem 2.6.2, we have to prove 

that H =Q, and G = 0. In fact, from <fi,F>6 , we have

L = R=0.

From the hypothesis of the theorem, we get: 
m m

fi=L= U  L. c U  X . c= H*n. 
i=1 1 ~ 1=1

Consequently H=0.

On the other hand, from G=0\R, and i2=R, we have G=0.

The proof is complete.
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3. STRUCTURE OF MINIMUM COVERS 

§ 3.1 Introduction * So

In most studies concerning covers for functional 

dependencies (abbr. FD), we usually start from a set 

F of FDs over

, A 2 , « . • ,A^} f
F = {Li Ri |Li,Ri fifl, i=1,2,...,m)

and try to find a shorter representation for F, i.e. 

a new set F' of FDs with either a fewer number of FDs 

or a less total size such that F and F' imply the same set 

of FDs.

So doing, several algorithms concerning relational 

databases which start with a smaller cover will run 

faster.

The nonredundant and minimum covers have been in

vestigated in depth by different approaches in [21] ,

[22] , [23], and several useful properties of them 

have been proved and used in various problems in the 

logical design of databases.

But few attention is paid to the study of invariants 

concerning the attribute sets of the left and right
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sides of these covers. Moreover, as pointed out by D. 

Maier [ 2 2 ] , for minimum covers the problem is what sort 

of transformations can be found for right sides of FDs. 

This problem was not investigated.

In § 3.2 we define several kinds of minimality for 

covers and recall some basic results.

In § 3.3 we establish the relationship between the 

notions of direct determination and FD-graph. Some well 

known and new results as well concerning direct deter

mination will be proved.

In § 3.4. we prove some additional invariants for 

covers and nonredundant covers.

Finally, in § 3.5 we study the structure for right 

sides of FDs in minimum covers. And basing upon these 

results, an algorithm for finding a "quasi optimum" 

cover (in the sense of economical memory requirement) 

is proposed.



§ 3.2 Basic definitions and results

As usual, we will only consider sets of FDs in 

natural reduced form (see § 1.3) and we assume that 

all attributes are chosen from some fixed universe n.

Definition 3.2.1

Two sets of FDs over n

F 1 ={l |1) -* r |1) I i=1,2,...,m1}

and
p = rT (2) _ p (2) I j _ 1 o m ,

are said equivalent, written F1 * F 2, if F^ = F^ •

If F.| 5 F2 then F^ is a cover for F^ with i,jé{1,2},

Definition 3.2.2

A set F of FDs is nonredundant if there is no 

proper subset F' of F with F ' s  F.

If such F ' exists, F is redundant. F^ is a nonredundant 

cover for F2 if F^ is a cover for F2 and F 1 is non- 

redundant.

Let F be a set of FDs over and let X -*■ Y be a 

FD in F. Attribute A is said extraneous in X ->- Y if
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(F \ (X -v Y}) U ÍX\A -> Y\A}) + = F+ .

Definition 3.2.3. [24]

Let F be a set of FDs over ft and let X + Y be in 

F.
X •> Y is left reduced if X contains no attribute A 

extraneous in X -> Y.

X + Y is right reduced if Y contains no attribute A 

extraneous in X -> Y.

X Y is reduced if it is left-reduced and right 

reduced and Y / 0 .

A set F of FDs is left reduced (right reduced, 

reduced) if every FD in F is left reduced (respectively 

right-reduced, reduced).

Definition 3.2.4

Two sets of attributes X and Y are equivalent 

under a set of FDs F, written X «—»Y, if X + Y and Y -> X 

are in F+ .

Definition 3.2.5. [22]

Given a set of FDs F with X -> Y in F+ .

X directly determines Y under F, written X *  Y, if 

X + Y 6 [f \ E (X)] + , where E„(X) is the set of all FDsr r
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in F with left sides equivalent to X.

That is, no FDs with left sides equivalent to X are 

used to derive X — >Y.

Lemma 3.2.1 [13]

Given sets of FDs F^ and F2 over n.

F ^ » F 2 iffF^ftF2+ and F2 5 F^ .

Let |T| denote the cardinality of a set T. Let EF 

be the collection of all non empty ED (X)'s. (Thatr
is, X is equivalent to some left side of an FD in F). 

Lemma 3.2.2 [21 ]

If G and F are equivalent, nonredundant sets of FDs 
and there is an FD X ->W in G, then there is an FD Y -*■ z 
in F with X<->-Y under F.

Definition 3.2.6

A set of FDs F is minimum if there is no set 

G with fewer FDs than F such that G*F.

Definition 3.2.7

A set of FDs F is optimal if there is no set 

of FDs G with fewer attribute symbols such that GiF. 

(Repeated symbols are counted as many times as they

occur).



112

Theorem 3.2.1 [22]

Given equivalent minimum sets of FDs F and G, 

|E (X) t = |Eq (X) | for any X.

