tanuimanyok |2

MTA Szémitastechnikai és Automatizalasi Kutato Intézet Budapest

an

(=







COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES

[FIP TC.2 WORKING CONFERENCE

"System Description Methodologies''

May 22-27. 1983

Kecskemét, Hungary

Tanulmanyok 150/1983



A kiadasért felells

DR VAMOS TIBOR

Szerkesztette:

KNUTH ELOD

ISBN 963 311 164 1
ISSN 0324-2951



CONTENT
Page

LUNDBERG: On relative strength of information model 5

DE BLASI, G. TURCO: Methodology for the representation
of software production pProCesSesS . ... coaaaaaanan- 21

SCHMIDT, R. VOLLER: The Development of a Machine
Independent Multi Language Compiler System Applying
the Vienna Development Method ........ ... . ... .. ...... 51

HOLTKAMP, H. KAESTNER: A System Model for Vertical
and Orthogonal Migration . ... ... ... .. e icaacaaaan- 71

DIEZ: Towards an Information System Development
EnvIronment e eaaaaaaaaaa 95

R.E.A. MASON: Concrete Use of Abstract Development

C.

J.

Formal 1SmMS _ C . o o o e e e e e e e e e 95

BATINI, M. LENZERINI: A Conceptual Foundation for
View Integration ..._._.__. 109

LISSANDRE, P. LAGIER, A. SKALLI: SAS - A Specification

SUPPOrt SYyStem .. i e i i e e e accea e e e 241
MAIOCCHI: The Use of Petri Nets iIn Requirements and

Functional Specification ... ... ... .. . i iiiaaaaaaan- 167
EVEKING: Nonprocedural Specifications of Hardware 189

BALBIN, P.C. POOLE, C.J. STUART: On the Specification
and Manipulation of Forms ... ... . ... .- 213

A. STANKOVIC: A Technique to ldentify Implicit
Information Associated with Modified Code ............ 227

R.J. THOMAS, J.A. KIRKHAM: MICRO-PSL and the Teaching of

G.

Systems Analysis and Design ............. 259

DAVIDJ W. GRAETSCH: A Hierarchical System Model for
Vertical Migration ... .. ... ... . i iicceaaaaaaan .



H. KLEINE: Methodology for System Description Using
the Software Design & Documentation Language ........

V.H. HAASE: Modullar Design of Real-Time Systems .......

S. MACHOVA, B. MINIBERGER: Description of Decision

Tables by PSL/PSA

S. MACHOVA: PSL/PSA - A Methodological Tool for T.he -

saurus Creation

Page

285
329

347

359



ON RELATIVE STRENGTH OF INFORMATION MODELS

Bengt Lundberg
SYSLAB

Department of Information Processing
and Computer Science

University of Stockholm
S-106 91 Stockholm, Sweden

Abstract:

The concept of information model is since long employed
to denote a representation of abstract knowledge about a
perceived portion of the real world. When an information
model is constructed it is changed (refined) 1iIn order to

be an as precise as possible description of the
considered portion of the real world.

In the paper the changes applied to an iInformation model
are discussed and analyzed from a formal point of view.
Thereby, it i1s assumed that an iInformation model is
represented in a first-order predicate logic language.
Within the framework given by predicate logic the
relative strength of iInformation models, and of the
constructs constituting them, are discussed and
examplified. Further, it Is shown that an assumption of
the existence of instances of the employed predicates can
be useful, and practical, in order to find
incorrectnesses. It follows, in particular, that i1t 1is
important to represent implicit assumptions explicitly.

This work 1is supported by the National Swedish Board for
Technical Development (STU)



1. INTRODUCTION

The area of information modelling, or conceptual
modelling, has been the objective of 1iIntense research
during the last decade. A number of approaches to
information modelling and, in particular, formalisms for
the representation of iInformation models have been
presented, e.g. (Sen-77, Hou-79, Bub-80). During the last
years Tirst-order predicate logic has been employed as
the basis for the analysis of formalisms of i1nformation
models, but also as a representational formalism, e.g.
(Bub-80, Rei-81, Lun-82a). In this paper we discuss and
analyze from a formal point of view the process of
changing an i1nformation model aiming at a more precise
(or, stronger) information model with respect to an
assumed universe of discourse.

The relative strength of information models, and the
constructs within them, are discussed. Further, it
suggests that an information model should be made as
complete as possible, iIn particular, implict assumptions
should be made explicit. Also, an existence assumption is
introduced and discussed with particular attention to its
application to information modelling.

2. THE CONCEPT OF INFORMATION MODEL

When a portion of the real world, usually called a
universe of discourse (ISO-82), 1is considered, two types
of knowledge about it can be i1dentified, namely: concrete
knowledge and abstract (or, general) knowledge. With
concrete knowledge iIs meant such knowledge that refers to
states-of-affairs in the universe of discourse, e.g. "Jim
earns 1000". With abstract knowledge 1i1s meant such
knowledge that refers to conditions holding for types of
states-of-affairs, e.g. "all employees have a salary'.

An information model iIs defined to be a representation of
abstract knowledge about a universe of discourse. Thus,
representations of concrete knowledge 1s not considered.
When referring to a universe of discourse the 1iIntension
iIs to refer to the structural properties of the perceived
states of the vreal world, 1.e. a particular set of
entities iIs not assumed iIn the real world.

In what follows we will assume that an information model
iIs represented in a first-order predicate logic language.
This 1nplies that an information model is constituted by
a number of first-order sentences which are the non-
logical axioms of a TFfirst-order theory for which the
universe of discourse i1s a set of models. Further, it is



assumed that the identity relation holds iIn the universe
of discourse, i1.e. we have theories with equality. This
implies that function symbols and individual constants
are dispensible, 1.e. the only non-logical symbols of an
information model are the predicate symbols.

3. DEVELOPMENT OF AN INFORMATION MODEL

When an information model 1is constructed for a universe
of discourse two principal strategies can be applied:

a) define the types of state-of-affairs that are
considered, 1.e. define the employed predicate
symbols, and then declare sentences reflecting
abstract knowledge iIn the defined language.

b) start with a part of the universe of discourse and
define the language for i1t and represent the abstract
knowledge about 1it, then extend the language of the
information model and the set of sentences.

This can be represented graphically as follows:

number of
sentences final information
A model

number of predicate
symbols

=

Figure 1

Strategy b is the more practical strategy, but from a
theoretical point of view the 1iInteresting strategy 1Is



strategy a. Further, strategy b can be reduced to
strategy a by considering 1t as an interactive procedure
that extends the language of the information model and
adds sentences the 1nformation model . When the

information models 1s constructed i1t iIs assumed that its
sentences are true (satisfied) 1In the universe of
discoulp. This immediately implies that the information

model iIs consistent as i1t has a model. The final
information model 1is also assumed to have the properties
that it 1s finite and that all perceived abstract
knowledge about the universe of discourse 1Is represented.

4. CHANGING AN INFORMATION MODEL

Assume that a partial information model 01 is obtained,
which i1s changed and another one 02, 1is then obtained.

Four types of changes can be considered:

- a predicate symbol 1is added

- a predicate symbol 1is excluded

- a sentence 1iIs added (without changing the language)

- a sentence 1iIs excluded (without changing the language)

As pointed out above we assume that the information model
01 i1s satisfied In the considered universe of discourse.

4.1 Addition of a predicate symbol

When a predicate symbol is added to the language of the
information model this will have no formal i1mplications
on the information model. However, from the point of
interpretation i1t implies that a type of states-of-
affairs is considered In the "new" i1nformation model 02
that was not considered iIn 0l1. In order to only represent
the 1mplied extension of the universe of discourse of the
information model a tautological sentence can be added.

Example: Assume that also employees are considered 1In
the universe of discourse, then the
tautological sentence

Vx(emp(x) — > emp(x))
can be added.
An addition of tautological sentences to an information

model adds no knowledge to it as a tautological sentence
iIs satisftied i1n all universes of discourse.



4.2 Exclusion of predicate symbols.

When a predicate symbol of an information model 1is
excluded i1t implies that a type of state-of-affairs 1iIn
the universe of discourse 1iIs disconsidered. When a
predicate symbol is excluded from the information model
also those sentences that include the excluded predicate
symbol must be excluded, or changed. Then three cases can
occur:

a) tautological sentences are excluded, this will not
influence the remaining information model (cf. above).

b) sentences defined over the excluded predicate symbol
only are excluded, neither this case will i1nfluence
the remaining i1nformation model as the sentences are
independent of the vrest of the sentences. The
resulting information model 1s satisfied 1iIn the
universe of discourse but can become less informative
Ehiﬁ) the original information model (see also section

c) sentences including the excluded predicate symbol are
exluded. This case will be discussed iIn section 4.4.

4.3 Addition of sentences.

When a sentence e 1iIs added to an iInformation model 01,
giving 02, three cases can occur (cf. Lun-82b).

a) It holds that -e i1s deducible from 01
This means that i1f e 1s added to 01, the extended
information model, 02, is i1nconsistent. This 1mplies
that 02 is not satisfied iIn any universe of discourse
and iIn particular not in the considered one.

b) It holds that e is deducible from 01
Due to the soundness theorem for predicate logic this
implies that the sentence e is satisfied in all models
that satisfy 01, thus no additional knowledge 1is
represented in 02 relative 01 and, thus, the sentence
e 1S redundant in 02.

¢c) Neither e nor -e 1i1Is deducible from 01

In this case the 'new" i1nformation model 02 will be
more i1nformative than Ol. But, this does not imply
that 1t really exist a model for 02 that does not
satisfy 01. This latter case will occur as soon as we
have an information model that is not complete, e.g.
when natural members are considered iIn the universe of
discourse.



10

4.4 Exclusion of a sentence

Assuming that the iInformation model 01 is satisfied In
the universe of discourse and a sentence e iIs excluded
then 1t can occur that 02 iIs less informative than O1.
This follows directly as whenever 01 1is satisfied In the
universe of discourse so are all of its sentences and iIf
one sentence 1s excluded the rest of sentences are still
satisfied in the universe of discourse (cf. section 4.2).
However, i1f the excluded sentence e i1s not deducible from
02, then 02 will be less informative than 01, i.e. e is
not redundant in O1.

4.5_. Discussion.

The main problem concerning the representation of
information models in predicate logic 1is that of
correctness checking. Assuming that the sentences of an
information model are syntactical correct the only
correctness criterion that can be applied i1s that of
consistency. As we have pointed out above the consistency
of aninformation model can be violated only when a
sentence 1s added to 1t. For example, assume that a
sentence i1s added to an information model and that the
sentence does not violate the consistency. In such a case
no formal criterion of correctness of the sentence with
respect to the other sentences is available.

Example: Assume that the following iInformation model 1is
obtained:

Vx(secretary(x) -> emp(X))
and assume that the following sentence 1is added
Vx(seeretary(xX) -> emp(X) V board-member(x))

for the resulting information model it holds:
the information model 1is consistent
the second sentence is deducible from the the
Ffirst sentence

But, should the second sentence replace the
first sentence?

In order to 1increase the capability of determining the
resulting information model after a change we have to
find suitable meta-rules which can support a user when a
model is changed. Consider the above example, iIn such a



11

case one could apply a rule saying that whenever the
sentences include the same predicates then the sentences
have to be intuitively inspected for correctness (i.e.
with respect to the considered universe of discourse).
However, such principles are outside the formal
processing of information models.

. RELATIVE STRENGHT OF INFORMATION MODEL

In what fTollows we will assume that the language of two
information models, 01 and 02, are identical, i.e. they
are defined over the same predicate symbols.

The iInformation models are said to be equivalent, written
01=02, if 1t holds for any sentence e that

01 h e 1if and only 1f 02 he

Further, we say that 02 is (deductively) stronger, or
more iInformative, than 01, written 01>>02, if for some
sentence e it holds-that

02 he and not 01 h e

We also say that an information model O is optimal iIf it
does not exist a sentence e reflecting perceived abstract
knowledge such that

not O h e

This should not be confused with the stronger concept of
completeness of theories. Only for very simle cases It Iis
possible to arrive at a complete theory (information
model) and that is the reason for the weaker concept of
optimality which refers to the perceived abstract
knowledge. A theory is said to be monomorphic 1f 1t 1is
consistent and all 1ts models are i1somorphic to each
other, thus a monomorphic theory specifies all of the
structural properties of its possible models (Car-54).

Further, an i1nformation model O 1is said to be non-
redundant if for any sentence e In 0 1t does not hold
that e is deducible from 0 -{ej .

6. APPLICATIONS TO INFORMATION MODELS

In this chapter we will analyze and discuss some examples
of constructs iIn information models with respect to their
relative strength and i1ts implications on the strenght
of iInformation models.



12

6.1 A simple example

Assume that we have the Tollowing concrete knowledge
about a universe of discourse:

"Jim owns EMM300'
""John owns EUJ399"
"Jim owns LA6880"

An initial information model 01 is constructed:

01=(vxVyVzVuvv(own(x,y) & own(x,z) & own(x,u) & own(x,v)
02V ) V. yv) V (=) V (==v) V (U=)

Then a sentence e iIs added to 01, giving 02=01U fe} , where

e = WxVyvzvVu(own(x,y) & own(x,z) & own(x,u) -— >
02 v (=) Vv (z=w))

The relationships that hold for 01 and 02 are:

- 0I>>02 as the sentence e can not be deduced from 01

- 02 1s redundant as we can let 02= {?

- we can say that 02 1i1s optimal as i1t is assumed to
reflect the perceived structural properties of the
concrete knowledge above.

6.2 A typical example

Assume that we have the fTollowing abstract knowledge
about a universe of discourse.

"all employees has a salary”

The predicates of the intended information model are:
exp(X) "X 1s an employee
sal(®) "X 1Is a -salary”
esal(x,y) "employee x earns the salary y"

Assume that an iInitial information model is

01 = [vx(emp(xX) — > 3y(sal(y) & esal(x,y¥)))(



13

This i1nformation model can be made stronger as it permits
any pair of entities to satisfy the predicate
"esal(X,y)". Assume that a second information model is
declared:

02 = {vx(emp(X) — > y(sal(y) & esal(x,y)))
VxVy (esal (x,y) — > emp(X) & sal ¢))}

This i1nformation model is stronger than 01 as 1t restrics
the instances for “esal®™ to be pairs of entities where
the Tfirst entity 1is an employee and the second iIs a
salary. We say that we '"close" the predicate “esal®™ by
the second formula. Further, the added sentence is not
deducible from 01, 1.e. a closing of the predicates makes
the 1nformation model stronger.

The two formulae of 02 are typical instances of
constructs of most approaches to i1nformation modelling.
The Tfirst fTormula reflects a so called totality (total
function (Bub-80)) which states that all instances of a
set of entities are related In a particular way to other
entities. The second fTormula represents a so called
domain declaration which states that the entities of an
association type are of certain types.

6.3 Relative strength of constructs.

The i1nformation model 02 of the preceeding section iIs a
quite typical 1iInstance of information models as it
expresses properties of all the iInstances of a set of
entities. However, 1t should be noted that 1t 1is not
assumed that 1t exists either exployees, salaries or
esal-associations. In the next section we will discuss a
possible assumption of existence of extensions of
predicates. Here we will consider some general patterns
of constructs and discuss their relative strength.

In most basic textbooks on predicate logic four basic
constructs are presented and discussed; they are of the
types:

Vx(trucker(x) — > employee(x))

3x (trucker ) & employee(x))

Vx (trucker(x) & employee(x))

3x(trucker(x) — > employee(x))

The TFirst construct implies the fourth, which is a weak
construct. The fourth construct 1is satisfied 1iIn all

universes of discourse except those in which, e.g , it
exists truckers and all of them are not employees. This



14

type of construct will hardly be useful iIn practical
cases. The third type of construct 1iIs very strong as it
states something about all entities in the universe of
discourse, which probably will be to strong iIn practical
cases. OFf more interest are the constructs of the first
and second types.

First of all, we have to point out that the two first
formulae above are incomparable in that neither of them
are deducible from the other.

Let us consider the first formula, which states something
about the iInstances of a set of entities. This type of
construct has earlier been used iIn several approaches to
information modelling. Examples are the totality
constructs and domain declarations, which were discussed
in section 6.2.

An alternative of the general pattern of the first
formula is:

Vx (secretary(x) V trucker(x) — > employee(x))

This formula is stronger than, say

Vx (secretary(x) — > employee(x))

as the fTormer states that those who are secretaries or
truckers are employees and the latter states that
secretaries are employees. Further, the former formula is
reducible iInto

Vx (secretary(x) — > employees(x))

Vx (trucker(x) — > employees (X))

A weaker formula 1is

VX (secretary(x) & trucker (X) — > employee(x))

which states that those who are both secretaries and
truckers are employees. This formula is not reducible.

Correspondingly, we find that, e.g.

Vx (employee(X) — > secretary(x) V trucker(x))
Vx (employee(X) — > secretary(x) & trucker(x))
are weaker respectively stronger than, say

Vx (employee(X) — > seeretary(x))



15

which 1s one of reductions of the implication with a
conjunction iIn the consequent.

From these examples we conclude that iIn practical cases
we should i1dentify abstract knowledge that holds for as
large as possible sets of entities and for which as many
as possible properties hold. In particular, we have to
"close”" the predicates as much as possible (cf. section
6.5.) .

Now, let us consider the second type of constructs. The
basic construct 1is, say,

3x (secretary(x))
This construct is of course weaker than

3x (secretary(x) & trucker (X))

as the Ilatter states that It exists an entity that is
both a secretary and a trucker. A weaker formula 1is, say,

3x(secretary(x) V "trucker(x))

which states that iIs exists an entity that iIs a secretary
or a trucker.

From these examples we conclude that one should iIf
possible state that i1t exists entities which have a
combination of properties. This 1is still more obvious if
we combine the principal types of constructs, e.g.

Vx(seeretary(x) — > employee(x))
Sx (secretary(x) )

The first formula does not 1mply the existence of a
secretary and then not the existence of an employee. If
the second formula 1is also declared In an information
model 1t immediately follows that it also exists
employees.

6.4 Discussion on an existence assumption.

In the preceeding section we pointed out that one should
iIf possible declare iIn an iInformation model that it
exists entities with certain properties. In this section
we will discuss the implications of an assumption which
states that every predicate has an iInstance. One can
easily i1dentify arguments supporting such an assumption,
but also arguments against it.



16

An argument supporting the existence assumption is:

- when an information model 1is constructed and a
predicate symbol 1is employed i1t exists a reason for
including the predicate symbol, 1.e. iIn the universe of
discourse It exists state-of-affairs which are referred
to by the predicate symbol.

However, a universe of discourse refers to a number of
states of a portion of the real world and the existence
assumption would then imply that in every state It exists
an instance of the predicate symbols. This argument can
easily be refused by assuming that the predicates include
a variable which refers to states. Then, the existence
assumption would be restated to: "it exists a state such
that it exists ...". But, this iIs only a reduction of the
problem and the same argument holds against the existence
assumption In this case. Thus, we conclude that from a
pure theoretical point of view an existence assumption
should not be made. But, from a practical point of view
it should be made as 1long as its advantages and
disadvantages are considered.

Let us illustrate the advantage of the existence
assumption by an example:

Assume that the following abstract knowledge holds for a
universe of discourse:

"all who has a salary are employees"

"nobody i1s both an employee and a shareholder™
"every shareholder has a salary.

This is represented as follows:

VxVy(esal (x,y) — > emp(X))

-3xEMmm X & sh )

Vx(sh &) — > 3y (esal(x,y)))

This set of formulae 1is consistent. However, from
intuitive considerations 1t is concluded that i1t must be
inconsistent. But, this iIs due to the implicit assumption
that 1t really exists a shareholder. If this 1iIs assumed
and included among the formulae above we will Immediately
have an iInconsistent set of formulae. Thus, iIn this case
the existence assumption 1is advantegous.

The TfTollowing examples shows that one has to be aware of
the disadvantages of the existence assumption. Assume that
for a universe of discourse the following abstract
knowledge holds:



17

"iIf there i1s a secretary there are no truckers"
"iIf there 1s a trucker there are no secretaries"
This is represented as follows:

3x(secretary(x)) — > Vx(-trucker(x))

This formula is consistent. If the existence assumption
IS made then we have to add the following formulae:

Jx3y (secretary (X) & trucker (¥))

Then, the extended set of formulae will Immediately
become iInconsistent as the only universe of discourse
that satisfies the original sentences iIs that in which
all entities are secretaries or all entities are
truckers, 1.e. either of the sets of entities must be
empty. Thus, iIn this case i1t was a disadvantage to assume
the existence of an iInstance of the predicates.

However, the above case can be easily avoided by making
the idea of states of the universe of discourse explicit.
The abstract knowledge can then be restated as follows

"If there 1s a secretary in a state then there iIs no
trucker"

which 1s represented as follows

Vx By (secretary (y,X) ) —> Vy (-trucker (y,Xx)))
and the existence assumption gives

3x3y3z3u (secretary(x,y) & trucker(z,u))

With this approach we avoid an 1inconsistency of the
information model.

From a practical point of view we conclude that the
existence assumption is advantageous as:

- 1t makes the iInformation model stronger, (cf. section
6.3)

- 1t makes i1t more probable to find an inconsistency (cf.
above)

- existence of entities are usually assumed iIn every-day
reasoning (cf. above)



18

However, we have to be careful with the existence
assumption when, as above, disjoint sets of entities are
considered and, iIn particular, as iIn the last example,
mutually exclusive sets of entities are considered.

6.5 Closing an information model

In section 6.2 we introduced the 1dea of closing a
predicate which was examplified by a so called domain
declaration, e.g.

VxVy(esal(x,y) — > emp(X) & sal(y))

The formula states, e.g., that those objects that have a
salary are employees. However, this 1is all that the
formula represents. When such a formula i1s represented iIn
an information model 1t is usually 1implicitly assumed
that the objects that have a salary are employees, and
are of no other types, such as shareholders. In order to
obtain a stronger iInformation model we should also state,
if possible In the actual case, that the objects that
have salaries are not also shareholders. This means that
it should be stated both what "holds™ and what '‘does not
hold” for a set of entities. Thus, we can complete the
above formula with the following:

-3x3y(esal(x,y) & shareholder (X))
which 1s equivalent to
VxVy(esal(x,y) — > - shareholder(x))

However, this 1is not equivalent with that the sets of
employees and shareholders are disjoint as an entity can
be an employee who does not have a salary.

The 1dea of closing the predicates of an i1nformation
model 1is quite similar to the closed world assumption of
data bases, cf. (Rei-81). In our context the assumption
implies, In principle, that an information model can be
made complete (in the logical sense). However, as we
pointed out above, we can not expect an information model
to be complete (cf. chapter 5), but there are good
reasons for aiming at ""complete” (or, optional)
information models:

- an information model becomes stronger
- 1mplicit assumptions are made explicit.
These arguments imply that correctness checking of an

information model will be more efficient, in particular
consistency checking (cf. section 6.4).



19

7. CONCLUSIONS

In this paper we have focused on the process of changing
an information model iIn order to obtain an iInformation
model that is as precise as possible with respect to the
considered universe of discourse. Some principles to be
applied 1In the construction of information models in
order to obtain the above goal are presented. These
principles include that the employed predicate symbols of
an information model should be 'closed™ such that their
instances are completely characterized. Further, 1t is
proposed that an existence assumption about instances of
the predicates should be made, though 1t has a
limitation, which is pointed out. The relative strength
of some typical constructs of information models are also
discussed and examplified.



REFERENCES

Bub 80 Bubenko, Janis, Jr.: "Information modeling in
the context of system development™, [IFIP-80,
Tokyo, Japan, 1980.

Car 4 Carnap, R.: "Einfurung in die symbolische
Logik, mit besonderer Beriucksichtigung ihrer
Anwendung™, Wien, Austria, 1954.

Hou- 79 Housel, B.C., Waddle, V., Yao, S.B.: 'The
functional dependency model for logical
database design™, IBM Res.Lab., San Jose, USA,
1979.

Iso- 82 Griethuysen, J.J. (ed): "Concepts and Termino-
logy for the Conceptual Schema and the Informa-
tion Base™, ISO TC97/SC5/WG3, 1982.

.lun- 82a  Lundberg, B.: Contributions to Information
Modelling, Ph.D.-thesis, Stockholm, Sweden,
1982.

Lun- 82b Lundberg, B.: "IMT - an Information Modelling
Tool™, IFIP WG 8.1 Work.Conf. on Automated
Tools for Information Systems Design and

Development, New Orleans, USA, 1982.

Rei- 81 Reiter, R.: "Data Bases: A logical perspec-
tive", SIGMOD, Vol 11:2, 1981.

Sen- 77 Senko, M.E.: "Conceptual schemas, abstract data
structures, enterprise descriptions”™, Internat.
Comp. Symp., 1977.



METHODOLOGY FOR THE REPRESENTATION

OF SOFTWARE PRODUCTION PROCESSES

M. De Blast and G. Turco
Istituto di Scienze dell®Informazione ,

Universita®™ dl Bari, Italy

1. INTRODUCTION

Software production processes are measurable entities, as are
software products themselves. They also include software products, but
their essential components are production activities. In this study,
"production activity” is taken to mean the sum total of manual and
automatic operations required to pass from one product to another.

Among production activities, even the measurements are to be



22

considered. In this case, two levels of analysis are established: the
first refers to the object to which the measurement activity is applied
and the other to the activity itself.

The production process 1is an entity in development, not terminated
as on the contrary is a software product. The analysis of a production
process is directed towards the knowledge of objects which must still be
produced, with the aim of influencing production mechanisms themselves.

Elshoff /1/ uses complexity as a control variable in the production
process: the programmers are constantly supplied with feedback on the
code which they are producing, so that when it becomes too complex, they
are asked to vreprogram it until values of acceptable complexity are
obtained.

Belady and Lehman /2/ see the large software systems as organisms
which change during their lifetime in relation to their environment.

We maintain the necessity of intensifying the interactions with the
environment during the initial stages and decreasing them after the
product has been released. This may be done by means of measurements, as
in Elshoff, which generate a feedback on the process itself.

The analysis of production processes must have previsional
characteristics in relation to the product to be obtained. De Milié and
Lipton /3/ suggest that ideas should be taken from less precise sciences
than Physics -for example Meteorology or Economics-, since in these, as
in Software Science, the predictive component is much more important than
the explanatory one.

The summary of the Panel Findings of /4/ states that: 'A natural



23

dichotomy exists iIn the interests of those who study software metrics.
There are those whose interests lie in studies of the creation and
management of programs - in human performance. And there are those whose
interests lie in studies of the object produced - in program performance.
Although it is generally agreed that there ought to be a natural
relationship between these two types of studies, we see no unifying
theory developing in the near future'.

So, software products and production processes should be represented
in the same space and analytical relations between the former and the
latter should be established.

Belady /5/ also maintains that it is difficult to develop a metric
for both products and processes. Many experiments (see for example
Sayward /6/) have been conducted to measure products and few to measure
processes. Sayward also reports various experiments which relate the two
areas. However, these suffer from the lack of a unifying theory based on
a univocal product and production process representation.

This study introduces a definition space for production processes.
In this space, a production process corresponds to a trajectory made up
of segments representing the activities. The final and intermediate
points correspond to the various products obtained during the entire
process. Or else they may be isolated from the trajectory in order to
represent products which already exist, and can be used in the production
process.

Section 2 deals with the definition space of software production

processes.



24

In the Sections following, the representation of processes and
products in this spa<®, its metric basis and usage of analytical
relations as previsional and comparing tools, are developed.

An application of the methodology is carried out on some production
processes studied in a preceeding paper /7/.

The tools for production process measurement, introduced in /7/, are
described in detail 1in /8/, where a presentation is made of an
application in an industrial environment of the methodology proposed for

the production of large scale software.

2. DEFINITION SPACE OF SOFTWARE PRODUCTION PROCESSES

A software production process can be represented by a trajectory of
a point moving through a space, whose coordinates are measurable
properties such as: production time, programming cost, functional
requirements, execution time, memory occupation, level of portability,
maintenance level, readability, complexity, etc.

According to the production tools available (hardware and software)
and the preselected strategies, we will have various trajectories and
various arrival points of these trajectories. The choice of which
trajectory to Tfollow should take into account those arrival points found
within a predetermined area of the definition space ( ™"area of

acceptability” )



25

Intermediate points may also influence the choice of optimum
trajectory. Assuming that time 1is a privileged variable, it may be
interesting, for example, +to determine trajectories which connect
products, P(t), obtained at different times, ti and tf, with equal
functional characteristics, but with different performances, whose final
points, P(tfF), are of course still within the area of acceptability
('prototyping’™ and "tuning').

In certain cases, it may be preferable to follow this kind of
trajectory, instead of one which has a final point with greater
characteristics, but no iIntermediate points of the type described. In
fact, 1in this way, we have the advantage that, from the Ffirst phases of
software generation, a product is already obtained with the required
functionality, even 1if the other prerequisites are not yet satisfied.
This is useful for testing and evaluation purposes.

Groups of variables in this space may be part of particular metric
bases, according to which aspects of product or production process are
enphasized 1in the analysis. Among the most important, we indicate the
well-known metrics based on the analysis of the program text (Halstead
/9/) and those, complementary to them, which are based on its history of
execution (Knuth /10/).

The software product continues its trajectory even after what we
have called 1its arrival point. Actually it 1is at this point that it
begins to exist as a "finished product”. From this moment on, other
variables become important, specifically: costs of maintenance, transport

if any, modification, extension, error elimination, execution time,



26

occupation of memory and of other resources.

It is essential that the entire trajectory, and not only the point
determining the Tfinal product, is situated, from this moment onward, in
an area of acceptability, 1in order to ensure that the quality
requirements, whether set or forecast, will be constantly satisfied.

Many quantities possess this double aspect which refers to "before™
and "after™ the product has been obtained. That is, there is one cost for
preventive therapy and one Tfor the intervention on the product. For
example, Jones /11/ separates quality measurements into measures of
defect removal efficiency and defect prevention.

Thus, the conclusion reached is that the trajectory should be chosen
according to the arrival point of the product and the intermediate
points, and also according to "future" points. How to choose a trajectory
on the basis of measurements of a product which still must begin to
exist, 1is a problem which, within other sciences, 1is solved iIn two
possible ways:

a) making use of simulators which, by underlining determined
characteristics each time, also allow their measurement and thus the
evaluation and choice of the trajectory which optimizes that partial set
of characteristics;

b) determining other variables, from which "future"” variables may be
deduced by means of analytical relations. This 1is equivalent to
increasing the dimensions of the definition space, 1In order to
incorporate these new and fundamental coordinates.

Both methods must generate 1) an adequate instrumentation for the



27

measurements of the quantities of interest, and 2) a set of analytical
relations and/or invariance principles for the interpretation of
measurements carried out. The difference between the two methods lies in
the varying importance assumed by the two above mentioned points.

Each time one proceeds towards such a modelization, introducing
groups of variables characterizing each aspect of a software product or
of a production process, with tools for their measurements and analytical
relations for their interpretation, a definition is made of a "Physics"
or, better still, of a branch of Software Physics.

Returning to the concept of a trajectory in a definition space of
software products, it is worthwhile focusing attention, for a moment, on
particular types of trajectories: those which join two points of two
distinct trajectories, as 1iIn the conversion of a product from one
computer to another.

In this operation, the most obvious variable 1is the cost of
transport, which may vary to a great extent, according to the level of
portability of the original software. Moreover, if this is not portable,
there are two groups of trajectories, whether or not the arrival product
is portable, thus causing a notable difference iIn transport cost. The
importance of this variable is so great as to wrongly overshadow other
factors such as: time efficiency, memory occupation, level of
maintainability, etc., thus limiting us to a simple maintenance or
generic improvement of values assumed in the original product. Also in
this case, a physical approach cannot avoid the examination and

measurement of all variables on which software product trajectories



28

depend, so as to forecast the characteristics and performance of the
final product, thereby carrying out the choice of the trajectory which
achieves the best compromise.

Tools used in the software production, such as languages, compilers,
interpreters, code generators and operating systems, are software
products as well. The characteristics of products to develop and thus the
various trajectories are dependent on them. Generally, software
production tools correspond to isolated points in space, since they are
almost always products already obtained, supplied by the firm or by an
external software manufacturer.

In other cases, production tools correspond to final trajectory
points, if it 1is the user who must produce them. Testing and debugging
tools and precompilers, are examples appearing in this category.
Generally, we may safely say that the measurement tools themselves are to
be measured and evaluated in the production space.

Furthermore, it is often the case that, even if products supplied by
an outside manufacturer are involved, they lack evaluation in terms of
even such basic figures as execution time and the like, so that, in order
to carry out our analysis, It is necessary to have the proper measurement
tool available for these products as well.

As far as the analytical relations existing between production
process variables are concerned, we have already seen their previsional
properties with regard to characteristics of products still to be
obtained. We have also insisted on the importance of comparing the

various trajectories with one another, not only on the basis of puntiform



29

characteristics, but also of continuous intervals of the variables. Thus,
it is important not only to obtain analytical relations between the
variables of a production process, that 1is, relations along a single
trajectory, but also to obtain analytical relations between the
trajectories, eventually taking one of them as a trajectory of reference

and relating the others to it.

3. MODELS

As examples of software production processes, we take the ones
studied in /7/. The following is a brief description of the corresponding
models.

Hypotheses made in /7/ on the environment included:

the existence of three language levels: HLL (High Level Language), ILL
(Intermediate Level Language) and DEL (Directly Executable Language),
with no reference made to the particular languages used;

- the wuse of normal production tools, among which in particular there
were both an interpreter and a code generator from ILL to DEL;
- the use of "tuning"” methodologies.

On the basis of the above, five alternative models were formulated:
1) DEL model, consistent in the writing in DEL (or in the symbolic
correspondent): it defines a machine at one level (Fig. 1.1);

2) The "interpretive" model (Fig. 1.2), which concerns the writing of



DEL

30

1) DEL model

Prn w wn - -y g

2 HLL :
L—-—-‘ —--—ﬂJ
Compiler
ILL
Interpreter
DEL

Interpretive model

2)

-—-.-Q—Q———Q‘

HLL4+DEL

- - ‘—‘J
rCompiler

ILL+DEL

re==y

Interpreter

DEL

Interpretive

4)

+tuning model

r—v—-q—n—- - -

'
t HLL

L---- j— -
il Compiler
'--—-. ——-l—.;
1 f
' ILL ¥

L‘--‘

.- -

-..-J

Code generator

DEL

3) Generative model

P-‘"-—--ﬁ
t
+  HLL+DEL !

O s |

==l

1
: ILL+DEL !}

q2m2}3er

L“ —-— - — - ey =
-] Code generator

DEL

5) Generative

+tuning model

Fig.1 Software production models



31

programs HLL which, for reasons of portability, are compiled in ILL and
then interpreted in DEL;

3) The 'generative”™ model (Fig. 1.3), which differs from the interpretive
model iIn that it uses a code generator to pass from ILL to DEL;

4) The interpretive model with tuning (Fig. 1.4);

5) The generative model with tuning (Fig. 1.5).

Models 4 and 5 are respectively models 2 and 3 optimized in execution
time. The tuning methodology 1is applied by measuring the critical HLL

areas and substituting them with DEL code.

4. PRODUCTION TRAJECTORIES

An observation which may be made, before moving on to the
application of considerations made in the preceeding Sections to models
introduced, 1is that, 1iIn order to represent entities (activities and
products) in a definition space of production processes, their metric
basis should be defined. On the other hand, this metric may only be
deduced by analysis of activities involved in the different production
processes, so that it is preferable to follow the order of first
introducing the production trajectories - referring to 'production time"
- and then, in the Tfollowing Sections, the coordinates and analytical
relations essential for their analysis.

Some definitions are given and then "elementary” trajectories are



32

introduced.

A  trajectory, within the definition space, 1iIs composed, as has
already been stated, of segments and vertices: the former indicating
production activities and the latter, the products. A segment always goes
from one product to another, or rather always joins two vertices. The
first segment also begins from a "product™, supplied by the sum total of
the initial unformalized specifications of the product to be obtained.

We shall follow the convention of labelling only the vertices - not
necessarily all of them - , reporting, for the sake of brevity, the
languages in which the products are obtained.

The Ffirst kind of trajectory that we shall consider, concerns
measurement activities. Let us take, for example, the activity of
counting n , the number of instructions executed in a given DEL program
run. The corresponding diagram 1is shown in Fig. 2. It represents a
measurement activity which leads to the passage from DEL product to DEL:n
product.

The two usual ways of carrying out measurement, using
instrumentation or interpretation, are represented respectively in Fig.3
and iIn Fig.4.

Interpretation activities are denoted by dashed segments, in order
to indicate the fact that they are not activities of transformation from
one product to another, but rather of execution of a product on a machine
whose language is expressed by the second vertex. The measurement of n
in Fig.4 iIs seen as a minor variation in the interpretation activity.

Another kind of trajectory is found in "‘conversion”™ diagrams, which



DEL
Fig-2 Measurement trajectory of n

DELS

CH-K
DEL
Fig-3 Measurement of n by means of DEL instrumentation

DEL:*.

«
DEL

Fig.4 Measurement of n by means of interpretation

Fig.5 Diagram of conversion from machine D to machine G

Fig-6 Diagram of conversion of a DELa product to a DELb machine,
examining Ffive different production processes, leading to products all

functionally identical.



34

lead to the passage from a trajectory to one or more different
trajectories. An example of a conversion diagram is supplied in Fig.5,
which represents the case of two products, functionally identical, but
implemented on different machines. In this case, the two processes share
only the 1initial analysis activity, while they diverge in the final
production activities.

In a more general way, conversion diagrams may be interpreted as the
representation of altenative production processes obtaining functionally
identical products. Such processes may have some sections iIn common, in
both the 1initial and final parts, supplying different products in one
case and the same product in the other. The diversification of final
products does not necessarily mean the use of different machines, but
much more often different procedures making use of the same hardware.

A problem of conversion from a DELa to a DELb machine, which
examines various alternatives, such as those outlined in the preceeding
Section, may be represented schematically as in Fig.6.

The sum total of initial activities, common to the various
trajectories, has no influence on the relative evaluation of the various
production processes. Thus, this evaluation may include the production
process followed to obtain the product to be transported, or else it may
be limited only to alternative processes.

In any case, the diagram of conversion is transformed into one of
"selection” between various independent alternatives. Fig.7 traces the

selection diagram for the Tfive models iIntroduced in the preceeding



35

Section, and Tab.l lists the corresponding products.

(1) DEL writing. Reference trajectory.

Hi1

(2) HLL writing, ILL compilation, interpretation.

HLL

(3 HLL writing, ILL compilation, DEL code generation.

Fig.7 Production trajectories for: 1D DEL, 2) Interpretive,

Generative models.

and 3)



36

HLLuc + HLLc

HLL k
.JHLLvic+DELc

L mrUnt-jjXLc.
____________ - DELMt +DELc

(@) HLL writing, |ILL compilation, interpretation with HLLc measurement,

rewriting of HLLc in DEL, ILL compilation, interpretation.

HLLnt+HLLc
HLL o HLLnc+DELc
= ILinc+OELe
ILL DEL%a DELC

(B) This 1is 1identical to (4), except for the latter activity which

involves DEL code generation.

HLLnhc+HLLC
----- (5) -fvoho HLLmc+HLLc onward.

GYH HLL writing, HLLs instrumentation, [ILL compilation, DEL code

generation, execution to obtain HLLc, then (5), from HLLnc+HLLc onward.

Fig.7 (Cont.) Production trajectories for: 4) Interpretive + tuning, 5)

and 5%) Generative + tuning models.



Table 1.

Product

a)

b)

©)

D

e)

s))

h)

K

DEL

HLL

ILL

DELg

HLLnc+HLLc

DELc

HLLs

ILLS

DELS

ILL/DEL

ILL/DELg

37

SOFTWARE PRODUCT LIST

Definition

Program written in Directly Executable Language
Program written in High Level Language

Program in Intermediate Level Language, obtained by
compilation from HLL

Program in Directly Executable Language, obtained by
code generation from ILL

Program in High Level Language measured to detect

the critical areas HLLc

Critical areas rewritten in Directly Executable Language
Program in High Level Language instrumented to detect
critical areas

Program in Intermediate Level Language obtained by
compilation from HLLs

Program in Directly Executable Language, obtained by
code generation from ILLs

Interpreter of Intermediate Level Language in a
Directly Executable Language machine

Code generator from Intermediate Level Language to

Directly Executable Language.



38

The trajectories of Fig. 7.1, 7.2 and 7.3 reflect the simplicity of
the corresponding models. It 1is only worth noting that there is a
diversity of products obtained by the first and the third process, from
which the different notations, DEL and DELg, are taken. As can be readily
seen, there is a difference not only in the text of the two programs, but
also in their properties, as a vresult of the different DEL and DELg
language levels. This 1is evident from measurements of ILL power carried
out in relation to both of them (/7,8/).

The trajectories related to models with tuning (Fig. 7.A, 7.5 and
7.5%) are increased by the insertion of measurement activities.