Thus the size of equivalence classes in

for all minimum F with the same closure

Remark 3.2.1 [22]

Let F and G both minimum, and look

and Eg (X)

e f (X) e g (X)

X 1 " X 1 Y 1 - Y 1

X 2 " X2 
•

Y2 - Y2

X

•

-V X Y + YP P P P

X )Then for every X. in e „ ( X ) there is exactly

one Y. in e_(X) such that X. v Y . and Y. -v x . .J G i d  d i
This relationship allows X^ to be substituted for

Y. without changing the closure of G and Y. for X.

in F since one left side can still be derived from

the other after the substitution.

Moreover we can arrange (number the Fds) such that
x_______________ ______________________________ ____________.
e_,(x) is the set of left sides of FD in E (x) .F s t

y
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the following relationship between e„(X) and e. (X)r Cjx
holds:

X ^ — i—p Y^ Vi = 1 , 2 , . . . ,p .

Thus/without loss of generality, in studying the 

structure of right sides of FDs in minimum covers, 

we can assume that E„(X) and E0 (X) have ther
following form (i.e. e„(X) = e„(X)).r (jj

Ef (X) Eg (X)

where F and G are equivalent minimum covers.

Theorem 3.2.2. [25]

Let F = {X^ -*■ Y^| i=1,2,...,m} be a set of FDs 

over n, and S' be the set of all FDs X Y such that

there is a sequence of FDs in F

{Xi ^ Yi ' 3=1/2,...,k, k>0}
j j

with
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X 8 X .

XY. a X.
X1 x2 

• • •

XY. Y ...Y 3 Y .
11 * 12 xk

Then ? ”is the smallest full family of FDs that 

contains F, and each FD X -»■ Y^ , Y^ s  Y^ is
j j j j

said to be used in the Armstrong's derivation sequence 

in F for X -*■ Y.

Definition 3.2.8 [23]
Given a set of FDs F on n , the FD-graph Gp=<V,E> 

associated with F is the graph with node labeling 

function w: V P(n) and arc labeling function 

w': E -* {0,1} such that.

(i) for every attribute A & Q , there is a node in V 

labeled A (called simple node) ;

(ii) for every dependency X ■+ Y in F where |x|| ^1, 

there is a node in V labeled X (called a compound node)

(iii) for every dependency X -> Y in F where Y=A^ . . .A^ 

there are arcs labeled o (full arcs) from the node 

labeled X to the nodes labeled A^,...,A^;

(iv) for every compound node i in V labeled A^...A^
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there are arcs labeled 1 /dotted arcs/ from the node 

i to all simple nodes (component nodes of i) labeled 

A i , • • • , Â . .
The set of full arcs /dotted arcs/ is denoted 

E0 (E,).

Definition 3.2.9 [23]

Given an FD-graph =<V,E> and two nodes 

i,j6V, a (directed) FD-path <i,j> from i to j is 

a minimal subgraph Gp =<V,E> of Gp such that i,j*V 

and either (i,j)«E or one of the following possibilities 

holds:

(a) j is a simple node and there exists a node k such 

that (k,j)6E and there is an FD-path <i,k> included 

in G„ (graph transitivity).r
(b) j is a compound node with component nodes m^,...,rar 

and there are dotted arcs (jfm^)...,(j,mr) in Gp 

and r FD-paths < i , m ^ < i , m r> included in Gp 

(graph union).

Definition 3.2.10. [23]

The closure of an FD-graph Gp=<V,E> is the g-raph 

G^ =<V,E+>, labeled on the nodes and on the arcs, wherer
the set V is the same as in G,.,, while the set 

E+=(E+)qu (E+)  ̂ is defined in the following way:
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(E+)1 = {(i,j)|i,jéV and there exists a dotted 

FD-path <i,j>};

(E+)o ={(i,j)|i,jeV, (i, j) € (E+)1 and there exists 

a full FD-path <i,j>).

Definition 3.2.11 [23]

Two nodes i,j in an FD-graph are said equivalent 

if the arcs (i,j) and (j,i) both belong to the closure 

of G,-,. Fur thermore a node i of G_ is said to ber r
equivalent to a node j of G^ where G=- is a cover of Ĝ ,j.' r jl

(i.e. F+=F+ ) if i,j are equivalent in some cover of Gp . 

Theorem 3.2.2 [23]

Let G_ =<V,E> be the FD-graph associated withr
the set F of FDs, and let G^ = <V,E+> be its closure.r
An arc (i,j) is in E+ if and only if w(i) w (j) is in 
+F .

Theorem 3.2.4 [23]

A nonredundant FD-graph GF=<V,E> is minimum if and 

only if it has no superfluous nodes.

Recall that a node i6V is superfluous if there 

exists a dotted FD- path <i,j> where j is a node of 

V equivalent to i.
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§ 3.3 Direct determination and FD-graph

As shown in § 3.2, the notion of direct determi

nation was introduced by D. Maier [ 2 2 ] to study the 

structure of minimum covers. Using direct determination 

he showed it is possible to find covers with the smallest 

number of FDs in polynomial time.

In [23j , G. Ausiello et al. presented an approach 

which is based on the representation of the set of FDs 

by FD-graph (a generalization of graphs). Such a represen

tation provides a unified frame-work for the treatment 

of various properties and for the manipulation of FDs. 

However, the notion of direct determination in its 

relationship with FD-graph is not explicitly presented.