In Fig. 7.4 and 7.5, after obtaining the product in ILL, measurement
is carried out of the critical areas, by means of a modified interpreter.
The product obtained 1is the knowledge of the critical part HLLc. The
measurement activity in both production processes is then followed by the
rewriting of HLLc in DELc.

It 1is noteworthy that DELc is to be considered different from DEL,
since the rewriting is less expensive than the writing activity.

Rewriting 1is followed by integration and compilation in ILL. Lastly,
the two processes are differentiated by the final activities of
interpretation and code generation respectively.

A variation of the trajectory in Fig. 7.5, indicated in Fig. 7.5%,
involves the use of code generation from the initial activities onward.
To allow for this, an HLL instrumentation 1is used, followed by code
generation and compilation, according to the HLLs, ILLs and DELs chain.

The instrumented program is then executed to determine the critical areas



39

HLLc: 1t is at this point that the trajectory in Fig. 7.5 is converted

to that of Fig. 7.5 for the final activities of DELg+DELc production.

5. METRIC BASIS

Now, for each product of Table 1, the variables which characterize
it are to be determined 1in the 1light of the theory which is being
constructed. That is, a definition must be made of all the variables (and
only those) from whose value one can predict the characteristics of the
final products, by means of suitable analytical relations. This ensures
that the system of variables is complete and minimum.

In the construction of the system of variables, a useful nucleus for
starting 1is supplied by precisely those variables which characterize the
final products. It is assumed that the only variables of interest for
these products are those which define that we have called AREA OF
ACCEPTABILITY.

For example, iUn /7/, the proposal was made to choose, from the
possible production processes, those for which the following remained
within predetermined limits of acceptability:

C, the production cost;
T, the execution time;
0, the memory occupation; and

P, the portability,



40

on the understanding that working methods which guarantee
maintainability, vreliability, readability and expandability, would in any
case be followed. Table 2a summarizes these variables.

This first set of variables is then enlarged with variables which
define iIntermediate products and can influence the properties of final
products.

These are, above all, the variables related to the METHODOLOGY. In

tuning methodology, we define (Table 2b):

T(HLLC)/T(HLL) , and

©
1

-
1

O(HLLc)/0(HLL) ,

i.e. the fractions of execution time and of memory occupation of critical
areas, denoted here by HLLc, with respect to the whole program HLL. They
are measured by the activities which produce HLLnc+HLLc in Fig. 7.4, 7.5
and 7.5".

Another set of variables 1is vrealated to the TOOLS used in the
production processes. In our case, the tools which have a notable
influence on the final products are the interpreter ILL/DEL and the code
generator ILL/DELg (products j and k in Table 1). The quantities defined
for these products also characterize the languages between which they
operate, i.e. ILL and DEL.

In Table 2c these variables are defined. They are the

"interpretation cost® and the dynamic and static “powers®™ of ILL with



41

respect to both DEL and DELg. All these depend on the relative
characteristics of the languages involved as well as on the tools used.
Lastly, some variables are concerned with the LANGUAGES alone.

Generally, they are instruction execution times and instruction lengths.

Table 2. THE METRIC BASIS

a) Variables defining the area of acceptability:

C PRODUCTION COST
It includes cost of programming, debugging and testing
activities. On the contrary, the costs of automatic activities,
such as compilation, code generation and measurements of
critical areas, are neglected compared with the above.

C(DEL), C(HLL) and C(DELc) are, thus, the only costs to be

measured.
T EXECUTION TIME
0 MEMORY OCCUPATION
P PORTABILITY

b) Variables related to the methodology:

r = O(HLLc)/0(HLL)
Fraction of the HLL program to be rewritten in DEL, resulting
from the measurement activity of the critical HLL areas.

P = T(HLLC)/T(HLL)



42

Fraction of time spent in critical areas.

c) Variables related to the tools:
N INTERPRETATION COST OF ILL

It is the mean number of DEL instructions that the interpreter
carries out to extract, examine and execute an ILL instruction.
Mt POWER OF ILL
It is given by the mean number of DEL instructions which would
carry out the same operation as a single ILL instruction. It
can be measured considering two “equivalent™ programs in DEL
and in ILL, i.e. a program written in DEL and another in HLL
(compiled in ILL) for the same problem. By dividing the number
of instructions executed in each of the two programs one
obtains the power of ILL.
Ms STATIC POWER OF ILL
The same as Mt, except that it is given by the ratio of the
lengths of the two programs.
Mt APPARENT POWER OF ILL
It is the power of ILL calculated with respect to DELg,
i.e. It is the mean number of iInstructions executed iIn the
generated program for carrying out the operation of a single
ILL instruction.
M"s APPARENT STATIC POWER OF ILL
Static power of ILL with respect to DELg. Both M*t and M"s

are greater than Mt and Ms respectively. In other words, ILL,



43

when related to its DELg, seems more powerful than it really

1S.

d) Variables related to the languages:

k DEL INSTRUCTION EXECUTION TIME
1(DEL) DEL INSTRUCTION LENGTH
1(ILL) ILL INSTRUCTION LENGTH

All these quantities are to be taken as weighted averages.

6. ANALYTICAL RELATIONS

The variables C, T, 0 and P, which define the final products, are
related to the other variables introduced in Section 5 by means of a
number of formulae which we have grouped in Table 3. These expressions
furnish the wvalues of C, T, 0 and P, relative to those of process 1 or
DEL process, except for the portability.

The deduction of these relations is given in /7/. Here, however, we
illustrate their use as previsional tools and in the comparison «in-

different processes.

Table 3. ANALYTICAL RELATIONS

Cl = C(DEL)

C21 = C(HLL)/C(DEL)



44

C31 = C(HLL)/C(DEL)

C41 = C21 + r = C(HLL)/C(DEL) + r
C51 = C31 + r = C(HLL)/C(DEL) +r

TI = T(DEL)

T21 = N/Mt

T31 = M"t/Mt

T41 = (1-p)T21+ p ={{-p)N/MEt + p
51 = (I-p)T31+ p =(1-pM"t/Mt + p
01 = O(DEL)

021 = 1(ILL)/(1(DEL)Ms)

031 = M"s/Ms

041 = (I-nN021+ r =(I-NDIALL)Y/(I(OEL)MS) + r
051 = (I-rN031+ r =(I-rM*s/Ms + r
Pl =0

P2 = 1

P3 = 1

P4 = 1-r

P5 = 1-r

As far as the costs are concerned, as a consequence of that which
has been asserted in Table 2a, we consider only the writing activities,

i.e. programming in HLL, in DEL and reprogramming critical areas in DEL.



45

As can be seen in Table 3, the relative costs all depend on the

ratio:

C(HLL)/C(DEL) .

This is a constant characteristic of the production environment which can
be easily measured.
The 1last two costs refer to the processes adopting the tuning

methodology. Their expression:

C41 = C51 = C(HLL)/C(DEL) + r , [€))
is a linear function of r, i.e. of the fraction of code which we decide
to rewrite.

The variables r and p are of course related to one another (see
Knuth /10/). That 1is, if we reprogram a small fraction of code, we will
have a 1low cost, but Ilikewise we will have Ilittle improvement in
execution time. In quantitative terms, this can be evaluated from the

expressions reported in Table 3 for the relative times using tuning:

T41

(I-p)T21 + p

@)
T51

(-p)T31 + p

which establish a relationship between the times without tuning and those



46

with tuning. The quantity (@-p) can be defined as the "time reduction
factor®™ for processes which adopt tuning.

Thus, the expressions (2) can be used together with (1) for deciding
an optimal choice of the parameters p and r, which obtain the maximum
improvement 1In execution time remaining, at the same time, within
acceptable costs.

Passing to the terms T21 and T31, it is seen in Table 3 that these
can be expressed by means of more "fundamental® variables:

T21 N/Mt

T31 M t/Mt

i.e. by means of the ILL interpretation cost and the ILL powers. This
gives us the possibility of an "a priori"” evaluation of the times. In
addition, the two processes, interpretive and generative, can be compared
with one another, by remembering, from Table 2c, the definitions of N and

M*t. From these one has:

M™t < N
and, then:

T31 < T21
and

T51 < T41 .



47

Again, only by taking measurements on the tools used, we have
obtained quantitative statement of the known property that affirms that
the code generated is more efficient in execution time than the code
interpreted. Indeed, from these expressions, we can also say how much
more efficient the former is than the latter. A quantitative knowledge is
always essential, 1i1f a trade-off has to be reached between various
performance requirements.

We can make analogous considerations on the memory occupations,
except that static quantities are to be taken into account.

Finally, we see Tfrom Table 3 that the portability is also
quantified, using tuning. Thus, the choice of the size of critical areas

to reprogram has to be made also taking into account this variable.

7. CONCLUSIONS

We believe that i1t 1is always possible, 1in each production
environment, to represent both the software products and the software
production processes 1In the same definition space with a restricted
number of coordinates. This has been demonstrated for the environment
studied i1n this paper.

We have constantly tried to reach generality. Abstraction from our
environment Qlead us to obtaining a metric basis and a system of

analytical relations. These can constitute, we hope, a starting basis for



48

development of a theory incorporating instances from other environments.

REFERENCES

/1/ J_L_Elshoff, "A Review of Software Measurement Studies at General
Motors Research Laboratories'™, Proceedings of the Second Software Life

Cycle Management Workshop, 166-171, IEEE, New York, 1978

/2/ L._A_Belady and M._M.Lehman, ™"'The Characteristics of Large Systems',
Research Directions in Software Technology, 106-138, MIT Press,

Cambridge, Massachusetts, 1979

/3/ R.A.DeMillo and R.J.Lipton, "Software Project Forecasting", in
F.G.Sayward, M.Shaw and A.J.Perils, editor, Software Metrics: An Analysis

and Evaluation, 77-94, MIT Press, Cambridge, Massachusetts, 1981

/4/ F_G.Sayward, M.Shaw and A.J.Perils, editor, "Sofware Metrics: An

Analysis and Evaluation™, MIT Press, Cambridge, Massachusetts, 1981



49

/5/ L._A_Belady, '"Software Complexity", Software Phenomenology, 371-383,

AIRMICS, Atlanta, 1977

/6/ F.G.Sayward, 'Design of Software Experiments'™, in F.G.Sayward,
M_.Shaw and A.J.Perlis, editor, Software Metrics: An Analysis and

Evaluation, 43-59, MIT Press, Cambridge, Massachusetts, 1981

/7/ M_DeBlasi, D.Marino, O.Murro, "Une methodologie pour devaluation de
strategies de production de logiciel', Actes des Journees BIGRE 82,

113-127, Grenoble, 1982

/8/ M_.Carulli, C._Marzano, V.Tetro, G.Turco, ™"Valutazione delle Strategie
di produzione del software: risultati di una metodolégia™, Atti AICA,

53-59, Padova 1982

/9/ M_.H.Halstead, "Elements of Software Science', New York, Elsevier,

1977

/10/ D.E.Knuth, ™"An Empirical Study of FORTRAN Programs',

Software-Practice and Experience, Vol.l, 105-133, 1971

/11/ T.C.Jones, "'Measuring Programming Quality and Productivity', IBM

System Journal 17 (1), 1978.



_,.":
ik ﬁrhﬂﬂ.if'ﬂ.t"'

'I-.-| ) nI.IT




The Development of a Machine Independent
Multi Language Compiler System
Applying the Vienna Development Method

Uve Sdmidt Reinard \Oller
Institut fUr Infomatak ud Praktisde Mathematik
Chri sta anFAlbredts-Uni varsi tate Kiel

1 Project Background and Motivation

Since 1990 tre Coputer Science Department of Kiel University
ad Dietz Coputer Systars, Milheim, FRG, have bsen cogperating
in tre develgpment of a unrform aonpiler system for tre lagueges
BASIC, GBOL, FCRTRAN ad PASCAL, sygported by Dietz.

A main requirereit wes the essy portability of the system
O nev aonuters ad a high code efficieacy, becase the source
lageges ae ussd for systers programing ad CAD goplications.

For this purpose a nechire indepadatt high leel intemediate
laguece wes derived fran fomal deotatioal saattics specifi-
catios of te source laguegess. In this laguege CAT (Comn
Astract Tree laguege) progras ae represatted as dstract
progran trees. CAT s especially wurted for tte mnplenentation
of the for lageges mattioed dowe, lut other  lagueges
an be aompiled nto CAT as well. I necessary e aonstructs
n ke add.

The specificatios of te aompiler frot s ae derived
fran the gpecificatios of the dyemic seratics of the souroe
lageges. This gproadh assures tte correctness of the comi-
lation process.

Tre frolt exds ean ke kgt relatively siple, because of
tte high leel of tte iIntemediate lagee. Inut for te
frat eds 15 an astract progran tree costructed by a parser,
which s autoatically geerated. The machine  indgpadence
of CAT garattess tre portability of tre system.



52

The target machines ad the respective mechine lagueges
ae fomally secified n a unrform narer. These soecrfications
leed ©© compiler badk eds, whidh convert te tress of te
CAT lagee Mo ssgquences of mechire istructias. The conver—
silm of tte badk ed specificatios s 10 a lage edtet doe
autoratical ly.

The Viema Deelgpent Method (MM [I] s usd for te
secification of all lageges ad apiler froit ad back-
exs. This fomal nmethod automtically yields ocoplete ad
provdbly acosistatt geectficatios, wiidh an systamatically
ad n part automatically ke trasfomed o high leel lagege
prograns.

The folloming diagran gives a gereral view of te attre
Systan:

Souree
Langueges
Corpiler
BASIC COBOL FORTRAN PASCAL Aot
Bk
CAT

Gopier
CAT Compiler II
Bos

Mechire Goce | Mechire Goce Il

CAT Compiler I




53

2 The Development of the Intermediate Language
2.1 The Need for Fomal Laguege Definrtias

Tre existing lagege definttios for BASIC, QOBOL, FORTRAN
ad PASCAL are all iformally written in retual lagege ad
ths leae roon for different imempretatios. 10 eliminate
the abiguities ad iIncosistacies of thexe definttios, we
extract fomal daotatioal gspecificationss fran the laguege
stadhrds ad menals [2,3,4,5],

A further advaitage of this gorcach s thet nov tte aon-
parizon of differait lagegessis mece cosiderably essier.
The fomalization of laguee desoriptios hels t©  detect
arstnucts, wiidh are sanatically but ot syntactically equiva-
latt, & vwell & costncts with the sie syntax but dirfferant
santics. This gogorcadh wes also recently dosen in a laguege
conparizon of CHILL ad Aca [6,7]-

Te lagege usd for thee descriptios s META N, te
seecification lagege of tte Viema Deelgoeit Method. Tre
META IV goeecrficatios aosist of an astract syntax, which
dstracts tre strings defined by the coarete sytax of a lan-
gee t© matheratically tracteble dgjects, suh a5 tress, s=ts
ad mgs. Additicel aotextual deperdencies of the sytactic
dyjects are fomulated throgh te “isqwell-fomed™ functios
of tre static srantics. Interpretation fuxctios of the dyramic
saETics assoclate dojects fran sarantic domains, whidh aasist
mainly of a storage model, t© the sytactic dojects. These
descriptions fom the besis for the derivation of tre intemediate

lagee ad te deelgett of the copiler frait eds. They
ae automtically aoplete ad treir cosistecy s proeble.



2.2 The Derivation of CAT

The derivation of tre Intermediate lagege IS bessd
the iInterpretation fuctios defining the dyramic  samatics
of e varias lagege astncts. In oder o 1dentafy con-
structs with comon samatacs, te  interpretation fuctios
=2 the sare serantic daomairs [8].
2.2.1 Tne GComon Storage Mocel

The nost nportait of these domirns are the domains neeced
for the storage mocel. Without suh a comon storage  nockel
the INterpretation fuctios are ot anparable. The aoplexity
of this nockl varies with tre different source lagueges.

Since PASCAL alloss references t© values of structured vari-
ables, anokel of structured values of array ad record variables
1S neoessary. This moel nust also reflect e dages of a
valle of a record variable caused by an assigment to a component
in a \Variait part.

The nocel must ke ggreral eugh ©© aype with the effects
cased by FORTRAN EQUIVALENCE stataments ad (QOBOL REDEFINES
ad RENAMES clauses. These costructs permit the inplicit rede-
finttion of owerlayed variables. Therefore Infomation about
tte relative position N store ad the legth of a valle B
needed. The programer can defire tre storage layout of data
using the COMMON awd EQUIVALENCE statarents i FORIRAN ad
thus egloit the sice effects of assigmaits t© equivalenced
varidbles. The sare gplies to CBOL cata recorts.

We nockl a valle a8 a mgp fran pairs of ratural nutbers
1o elerattary values:

\al =R Freed)- > Sinpleal
Sinpleval =INTG |REAL | ...

Red =NO

Feeed =NO

Addresses are pairs of locatios ad relative addresses:
Looal = (Loc Rx)



55

Rd deotes a relative abress, AReeed the first uusd
abress. In the eviroamatt we kegp infomation aoout the offsets
of record fields.

The following META IV fuction goecifies te yodating of
a storage &=l -
1 1 store(loc,rad, lenv)(Sty) =

.2 if loc not 6 dom stg

-3 then error

-4 else

-5 let ovm = stg(loco)

.6 dg-locs = @, p) 1 (@,)) 6 dom o) &

-7 n {rad:radtlen-1|
. 8 ,(nin, )e dg-locs s.t.

-9 A (@,)) e dg-locs)(@ £ min 1> min)

.10 L &) e dog-locs s.t.

11 A @,)) e dg-locs)(g f mex = jJ< mx)

12 ,onm = (o - dg-locs) +

A3 [kt = UNDEF | (min <= k<= rad) v
J4 (radtlen <= k< max)]
5 A =ont + [(Had jHad)  vi(@.D) |
16 (1,J) e dom wm]

7 in stg+ [loch nm|
A8 type: Loc Rd Len \al — * Stg— » Stg
The location refereced nust e a valid address ((2-.3).

Tre old valle 15 read ad tat part of the valle oonputed,
which owerlgs with e new valle (4-.10). Compoeatts, which
only partially oerlgp ae st to an ucefined valle ((11-.13).
Finally tre valle s ydbted ad a new storage retumed. Tre
fuctaon for reading a value fran store s similar:
2. 1 read(loc,rad,eD(sty) =

.2 if loc not e dom Sty

-3 then error

.4 else
-5 let vm = stg(loc)



-6 Vv = [(i-ad, j-rad) vi(@.p) |
.7 (@,p 6dom ) & (i ¢ Yad:radtel])]
-8 in if (union I )6 dom v~ N0 el-ID
-9 then error
(0] else v
1 type: Loc Rd N0 — > Stg— > \al

Te valle o ke reed 1Is specified by a location, an offset
within tre location ad a legth (D). Te ettire valle 5
reed ad those aopoeits exdtracted, vwhich are selected by
tte offst rad ad te legth d (4-,6). If tte valle s ot
vell-fomed an error coors.

Haarg defined a comon storage mocel for tre four langueces,
ve mv tum to te 1dntafication of the sytectic costnucts
o e included In the Intermediate  languece.

2.2.2 Tre Elereits of tte Intemediate Laguege CAT

The syntactic dojects necessary for a comon  intemediate
lagee ae dosn fron the wnion of all syntactic dojects
of tte source lagegess according to the folloving arteriac

- Fan laguage elaents which hae tte sae saatics
n s2wral s lagegess only ae s dosen for te
intermediate languece.

- IFf a sytectic dgject of ae lagee s te e
e of ae ar nore djjects of otrer lagueges, then
aly this eleatt is icludad In the Intermediate languece.

M eaple s tte logpstateret, we inclued n CAT. Kt
mplenaits the  PASCAL repeat-, while- ad loop-stateraits ad
s alo uwsad for te Iplerentation of the FORTRAN D0- ad
the PASCAL for-statament. Hs astract syrtax ad dyrnamic saman-
ucs ae:



57

Loop I siinl C Statamet
sexit - Bar
s-fin : Statemat

3.1 1-lop(kLlogp(sl,c,2),eV)(Sty) =
2 let f(fsty) = (let sy = I-staterent(, eV)(fstn)
3 »(k-TviVp ) ,stR)
.4 = e-bool(c,env) (st
-5 in if =0
6 then T(-statemet(x2,aV)(SR))
7 else st)
-8 in T(stn)
-9 type: Lop Bv— » Stg— » Sl
This costruct nplarents a while-logp, wen s1 s tte apty
statarent ad a repeat-staterat, wen 2 Is apty.
- Coplex dojects which can e brden don Into a sequence
of sinple dgjects already In tre Intemediate laguege
are amrtted.

The forstatemeit fron PASCAL ad the DO-staterent fram
FORIRAN ean ke brden don o a series of assignaits, a
test ad a logpstatarent ad ae therefore ot included
the intemediate laguece.

- Finally new dojects are defired, which mplereit saeral
other costructs of tre souree langueges.

e my take tre exoption hadling facility in CAT & an
eample. This costruct s similar © the exogption medenian
In Ada ad &an ke ussd for the plerattation of gldal jups
In PASCA,, ON ERROR coditios in (CBOL, edxgption hadlers
in BASIC ad tte hadling of ruttime errors.

It 1S necessary 0 reach a anpramise between tte size of
the memediate lagege ad tte coplexity of the camiler
frot avs. The frot exds en ke kgt sinple thraugh the direct
iclusion of lagege aostructs. This sould alvweys e doe



58

for costructs presait in saveral lageges. Hoever this leads
0 a lae intemediate laguege 0 ke hadled by the aompiler
bedk eds. A smll intermediate lagege on tte other had
requires et the frot exds msst perform relatively aonplex
trasfomatios. This culd leed t© urmecessary dwplicate worke
A arstruct should ot ke broken doan iInto  instructians,  which
later hae t© be recaorbined by the campiller badk avks.

The gporoach t@en assures the aopleteness of CAT, because
oaly aostructs vwhich are implerentable by means of other lan-
gece elaents are ot directly included in CAT.

The dstract syntax ad te static ad dyamic saattics
of tte included dojects yield a fomal gpecification of te
inemediate  laguece.

2.3 The Specrfication of the Gompile Algorithns

The partial evaluation ad the rewtting of tte INterpretation
fuctios lead 0 transformation fuctios mgping the differat
lagee eleeits t© syntactic costructs of tre  intemediate
lagee. They fom tre goecification of te conpiler froit
as.

The ifomation n the eviroment s ko at copile are
ad en ke used In te partial evaluation of the Interpretation
fuctios. However the mfomation cottained In the storage
s anly kon at runtine.  Therefore every tine a storage aoess
s pafonmed or a state trasformation mece, aock hes O ke
ogrerated, which perfons the state trasition at eeaution
tine. Tre folloving fuctions gne an npression of the relation
between tre INterpretation ad copilation fuctaons:



59

4. 1  i-repeat=st(rk-Repeat=st(c,st) ,eM)(sty) =

2 et f(fsty) =
.3 let fsto® = 1I-statemet(st,av)(fsty)
.4 SR, -, )
.5 = e-bool (c,eM)(fs)
6 in if v=0
-7 then T(TstR)
. 8 else Tt
9 in T(sty)

:ZID type: Repeatst Bwv— > Stg— > Sty
5 1 crepeat-strk-Repeat=st(c,st) ,eVv) =

. 2 et lop =

.3 let est = cstatament(st,awv)
.4 ,ac = chbool(c,ev)

.5 in mk-Loop(cst,oc,NIL)

. 6 in lop

7 type: Repeatst Bv — Loyp
The resulting specificatios ae then trasfomed by had
INto ecautsble PASCAL aoxcke.



60

3 The Development of the CAT Compilers

The CAT copilers of differeit target nechines are all of
the sae structure ad are develgped folloving a unirform goproech
I©1-

First a sinple, uinnversal, lov leel laguege CAL (CAT Assarbly
Languege) is cefined.
3.1 The CAT Assarbly Laguece

Sntactic Dorvains of CAL

L1 CAjyprogram - Istr *

-2 Irstr = Assign | Bach | Jup [ Lael
.3 Assin Var Bor

-4 Braxth Bor Lael e

-5 A Bor

.6 La=l Latel neme

.7 B = CGost | Var | Qoeration

.8 st Moce \al

-9 \ar Mce Rad Base [IX]

J0  Cperation Moce Qpooce Bqor *

J1 Bese,Ix = Byr

12 Rd = INTG

A3 d = INTG | "all other CAT values™
J4 Mok = Sdbr-mode | “"all other CAT modkes'”
A5  Shbr-ode 8 b W

J6 Lblb = INTG

A progran In the CAT Assarbly Languege aosists of a segquence
of instruictios (1), wich is interpeted sequentially. There
ae oy four kins of Instructios: assigmaits, ocoditiosal
ad ucoditioel Jups ad laels (2.



61

The aopoats of an assignmait ae a variable as destination
ad an eqressin a8 saure (). Copoets of a codrtacal
Jup ae a booleen eqression ad a lael (4). The destination
of an uxodrtical jup Is determined by an eqression (5).

We distimuish three kinds of equressios: astaits, vari-
ables ad qoeratios (7). All eqressias cotain a mode descri-
bing the kid of the result. The address of a variable cosists
of a aostait offset, a bee eqression ad an goaaal  Idex
eqression (9. The goooce of an goeration determines  the
fuction © e gplied © te eadluated agent edpression
list (L10).

The reaursive definttion of eqressias alloxs arbritrarily

anplex oeratios ad adress eqressios. The domins  for
values ad modes are taken fran the CAT laguece.-



62

3.2 The Structure of the CAT Conpillers

Te traslation of CAT intbo a cocaete mechire laguee
is pafomed In three steps. The folloving diagram  illustrates

the structure of the aomilers:

CAT

declaration evaluation

translation of structured
statements

(machine independent)

variable
allocation

(machine dependent)

CAL

instruction decomposition
and transformation
into

well-formed
machine instructions

(machine dependent)

automatically generated

from

specifications

CAL

final coding

label evaluation
peephole optimization

(machine dependent)

Target Machine Code



- 63 -

First all CAT lagege elaets ae mgpad © correspoding
CAL istructios for an "ideal’" CAT mechire, that 1s a mechire,
which directly mpleents the operators ad fuctios usd
in CAT. This step includes the resolving of aottrol  structures,
the declaration evaluation ad tre storage allocation.  Bxogpt
for tte storage allocation this step I1Is mechire  Indgpandat
ad idntical for all aompilers.

The seood step 1s tte real mechine code gaeration pese.
In this pgese gpoodes of tte target nechire are susstituted
for CAT qooodes with tre sae samantics. Gonpllex  instructions
ae brden don nto segqenoess of sinpler  istructios. The
necessary temporary allocation s perfomed by tte variable
allocation routines.

The quality of the gaerated code IS determined by this
ssood pgese ad the variable allocation sdee. The develgmant
IS besad an a formal  description of the availlable mechire Instruc-
tos.

A firal sinple step gererates the coarete bit pattem of
tre Istructios required by tre target mechine. Hare the lael
ealiation ad gotioally a pegdole gotimization IS doe.

3.3 The Machirne Descriptias

The description of a geecific target mechire cotains the
context coditios for tre Instructions ad the meaning functions
for the availlable gpoodes.

The aotext coditias are given by a sst of "iswell-fomed -
fuctios (similar o tte specification of the source lagQueges),
cescribing e limitatios gperads are slbject © an the con-
aete target machine (@e-, Wo- address Istructias, register
instructions).

Besis for tre fomal description are tre informal  descriptions
in the nenufecturers” manals.



64

Bamle: seecrfication of addition istruictios for ae of
te target nechines (\ataaal 16000 processor).
(00800 55 operation description ad gerad restrictias

ADD d =eM+e
— addrtion of siged Inmtegers
- overflov test
- first geerad e™ = destination d
- d ggeral address
-  geeral geerad
ADQ d= +c
- addrtion of siged Inmtegers
- overflov test
- first geerad e = destiration d
- d geeral address
- &E integer costait N £ .. 7"
INCEX d=(E*@E& +1)) +te

— arrthmetic with nomegative INtegers
- o overflowv test

- d,e™ geeral pupose registers
- ~2,e3 Sereral geerads
Tre follong exarpt of te "iswkHHow'- fuction dons
the fomal \ersion of these context codrtias for “add™- instruc-
tos.



65

iIswkHmowe(d,s) =
let d<Qperation(m,op,el) =s in

cases @ -
(AD > d =<e” 2)
&d =e®
& is-gereral-addr(d)

& 1s—gereral-opnd™)
A0 = d =<6 2)

&d =e1

e - mk-Const(M2,\2) & v g ~-8..7]
JINEX D) d =<6 62 g3

&d=er

& Is-gor-addr(d)

& 1s—general-opnd™)

& 1s—gereral-opnd™)

)
tye - Var Bgr — > BOOL

BB RBSFBoo uomnwn -

Tre fuctios 1sgereral-addr, is-gereral-god ad 1s-gor-addr
are the predicates to be nmet by the goerads.

3.4 The Derivation of the Codegererators

Fan the predicate fuction “iswHowe'' a routire genwl-
mwe" 15 aonstructed which trasfoms tre Instructios gererated
In the farst mechire INdepadent aopiller phese INo a seguece
of well-formed target machire iInstructias.

First the opoodes of the "ideal” CAT machire are replacd
by gooodes of the target mechire. The replacament of the inmteger
adrtion qoerator + by Natmoal 16000 opoodes 15 don n
the folloving excerpt of "'gen-wi-mowe'':



66

cenrwi—noe(d,s) =
let mk-Operation(n,gp,el) = s In
s, (-
N o fet<e™e™) =d In
if {sLb(m)..sb(m] c (min-int. .max-int }
& e =nk-Operation(ml,*1,<e™,e™))
& s1bisModeie™)) >=0
& sbMVodkeEe-|d)> O
& sb(sMxake(e2)) >= 0
then genwfHmove(d,
mk-Qperation(m, INDEX,<e11 ,csub(er 2 >0e),e2>))
else gen-wi—move(d,
mk—o perataon(m,
iIf e =nk-Const(me M2) & w2 6 N8 .. 7N
then ADDQ else AD,

¢« M)

< i

BREBBERBSEB oo Uo mnwn -

.20 1;/39: Var Bpr =)

First it s dedad, wether tre addition s inplerentable
by an "INEX- mistructaon. It s tested that o overflov en
ocoour (5, that the first subeqression is a nultiplication
(s) ad tat all gerads ae moregative ((7-,9). Otherwise
the "ADJ- oar "AD- quooke s slectsd. After the selection
of the gooropriate goerators te goeerads ae menipulated t©
meet the requiremaits of the comtext coditaas. This may lead
0 tre geeration of addrtical Instructios. The secod exoarpt
of '"gemrwHHow' demostrates thee trasfomatios  for te



BERBGREBPNEB oo v o1 b w™ ~

N NN
N B O

KRsBBYIBHNREB

67

gerw—move(d,s) =
let nk-Operation(m,op,el) =s in
Cases O -
(ADD,ADDQ -
let <epef) =d In
it =di1 isgereral-addr(d)
then 1f 1s—general-opnd™)
then autmove(d,s)
el genwfHmove(d,
mk—o peration(m,q, <ep
gen-general-opnd™)™))
else
et ez = gen-indep-epr(e ,d)
A% = gengereral-addr(d)
N (@nmwiHowe(d,ed
;gen-wf-move(d”™,mk-Operation(in,op,~dpe22™)))
,INDEX -
let<epe2,e3) = In
It isgor-addr(@)
tenif =d
then If iIs—general-opnd™) & is-gereral-godien)
then autmove(d,s)
el genrwi~move(d,
mk-o perataion(m,ap,
<e1 ,gen-gereral-qod(e2),
ger-general-opnd(e2))
el (garwHmove(d,ed
pen-wi-moved, mk-Operation(n,0p,<d,6 2 £3))))
else gen-wi-move(d, gen-gor-adadr(s))

)
bpe - Var Bpr =)



68

In this prooess tte gqeerads are trasformed o suooessively
fufll te "iswf- predicates. For e "AD- ad "ADDQ*-
instruictios first e coditios for te destination d ad
the first gerad e ae tested (6). IF these predicates are
met, the ssod operad et s deded (7)) ad te instruction
IS enitted ar a new sinpler secod goerad 1Is conputed  (L9-.11).
IFdfe*adis ot acosssable e 5 siplified o meke the
evaluation of Indgpedett of d ((18) ad d i1s mede aocoessable
((14. Now axk for te evaluation of e In d ad the addition
IS geerated (L15-.16).

The '"gerwl-.. . fucxtios ae asociated with te 'is-
wi—..."- predicates that tre folloving equation holds for all
eqressIas e :

Iswh—___(genwh-...(e)) =true
Tre follomng fucton ‘gengoraddr” for evaluation of
an eqression In a geeral purpose register Is a daracteristic
eample for tre "gewi-. "~ fuctions:
cenHgor-addr(e) =
If is—gor-addr(e)
then e

else (def t : allocgor(sVode(e))
;genHwi-move(t,e)

return ©
type : Bor = bBor

~N~N°o oAb wbd P

In aorast to te pleettation of the copiler froit
ars te ocdepperators ae adtoatically gererated fran te
seecificatios wriitten n a suoset of META IV without manwal
iInterference. This prevatts errors introduced by a menual conver—
sion of tte fomal discriptios Mo exeoutable prograns.



69

4 Project Status

For three years two people have been Involhved In this project.
A PASCAL-CAT compiler front edad two CAT copiler back s
for DIETZ621 ad Natical 16000 have been mplemated. The
edtire system is witten In PASCAL ad ruming an a DIETZ-621
with 2*40 Koyte of storege.The quality of tte geerated
e s amparable t good handooded assarbly  laguege prograns.
It hes tumed aut thet the aodk rus P © 2% fester then
the ack geerated by the PASCAL compiller, which 1s \p O now
wad for systers programing by DIETZ. The inplementation of
a CAT amiler for a nev target mechire requires an effort
of gooroxinetely six nen moits. There ae o restrictios
t the agplicbility of ar goroachto existing convattoal
processor's.

The gpecificatios of tre aompilerfroit exs for te for
saurce lagegess ae  aoplete With the exosgption of QBOL
where anly the translation of the data structures wes goecified).
The CAT definttion s a dooument of goproximetely 3000 lines
of META IV fomulee. The PASCAL specrfication hes aoout the
sae siz. it took aout six men moiths o extract a fomal
seecification for KRIRAN 77 fran the ANSI- stadard.  This
ecludes the KRTRAN 10 ad ruttime sygoort. The aopile algo-
ritm for PASCAL cosists of 160 lires of META IV correspoding
t a a0 lire PASCAL  progran. Thespectficatios of the aoe
oggerators  for theDIETZ-621 ad the Natmoal 16000 prooessor
have a sizz of aout 300 lines eedh. They ae written I a
restricted suset of META V ad cnlbe aompiled into PASCAL

progrars.

Thecorrectness of tre develgoait of a aoce generator IS
sygorted cosiderably by the goplication of tre Viema Develop-
ment Method [10,11], Gostly design ervore are awidsd. It hes
been donn that a fomal method like VOM cen ke goplied
a raal Irfe Industry project with good suoosss. Without  this
tool 1t would not have been possible t© develop audh a ininersal
systam N such a dort periad of tne.



70

5 References

[
21
Bl

4

[

Bjomrer, D., Joes, CB., The Viera Develgmet Metihad:

Meta-Laguege, Berlin, Soringer, LNCS 61, 1978
Jsen, K, Warth, N., PASCAL User Manal ad Report
Berlin, Segigec gl LNCS 18, 1974

ASI X3.9, Arerican Natical Staxhrd rami
%PAN Naw York, Arerican Natiosal grtgrgdardsrglrs%

A\SI )GZB Arerican Nataoal Stadard Programi
CCBL, Yok, Arerican Natiosal mrqm%

1974

ANSI X3P, Arericen Natical Stadard Programming La%ﬁ
BASIC, Draft Proposal, New Yok, American
Stancards  Institute, 1980

Meili E, Palm, SU., A Coparative Study of HILL
ard Al on e Beels of Darotatioral Descriiptios, OOC 65/1
%’2—12—31 DCask Datamatik Center, Lygoy, 1982

NEIlI@l E, Palm S.U., A Storage ad Bwviroment Mocel
ad Ad, 0O 6191224, Dask Dataratik
Cater, Lyrgy 192

Schmdt U., \oller, R _Die formale CAE{mNI%ng oIleLr
‘HJ%hrafggigrg Ber%] Yringr, InfomatikFachberidite

Sdmide, U., \Oller, R., Die Bitmicklug eines portablen

mit cer Viema Da,elqarent Method,
Implementierung PASCAL-artiger P ranmerspra:rm
Berichte des Garmen (hgpter of the AQM G. Terer,

Sluttgartlﬁ&

A‘Igorlﬁm L Systeratlc Develgglt g a Corplllrg
Tedn. hnersity of Ibmark, Kopernhegen, 1977

omer, D., Lageges: Fomal  Develgomeit
o+ Progranncmpl lars, In I\/orlet E., RI%

D., Interratl C‘mpjt &/nposmn , Prooeedi
Arstercam, North-Hor 1ad . Gp., 977, p. 1 >,




A System Model for Vertical and Orthogonal Migration*
B.Holtkamp, H. Kaestner
University of Dortmund, Informatik 111
Postfach 500500
D-4600 Dortmund 50, F.R.Germany

1 Introduction

Vertical and orthogonal (or outboard) migration are well-known
techniques to 1mprove the performance of a computing system seen
as a hierarchy of software/firmware/hardware. To apply both
techniques the following steps have to be performed:

1. 1dentification of suitable candidates (system components) to
be migrated,

2 . prediction of results (performance improvements) that can be
expected,

3. i1mplementation of the components selected iIn step 1 and 2,

4. verification of the system"s behaviour after the migration
process with respect to the results of step 2.

Changing the implementation environment of a system®"s component
(1.e. migrating this component either vertical or outboard)
needs a careful investigation of the component®™s interconnec-
tions. This can be done best i1If there i1s a modelling tool by
which the relevant structures of the real system can be
described.

With regard to vertical migration such system models have been
evaluated ([STO 78], [STA 81], [DAV 83]). For a combined ap-
proach to both vertical and orthogonal migration a different
model 1s needed. It has to allow the description of parallel
processes which are most important for orthogonal migration.

In this paper we present a system model which fulfills the above
requirement. It i1s exactly described in the next chapter. In
chapter 3 we discuss structural constrains for migration candi-
dates iIn terms of our system model. Thus it is demonstrated how
the model serves as a base for the migration steps described
above. Chapter 4 shows how the structural aspects discussed so
far can be combined with data on the dynamic system behaviour to
give a framework for migration step 2.

* This work is partially supported by DFG (Deutsche
Forschungsgemeinschaft) under contract Ri 367/2-1



72
2 System Model

The migration system model that is introduced 1iIn this chapter
allows the abstract description of systems to which the migra-
tion technique is applied. It helps to identify the candidates
to be migrated and to i1nvestigate structural requirements for
them.

There are two areas which iInfluenced our model. The first one 1is
related to the concrete structure of basic software In a comput-
ing system. According to [LAU 78] operating systems and real-
time systems can be constructed iIn two ways:

1. using a procedure-oriented approach
2. using a process-oriented approach

Both approaches are supported by modern systems i1mplementation
languages like ADA [LED 81] and Modula-2 [WIR 80]. Consequently
our system model also has to allow the description of such
structures.

The second area i1s related to the hardware support for orthogo-
nal migration. For our purposes we assume a hardware system
having attached one or more coprocessors to the same system bus.
These systems are further distinguished according to the copro-
cessors® ability to access main memory or not.

With these two areas in mind we describe our model iIn a top-down
manner .

A system is defined as
S = (SGS, SAL, SPS, SO0S, SAS)
with

SGS 1s the system®™s global state space

SAL 1s the system®s access list (defined at the end of this
chapter)

SPS is the system"s procedure set
SOS i1s the system®™s object set (possibly empty)

SAS is the system"s action sequence which i1s performed when
the system 1is iInitialized.

Objects are optional so that programs to be implemented in
languages like PASCAL or C can be directly modelled.

The concept of objects serves two purposes. First 1t allows to
define the components of a system by means of a set of opera-
tions. These operations are the only ones which can manipulate
the internal representation of the component thus preserving Iits
invariant properties [JON 78]. By adding one or more object
managers to each object [JAM 77] along with an appropriate set
of actions, process systems can be modelled.



73

Formally an object is defined as follows:

0+ = (OIiN,
with
OiN
0SS
O 1AL

ORS

0iPS
0 WS
0 pAS

An object

O1SS, OrAL, 010S, OIPS, O1MS, CKAS)

is the name of object i

iIs the state space of object 1

iIs the access list of object 1 which defines the
accesses that may be performed from outside the object
and to its environment (see the end of this chapter)

iIs the object set of object i, i.e. the set of (nest-
ed) objects local to the current object

iIs the procedure set of object 1
iIs the object manager set of object 1
iIs the action sequence of object 1 which is performed

when the object is initialized.

manager has the following components:

Mij = (MiR, MIiJSS, MijPS, MijAS)

with

is the name of object manager j belonging to object 1

iIs the state space of the object manager j belonging
to object 1

iIs the procedure set of object manager j belonging to
object 1

iIs the action sequence of object manager Jj belonging

to object 1

In terms of our definition a procedure looks similar to an ob-
Ject manager:

Pjt = (XP~N
with

XP*N

XPAMFPL
XPk SS
XPk PS
XP KAS

, XPAFPL, XP~SS, XP"PS, XPjjAS)

is the name of procedure k within X = (S or 01 or
M ij)
iIs the formal parameter list of procedure k within X

iIs the state space of the procedure k within X

iIs a set of procedures local to procedure k within X

s the action sequence of procedure k within X which
is performed each time the procedure is called



The main difference between an object manager and a procedure 1is
with regard to the actions which may be used and the relation to
their environment.

An action sequence describes the transformations to be performed
either on the local or the surrounding global data space:
AS — (a”,me==,an)
with
al - xXSS— > xSS

Each a 1s an element of the set of elementary actions which are
defined for our model. We distinguish between normal actions
(denoted by A ) and special actions which are relevant for vert-
ical and orthogonal migration. First of all there iIs the
procedure call denoted by:

peal 1 = (XP™N, XP"MAPL)
with

XPAN is the name of the called procedure

XPMAPL is the list of actual parameters

To describe the actions of processes we follow the concept of
""synchronizing resources™ [AND 81]. The operations which may be
performed on an object have to be defined 1iIn the 1In actions
within the object manager:

in=(@ ,.-., om)
where each o1l describes an operation which is defined within the
in action.

Each operation has the form:

0j = (OjN, O™BE, O"FPL, O~IR, O"SE, 07AS)
with

o™N iIs the name of operation 1
OJBE 1s a Boolean expression
OJFPL 1s the formal parameter list of operation 1

OoMR describe the invocation restrictions (either call or
send)

O"SE 1s a scheduling expression

OMAS IS an action sequence.

The name of the operation and the Boolean expression constitute
a guard [DIJ 75]. The guard is true i1If at least one pending in-
vocation of the named operation and the corresponding Boolean
expression 1is true. |If there is more than one pending invoca-
tion, these are ordered by increasing values of the associated
scheduling expression (f this iIs omitted, the order is unde-



75

fined) .

Execution of an i1 action proceeds as follows. If at least one
of the guards is true, anarbitraryone is chosen. The first of
the pending invocations of the associated operation is selected
and the action sequence 1iIsexecuted. If no guard iIs true, the In
action is delayed until at least oneof them becomes true. The
in action terminates when one of the operations has been execut-
ed .

For the invocation of operations there are two actions call and
send :

call = (0N, o01APL), send = (0N, OI1APL)
with

O™N iIs the name of an operation to be executed

OMAPL 1s the list of actual parameters supplied for the iIn-
vocation .

IT the operation is invoked by call, the invoking object manager
iIs delayed until the operation has been executed by the object
manager supplying i1t within an ill action. If on the other hand
invocation 1is by send, the invoking object manager may continue
Its actions as soon as the actual parameters (message) have been
transmitted.

Objects, object managers and procedures each represent a natural
border around the data structures and operations respectively,
which are defined iIn the corresponding state space (XSS) or
within an jin action. There are two principal ways in which these
borders can be crossed. The first i1s an implicite one and holds
for the following conditions:

a: A procedure nested within another procedure may directly ac-
cess the local state space (XP"SS) of the surrounding pro-
cedure .

b: A procedure with an object or object manager may directly ac-
cess the 0 SS of the surrounding object or the MM.SS and CKSS
of the surrounding object manager and the corresponding ob-
ject .

These conditions correspond to the scope rules of traditional
block structured Blanguages. They are not valid, however, for ob-
jects. For this reason we introduce the notion of an object
access list:

OfAh = (OiDOL, OiDDL, Om1UOL, O0£UDL)

wit

O JDOL 1s a list of operations which are defined within the
included object manager and which may be iInvoked from
outside

ONDDL describes a subset of O0”SS which may be accessed from
nested objects



76

ONUOL 1s a list of operations defined in DOLs of other ob-
jects and i1nvoked by the object manager of this object

ONUDL describes those data structures of an outer object or
the system which are accessed by this object.

The system access list SAS has the same form as the component
O 1DDL.

This completes the presentation of our system model. In the next
chapter we will use it to discuss structural aspects of vertical
and orthogonal migration.

3 Structural Aspects of Migration

The system model which has been formally introduced iIn the pre-
vious chapter will now be used to discuss structural aspects of
both vertical and orthogonal migration. For these purposes we
define some metrics on those components that can be migrated.

3.1 Migration Metrics

As we have pointed out in the iIntroduction one needs to know the
exact iInteraction of a migration candidate with its environment.
In terms of our system model the components object, procedure,
and object manager are possible candidates for migration. This
means that for these candidates the iInteraction with the en-
vironment Is specified by accesses to global data structures and
by the execution of the actions peall, call and send.

A convenient tool to describe the latter form of iInteraction 1is
by means of call graphs. To model the aspect of data passing by
means of these calls and the aspect of accessing global data
structures, we will introduce some terms which are also used in
the field of software structure metrics [HEN 81].

Definition 3.1:

a) The global data flow function gdf(P) of a procedure P is de-
fined as the size of the global data structures, which P
accesses In outer procedures or iIn the surrounding object
manager or object plus the size of the externally accessed
Qaté)structures (defined i1n the UDL of the corresponding ob-
ject) .

b) The local data flow function Idf(P) of a procedure P is de-
fined as the size of all parameter lists contained iIn actions
of type peall within P.

¢c) The procedure call out-degree pcout(P) of a procedure P 1is
defined as the number of actions of type pcall contained in
P.



77

d) The procedure call in-degree pcin(P) of a procedure P is de-
fined as the number of actions of type peall outside P which
call P.

In a similar way corresponding functions for object managers and
objects can also be defined.

Definition 3.2:

a) The global data flow function gdf(M) of an object manager M
is defined as the size of those data structures, which M
accesses iIn the corresponding object, plus the size of the
externally accessed data structures (defined in the UDL of
the object).

b) The Ilocal data flow function Idf(M) of an object manager M is
defined as the size of all parameter lists contained in ac-
tions of type call and send within M.

c) The send out-degree sout(M) of an object manager M is defined
as the number of actions of type send contained In M.

d) The call out-degree cout(M) of an object manager M is defined
as the number of actions of type call contained iIn M.

e) The send iIn-degree sin(M) ofan object manager M 1s defined
as the number of actions of type send outside M which invoke
an operation contained in the DOL of the corresponding ob-
ject.

) The call in-degree cin(M) ofan object manager M 1is defined
as the number of actions of type call outside Mwhich 1nvoke
an operation contained in the DOL of the corresponding ob-
ject .

Definition 3.3:

a) The global data flow function gdf(0) of an object O 1iIs de-
fined as the size of the data structures contained iIn the
UDL.

b) The local data flow function 1df(0) of an object 0 is defined
as ldf(M) of the included object manager.

The metrics defined above will now be used to describe structur-
al aspects of migration.



78

3.2 Structural Aspects of Vertical Migration

According to the two principal structures of operating systems
(see section 2 of chapter 2) we will discuss vertical migration
for both of them separately.

In a procedure-oriented system we assume to have no objects.
Thus we are only concerned with attributes of procedures.

Definition 3.4:

A procedure P is vertical migratable from a structural point of
view if

a) pcout(P) =0 or

b) all procedures contained in the call subgraph with root P are
"migratable™.

Part a of the definition is related to the fact that software
functions cannot be called from the firmware. Thus only leave
nodes iIn the call graph (part a) or complete subgraphs (part b)
can be migrated.

Lemma

For two procedures Pi and P2 with pcout(P_j ) = pcout(P2) = 0. P,
iIs a better candidate for vertical migration from a structural
point of view than P2 if one of the following conditions hold:

a) gdf(Pj) -(P2)
b) PL(P ) < PL(P2)

©) pcin(P_J) > pcin(P2)

The background for this lemma is given by some hardware restric-
tions. The TFfirst one iIs that main memory references slow down
the execution of microprograms and the second that the number of
internal registers for local variables i1s limited.

The aspects discussed for procedure-oriented systems are also
valid for process-oriented ones. This 1s because objects
managers can also be seen as procedures as there is no parallel-
ism between software and firmware.

3.3 Structural Aspects of Orthogonal Migration

For orthogonal migration we assume a system with objects.
Depending on the coprocessor®s local memory size, complete ob-
jects or some procedures (not necessarily contained in the same
object) might be candidates for migration. With regard to single

procedures there 1is no structural difference to vertical migra-
tion .

In hardware systems, where the coprocessor has no direct access
to the main memory, all objects which have a non-empty UDL can-
not be considered for orthogonal migration.



79

In general the main problem with orthogonal migration of objects
is related to the communication structure between the object
managers. As it makes no difference whether (running on the
main processor) iInvokes an operation of M2 (running on a copro-
Ccessor) or vice versa, Invocation directions are not important.
Instead we can concentrate on the communication relations of
single boject managers.

Definition 3.5:

a) An object manager M i1s of define-type NIL, 1if it does not
contain an action of type in.

b) An object manager M is of define-type call, if all operations
iIn DOL are: invoked by actions of type cal 1.

c) An object manager M is of define-type send, if there 1is at
least one operation in DOL which s i1nvoked by an action of
type send.

d) An object manager M i1s of wuse-type NIL, 1f UOL of the
corresponding object iIs empty.

e) An object manager M is of use-type call, if all operations
in UOL are i1nvoked by actions of type call.

) An object manager M i1s of use-type send, If at least one
operation in UOL is i1nvoked by an action of type send.

Definition 3.6:

An object O is of type 1142 If 1its object manager is of
define-type tjand use-type t2-

With these definitions we get the following type of objects
(sorped) according to decreasing suitability for orthogonal mi-
gration) :

NIL/NIL These objects only make sense iIf they access global data
structures (e.g. monitoring processes). In this case
they are good candidates for orthogonal migration.

The following type group of objects contains either a define-
type or use-type send or both. They represent suitable candi-
dates for orthogonal migration because the send action activates
a process (object manager) which may run iIn parallel, iIf the
corresponding object is on a different (co)processor:

NIL/SEND
SEND/SEND
SEND/NIL
SEND/CALL
CALL/SEND



80

The remaining three types NIL/CALL, CALL/NIL, and CALL/CALL are
no good candidates from a structural point of view, because they
do not mmply any parallelism.

Beside the type of an object the Idf(M) of i1ts object manager is
also iImportant. It can be used to define a sequence between ob-
ject managers of same type.

4 Quantitative Aspects of Migration

In this chapter we will introduce some cost functions with re-
gard to migration candidates. Theilr purpose is to valuate the
dynamic behaviour of the candidates and their hardware dependen-
cies. They provide a base for the selection (step 2 of the mi-
gration technique) of migration candidates.

4.1 Quantitative Aspects of Vertical Migration

For the valuation of migration candidates we can differ between
static and dynamic measures. As a general static parameter the
control store space request 1is accepted (see [LUQ 80],
[STO 78]) -

So the static costs Cs for a procedure P are expressed by the
following term:

Cs (P) = _LI m(ai)
1=
with m (aJ) 1s the memory space for a2 and ai eXAS.

However, the static costs of a function are not a sufficient
criterium for the selection of migration candidates. They must
be weighted with the dynamic behaviour of a procedure with
respect to the architectural characteristics of the processor.

As dynamic parameters execution frequency and average execution
time are considered. Based on [PRY 82] execution time can be
composed of iInstruction fetch and execute time (Tx) and the time
for data references devided 1into global (Tg) and local (T2)
ones. The division of global and local data references seems to
be necessary, because on one hand their access characteristics
normaly differ and on the other hand the Tfirmware [level often
provides more registers into which local data structures can be
mapped. The dynamic costs of a procedure are described by the
following equation:

=nxT
with n : execution frequency
T : average execution time

In order to ease the prediction of time savings for the migrated
version of a function, the average execution time iIs splitted:



81

T = Tx + Tg + Tj

Tg and can be written as
Tg = Ng-r * * tg*
T = s (Nir Cil1  « ¢jrpin * W*®

i=l

where the N denotes the number of global or local read and write
accesses, respectively, and the corresponding t characterizes
the time effort for such an access that depends on the address-
ing mode and processor speed. The references to local data are
devided into different classes because various addressing
modes can be used.

For the estimation of time savings the dynamic costs C*.for the
migrated version can be calculated follows:

cCae »* +T, +TJ)

How to calculate Tx<and Tj> is notfurtherconsidered here, be-
cause it is not important for our model. What we can derive from
the above equation is a weight Wpfor a migration candidate:

Wp = gcd. - Cd; )/CS

While static measures can be calculated by a modified compiler,
the only way to get iInformation about the dynamic parameters 1is
using a monitor. A well-suited tool for measuring the quantities
mentioned above is described in [HOL 82]. The architectural
parameters (t , € , T , tlw , number of registers
on firmware leivel) are specified In processor manuals.

To perform the selection process structural and quantitative as-
pects can be combined iIn the following backtracking algorithm:

In the first step all procedures with pcout(P) = 0 are sort-
ed by decreasing weight W . They constitute the basic set of
migration candidates.

In a second and further steps those procedures are added,
which only call members of the basic set. Their weights,
which do not include the weights of the called functions,
have to be corrected, i1.e. the Idf and pcout will have an
effect because iIntra level data and control transfers are
moved from software to firmware level.

Finally from this set those elements are taken which result
in a control store filling with maximum weight.

4.2 Quantitative Aspects of Orthogonal Migration

Similar to our discussion on structural aspects we will Tfirst
consider procedures as candidates for migration. The cost func-
tions Cs and Cd of the previous section can also be applied for
orthogonal migration. They now look like:

MP
Cs (P) static costs for procedure P when implemented on the main
processor



82

Cs (P) static costs for procedure P when implemented on a copro-
cessor

C%ﬁ(P) dynamic costs for procedure P when i1mplemented on the
main processor

cft(P) dynamic costs for procedure P when implemented on a
coprocessor

In terms of these functions a necessary condition for procedure
P to be a migration candidate 1is:

c ®<@® ™

For the second type of system, 1.e. with objects, we will res-
trict ourselves to the migration of complete objects. Function
C* can be defined as above. For function we will not take
single actions as a measurement unit, but the operations listed
in DOL. iIs then defined as:

oeDOL
In each TQ the communication costs are included.

It 1s not possible to predict the absolut time savings for
orthogonal migration because this depends on the degree cf
parallelism within a system. In the worst case there iIs no other
process that can be set up, iIn the best case time saving is
equivalent to the offloading of t,e main processor by the migra-
tion candidates or even better 1f the execution on the coproces-
sor iIs faster than the original version. Therefore the cost
functions given above can only be used to sort the objects of
equal type (according to definition 3.6).

5 Conclusions

In this paper we have presented a system model that allows to
describe the structure of systems to which vertical and orthogo-
nal migration techniques are applied. In terms of this model we
have discussed structural as well as quantitative aspects of
both kinds of migration. This demonstrates the suitability of
the choosen approach to serve as a base even for a formalization
of the whole migration process.



83

6 Literature

[AND

[DAV

[D1J

[HEN

[HOL

[JAM

[JON

[LAU

[LED

[LUQ

81]

83]

81]

82]

78]

79]

81]

80]

Andrews, G.R.

Synchronizing Resources

ACM Transactions on Programming Languages and Systems,
vol 3, no 4, October 1981, pp 405-430

David, G., Graetsch, W.

A Hierarchical System Model for Vertical Migration
Submitted to IFIP Working Conference on System
Description Methodologies Kecskemet (Hungary), May
23-27, 1983

Dijkstra, E.W.

Guarded commands, nondeterminacy and formal derivation
of programs.

CACM 18, 8 (August 1975), pp 453-457

Henry, S., Kafura, D.

Software Structure Metrics Based on Information Flow
IEEE Transactions on Software Engineering, vol SE.-7,
no 5, September 1981, pp-510-518

Holtkamp, B., Kaestner, H.

A Firmware Monitor to Support Vertical Migration Deci-
sions iIn the UNIX Operating System

Proc. 15th Annual Workshop on Microprogramming, SIGMI-
CRO Newsletter, wvol 13, no 4, December 1982, pp
153-162

Jammel, A.J., Stiegler, H.G.

Managers versus monitors

In: Information Processing 77, B. Gilchrist (Ed.). EI-
sevier North-Hoiland, New York, 1977, pp 827-830

Jones, A.

The Object Model: A Conceptual Tool for Structuring
Software

In:- Bayer, R., et al. (eds.): Operating Systems - An
Advanced Course, Lecture Notes iIn Computer Science 60,
Springer Verlag, 1978

Lauer, H.C., Needham, R.M.
On the Duality of Operating System Structures
ACM Operating Systems Review 13 (2), March 1979

Ledgard, H.

ADA - An Introduction

ADA Reference Manual (July 1980)

Springer-Verlag, New York, Heidelberg, Berlin, 1981

Luque, E. , Ripoll, A., REz", J.J.

Dynamic Microprogramming in Computer Architecture
Redefinition

Euromicro Journal, no 6 (1980), pp 98-103



[PRY 82]

[STA 81]

[STO 78]

[WIR 80]

84

Prycker de, M.

A Performance Analysis of the Implementation of Ad-
dressing Methods iIn Block-Structured Languages

IEEE Transactions on Computer, vol C-31, no 2, Febru-
ary 1982, pp 155-163

Stankovic, J.A.

The Types and Interactions of Vertical Migration of
Funktions in a Multi-Level Interpretive System

IEEE Transactions on Computers, C-30(7), July 1981

Stockenberg, J.

Vertical Migration for Performance Enhancement in Lay-
ered Hardware/Firmware/Software Systems

Computer, vol 11, no 5, pp 35-50, 1978

Wirth, N.

MODULA-2

ETH Zuerich, Reports of the Institute for Informatics
No. 36, March 1980



- 85-

TOWARDS AN INFORMATION SYSTEM DEVELOPMENT ENVIRONMENT

Jan Dietz

Eindhoven University of Technology,
Department of Industrial Engineering,
P.0, box 513

5600 MB Eindhoven, the Netherlands

SUMMARY

The aim of IS development is to produce effective and efficient IS in an

effective and efficient way. This paper deals with several aspects of
effectiveness and efficiency, especially their establishment for evolving
IS.

The need for appropriate intellectual aids and matching practical tools,
together called the IS development environment, 1is being argued.

The wuse of prototyping, simulation and specification languages is
emphasized, and there is some elaboration on the subject of specification
languages.



86

1. INTRODUCTION

This paper describes ideas about 1S and IS development, which the author
considers useful to explore further. They constitute the framework for his
research on IS development aids.

The aim of IS development is to produce systems that are effective, 1i.e.
they behave as needed, and that are efficient, i.e. they operate without
waste of resources.

The first research goal is to investigate the possibilities of specifying
the behavior of a system such that the following requirements are met:

- completeness, 1.e. a design, specified in this manner should contain
all information needed for the subsequent detailing and realization;
consistency, i.e. there shall be no conflict between parts of the
description;
clearness: there shall be no ambiguities; a point of special care
will be the precise definition of the system"s semantics;
formality: a specification should be formally testable on completeness
and consistency.

If one could specify a system in this manner it seems fTairly feasible to
generate its realization. Another motive for the research is that in the
future not only people might use IS, but automated 1S might use each other
as well. This implies that a formal and precise specification of the
system exists and is part of the system itself.

2. INFORMATION

Information systems produce information. Before discussing IS properties
it seems wise to take up the subject of information First, because
eventually the production of useful information is what it is all about.

A sound basis for studying the concept of information is provided by the
science of semiotics (see e.g- [Morris 55] and [Nauta 72]). The central
concept iIn semiotics is semiosis, this is a process in which something is a
sign to some organism. The sign stands for something else (the referent)
and causes effect in the agent of the process (the interpreter). Semiosis
thus iIs a "mediated-taking-account-of~.

The study of signs is subdivided into three fields:

pragmatics: deals with the origin, uses and effects of signs;
semantics: deals with the signification of signs;

syntactics: deals with the form of signs without regard to their
specific significations or their relation to the behavior in which they
occur.



87

The notion of information is usually considered to be the effect a sign
causes in the interpreter: if the sign has no effect, it doesn"t contain
information, If it has a great effect it is said to have a high informa-
tional value.

An essential condition for a sign to cause any effect iIs that its
signification is understood by the interpreter.

In the same manner as the effect of a sign is conditionally determined by
its signification, 1is 1its signification conditionally determined by its
form, since signs can only be discriminated by their form. So pragmatic
meaning presupposes semantic meaning and semantic meaning presupposes
syntactic meaning. This is a very important point, since it shows that
semantic meaning 1is carried by the sign®"s form and can be derived from its
form only.

Semantic meaning also is something that the communicating interpreters must
agree upon: signs do not possess any inherent semantic meaning. The major
concern of automatic sign (=data) processing must therefore be to preserve
semantic correctness and clearness.

In the remaining part of the paper the word Tinformation*® is used to
emphasize the pragmatic aspect of signs. The word "data®™ will be used as a
neutral term for signs.

3. INFORMATION SYSTEMS

Let us now focus our attention on the IS and i1ts environment, and consider
a situation like the one pictured in figure 3.1., consisting of:

an object system (0S) as an organized part of the real world, in which
activities are performed by agents (these may be human beings but also
artifacts);

- an information system (IS), as the informational aspect system of the
0Ss, 1i.e. the whole of operations, means and material aimed at the
production of information to be used by the agents;
an interface through which observations about the OS status and status
changes flow into the IS and useful information flows from the IS into
the 0OS. Next to this (functional) interface one may perceive an
operational interface, through which the interaction between the agents
and the IS takes place.



88

fig 3.1.

The boundary of the O0S 1is considered to be wider than wusually, and
therefore needs some explanation. In fact it includes all agents to which
data are sent by the IS and all sources from which data are received by the
IS. When talking e.g. about an order system it includes the customers and
the suppliers, when talking about a payroll system it includes the
employees, when talking about a bank accounts system it includes the
accountholders (customers) etc..

With the knowledge from the previous paragraph one could call an IS a sign
processing and sign producing system.

IT we consider the IS from the viewpoint of IS development we can make the
observation that the IS and the 0S must "fit" together and that there will
be something like a "best® IS for a particular OS. What then determines
the quality or fittedness of an IS?

It will be clear that a key factor must be the informational value of the
signs which 1 consider to be determined by three factors:

- the effect of the sign, based on its signification: it must reduce the
agent"s uncertainty about what decision or action to take;

- the moment of receiving the sign: 1if it is too late it is of no wuse,
the agent already had to take action;

- the agent that receives the sign: the sign should be sent to the agent
that needs the information, and perhaps even is not allowed to be
received by other agents.

Shortly one could say that the IS should produce the right sign on the
right moment and deliver it to the right agent. The measure by which this
goal 1is achieved is called the effectiveness of the IS.

The other, complementary, quality factor (called efficiency) is determined
by the measure of consumption of vresources like data, people, energy,
storage capacity, processing power.

Many quality terms in vogue nowadays, like maintainebility, flexibility,
userfriendliness, robustness etc. may more precisely be defined iIn terms
of the effectiveness and efficiency factors.



89-

In describing IS behavior | make a distinction between functional behavior
and operational behavior.

The specification of the functional behavior includes the description of
the output data, the 1iInput data, the stored data and the relationships
between them.

The specification of the operational behavior basically states when output
data are produced and input data are accepted.

Time plays an important role 1in IS, a role which seems often to be
neglected. An IS contains a data model of the OS. There is however a
delay in the accuracy of the model: a status change of the 0S at time tl
is recorded in the IS at time 2 (t2>tl). For a semantically correct
specification of the functional behavior of the IS it is necessary to take
account of this delay, which can be done in two different ways.

The first one is to make use of the specification of the operational
behavior of the 1S. In the operational model one can force a process not
to be executed until certain conditions are met. This approach is taken
e.g- by PSL/PSA [Teichroew 77].

The other way is to record explicitly the origination time of data, an
approach taken e.g. by DADES [Olive 82]. I have a preference for the
latter one because it is more rigorous.

4. DEVELOPING INFORMATION SYSTEMS

Effectiveness and efficiency change during the system"s life. In fact they
are always decreasing. The evolution of the 0OS as well as the emergence of
new technologies lower the actual effectiveness and efficiency of the IS.
As a matter of fact, but often overlooked: the very implementation of a
new IS changes the O0S (by definition!), evoking new needs and new
possibilities, thus lowering its effectiveness.

Developing IS therefore 1is an endless process: there always 1is a
"solution® and there always can be found a better one.

In contradiction with many other authors 1 can, when talking about systems
development, only distinguish between two essentially different activities:
design and construction “~realization).

The design process can best be defined as the creative activity of
concurrently studying problems and generating solutions [Alexander 70]. By
problem is meant any situation in which there is perceived to be a mismatch
between what is and what might or could or should be. The design process
shows a constant alternation of analysis and synthesis, intertwined and
distinguishable but not separable.

The point that |1 would like t®o stress is that there cannot exist
requirements or needs distinct from solutions or fulfillments, because a

requirement or need can only be expressed in terms of solutions: both
requirements specifications and program specifications are design
specifications, they only differ in the level of detail. This may sound

embarrassing to people, who like to consider the expression of the problem
and the specification of the solution as two really separable activities.



90

During the design process the designer constantly takes design decisions,
each design decision being a step forwards to the end solution. At the
same time the problem gets better defined and the set of possible solutions
is reduced. Initially one starts with an empty problem and thus an
infinite solution space. However from the very Tirst contact of the
designer with the problem area, the problem gets shaped and big parts of
the solution space are cut off.

At every step the designer should strive for a minimal reduction of the
solution space. This needs creativity and a permanent resistance to time
pressures and the habit of following known patterns. However proceeding in
this way iIs a prerequisite for achieving “quality”™ systems.

Developing IS also rarely is developing from scratch. Nearly always it
will be a matter of modifying and extending the existing “solution®. This
stresses the point of precise specifications of a system"s behavior and
thus the need for specification languages.

5. INTELLECTUAL AIDS TO IS DEVELOPMENT

Developing IS is dealing with multitude and complexity, which makes it
necessary 1o expose the problem situation from several different
viewpoints, an approach advocated e.g. by Ross [Ross 77].- There are,
several intellectual aids well identified now for dealing with multitude
and complexity. In [Krakowiak 78] they are listed for the area of program
development:

- decomposition of a complex object into more manageable parts is an old
methodological principle. However it must be conducted in a systematic
fashion and appropriate guidelines are needed;

- abstraction is the intellectual operation whereby a representation, or
abstract model, of the behavior of a complex object is constructed,
which only retains some relevant properties and omits irrelevant ones;
refinement is the process by which abstract objects are eventually
implemented. The elementary refinement step is to construct an object
in terms of more primitive objects by the application of a set of
composition rules.

Next to these general aids I find two ideas particularly appealing and use-
ful for the area of IS developmente

One of them is the level model [e.g. Berg 79], which is elaborated into
the engineering paradigm by [Ramamoorthy 78]. The creation of a solution
to a problem is viewed as a transformation P(nheeds)=product. In a large
and complex design situation, different phases are gone through and the
transformation takes on a number of distinctly recognizable forms:



91

needs = FormO
P1(FormO) Forml
P2(Forml) Form2

Pn(Formn-1) = Formn
Formn = product

The paradigm shows the systematic evolution from the first, coarse, design
(needs) to the last, fine, design (product). The 1idea incorporates
decomposition, abstraction and refinement, and it would particularly be
useful if each Formi can be expressed formally and if each transformation
can be verified formally.

The other attracting idea is that of viewing an IS in each of three
different domains [Winograd 79]: subject domain, domain of interaction,
and domain of implementation. Each viewpoint is appropriate (and
necessary) for understanding some aspects of the system and inappropriate
for others.

In the subject domain the universe of discourse is described: the objects
and processes in the 0S of which the IS is to be a model. In this domain
the functional behavior of the IS is defined.

In the domain of interaction the relevant objects are those that take part
in the system®s interaction with its environment: wusers, Tfiles, questions,
answers, forms etc.. The processes to be described are those like querying
the system and performing a system function. In this domain the
operational behavior of the system is specified.

The behavior within the boundary of the IS 1is seen in the domain of
implementation. A description in this domain consists of specifications of
(sub-) components and the interactions between them. This, 1 think, can
recursively be considered a system, that can be viewed in each of the three
domains.

6. PRACTICAL TOOLS NEEDED

The professional system designer clearly needs help to perform his task, a
help which can be provided by a set of well chosen intellectual aids,
supported by a set of matching tools, together called a system development
environment.

This environment must be helpful in establishing and maintaining effective
and efficient IS and must support all distinct design and construction
phases. There are three topics that deserve special attention.

The first one is what 1 would like to call the functional quality of an IS.
It means that the IS produces the right information and that it makes to
that end efficient use of the data resources (input data and stored data).
A very powerful tool to support the activities concerning the establishment
of functional quality is the technique of (rapid) prototyping.



92

The second topic, strongly related to the previous one, 1is what 1 would
like to call the operational quality of an IS. The concern in this aspect
is that the information is produced at the right moment and delivered to
the right agents, and that all input is processed iIn due time. The main
variables in an operational model are the processing and storing capacities
of the physical resources used. A well-known and powerful aid for this
kind of work is simulation [e.g. Bodart 79].

The remaining topic is that of the preservation of the IS semantics during
the subsequent design steps up to the Ffinal, realizable, one. More
generally stated it is the problem of establishing the semantic equivalence
of two different specifications of the same system.

Conforming to the engineering paradigm one would need several specification
languages, each of them best fitted to a certain level. The particular
concepts and constructs wanted in a specification language depend heavily
on the specific application area. To meet the need for variety in
specification languages, 1 prefer to think of either universally applicable
formalisms, containing a very limited set of primitive concepts and
constructs and the possibility to define new ones (e.g- SDLA [Knuth 82],
or a meta system for the generation of arbitrary formalisms, like SEM
[Teichroew 79]. 1 think that both approaches offer a basis for a rigorous
definition of the semantics of specification languages.

The problem of identifying a particular level (for a particular application
area) and the corresponding specification language is equal to the problem
of determining the right level of abstraction. It will be clear that in my
view satisfactory solutions can only be given by the "best®" designers.

I see many formalisms or models in use or proposed lacking the right level
of abstraction. Let me take the ERA-model (Entity-Relationship-Attribute)
as an example to illustrate what 1 mean. The ERA-model leads, as | see it,
to a premature and often unconscious decision about how values of object
properties are stored and thus to an unnecessary limitation of the design
freedom in the steps to come.

Attribute values in the ERA-model are tought of as record elements, more
strongly connected to the object than relationship values, which are mostly
seen as separately stored data.

A right level of abstraction in the early design steps would be to consider
all property values as function values, e.g. articlename = fl(article),
but also: averagestock = f2(article .period). In this way one abstracts
from how the values are produced. The idea of access-functions is very
well described in [Abrial 74].



REFERENCES

Abrial 74

Alexander 70

Berg 79

Bodart 79

Knuth 82

Krakowiak 78

Morris 55

Nauta 72

Olive 82

Ramamoorthy 78

Ross 77

Teichroew 77

93

J.R. Abrial: "Data Semantics®, in: Data Base Management,
W. Klimbie and K.L. Koffeman eds.
North-Holland publ. (1974)

C. Alexander: Notes on the synthesis of form.
Harvard University Press (1970)

H.K. Berg: “Towards a uniform design methodology for soft-
ware, TFfirmware and hardware®, in: The use of formal speci-
fication of software, W. Brauer ed.

Springer Verlag (June 1979)

F. Bodart, Y. Pigneur: "A model and a language for functio-
nal specification and evaluation of information systems
design®, in: Proc. IFIP TC8 WC on formal models and practical
tools for Information Systems design, H.J. Schneider ed.
North-Holland publ. (april 1979)

E. Knuth, F. Halasz, P. Rado: "SDLA, system descriptor and
logical analyzer®, in: Proc. IFIP TC8 WC on comparative
review of information systems design methodologies, T.W.
Olle, H.G. Sol, A._A. Verrijn-Stuart eds.

North-Holland publ. (1982)

S. Krakowiak: “Methods and tools for information systems
design®, in: Information Systems Methodology.
Springer Verlag (1978)

C. Morris: Signs, language and behavior.
G. Braziller, New York (1955)

D. Nauta: The meaning of information.
Mouton, The Hague/Paris (1972)

A. Olive: "DADES, a methodology for specification and design
of information systems®, in: Proc IFIP TC8 WC on comparitive
review of information systems design methodologies, T.W. Olle,
H. G. Sol, A.A. Verrijn-Stuart eds.

North-Holland publ. (1982)

C.V. Ramamoorthy, H.H. So: "Software requirements and speci-
fications, status and perspectives, in: Tutorial on software
methodology .
IEEE (1978)

D.T. Ross, K.E. Schoman: “Structured analysis for requirements
definition®, in: IEEE Trans, on S.E. vol 3,1 (Jan 1977)

D. Teichroew, E.A. Hershey 1Il: "PSL/PSA, a computer-aided
technique for structured documentation and analysis of infor-
mation processing systems®, in: IEEE Trans, on S.E. vol 3,1
(gan 1977)



94

Teichroew 79 D. Teichroew, P. Macasovic, E.A. Hershey 111, Y. Yamamoto:

Winograd 79

"Application of the entity-relationship approach to infor-
mation processing systems modelling®, in: Entity-Relationship
approach to systems analysis and design, P.P. Chen ed.
North-Holland publ. (1979)

T. Winograd: "Beyond programming languages®, in: Comm, of the
ACM vol 22,7 Quly 1979)



-95-

CONCRETE USE OF ABSTRACT
DEVELOPMENT FORMALISMS

R.E.A. Mason

Department of Computing and Information Science
University of Guelph
Guelph, Ontario, Canada, NIG 2W1

April 15, 1983.

ABSTRACT

The literature of Software Engineering demonstrates a wide variety of
approaches to systems development amongst scientists and practitioners who
cannot communicate effectively amongst themselves. This paper discusses the
need for agreement on a taxonomy of programming, as an aid to better
communication. Using a taxonomy as a framework for discussion, the paper
reviews some of the the current ideas on formalism, and proposes that methods
currently in use, especially iIn the development of Interactive Information
Systems, represent valid abstract formalisms which can contribute ideas of
value to other domains of software engineering.

1. INTRODUCTION

The Proceedings of the 6th International Conference on Software Engineering
contains a great many papers of iInterest to practioners and software
engineering scientists. It also illustrates, like much of the recent
literature, a serious problem in software engineering: namely that it is very
difficult to understand whether progress is actually being made in this field.
In his classic Turing Award lecture ten years ago (1), E.W. Dijkstra described
as a very real possibility, his vision that "well before the seventies have
run to completion, we shall be able to design and implement the kind of
systems that are now straining programming ability, at the expense of only a
few percent in man-years of what they cost us now, and that besides, the

systems will be virtually free of bugs". In his lecture, Dijkstra
demonstrated that the problems were generally recognized, and that there was
an economic need for solution of the problems. In his lecture he presented

arguments in support of the technical feasibility of solutions to the
programming crisis.

It is self-evident that this vision of the future has not come to pass, at
least for many who are still proposing tools, techniques, ideas which strive
towards cost-effective production of better computer programs. Consider the
probable reaction of a 'typical™ programmer in the data-processing department
of a Canadian insurance company to some of the papers presented at the 6th
International Conference on Software Engineering:

* Greenspan, Mylopoulos and Borgida (2) ™"adopt the view that software
requirements involve modeling of considerable real-world knowledge,
not just functional specifications.” They propose a framework which
allows information about the real-world to be consistently recorded



96

2
and manipulated to describe an applicaton. OF course, our programmer
knows this from empirical observation. He notes that the authors
intend to set up a structured lexicon of terms relevant to the domain
of discourse (@ hospital). He notes they have other research
underway on aspects he knows need solution. He wonders whether it
will be successful; and if it will ever apply to his application
domain.

* Boehm, Eiwell, Pyster, Stuckle and Williams (3) present an overview
of the TRW integrated software support environment, a range of TRW
tools, and the study which resulted in development of this sytem.
Our programmer applauds the comprehensiveness of the approach, which
projects a four times iImprovement in programmer productivity by 1990.
Perhaps his company should get TRW to develop its next system?

* Bauer (4) advocates strict formalization in the program construction
process, based upon one specification, which will be transformed into
a correct program. Our programmer notes that Bauer understands the
problem well, gives proper emphasis to the need for the client to
understand the specification, etc. But he wonders whether his boss
will go to court to have it proven that the client did indeed agree
to the specification, or whether both he and his boss will simply be
fired by the insurance company, when it turns out the client did not
get "what he wanted."

Are these papers relevant? Are the many others (@ few as good as those
mentioned here) in the 6th International Conference on Software Engineering
relevant? Are the very many other software engineering papers published each
year relevant to our programmer? |1 do not answer these questions, because our
programmer 1is hypothetical. What does matter is that, while the authors of
the papers appear to be 1In agreement on some matters of importance, It 1is
difficult to know the bounds on that agreement. Let us consider posing, to
the authors of each paper the question: would you propose to apply your ideas
to a typical development in a typical Canadian insurance company, within the
next 5 years?

2. TAXONOMY OF PROGRAMMING

The authors of the papers cited cannot, 1 believe, answer such a question. At
an ACM Workshop on Rapid Prototypng (6) in 1982 a half-day was spent by the
participants discussing in detail, and with vigour, variants of the
"waterfall” system development cycle. There was heat, but little light.
Experts disagree what the stages of development are, let alone what they ought
to be. A longer period was spent discussing what a "prototype"™ is; although
many of us have written papers on the subject, we cannot yet be certain there
is a subject. We would certainly, therefore, agree that the hypothetical
programmer introduced above 1is sufficiently ill-defined that the question
cannot be answered! Yet, one has a vague feeling that all the last three
authors cited, and perhaps even the first, intend their work to be relevant to
the "typical" data-processing context. Someday, if not now.

I propose that it 1is desirable, perhaps necessary, to establish some
classification of characteristics important to software systems development,
so that those interested in the subject can understand one another; so they



97

3

can understand each others®™ assumptions; so they can communicate. Others have
proposed classifications (6,7) which serve valid but limited purposes. The
purpose of the classification | suggest below 1is to understand what
programming 1is.

Definitions of programming are personal and determined by the individual®s
goals. One programmer has finished his work when an algorithm is written
(correctly) on paper. Another must produce a system which will deliver
reports to a client. A third must alter an existing system to meet a new
requirement. What 1is needed is a classification which will permit precise,
(or more precise) discussion of such distinctions. We require the ability to
communicate precisely about our shared concepts. We require a language, one
which assigns special meanings to common words.

2.1 Dimensions of a Programming Taxonomy

The theory and practice of programming may be viewed from many perspectives.
What follows is an attempt to describe three such perspectives or dimensions,
and then to define in more detail each of those dimensions.

The dimensions delineate separate sets of concerns. The sets chosen are felt
to encompass important aspects of programming, though perhaps not all such
aspects. The dimensions considered are the program development cycle,
programming domain, and programming resources.

2.1.1 Program Development Cycle

It is generally agreed that it 1is important to consider the stage of
development of a program; the terms used to describe the specific stages, 1i.e.
the model for the cycle itself, has no general agreement. Figure 1, below,
suggests three such models all of which are familiar, and possibly acceptable.
Other models have been proposed (e.g- 8), Tfor programming domains which are
not so often discussed.



98

Figure 1. Three Models of the Program Development Cycle

DETAILED MODEL SIMPLER MODEL SIMPLE MODEL
Identification \
> Requirements - = Specification
Feasibility /
Analysis \ \
> Architecture 1
Des ign / i
Coding \ > Construction
> Development 1
Testing /
Documenting \ /
> Implementation
Cutover / \l
Operation \ > Certification
> Operation
Modification / /

It is clear that, iIn many programming domains, such models may be mapped to
one another. When one comes to consider less traditional models, say one
involving prototypes, the agreement amongst authors on the description of the
Development Cycle dimension often breaks down. Note, in the models presented
here, the '"Operation™ phase is ambiguous: another kind of problem. This paper
does not discuss the Program Development Cycle dimension of a taxonomy
further.

2.1.2 Programming Domains

The object of the Domain dimension 1is to permit differentiation amongst a
reasonable number of kinds of programming problems. There are a variety of
problem domains within which the development of computer applications takes
place, and the degree of success achieved with a specific programming
methodology seems to depend upon the domain within which it is applied. This
second dimension of a programming taxonomy, characterizing 'typical’” domains,
is suggested in order that discussion of such dependencies may be orderly.
The names here attached to each domain are personal to this author, but the
descriptions may be more definitive. Five such Programming Domains are
discussed below, each representing a blend of problem size and problem type.



99

(i) Complex Applications

This domain 1is concerned with functionally complex computer applications,
usually on a very large scale. The application may be highly specialized,
such as an airline reservation system. Or it may be multi-faceted, as in an
automated military defense system. The important characteristic is a (great
complexity arising from organizational, geographical, or technical application
factors. Accompanying this complexity degree of specialization among
personnel involved in development. The development system described by Boehm
() seems to be directed towards a Complex Application domain.