In this section, we establish the relation between 

FD-graph and direct determination, and prove some well- 

known and new properties concerning direct determination. 

First it is worth giving a few comments on the definition 

of an FD-graph (Definition 3.2.8).

Remark 3.3.1

The Definition 3.2.8 is reasonable and concise 

in the sense that the FD-graph G_ includes all ther
"meaningful parts" of the closure of the set F of FDs.



118

On the otherhand, with the FD-graph, we can provide 

a simple and unified treatment of all properties of 

sets of FDs.
Following the definition of a FD-graph, it is 

clear that every compound node has at least one out

going full arc.

However, in [23,p.755j we found the following 

observation:

"Finally we may observe that by definition of FD-path, 

a compound node without outgoing full arcs can only be 

either a source or a target node of FD-paths to which 

it belongs"!

Part (ii) of Lemma 1 f23,p.757j touches the same 

problem. Let us see it:

"(ii) If G j. be a subgraph of Ĝ . such that all 

arcs in E-E are dotted (i.e., G^may contain compound 

nodes not in G£ but no more full arcs) and (i,j) is 

in (E+) o [(E+)1J, then (i,j) is in (E+)Q [(e "1")^". 

(where i,j are two nodes belonging to both V and V) .

It is obvious that, strictly following the 

Definition 3.2.8- there is no possibility that Gj- may 

contain compound nodes not in Gg but no more full arcs. 

And it is easy to show that under these conditions the
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subgraph coincides with G £ .In that case, part (ii) 

of Lemma 1 is trivial.

How to overcome these difficulties? A natural way is 

to think that a FD-graph G=<V,E> associated with F isr
defined by Definition 3.2.8 precisely to: an arbitrary

finite number of different compound nodes which do not 

correspond to the left side of any FD in F, together 

with the dotted arcs from each of them to its corres

ponding component nodes.

In out opinion, the view just presented above must be 

mentioned explicitly after introducing the' definition 

of the FD-graph.

In so doing, according to the necessity, we can 

freely add to an FD-graph some new compound nodes 

without outgoing full arcs if it makes easy to prove 

a certain required property.

In fact, this technique was often used by the 

authors of [23].

By the above reasons, it would be better to 

remove part (ii) from Lemma 1 in [23], changing it 

into a remark.

Definition 3.3.1

Given an FD-graph Gp=<V,E> and a node i*V with
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at least a full outgoing arc. A strong component of 

Gp with representative node i is a maximal set of 

pairwise equivalent nodes which contains i, denoted 

by SC (i) .

Notice that every node in SC(i) has at least one 

full outgoing arc.

The following lemma is obvious.

Lemma 3.3.1

Given an FD-graph G=<V,E>, a node ifeV, itsr
corresponding strong component SC(i) and two nodes 

j, k such that j is equivalent to i . (j not necessarily 

belongs to SC(i), i.e. j can be a compound node with

out outgoing full arc that we add it to the FD-graph. 

The same situation can happen with the node k too).

Then w(j) w(k) if and only if there exists

a dotted FD-path <j,k> containing no full outgoing arc 

from any node of SC(i). In other words, the dotted 

FD-path < j,k > contains no intermediate nodes that are 

nodes in SC(i). In that case, for sake of simplicity, 

we write < j -* > k >

Example 3.3.1

Í2 =Given ABCDEIH
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F= {A -»■ BCH, BC -»■ A, AD -*■ EI, EA ID}

It is easy to verify that

Ep (AD) = {AD -*■ EI, AE -* DI}

and

BCD «-*AD

The corresponding FD-graph with an added noder
BCD (without outgoing full arc) is shown in Fig. 3.1

Fig 3.1
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SC (i ^ where w (i^

w (i2)

We find that

AD

EA.

BCD * H

BCD * AD

Lemma 3.3.2

Given an FD-graph Gp =<V,E>, 

two equivalent nodes i,j«V and 

equivalent to i and j respectively. 

If

then

SC (i) . . . SC (i)<1- - ■*  > 3 y > and <31 —■1

k>.

are two nodes 

k>

Proof

Since i and j are equivalent nodes, we have

SC (i) = SC(j) .
SC ( i) SC(i)Merge two FD-paths <i^ ---j^> and <j^ ------- k>

appropriately at component nodes of which are
SC (i)intermediate nodes of FD-path <j^--— +— >k>, we

obtain the FD-path < î  — > k>.

In other words, from

w(i)«--- * w(i1 )«__*w( j 1) , wii^ ^-wij^ and

w(j^) v w(k), we have w(i^) w(k). Notice that the 

above lemma corresponds to [22, Lemma 5],
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Example 3.3.2

Take up again the Example 3.3.1 /Fig 3.1/ we 

have BCD * AD,

and AD *>■ H .

Since A is the unique component node of AD that is 

an intermediate node on the FD-path <AD  ̂ H>,

we will merge two FD-paths <BCD,AD> and <AD,H> 

at A to obtain the FD-path <BCD,H> such that BCD *>- H

Lemma 3.3.3

Given an FD-graph Gp =<V,E>, i*V is a node having 

at least one outgoing full arc55 and i is equivalent 

to i (iQ can be an added node to the FD-graph without 

outgoing full arc). Then there exists j«SC(i) such

that <i SC j>*

Proof

Suppose that iQ6 SC(i). Otherwise, take jsiQ and 

the lemma is proved. Consider the dotted FD-path <iQ ,i> 

In the case, there is no intermediate node in <iQ ,i > 

that is node of SC(i) then i is the node to be found. 

Otherwise, suppose i^eSC(i) is an intermediate node 

of <iQ ,i>. Now we have only to consider the FD-path

x i.e. corresponds to some left side of a FD in F .
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<iQ ,i1>. Repeat the above reasoning for <iQ ,i^>.

Finally, we will find the required j such that 

<i1 j>. Q.E.D.
Notice that the above lemma corresponds to [22 ,

Lemma 6].

Lemma 3.3.4

Let G„ =<V,E> be a minimum FD-graph (i.e. F isr
minimum), and i6V is a node with at least one outgoing 

arc. Then in SC(i) there exists no j -j ̂ j 2' j  2 such

that <j^ -- j2>>

Proof

Assume the contrary that there exists j , j 2 6 SC ( i) , 

j ̂ j  2 such that there is a dotted FD-path from j ̂ to j 2 - 

Since j ̂ is equivalent to j2, j ̂ is a superfluous node. 

We arrive to a contradiction. (See Theorem 3.2.4)

Notice that the above lemma corresponds to [22, 

Lemma *7] .

Definition 3.3.2

An FD-graph Gp is nonredundant if F is non-

redundant.
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Given two FD-graphs G_ and G„ , G„ is a cover of
F1 F 2 F2 

Gp if F2 is a cover of F 1 .

Lemma 3.3.5

Given two nonredundant FD-graphs G^ and G_ , where
F 1 F 2

G_ is a cover of G„
F2 F1

;Fl “« W '  S 2 = <V2 ' V

Let î  and i2 be two equivalent nodes in and V 2 

respectively with at least one outgoing full arc,

(P-2,Ci2^ be a arc of E2 with p2 é SC ̂ 2 ̂ (i2)
- s. £ Í Ü H i >  q  >If (i1,p2) 6 E2 then <p2

Proof

Since (i^,p2)6E2, by Theorem 3.2.3, there is a 

FD-path in GF from î  to p2 .

Now assume the contrary that the FD-path in G_ from
in 1p2 to q2 has an intermediate node j^CSC (ij) .

The presence of the FD-path <j^,i^> shows that p2 is
(2)equivalent to i^, i.e. p2 € SC (i2), a contradiction. 

Q . E . D .

x) SC (1) and SC (2) refer to G„ and G„ respectively, 
F 1 F2
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With the same assumptions as in Lemma 3.3.5,
(1)if we replace in Gp all nodes belonging to SC (i^)

together with their corresponding outgoing arcs by
( 2 )all nodes in SC (i2) together with their corresponding

outgoing arcs, then the new FD-graph is a cover of G„ .
* 1

Proof

We have only to prove that for every full arc
(1)(j1,k^) € E 1 with j ̂ 6 SC (i1) there is a FD-path 

•< j 1 ,k^ > in the new FD-graph.

By the Lemma 3.3.5 we have just the required result. 

Remark 3.3.2

Theorem 3.3.1 can be formulated in an another 

form as follows:

If F 1,F2 are nonredundant and equivalent sets of FDs, 

then

F , S ÍF 1 \ E (X)}uE„ (X)*{F,\E (X)}UE (X).
1 1 F 1 F 2 Z F 2 F 1

We close this section with the following useful

lemma:

Lemma 3.3.6

Let V ->■ W be an FD in F +

Theorem 3.3.1

and let X -*■ Y be
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an FD in F that participates in the Armstrong's 

derivation sequence for V -* W.

Then we have

V -*• X, VY -*■ W6(F\{X + Y}) + .

Proof

Let GF =<V,E> be the FD-graph associated with F.

From V -+ W in F+ it follows that there is an FD-path 

<i,j> from i to j , where w(i)=V, w(j)=W.

Since X Y 6 F takes part in the derivation sequence for

V -* W, the nodes p and q with w(p)= X and w(q)=Y-are interme 

diate nodes on<i,j>.lt is clear that the FD-paths <i,p> 

and <q,j> contains no outgoing full arcs from node p.

Q . E . D .

Example 3.3.3

Reconsider the Example 3.3.1 (Fig. 3.1) We have 

BCD ■> H i F+ ,

(BC + A) 6 F participates in the derivation sequence 

for BCD ->- H.

It is clear that:

BCD ■+ BC 6 (F\{BC A})+ and corresponds to the 

FD-path <BCD , BC>;

BCDA -> H6(F\{BC -*■ A})+ and corresponds to the

FD-path <BCDA, H >.
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§ 3.4. Some additional invariants of covers for 

functional dependencies

Let F be a set of FDs on tt.

Let us denote by

AF ={l ± — ►Ri l (Li — * R±) 6 F and JL^ =1 J  

the set of all FDs in F with left side consists of 

only one attribute, and by

ÜC (AF).{A«Li|(Li + R.)6 AF}Si!