(if) Data Processing

This domain includes operational automation computer applications in business
and government. Its characteristics include an application emphasis on data
manipulation, numerous interfaces with existing systems, and problems relating
to the understanding of client requirements. Modification and evolution of
existing operational programs is often a critical concern.

(iit)  Information Systems

This domain is intended to characterize situations in which the major
programming problems concern data access and presentation, rather than data
manipulation. Interactive Information Systems (I1S), as defined by Wasserman
(®) are one example. Applications such as the development of a microcomputer
spreadsheet package might be another. One would expect applications where
presentation concerns predominate to be developed using different tools,
languages, development cycles, etc.

(iv) Scientific Programming

This domain is concerned with providing computer facilities to aid research,
analysis or experimentation in any T¥field of endeavor. Whereas the Data
Processing and Complex Application domains are concerned with providing
stability of functional service (with some slow evolution), the scientific
domain 1is most often concerned to provide rapid evolution. Indeed, '‘Dynamic
Programming™ would be a better label, but this phrase has another meaning. In
this domain, the solution of some problems typically requires the discovery or
selection of an appropriate algorithm. "Problem Solving"™ or ™Decision
Support" applications in business are also included in this domain.

It is unusual to find large groups of programmers working on a single problem
of this type, but there may be individual workers in many different locations
all working on the same problem. This aspect results iIn great value being
attached to correctness, comprehensibility and other program characteristics
which are often not overriding in other domains.

(v) Individual Support
It is useful to complete the spectrum of domains by envisaging a one man/one
computer situation in which the computer is used to provide personal support.

This, then, is the natural environment of the personal microcomputer system.

A microcomputer-like Individual Support domain is also the target of many data



100 6

processing application subsystems which attempt to provide programming
facilities (query languages, report generators, etc.) Tfor non-data processing
"users'”. The key to this domain is a set of facilities which are easy and
natural for people to use. The emphasis 1is onsupporting programming by
people not trained iIn computing.

In summary, the five domains described above represent a spectrum of
situations within which programming occurs. The first four domains often
employ formally trained "programmers'™ and 'analysts™, but the expectations
from such persons are different in each domain. Not many real-life situations
will cleanly fit within a single such domain, yet most real-life situations
can be identified with these categories. This paper returns to a discussion
of the programming domains, but a third dimension of the taxonomy is
introduced fFirst.

2.1.3 Programming Resources

Adopting a broad definition of programming, the programmer 1is any person
engaged in building systems. In the domain of Complex Applications,
individual programmers will provide highly specialized skills with limited
personal scope of influence over the entire system. Some programmers will
design, some will code, some will test, others will manage. All will be
specialists. At the other extreme, in Individual Support domains, one person
performs all these functions, and is also user. The third dimension of the
programming taxonomy includes the various resources, human and material, which
are brought to bear on system building in all domains.

The primary resources involved in programming, within all programming domains,
involve skills possessed by individuals, and Tfacilities to enhance these
skills. Because computer programming is [labour intensive, it 1is useful to
distinguish a few different ™programming” skills which are required, in
addition to the other types of resource. Specific resources which are
commonly needed in all domains include the following:

* Problem Skill, which relates to the understanding of the nature of the
problem and application of analytical skills to the solution of the
problem.

* Programming Skill, which 1is the ability to effectively use design
techniques and programming languages. Programming Skill is a requisite for
all programming environments. The objective of the Individual Support
domain is to eliminate the need for formal training to develop this skill.

* Communication Skill, which is the ability of the programmer to communicate
with colleagues working on the same problem.

* Management Skill or resource is the ability to organize and direct the
application of the other resources.

* Application Structure 1is perhaps the least recognized important resource
available to programmers. It is the key to design of programs in both the
Data Processing and Scientific Programming domains. Application structure
is necessary to the mangement as well as design of Complex Applications.
As is suggested below, effective methodologies may recognize and take



101

special advantage of this resource.

Methodologies and Tools represent other resources which, like Management
Skill, achieve their effects through their influence on the use of other
resources. Computer cycles, storage space, Jlanguage processors, and
conceptual approaches all fall into this category.

Time 1is the one depletable resource in any system development. The
Programmer and Management resources (skills) may indeed be enhanced by the
passage of time: time permits experience to be gained.

2.2 Why These Dimensions?

Other categories of factors which influence programming success are
certainly possible; the taxonomy presented here 1is, as previously noted,
intended to be illustrative. But it is not completely arbitrary. The
attempt should be to agree upon some taxonomy which exposes issues of
importance in software engineering. A large concern of that field is to
identify tools, or systems of tools, or methodologies, or management
techniques, which will 1improve programming effectiveness. IT the taxonomy
can be shown to be useful iIn describing why some tools work, and if it can
help 1identify new tools which prove to work, the taxonomy can represent a
basis for a valid theory.

3. METAPHYSICAL (ABSTRACT) FORMALISMS

Bauer, iIn the paper previously cited, has argued that the need for
formalization is inherent 1in computer science, and arises because ‘'the
computer itself is absolutely formal in its contact with people.” Bauer
develops the content of the three-stage development cycle which is called,
in Fig. 1 above, the "Simple Model.” He then proposes that 'the formal
essence of rational specifications™ can alternatively be expressed by
algebraic abstract types, by predicate logic, by non-determinism, or by
higher order functionals. He illustrates use of the first of the three
tools, but is forced, in his discussion of the consequent stage three,
Certification, to introduce discussion of the role of "Judge™, a legalistic
approach which will not be encouraging to those attempting to have programs
developed for them.

Bauer®s approach, as it regards Programming Domain, seems primarily from

the perspective of what 1is above termed Scientific Programming. Despite
allusion to other programming domains the assumptions of his methodology
make this probable. (Absence of formal discussion of programming domains

in much of the published work often forces us to infer the domain of
application.) Furthermore, Bauer®"s discussion of the resources used for
the programming task is also informal, and the absence of a structured view
leads to some confusion. Bauer notes that high-ranging people (lack time
to) acquire the fundamental knowledge of a computer scientist.” It appears
also that computer scientists Jlack the will to acquire knowledge of
alternative formalisms. The resource dimension of the programming taxonomy
attempts to separate the various skill concerns iIn program development,
recognizing that these different resources will be supplied from different
sources depending upon both the Programming Domain, and the stage of the
Development Cycle. The next section of this paper presents an alternative

»



102
8

formalism which has proven to be of great value in actual Information
Systems domains. Section 5 compares some aspects of this formalism and
that of Bauer, iIn the framework of the taxonomy.

4. FORMAL DEVELOPMENT OF INFORMATION SYSTEMS

The methodology presented below is in fairly wide use in industry for the
development of [11S systems. Informal approaches which are highly similar
have been employed for some time. The more Tformal approach, developed
primarily by Art Benjamin of On-Line People, has been described previously
by Mason and Carey (9) from which the description below has been adapted.
A commercially available tool which supports the method 1is described in

(10).
4.1 Architecture

The methodology is called Architecture-Based Methodology, and it takes its
name from the analogy with the architected approach to a building or other
structure, in the manner suggested by Ross and Schoman (1-1). The essence
of the methodology 1is that the system designer, or architect, develops a
view of the system based on its external description or appearance. The
designer works inward from this view, to develop system details always
consistent with the external appearance of the system. The important role
of the system designer in the earliest stage of development 1is, like the
role of the architect, Tfinding a realistic expression of the system®s
appearance which is both understandable and acceptable to the users.
Traditional methodologies tend to emphasize acceptability and function at
the expense of understandability, but of course a system description which
is accepted, but not understood, 1is not really accepted.

This methodology emphasizes, from the beginning of a project to its
conclusion, the overriding importance of the user®s ability to understand
the developers®™ interpretation of his requirement. That 1is, there 1is a
great emphasis on the Communication Resource of the taxonomy.

Thus the description of the external appearance must be embodied iIn some
form of specification which is capable of complete and unambiguous
interpretation by the users. Such a specification 1is analogous to the
architect"s drawings or scale model for a building: it is an effort to
communicate to the users (or the customer) within a discipline which also
provides consistent but more detailed descriptions for the engineers and
builders who will later build the actual structure. An approach which
employs an interactive screen-oriented scenario, which behaves like the
proposed system, 1is a direct and simple solution to this problem for IIS
projects.

4.2 Transaction Screen Perspective and Dialog-Based Design

The second element of the architecture approach is the adoption of a common
view or design-concept for the underlying structure of all applicatons. As
the building architect keeps in mind fixed concepts of how a house will be
constructed, so the system architect has fixed views of appropriate
structures which apply in well-understood situations. The transaction
screen perspective, the view that the application consists of a series of



>»

103

Input-Process-Output sequences of screens, is a key to effective
development of many business systems, particularly 1IS. The linkages
between screens in a sequence may be data-dependent in some instances, and
fixed iIn others, but these are elaborations. The operational user
interacts with the system in a dialog, viewing sequences of screens,
entering data into fields in screens, and being concerned only with the
behaviour of the data and the screens.

The screen-oriented dialog perspective provides strong support to
architecture approach, since it is easy to implement screens and sequences
of screens, if the data content is fixed. The concept of the ''scenario"
begins here, as a special class of prototype 1in which a sequence of
computer-display screens behaves exactly as the final screens in the
application system are intended to behave. In the scenario, however, the
user must follow a Tfixed script, since the application logic 1is not yet
implemented.

Clearly, such scenarios are an improved means of communication with the
users of a proposed system. Adoption of the transaction screen
perspective, which permits easy development of such scenarios, represents
an attempt to exploit the Application Structure resource inherent in the
Information  Systems Programming Domain. It also constrains the
applicability of the methodology.

4.3 Project Management

In addition to adopting a conceptual approach (architecture) and a design
approach (transaction oriented screen dialogs), a complete methodology
should consider the project management and control approach within which
the design will be articulated. That is, the Programming Resources should
be formally considered by the methodology. The Architecture-Based
methodology 1is directed to a management environment in which the user and
developer roles are distinctly different. This 1is not a methodology
intended for do-it-yourself programming by end-users. In fact the
methodology is intended to support three separate and distinct roles.

The user role is to determine the functional needs of the system, and to
understand completely the external appearance of the system. The user, who
may be at times the operational user and at other times the user manager,
concentrates on user concerns: function, operational sequences, timing and
performance, usability, etc. Tools and methods used in determining the
system specification are directed at ensuring the user®"s full and complete
appreciation of these concerns.

The developer®s role 1is to achieve an accurate, complete and timely
translation of the system specification into a working product. The
developer role is thus the traditional one for managed software development
environments, although the nature of the work itself may be non-traditional
because the tools used are new. For example, the system specification Iis
represented by a series of machine®implemented application scenarios,
rather than functional Tflow-charts or application structure diagrams.
Using tools designed for this purpose and adopting the program structures
just described, a good deal of traditional design and development may be
eliminated.



104
10

The building of understanding between user and developer can be assisted by
tools and methodology, but this understanding cannot be left to tools
alone. A third and bridging role is essential to strengthen the Management
Resource typically available within the 11S Programming Domain. This is
the role of architect. The architect has responsibility for ensuring that
the user(s) understand the system specification, and that the developer(s)
deliver the product specified. This role is supported both by tools and by
the personal characteristics of the architect. The architect must develop
adequate trust among the three parties, and must maintain the integrity of
the development process by adhering to the methodology.

4.4 Iterative Design

The final element of the methodology 1is the view it adopts of the
Development Cycle. Development of interactive systems must be viewed as an
iterative process. The user"s understanding of requirements in the
business environment normally evolves rapidly, especially where new
approaches, such as 11S applications typify, are involved. A process which
exposes the user to life-like scenarios of the final application will lead
to wide exploration of application alternatives during the earliest stage
of development. The development cycle will emphasize efforts during this
requirements stage. Iteration at this stage, when supported by effective
tools, will reduce later costs.

The benefits of an iterative approach are strongly supported in the

literature relating to prototypes. The Architecture-Based methodology
considers three specific levels of iteration within the specifications
phase, and then proceeds to system development. The first set of
iterations make use entirely of scenarios constructed from sequences of
fixed-information display screens. Since the scenario screens must
simulate user-computer dialogs, it 1is essential that these
fixed-information screens be capable of accepting user data. However, no

data analysis occurs on entry, and the scenario proceeds according to a
script developed by the system architect. User and architect iterate on
scenarios until an adequate Tirst-level representation of the application
is reached. This 1iteration process leads to agreement on such matters as
screen-flow sequences, screen content, and whether the application is to be
menu-driven or forms-driven, question and answer, etc. It also clarifies
details including screen layouts. The user gains an excellent
appreciation, where the architect is skilled, of the options available, and
their implications for the application.

Many applications require that particular attention be paid to the details
of data-dependent calculations. In these cases, a second-level iteration
is required, in which actual database interactions and application
computations on limited samples of data occur. This 1is considered to
constitute a demo or demonstration, and assists in the clarification of
both application logic and more detailed screen-flow sequences. The demo
phase represents a partial implementation of the full application.
Emphasis 1is on quick implementation of key or controversial areas of the
system. The architect works with both users and developers during this
stage.

Often, at this point, many relatively straightforward parts of an



105
11

application will not have been seen by the user in scenarios. That is, the
specification will be incomplete 1in its details. A final series of
iterations then may take place on a complete specification of the system.
Application logic may be implemented; error-handling and recovery
procedures are specified, and a 'prototype"™ of the entire application is
prepared. This prototype is exercised for users, and evolves to become the
final system specification. The architecture-based methodology considers
this prototype as being what Keen and Gambino (12) call the version O
release of the system. Carey and Mason (13) have reviewed the meanings
attached to the word 'prototype™ in some of the recent literature. They
discuss iIn more depth distinctions between the various kinds of prototype
referred to in the above description of this methodology.

5. METHODOLOGY AND FORMALISM

The 11S methodology has been demonstrated by considerable use to have great

value within 1its intended Application Domain. What makes it formal? The
language employed for specifications, namely a scenario of the desired
product, appears to be effective, but informal. Most of us would agree

that this specification language is far from being as formal as, say, the
abstract algebraic specification of Bauer. This 1is not, however, the case.

The dictionary meaning of "formal™ refers to the essence of a thing. "Of
the outward form, shape, appearance, arrangement, or external
qualities..... explicit and definite.” (14) What could be more explicit

or definite, what could better describe the form and external qualities
than a scenario?

The architecture methodology is as formal for the Information Systems
domain, as is the abstract type for the Scientific domain. Both instances
require that the user and developer agree upon a mutually-comprehensible
specification language. Theimportant characteristics of that language
include precision and compactness, in addition to comprehensibility. The
existence of tools supporting the specification language, as iIn the case of
the 1IS architecture methodology, enforces the formalism which users and
developers must both agree upon.

Bauer notes that the formal specification is the 'pivot”. Construction of
the actual program can indeed, with appropriate tools, be performed
mechanically. In the 1IS case, tools do exist to perform such
translations; in the case of abstract algebraic types, mechanical

translation capability exists, perhaps, if the algebraic (specification)
language is appropriately selected.

5.1 Comparing Two Formalisms

If it can be agreed that the architecture approach is indeed sufficiently
formal, it should be examined to determine whether it has anything to
contribute to other programming domains. It 1is remarkable that the
methodology for IIS proposes three development stages. These stages appear
to map well to the three-stage process proposed by Bauer:



106

Bauer Architecture
Specification Scenario
Construction Iteration on Demos
Certification Version 0O

Since the two approaches seem to describe similar approaches to similar
problems, it is tempting to believe they are equally valid, each iIn its own

Application Domain. This 1is not the case; 1 would propose that the
architecture approach has a significant advantage. Each methodology
embodies an analogy. In the architecture methodology this has been noted,
and 1is imbedded 1in the name. Bauer®s methodology might be termed
“judicial™. Both  approaches recognize the great importance of a

professional approach, but Bauer chooses a different profession.

The essence of the difference is that the architecture approach clearly
identifies the need for independent professional guidance throughout the
development process. In effect, this approach argues for the creation of
an important new profession: that of programming architect.

If this idea is applied to Bauer®s approach, it improves the Iliklihood of
successful systems being developed. Rather than judging, upon conclusion
of the product construction, whether the ™"contract” has been fulfilled by
the computer professionals, the customer would hire a programming architect
to ensure, throughout the specification and construction, that the
specification is continuously adhered to. This 1is simply a restatement of
the view that verification should be a continuous process which occurs
throughout the development cycle. Client managers and computer scientists
do agree on this. The formal architecture methodology suggests a means of
achieving it.

It was suggested 1in 4.2 above that the 1inherent 'structure” of a
programming problem represents a valuable, and often overlooked, 'resource"
for the programmer. In the Scientific Programming domain, such structure
is often directly reflected in use of a design language which is itself
formally structured. In the Information Systems domain, similar structure
can be imposed upon the problem, and results in the opportunity to achieve
great benefits. The methodology for [11IS presented above exploits such
structure by adopting the Dialog-Based Design structural model. In effect,
some of the "how" was Fixed prior to deciding "what". While mathematical
expression of its formality has not been developed, there can be little
doubt that both the nature of the Application Structure resource and the
benefits of exploiting it are similar to what is achieved by mathematical
approaches in Scientific Programming.

Finally, it was noted above that the scenario as specification may be
incomplete. This may dissatify those who have considered that completeness
is a critical specification attribute; however such considerations are
highly Domain-dependant. There is a natural conflict between completeness
and comprehensibility in specifications, and the 11S (and possibly the Data
Processing) domains demand more of the Ilatter than of the former. If user
and developer have agreed upon methodology, formalism is not sacrificed.



107

6. DISCUSSION

This paper has proposed a taxonomy of computer programming, and
demonstrated how it might apply to discussion of two quite different
programming methodology proposals. The comparative discussion was aided by
the fact that both methodologies employ three-stage Development Cycles
which are obviously similar in intent. The domain of programming concern
of the +two methodologies 1is quite different, as are the Programming
Resources emphasized in each case.

The idea is intriguing that a methodology intended for use in a Programming
Domain having 'appearance' rather than ''substance™ as a major concern might
offer something to to other domains. At the ACM SIGSOFT Workshop on Rapid
Prototyping it was evident that workers in the 1IS TfTield had achieved a
more advanced degree of implementation of formal approaches; the one
described here is but one example. A major argument of this paper is that
these approaches may indeed be formal, where they are based upon agreed and
enforced use of a particular specification language. Mathematical
formalisms are not appropriate in some Application Domains, and they are
certainly not the only valid formalisms.

The taxonomy is an attempt to permit analysis of the different
characteristics which specific programming projects may have, iIn a manner
which can lead to valid conclusions about programming in the general case.
Although use of the taxonomy as a framework for comparison of approaches
can be fruitful, it is premature to claim that the taxonomy can form the
basis for a theory of programming. Indeed, it is far from certain that the
dimensions of the taxonomy are even the appropriate ones. Nevertheless,
some such approach may be promising.

The problems with any conceptual subdivision of a complex activity into
components are many. One set of problems arises from the words which we
use to label concepts. It 1is very difficult to enforce the discipline
implied by new definitions for old words, except in very narrow Tields.
Programming is not a narrow field. A second kind of problem arises from
the lack of shared experience. Workers 1iIn one Application Domain rarely
possess the direct experience of another domain which permits effective
communication in the absence of agreement on terminology.

A third problem in taxonomy development 1is sociological. There is little
incentive for the documentation of formal concepts relating to domains
which may appear to some to be undisciplined and chaotic. The effort to
understand and describe these formalisms 1is great, since they are not
founded on two-dimensional mathematical logic. The rewards in this area
are not in description on paper of formalisms 1ill suited to such a medium.
However, the economic and societal importance of understanding (and
correcting) the problems of such domains is great. A purpose of this paper
is to illustrate that this task is not only possible but that it may
contribute to progress in more structured domains.

Concrete uses of development formalisms should be sought out and studied.
They have much to contribute to computer science.



108
14

7. ACKNOWLEDGEMENT

This work has been supported by the Natural Sciences and Engineering
Research Council of Canada, under grants A3045 and A5547.

REFERENCES

(O EW. Dijkstra, "The Humble Programmer'™, CACM 15 (October 1972),
pp- 859-866.

(@ Greenspan, S.J. and J. Mylopoulos, A. Borgida, '"Capturing More
World Knowledge in the Requirements Specification. Proc. 6th International
Conference on Software Engineering. Tokyo September 1982, pp. 225-234.

3 Boehm, B.W., J.F. Elwell, A.B. Pyster, E.D. Stiuckle, R.D.
Williams, "The TRW Software Productivity System”. Proc. 6th International
Conference on Software Engineering. Tokyo September 1982, pp. 148-156.

4 Bauer, F.L. "From Specifications to Machine Code: Program
Construction through Formal Reasoning.” Proc. 6th International Conference
on Software Engineering. Tokyo September 1982, pp. 84-91.

B) Zilkowitz, W.V. ed. , "Workshop Notes, ACM SIGSOFT". Workshop on
Rapid Prototyping. Columbia, Maryland, April 19-21, 1982.

() Anon, "Quantitative Software Models'™, Data Analysis Center for
Software, Rome Air Development Center, March 1979.

@ Houghton, Jr., R.C. "Software Development Tools"™, National
Bureau of Standards Special Publication 500-88, February 1981.

® Brittan, J.N.G., ‘'Design for a Changing Environment™, The
Computer Journal, Vol. 23, No. 1, January 1979, pp- 13-19.

(® Mason, R.E.A. and Carey, T.T., "An Approach to Prototyping
Interactive Information Systems"™, Proc. 3rd International Conference on
Information Systems , Ann Arbor, Michigan, December 1982.

(10) Mason, R.E.A. , T.T. Carey and A. Benjamin, "ACT/1: A Tool for
Information Systems Prototyping”, ACM Workshop on Rapid Prototyping,
Columbia, Maryland, April 19-21, 1982.

(1) Ross, D.T. and Schoman, K.T. "Structured Analysis for
Requirements Definition"™, IEEE Trans. on Software Engineering, Vol. SE-3,
NO. 1, January 1977, pp. 6-15.

(12) Keen, P., and Gambino, T.J., "The Mythical Man-Month Revisited",
Proc. APL 1980, pp. 630-648.

(13) Carey, T.T. and Mason, R.E.A., "information Systems Prototyping:
Techniques, Tools, and Methodologies,”™ [INFOR. Canadian Journal of
Operational Research and Information Processing, to appear.

(14 Concise Oxford English Dictionary.



- 109

A CONCEPTUAL FOUNDATION FOR VIEW INTEGRATION

C. BATINI, M. LENZERINI
Istituto di Automatica - Universita di Roma
Via Buonarroti 12 - 00185 Roma - Italy-

Abstract.

View Integration is a critical activity In data base
design. Several methodologies for view iIntegration have
been proposed in the last years that afford the problem
with different strategies and in the context of different
data models. In this paper a general framework for comparing
existing approaches and giving a conceptual foundation to
the area i1s proposed. Within a model iIndependent approach
we Investigate the activities involved in the iIntegration
process, In terms of semantic checks that are”™to be per-
formed, types of restructuring that are usually needed and
types of procedurality that can be chosen.



CONTENTS
1. Introduction
2. A model

110

3. Activities and concepts i1nvolved

4.

3.1. Semanti
3.1.1.
3.1.2.
3.1.3.

3.2. Transfo

c checks
Conflicts analysis

independent approach to view integration

in view integration

Interschema properties analysis
Indications and scenarios

rmations

3.3. Types of proceduralities
Linguistic transformations

3.3.1.
3.3.2.
3.3.3.
3.3.4.

3.3.5.

Conclusions

Design strategies
Order of integration
Order of iIntegration
merged

Order of iIntegration
structures

and further research.

between schemata
between concepts to be

between modelling



1. INTRODUCTION

In recent years a lot of effort has been done to pro-
vide effective research guidelines for conceptual data base
design methodologies (see [13],[ 14],[16]) -Conceptual design
of a data base i1s usually seen as divided Into two steps:

- view modelling, during which user requirements are formally
expressed by means of several user conceptual schemata

- schema integration (or view iIntegration), that merges
such schemata into a unique global schema of the applica-
tion.

The design of the n user schemata may be iIn general
developed independently, by different analysts and at dif-
ferent times. As a consequence, several complex tasks are
to be managed during integration: finding the common parts
between the different schemata, finding the different re-
presentations chosen by the analysts, iIn case discover
inappropriate or unreliable choices; finally, discover in-
terschema properties, 1.e. properties involving data be-
longing to different schemata that were hidden to the ana-
lysts In former design steps.

The topic of schema integration has been recently
addressed iIn several papers (see [3]1.[71 .[:1.[10] ,[11].[15] .[17],
[20]D that give different answers to issues pointed out in
[13].,[14],[16])- Practically, all those papers concern only
with data integration, and do not address the topic of
integration of dynamic aspects of the application. While
such papers are important contributions to the problem, we
believe that i1t is now the moment of developing, together
with new i1deas, a general framework for comparing existing
approaches and the topics pointed out. In developing such



112

investigation we have three goals:

1 . Find criteria of classification and comparison of ex-
isting methodologies for view integration.

2 . give a conceptual foundation to the area of view iIn-
tegration, describing concepts and activities typical
of the area without referring to any particular data
model and methodology.

3. provide general guidelines, 1In a moment iIn which the
research iIn the field iIs at a mature stage, for a
schema i1ntegration methodology 'parametric' with respect
to the conceptual model.

The paper is organized as follows.

In Section 2 we develop a general framework to view iIn-
tegration, introducing several concepts that globally pro-
vide a model independent approach to this topic .

In Section 3 we analyze iIn detail the activities involved
in the integration step iIn terms of semantic checks that
are to be performed,types of transformations that are usually
needed and types of procedurality that can be chosen.

In Section 4 we examine future research perspectives for
this area.

2. A MODEL INDEPENDENT APPROACH TO VIEW INTEGRATION

In order to develop a general framework to view iIn-
tegration we need to introduce several concepts.

Data base design consists of a process of representa-
tion of a piece of the real world of iInterest {Universe of
Discourse, UoV) on a computing machine.

Conceptual design is the phase of data base design in



113

which the UoV is formally described independently from the
implementation environment (see [13]). Such a phase involves
both static and dynamic aspects of the UoV, i1.e. data, opera-
tions and events. In this paper we"ll deal only with data
design, whose goal is to obtain a formal description of

data, called conceptual schema.

A data model may be seen as the formal language 1In
which the conceptual schema is expressed; 1t consists of a
set of structures iIn terms of which the objects of the UoV
are described. Following the approach of [18], the allowed
structures of a data model are specified In two complementary
ways: classification structures and iIntegrity constraints.

Classification structures are the structures by which
the objects of the UoV are classified on the basis of common
properties, giving raise to the concepts (or classes) of
the conceptual schema. A class represents a set of objects
of the UoV, called the iInstances of that class. For example,
if entity type i1s a classification structure of the selected
data model, the entity type EMPLOYEE, representing the class
of persons employed iIn a certain enterprise of the UoV, may
be a concept of the corresponding conceptual schema; each
employee is an instance of the entity type EMPLOYEE.

Integrity Constraints are the structures that allow to
specify rules on the concepts of the conceptual schema,
reflecting semantic constraints on the corresponding objects
of the UoV. For instance, i1f in the UoV the employees cannot
earn more than their manager, an iIntegrity constraint may be
defined on the concepts EMPLOYEE, SALARY and MANAGER in
order to represent the fact that the salary of an employee
must be lower than the salary of i1ts manager.

Two conceptual schemata are equivalent if they can



114

represent the same universes of discourse.

The above definition of equivalence 1is obviously not
constructive: another definition will be given iIn Section 3.

Union of two (n) Universes of discourse is the Universe
of discourse whose things and happenings are the union of
things and happenings of the two () universes of discourse.

Coming to a definition of iIntegration, i1t is clear
that we need a definition that does not distinguish between
equivalent schemata.

Given two Classes of Equivalence of Conceptual Schemata
Cn,Cz (the definition is obviously extensible to n classes)
their Integration 1(C",Cz2) i1s the class of equivalence (of
schemata) that represents the Universe of Discourse union
of the two Universes of discourse represented by the given
classes. In the following we will also speak of iIntegration
of schemata as an obvious extension of integration of classes
of equivalence.

In terms of the above definitions we may say that the
main role of a view integration methodology is to describe
a way to obtain I from C],C;: without repeating the entire
conceptualization process for the Universe of Discourse
UoV = UoVj U Uo~2 > the Universes of Discourse from which
Cn,Cz2 are derived. The reason for assuming UoP~Uof” as
input for the design process comes indeed from organization
constraints and from an hypothesis of "linguistic homoge-
neity"” that can be made only within users, documents, etc.
that describe each of the Universes of Discourse.

The tasks of such a methodology can be very complex.
The reason for this comes from the following observations.

Assume for the moment that objects and properties of
objects of the part of the UoV common to UoW™ and UoC-2 have



115

been modelled exactly iIn the same way (i.e. by means of the
same names, classification structures, and iIntegrity con-
straints allowed iIn the model) in and C2- We call this
assumption on the design, strong cohesion between schemata.

Strong Cohesion may be lost In the design for several
independent reasons (e refer to this situation as Weak
Cohesion Assumption):

1. In the model several equivalent representations exist
for the same Universe of Discourse (Lack of Model Or-
thogonality) (see an example in fig. 1, where dotted
lines describe identifiers and symbols 1,1 and 1 ,n de-
scribe minimum and maximum cardinalities of instances
of entities i1nvolved iIn relationships [7]-

Employee g;:)Name
-

151

Name

Employee
Dept
Name

Department {;;) Name
-

Fig. 1: Example of Lack of Model Orthogonality.

2 In the design process, different perceptions may have
been adopted by different designers in modelling the



116

same objects (EPluralism of perceptions). See for In-

stance fig. 2, where the relationship between Employee
Name

Employee ___Q
& — —

171

Name

; Employee

= 4 oo
1;n
1,n Name
Department -—-( )
< — —
1:0

Number l,n

: Project

Description

Q—-. Number
— 1,n Faliaw
o Project ‘Lﬁ

c1 c2 description
Fig. 2: Example of Pluralism of Perceptions.

and Project i1s explicitely perceived by the designer in
, while In Cz is implicitely perceived through entity
Department.

3. In the design process, different abstraction levels may
have been chosen to represent objects that belong to the
same classes (Heterogeneity of Abstraction Levels). See
for example fig. 3, where entity Person In Cz2 iIs at a
higher abstraction level with respect to entity Employee

in GJ.

Name

Name
Q——- Employee Person r——Q

cl C2
Fig. 3: Example of Heterogeneity of Abstraction Levels




4.

117

Several erroneous choices may have been made in the
schemata for names, classification structures, Iintegrity
constraints, so that the conceptual design applied to
UoVj , Uoke2 n°t Produce as a result the 'true"
schemata and C2 but two schemata CArC™ not equivalent
to them (Qack of Design Reliability). See for example
fig. 4, where 1t has been erroneously assumed iIn that
an employee must be assigned to a unique project.

Employee

1,1

Project

Fig. 4: Example of Lack of Design Reliability.

A "good" methodology for view integration should provide
strategies to manage all of the above situations. In the
next section we go deeper into the analysis, putting iIn
evidence the activities and the conceptual cathegories
involved iIn the iIntegration process i1ndependently from
the particular data model chosen i1n the methodology.



118

10.

3. ACTIVITIES AND CONCEPTS INVOLVED IN VIEW INTEGRATION

Topics pointed out In section 2 are afforded by ex-
isting methodologies for view integration with different
strategies. Abstracting from specific proposals, we may
single out the following concepts as peculiar of view iIn-
tegration .

a. Several semantic checks are to be performed by the de-
signer in order to gain complete visibility on the
meaning of the concepts iIn the schemata.

In order to support such investigation, several types
of iIndications can be considered, 1i.e. suggestions based
on heuristics that guide the designer iIn i1ts activities.

b. Several possible transformations are logically related
to semantic checks and corresponding indications.

c. Several different types of procedurality can be pro-
posed to perform the above checks.

In the following, we analyze in detail each of the
above concepts.

3.1. Semantic checks

In comparing the schemata to be iIntegrated, two dif-
ferent activities can be distinguished:

a. Conflicts analysis, whose goal i1s to find and conform
the parts of the schemata representing the same piece
of the UoVv.

b. Interschema properties analysis, that looks for hidden
properties between concepts belonging to different
schemata.

In the following, we describe the characteristics of



119

11

these activities, assuming that the integration of two user
schemata (S1,S2) 1i1s to be carried on. Furthermore we ana-
lyze the concepts of iIndication and scenario, that are
useful to support the designer In semantic checks.

3.1.1. Conflicts analysis

The goal of this activity is to find all the concepts
that are common to S1 and S2, and conform their representa-
tion.

The structure of this activity i1s the following:

INPUTS = S1,S2
OUTPUTS - SS1 C S1, SS2 C 2

such that: SS1

rep(x) x C UoVj

SS1 rep(x) X C Uolk2

where:

- X is the maximum subset of UoV* d UoC™ represented both
in S1 and S2.

- S = rep(Li) means that conceptual schema S is a representa-
tion of the Universe of Discourse U.

During this activity all types of conflicts among the
representations of the same objects in the schemata to be
integrated are to be discovered. Conflicts may be classified
as:

- naming conflicts
- structural conflicts

Naming conflicts
Let"s call S1 A S2 the schema obtained considering



120

12.

those concepts that have the same name i1In S and S2.

Since under weak cohesion assumption SS1 and SS2 are
in general different from S1 n S2, this activity can be a
very complex one.

The reasons for such difference come from naming In-
coherences between S1 and S2 and lack of design reliability,
e.g-:

- Interschema homonymies between S1 and S2 that imply the
presence In S1 n S2 of concepts representing objects that
do not belong to UovV» n UoC/e

- Interschema synonymies between S1 and S2, that imply that
objects In UoV” n UoV™ are not represented in S1 H S2.

- intraschema homonymies or synonymies (due to lack of
design reliability) with analogous consequences.

Most of the methodologies mention naming iIncoherences,
while only some of them (7] ,[:: ],.[15]) give specific guide-
lines to detect and solve them. Intraschema incoherences are
mentioned only i1n [7]. In [3] the Universal Relation As-
sumption [¢] iIs implicitely assumed: this assumption, 1iIn
data base design, implies the absence of naming iIncoherences.

Structural Conflicts

When finding the common part, an activity of comparison
of information content of the schemata has to be performed.
Such comparison can involve conceptual structures at dif-
ferent level of granurality, 1i.e. atomic concepts, simple
fragments, or even the entire schemata. E.g. iIn [s] it is
suggested to compare pairs of concepts, while in [15] a
comparison activity is performed on subviews, that correspond
to simple fragments of the schemata.

Under weak cohesion assumption, several possible re-
lationships may hold among conceptual structures repre-



121

13.

senting the same piece of UoV: we call them Equality, Equi-
valence, Containment, Compatibility.

Equality

The structures are equal i1f the piece of the UoV they
represent has been modeled by means of the same names,
classification structures and integrity constraints al-
lowed by the model.

Equivalence and Containment

The structures are equivalent if, even though they are
not equal, they have the same information content. The
equivalence i1s related to the concept of lack of model

orthogonality.

Several definitions of equivalence have been proposed
in the literature iIn different contexts (see for instance
51 .[s1.[12] )-

We assume here a definition based on an approach ap-
peared in [:]-

Informally speaking, we can say that a schema Sl is
less informative (<) than a second schema S2 i1f for every
database 11 that is an iInstance of Sl a database 12, iIn-
stance of S2, exists that has the same set of answers to
queries. If S1 < S2 and S2 < S1, we say that they are
equivalent.

The above definition provides a framework also for a
concept of information containment.

The equivalence concept is explicitely used in [7] and
in [15]. In [15] two different equivalences are taken into
account, 1.e. representation equivalence and restructure
equivalence, defined on simple structures; the information
on equivalent structures is considered as an i1nput to the
integration process. Equivalence is implicitely used in [3]



122

14.

where, under the Universal Relation Assumption,the iIntegra-
tion corresponds to merging sets of functional dependencies
with the same closure.

With regard to the information containment concept, we
notice that 1t i1s closely related to the activity of re-
dundancy analysis, present iIn several methodologies ([3],
[71 .011] .[15] .[20] ) -

In general, i1f a containment relation occurs between
two structures belonging to different schemata, such con-
tainment gives raise to redundancy when the structures are
put together iIn the iIntegrated schema.

It 1s well accepted that redundancy analysis is a
task of view integration: 1t iIs questionable [s] If all
types of redundancies should be also eliminated during view
integration.

Consider for instance the case of two paths iIn an
Entity Relationship Model (see fig. 5) that are merged In

the integrated schema.

In case each of the relationships A-B,B-C,A-C can be
derived by the remaining ones, no argument exists at con-
ceptual design level to choose which of them to mantain
in the iIntegrated schema.

It is a task of physical or transaction design to
choose either to represent redundant paths iIn the final



123

15.

database schema and mantain them because of response time
needs or to get rid of redundancy by selecting the more
convenient path from the viewpoint of overall system®s
performance.

Compatibility

Quoting from [13] "a framework for rules needs to be
developed to test views for merge compatibility'.

What i1s compatibility? Intuitively, two conceptual
structures are compatible i1f classification structures and
integrity constraints referring to the same objects of the
UoV are not contradictory.

In the view iIntegration field the concept of compati-
bility and contradiction is strongly related with the so
called closed world vs. open world assumption.

The closed world assumption states that a sentence on
the objects represented i1In a conceptual schema iIs considered
true 1T i1t i1s explicitely stated In the schema or is de-
ducible from explicit sentences iIn the schema. In any other
case the sentence i1s considered false.

In the open world assumption all sentences not stated
in the schema or not deducible are considered unknown.

The closed world assumption is implicitely assumed in
[:0],where in the framework of the structural model two
entity relations that represent the same object classes but
have different attributes iIn the schemata are not considered
mergeable; iIn order to superimpose them, two new subrela-
tions are created iIn the integrated schema.

The open world assumption is implicitely assumed in
[7] .,[11].[15] where pairs of compatible concepts are merged
and the new concept iIn the iIntegrated schema inherits all
their properties.



124

16.

Examples of contradictions iIn the open world assumption
are in [7] different min or max cardinalities for
entities In the same relationships and iIn [15] different
types of dynamic behaviour of concepts iIn the two schemata.
Under open world assumption, contradictions are usually
managed suggesting further investigation with the user.

3.1.2. Interschema properties analysis

Interschema properties are all the modelling features
defined between different concepts iIn different schemata
that were, as a consequence, hidden to the analyst iIn the
design of a single schema.

Some of the iInterschema properties correspond to the
discovering of a redundancy (see case 1 of fig. s, where
the redundancy 1is in the fact that all the instances of B
are also instances of A);as we said iIn the previous section,
in this case they reflect the presence of an information
containment relation between fragments of the two schemata.
Other interschema properties simply reflect new properties

Schema 1 Schema 2 Integrated Schema
A
inter
case 1 A B a
Tf schemd
B property
A
Case 2 A A
inter
/ AN D schema
properfy
B & B D




125

that are needed to gain completness in the representation
of the global UoV (see case 2 of fig. 6)-

In [17] i1t i1s shown the strong influence of the as-
sumption of Heterogeneity of Abstraction Levels iIn the disco-
vering of interschema properties.

In [10] i1nterschema properties are used for gaining
completness as well as constructing external views that
have the property of being a proper subschema of the global
schema.

Interschema properties are managed also in [7] ,[15].-

At the end of this section we compare in Table 1 the design
assumptions introduced iIn section : with the above described
design activities, attempting an evaluation of their In-
fluence on such activities.

Lack of Pluralisms Heterogeneity Lack of
Model of of Abstraction Design
Orthogonality Perscections Levels Reliability
Conlfict
Analysis si si wi si
Interschema
Properties wi si si si
Analysis

0
1

strong influence

weak influence

=
1

Table 1.

3.1.3. Indications and scenarios

Generally, a methodology should provide guidelines 1in



126 -~

18.

order to perforin effectively and efficiently the iInvestiga-
tions outlined In the above sections: such guidelines can
be provided in the form of indications, i1.e. situations
that reveal potential conflicts, guide the designer and
control the combinatorial explosion of possible iInvestiga-
tions . Several factors can influence the way iIn which in-
dications are managed in a methodology:

1 . the conceptual model; e.g. a rich linguistic capability
to express integrity constraints can be used in evalua-
ting the similarity of concepts that are potential syno-
nyms .

2 . peripheral information3 collected by the methodology,
1.e. information on the neighbours of the UoV that is
not destined to be represented iIn the conceptual schema
and is collected and used to make more reliable the
analysis on data represented In the conceptual model.

In [19], for instance, keywords are collected for each
concept, that represent a meaningful subset of its
"neighbour concepts'. Two concepts are considered po-
tential synonyms i1f most of their keywords are equal.

3. linguistic heterogeneity between users, conventions,
standard documents of the different subsystems of the
organization.

At present, 1indications are dealt with iIn the methodo-
logies for several goals.