We have the following lemma:

Lemma 3.4.1

Let F.j and F2 be two equivalent sets of FDs on ft.

={L<1> » r !1» 1 1 1 1 i- ̂ f ̂  -] } >

= {l !2) - r (2) 1 1 (N
I*II•H

Then

(AF.,) =<£(AF2) .

Proof

The proof is by contradiction.

Without loss of generality, suppose that there exists 

L j1)= A. «^(AF,) \ 2 C (AF2) .
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It is easy to show that

<l <1> «
In fact, it is obvious that

‘ i 11 •
On the other hand, we have

l P  ) O  R. (1) =0,
3 3

(Fi ,F2 are in natural reduced form) 

Hence “ i 11* « - ]1’ >;2 ■
Showing that

l <1>- Ej1> S F2 '
a contradiction. The lemma is proved.

Example 3.4.1

Let be given

fl= ABODE
F 1 ={A BC, AD ->- CE} ,
F 2 ={A -> B, B -v C, AD -* CE} .

We have

SC (AF1) = {A},
SC (AF2) = {A ,B } ̂  •C (a f  ̂ ) .

Hence F 1^ F 2 *
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Lemma 3.4.2

Let be given two equivalent sets of FDs on ft.

F 1 ={l {1* -v r }1) |i=lTkx },

F2 ={l |2) - r {2) |i=lTk2 }.

Then

R (F1) = R(F2)

where R(Fj) = jji r | ^  , j = 1 ,2 .
i=1

Proof

We first show that RtF^eRjFj).

Let A € R(F1)

It follows that there exists
(1)L<1> * R<1» with R = AX

Since F ̂ a F 2 , we have 
(l | 1 ) -> AX) 6 F+2

or, equivalently

AX S (L j1) ) p 
1 F2

= l !1)u r !2)) .1 je« 3
*«{1,2,...,]^}

Oh the other hand

a x o l : ' = 0,
showing that AfiR(F2) .

Similarly, we can show that R(F2)«R(F^)

Hence RiF^) = R (F2) .
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Let be given

Example 3.4.2

ft = ABC DE

F 1 = (A -> BC, AD -v CE}

F2 = (A -> BD, AD ->■ CE}

We have

R (F ̂ ) = BCE i  BCDE = R (F2).

Hence F ̂ ̂  F2 .

Remark 3.4.1

Lemma 3.4.1 is equivalent to the assertion that 

for a given FD-graph G„ =<V,E> associated with ther
set of FDs F, all covers of have the same set ofF
simple nodes without outgoing arcs [23].

Theorem 3.4.1

Let F y and F2 be two equivalent and nonredundant 

sets of FDs on ft,

Fj = {L{j) - R{j) | i=1*7kj } , j = 1 ,2 .
Then

L (F 1 ) \ R (F ̂ ) = L(F2)\R(F2) .

Where

L(F.) = U j Lfj) , j = 1 ,2 
3 i=1

k-i t ’ \
R(F . ) = U r !])

J i= 1 1
, j = 1,2 .
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Proof

First we prove that

l (f 1)\l (f 2) R(F1) .

Let A 6 L(F1) \ L(F2) , i.e,

A*L (F ̂ ) and A6L(F2) .

Then there exists

(L«11 .

with L j1 } = AX, X^0,

r {1))6 F 1

(This follows from A«L(F2) and Lemma 3.3.1).

Since F^ is nonredundant, it follows that L (̂1) (1)

must participate in some derivation sequence for some
(2 )(LvJh h

So we have

R,( 2)) 6 F , (see Theorem 3.2.2).

(2 ) l :(1)

l <2 ) r <1)X1 "
Z3 L (1)

l <2) r <1>h i-|

l '2) r !1) h

R<1)12
r !1»

r !11 3  l (1) = AX,it - i
R<1i a > L :  
xt 1 1

(1)
t+2

so

l <2) r !1) h

a s l '2» r <1> h 1-]

RÍ1 ) R<1>R<1)
't+2

R<11

H  -  h
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Since A € L ( F 2)/ it is obvious that AfeR(F^). 

Thus we have proved that

L (F1) \ L(F2)S  R (F1) .

Similarly, we can prove that

l (f 2)\l (f 1 ) c  R(F2) .

On the other hand, by Lemma 3.4.2,

R(F2)=R(f 1).

Consequently,

L (F1 )\R(F1) ={[L(F1)\L(F2)]\R(F1)}

U { [L(F1)nL(F2) ]\R(F1 ) } =

= [L(F1)OL(F2)]\R(F1) =

= [L(F1)OL(F2)]\R(F2) = L(F2)\R(F2). 

The theorem is completely proved.

Example 3.4.3

Take up again the Example 3.4.2 

n = ABCDE

F 1 ={A BC, AD -> CE}

F 2 ={A BD, AD + CE}

We have

L(F1)\R(F1) = AD/A=L(F2)\R (F2) .

Hence F ̂ iéF2 .
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Theorem 3.4.2

Let F^ and F2 be two equivalent and nonredundant 

sets of FDs over Í2,

Fj = a j j) -► R|j) |i=1*Tkj}f j = 1 / 2.

Then
L (F1) UR (F1 ) = L(F2)ü R(F2) .