In [11] similarity indications are suggested for
discovering interschema naming iIncoherences. In [7] concept
likeness/unlikeness are suggested for interschema incohe-
rences and interschema properties, and multiname anomalies
for i1ntraschema incoherences; new cycles occurrences (in



127

19.

the iIntegrated schema) are suggested for redundancy analysis.
In [15] view similarity is used for compatibility analysis.

Indications are potential motivations for some more
investigation with the user: the iInvestigation can lead
the designer to discover either a conflict or an interschema
property. As a consequence, several alternative modifica-
tions to the schemata are logically related to an indica-
tion; a methodology should suggest, for every specific In-
dication, several corresponding scenarios, i.e. the type
of conflict or interschema property the indication, iIn the
given context, potentially reveals and the related modifica-
tion to the schemata. Methodologies differ in the way iIn
which they manage scenarios. Most of them suggest usually
only one scenario: e.g. iIn [14], when an incompatibility is
discovered between views, as a general policy the iIntegrated
view will include the more constrained one. In [7] usually
several scenarios are suggested.

3.2. Transformations

When the schemata object of the integration process are
analyzed, several possible transformations are needed that
change some part of the schema In a new one.

Transformations can be classified in several ways. We
propose here a classification (see fig.7 ) based on the
definition of equivalence we have given In section 3.1.

Transformations

1 1
Information Information
Preserving Changing

1

Comparable Not-comparable

Fig. 7



128

20.

Informat-ion preserving transformations occur when for
some design goal the designer aims at changing the syntactic
representation of the schema, without changing i1ts informa-
tion content.

In [7] , several equivalence transformations are sug-
gested in order to unify types of concepts with the same
name iIn the two schemata and simplify further design deci-
sions .

Information changing transformations can be classified
in:

- Comparable transformations when the information content
of the two schemata can be compared, i.e. we can say that
the previous schema is more (less) informative than the
restructured one.

In [15] several '"enhancement operations' are suggested
that enrich the information content of schemata. In [7] when
incompatible representations appear In the two schemata for
concepts with the same name, one of the two concepts is
modified. Similar transformations appear in [10] ,[15] ,[20]
in a phase of the analysis that concerns concepts in the
integrated schema.

- Not comparable transformations are usually needed when
owing to previous insufficient or unreliable design, con-
flicts arise (e.g- homonyms or synonyms) that must be
solved with a renaming or change of the structure.

Existing methodologies have different approaches
in suggesting when affording transformations.

In [10] ,[15] .J20] firstly schemata are merged and then
transformations are performed on the integrated schema. In
[7/] some transformations an performed on Input schemata and



129

21 .

others on the iIntegrated schema.

Notice that at the end of the integration process it
is usually convenient to perform further transformations
on the iIntegrated schema for goals different from those
examined till now, 1.e.:

1. express as far as possible by means of the model itself
all the integrity constraints otherwise expressed by
means of natural language. We call autoexplicativity this
quality of the design.

2. gain further clarity and simplicity in the representation
of the UoV.

Similar goals are also typical of the view modelling
step of conceptual design; the analysis can be reproposed
now for two different reasons:

1. this i1s the final step of conceptual design, and so It is
crucial at this point to gain high quality of the design.

2. only at this phase of the design it is possible to get a
centralized view of the global UoV of interest for the
application.

3.3. Types of pvocedvxality

Several types of procedumlity can be used In a view
integration methodology, corresponding to the different
choices that the designer has at i1s disposal In creating a
partial ordering between the different design steps that
are to be performed.

They may concern:

1. Linguistic transformations
2. Design strategies
3. Order of iIntegration between schemata



130

22.

4. Order of iIntegration between concepts to be merged
5. Order of integration between modelling structures.

In the following we analyze the above procedualities.

3.3.1. Linguistic transformations

The fundamental goal of a Methodology for Data Base

Design is to transform a user oriented linguistic repre-
sentation (l.r. 1n the following) of requirements into a
DBMS oriented one.

In order to simplify and make more reliable such

transformation, the introduction of two iIntermediate pha-
ses In such transformation process 1is usually proposed
(see [13],[14]), i.e., from the bottom the top:

1. a 1.r. independent from the user and the DBMS, usually
called conceptual model.
2. a l.r_independent from the user and from conceptual model,

i.e. obtained from the initial requirements iIn such a
way that no choice has to be made at this level, re-
garding the structures used to represent the iInformation
of iInterest. According to [14], we call this l.r., Re-
quirements Model. We adopt the term Requirements Schema
to indicate an instance of it.

See iIn fig. 8 a comprehensive representation of the

above terminology.

Integration can be in principle performed at each of

the above levels. For instance:

1.

The enterprise schema mentioned iIn [14] can be con-
sidered as the result of a first integration step afforded
before Conceptual Design (it i1s indeed usually considered



131

23 .
1/0 Description character of the linguistic
representation
user requirements user oriented
4
Requirements
Analysis
—— r ——
Requirements Schema independent from the user and
4 from the conceptual model
Conceptual
Design
4
Conceptual Schema independent from the user and
4 from the DBMS
Logical + Physical
Design
4
Logical + Physical Schema DBMS oriented.

Fig. 8 .

as an iInput to conceptual Design).

2. 1ntegration can even be performed during logical design.
Synthesis algorithms in [3],[4] are examples of such
approach.

Most of the methodologies perform integration at the
conceptual level. This approach can be considered as a tra-
deoff between two different requirements:

a. as In software design, iIn data base design too error
cost increases dramatically during the life cycle of
the application. This aspect should justify when possible
an integration "in the head of the designer'.

b. on the opposite side, due to the great complexity of the
integration process, i1t seems better to perform such
activity only when formal, unambiguous representations
have been produced.



132

24 |

3.3.2. Design strategies

As we pointed out iIn [2], In data base design we can
use the terms '"top-down™ and "bottom up™ to characterize
the different strategies proposed in the literature for
conceptual design.

For instance, the refinement of an entity iInto a more
complex structure that inherits its links iIn a conceptual
schema can be considered as a top-down activity, while the
integration of two schemata (or else of a new entity to
a schema) 1i1s a bottom-up activity.

In principle, the designer of a conceptual schema
should be allowed to intermix top-down and bottom-up acti-
vities. As a consequence (while methodologies usually pro-
pose two distinct and clearly specified activities for view
modelling and schema integration) in general the iIntegration
step should be allowed at any level of refinement, iIn order
to carry on the design intermixing view modelling and
schema integration.

Most of the existing methodologies for view integra-
tion do not afford this problem: they assume that the view
modelling process has been concluded so that the schemata
to be iIntegrated are assumed as specified at the final level
of refinement.

Some basic concepts regarding to this aspect can be
found In [17] , where the proposed data model 1is based on
abstraction mechanisms and general guidelines to iIntegrate
user views possibly specified at different levels of ab-
straction are provided.

3.3.3. Order of integration between schemata

This aspect involves two related problems: giving a



133

25 .

general strategy for the entire integration process in order
to produce a global schema from several conceptual schemata
and providing criteria for the choice of the order of ag-
gregation of such schemata.

With regard to the first point, the concept of -integra-
tion tree can be introduced: let"s call CAp,...,C, the schema-
ta to be iIntegrated (user schemata i1n the following) and
CS the global conceptual schema.

The procedurality of the iIntegration process can be
represented by means of a tree according to the following
rules:

- the root represents the global schema CS

- the leafs represent user schemata »---,C

- the intermediate nodes represent partial integrated
schemata

- for each node, its children represent schemata from which
it has been derived by means of an iIntegration step.

Stating the structure of the iIntegration tree corresponds
to provide the general strategy to accouplish the integra-
tion process. Most of the methodologies, for example, agree
in adopting a binary tree because of the iIncreasing com-
plexity of the integration step with respect to the number
of schemata to be integrated.

The proposals iIn [3],[20] can be considered exceptions
to this rule: n-ary integration steps are allowed iIn their
approaches in which however, the types of conflicts and
situations taken into account In the analysis iIs quite
limited.

With respect to the balancing of the integration tree,
two alternative choices have been proposed: respectively a



134

26.

completely balanced [17] and a completely unbalanced binary
tree [7].

In [17] 1t is argued that the balancing of the integra-
tion tree minimizes the number of comparisons between con-
cepts of the schemata that are performed at intermediate
steps in the iIntegration process. In the approach of [7]
the integration of schemata with higher relevance iIs anti-
cipated so to obtain a better convergence and stability iIn
the construction of the partial integrated schema.

3.3.4. Order of -iIntegration between concepts to be merged

This aspect and the next one iIs meaningful when a
procedural!ty has been chosen for the integration of schemata,
and two or more schemata are to be integrated In a new one.
At this stage, 1In order to discipline the explosion of
possible activities, at least two different strategies can
be chosen.

A Tirst class of strategies proceed 1iImposing an
order to classification structures allowed in the model,
and i1ntegrating iIn such order the corresponding 'layers"
of the schemata.

A possible criterion for the choice of the order
should tend to anticipate as soon as possible the most
critical choices, achieving fastly a first convergence of
the design.

We show,for example (see fig. 2),the metaschema of an
Entity Relationship Model [9] enriched with subset and ge-
neralization abstractions for entities (Sub and Gen rela-
tionships) and min and max cardinalities. We assume the
metaschema selfexplanatory, except for symbol:



27.

called underlying attribute,i .e. the attribute of the entity
at the uppdr level iIn the generalization whose values cor-
respond to names of entities at lower level.

Sentence
T-}f
ae 0,1 0,1 A Name
Text Concept | Synonym
O,n
0,1 I
Type
0,1 )
Valué Set |9 Pomain Min card of A
L
0.n //z}{ax card of A
»
1 0,n 0,n . :
V- A Attribute | A-R Relationship
O,n O,n 2,n
“!’>, “‘F> 1,n
1,n
Identifier Entity E-R
1,1 1,n 1,n
0,n Min card of E
O,n Sub
iHaxcard of E

mn_ﬁ‘qa'tiln

0,1 . Underlying attribute

Fig. 9: Entity-Relationship Model Metaschema.

Since iIn such a model the entity concept iIs the most
significant one, i1f this procedurality and this model are
assumed 1t is useful to anticipate entity analysis. In
several methodologiesft 10] ,[15] this criterion is widely
applied.



136

3.3.5. Order of iIntegration between modelling cathegories

A second order that could be chosen with the goal of
finding layers of the schemata to be subsequently integrated,
iIs based on modelling cathegories 1i1.e.:

a. names
b. classification structures
c. iIntegrity constraints.

The i1dea here is that the naming activity is the most
primitive one when a Universe of Discourse is conceptualized
in a schema. As a consequence, when two or more schemata are
integrated, TfTirst of all names of concepts are unified in-
dependently from classification structures and integrity
constraints chosen for modelling there. Subsequently, clas-
sification structures of the concepts with the same name
are analyzed, attempting to unify them according to tran-
sformations that preserve equivalence. Finally, integrity
constraints are analyzed iIn order to check their compati-
bility. Such an approach is chosen in [7]-

4. CONCLUSIONS AND FURTHER RESEARCH

In this paper an attempt was made to develop a general
framework and give a conceptual foundation to the area of
view integration.

Research and practical experience are needed to compare
existing methodologies and integrate the most effective ap-
proaches for single activities.

Furthermore, tools are to be developed that support
the designer 1In suggesting indications and scenarios and
perform transformations. Moreover, the integration of
dynamic aspects has to be afforded; this aspect is practic-



137

ally i1gnored in existing methodologies.

ACKNOWLEDGMENTS

The authors wish to thank Giovanni Vocalelli for useful
discussions and suggestions.

REFERENCES

[1] P. ATZENIl, G. AUSIELLO, C. BATINI, M. MOSCARINI: In-
clusion and equivalence between relational data-

base schemata. Theoretical Computer Science 19,
1982.

[2] P. ATZEN1, C. BATINI, M. LENZERINI, F. VILLANELLI:
INCOD-DT: A System for conceptual Design of Data
and Transactions in the Entity -Relationship Model,
Proc. 2nd Int. Conf. on the Entity Relationship
Approach, Washington, 1981.

[31 S- AL-FEDAGHI, P. SCHEUERMANN: Mapping considerations
in the design of schemas for the relational model.
Techn. Rep. N. 79-05 Northwestern University,
Illinois.

[4] P. BERNSTEIN: Synthetizing third normal form relations
from functional dependencies. ACM Trans, on Data-
base Systems, vol. 1, N. 4, 1976.

[51 M. BILLER: On the equivalence of Data Base Schemes: a
semantic approach to data translation. Information
Systems, Vol. 4, 1979.



30.

[61

L1

[81

[10] R.

[11] B.

[12] P.

[13] V.

[4] s.

138

BEERI, P. BERNSTEIN, N. GOODMAN: A Sophisticate"s
introduction to database normalization theory.
Proc. Conf. on Very Large Data Bases, 1978.

BATINI, M. LENZERINI: A methodology for data schema
integration in the Entity-Relationship Model.
Technical Report R82.08 Istituto di Automatica,
1982.

BATINI, M. LENZERINI, M. MOSCARINI: Views Integra-
tion, In S. Ceri (ed.): Methodology and tools
for data base design. North-Holland 1983.

. CHEN: The Entity Relationship Model: Toward a

Unified View of Data. ACM Trans, on Data Base
Systems, Vol. 1, N. 1, 1976.

EL MASRI, G. WIEDERHOLD: Data model integration
using the structural model. Proc. ACM Sigmod
Int. Conf. Boston, 1979.

KAHN: A Structural Logical Data Base Design Metho-
dology PhD Thesis, University of Michigan, 1979.

KANZIA, H. KLEIN: On the equivalence of databases
in connection with normalization. Proc. Int.
Workshop on Formal Bases for Data Bases,
Toulouse 1979.

LUM et al. 1978: New Orleans Data Base Design Work-
shop. Report Proc. 5th Int. Conf. on Very
Large Data Bases, Rio de Janeiro, 1979.

NAVATHE et al.: Information Modelling tools for
Data Base Design. Data Base Directions,Fort
Lauderdale, 1980.



139

[15] S. NAVATHE, S. GADGIL: A methodology for view integra-

tion iIn logical data base design. Proc. 8 Int.
Conf. on Very Large Data Bases, Mexico City
1082.

[16] Proc. New York Symposium on Database Design, New York
1 978.

[17] T. TEOREY, J. FRY: Design of Database Structures,
Prentice Hall 1982.

[18] D. TZICHRITZIS; P. LOCHOVSKY: Data Models. Prentice
Hall 1982.

[19] M. TARDIEU, D. NANCI, D. PASCOT: Conception d"un
Systeme d "information - construction de la
base de données, Edition d “organization Paris
1979.

[20] S. BING YAO, V. WADDLE, B. HOUSEL: View Modelling and
Integration Using the functional data model.
IEEE Trans, on Software Engineering, Vol. SES8,
N. 6, 1982.






SAS - A SPECIFICATION SUPPORT SYSTEM

Michel LISSANDRE, Pierre LAGIER, Ahmed SKALLI

| GL — Institut de Génié Logiciel — Paris, France

600000

("Copyright IGL, 1982

ABSTRACT

The software crisis has shown the utmost importance of building up any system

development on "good" specifications.

SADT*, the well-known Softech's graphical method has been applied to a
broad spectrum of complex system engineering problems. Perhaps because
of its graphical aspect, the method is not currently fully automated by a tool
which would be at once complete, accessible, portable, and which would

support the variety of ways to practice SADT.

SAS, tool currently developed by IGL aims at becoming such a tool. SAS allows
to create and edit diagrams, to build "kits", sets of diagrams which, by the
bringing of a reader/author cycle procedure into operation, assure quality
to implement this reader/author cycle, to maintain the project files, to per-
form some syntactic and semantic checks, along with quality and productivity

measurements.

The developments of this tool, being of the incremental type, has led to a

first release in February 1983 and will be pursued until 1985.

* SADT is a trademark of Softech, USA & IGL, France.



142

1. BACKGROUND

The cost of software development and maintenance, the impact of analysis
and design errors, and the shortcomings of traditional analysis and design

approaches have brought about a software crisis.

Until recently, software professionals responsible for analysing users' require-
ments and designing computer based systems have had to spend a significant
amount of time creating at once the analysis and design approaches to be
used, the environment in which to bring them into operation, as well as sol-

ving the technical problems at hand.

Sofware engineering is a disciplined and controlled approach that deals with
many key problems associated with software development. The frame-work
is established by a uniform system life cycle that incorporates the standard
procedures and documentation that are necessary for analysis, design, and
implementation activities. Underlying this standardization is the successful
application of a variety of tools and techniques that take advantage of the

principles of structuring.

During the last decade, research has concentrated on techniques for defining,
analysing, and documenting the requirements for systems. Many of these tech-
nigues complement other structured techniques in the system development

life cycle such as structured programming. The objective of structures analysis
is to provide a methodical approach for documenting system requirements

and analysing the integrity of the requirements. The essential pu jose is to
thoroughly evaluate the needs and requirements which the sys em must satisfy,
commonly called problem definition, preceding the actual design and implemen-

tation phases of the system development life cycle.

Manual structured analysis techniques are very effectiv for small problem
definition activities. The magnitude of the creation, mruitenance, an,; review
of large problem definitions has made it practical to '.evelop computer-aided

support tools.



- 143 -

However, the existing tools deserve one or more remarks among the following :

¢ They are dedicated to a particular type of software (process control,
management,...) or to a particular type of specification (performance ana-

lysis, simulation, implementation, static description,...).

¢ They are only used by software professionals.

¢ There is only one way to operate them.

¢ The specifications they generate are difficult to understand and even read,

which makes their control by non-specialists almost impossible.

Of course, these tools may be very useful in their own application domain,
but it is a commonly made mistake to expect them to provide more than what
they can do, or to fulfill a different purpose than the one they have been de-

signed for.

The tool we shall present differs from those mentioned above in the following

points :

¢ It must be easy-to-learn and easy-to-use, thus, non-specialists, and of
course non-software professionals (customers, users, managers,...) will benefit

of its use.

¢ It must cope with various ways of practicing the supported specification
method. Specifying and designing complex systems is a creative process.

Two analysts may then come to similar results by different means, even within
the strict bounds of a rigorous, disciplined method, if the tool does not allow
each analyst to follow his way of thinking, it will not be used, or will be misused

by this analyst, with all the negative consequences.

¢ It must support the analysis and specification of all kinds of systems : software
systems, embedded systems, but also systems where computers play only a
marginal role, or even are completely missing : "P3 systems" (Paper, People,
Procedures). It must allow to specify at various abstraction levels and from

various viewpoints.



144

¢ It must —last but not least —provide a solution to the major problem of any
specification : its legibility by people of various skills. It must allow and make

it easier to communicate the specifications between all the partners involved

in any big project. The specifications produced with this tool must be found

as clear, readable, understandable, checkable and verifiable by the "upstream"
intervening parties (customers, operators and various users, main contractor,...)
as by the "downstream" ones (subcontractor, designers, implementers, mainte-

nance teams,...).

2. SADT

Softech has developed a methodology to deal with these problems, known
as SADT (Structured Analysis and Design Technique) and, together with a
few European companies (1GL being one of those for the French speaking
European and African countries), offers licensing, training, and consulting

assistance in its use.

SADT supplies its manual user with a good answer to the last three points

referred to above.

Today, hundreds of projects and thousands of analysts have used SADT all
over the world. Hence it is very likely that the reader of this paper already
knows SADT. He/she should then skip this chapter where the major concepts
will be briefly described, highlighting the features which will impose specific

functions to a supporting tool.

Since its development, SADT has been presented in various papers [RO”*S-T0],
[ ROSS-77a],[ ROSS-77b], [DICKOVER-77], [CONNOR-80] in which the rea-
der can find additional information. This paper only gives a summary, highly

based upon [ROSS-76] and [CONNOR-80].

SADT is a methodology developed by Douglas T. Ross in 1974 that is useful
for system planning, requirements analysis, and system design. It was created

to provide a rigorous, disciplined approach to achieve understanding of user’s



145

needs prior to providing a design solution. SADT did not evolve from a design
technique, but rather was developed by examining the problems associated

with defining system requirements. It is generally not used for software module
(program) detailed design because SADT does not contain the constructs neces-

sary for program design (sequence, selection, and lIteration).

SADT provides the user, the system analyst, and the system designer with
a diagramming technique to structure tfye products of analysis ana design,
a set of methods to structure the procedures of performing analysis and
design, and a set of management and human factors to structure the overall

process of analysis and design.

There are seven fundamental concepts underlying SADT :

¢ Complex problems are best attacked by building a model which expresses
an in-depth understanding of what the problem is and which is sufficiently

precise to serve as the basis for the problem solution.

¢ Analysis of any problem should be top-down, modular, hierarchic and struc-

tured.

¢ The model should be represented by a diagramming technique which shows

component parts, their interfaces, and how they compose a hierarchic structure.

¢ The model-building technique must represent both things (objects, documents
or data) and happenings (activities performed by men, machines, computers,

software). The model must show both aspects properly related.

¢ The analyst should differentiate as much as practicable between an initial
functional model of functions to be performed and a subsequent design of
model of how those functions will be performed.

¢ Analysis methods must support disciplined, coordinated teamwork.

¢ Ali analysis and design decisions and comments thereon must be in written

form and available for open review by all team members.



146 6.

A natural language is not precise enough to express requirements and system
designs and to ensure cost-effective system development. Natural languages
tend to be verbose, redundant, and subject to interpretation. Therefore, in
order to take advantage of the principles of structuring, it is imperative that
we should employ a graphic technique that focuses on displaying activities
and data, allows the gradual introduction of detail, and is suitable for showing

information in a top-down manner.

Using a graphic technique to explain requirements or a system design involves
developing a model. A model is a representation of reality —an "expression
of one thing we hope to understand in terms of another we think we do under-

stand" [WEINBERG-75].

A SADT model is an organized sequence of diagrams. A high-level overview
diagram represents the whole subject. Each lower-level diagram shows a limi-
ted amount of detail about a well-constrained topic. Further, each lower-level
diagram connects exactly into the model to represent the whole system, thus
preserving the logical relationship of each component to the total system

(See figure 1).

Figure 1 —Hierarchical Structure of SADT Diagrams



147

5ADT analyses two major aspects of each system —its data and its activities.
This is done by aeveloping two complementary models, an activity decomposi-
tion and a data decomposition. The activity decomposition details the happenings
as activity boxes, while showing the things that interrelate them as data arrows.
The data decomposition details the things of the system as data boxes, with

the happenings that interrelate them shown as activity arrows.

Each SADT model consists of diagrams made up of three to six boxes, and
arrows. On an activity diagram within an activity model, the boxes represent

activities, and the arrows represent data. It is just the opposite on data diagrams.

On an activity diagram, a box is named with a verb. The left-hand side of
the box is used to show input data, labelled with a noun, to be transformed
by the activity : the incoming data flow. The right-hand side of the box shows
output data, which is data transformed by the activity that is to be used else-

where, that is, outgoing data flow.

Unlike other diagramming techniques, SADT also describes control and sup-
porting mechanisms. The top of the box is used to show control data, which
are data that constrain the operation of an activity. This information has two
major purposes. First, the distinction between input and control allows the
system analyst or designer to explicitly show data that are not transformed
into output, and therefore, are used to modify the behavior of an activity.
Second, the introduction of control data allows the analyst or designer to
evaluate the cohesiveness and functional representation of all of the boxes
on a diagram. If all relationships were truly input/output, procedural coupling
would be the only degree of strength that could be evaluated [MYERS-75].
Constraint relationships must be shown in order to distinguish between the
degrees of binding and to allow a Qualitative evaluation of the decomposition

to be performed.

On an activity diagram, the bottom of the box is used to show a supporting
mechanism of the activity. That is, if the analyst or system designer wishes
to describe organizations that perform a given activity, the mechanism arrow
is used to identify the department, section, or even the individual that is res-
ponsible for the activity. Another extremely important use of the mechanism

side of the box is for cross-referencing models.



148

An example of a SADT diagram is shown in Figure 2.

I upar | t
CROTOUNENOEL
I0TES 12345678310 CAT0l e —
Needs and
Cesires

Food and

Cff'.hu‘.g { ~N
Purchased
Goads 4

N
HOUSEHOLD Plan and Budget
R o
Weather | Prices
{
\ 4
Farm Supp o5~ GROW
P VECETABLIS i
2
—- Market
! Exper.ence
- (for home use) SELL L./
VECETAELES \Monev
3
NOOE irTTCi: "ISUM&T«
AO RUN FAR'!

Figure 2 —SADT Activity Diagram

The final step in the modeling process is to tie together the activity and the

data portion. Each decomposition is checked to make sure that its use of dual

elements is coherent. This process reduces errors and oversights and assures

consistency in further work.

No one person can completely understand every aspect of a complex system

within the time limits usually imposed. Even if this were possible, it would place

an undesirable demand upon one person. Analysis requires disciplined, coordi-

nated teamwork. Consequently the insights and views of project personnel

must be communicated effectively at every step and level of analysis to insure

that the SADT models reflect the best thinking of the team. Adequacy and



3. SAS

- -

149

guality must be assured by regular, critical review, so that changes and correc-

tions can he made on an incremental evolutionary basis.

Because SADT starts with single black box and proceeds to increasingly de-
tailed diagrams of elements of the problem, documentation becomes available
on a continuous basis. At each step decisions can be seen In context and
challenged while alternative approaches are available. The documentation
provides the basis for decisions and vastly improves the visibility of the pro-

ject to the team and to management.

Cooperative teamwork demands a clear definition of the types or interactions
which should occur between the staff involved. SADT anticipates this need

by establishing titles and functions of appropriate roles.

Throughout a project the draft versions of the diagrams produced are distri-
buted to other project members for review and comment. SADT requires that
each person making comments about a diagram will make them in writing

and submit them to the author of the diagram. Such an approval cycle con-
tinues upward in the organizational structure until the diagrams and eventually

the entire model are officially accepted.

A SADT librarian provides filing, distribution, record-keeping support, and pre-
cise control over the status of the evolving model. Since everything is on re-
cord, future enhancement and system maintenance can refer to previously-

taken decisions.

(from the French " Systeme d'Aide & la Specification")

SAS takes advantage of the solutions brought up by SADT to the problem
mentioned in chapter 1, mainly the communication problem, but provides its

user with a set of additional facilities :
- training aids ;

—computer assisted drawing ;



150

— automatic controls and verification of :
. conformance to 5ADT basic rules,
. coherence of boxes, arrows and labels within a diagram,
. coherence of diagrams within a model,

. coherence of models within a project ;
— program design aids ;
— complexity measurements ;

— productivity measurements ;

SADT, as supported by SAS is the standard SADT as developed by Softech,
and as used since. Its wide usage makes it now possible to consider SADT
as a "standard". Because of this wide usage, SAS has been designed to be
highly portable so that organizations using equipments ranging from top scale
micros (on local networks or not) to big main frames, may benefit from its

use.

The functions SAS performs are — charity begins at home —expressed by

the SADT diagrams shown in Figure 3 to 7.

However, SAS' major points are being discussed in the following paragraphs.

3.1. Creating and editing diagrams

This section deals with the functions represented by the following boxes of

the model :

— Create kits (Diagram AO, box 2)

(more specifically :

. Create a new diagram (Diagram A, box 2)
. Obtain inputs from external authors (Diagram A, box 3)
. Update diagrams (Diagram Al, box 4))

- Criticize kits (diagram AO, box 2)

— Handle models (Diagram AO, box 4)

(more specifically : Supply users with documents (Diagram A4, box 3)



IMTEr?v 1EW NOTES

EXTERNAL PIAC-mr3HMENTS.REACTIONS

MANAGERS A TECHNICAL COMM. DIRECTIVES

Woew > SAS/ZA-0 rim «

ASSIST

n— TEAM OBJECTIVES

ASSIST

S.A.D.T,
USERS

S«A ,PeT. USERS

DIAGRAMS.COMMENTS.REACT IONS

PROJECT DOCUMENTATION

MEASUREMENTS A CHECKS

NUMERO <

TGT



152

CIVTE.Al GU-FTIVFS

4
(MTERYIEN NDTES S
LLIER S FREATE 2;RLCTIVES CUR KJTUSASE E
_ITAUNINS-0MMERCIAL DOCUMENTS KiTE R ~T |
vt RNAC DIAZ.. SOMMENTS.REACT{ONS T )
- 21A5-. TOMIEN e | JpplaTaans 08 REACKIONS / CommeN]s L } DIAGRAME . "LMMINTS. REAST 1ONSy ot
(R i 1
I !
i ' : |
| | | |
]
. l | !
| COMMENTG ON EXTCENAL GIASAMS
‘ - CRITICIZE S e 3 ok
L EXTERNAL LOMMENTS 11§ : hers -
2
;
1
|
|
TR . i INTERFAST.
MAITRS & TFIHNIGAL $Q'R. DIRECTIVES
“ANARTRS L TPOHNGCAL COtm. D RECTIVES e B S — HiTH REGUES]TS Tg PRINJ OR [IDi1 MODELS
| MANAGFRS
!
l RecoubSTS FOR PROJECT DOSUENTS / ANSWERS
' HANDLE PRUTCT DICUMENTAT|ONg 52
| nODELS
el _HODELS
| ISSSEERmRm——— Y
MMEASUREHENT 08 VERIFIZATION REOUEST
MEASURE
S 4 NEASUREMENTS & SHECKSge 53
VERIFY
S

«u'n . SAS/AOQ TITRE * ASSIST S.A.D.T USERS NUMERO i



ROSLINOLX-L3

FiDVNOTES

o Pagls

£ o

f

«DVAINS T TITNLPINERENCE: THE

 J
(T R .13 “REATE ‘
. £20ICH RESULTS L NQTES o L15%E - R ARTANT Y] 18 8
o) , ?
!
CREATE REQUEST FOR A DIAGRAM / REQUESTED DI1AGRAM | S
NEW VEM DIAGRAMS !
D1AGRAMS = |
R |
| l
'
| |
| !
. 0BTAIN EXTERNAL_REACTIONS | AT 0N
4 _EXIERNAL DIACR: \STIQNS (Y _PAPER) : |
£3 NAL_DIACRAMS & REASTIQNS (QN PAPER; g EXTERNAL FXTERNAL DIASRANE |
DOTUMENTS | i :
b 3 | !
| |
{ ! !
i |
|
| | |
} |
| [ .
| | l
w | ]
F4_SUMMENIS ; bl UPDATE e S S
AUTHOR' & WLIRKFILE, D1ACRAMS VERIFIZATIUN REQ.F(Tey
NS ‘]
PRFADERS® 16T / REQUEST FOR Sumw L.
’ l MAKE UP K19
= AUTHOR 'S VORKFILEed A XIT K11 USAGE DIRECTIVES -
eea— 5

>aaD >SAS/A1 IHRE

CREATE

KITS

numero

*

eat



154

C3MINSTRUCTIONS (GIVEN TO LIBRARIAN "7 KIT'7 AUTHOR)
CINEXTERNAL REQUESTS

) CT\REOUESQT FOR A DIAGRAM / REQUESTED Disn

N1AGRAMS NREATED 08 ENTERED STORE

4 31

NHODEL STATE MODIFICATION ORDER

UPDATE
MODEL O0DEL HISTORY LOG

SUPPLY PROJECT POCUMENTATION o S

L USERS W1TH MODELS g ©2
DOCUMENTS T :

P,

SAS/A4 IURE i HANDLE MODELS NUMERO



: al
! !
|
| }
: I
i
|
T o R : - e o
a2y e D AR !
i : - . S
! l !
H
l . : ;
i i i
I i ! g
' ! i
, : ! !
i ! | '
! ) _ o Ao 58 HEGK } | NOSI—
| R DA A KNI NGl mETANY S yzim A4S : i
(A hR 4 1
i SREREN u i = o o N T
t : ' |
: S ——— i
' | i
l | |
l | ‘
I 1
o LI |
L SR RESRIY R | N : o e sace e St
T
i 2l N i‘";‘: QU_ARRCH WniyTT NA%, THANGIT 0 B NOART — L
| 13 b
| 3 ;
| i
i {
i |
] | |
H !
! | '
b aa SN —— < <4 Y - W Ut T 0 “ROS RFERINGITL ! s T 4
i ! 1
i !
' i
]
\ P
| |
'L ANALTIE o
O I £ e e o X o i 0 e S i T, \SigdernduacTiviTy
I OATA ae s
' o
! S
|
|
|
|
|

MEATURE
L S ——MOQEL 10 MLASURS of cOMPLEXITY IPLEX) S SURLS - J

e

wiHD *SAS/AS IHRE * MESURE AND VERIFY NUMERO >

GST



156

The legibility criterion

SADT syntax rules are precise but not very numerous. Therefore the SADT
author has some freedom of action when drawing diagrams. WV\ithin the bounds
set by the rules, he has to strain after the highest readability. To this end,

he may set out boxes, arrows and labels "at best". The method gives guide-
lines for this drawing process, but the author’'s perception —conscious or
unconscious —of the clarity of his diagram and of the understandability of

his message also plays a large part.

SAS does not hinder the author from creating clear diagrams. To a certain
extent, SAS enhances even diagram clarity, from the first step, when the
first draft emerges from the previous sketches, to the last ones, when the
draft evolves with the various comments and revisions. SAS has been de-
signed to meet that purpose, whatever input/ouput device and operating
mode is choses. This had led to establishing a trade-off between the num-
ber of data to input to SAS and the complexity of the algorithms providing

automated drawing.

In fact, this trade-off point moves, while creating a diagram, fro a higher
degree of automation, at the beginning to a lower one later, when re author
tries to enhance the legibility, once the correctness and the completude have
been checked. This move is of course limited in batch input mode, but can
be done iteratively, according to the author's "style" when creating a dia-

gram element after element.

However this feature will depend upon the characteristics of the input/output

devices which will be used with SAS.

These devices may have various graphic resolutions and various interaction

capabilities. They may be choses among the following :

¢ Input devices :
— graphic screen (700 K pixels minimum, with any pointing device :
light pen, "mouse", cross-hair...)
— digitalizer
— semi-graphic screen

— alphanumeric screen



157

¢ Output devices
— graphic screen
— plotter
— semi-graphic screen
— semi-graphic printer

SAS does not allow the output of diagrams on alphanumeric screens or printers,
as the quality of such diagrams would be so poor that the advantages of SADT

would be lost, for the most part.

Operation modes

As mentioned above, SAS can be used in a variety of ways.

¢ Interactive input : will be used in two major circumstances :

— Complete creation or modification of a diagram on a graphic work-

station.

This creation will be done in any order, according to the actual sequence

of thought of the author.

Any logical component of a diagram can be added, modified or suppressed
to the being built diagram by performing the adequate sequence of steps

among the following :

step a : selection of a basic component type (box, arrow, label, ICOM

code).

step b : constitution of a complex component (e.g. : labelled box, arrow

network, ...).

step ¢ : selection of a component (basic or complex), alrea ly existing

in a diagram.

step d : allocation of position parameters to a component (or modifica-

tion of previously allocated ones).

step e : declustering of a complex component into its basic constituants.



158

Ali possible combinations of these steps are allowed : if step ¢ may be
sufficient to delete an item, one may need successively c, a, b, d to

modify an existing component (while increasing its complexity).

As discussed below, step d is not mandatory : when enough information
is provided to SAS, an automatic drawing is displayed. The author has
then the possibility to modify e.g. the geometry of an arrow or the posi-

tion of a label in order to increase the dia gram’s legibility.

— Transfer of a sketch (previously done with paper and pencil) Into

a clear diagram.

In this case, the author knows, from the very start of his/her work session,

all the diagram's components and their relationships.

Consequently, the input of these components will me done by answering

system's prompts Q n batch input mode (see below).

When the whole diagram is entered (and automatically draw ), the author
may, as he would have Gone in the previous case, modify the position

parameters of the diagram's components.

This operation mode is preferably used on a graphic workstation, but
remains possible with only an alphanumeric keyboard. However, in the
latter case, the interaction is somewhat limited as the author will have
to consider the plotter output to determine where space is available

to modify the diagram accordingly.

Modifications of the contents of diagrams entered in the abo e mode
are done as in the first case, by updating their elements, basi. or com-

plex.

¢ Batch input

In this mode, diagrams are previously drawn manually by a SAD author, then

entered by an operator who will merely describe the existing diagram without

trying to modify its layout.



159

The system will issue a set of prompts, desighed such as to minimize both
the risk of omissions and the numbers of keys to press. The dialog uses the
SADT reference language (such as 1C2 meaning "second control of box 2)

and follows the sequence below :

— number of boxes

— position (coarsely defined) of the boxes

— for each box :
- label of the box

- for each output arrow :
. label and attributes (two-ways ? tunneled ?) at origin

.. for each destination :
. label, attributes and destination identity

— for each external input or control arrow :
- label, attributes and origin identity at origin

- for each destination :

.. label, attributes and destination identity

Answers and prompts will be displayed in tabular form : e.g. all data regarding

a given arrow are displayed in the same screen.

Modifications of a diagram entered in batch mode can be made by consulting
and updating the tables filled in while entering the diagram, or as if it had

been entered in interactive mode.

¢ Syntactical_checks

The SADT syntax is checked by SAS : first, while entering a diagram, to deter-
mine whether an element or an answer to a prompt is illegal (e.g. one cannot
specify an arrow joining the input side of a box to the control side of another),
second, when the diagram is declared as complete by its author or the operator,
to determine whether the combination of elements is illegal (e.g. one cannot

specify two arrows with the same label).



- 20 -
160

¢ Use &JDutput

Diagrams entered by one of the above means may then be :

— displayed on a graphic or semi-graphic screen ;
— hard-copied (plotter, screen printer, graphic printer) ;

— transferred between nodes of a local network if the input/output

devices are not the same at each node ;

— syntactically checked within a model in order to verify that the parent-

children relationship is correct (e.g. correctness of the ICOM codes) ;

—collected into a kit for further reading (this involves an update of the

current model) ;

—enriched with comments (from readers) or with reactions (from authors).

Internal form

At this point of the discussion, it is worth noting the following : the diagrams
presented in figures 3to 7 are functional activity diagrams. They represent
what functions SAS has to perform, not how SAS performs them. Consequently,
the same word "diagram" (and "kit" or "model" which are made up by diagram
assemblies) may represent a diagram (or a sketch of a diagram) on paper,

a diagram as internally handled by SAS or the output, printed or displayed.

The internal form in which diagrams are manipulated by SAS is of primary im-
portance : it is this form which will contain all data necessary to redraw a
diagram, whatever the output device selected, but also to check its syntax,
establish various cross-references (e.g. : list all activities controi'ac by a
specific data, list ail diagrams linked together by the "USED AT" fields,...)

and perform some measurements.



161

3.2. Quality assurance functions

This aspect could well be the purpose of another model of SAS, but build with
a different viewpoint. In the model shown, the quality assurance is shared

out among box land box 5of the AO diagram.

Reader-Author cycle

SAS entirely supports the reader-author cycle, main means to ensure quality

when using SADT. This procedure is summarized in Figure 8.

Author Librarian Commente r(s)

i new kit = i z c2ov of kit .

produces { N - =X comments
S i makes copies i) P he "
NSWoERL, | i “Treccrds :'.::'cs/</ on kit
sprcifies | { i it
reacers ! 1 1 | e !
1 | b b4 - i
i ! 3 ) # records times l
i ! _.«,\'~“‘c.../
! | E s H
- |
b sk I
T By ]
i T~ !
H e i 1 1
a re
i ! “ry \IK.\Z\—;- recards times
| -
I | oy~ O !
| | R -~ 8 '
| ! | z X review*
| | ! ‘ | reactions
l — |
k e |
il | @ x| taiks (it
necessary) | X—4———record resuits of talk (Soth) — t neces ary),

| x| | x| Femit

i
lredraws diagrIT
if nec=ssa-y)

13sues new bt

Figure 3 — The SADT Reader/Author Cycle

SAS ensures the team coordination by means of a mailbox which implements
the communication and records the various activities performed. As an example,
for every kit, SAS will record the kit number, the readers' list, the urgency

level, the times at which each reader (or the author) has to comment upon

the kit (or to react to the comments), and the actual times at which it nas

been done.



k sas

162

On SAS configurations allowing authors and readers to directly create, modify,
comment and react at their workstations, all the librarian's functions will be
performed by SAS. On limited configurations, or for users not willing to use
a workstation, an operator will perform the librarian's copying and distributing

jobs.

Measurements

As SAS handles diagrams in an internal form suites to algorithmic treatments,
it becomes easy to obtain quality measurements. Struct iral complexity metrics
allow SAS to rank any diagram from "Too simple" to "Too camplex", thus per-
mitting the project leader to tune the verification effort needec ' v the various
portions of the mode! and possibly the development and quality a' _irance

resources needed for the later phases of the project.

Productivity measurements are directly obtained from the records gathered

at the mail box level and indirectly, from each author's workspace.

STATUS

The development of SAS, which started two years ago is of the incremental
type. That is, a nucleus has been first realized. This nucleus, called release 1,
is a must for any environment or configuration. In addition to this nucleus,
additional releases are being, or will be developed. In theory, as 3.V' confi-
guration can be made up by adding any number of releasee to relec'--' 1, but
In fact, it is very likely that release 1, 2, 3 and may be r* will be re. .ested

by most users in large companies, whereas small organizations may still benefit

of a cheaper and simpler tool, made up by releases 1, 2 and 6.

Release 1

Uses currently a minimal configuration made up by a CALCOMP plotter and
a VT 100 input device, running under VMS on a VAX 11/780. It performs the
funtions represented by boxes 3 and 4 in diagram AZ2. It allows entering dia-
grams (only in batch input mode), storing them, and editing them, as long
as the edition does not modify the number of the boxes. Syntactic controls

are made at the level of the diagram only. The plotter performs the output.



163

Release 2 (Summer 1983)

Will use the same hardware configuration as release 1, but under UNIX *
[UNIX-78] . It will perform the functions represented by boxes 2and 3 in
diagram AO. It will allow a hierarchical storage of all diagrams belonging to
a model, coherence checks between diagrams, and will perform the basic
duties of the librarian : handling diagrams, kits, models, and controlling the

reader-author cycle.

Release 3 (Winter 1983)

Will use a hardware configuration using the VS100 graphic device. It will per-
form the functions represented by boxes 1 & 2 in diagram Al, allowing interac-
tive creation (and modification) of diagrams, whatever the sequence in which

the various diagram elements are given to the system by its user.

Release 4 (Spring 198*0

Will use a configuration where VTIOO's and VSIOOQO's are mixed. Instead of
letting each user organize through UNIX the access to tvs files, it will manage
all projects and author's files. It will completely perform the funci ins repre-

sented by boxes 2 & 3in diagram AO.

Release 5 (Summer 1985)

Will use a database which will allow to perform the functions represented by
the six boxes in diagram A Sand by box 1in diagram AO. In addition, the func-
tions represented by diagram, A 4will be implemented differently, allowing to

establish links with the activities performed later in the software life cycle.

Release 6 (Spring 1985)

Will allow the use of a semi-graphic printer as output device.

Note : Other tools providing extensions to the SADT method are also being
investigated. We hope current research in this area will extend SAS
to include such things as functional simulation, test generc on, sequen-
cing, etc.



5. CONCLUSION

Tool

Builder

Hardware

Input devices

Output devices

Interactive creation
& edition

Batch input

Coherence checks

Librarian functions

Quality
Measurements

164

SAS is a support tool which, if compared with other tools ([SARINA-79J ,

[SMITH-81] ), which also support SADT, has a set of characteristics making

it particularly

SAS

IGL

independent

UNIX

VT100 4VS100

Plotter CALCOMP,
Hard Copy

Yes

Yes

Yes

Yes

Yes

useful. Figure 9 summarizes these characteristics.

------------------------------ -1

Grumman

Independent

Tektronix

Adl<./1015

Plotter CALCOMP,
Hard Copy

Yes

Yes

No

AUTOIDEF-O

Softech Lat.

CYBER

CYBERNET NOS

Tektronix

i»01 <|’/A..H5

Plotter CALCOMP,
Hard Copy

Yes

Yes

No

CATHERINE

Nokia, Softech

PDP 11

UNIX

Alphanumeric

Graphic printer
(DEC)

No

No

Figure 9 — Characteristics Summary

PASILA

Triumph-Adler

TA

Alphanumeric

Graphic printer
Plotter

Yes

Yes

Yes

No



BARINA-79

CONNOR-80

DICKOVER-77

MYERS-75

ROSS-76

ROSS-77a

ROSS-77b

SMITH-81

UNIX-78

WEINBERG-75

165

REFERENCES

Howard EARINA, W. COBEY, J. ROSENBAUM, Stephanie WHITE
"Automated Software Design"
Proceedings of IEEE'S third COMPSAC, November 6-8, 1979.

Michael F. CONNOR

"Structured Analysis and Design Technique —SADT"
Portfolio 32.0i».C2 —System Development Management
Pennsauken NJ : Auerbach Publishers, 1980.

Melvin E. DICKOVER, Clement L. Me GOWAN, Douglas T. ROSS
"Software Design Using SADT"

Proceedings of the 1977 Annual Conference of the ACM,
Seattle, Washington, October 16-19, 1977, pp. 125-133.

Gienford J. MYERS
"Related Software through Composite Design"
New York, NY : Van Nostrand Reinhold Co, 1975, p. 30.

Douglas T. ROSS, John W. BRACKETT
"An Approach to Structured Analysis"
Computer Decisions (9), Sept. 1976, pp. 40-44.

Douglas T. ROSS, Kenneth E. SCHOMAN Jr
"Structured Analysis for Requirements Definition"
IEEE Transactions on Sofware Engineering 3(1), Jan. 1977, pp. 6-15.

Douglas T. ROSS
"Structured Analysis (SA) : A Language for Communicating Ideas"
IEEE Transactions on Software Engineering 3(1), Jan. 1977, pp. 16-34.

Daniel G. SMITH
"AUTOIDEF-O : A New Tool for Function Modeling"
Softech Document Number TP 125 - Sept, 1981.

(Several authors)
Special Issue on UNIX Time-Sharing System
BELL System Technical Journal 57(6), July-Aug. 1978, pp. 1897-2313.

Gerald M. WEINBERG
"An Introduction to General Systems Thinking"
New York, NY : John Wiley & Sons, 1975, p. 28.






THE USE OF PETRI NETS IN REQUIREMENTS
AND FUNCTIONAL SPECIFICATION

M. Maiocchi - Isticuto di Cibernetica di Milano
Etnoteam S.p.A. - Milano

1. Introduction

In the recent years different approaches have been carried on
with the purpose of reducing the cost and iIncreasing the qua-
lity of the software products; these methods are generally re
lated to operating rules which guide the programmers in obtai
ning standard programs; often automatic tools are provided,
both for cost reduction purposes and as a constraint iIn avoi-
ding deviations from the rules. While a certain number of pro
gramming methodologies has been set up, which are currently
widely used, the number of analysis methodologies is not so
high, and more and more for requirements definition methods.

In particular, we can seean increasing gap between the system
programmer and the applicative programmer know how, in particu
lar for business oriented programs: this fact is probably due
to the different production environment of the two kinds of
people, the former being close to software engineers, the lat-
ter to customers which are not skilled In computers. More, whil*
the system programmers are surrounded by an organizational frame
due to the tradition of this kind of development, the business
oriented programmers have to deal with fast work group set up,
no tradition, no pre-existent development organization.

The paper will present a method based on the use of the Petri
Netsfor driving the requirements and functional specification,
and for allowing a reliable communication with the customer iIn
order to avoid ambiguities on the purposes and on the functions
of the system to be developed.

The method has been largely experienced: since 1977 more than
ten projects have been successfully carried out (for which 1is
known by the author: eight of them have been reviewed directly
by the author), sizing about 3-7 man years each.



168

The method is located iIn a software production cycle which
is shown iIn fig. 1:

/ mcr
m D:.Fm DETQ\ T lxé‘z l
l Chedist s | ed
|
e e
ﬁiﬂ | e
o | | ]
o t | |
\ |
Qm%l_Al__A__ _L_A___._
|
Pas _[lz_ = u :‘Z e BN N I N =L .
e e

Fig.4

. starting from a document containing the Committer Needs, a
phase of Requirements Definition produces a document of Re-
quirements Specification, which i1s i1nput to the

. phase of Functions Definition, which produces a document of
Functional Specification containing also a high level descri
ption of the architecture of the product;

. following the FS document, 1t is possible to perform the De-

sign phase, which provides the detailed Design Specification,
followed by

. the Implementation, which provides the sw product andthe do-
cument Product Description, which is a refinement and comple
tion of the DS, which takes iInto account the implementation
details;

. concurrently with the Design and the Implementation phases,
the Test Planning and Preparation is performed, which produ-
ces, starting from the FS, the Checklists (list of the items
to be controlled), the Tests Specification (which can be con
sidered as the FS for the tests) and the Tests Library (that
iIs the programs and the data to be used for controlling the
product) ;

. after the completion of the tests and of the product, the Qua-
lity Control phase produces a Quality Control Report, through
a controlled tests execution, referring about the quantity of
the testing performed and about the resulting measured quality
of the product.



169

After the release of the first version of the product, each
of i1ts parts (code, source, documents, etc.) is "frozen" and
the maintenance or the continuation follows repeating the
above phases on physically different pieces: a specific main
tenance phase i1s not recognized.

Documentation, Planning and Review are other activities always
present during each phase, but which cannot be assumed as spe-
cific phases.

In the following paragraphs we will present and discuss the
various methods set up, integrated and experienced iIn each acti
vity.

2. PURPOSES OF THE METHOD
2.1 Requirements definition

We consider "requirements'” of a software system the desired
behavior of the complete human and machine environment
in which the product will run.

For this reason, we need the capability of describing iIn a
simple, unambiguous way all the human and automatic proce-
dures we want In a specific environment.

Such procedures can be characterized by:

. sequentiality or concurrency iIn the time;

. causal dependency or iIndependency;

. starting of activities connected to the presence of condj.
tion status, resources;

. production, occupation, consumption of resources;

. production of conditions, status.

2.2 Functions definition

The activity of functions definition has the purpose of pro
viding a complete indication of the functions supported by
the product, and of the 1anguages™ for communicating with 1iIt:

. launch procedures

. commands

. Input data and relative syntax

. ouput results and relative syntax
. error messages

. video masks

. etc.

Furthermore, the high level architecture of the product must
be defined, in order to provide any information suitable for
constructing development plans, and for evaluating the cost
for the implementation. By “high level architecture® we mean
the specification of the main building modules of the product,
of their functional roles within the product, and a complete

specification of the interfaces between the modules themselves

and with the host system.



170

No details are given on the internal subcomponents: these
details are given in the Design Specification.

2.3 Customer/supplier Communication

One of the main problems iIn the definition of business
oriented systems arises from the ambiguity iIn the communi
cation betwen the customer requiring the system and the
supplier which must build up 1t; the committer is general

ly unskilled in computers, does"nt know exactly what he want,
is not conscious of the problems (and the cost) due to changes
in specifications during the development, under-evaluates the
organizational role of a computer and the difficulties iIn
changing his own organization; the committee is never share
that the system described in the proposed documents has been
deeply and correctly examined and understood.

The resulting development activity suffers of changes iIn the
specifications, of discoveries of new items to be examined,
of unsactisfaction iIn performances and iIn the ease of use of
the fTinal product: that is high costs and low quality.

The method based on the Petri nets addresses to ''sharpen' the
communication between committer and committee, making it re-
liable, unambiguous and allowing early reviews.

2.4 The development groups

For historical reason, the programmers devoted to business
application use mainly the programming Language COBOL, and
are educated through professional courses, avoiding accura
tely all the basic knowledges of the computer science (they
don"t know at all terms as 'predicates calculus™, 'recursion”
"concurrency” and so on) ; this fact can produce rejection of
new methods which could appear as too formal, too abstract,
too Impositive; the change of this condition cannot be pro-
vided within a project or with some kind of training: it 1is
required a cultural growth which imposes long periods; the
method based on the Petri nets is particularly suitable for
the environment depicted above, because:

. It has a "gentle face', which describes the object the pro
grammer deal to, in terms of the real objects, but allow
slippering toward abstraction;

. It can be used partially, obtaining advantages proportioned
to the partial use (the completely formal methods requires
the complete carrying out of the method for obtaing the re
suit: a partial application gives generally no results at
all) .



171

3. THE METHOD
3.1 Petri Nets

A Petri net is a "bipartite”™ graph in which two kinds of
nodes are recognizable: places and transitions. Oriented
arcs connect the two kinds of nodes, so that no twoplaces
are connected together and no two transitions are connec

ted together. Fig. 2 represents a Petri net in which two
transitions occur, on with two places iIn input and with

one place iIn output, one with

one place in i1nput (shared with

the previous transition) and

with two places iIn output.

The Petri nets can be interpre

ted as the description of a pro

cess In which events can occur

depending on a set of conditions,

determining other conditions: in

particular, each place can be 1iIn

terpreted as a resource and each

transition can be iInterpreted as

an activity: each activity can

take place only when their irput

resources are present, and 1its

happening produces the output re

sorces, consuming the iInput ones )

(Fig. 3 . Fig-

By the way, the Petri nets can be

used 1In representing production

processes, and iIn particular, pro

grams connected together iIn a pro

cedure. ___PETRY NET INTERPR’ETATION__‘
The presence of a resource In a
net iIs represented through a mark
in a place (indicated with a dot)
(Fig. 4 and the temporal evolu- 4 2
tion of a net can be represented g ‘\ﬁéh"*ﬁ
through the flowing of the dots ’
through the net itself: when an E
activity "fires" the marks are \
drawn from the input and a mark
iIs put on each output place. For
example, the net of Fig. 4 repre
sent a process iIn a medical ana- Fig. ~
lysis laboratory: when the rece-

ptions desk is free and an appli-

cant iIs present, the acceptance

Yesources




172

operation can take place, produ
cing a test request form which,
together with the presence of a
doctor and of the patient, can
fire the drawing, producing a
sample and an updating of the
test request form; the reporting
activity must wait for the pro-
duction of the result through
the analysis activity, producing
then the final report.

3.2 Petri Nets Graphical Modification

In order to make more apt the Petri
nets to our purposes, two kinds

of graphical changes have been
introduced: the former, an highly
evocative representation; the lat
ter, a set of summarizing forms
for common situations.

In Fig. 5 1s represented an evoca
tive net,in which, each resource
has been replaced with a graphical

_ PETRI NET . NOTATION

Pd\'ant dodor SEch*Qr\i
A g? E?S?
ACCETTANCE
ARDP
DRAVING

REPORTING

re ?anS

PETR| NET: EYOLUTION

- _—_—

receplion
aecx

a ‘\dP\i(_ahT

accefance
doctor pcdl".nT

fesl

Te I(\*

m

draw'm%

" ‘Po\ojf-A

S t\-\p\(
Test request
m™m

am\\%sls

result

rtporTina

rLborT

Fig. 4

symbol representing

the problem entity in
a mnemonic form, and
each transition has
been represented as a
box containing the de-
scription of the per-
formed transformation:
the net represents more
concisely the work of
the previous medical
analysis laboratory, 1iIn
wich acceptance and dra
wing phases have been
put together.

The second kind of modi
fication refers to the
capability of represen
ting parallel or alter
nate feeding of the
transitions or genera-
tion of the resources:
for example,



___PETRI NETS:

A

5

B8 C

e
¥
SEat

A Produ(ls

B aut C via x

1

NOTATION

N

A P\'oduces
BMtl C via,
X amdy

Aord P'odu(QS

C\no\K

A aud B produces
via, X OMA 7’

Fig.

shows the constructions of the

first form of Fig.

traditional

6 through

Petri nets: no mea

ning can be connected to the

73

the first form of Fig. 6

iIs useful for representing
the operations on a file A
which can alternatively
produce a file B or an er-
ror message C: the second
form can represent two pro
grams x and y accessing si-
multaneously a file A; and
SO on.

The 1llustrated extensions
of the graphical form are
not extensions of the Petri
nets capabilities: iIn fact
each new form can be explo
ded 1nto traditional Petri
nets, 1In which,nevertheless,
it 1s difficult to attach a
meaning In term of problem
entities to each net element;
for instance, Fig. 7

resource and to the transitions
X and © .
The Fig. 8 shows another exten

Fig. 6

sion, 1In which it
IS possible iIntui
vely to recognize
that the resorces,
through the transi
tion x, one of the
two resources D or

the couple B and C.



174

3.3 The method

The method is summarized iIn Fig. 9, through a Petri net:

0.

a First step defines the complete user environment in
which the product must be inserted as a single Petri
net, constituted by a single transition, with
evidence to the resources or to the conditions signi-
ficant as i1nput and output of the whole activity;

the net i1s then analized following a table called of

"local checks"™ (see later), which sets questions to the

analyst about the kinds of connections between the tran
sition and the resources, In order to verify the adequacy
of the net to the iIntentions of the analyst itself;

then the net i1s joined to a verbal description, iIn which
the significant attributes of the resources are described
(e.g., In a driven way, the accesses to the files, the
form of the commands, the kind and the number of some
sheets, the skill of the involved people, etc.), and the
performed activity iIs defined (what i1s performed, not how);

in the following step, a linguistic check i1s carried on,
in which all the parts of the language are examined iIn or
der to avoid ambiguities (unnecessary attributes, impreci
se articles, undefined numbers, iImpersonal forms, etc.);

then the net is exploded in another one, in which more
than a transition is defined (generally up to 6 - 7);

the exploded net is controlled through the so called 'con
textual checks"™ table (see later), which sets questions
about the possible ways In which activities can occur (con
currently, interleaved, sequential, mutually exclusive,
etc.);

after the check, the net iIs anew verbally described, refer
ring to its dynamical behavior, whithout regard on the re
source or the activities;

the verbal description is then checked;

then each transition is insulated from the context, and
the process is iterated until the transitions can be consi
dered elementary , from the point of view of the executor
(that 1s, when a transition is operated by the some human
or automatic interpreter, or by a complex not involved in
the area to be changed by the product).

Let we see the complete cycle on a small example (taken from
a real product and extremely simplified for example purposes)
for the functional specification of a 'cash and carry system



PN
s / - apamic nel behaviour
%5 H — concurrences
- semaphores

l e . © Yo~
PEsCOIPTION o‘z— D) &—éﬁ@ BPLSION l
~>0* 5

3.4 An example

3.4.0 Top level procedure description.

In this step the complete procedure is represented as
a unique transition, and the resources involved are
indicated In a concise way, collecting together the re
sources with some similarity of use or of nature (for
instance, all the disk files are iIndicated as an unique
resource). Fig. 10 shows an example of a system of ter
minals cash and carry which can operate concurrently
performing invoicing operations: the complete procedure

IS seen as a unique transition, which has as i1nput resou
rces:

. the unactive system, which will be activated through
. initialization commands;

. execution commands, which allow the invoicing opera-

tions from the single different terminals, accessing
a set of

. Files, containing informations on the customers,

on
the products, etc.



176

The output resources are:
. the printed iInvoices;

. the terminal system,
which will be returned
in a unactive state;

. the files, which will
be released after the
operations, 1In an up-
date condition (the
symbol "+" associated
to the arc indicates
an updating operation).

3.4.2 Local check

The table shown in Fig. 11 collects each

in respect of a single
transition and the re-
lative i1nput or output
resources; by this ta-
ble we can examine the
correctness of the net
of Fig. 10:

The i1nvoicing system
(seen as a big black
box) requires joined
feeding of the unacti
ve system, of Initia-
lization commands,
of execution commands
and of the proper fi
les (until now not
yet completely spéci,
fied) and produces pa
rallely the possibly
up dated files, the
invoices and the una
ctive system (after
the daily operation
completion).

It seems to be correct,
so that we can carry
on the activity.

PROCEDURE TOP LEVEL

UY\AJ\VQ \mhq\ilq*u'ou Execuhiog
System Cowmwands Lo uucauds

o
Ly

v

\ CASH % CARRY
\ INVOLCING

CHECKS TABLE

possible situation

A 3
x_{_/%;

X 1. ?QYG“Q\ %Ch(ro[ho“

. joiw.cl {lldfv\ Q

. Alfernadive aenera-

T ;
A
A B 4
x A £
* 5
/:«
A B
A e.

avallel {QtA( ng

JO(M aene ration

tiom (quf)

A]‘f’erm‘\'(vg {'udin%
(Q.u.‘\')

A\fG’.Y no{“'lL %u(n-
tiowm (vd )

A\Tar nalive {(ulm%
(vd \

/‘// R

SYSTEH /////

Fig.



177

1
3.4.3 Verbal description

The step requires the construction of a descriptive page
for the completion of a PSPN module ¢ ), In which:

. each resource 1is described iIn terms of i1ts components
and of their meaning in terms of problem entities;

. the transformation of the transition is specified In a
summarized fopm.

So, we will define here the characteristics of the system,
of the file (@t this point, a rough classification will be
adeguate), of the generic purposes of the commands, and so
on, and the functions to be performed.

The main purposé of the description iIs to define concisely
but iIn a not ambiguous way both the resources and the tran
sformations of the net; therefore, we require that each re
source 1Is described iIn respect of:

. the kind of the physical support involved (disk, tape,
keyboard, etc.);

. the physical characteristics of the resource (when disk:
indexed, sequential, key format, size, ect.);

. the syntactical form (allowed characters and information

sequences, when from keyboard; record layout when on disk,
etc.);

. the synchronization needs (generally on disk resources)
and the relative locking level (volume, physical record,
or intermediate logical levels);

. the characteristics of the plural names, that is elements
number (defined or undefined, and, i1f defined, maximum and
minimum) and the predicate which define the set to which
the elements belong.

The description of the transformation can be performed (when
the cultural environment allows i1t)by means of a language

f

(® The PSPN documentation technique requires the construe
tion of the documents as a set of PSPN modules, each
of them constituted by a couple of pages, iIn which the
left one contains highly summarizing schemata, drawings
or slogans, and the right one contains an indented
verbal detailed explanation.



178

which mixes natural language NON -PRocCOYMAL. - specs

to the construct shown iIn ]

Fig. 12, in a fashion, as A NOM-SEG)uemcE

possible non-procedural: the

constructs refer to: ira.vis™.

. a set of operations to be jravis.
performed, whithout spéci, " f.y-
fying their sequéntiation;

. sequences of operations 1 SEaufcock

(sometimes it iIs the best
way to specify transforma
tions);

. conditional operations
(when connected with the
first construct they are
quite similar to the 'guar
ded commands™ of Dijkstra);

. operations on "plurals™.

Wnsf. y

1 CQUrITtOHAL

iF GAA WGK
Aa*
tuiif

4-  MAN YPOLDWITSS

V X JE@ do
tonsf. d

Fig. 12

3.4.4 Linguistic checks

The right part of a PSPN module, that is the linguistic
description of the net, must be controlled too: the con-
trols can be considered as very tedious, but they reveal
very useful 1In avoiding the specifications ambiguity; they
are referred to the different parts of the speech:

. article: we must verify and must be able to state the
reason for their absence, definiteness or i1ndefiniteness

. houn: each plural or collective must be specified by a
set of attributes for the iIndividuation of the set to
which the intended elements belong;

. adjective/adverb: they must be unavoidable;

e vetb: subject and (for transitive verbs) object must be
always expressed or iIn any case not ambiguous;



179

. pronoun: their reference must

be clear;

. conjunction: they must be properly used; 1iIn particular,
the or conjunction must be specified for representing
an "aut" or a "vel" conjunction.

3.4.5 Petri net refinement

The next step consist of the refinement of the previous
net, exploding the initial unique transition into a net 1iIn
which more transitions appear, corresponding to different
activity phases: the

example of Fig. 10 will i AL
be developed as shown iIn
Fig. 13, i1n which three
different activities are
individuated: y

CO“\MQ'\A
. the first one is the /
initialization of the /

INITLALI ZA-
system, which allows / TION

to obtain active ter / l
Y

U v\au_’*nv(
S\{sfim

minals, able to accept

commands; i, Ly
. the second one 1is the System u

reconfiguration of the

allowing the
activation of
or the deacti-

Comma. A

e

ey

new ter

{OPF RATIONS

operation with the ac-
tive terminals, for the

- 7 _ i —

i ’ i '\ [RECO)JF\QQ
vation of active termi \ RATION
nals;

. the third one 1is the

LN

/

RESULTS

invoicing purposes.

Fig- 13

3.4.6 Verification of the correctness of the net

The net describes completely the synchronization among the
various activities of the procedure and we are then able to
check the correctness of the description iIn respect of the
problem requirements. In particular, the net Imposes a pre-
cise description of the above synchronization aspects, SO
that possible lacks in the requirements will be recognized
in the net as behaviour choices which must be analyzed for
approvation.

The control activity is carried on through both the check
table n.1 and the table of Fig. 14, in which more complete
topological situations are catalogued.



3.80

CHECKS TAE>L6 u. 2

For the local checks:

. the 1nitialization L Sone cktcx
reques the SyStenJ IHViliit" "die. Oftculiov-I
unactive and some L
nitialization com- of y Boec X ?
mand (correct), and
generates the active /
system (correct); 2. 2 y How weni| dijtics

. the reconfiguration \\\/// <ce. alloned ?
requires the active
system and some re- :
configuration com- A
mand provided through //‘i:k_ x anfi - Gmmof
terminal (correct), 3. X A Y fun  COHCU»-re.HI
but cannot produce \\_J// Com.ft infer-

simoultaneously the
active and the unac-

tive system as de- XOH GQn m\
scribed: the net

must be changed by 4 A Y MKt §?
introducing an al- SAHCh . ni- A n
ternative generation; is Httded ?
the encountered er-
ror is evidently due A &CPE A ar4ft b
to a mistake done by u v OCS MBI avery ?
the designer, and no /i I' y '
lacks in requirements Q'H AL
can be observed at P
this point; A

_ the operations requi. H'st a S
re the active system 6. [/ __i fie C
and the files and so- ;7 1 ‘¢ htucHieis tonard r?
me operation command
provided through the u V 1

terminals for obtail-

ning the correct iIn-

voices (correct), and

generate the results

(the printed 1invoices) - M
updating the files and
releasing the active
system (correct);

the active system can feed alternatively the reconfigura
tion activity or the operations activity’ as shown in the
net ; we cannot decide when the description Is or not cor-
rect about this point, but a choice has been taken iIn the
net drawing: a lack in the requirements made 11t possible;
in fact , 1t iIs not acceptable that the activation of a
new terminal requires the stop of the operation on other

terminals: the net must be changed with a parallel feeding
situation.



EXAMPLE : COIR.E CT>0*J
For the contextual checks:

M
referring to the pre- &Ph“ Bomwanh
vious example, as up-
dated in Fig. 15 fol- // //
lowing the indications /
of the performed con- / INITIALIZA-
trols, we must verify a kel
and declare: < / l

. limits iIn iterating
the operations acti_
vity (in the case,
none) ;

. limits iIn 1i1terating
the reconfiguration
activity (in the ca
se, none);

. capability of acces-
sing concurrently the
active system (in
this case, the capa-
bility of turning off
a terminal currently
used, and some conse
guent protection about

RELON FlGU-
RATION

OPERATIONS

o ;

. optionality of the 3
resources: all are man Fig. 45
datory.

Another not yet described check to be performed refers to
the net complexity:

it 1s very hard to keep under control a net in which many
resources and transitions appear, so that it Is very impor
tant that the net explosion gives a small net at each step;
this can be generally obtained through a reduced explosion
of the resources (in the example, the unique splitted resour
ce 1s the system, as "active" or "unactive'™): for example,
in the further developments, i1t will be necessary to distin
guish the various involved files; probably, 1t will be use-
ful to divide them first as anagraphic-read-only files and
updated-work-files, and then, after other refinements, to
individuate the specific resources such as the anagraphic-
customer-file, the invoices-work-file, etc.

3.4.7 Net description

The net i1s described In the PSPN form, as performed in the
step 3, showing the dynamic behavior, without defining the
details on the resources or on the single transitions, which
will be treated later.



182

3.4.8 Linguistic check
The activity is carried on as in the step 4.

3.4.1 Insulation

The specification of the procedure continues insulating
each transition of the previous refinement together with
the needed resources, cutting any not necessary arc. For
example, the transition

operations of Fig. 15 TOP Down RePIlutHEUT

can be insulated and )

then refined as iIn Fig.

16 , In which two Kkinds \

of activities are reco- //’

gnizable . 7

The refinement iIs check //

ed and completed with a

linguistic description

as described In the abo -

ve steps. 4

(Note, iIn the example, / o
that the resource fTiles /A;;;ﬁ" Involce
must be accessed concur sy 2 /(///1 S
rently and must be then Y [

semaphorized; because
each i1nvoice will occupy
more than one record of
an indexed invoice-file,
it will be needed some
semaphorization mechanism
at the level of the iInvo
ice number, for avoiding
concurrent access on the
same 1invoice).

INYOICE
CREATION

INVOICE
CcoPY

INVOICE INVoice

PRINTOUT

The refinements go on until Fig.
the program level 1is reached,
that is until the transitions defined refer to a single pro

____ EXAMPLE gram.
There 1s no

IMVOtCf copy. way to defi.
RESOURCES : ne in a pre

. INVOicr HUME f = I»<” TTY-icWa* cise fashion
HEIEEtr - diss what we mean
rufel. MY as —program,

because no .

Invoice ! Oit*." sewt""nore. mits can be
number oA \o™.Vo\ effectively
l Vi vorel imposed to the
TR top down deve
oPyY ftAMSPPg.H ATIOP m lﬁg?gg? Wge\égr:
- \FINv-NUM try to give our
i “"definition" of
gh "program level™
. iP IM*WH buséul and of '‘procedu
re" :
| «*



183

a procedure 1is composed of a set of programs for which the
control sequence (or the set of control sequences) cannot be
completely fixed: we can think to different executors (machi
nes or men) working concurrently or with some synchronization;
a program iIs a set of operations for which the execution se-
quences can be completely deterministic.

The definitions get a reason by the need of different design
methods: while programming methodologies such as Jackson's,
Warnierls or PHOS can be applied to programs (in the sense
expressed above), the shown methodology can cover also the
upper levels of the procedures.

Fig. 17 shows a rough example for a program specification.

3.5 Operation timing and throughput of the whole system

The definition of the requirements of a system can be carried
out exactly following the above method, iInserting in the de
scription all the involved activities, including the human
ones.

We will show a sketch of a requirement description for a wa-
rehouse management, illustrating the capability of the method
of forecasting the general throughput of the system, with sug-
gestions for alternative organization.

Fig. 18 shows a possible organization:

the ware reception activity starts with a man devoted to this
work, the arriving ware and an order list; the man ckecks

the arrived ware on the list, classifying it into three clas
ses: the ordered but not arrived is prepared for new ordering
(to be noted that scarce details are provided on this activity,

ordered ndf
arnved ware
2 (oflional)
d&r@ E‘dﬂh“SaU
\ R min
VIR T wate (opliend) /i - Watehouse.
aueéDT&j
rdered ware
Tty é‘?‘m‘}m ware [ _\
vate (cpliona!) man  \ading
Yeceston man (bandmade
(randmade) i ferminal)
\v—m
———tran ——>
//:;&me ware Egi?
felepone. deasion selechon
NC e




184

not a goal of the current description); the ordered and
arrived ware i1s i1nput to the loading activity (which can

not start for the absence of the man) ; the unordered arrived
ware produces a call for a decision to the proper employee;
the decision allows the ware selection for refusing a part
of the ware, accepting a part and providing the resource
"man" for the loading activity; at this point the man is
anew available for the reception.

To be noted the direct connection providing the man to the
loading when no decision are requested.

The complete net throughput can be computed as shown the
following table:

MEAN HUMAN % OF THE WEIGHTED
ACTIVITY TIME SPENT OCCURRENCE TIME
Reception 45 - 100 45 -
Call for a . -
decision 45 + 5 15 - 12
Ware selection 30" 15 c? 5°
Loading 2h 100 2h
TOTAL TIME - 3h

The time for call for a decision has been evaluated suppo-
sing 5 minutes for calling the responsable and -45"for obta
ining decisions on the whole arrived ware,weighting the
percentage of the occurrences as the 15% of unordered ware;
a larger fix time for reaching a far telephone would evi-
dentiate logistic problems.

At this point we can estimate the frequence of the invoca-
tion of the whole activity, for planning the proper number
of employees: fT.i., 2 arrivals In a day requires about 6
hours,that is 1 man , but the last arrival must occur not
later than iIn the early afternoon; 3 men can operate simulta
neously allowing 6 arrivals i1n a day.



A different organization can be throught,

185

oxder @ Exgr'\r_»a&)
N\ muy
odered arvved

Vite e e (i)

man 4 R\ nd ordered
3
Do )

Yecesion

Nl

(o) @A\—

/ages

pone. deasion

amved ware
(cptional)

(rardwads)

r——&JSDD —d

as shown
odered nsf
arnved ware
(options!)
/‘ 1 loaded

Xcepled

\vgre: f
man 2 adng

(handmade

teraunal )

Tefused
Yale
Hn | Ware
(hand made)
Fio. 12

which splits the activity

in Fig.19

into two steps performed by the

resources man 1 and man 2, with the following table:

ACTIVITY

Reception

Call
Man 1
Selection

TOT. 1

Loading
Man 2

TOT. 2

MEAN HUMAN
TIME SPENT

45-

45" + 51Fix
%.

2h

% OF THE WEIGHTED
OCCURIENCE TIME
100 45 -
15 ~ 12°
15 - 5
~ 1h
100 2h

2h



186

In this case, 7 arrival 1In a day can be carried on with three
men, the first operating as resource man 1 and the remainder

operating as resource man 2 and, furthermore, the latest arri
val can be delayed; the net shows clearly the possible concur
rencies among the various activities, allowing the choice of
the best solution and a quantitative evaluation of the opera-
tional advantages iIn the use of the computers.

3.6 Petri nets, functional specification and design

A good functional specification should be completely independent
by the design of the system, allowing then the tailoring of the
architectural choices on the specific hardware or software;
nevertheless, a sketch of the proposed architecture must be
introduced in the document for planning purposes.

The shown method, i1nvolving "complex' but not "difficult” pro
blems can be considered simultaneonsly the definition of the
functional architecture of the system and the definition of the
physical structure of the implementation, as can be derived by
the operations which reach the description of the programs.

This fact is emphasized in the applications which are developed
as a set of "transactional routines”™ (generally reentrant) ma
naged by a specific added system monitor, whose purposes are

the best suspend/restart operation for each terminal, the re-
sources sharing, etc.

The method depicted above can be used until the refinements
reach the level 1In which all the video 'masks'™ have been described,

being each transition of the net of that level a "transactional
routine’.

Let we se the example iIn Fig. 20

marm y
menu  seledon

/

with with

rig,- 20



187

The examples pathial, refers to a (simplified) package for
office autojaation; initially a "main menu" 1is provided to
the user, which select a specific command. An "E" indicates
the end of the activity; a correct command activates the se
lected operation; an errpneous selection provides a message,
allowing a new selection.

When the option "C 1is selected, the 'copy menu" takes place,
allowing the iIntroduction of the proper data: uncorrect data
induce error message and the retry, correct data induce the
operation and the return to the 'copy menu'”, the "end" sele-
ction returns to the main menu.

The net shows clearly the structure of the dialogs and the
architecture of the functions (instead of a model based on
finite state automata, typical for this kind of applications,
but not expressive for the operational aspects), but i1s also
the physical architecture: the main characteristics of the

"transactiona routines'" can be sommarized in a table such as
the following:

TRANSACTIONAL Starting events next output next
ROUTINE Mask routine mask
A main E exit msg
menu
C D copy
menu
N C - Create
menu
U B - update
menu
other A err.msg main
menu
i_ ______ *_** oo o ® e - - - - o eoe
D copy end A - main
menu menu
correct D OK msg copy
menu
errors D err msg copy

menu



188

4. Acknowledgements

The method 1is origined from the contribution of many people,
amoug which particular thanks are due to G. Castelli, A.Cazziol,
G. Degli Antoni, G. Haus ,R.Polillc, B.Zonta.

It has been applied iIn many medium sized projects by M._Mairocchi
and A. Cazziol of the Etnoteam S.p.A., by 0. Sticchi of the
TEMA S.p.A., by Bianchi of Parmalat and many others.

Requirements and functional specifications iIn the above expe
riences war related to systems devoted to medical analysis
laboratories management, cash and carry invoicing procedures,
book-keeping procedures, ware distribution companies management,
budget procedures, management and billing for water and gas di-
stribution in government owned companiers, and sSo on.

Evaluation application on the timing and the throughput of the
system and on the resources allocation are mainly due to A.
Cazziol, which turned the results iIn costs/benefits analysis.

5. References

1. J.L. Peterson - Petri nets - ACM Computing Surveys -
vol.9, n.3, 1977

2. G. Castelli- M.Maiocchi - A methodology for the construction
and the verification of functional specifications for Soft-
ware procedures and programs - HIS Software Production Con-
ference - Bloomington Minnesota - March 1979

3. A. Cicu, G. Degli Antoni, M. Maiocchi, R. Polillo, G.Torriani
An i1ntegrated multilevel documentation approach - Successftul

Software Management Techniques Conference - Bloomington
(Minnesota), March 1978

4. G. Castelli, M. Maiocchi, G. Haus - Verso unametodologia per
la costruzione di specifiche strutturate e corrette di proce
dure e programmi - Congresso AICA 1979 - Bari, ott. 1979

5. G. Degli Antoni, M. Maiocchi, R. Polillo, B. Zonta - How,

What, Why - 4th HIS International Software Conference -
Bloomington 1980

6. M. Maiocchi - Esperienze nell"uso di Reti di Petri perla
definizione di specifiche funzionali - Giornata di lavoro
su problemi di definizione di requirements, analisi e dise
gno di sistemi software - Obiettivo METOD - Progetto Finaliz®
zato per 1" Informatica - CNR - 1980

7. S. Cappelli - L uso di Reti di Petri nella specifica funzio

nale di programmi: un esempio reale - Obiettivo - METOD -
CNR 1980.



NONPROCEDURAL SPECIFICATIONS OF HARDWARE

Hans Eveking

Institut fir Datentechnik
Technische Hochschule Darmstadt
D-6100 Darmstadt, Fed. Rep. of Germany



CHAPTER 1
1.1
1.2

CHAPTER

N

N =

P LOWWWWWWWNNDNPE
O WNEE

NPNPNNNNNNNNDNDN

CHAPTER

w

W ww
wN PP

SUMMARY

REFERENCES

FIGURES

CONTENTS

HARDWARE SPECIFICATION TECHNIQUES

INtroduction . ... .. .. e e aaaaaan 3
The Requirements OF A Hardware Specification
TechnIqUe .. e eeaaaaan 4

THE AXITOMATIZATION OF NONPROCEDURAL DESCRIPTIONS

Some Properties Of Nonprocedural CHDL"s _..._._...... 5
TIme FUNCEIONS . L. e et ea e e e 6
Time Predicates ... .. ... i e ia e 7
Time OperatioNnNS ... .. a e e e e 7
The Semantics Of Some Basic Language Constructs . . 7
The Semantics OF EXpressions. .. ... ... .._.... 8
The Semantics Of Conditional Assignments — _.._.. 9
The Semantics OF Conditional Connections . . . . 10
Nested IF-THEN-ELSE-ENDIF Statements .......... n
Description Templates And Instances .......... 12
The Axioms Associated With A Description . . . . 12
Language Constructs For Step-time Descriptions . . 13

REASONING ABOUT NONPROCEDURAL DESCRIPTIONS

Inference Rules ... . e aa e 15
Correct And Equivalent Descriptions ._...._......... 16
Abstract Descriptions ... .. ... ... .o oa-- 17



191

CHAPTER 1

HARDWARE SPECIFICATION TECHNIQUES

1.1 Introduction

In the hardware design process, many levels coexist, for example,
the circuit, timing, gate, register-transfer and microprogramming
level. A group of items at one level is reperceived as a single
"chunk™ at a higher level [1]. A network of gates, for instance, is
viewed as a single flipflop at the register-transfer level.

Assume that a hardware system 1is represented by a series of
descriptions d(l), ===, d(n) where each description corresponds to
some level (see Fig. 1). The description d(n) at the top-level is
viewed as the specification given to the user of the hardware system.
The specification of a microprogram instruction-set given to a
programmer may serve as an example. The description d(l) at the
bottom-level represents the implementation of the piece of hardware by
means of the most basic resources, for example, by means of a network
of gates. Moreover, each pair of descriptions d(i)/d(i-1), 1< i <n,
is viewed as a specification/implementation pair of descriptions where
d(i-1) is considered to be the implementation of the specification
d(i) .

Once we have decided to represent a hardware system by a series
of descriptions d(l), ..., d(n) at distinct levels, we are faced with
a number of problems. How can we show, for example, that d(@) finally
meets its specification d(n) ? And how can we make sure that the
descriptions d(1), ..., d(n) actually represent the same piece of
hardware ?

In many applications, the descriptions d(i) are written in
distinct and unrelated languages; some of the descriptions d(i) - in
particular at the higher levels - may even be stated infomally (formal
descriptions prevail at the bottom levels, e.g. the drawings, where
preciseness is necessary for the manufacturing process). The
verification of the specification d(n) is then based on the simulation
of a number of test cases at the lower levels.

In this paper, we will discuss a different approach where it Iis
assumed that all descriptions d(i) are written in some formal language
L(i). If these Ilanguages have a common kernel then we are in
principle able to prove by formal means that d(1) meets d(n). In the
next section, we will briefly survey the requirements of such an
approach.



192

1.2 The Requirements Of A Hardware Specification Technique

A description d(i) can be studied in two different ways (see Fig.

1. We examine what the description d(i) does; the "what” x&
defined by the semantics of the language L(i) in which d(i)
is written. For example, a reasoning process about d(i) can
be based on the axiomatization of L(i). Note that the
precise definition of the semantics of each language L(i) 1is
crucial because a description d(i), in particular the
description d(n) provided to the wuser, can be studied
independently of the implementational details only if the
semantics of L(i) 1is known.