Proof
We first prove that 

L (F 1 )uR(F.,) « L(F2)u R(F2) .

By Lemma 3.4.2, we have

R(F1 ) = R(F2) s  L(F2)o R(F2) .

We have to prove

L (F.j ) £ L(F2)ü R(F2) .

Following the proof of Theorem 3.4.1 we have 

L (F1) \ L(F2)c  R (F1) .

But R(F1) = R(F2) .

Therefore
l (f 1)\l (f 2) s r (f 2)

Hence
L (F1) c L(F2)UR(F2) .

Thus we have proved

l (f 1)u r (f 1)c l (f 2)u r (f 2) .
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Similarly, we can prove that

L(F2) ü R(F2)c L|F1) ü R(F1). 

Combining these two results, we get

L (F1 ) UR (F1 ) = L(F2) U R(F2) .
Q . E . D .

Theorem 3.4.3

Let Fi and F2 be any two equivalent, 

and left reduced sets of FDs on fi

Fj = {L{j) - R|j) I i=1~ j > , j =
Then L(F1) = L(F2) .

Proof

Assume the contrary that 

L (F1) ?^L(F2) .

Without loss of generality/ let 

AfcL (F1) and A£L(F2) .

It follows that there exists

L (1>l R (1>l with l |1) = AX, X?é0.

Since A € L ( F 2), by Lemma 1.3.4 (see §1.3)
<1>A F+ i e  F 2 '

X -*■ R P  ̂ 6 F* (since F2=F*) *

nonredundant 

1 , 2 .

, and from

we have



This means that in F^ we can replace AX ->■ R^ by
(1 ) +X + r ! without altering .

We arrive to a contradiction because, by the hypothesis

of Theorem 3.4.3, F 1 is left reduced.

Thus we have L(F^)=L(F2) • Q.E.D.

Remark 3.4.2 (i)

(i) Basing on the results of this section we

can conclude that, after removing all extra

neous attributes, the sets L(F) and R(F) are 

the same for all equivalent sets of FDs on ft. 

(ii) The invariants just have been established can 

be used, for instance, as a simple criterion 

to check whether two sets of FDs are not

(1)

equivalent.
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§ 3.5 Structure of minimum covers

In [22] the notion of equivalent classes of 

left sides E„(X) has been introduced by D. Maier,r
and it is shown that for any equivalent minimum sets 

of FDs F . and F~, |E„ (X)| = IE_ (X)] for any X. (see1 2 F i F2
Theorem 3.2.1 and Remark 3.2.1). D. Maier also proved

that for each FD X. -> X.eE„ (X) there exists a uniquei i F;1
Y . -> Y . 6 E (X) such that X . *̂ -*Y . . Therefore Y .l l F 2 l i l
(resp X^) can be substituted for X^ (resp Y^) without 

changing the closure of F̂  (resp. F 2), i.e.

[{F1\(Xi — +X± ) }u(Yi _,X.) ]8F1

and

[{F2\ (Y± — + Y±) > Y±) ]s F2 .

So, the structure of left sides of FDs in minimum 

covers has been described quite well. In this section 

we investigate the structure of right sides of FDs 

in equivalent minimum covers, and try to find a certain 

sort of transformations for right sides. In studying 

the structure of right sides of FDs in minimum covers> 

by the results of D. Maier just mentioned above,we can 

assume that all equivalent minimum covers have the

same set of left sides.
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Denoted by LE^ÍX) and RE^ÍX) the sets of attribu-r r
tes in left and right sides of FDs in Ep (X) respectively 

and instead of [ F \{x —  Xfju{ X —* X\ZQj, sometimes for 

sake of simplicity, we write F\/X—>ZQ j if ZQ g X  and 

X -*X e F.

We begin with the following fundamental theorem.

Theorem 3.5.1

Let F^ and F2 be two equivalent minimum sets

of FDs, X 1 — ►X-l 6 Ep (X) ,

Z «Xn and Z nRE„ (X) = 0. o 1 ° F2
Then there exists Z such that

x lz ~ xlzo« IFl' (X 1 - Zoi]+ •
ZQ and Z are said to be equivalent via X^

Proof

Since X1 — >X. ő E„ (X), there exists 1 1 F 1
x 1 _ Y i S Ef 2 (x ).

First of all, we show that X^ — >X^ must participate in 

the Armstrong's derivation sequence for X^ — and 

vice versa. Assume the contrary that X^— ►X^ does

not participate in the derivation sequence for X^ — .

So

xi— V  ‘ tFi \ xi — xiJ+
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Since and F2 are nonredundant, X^ ■> cannot

be derived from F~ \ (X) . On the other hand, by
2 F 2

Theorem 3.3.1,

F2 S F 13ÍF1\Ef  ̂(X) } U Ep^(X) 3{F2\EF2 (X) }OEF 1 (X) 

it follows that there exists X, -* X, e E (X) thatK K r ̂
participates in the derivation sequence for X^ -> .

By Lemma 3.3.6 we have

X 1 *
—■ . . +XR® [F1 \ {X1 — y X 1 , Xk _^Xk }] .