2. We examine how d(i) 1is implemented by the description d(-I)
at the level below, for example, if we discuss how a Tlipflop
is implemented by means of a network of gates. Note that the
semantics of L(i) and L(i-1) must be given and must have a
common ‘‘kernel'': otherwise we are not able to relate
descriptions in L(i) and L(i-1).

As a first requirement, we have thus to define the semantics of
all languages L(i). The CONLAN approach [2, 3] provides a means for
the precise definition of the semantics of a Tfamily of computer
hardware description languages (CHDL"s) which are intended to cover a
variety of levels. All members of the family are derived from the
single root language BASE CONLAN. In Chapter 2, the axiomatization of
a small CHDL derived from BASE CONLAN will be discussed. We will
confine our discussion to nonprocedural descriptions that prevail the
gate, register-transfer and microprogramming level. A  number of
concepts specific to the nonprocedural nature of these descriptions
will be presented.

As a second requirement, we have to show how descriptions at
distinct levels are related on the basis of an axiomatization. The
axioms associated with a description d(i) determine the correct
statements that we can make about d(i), i.e. those statements which
can be derived within the axioms. Although many details may be lost
at some higher level j, a description d(j) at the higher level is
still correct w.r.t. d(i) if the axioms associated with d() are
correct statements about d(i). This approach will be discussed in
Chapter 3.



193

CHAPTER 2

THE AXIOMATIZATION OF NONPROCEDURAL DESCRIPTIONS

2.1 Some Properties Of Nonprocedural CHDL"s

Reasoning about a program in a common programming language - a
methodology which goes back to the work of Hoare [4] and Floyd [5] and
which is now represented by two books of Dijkstra [6] and Gries [7] -
is quite different from reasoning about a description written in a
nonprocedural CHDL. We will briefly review some of the basic
principles of nonprocedural hardware descriptions:

1. Nonprocedural descriptions do not have a termination
property, 1.e. they describe the signal flow In a piece of
hardware and not a computation (in the CONLAN
frame-of-reference, we therefore talk about 'descriptions”
rather than ‘'programs™). Consequently, the notions of
partial and total correctness, pre- and postconditions do not
apply to nonprocedural descriptions.

2. The statements of nonprocedural descriptions are executed in
parallel. A locus of control is not implied; for example,
the values of x and y are interchanged by the following two
statements at each step of execution:

X<-Yy;
y<- X
3. Nonprocedural CHDL"s canbe divided 1into step-time and
real-time languages. Real-time CHDL"s provide a

delay-operator by which the delay of combinational circuits
and the delay of lines can be modelled. Step-time CHDL"s,
e.g. the classical register-transfer languages like [8], are
intended to model the behavior of finite automata. Step-time
CHDL"s do not have a delay operator; rather, an implied unit
delay is provided to reflect the state before and after each
state transition.



194

2.2 Time Functions

Our key concept for the axiomatization of  nonprocedural
descriptions will be the notion of a time function (see the concept of
time functions in mathematical systems theory, e.g. [eD.- The time
will be represented by the set T,

T = {U> yj N

where N is the set of nonnegative integers. Thus, T * {U, 0O, 1, ...}
A time function 1is a function with domain T. The range of a time
function F given by some set V defines the type of f, for example, a
time predicate has range V = {FALSE, TRUE), a ternary time function
has range {U, 0, 1), and a time operation has a subset of T as range.
In the following Figure, a time predicate p, a ternary time function f
and a time operation a are shown:

t u 0 1 2 3 4
p(t) TRUE FALSE TRUE FALSE FALSE TRUE
(D) u 1 1 0 0 1
a (b u U 1 1 1 4

Adopting the lambda-calculus, we define a time function T by
f = lambda(t) (--.)

where the dots indicate the body of the function. The application of
the time function T to some element tl of T is denoted by f(tl). If f
is a time function and a is a time operation then f(a(tl)) denotes the
application of the concatenation of f and a to tl. In many cases, we
will define time functions by means of expressions. The lambda
expression

lambda(t) (F(Y) = g(v)),

for example, denotes a time predicate which is TRUE at interval t if
the time Tfunctions f and g are equal at interval t. The application
of this time function to interval 4 of time, for example, is denoted

by:
(lambda(t) (F(D = g(©))) @).
As a basis for conditional definitions, we will employ the
IF-THEN-ELSE-ENDIF construct. The boolean and-operation, for
instance, is defined by:
and = lambda(p, @@ (IF p THEN q ELSE FALSE ENDIF) .
Rather than
IF pi THEN gl
ELSE IF p2 THEN g2 ...
ELSE IF pn THEN gn ENDIF ... ENDIF

we will write:

IF pi THEN gl ELIF p2 THEN g2 --- ELIF pn THEN gn END



195

2.2.1 Time Predicates

To denote time predicates, the logical operations & (and),
(or), ~ (not) and => (implication) will be used. We prefer standard
infix notation and will write p & g rather than and(p, q), for
instance. The following example shows the two time predicates p and q
and the time predicate lambda(t) () & q(b)):

t n 0 1 2 3 4
p(t) TRUE FALSE TRUE FALSE FALSE TRUE
q® TRUE TRUE FALSE FALSE FALSE TRUE

p(t)&q(t) TRUE FALSE FALSE FALSE FALSE TRUE
Definitions:

1. A time predicate p is a theorem 1iff p 1is TRUE for all
elements t of T:

At p(D).

The time predicate lambda(t)(~(p()&q(t)) = ~p(b) I —-q()),
for example, is a theorem due to De Morgan®s law.

2. Two time functions f and g are equal iff the time predicate
lambda(t) (F(t) = g(t)) is a theorem.

2.2.2 Time Operations

The usual arithmetic operations are extended to cope with the
undefined element U of the time set T. The subtraction, for example,
is defined as follows:

time_sub = lambda(tl, t2) (IF tI=U THEN U
ELIF 12=U THEN U
ELIF integer_less(tl, t2) THEN U
ELSE integer_subtract(tl, t2) END).

In this definition, integer_less and integer_subtract are the common
arithmetic operations with integers. We prefer the infix notation
"tl-t2" rather than "time_sub(1l, t2)". Similarly, the addition in
the time set T is defined.

2.3 The Semantics Of Some Basic Language Constructs

In this section, the semantics of a number of constructs of the
nonprocedural CHDL SMAX (small and axiomatized) will be defined using
the concept of time functions introduced in the former section. SMAX
is a very small CHDL derived from BASE CONLAN.



196

2.3.1 The Semantics OF Expressions

In the CONLAN approach, a piece of hardware 1is described by means
of a set of carriers. Carriers are virtual points of observation in a
piece of hardware. Representing the history of values that can be
observed at a carrier, we associate a time function x with each
carrier x. SMAX provides carriers x of type ternary only, i.e. where

A t- XD=U) 1 x®=0) I x®)=D)).

The symbols 11" and denote the and-, or- and
not-operations in ternary logic, respectively. If x and vy are
carriers of type ternary then we associate with an expression "X &&
y", Tor example, the time function

lambda(t) (tand(x(t), y(b)))

where the tand function is defined in the following usual way:

tand = lambda(x, y) (IF (=1) & (y=1) THEN 1
ELIF (x=0) 1 (y=0) THEN O
ELSE U END)

Similarly, the ternary or- and not-operation tor and tnot,
respectively, are defined.

Expressions are delayed by the "% delay operator. Let tfe be
the time function associated with an expression e. Then "e%n"™ where n
is a nonnegative integer denotes the time function

lambda(t) (tfe(t-n)).

IT e is given by "x && y'", for instance, then tfe becomes lambda(t)
(tand(x(t), y(t)))- Hence, "(x && y)%n" denotes the time function

lanbda(t) ((lambda(t) (tand(x(t), y()))) (t-n))

which is equal to the time function
lambda(t) (tand(x(t-n), y(t-n))).

SMAX descriptions provide an ASSERTIONS part [10] which consists
of a number of predicates separated by We are asserting that
these predicates should be TRUE at each interval of time. The
ASSERTIONS construct 1is a means to specify the assumptions that one
part of a system makes about the other parts (see the ASSERTIONS
construct of SPECIAL [11]).- An example 1is given by the timing
conditions of integrated circuits, Tfor 1iInstance, the set-up time
requirement on the data-input of a flipflop. To specify ASSERTIONS,
SMAX provides the operations and "=>" corresponding to
the logical operations introduced in section 2.2.1. With a SMAX
ASSERTION "'p=>q'", for example, we associate the time predicate

lambda(t) ((t) => q(t)).

The SMAX predicate 'sstable™ test for stability. sstable(x, td) is
TRUE i1f x was stable in the last td time units. sstable(X, td)
denotes the time predicate



197

lambda(t) (stable(x, td, t))
where the stable-function is defined as follows:
stable = lambda(x, td, t)(A i: 0 < i td: x(t-i) = x(1v))-
Assume an ASSERTIONS part

ASSERT pi, ..., pn ENDASSERT

and let tpl, . tpn be the time predicates associated with pi, eee,
pn, respectively. Then the ASSERTIONS part denotes the time
predicate:
lambda(t) (tpl(t) & ... & tpn(t)).
SMAX permits expressions to denote time operations, too. The

SMAX function "'time" denotes the identity time operation
lambda(t) (O .
For example, we may write an ASSERTION (100 < time) => "(x = U)"
which requires Xx not to be undefined after 100 time units. The SMAX
function "'sdelta”™ is defined as follows: sdelta(p) denotes the time
operation
lambda(t) (delta(p, b))

where the delta-function is recursively defined as follows:

delta = lambda(p, ) (IF t=U THEN U
ELIF p(t) THEN t ELSE delta(p, t-1) END).

delta returns the last time interval when the time predicate p was

TRUE:
t U 0 1 2 3 4
p(t) TRUE FALSE TRUE " FALSE FALSE TRUE
delta(p,t) U u 1 1 1 4

Note that the domain of delta(p, t) defines the subset of T which
consists of all elements t where either t=U or p(t)=TRUE.

2.3.2 The Semantics Of Conditional Assignments

Whille expressions denote time functions, conditional assignments
and connections denote theorems. To model the properties of storage
elements, e.g. flipflops, SMAX provides carriers of type jternary
variable which have a retention property. With a single conditional
assignment to a carrier x of type tvar:

DECLARE x: tvar ENDDECLARE
IF a THEN x:= y ENDIF;
... "/other statements that do not affect x/"

where a and y may be any expression, the Tfollowing axiom Iis
associated:



198

(At: x(t) = IF t=U THEN U
ELIF a(t)=1 THEN y(t)
ELIF a(t)=0 THEN x(t-1)
ELSE U END).

In this axiom, a, y and x stand for the time functions associated with
a, y and x, respectively. In plain english, this theorem tells us
that the value of x at interval t is U if t=U, 1 .e. in the initial
state. IT the condition a equals 1 at interval t, then x(t) is equal
to y(t); if a(t) is O then the old value x(t-1) 1is retained iIn x; if
a(t) is U then x(t) equals U, too. The following Figure gives an

example:

t U 0 1 2 3 4 .-
a(®d U 0 1 1 0 1 .-
y(t) u U 1 0 1 1 .-
x(t) u U 1 0 0 1 .-

A series of n conditional assignments:

DECLARE x : tvar ENDDECLARE

IF al THEN x:= yl ENDIF;

...5

IF an THEN x:= yn ENDIF;

... ""/other statements that do not affect x/M

has the semantics:

(At: x(t) = IF t=U THEN U
EtTF (al(t)=1)&(A iz 1 < i £ n: ai(t)=0) THEN ylI(t)

éL;F G@n®=D&CA 1 1 £ i < n: ai(t)=0) THEN yn(t)
ELIF (Ai: 1 £ i £ n: ai(t)=0) THEN x(t-1)
ELSE U ENDIF) .

Thus, the old value x(t-1) is retained if all conditions al, -—--, an
are 0 at interval ¢ IT a condition ai equals 1 and all other
conditions are 0 then x(t) is equal to the corresponding yi(t). In

all other cases, 1in particular if a collision occurs (two or more
conditions are 1), x(t) becomes U. Examples of application will be
given in section 2.3.5.

2.3.3 The Semantics Of Conditional Connections

Carriers of type ternary terminal™ are used to model combinational
networks without retention property. A single conditional connection
to a carrier z of type ttml:

DECLARE z: ttml ENDDECLARE
IF a THEN z.= y ENDIF;
... '""/other statements that do not affect z/"

has the semantics:
(At: z(t) = IF t=U THEN U

ELIF a(t)=1 THEN y(t)
ELSE U END).



199

Thus, a ternary terminal is unequal U only if the condition a equals
1:

t u 0 1 2 3 4 ---
a(®d u 0 1 1 0 1 .-
y(t) u u 1 0 1 1 ---
z(H) u u 1 0 U 1 .-

A series of n conditional connections:

DECLARE z: ttml ENDDECLARE
IF al THEN z.= yl ENDIF;

IF an THEN z.= yn ENDIF;
... ""/other statements that do not affect z/"

has the semantics:

(At: z(t) = IF t=U THEN U
ELIF (I(D)=D&CA i: 1 < i £ n: ai(t)=0) THEN ylI(t)
ELIF (an(t)=D&(A i: 1 £ i1 < n: ai(t)=0) THEN yn(t)
ELSE U ENDIF) .

Examples of application are shown in section 2.3.5.

2.3.4 Nested IF-THEN-ELSE-ENDIF Statements

Note that we did not separate the semantics of the [IF-THEN-ENDIF
construct from the semantics of the assignment and connection
operations. Rather, we consider the conditional invocation of an
operation as a unity. This is due to the fact that in many CHDL"s the
conditions and operations are much closer related than by the usual
concept where a boolean condition determines 1if an operation is
executed or not.

The semantics of nested IF statements, operations in the
ELSE-part, etc. are explained as follows: A nested conditional
assignment, for example:

IF a THEN IF b THEN x:= y END
has the semantics of:
IF a&&b THEN x:= y END.
A conditional assignment found in the ELSE-clause of an IF-statement:
IF a THEN ... ELSE x:= y ENDIF
has the semantics of:
IF ~a THEN x:= y ENDIF.
An unconditional assignment 1is a special case of a conditional
assignment where the condition a is 1 for —(t=U). Similar rules apply

to conditional and unconditional connections. The THEN- and ELSE-part
may include more than one assignment or connection operation separated



by For example, we can simply write
IF a THEN x:= vy, z.= k ENDIF
which 1is short for

IF a THEN x:= y ENDIF;
IF a THEN z.= k ENDIF.

2.3.5 Description Templates And Instances

SMAX incorporates the description template definition and
instantiation features of BASE CONLAN (see [Z] for a detailed
introduction). Description templates define types of hardware
modules. The interface of a description is given by IN, OUT and INOUT
parameters defining the inputs, outputs and bidirectional connections.
Attributes of a description, e.g. delay attributes are specified in
the ATTribute section. Local carriers are declared between keywords

DECLARE ... ENDDECLARE. The statements in the body of a description
are separated by Finally, the ASSERTIONS are specified.
In Figure 2, two example description templates are given. The

first description shows a simple NAND-gate with two inputs. The gate
delay is modelled by an unconditional connection of the output to the
delayed inputs. The second description shows a rising-edge triggered
d-flipflop. The storage property 1is represented by a conditional
assignment to a local carrier ff of type tvar. The propagation delay
is modelled by an unconditional connection of the output x to the
internal carrier ff delayed by tp time units. The ASSERTION requires
the data input y to be stable for a set-up time of tsu time units
before the rising-edge of the signal a.

An instance inst of a description template tempi is instanciated
by means of the USE-statement:

USE inst(... "/Zactual IN/OUT/INOUT params./'") :
templ (... "/actual attributes/') ENDUSE
In Fig. 3, two instances of dff and nand2 (see Fig. 2),

respectively, are used within a description ctrans.

2.3.6 The Axioms Associated With A Description

By means of the techniques introduced in the last sections, we
associate with the set of statements of a description d a set of
axioms. Any conclusion on the description d will be based on these
axioms. In Fig. 4, the axioms associated with the descriptions dff
and nand2 of Fig. 2 are given. In addition, the time predicate
associated with the ASSERTION of dff is shown.

Assume an instance inst of a description template tempi:

USE inst: tempi ENDUSE
The axioms of the description instance inst are derived from the

axioms associated with the description template tempi as follows:
Replace iIn the axioms associated with tempi



1. all local carrier names by names qualified by the name of the
instance, for example, replace the local carrier x by iInst._x.

2. all formal IN and OUT parameters as well as attributes by
actuals. If actuals are not specified in the USE statement
then use qualified formals.

In Fig. 5, the axioms of the description ctrans of Fig. 3 are
derived from the axioms of dff and nand2.

2.4 Language Constructs For Step-time Descriptions

In the last sections, we have introduced a number of language
constructs for nonprocedural descriptions in order to model the
behavior of a piece of hardware in real-time. The specification given
to the user of such a piece of hardware* for example, the microprogram
instruction-set obeys in general a different concept of time. In the
example, the behavior of the machine is defined by a set of
microprogram instructions each relating the state of the machine
before and after the execution of one microinstruction; the
microprogrammer s never allowed to refer to the state three
microinstructions before, e.g. by means of a delay operator !

Descriptions with a simple before/after concept of time are
called descriptions in step-time. From an implementation point of
view, descriptions in step-time are intended to model a system at
selected intervals of the real-time only and introduce thus a temporal
abstraction (see section 3.3). The real-time intervals are selected
by means of a reference signal, typically by means of a clock signal.

To provide a language for step-time descriptions, we will adopt
the language constructs of sections 2.3 with the following exceptions:

1. The delay operator "% and functions like sstable and sdelta
that do not make sense iIn a step-time environment are
removed.

2. Carriers of type tvar are not adequate to reflect the
before/after relation. The type tvar is replaced by a new
carrier type tudv (ternary unit d elay variable) where a unit
delay of the transfer condition as well as of the source is
assumed. Rather than

DECLARE x : tvar ENDDECLARE
IF a%l THEN x:= y%l ENDIF, ...

we will simply write:

DECLARE x: tudv ENDDECLARE
IF a THEN x<- y ENDIF; ...

The following axiom is associated with a single conditional
transfer:

(At: x(t) = IF t=U 1 t=0 THEN U
ELIF a(t-1)=1 THEN y(t-1)
ELIF a(t-1)=0 THEN x(t-1)
ELSE U END).



The following Figure gives an example of the behavior of the
conditional transfer:

t u 0 1 2 3 4 ---
a(t) u 0 1 1 0 1 ---
y(b) u u 1 0 1 1 ece
x(t) u u u 1 0] 0 eee

A series of n conditional transfers:

DECLARE x: tudv ENDDECLARE
IF al THEN x<- yl ENDIF;

IF an THEN x<- yn ENDIF;
... ""/other statements that do not affect x/'

has the semantics:

(A t: x(t) =
IF t-U 1 t=0 THEN U
ELIF (al(t—1)=1)&(A i: 1 < 1 < n: ai(t-1)=0)
THEN yl(t-1)

ELIF (an(t-D=D&CA i: 1 < i < n: ai(t-1)-0)
THEN yn(t-1)

ELIF (A i: 1£ 1 £ n: ai(t-1)=0) THEN x(t-1)

ELSE U ENDIF) .

For the specification of microprogram instruction sets, the
ACTIVITY declaration and invocation feature of BASE CONLAN
will be adopted 1in a very restricted way. In SMAX,
activities are viewed as parametrized macros's. Local
carriers must not be declared in the body of an activity.
Carriers of the enclosing description segment may be imported
via the IMPORT statement. The invocation of an activity
simply means the textual substitution of the activity"s body
where formal parameters (if any) are replaced by actual ones.
For an example, see Fig. 10 which will further be discussed
in section 3.3



203

CHAPTER 3

REASONING ABOUT NONPROCEDURAL DESCRIPTIONS

3.1 Inference Rules

In a reasoning process about a hardware description, we will
conclude that a tine predicate is a theorem from the axioms associated
with the hardware description. A number of inference rules guide the
reasoning process. We will write inference rules in the form:

al, ..., an
c

which has the following meaning: If the antecedents al, ..., an are
theorems then so is the consequent c. Examples of application of the
following rules will be given in the next section.

1. Let f and g be time functions and let a and b be time
operations. Moreover, let P(string) denote some time
predicate P in which string is found and let P(X/string)
denote the time predicate P where some free occurrences of
string are replaced by x. Then the following rule applies
(substitution of equals for equals):

At fa(t)) = gb(n)))
(A t P(f(a(t))) = P(g(b())/f(a(t))))
2. Let P(string) denote again a time predicate P in which string
is found. Let P(string//x) denote the time predicate P where

all free occurrences of string are replaced by x. Let a be a
time operation. Then the following rule holds:

(A t: P(D)
(A t: P(a(b)//1))
The second rule is justified because (@) if P(t) is a theorem

then it 1is TRUE for all elements of T and (b) the time
operation a has a range which is a subset of T.



204

3. The third rule deals with induction over the time set T. Let
P(t) denote a time predicate P with the time variable t and
let P(x//t) denote P where all occurrences of t are replaced
by x. Then

P(U//t), P(O//t), P(t) => P(t+1//t)

(A t= P(Y)

IT P is TRUE for intervals U and 0 and if from P(t) follows
that P 1i1s TRUE for interval t+1, then we conclude that P 1is
TRUE for all elements of T.

3.2 Correct And Equivalent Descriptions
Definitions:

1. A time predicate p 1is a correct statement w.r.t. a
description d 1if the theoremhood of p can be concluded from
the axioms associated with d.

2. A description d(jJ) is correct w.r.t. a description d(i) if
the axioms associated with d(J) are correct statements w.r.t.

d(i).

3. Two descriptions d(j) and d(i) are equivalent if d({g) 1is
correct w.r.t. d(i) and if d(i) is correct w.r.t. d(g)-

4. A description d(j) is a correct description of d(i) w.r.t. a
representational function phi if the axioms of d(j) mapped by
phi are correct statements w.r.t. d(i).

We will first give some examples of correct statements w.r.t. a
description. The statement x(U)=U, for instance, is correct w.r.t.
the description delayel of Fig. 6. which follows immediately from
the axiom associated with delayel. Moreover, the statement

(At: x(t) = y(t-n))

is correct w.r.t. delayel: if t=U then t-n = U according to the
definition of subtraction given in section 2.2.2 and thus y(t-n) =
y(U) = U because y is assumed to be a carrier of type ttml.

A further example 1is given by the statement

(A t: c() = a(t-nl-n2))

which is correct w.r._t. the description twodelayel of Fig. 7.
Proof: On account of the former example,

(A t: b()
(At c(v

a(t-nl))
b(t-n2))

holds for twodelayel:



205

H-———— + b H————- +
ao-— > | ni F > o> ] n2 }F>o0c
E R E— h h————— +

Due to Rule 2 of the former section, t can be replaced by t..n2 in the
first theorem yielding

(A t- b(t-n2) = a(t-nl-n2)).

Following Rule 1, we replace b(t-n2) by a(t-nl-n2) in the second
theorem which proves our statement.

An example of a correct description is given by the description
doubledelay (Fig- 8 which 1is correct w.r.t. the description
twodelayel of Fig. 7. However, doubledelay and +twodelayel are not
equivalent because the axiom associated with the carrier b of
twodelayel can not be derived from the axiom associated with
doubledelay.

The description twodelayell of Fig. 9 corresponds to the
description twodelayel of Fig. 7 with one exception: the local
carrier b is replaced by the Ilocal carrier X. Defining a

representational function phi by
phi(x(t)) = b(D)

we can show that twodelayell is a correct description of twodelayel
w.r.t. phi. Representaional functions are wused 1if, 1iIn the
specification, a carrier or a concept of time is introduced which is
not found in the implementation.

3.3 Abstract Descriptions

We consider an abstract description d(j) to be a correct,
less-detailed description w.r.t. a description d(i). In the hardware
design process, at least three different Kkinds of abstraction are

found by which a description d(J) may be less-detailed than d(i):

1. Spatial abstraction: some carriers are found in d(i) but not

in d(J) - The descriptions doubledelay and twodelayel of
Figs. 8 and 7 give an example of spatial abstraction: the
carrier b of the description twodelayel 1is not found in
doubledelay.

2. Abstraction by ASSERTIONS: some conditions which may occur
in d(i) are excluded by ASSERTIONS of d(j)- An example of
abstraction by ASSERTIONS is given by the description dff of
Fig.- 2 which 1is intended to model a 'real" flipflop. The
“"real” flipflop behaves anyway even if the set-up time
requirement in the ASSERTIONS part of dff is not satisfied.
For example, the flipflop may assume a meta-stable state
which is however very difficult to model. We therefore
exclude this undesired situation by means of an ASSERTION;
the simplified behavior specified in the body of dff holds
only if the ASSERTION is satisfied.

3. Temporal abstraction: The behavior of d(i) is only partially
defined by d{) 1in the time-dimension. This kind of
abstraction is used if descriptions 1in real-time are



206

represented iIn step-time.

We will finally apply these concepts of abstraction to a simple
example where we assume a microprogrammable machine to be described at
three distinct levels. The microprgram instruction set 1is specified
in step-time (description d3 of Fig. 10) relating the state of the
machine before and after the execution of one microprogram
instruction. The machine is described at the register-transfer level
in step-time providing a functional description of the main registers,
busses and combinational networks (description d2 of Fig. 10).
Finally, the network of integrated circuits where the behavior of each
IC is represented in real-time is shown (see Fig. 11).

The concept of spatial abstraction is applied in the descriptions
d3 and d2 of Fig. 10. A number of carriers of d2, e.g. the ROM, the
decoders, etc. are not found in d3. The intention of d3 is to state
the effect of a microinstruction (and a microprogram) on those
carriers only which are accessible to the microprogrammer .
Implementational details which are invisible for the microprogrammer
are not represented.

Fig. 11 shows how one of the conditional transfers of d2 is
implemented by means of an IC network given by the description ctrans
of Fig. 3. In this example, all concepts of abstraction are mixed:

1. A number of carriers of the IC network are not represented by
d2, for example, the clock signal (spatial abstraction).

2. A number of conditions are excluded by ASSERTIONS.

3. The step-time description d2 (as well as d3) is intended to
model the behavior of the IC network only at those intervals
of time where the clock signal has a falling edge (temporal
abstraction). Step-time intervals are related to real-time
intervals by means of a representational function (Fig. 12).
The delta-function used in the definition of phi selects the
intervals where the clock signal has a falling edge. The
description d2 is a correct description of dl w.r.t. phi if
the additional ASSERTIONS of dl are satisfied. The proof
involves the application of the induction theorem of section
3.1 (see [10D)-

SUMMARY

In this paper, the axiomatization of nonprocedural hardware
descriptions was discussed. The axiomatization of descriptions at
distinct levels provides a common semantical kernel by which
descriptions at distinct levels are related. The concepts of correct
and abstract descriptions were introduced and a number of examples of
application were given.



(KL

4

[6l

[10]

[11]

207

REFERENCES

Hofstadter, D.R.: Godel, Escher, Bach: An Eternal Golden
Braid, Vintage Books, New York 1980.

Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill,
F. and Skelly, P.: CONLAN Report, Springer, Berlin
Heidelberg New York Tokyo, 1983.

Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill,
F. and Skelly, P.: CONLAN - A Formal Construction Method
for Hardware Description Languages: Basic Principles,
Language Derivation and Language Application (3 papers),
Proc. NCC, Vol. 49, Anaheim 1980.

Hoare, C.A.: An Axiomatic Basis for Computer Programming,
CACM, Vol. 12, 1969, pp- 576-581.

Floyd, R.: Assigning meaning to programs, Mathematical
Aspects of Computer Science, Vol. 19, 1967, pp- 19-32.

Dijkstra, E.W.: A Discipline of Programming, Prentice Hall,
1976.

Gries, D.: The Science of Programming, Springer, New
York/Heidelberg/Berlin, 1981.

Chu, Y.: An ALGOL-like computer design language, CACM Vol.
8, 10/1965, pp. 607-615.

Windeknecht, Th.G.: General Dynamic Processes, Academic
Press, New York/London, 1971.

Eveking, H.: The Application of CONLAN ASSERTIONS to the
Correct Description of Hardware, Proc. 5th Int. Symp. on
CHDL"s, pp- 37-50, Kaiserslautern, 1981.

Roubine, 0., Robinson, L.: SPECIAL Reference Manual, SRI
Technical Report, 1976.



208

FIGURES
user
L(n)
H—— —h
1 d (i) 1 L(i)
1 di-n 1 LCGi-D
[ B
H—- T T G
d(n [ L(D)

Fig. 1: A hardware system represented by a series of descriptions
at different levels

DESCRIPTION nand2(ATT dnand: int)
(IN y, z: ttnl; OUT x: ttml)
BODY x.= *(y && 2z)%dnand
ENDnand2

DESCRIPTION dff(ATT tp, tsu: int)
(IN y, a: tetml; OUT x: ttml)
BODY DECLARE ff: tvar ENDDECLARE
IF a & w-a%l THEN ff:= y ENDIF;
x.= TFFptp
ASSERT
(@ & ""awl)=1) => sstable(y, tsu)
ENDASSERT
ENDAFF

Fig. 2: The description templates dff and nand2



209

DESCRIPTION ctrans(ATT tp, tsu, tpnand: int)
(IN clock, y, cond: ttml; OUT x: ttml)

BODY DECLARE int: ttml ENDDECLARE
USE nand2inst(clock, cond, int): nand2(tpnand);
dffinst(y, int, x) : dff(tp, tsu) ENDUSE
ENDctrans

Fig. 3: The description ctrans consisting of one instance of dff
and one instance of nand2

(At: x(t) = IF t=U THEN U
ELSE tnot(tand(y(t-dnand), z(t-dnand))) ENDIF)

(At: ff(t) = IF t=U THEN U
ELIF tand(a(t), tnot(a(t-1)))=1 THEN y(t)
ELIF tand(a(t), tnot(a(t-1)))*0 THEN fF(t-1)
ELSE U ENDIF)
(A t: x(t) = IF t=U THEN U
ELSE fF(t-tp) ENDIF)
lambda(t) ((tand(a(t), tnot(a(t-1)))=1) => stable(y, tsu, b))

Fig. 4: The axioms and the time predicate associated with the
descriptions nand2 and dff of Fig. 2

(A t- Int() =
IF t=U THEN U
ELSE tnot(tand(clock(t-dnand), cond(t-dnand))) ENDIF)
(A t- dffinst.fFf(® =
IF t=U THEN U
ELIF tand(int(t), tnot(int(t-1)))=1 THEN y(t)
ELIF tand(int(t), tnot(int(t-1)))=0 THEN dffinst.ff(t-1)
ELSE U ENDIF)
(At: x(t) = IF t=U THEN U
ELSE dffinst.ff(t-tp) ENDIF)
lambda(t) ((tand(int(t), tnot(int(t-1)))=1) => stable(y, tsu, t))

Fig. 5: The axioms and the time predicate associated with the
description ctrans



DESCRIPTION delayeKATT n: int)
(IN y: teml; OUT x: ttml)
BODY x.= y%n
ENDdelayel

(A t: x(t) = IF t=U THEN U ELSE y(t-n) END)

Fig. 6: The description template delayel and its axiom

DESCRIPTION twodelayel (ATT ni, n2: int)
(IN a: ttml; OUT c: ttml)
BODY DECLARE b: ttml ENDDECLARE
USE dell(a, b): delayel(nl);
del2(b, ©): delayel(n2) ENDUSE
ENDtwodelayel

(A t: b(b)
(A t: c(d

IF =13 THEN U ELSE a(t-nl) END)
IF t=U THEN U ELSE b(t-n2) END)

Fig. 7: The description twodelayel and its axioms

DESCRIPTION doubledelay(ATT ni, n2: int)
(IN a: ttml; OUT c: ttml)
BODY c.= a%(nl+n2)
ENDdoubledelay

(A t: c(t) = IF t=U THEN U ELSE a(t-nl-n2) ENDIF)

Fig. 8: The description doubledelay and its axioms; doubledelay
is correct w.r.t. the description twodelayel of Fig. 7

DESCRIPTION twodelayell(ATT ni, n2: int)
(IN a: ttml; OUT c: ttml)
BODY DECLARE x: ttml ENDDECLARE
USE dell(a, x): delayel(nl);
del2(x, c): delayel(n2) ENDUSE
ENDtwodelayell

Fig. 9: twodelayell is a correct description of twodelayel w.r.t.
the representational function phi: phi(x(t))=b(t) .



211

DESCRIPTION d3 ... BODY
DECLARE a, b, ...: tudv; bus, madr, ...: ttml ENDDECLARE

"/specification of the microprogram instruction set:/"
ACTIVITY loada BODY
IMPORT a, bus ENDIMPORT
a<- bus
ENDloada
ACTIVITY loadb BODY
IMPORT b, bus ENDIMPORT
b<- bus
ENDloadb

""/specification of the microprogram,
madr = microprogram address:/"

IF madr=100 THEN loada ENDIF;

IF madr=101 THEN loadb ENDIF;

ENDd3
DESCRIPTION d2 ... BODY
DECLARE a, b, ...: tudv; bus, romO, romi,
decodeO, decodel, madr, ...: ttml ENDDECLARE
"/functional description of decoder and registers:/"
decodeO.= rom0O && ™“‘romi;
decodel .= romO && romi;

IF decodeO THEN a<- bus ENDIF;
IF decode 1 THEN b<- bus ENDIF;

""/description of the microprogram as the content
of a ROM, madr = ROM address:/"

IF madr=100 THEN romO. O,roml.

IF madr=101 THEN romO. 0,roml .

OENDIF;
1ENDIF;

ENDd2

Fig. 10: The description of the microprogram and the microprogram
instruction set (d3) and the functional description at
the register-transfer level (d2)



DESCRIPTION d2 ... BODY

IF decodeO THEN a<- bus ENDIF;

ENDd2

DESCRIPTION dlI ... BODY
USE registera(clock, bus, decodeO, a):
ctrans(tp, tsu, tpnand) ENDUSE;

"/ASSERTIONS that guarantee the correct
implementation:/"

ASSERT (clock%l&&(~~a)&&a%l)=0,
((="~clock&&clock¥%l )=1) => (a=a%l)&
(sdelta(( "clock&&clock®%l)=1)%1 C tp+tpnand),
(C "clock&&clock®%l)=1)%tpnand => (bus=bus%tpnand),
(C r~clocké&&clock®l)=U) =>
(sdelta((~""clock&&clock%l )=1) = U)
ENDASSERT

ENDdI

Fig. 11: A conditional transfer at the register transfer level

and its implementation by means of the description
ctrans of Fig. 3

(A tau: a(tau) = IF (tau=U)|(tau=0) THEN U
ELIF decodeO(tau-1)=1 THEN bus(tau-I)
ELIF decodeO(tau-1)=0 THEN a(tau-1)
ELSE U END)

phi(tau) = delta( (~="~clock&&clock%l )=1, ©)
phi(tau-1) = delta( ("m~clock&&clock¥l )=1,
delta( (""""clock&&clock®l )=1, t)-1)

Fig. 12: The semantics of the conditional transfer of Fig. 11
referring to step-time intervals tau and the represen-

tational function phi mapping step-time intervals tau
in real-time intervals t



On the Specification and Manipulation of Forms.

by

1. Balbin,
P.C. Poole,
and
C.J. Stuart

Department of Computer Science,
University of Melbourme,
Parkville 3052,
Melbourme,
Australia.

ABSTRACT

Electronic replicas of printed forms provide a very
convenient man-machine interface for capturing data.
The keyboard operator fills in the form ander the
control of the computer which can reject invalid
data. In many systems, the form is simply an 1/0
filter and, while convenient mechanisms are provided
for describing the layout of the form, 1t 1is still
necessary to write a program to capture and validate
data and seguence the user through the form. In
this paper, we describe a high level language for
specifying forms and a transaction processing system
for manipulating than. The specification is com-
plete In the sense that 1t contains sufficient
information for the system to determine the source
of the data, what data is valid, how 1t iIs to be
displayed and the sequence of fields to be visited
which may depend on data previously 1input and the
state of the database. We argue that this approach
will significantly reduce the cost of producing
software for transaction oriented data processing
applications.



214

1. Introduction

Over the last few years, a considerable amount of research has
taken place iInto office automation. There are essentially two
approaches which have been explored In order to provide an automated
office. The first [12,15] involves the classic top-dowmn design metho-
dology which identifies the general owverall requirements of an office
and then seeks to automate these. This method, while attractive In
theory, has not yet led to many practical i1mplerentations. The other
approach [27-29] has been to i1dentify common office functions. As the
requirements for each of these crystallise through the exposure of pro-
totypes to the real world, one can continually gain valuable insights
which will eventually lead to integration.

We have been following the second approach focusing our research on
forms [16], which are electronic replicas of the printed business forms
commonly used for collecting information in the modem office. Some
exanples of printed forms which are 1In common use are cheques, tax
retums and bank withdrawal forms. After filling in a form, a check is
made to ascertain, as far as possible, that the information is correct,
after which the form is filed iIn a database. The act of filing the fom
may itself trigger other activities such as updating the database.

FSL [1,2] (Forms Specification Language) 1i1s a very high lewvel
language for specifying and solving a variety of business data process-
ing problems by describing forms. The emphasis i1s not on how to solve a
problem but on what needs to be done. FSL provides convenient and
powerful constructs and a natural language syntax for describing forms
which are amenable to the office worker who is not necessarily a com-
puter programer and who might normally solve such a problem manually.
A compiler translates the forms specification Into a data structure
which is iInterpreted by TPS [22] , a Transaction Processing System,
designed to capture and manage data from the user(s) by way of a forms-
oriented interface. It has been implemented In C running under the

WNDX™" operating system.

A printed form consists of text and indicators showing where the
user iIs to provide information. Similarly, a form specification in FSL
describes displayed text and the entities called fields which correspond
to the places where information is collected and displayed. In a com-
pleted form, fields have a content. In a printed form, these are
invariably provided by the user filling in the field; using TPS, the
content may be supplied by the user or generated by the system and may
be confined to be iIn a particular domain.

It has been noted [11] that offices tend to be divided Into organi-
sational units such as divisions and departments. Each division uses a
number of documents or forms through which i1ts data processing IS accom-
plished. We define such a related group of forms as a menu. The pro-
cess of implementing a system for a particular application can then be
loosely described as follons:

(@ Identify the principal menus to be used by the organisation.
(@ FRurther subdivide each menu iInto a list of forms (or menus) .

@ using FSL, specify the description of the Tfields comprising each
form.

1UNIX is a Trademark of Bell Laboratories.



215

@ compile the forms Into tables suitable for Interpretation by TPS.

® mnvoke TPS, iInteractively filling iIn any form in the menu via a
cursor addressable display terminal.

It can be seen that the hierarchical organisation of forms models the
top down design process used iIn the construction of a total application.
In fact, this aspect of forms has been further developed and advocated

in [14].

In section 2, we discuss some of the relevant literature.  Section
3 describes FSL with appropriate examples and in sections 4 and 5, we
present some Implementation considerations with respect to TPS.  Appen-
dix A illustrates an exanple form template.

2. Related Research

There are essentially two complementary aspects In the specifica-
tion of a form. One is the specification of the form fields themselves
and the other iIs the specification of the organisational flow of forms
anmongst several workstations resulting from predefined trigger condi-
tions. The former, which was loosely termed "'integrity constraints on
forms”', has been explored in [9,17,19,21], whilst the latter, which has
been termed '“form management’” or ‘‘forms manipulation’™, has been dis-
cussed In [7,24-26]. We note that both aspects are vital to the overall
achievement of effective office automation. FSL is essentially a
language which concentrates on the form field definition aspect of forms
research. Unlike earlier systems, e.g. SQL/PL1 [4], which coupled a
database management system with a general purpose progranming language,
FSL directly iIncorporates these features, at the same time, relieving
the user of the task of dealing with the particular nuances of the DBVS.
A comprehensive discussion of the shortcomings of these systems can be
found In [3].

It is clear that the definition of a form includes such entities as
docuruents, pads, memos [18] or slips of paper [6]. Thus, we do not con-
sider 1t desirable to differentiate between them. The specification
language for the form should be general enough to include all of these.
There iIs some debate [7] , however, as to whether the form has been taken
out of iIts natural usage and coerced (as In QBE [X] for example) to
implement functions which, although contributing to integration, are not
necessarily the desirable solution. It can be argued that the condition
and repetition boxes of OBE are foreign to an end user whereas an
english-like statement iIs more appropriate.

FSL has been designed for the office worker and we have conse-
quently made 1t non-procedural to keep i1t as simple as possible. Like-
wise, BUSINESS [18] has also been designed with similar users in mind.
However, 1t is doubtful that the nested procedure, which is part of Its
syntax, Is the "‘specification of a solution in terms already familiar to
the end user'.

SBA 5] ad QBE/OBE [27-29] are systems which serve as an interface
to the IBM query language QBE. Whilst CBE is relatively powerful [X]
and easy to leamm [23], much of the data processing in an application is
done iIn awell structured and predetermined fashion which is performed



216

repeatedly. The transactions often modify the database in a variety of
ways depending on user input or the data that iIs accessed. At the samne
time, we must admit that there are occasions when queries are desirable
and that the FSL-TPS system does not, as yet, have a satisfactory facil-
ity to handle these.