But, in that case, we have

(F1\{x1 -v xr  xk -> xk})o{xk -> x 1Xk} a F 1
which contradicts the fact that F^ is minimum.

Thus Xi -* X^ must participate in the Armstrong's

sequence for X^ -* Y^ , and in turn, Xp Y^ must

participate in the Armstrong's derivation sequence for

X̂  ■* X^ . By Lemma 3.3.6, we have:

X 1X 1 ■> Y 16{F1\(X1 + X 1) }+ and

x 1 y 1 -v x1 e {F2\(x1 — ►Y1) }+.
Now we can split X. -»■ X. into X. — *Z and X. -> X.VZ .1 1  1 o  1 1 ' o
If X^ -> Zq does not participate in the Armstrong's 

derivation sequence for X^Y^ -*■ X^ then Y^ is the 

required Z. Indeed, in that case we have

X 1Y 1 -> Zo«[{F1\(X1 -+3^) }0{X1 - (X1\Zo)}] +

Moreover,
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X 1X1 -> Y 16{F1\(X1 ^ X 1 ) } + S [{F1\(X1 + X., ) JUÍX.,-*^ /Zq) }] +, 

X 1 + (X1\ZQ ) 6 [{F1\(X1 ->X1)}u{X1 -vX1\ZQ }] and 
X^Zq -*■ X^X^ can be derived from X^ -* X 1\Zq , so 

using the transitivity rule, we get:
X1Zq + Y 16[{F1\(X1 + X 1)}u{X1 + X 1\ZQ }] +

Now consider the case where X^ ZQ participates 

in the derivation sequence in F^ for X^Y^ X^ .

Since X^Y^ -*■ X ^ é F * ,  it can be derived from FDs 

in F2, which in turn can be derived from FDs in F^.

So there exists at least an FD X2 Y2 in F2

such that X 2 Y2 participates in the derivation 

sequence in F2\(X^ -> Y^ ) for X^Y^ -*■ X^ , and X^ -* ZQ 

will participate in the Armstrong's derivation sequence 

in F ̂ for X 2 Y2 •
By virtue of Lemma 3.3.6, we have:

X^Y1 -* X2 and X2 -> xi € Fi*
conclude that: X2 ♦And from X^ ->Y^feF2 sF^, we - X 1

So (x2 -► Y 2) e  Ep^(x) •

By the hypothesis of the theorem,

Z O re (X) = 0.° F 2
It follows that

X2 -> Y2 t X 1Y 1 -> x . 
Moreover, by Lemma 3.3.6 , we have

X 1X 17 2 * Zoft[F2X{Xl - V X2 * V ’ +
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Two cases can be happen:

If X.j -* Zq does not participate in the derivation

sequence for X^Y^Y2 ZQ in , we prove that

Y-jY2 is the Z to be found.

Indeed, we have X^Y^Y2 -* ZQ6[F^\(X^— ►ZQ )1.

Moreover, using an argument similar to the one given at 
the beginning of the proof, we can prove that X^—*X̂  
must participate in the Armstrong's sequence for X^ — ? 

j = 1 , 2 , ..., p. So, from X 1Zo-^Y±e [ F ( X ^  -*ZQ)] + , i=T,2,

we have: X ^ ^Y26 [ F^\(X^ —*Zq )J* .

Now consider the case where X 1 ZQ participates in

the Armstrong's derivation sequence in F^ for X^Y^Y2

Similarly as before, there exists

X3 -v Y36[Ef ^(X)\{X1 -* Y 1 , X2 ^ T 2}\
such that X3 Y 3 participates in the Armstrong's

derivation sequence for X^Y^Y2 ZQ .

The process continues. But as | E_ (X)|<+“Oso it
t 2

must be finished at step h, where há I E_, (X) I .
F2

At that moment, we have

X1(5172---V * V
and X 1 ZQ (Y1 . . * Z0 H  +

The proof is complete.

The theorem shows that attributes of the right 

side of an FD X, -> X. belonging to (X) in a
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minimum cover F can be di vided in two classes.

The first class consists of invariant attributes, 

that is, they must appear in right sides of FDs in 

evej’y E (X) where F . is any minimum cover equivalent
Fj :

to F. The second class consists of all attributes

that belong to a set Z eX., where X. X. eE„(X)o — l' l l F
such that 3 Z /Z and X.Z «—*X . Z4[ {F\(X. -* Z }]+ .o i o  1 l o
For attributes of the second class, we have:

Corollary 3.5.1.

With ZQ and Z as determined in Theorem 3.5.1., 

we can replace Zq in (X1 X ^ e F  by Z and doing so, 

we obtain an equivalent minimum cover.

Proof

The proof is straight-forward.

From X^ -* Zq£F and X.jZo -+ Z6[F\X^ -* Zq ] we obtain

X^ -* Z and conversely, from X^ -> Z and

X^Z Zq € (F\{X^ -* Zq }) + we obtain X^ -> Zq .

Remark 3.5.1 .

From Theorem 3.5.1 and Corollary 3.5.1, we found the 

transformation rules for right sides of FDs in 

equivalent minimum covers as follows:

First, there are attributes of right sides that can be



replaced by equivalent sets via left sides. Such

transformations can be done in a single FD too. 

Second, there are attributes of right sides that 

are invariant (i.e. always present) and only change 

places in right sides of the equivalence class.

In that case, transformation must be done simultan

eously in several FDs of the equivalence class.

Corollary 3.5.2.

Let Z c X 1 where X -*• X. 6ED (X) and Z eR\L.O I I r  ̂ O “
Then in any minimum cover F2aF^, we have

Proof.

First observe that if there exists Z such that

Therefore all attributes in R\L belong to the first 

class, i.e., invariant in equivalence classes of 

equivalent minimum covers.

zosREF ( X ) .
2

(X^Zq -* Z) € F+ , then there exists an FD (Y -*■ W)*F 

such that YOZq ^0.

Thus

Let E p (X) is the set of following FDs:
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X 1 -> V '

X 2 - X2X'

X, -> X, X/ , k k k '
where X . c L E p (X) and X. dLE„(X)1 r Í r
We can split E„(X) intor

=  0.

X.

X 2 X2

Xk * Xk

X1 - Xí
X 2 *  X2

X, -> X/ . k k
Consider the first k FDs. They can be replaced 

by the following FDs while not altering the closure,

X . __* X.
X2

X . 
12

__X.
13

X .l . __*. X.
k 11

(ir 12 ' * * * ' ■
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Let A be any attribute in REF (X). Then, there 

exists i such that AÄX.X1 . If A6X . fiLEr (X) , then1 1  1 r

With any p, 1ápák, p^ j , we can construct a new cover 

equivalent to F by replacing E „ ( X ) by:r

permutation of ( 1, 2, k )

After reducing right sides, if A is an invariant

attribute, A must belong to the right side of the

FD that has p as index.

If A 6 X ^ L E f (X) then with any p, 1%)%, we

can construct a new minimum cover equivalent to

F by replacing E^iX) by:r

there exists j such that A é X .
J

where ( p, j, i3 , i4 • • • f ik ) is a

X1 " X2X2

X -* X P



After reducing right sides, if A is an invariant 

attribute, A must belong to the right side of the FD 

in E (X) that has p as index.r
For these reasons, we say that invariant attrib

utes in right sides can be distributed enough freely 

in right sides of FDs in E^lX).r
However, FDs in an equivalence class must satisfy 

the following property.

Property 3.5.1

Let E-p (X) = {X. -> X. | j = l"7k} .■C j J
Then V i  3 j such that

Let be given arbitrary i ,p. By Theorem 3.2.2. 

we have

-* X ^ 6 [ { F \ E f (X) )ufXi -> X±}] +

Proof

2

where (Z,
t
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Choose Z^ -> W^ € Ep(X) with 1 as small as passible. 

With such Zh , we have the required result. In the case,

Thus, in spite of the relative arbitrary distrib

ution, each right side of an FD in the equivalence class 

must carry enough information such that, together with

derived, ensuring the equivalence of left sides.

Finally, using the results just mentioned in this 

section, we can introduce the notion of "quasiaptimal" 

cover. In [22] Maier defined the optimal caver (see 

Def. 3.2.7) and shown that the optimal cover prablan 

is NP-complete.

However from the point of view of effective 

memory management this does not mean that there is no 

problem to be discudsed, even in the case this optimal 

cover is found.

Consider k FDs of E (X) in a minimum caver.r

FDs in FXE^fX) , an FD of the form (X. -v X . )6F+ can be r i J

E (X) ={X. -> X.X' I i=1 ,k}.i 1 1 1
If we replace E_(X) by

r k
3 r • • •

then, for k first FDs we have only to take care of 

(to manage) their left sides, in apposite af the case
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of E„(X) we must manage both of left and right sidesr
of all its FDs.

then we can replace X 1 -* U  X' by the FD: 
k i=1 1

X. -> U  X'\Z and still obtain an equivalent cover. 
1 i=i 1 °

We close this chapter with an algorithm to find 

the "quasi optimal" cover, in the above sense.

Input: The set G of FDs.

Output: The '(guasi optimal" cover F with F+ = G+

Method

Step 1 : From G, find the minimum cover F^ = MINIMIZE

[see 22] .
1 sWe obtain the equivalence classes E (X ),...,E (X )

* 1 1
with the corresponding sets of FDs.

k
Moreover with ZQ C U  X^, if there exists ZeLE,F

such that

X iZo ^X,Z6[F\{X. + ZQ }] 
k

+

{xj -> x} | i= 1 ,k 1 }

Step 2: For each equivalence class E^ (X1)
* 1

1 = 1 ,2

For i=1.k, , consider X"!" ■> X"!" .' 1 l i
1

x) L is the union of all left sides of FDs in F
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V  A 6 xj ,

If A€LE„ (X1) we omit it,
- 1 i i iIf A 6 LE (X ) then for each ZsLE (X )\X check

* 1 M  1
whether

(X^Z -v A) € [F \{X^ -> A } ] + ?

if true then we omit it 

if false then = M^iA}.

Step 3: At the end of Step 2 we obtain for each

equivalence class, and F is the following cover: 
s

F = U {X^ -> xí, , X2 ■> X̂ ,...,X̂  -► X]'X) + M !>
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