3. Forms specification

One of the objectives of the FSL-TPS project was to produce a sys-
tem which was data-driven. By contrast, most programs are procedure
driven, which means that they follow a fixed sequence of actions. A
data-driven system responds to events which cause changes In some data
structure and the actions taken depend not so much on a fixed sequence
but on the nature of the event. In writing a program In FSL, one does
not write a set of procedures but, rather, provides a description of a
data structure and how It depends on user-provided or database-provided
information. This structure corresponds to a completed form which we
refer to as a form instance. TPS 1is used to construct a form instance,
an operation which corresponds to filling In the form, as It responds to
the events of the user entering data or to alterations of the database.

There are two primary components in the specification of a form.
The first consists of the form template, an example of which iIs given In
Appendix A. This 1is the static text associated with a form type serving
to identify the nature of the form and its fields. The second component
IS the specification of the individual fields comprising the form.

3.1. Form Template.
3.11. Heading.

A heading i1s a string of characters appearing on a form having no
particular connection with the individual fields. In Appendix A, for
example, the heading "REGULAR INVOICE™ serves to identify the form to
the user but has no apparent Importance with respect to any individual
field.

2. Prompt.

A prompt is a string of characters appearing on a form which serves
to identify a particular field. In Appendix A, for example, the prompt
"account no." iIndicates to the user that the Tield represents the
account number for the inwoice. Since a prompt Is necessarily associ-
ated with a field, 1t is included In the field specification. The posi-
tion, Tield i1dentifier (f supplied) and prompt are called the location
attribute of the field. Currently, the position, which 1is simply the
rov and column nuvber on the screen, must be supplied by the forms
designer as absolute or relative values. However, iIn an iInteractive
forms editor currently under development, these positions will be calcu-
lated by the system.

3.2. Field Specification.

Once the location attribute has been specified, It is then neces-
sary to specify the set of possible contents of the field. This is



217

termed the value attribute. From this specification, the system can
determine the size of the field and the source of the data, that is,
whether the content of the field will be Input from the keyboard or gen-
erated automatically by the system, eirther by evaluating an expression
or via an update after some other form has been filed. Hie way iIn which
the Tield i1s to be displayed may also be specified.

~3.2.1. Accepting Statement.

The content of a field may come fron a number of sources, the most
usual being from the keyboard when the user iIs interactively completing
the form after 1nvoking TPS. In all instances, however, the forms
designer requires the capability to specify the set of inputs which are
valid and which may consequently be filed. In FSL, the accepting state-
ment performs this task.

1.0 Standard Types.

FSL provides a nurber of high level constructs which can be used to
specify the acceptance criterion. The Tield specification for the
""account no." In Appendix A can be written in FSL using one of these as
follows :-

numbered field is prompted by "‘account no." at (2,20)
accepting integer(®);

indicating that valid "put is an integer In the range O to 99999. The
source of the 1nput iIs, by implication, the keyboard. The key word num-
bered causes the prompt to be preceded by a generated integer which can
be used to select the field for arendrent. This feature is only avail-
able for fields where input may come fronm the keyboard. The actual
account number is called the key field and 1ts content is used to iden-
tify the record created through the form in the data base for subseguent
retrieval or updating.

In some circunstances, the forms designer may wish to specify that
input from the keyboard is optional, 1.e. that if characters are iInput,
then they will be subjected to validation criteria, otherwise the null
input is acceptable. This may be specified In FSL by -

accepting alphabetic(Q0) or null ;

3212 User Defined Types.

Often using a standard type is far too general. It iIs therefore
also possible to include specific strings iIn the accepting statement.
Consider a field representing a part nurber for a particular product.
This part number consists of a string representing the year the part was
manufactured, the actual stock number of the product, and a string
representing the warehouse where the part is located. This field can be
specified In FSL by -

field i1s prompted by "'part no."” at (3,30)
accepting year:82..99 & /7 & integer(®) & alphabetic(@);

where IS the concatenation operator. The Input string consists of
four separate sections known as subfields. It is possible to extract



218

the content of a subfield, as iIn the year component above, by prepending
an identifier to the field and subsequently using It In an expression.

32.2. Displaying Statement.

There is an important distinction to be made between the content of
a fTield In the record and the string displayed on the screen for a
field. In most cases, the forms designer will want these to be identi-
cal. Honever, there are instances when a suitable mapping from input to
output 1Is desirable. FSL supports this mechanism permitting a nunber of
display formats. The displaying statement also allows the user to
display a different value on the screen for that field.

Source.

In the examples seen thus far, the source of the Input to the field
has been 1mplicitly specified to be the keyboard. In many instances,
however, the content of a field is determined solely by evaluating an
expression. In such cases, the key word assigning is used. Expressions
are made up of operands, operators and calls on system functions.
Operands may be Tields that are not local to the current form. Con-
sider, for example, a field representing the sales tax on a product :-

field is prompted by "Sales Tax." at (4,10)
accepting real ®
assigning (unit price - discount) / 9.37 ifyear > &
else (unit price - discount - depreciation) / 9.37 ;

The content of the field is determined by a conditional expression which
takes Into account the age of the product and 1ts consequent deprecia-
tion. In this iInstance, the content of the field is displayed automati-
cally requiring no 1nput from the user.

In addition to having fields which can derive their contents from
expressions, It 1is also desirable to have a facility which allows this
assignment to be overridden. For example, a Tield representing the
discount due to a customer may depend on the number of items purchased
from the particular sale as well as the number of 1tems purchased over a
period of time. The company may, homvever, want to give a different
discount iIn exceptional circumstances. In other words, the company
wishes to use the value of the expression In the default situation only.
This may be specified by using the key words defaulting to instead of
assigning.

324. Updated Fields

In the discussion thus far, the content of a field has either come
fron the keyboard or by evaluating an expression or a combination of
both methods. There is one other Important means by which the content
of a field is determined and that is via updates iInitiated by the filing
of other forms. An example could be a Tield representing the total
number of products bought by a customer. The field iIs updated every
time an invoice iIs lodged. A suitable specification for this field
would be -



219

field is prompted by "‘overall sales” at (7,7)
accepting integer(®) updated from Invoices.key by
overall _sales + Invoices.key.number _sold;

The field (which iIn this case i1s not local to the "Invoices” form ) is
updated every time an invoice Is lodged using that customer®s account
number .

3.3. Aggregate Fields.

A facility for aggregating fields is provided In the form of a
table which may be thought of as an array of fields. An exit condition
can be attached to a field In such an aggregate which enables the user
to awoid having to complete all the fields In the table at execution
time. An example of a table given In Appendix A consists of the product
name, description, quantity etc. This can be specified in FSL by :-

table with 6 entries {
field Product is at (+1,3)
accepting alphabetic(?) exiting if Product iIs "7;

/* other table fTields come here */

3 4 Entry Condition.

After the location and value attributes for each field have been
given, the specification of the form iIs complete apart from information
which determines whether or not fields are relevant. An irrelevant
Tfield is one which is not considered iIn the completed form; for example,
in the inwoice form given iIn Appendix A, tax iInformation may not be con-
sidered if the custorer iIs a reseller, as defined by field 2. The
designer may introduce entry conditions, which may be nested, to deter-
mine If fields are to skipped over as irrelevant. For exanple, the fol-
loving FSL specification indicates that field 1 i1s to be ignored unless
the condition is true.

field 0 ...
enter if <condition> {
field 1l is .. _.

¥ield_2 IS ...

After the content of field O has been determined, TPS tests the entry
condition. If this evaluates to true, then TPS will guide the user to
field I, otherwise the cursor will be directed to field 2.

£. Interpreting forms

The program TPS is used to interpret a set of forms and menus,
written in FSL. The user may select a form under menu control, and then
complete i1t as TPS captures, validates and displays the relevant data.
The completed form may then be Tiled, causing the execution of the
relevant updates. Furthermore, TPS allows several users to be accessing



and altering the database simultaneously, and ensures that the database
remains consistent throughout. The algorithms used by TPS reflect the

data driven nature of FSL.

£.1. The compiled form

The compiled form module, which we will refer to hereafter simply
as the form, 1s arranged as a set of field descriptions. The task of
TPS 1s to give each field a valid content and then to file the set of
field contents, which iIs the form iInstance, iInto the database.

In the compiled form, each field has four attributes. These are:

@ the content attribute which describes how the content of a field is
ined.

(@ the validity attribute which iIs used to determine whether or not a
particular content is valid.

@ the display attribute which describes how a field iIs presented to
the user.

@ the successor attribute which determines a successor to this field.

The First three of these are determined by the value attribute In FSL.
The successor attribute is the means by which TPS implements the FSL
enter and exiting constructs. Normally, successor of a field 1s the
field i1mmediately following iIn the FSL source. However, depending on
the enter or exiting conditions, the successor of a field may be a later
field, indicating that the fields skipped over are irrelevant. The con-
tent of an irrelevant field is always considered to be the null string,
and is displayed as such, regardless of other attributes.

4.2. Creating a form instance

TPS creates a form instance by evaluating attributes until every
field is erther 1irrelevant or has a valid content which has been
displayed. There is no need to evaluate the attributes In any order,
although, In practice, there Iis a standard order iIn which fields are
usually considered.

An attribute may be given by an expression or some other means and
may thus depend on user input, the content of other fields or iInforma-
tion from the database. Every time an attribute is evaluated, a record
IS kept of any such dependencies. An event is the alteration of data on
which an attribute depends, so an event will trigger the re-evaluation
of any attributes which have had their dependencies altered. The
evaluation of an attribute will then have other effects: altering the
display attribute will cause a field to be re-displayed on the screen;
altering the validity attribute will affect the validity of a field, ad
possibly generate an error message; altering the content attribute will
give the corresponding field a new content and altering the successor
attribute may make certain fields relevant or irrelevant.

The algorithm for completing a form may be wvery simply given as
follons:



whille the form is not complete
wait for an event
whille there iIs an attribute which requires re-evaluation
choose such an attribute
re-evaluate It
depending on the attribute type:
content
give the field a new content
validity
make the field valid
or generate an error message
display
display the field
successor
check the relevancy of following fields

The algorithm described is non-determiniStic, as It IS not speci-
fied In what order attributes are to be re-evaluated. There is, how-
ever, a natural order for evaluating attributes; they are ordered Tfirst
by fields, In the same order as given in the FSL source, and are ordered
within fields in the order given in the algorithm above. Ihe events
will normally be user 1input to fields In the order given in the FSL
source. However, the user iIs not constrained to that order. It IS pos-
sible to select fields at random in the form and enter or re-enter data.

43 . Filing a form instance

The database on which TPS operates has a very sinmple hierarchical
structure; it is viewed as a set of files, where each file iIs a set of
records. A form has associated with 1t a file identifier. When a com-
pleted form iInstance is filed, TPS creates a record consisting of all
the field contents and files i1t in the 1i1dentified file. The record
identifier is the content of the key field.

When filing a record, TPS must iInitiate the updates of other
records. The implementation of updates In the TPS abstract machine is
by a more procedural paradigm than the data collection and validation iIn
form creation, for efficiency reasons. The filing of a document does
not generate events but rather has associated with it the execution of a
procedure which performs all the necessary updates. In FSL, the update
construct 1is associated with the field whose value 1Is updated rather
than the field(s) which causes the update - a feature which reflects the
non-procedural nature of the language. The FSL compiler must therefore
export an update directive to the form which iInitiates the update.

5. Transactions in a multi user environment

Each form defines a class of transactions on the database. FEven
though TPS allows several users to create form instances simultaneously,
the designer of the forms nay assume that all transactions are atomic.
TPS ensures that the total effect of simultaneous transactions is as If
they were totally ordered iIn time. The usual means of providing this



222

integrity were deemed unsuitable for TPS. Normally, a transaction
causes locks to be placed on the database iIn such a way that other tran-
sactions are prohibited from "interfering®™ with it [8,10].

This scheme may be seen to be unsuitable for TPS. Consider the
case where a transaction reads some datum from the database with the
intention of modifying it and writing it back. Such a situation occurs
with the form showmn In appendix A, where the Invoice is used to update
the stock levels (using the "Qty" fields) of product records. The stock
level will be read to validate the "Qty" field and ensure that there is
sufficient stock available to complete the Invoice. Here, a lock must
be placed on the quantity datum which prevents any other Invoice tran-
saction from reading i1t until the original transaction writes back the
altered value when the iInvoice iIs filed. This would cause unacceptable
delays iIn a real time retail environment with certain heavily used pro-
ducts .

Given the data driven nature of form instance construction, there
iIs a natural way of providing database consistency which uses no locks
while transaction (or form instance) construction is taking place. This
method has more in common with that of Rung et. al. [13], although they
do not provide the interactive modification which we use.

In TPS, a transaction has two distinct phases. During the read
phase, no alterations may be made to the database. When data is read
during this phase, no locks are associated with it but a tag 1is pro-
vided. If another transaction alters that data, then the tag is read,
and a message sent back to the transaction which performed the iInitial
read, informing it that that data is no longer valid and the particular
operation must be performed again. During the write phase, a transac-
tion is unrestricted and must operate on valid data. The only lock i1s a
total database lock which allows only one transaction at a time iIn a
write phase. This lock Is acceptable iIn the TPS system since the write
phase, which corresponds to Tiling a form instance, 1is completely
automated and may be performed by a background process without user
interaction. By contrast, the read phase, which corresponds to creating
a form instance, may take an arbitrarily long period of time while the
user enters data. During this time, no locks are created or considered.

5. 1. The algorithm

When TPS evaluates an attribute that reads data from the database,
a note iIs made of the dependency In the same way as for dependencies on
other fields and labelled with the tag associated with the read opera-
tion. IT that data i1s altered, the database server sends a message to
the form interpreter with the tag and that attribute is queued for re-
evaluation in exactly the same way as when the user provides new data or
a field which the attribute uses is altered.

The effect for the user is that the form In use iIs dynanically
updated to reflect the current state of the database. In the exanple
given above, simultaneous Invoice transactions will use the same stock
level to validate the quantity field for a particular product. When an
invoice 1s filed, all other Inwices have the quantity Tield re-
validated 1mmediately and those invoices which become 1nvalid have an



223

error message produced on the screen.

£_. Conclusion

Given the current trends In business data processing towards ena-
user programming, It is our belief that the FSL-TPS combination provides
a poverful yet easy-to-use facility for the solution of many common
office problems and one that will significantly reduce the cost of pro-
ducing such software. In a prototype version of TPS, a complete data
processing system covering financial, stock and staff control was imple-
mented as 63 forms written in FDL [19] by an analyst with very little
computer experience. The whole system required only a few man-months of
effort to construct, once the systems analysis had been completed.

Future developments of the system include enhancements to TPS to
provide a mail facility and the iIntegration of an interactive forms
design editor. This will significantly increase the level of automation
and make available a very powerful tool to the end-user.

REFERENCES

[I] BALBIN 1., POOLE P.C, "A Language for Specifying Forms', Proceed-
ings of the Australian Computer Science Conference ), Sydney,
Australia, (February, 1983).

[Z] BALBIN 1., "A Users CGuide to FSL'" Technical Report, University of
Melbourme, (to appear April 1983).

[3] BERKOWITZ B.T., 'Design of a Language for Coding Data-intensive
Applications Systems'”, MSc thesis,MIT, (Jure 1930).

[4] DATE C.J., "An Introduction to Database Systems”, (3rd edition,
Addison Wesley).

[5G DE JONG S.P., "The System For Business Automation (SBA): A Unified
Application Development System'”, Information Processing 80,
pp-469-474 (1980).

DENIL N.J., "A Business Language', 1BV J. Res. Develop., Vol.24 ®)
(November 1980).

ELLIS C.A., NUTT G.J., "Office Information Systems and Computer
Science”, Computing Surveys, Vol.12 (O pp-27-60 (1980).

ESWARAN K.P., GRAY J.N., LORIE R.A., TRAIGER I.L., "The Notions of
Consistency and Predicate Locks iIn a Database System', Communica-
tions of the AOM, Vol.19 (1) pp-624-633 (1976).

[ FERRANS J.C, "SEDL - A Language for Specifying Integrity Con-
straints on Office Forms.", Proceedings SIGOA Conference on Office
Information Systems, Vol.3 (1,2) pp-123-130 (Jure 21-23,1982).

[20] J.N. GRAY, R.A. LORIE, G.R. PUTZOLU, I.L. TRAIGER., "‘Granularity of
Locks and Degrees of Consistency In a Shared Data Base', Modelling
in Data Base Management Systems, G.M. Nijssen &), pp-365-3A4
(1976).

8 O



224

[11] HAMMER M. HCWE W.G., KRUSKAL V.J., WLADAWSKY 1., "A Very High Level
Prograaming Language for Data Processing Applications', CAOM,
Vol .20 (D) @977).

[1Z] HAMMER M., KUNIN J.S, "Design Principles of an Office Specification
Language'*, AFIPS Conference Proceedings., pp-541-547 (1980).

[213] RUNG H.T., ROBINSON J.T., "On Optimistic Methods for Concurrency
Control.", ACM Transactions on Database Systems, Vol.6 @) pp-213-
226 (1981).

[24] KUO H.C., LI C.H., RAVANTHAN J., "A Form-based Approach To Human
Engineering Methodologies', Proceedings of the 6th Intemational
Conference On Software Engineering, pp-254-263 (1932).

[15] LEBENSOLD J., RADHAKRISHNAN T., JAWORSKI W_M., "A Modelling Tool
for Office Information Systems'”, Proceedings SIGOA Conference on
Office Information Systems, Vol.3 (@,2) pp-141-152. (Q@Qure 21-
23,1982).

[16] LERKONITZ H.C. et al, "A Status Report on the Activities of the
CODASYL End User Facilities Committee (EHFC)", ACM SICMOD RECORD,
Vol.10 (2-3) (August 1979).

[17] LUM V.Y., CHOY D.M., SHU N.C, "OPAS: An office procedure automation
systen’”, IBM Systems Jourmal, Vol .21 @) (192).

[18] MILLER P.B., TETELBAUM S., KINCADE N.W., "BUSINESS - An End-User
Oriented Application Development Language', ACM SICMOD Record,
Vol.12 @ pp-38-69 (October 1981).

[219] POOLE P.C., HOLLIER W.E., "A Forms-Description Language', Proceed-
ings of the Australian Computer Science Conference (4), St. Lucia,
Australia., Vol.3 (IB) pp-143-153 (May 1981).

[2] ROBINSON M.A, "A Review of Data Base Query Languages'', The Aus-
tralian Computer Jourmal, Vol.13 @ pp-143-159 (Nowverber 1981).

[2] SHU N.C., LUM V.Y., TONG F.C., CHANG C.L., "‘Specification of Forms
Processing and Business Procedures for Office Automation'', Report
RJ3040, 1BV Research Laboratory, San Jose, Califomia., (September
1981).

[22] STUART C.J, 'Transaction Processing Using Forms In a Multi User
Environment'”, Technical Report @ appear), University of Mel-
bourme, (0S83) .

[23] THOVAS J.C., GOULD J.D., "A Psychological Study of Query By Exam-
ple', AFIPS Conference Proceedings, pp-439-445 (1975).

[24] TSICHRITZIS D., "A Form Manipulation Systen’’, Technical Report
CSRG-101, University of Toronto, (May, 197/9).

[5] TSICHRITZIS D., "OFS: An  Integrated Form Management System',
Proceedings 1980 Conference on VLDB, Montreal, Canada, pp-161-166
(190).

[26] TSICHRITZIS D., "Form Management, CACM, Vol.25 () pp-453-478
Quly 1982).



225

[2Z7] ZLOOF M.M, "Query By Example', NCC (AFIPS) 1975, pp.-431-437 (1975).

[28] ZL00F M.M., "OBE/OBE: A Language for Office and Business Automa-
tion”, Computer, pp-13-22 (May 1981).

[2] ZL00F M.M., "‘Office-by-Example: A business language that unifies
data and word processing and electronic mail’’, IBM Systems Jourmal,
Vol .21 @ ().



226

APPENDIX A

An Example Fo6nn

REGULAR INVOICE

Invoice No. 1 Account No Name
Address
2Con/Res __  Available Credit
3 Exempt 4 Reg. No. 5 Order No. 6 Rep. No.
7 Settlement Discount [yMn 8 Job No. 9 Non-std y/n
Product Description Qty Tax Unit Price Discount Value
10 1 12 13 14 15 16
17 18 19 20 2 2 23
24 ) 2% 2l 28 29 0
31 K "B "HA D "3H6 37
3 e 40 41 AR 43 v}
45 46 a7 48 49 50 51
Sales tax on $
52 less purchases second hands -
53 superseded components -
5 Instructions TOTAL $

print, clear, delete, exit or avend by field __ blemishesrenter b as discount



A Technique To Identify Implicit
Information Associated With
Modified Code

by

John A. Stankovic
413-5450720

Department of Electrical and Computer Engineering
University of Massachusetts
Amherst, Mass. 01003

Abstract

This paper addresses two of the most difficult problems
related to the modification of large complex systems. The first
problem 1is the (unknown) discrepancy that sometimes exists
between the specifications and the code i1tself. A MAP program
which can eliminate this problem is described. The MAP program
iIs but one of a set of tools for system modification that are
briefly presented here. The second problem is referred to as the
"implicit i1nformation® problem and arises iIn a number of ways,
For example, a programmer making a change to existing code can
cause complicated 1i1nteractions 1In the system causing insidious
errors and violations of specifications. One reason for this 1Is
that certain specifications may be implemented implicitly. A
technique to solve this problem and automatically identify
"implicit information” IS proposed. Specific examples of
identifying implicit information, using PSL as the specification
language and ADA as the coding language, are presented iIn the
paper .

ork was partly supported by the Naval Underwater Systems Center,
t, R.lI. under contract N000140-81-M-MY61.



228

1.0 INTRODUCTION

Large complex software systems are constantly iIn a state of
modification. By modification is meant the process of changing
requirements, specifications, design, or code due to required
functional updates,* performance enhancements, or detected errors.
In other words, large complex systems are usually in all phases
of the Ilife cycle simultaneously with continual modifications
needed for a variety of reasons. The modification task 1is
typically very time consuming, costly, and error prone. It is
necessary to provide designers and programmers with tools
[1,2,4,10,12,13,14,17] to aid this complex modification process.
This paper describes a proposed set of modification tools that
deal with difficult modification problems. We refer to these
problems as the ’specifications to code mapping® problem and the

"implicit information®™ problem.

In section 2 four proposed modification tools and their
relationships are described. These tools are meant to deal
specifically with the two modification problems just mentioned.
In sections 3 and 4 respectively, each of these two problems is
discussed more fully by providing specific examples using PSL as
the specification language and ADA as the programming language.
For this short paper 1t iIs assumed that the reader 1Is somewhat

familiar with PSL and ADA. Section 5 summarizes the results.



229 Page 2

2.0 MODIFICATION TOOLS

Tools such as PSL/PSA [18,19] support the continual change
that occurs In a complex system during the first three phases of
the life cycle (requirements analysis, specification, and
design). During these stages, the system 1is described iIn a
meta-language, PSL. This description is stored in a database iIn
computer processible form. Call this the PSL structure map.
Such a structure map contains all specified entities and their
relationships. See Figure 1 as an example. Using PSA one can
then perform a number of analyses on the structure map. When a
change IS necessary, the PSL description 1i1s modified and
automatic re-analysis via PSA i1s possible. However, once the
coding begins there is a gap between what 1is described by PSL and

what i1s implemented.

It 1s possible to extend the general philosophy of PSL/PSA
to the last three phases of the life cycle (coding, testing, and
maintenance). To do this we have designed a modification
information gathering (MIG) tool, analogous to PSL, that extracts
pertinent information (e.g., control and data flow) from the
actual code and stores i1t iIn computer processible form. We call
this a MIG structure map. A modification i1nformation analysis
(MIA) reports tool, similar to PSA, has also been designed and
operates on the MIG structure map. Both the MIG structure map
and the output of MIA can be displayed on a graphics device. The
tool that provides the display capability is called the

modification information display (MID) tool. The display uses a

sophisticated computer graphics terminal. Finally, another



230
Page 3

program called MAP, 1is then needed to provide a two-way mapping
between the specification (the PSL structure map) and the code
(the MIG structure map)- This mapping closes the gap between
design descriptions and actual code and is an invaluable aid to
the modification process as this paper describes. Figure 2 shows
the relationships between the PSL, MIG, MIA, MID and MAP tools.
In the remainder of this section we provide more detail on the
proposed MIG, MIA and MID tools. The MAP tool 1is treated 1In

section 3.

2.1 MIG

The MIG tool runs on actual code (one module at a time) and
produces a MIG structure map that is used by the MID and MAP
tools. All information about the actual code i1s contained in the
MIG structure map. To provide the flavor of this structure map
this section gives a brief description of some of the iInformation
in the MIG structure map (Figure 3). Other information that is
kept In the structure map i1s not shown eilther because 1t 1is
irrelevant to the subsequent discussions or because 1t cannot be

drawn conveniently iIn the Figure.

For each program unit (an ADA procedure, function, package
or task) four segments are (generated. In addition, a global
symbol table is maintained for the entire system and i1t appears
only with the main procedure. An expanded main procedure is
shown in Figure 3. This iInformation along with information from
other units may be built up over multiple compilation units. The

four segments are:



231 Page 4
1. program unit information segment,
2. formal parameters segment,
3. declarations segment, and

k. statement structure segment.

The program unit information segment contains the program
unit name, type (procedure, function, package, or task), the
nested level, all references to this unit, all external
refer.eflfes fram this tunit including those references> back into

the specifications, whether it i1s recursive, and poiﬁ_ters to any

lower level procedures (not shown in the Figure), etc.

The formal parameters segment contains a complete
description of the formal parameters including their name, data

type and whether the parameters are in, out, or Inout parameters.

The declaration segment contains all variable names declared
or used iIn this unit, the scope of those variables not declared
locally, all references to a given variable (local or non-local),
the type of reference (read-write), pointers to nested
definitions of which this variable is a part, nested program unit
declarations which can in turn have Tfurther program unit

declarations, etc.

The statement structure segment contains the statement type
af, case, assignment, etc.), any nested statements, the
statement"s position iIn the control flow (via pointers), a copy

of the statement itself, etc.



232 Page 5

In summary, the MIG structure map contains all the
information about the actual code as well as pointers back to the

specifications. These pointers are inserted by the MAP program

(see section 3).

2.2 MIA

The MIA reports are very similar to PSA reports except they
use the MIG structure map to obtain their information rather than
the PSL structure map. We envision a number of MIA reports
including Hlisting the overall system module flow, identifying a
program that generates a particular output, Hlisting all programs
that update a particular fTile, show all programs called by or
calling a particular program, printing all data 1tems that a
program uses, print all tasks that can potentially be running in
parallel, given an ADA entity then print all PSL entities related
to 1t, etc. Obviously there iIs a very large set of possible MIA

reports that can operate at various levels of detail.

2.3 MID

The purpose of MID Is to graphically display program and
specification information so as to enhance the modification of
code. The display consists of multiple windows, multiple levels
of detail, and multiple colors. Each window might contain menus,
specification information, control flow i1nformation, data TfTlow
information, and, 1In general, output from any of the modification

tools . It is also possible to display performance and testing

information [14,17] but this 1iIs not treated at this time.



233 Page 6

Mapping information between specification and code and vice versa

is also part of the display and is used when actually performing

modifications.

Figure 4 shows an example of the control flow display and
Figures 5 and 6 are examples of the data flow display. Using
displays such as these a user finds the code to be modified and
then is automatically directed to all explicitly related entities
(that 1s, those entities in the modified code"s control and data
flow), as well as to all related specifications including
implicit specifications. It 1s the wuser"s responsibility to
determine how the modified code affects each related entity. The
important thing though 1is that all related entities are

identified.

In the remainder of this paper we briefly describe the
results of our study on the the two-way mapping between PSL and
ADA. The first part of our study iIs presented iIn Section 3 and
sets the stage for the specific discussion of the implicit
information problem and i1ts solution. This latter description 1is
also related to the mapping and is itself divided iInto two parts.
Section 4.1 identifies the implicit information that can be found
in PSL objects, and Section 4.2 does the same for PSL

relationships. Specific examples are given.



234

3.0 THE PSL/ADA STUDY: THE MAP

A PSL/ADA mapping 1S a  two-way mapping between
specifications and code and 1s a central entity iIn the
modification process. The PSL specification language was chosen
for our study because i1t is In wide use and the information 1in
which i1t deals 1is typical of most specification languages.
Mapping the specifications to code i1s language dependent. ADA
was chosen for the language because of i1ts potential wide use and

because of i1ts facilities for use on large complex systems.

The PSL -> ADA mapping is accomplished by the MAP program
partly automatically and partly with human interaction. The
function of the MAP program is to determine all the 1-1, 1-many,
many-1 and many-many mappings between specifications and code.
The automatic part of the MAP works by requiring two naming
conventions: (@D any PSL entity (any legal construct)
implemented In some way In ADA should use the same name, and (@)

if a PSL entity is implemented by "n" ADA entities one of the "n*
ADA entities should bear the same name as the PSL entity and this
name should be treated as generic with the "n-1* entity names
composed of the generic part and a specific part. For those code
entities iIn which these rules were followed, it is possible to

automatically determine 1-1 and 1-many mappings.

After all automatically identifiable mappings are made then
the MAP program presents specification and code entities (one by
one) that have not yet been mapped. The programmer (using MID)

manually identifies the mappings for these entities. After this



2 3 -

step all remaining 1-1, 1-many and many-1 mappings will Dbe

identified because every specification and code entity 1Is

treated.

The many-many mappings are more difficult to identify, but

they can be identified. Consider the following cases.

CASE 1: Common Subroutines

The picture below shows two specif! cation entities *1* and
«2" In which "1 is implemented by code entities "a* and "b* and

«2” 1s implemented by *b* and "c". This is a general form of a
many-many mapping. The most common case is when entity <b" is a
subroutine. In this case "b" i1s linked to "a* and *c" 1iIn the
code. When the programmer 1is presented <b" as an unmapped
entity, even if he assigns it just spéci fication 11" (or ’2») the
link to the other specification is determined at modification

time through the explicit link between "b” and *¢» iIn the code

itself



236
Page 9

SPECIFICATIONS

! |
detected detected

automatically automhtically
!

|

|

b

|
o O

CASE 2: GENERIC NAMING

Consider the same case as above except that *b* 1is named
using a* as the generic part. In this case 1t will
automatically be linked to *1> and the Ilink to 7”27 will go
undetected. However, it "b" 1s a subroutine as above then the

relationship to "2 will be detected at modification time.

CASE 3: "a", ’b", ’c” DISJOINT.

Consider that there are absolutely no links between "a*, ’b”’
and “c*. Hence when Tb* iIs presented to the programmer he may

assign either M* or 27 without knowing of the other’s

existence. Furthermore, since "b" is disjoint from "a" and ’c
no explicit 1links iIn the code <can 1identify the missing

specification. However, in this <case there will be a link



237

between 11* and *2° iIn the specifications and this will be found

at modification time. Specifications M®" and *2° must be linked
because they need the same entity which is being i1mplemented by

"b" .

Of course, it would be desirable to remove the need for
human 1nteraction. This might be accomplished by redesigning
both the specification language and the programming language to
be a better match. Such a discussion iIs not the subject of this

paper. See [3,7,8,11].

As the mapping between PSL -> ADA occurs MAP also inserts
backward pointers, automatically providing the ADA -> PSL mapping
to be wused by the MID tool when actually making code
modifications. Using the two-way mapping as part of the tool set
MIG/MIA/MID/MAP eliminates discrepencies between the
specifications and the code [13]. We now briefly discuss the

mapping itself In terms of PSL objects and relationships.

3.1 PSL Objects And ADA

Objects and relationships are the primitives used In PSL to
write specifications. There are 28 types of objects and 75 types
of relationships. A PSL object is anything given a PSL name.
Each object 1is given a unique name so that it can be i1dentified
each time It occurs iIn the system description. Consequently, all
occurrences can be collected and analyzed. We extend this by
saying that any PSL object implemented in some way in ADA should

use the same name or generic variation, if possible. This



238

extends the recognition capability to the actual code as
described above. Some specification entities (objects or

relationships) map nicely to code, e.g., a PSL PROCESS object is

either a Procedure, Task, Function or Package iIn ADA.

Other PSL objects have a wide range of options of how they
might be implemented, e.g., a PSL ENTITY object may appear in the
code as a constant, an element of an array or record, or part of

an enumerated type, etc.

On the other hand, not all PSL objects will be found in ADA
code, e.g., the Project Management objects (MAILBOX and
PROBLEM DEFINER), the Organization object (INTERFACE) and the
System Architecture objects (PROCESSOR, RESOURCE, UNIT, and
RESOURCE USAGE PARAMETER). This is because such objects are not
implemented iIn the code. Still other PSL objects provide
implicit information about the system. Examples of this are
presented iIn section 4. Hence, the mapping between PSL objects
and ADA <code 1is certainly not a clean mapping. Table 1

summarizes the allowable PSL objects -> ADA mappings.

3.2 PSL Relationships And ADA

In mapping PSL relationships to ADA code one finds the same
general 1issues as discussed above. First, some PSL relationships
map nicely to ADA code. For example, a PSL UPDATES relationship
between a PROCESS and a SET is any write reference to the ADA
entity representing that set. Second, some PSL relationships are

not found 1In the code. For example, any PSL relationship that



239

refers to objects not found in the code is also not found In the
code (e.g., GENERATES/GENERATED BY relationships when applied tc
INTERFACE objects, and all CONSUMES/CONSUMED BY,
PERFORM/PERFORMED BY, MEASURES/MEASURED BY relationships applied
to any objects because these relationships only apply to objects
not found in the code). In yet other cases, some PSL
relationships have a wide range of options of how they might be
implemented, e.g., the USES relationship can be implemented as
any reference to an object, the CAUSES relationship might be
implemented as an interrupt, task iInitiation or termination, or
the ADA RAISE statement, etc., and the CONSISTS OF relationship
might be 1i1mplemented as almost any structured data declaration.
Finally, as for PSL objects, other PSL relationships often impart
implicit information about the system (see section 4.2). The
complete description of the mapping of PSL relationships to ADA
code can be found i1n [13]. A sample is presented iIn Table 2.
The entire mapping is too large and complex for inclusion iIn this

paper .

In summary, the MAP program has knowledge of the PSL and MIG
structure maps. Using common and generic names fTor entities many
links are determined automatically by MAP. Each specification
not linked to code is presented to the user for manual linking or
an assessment that 1t Is not iIntended to be iIn the code. Hence
every specification is treated and therefore discrepencies can be
identified. After modifications, only modified specifications
and code need be (re)-linked. Certain types of legality checks

on the mappings can be performed by MAP using tables such as



240

Tables 1 and 2.

4.0 IMPLICIT INFORMATION TECHNIQUE

A major problem with the modification process occurs when
one attempts to actually modify the code. Often the changed or
added code itself can be tested and all local bugs removed.
However, there 1s always a potential for introducing errors
beyond those that exist In the new code itself. What 1is needed
iIs some mechanism for determining the effect of this modified
code on the rest of the system. Exacerbating the problem is the
fact that the effect may be felt iIn both explicit and implicit
ways. Explicit interactions between the modified code and the
rest of the system occur via calls and direct or indirect data
references. Explicit interactions in the code can be traced iIn a
systematic and recursive (although possibly tedious) fashion
using a tool such as MID, STRUCT [14], or ESTRUCT [12]. A
programmer or designer can then determine 1f any of these

explicit interacting entities are affected by the modification.

How does a programmer find problems caused by modified code
when the problems are due to implicit relationships that exist In
the system? By implicit relationship is meant any relationship
which i1s not directly implemented by code or data itself.
Examples are provided later 1In this section. It 1is our
hypothesis that a significant number of implicit relationships
can be identified by using MID and MAP. Remember, specifications

often contain descriptions of objects and relationships that are

only implicitly found In the code. Using the technique and tools



241 Page 14

presented here, it 1s possible to automatically detect any such
implicit relationship. That i1s, whenever modifying code, the
backward mapping to the specifications is used to identify both
explicit and implicit specification information associated with
the code entities being modified. Note, any missing implicit
relationships iIn the specifications are an oversight and are

themselves errors.

The technique to identify implicit iInformation associated
with modified code begins with the programmer scanning
(scrolling) through the system code using HID. The code is
displayed in flowchart form. Modifications to the cpde are then
made through MID. All  explicit code entities potentially
affected by this change can then be automatically and
systematically identified using the MIG database. For each of
these potentially affected code entities, the MAP program also
identifies all specification entities related to that particular
code entity, including those specification entities not directly
implemented in the code. That is, some specification entities
may contain implicit information about the system. It 1s the
programmer®s responsiblity to determine 1f any of the related
entities must change. If there 1iIs a subsequent programming
change required, then this secondary change 1i1s treated iIn the
same manner as the first modification, and so on In a recursive
fashion. The process completes when all interactions (explicit
and implicit) are i1dentified, studied and modified, 1f necessary.

In subsections 4.1 and 4.2 some examples of implicit i1nformation

contained In specifications are provided. Then iIn subsection 4.3



242

Page 15

some additional remarks about implicit information in Hlarge

systems are made.

4.1 Examples From PSL Objects

RELATIONS, ATTRIBUTES, and CLASSIFICATION are the only three
PSL objects that are potential sources of implicit information

that affect the code itself.

RELATIONS describe the logical connections between entities.
RELATIONS may map to specific ADA code, e.g., an access type, or
actual code that performs some type of consistency check. In
other cases, the RELATION may not be explicitly implemented in
the code. In this case modifying any of the entities to which
this RELATION refers may invalidate the RELATION unbeknownst to
the programmer. Our technique maps back to the specification,
automatically 1i1dentifying all associated RELATIONS of a modified
entity. In fact, all associated PSL objects and relationships
are found, not Just RELATIONS. The programmer can then check
that this implicit RELATION requirement, as well as any other

requirements, still holds.

More specific examples are now given. Object A (copy 1 of
some data structure) must always be consistent with Object B
(copy 2 of the same data structure). Assume that this 1iIs a
requirement defined as a RELATION object in PSL. Also assume
that the original code meets this requirement by having the two

data structures wupdated together or not at all. A subsequent

modification to the code may erroneously permit the two updates



243 Page 16

to occur at different times. However, with our scheme, changing
either Object A or B, or code that vreferences A or B, will
automatically 1i1dentify the RELATION object which states that both
objects must be updated together. The programmer seeing the
requirement, notices (possibly with the use of additional tools)
that the modification fails to uphold the requirement, sc 1t i?

in error.

The same process of checking all related i1nformation about
modified entities through the MID graphics tool applies to all of

the following examples and therefore we do not repeat this fact.

As another example, suppose PROCESS A has ATTRIBUTE
terminal, i.e., it cannot call any other PROCESS. Assume that
originally this was satisfied by programming PROCESS A as a
procedure that contained no call statements. At some later time
it is easy to violate this requirement (by adding code that has a
call statement) because it is only implicitly satisfied in the
code. Again, our mapping would detect such an error. OF course,
in some cases It may be decided that changing the requirement 1is

needed.

Object A (data structure A) <can be legally accessed by
PROCESS B and C only. This requirement can be stated by a PSL
CLASSIFICATION object. Any modified code, other than in PROCESS
B and C, now accessing Object A is wrong. When checking the
correctness of the modified code its data reference to Object A

is explicit and the associated implicit CLASSIFICATION

information is also found.



Page 17

244

4.2 Examples From PSL Relationships

Over half of the PSL relationships can impart implicit
information about the system. Five examples are presented iIn

this section.

The relationship ASSERT may require that a particular input
buffer hold enough characters to allow double buffering and
prevent a loss of characters at all costs. A code modification
may be made to reduce the size of the buffer for memory
efficiency reasons. However, this reduction may cause iInstances
where characters are lost. Identification of this requirement
(which 1s implicitly implemented by choosing the correct buffer
size based on device speeds) at the time of code modification
should result iIn another calculation of minimum buffer size.

This would avoid the error.

A PSL FOREACH relationship might specify that the salary
field iIn a fTile of employee records be encrypted. Code adding
new records may erroneously omit the encryption of the salary
field. The associated FOREACH relationship would enable the

programmer to detect the error.

In PSL the relationship SUBPARTS implies that the entities
connected by this relationship are completely homogeneous.
Assume a Tile of employee records called workers. A modification
to the code might permit manager records to be part of the file.

While conceptually this 1i1s fine, it Is a violation to the

implicit homogeneous requirement.



245

Page 18

Another PSL relationship is CARDINALITY. A requirement for

a particular system might be that the maximum CARDINALITY of the
instantiations of PROCESS A i1s four. There may be no explicit
code iIn the system guaranteeing this requirement. Yet, because
of the system configuration the original designers were sure that
no more that fTour would ever exist. Subsequent modifications
could easily lose track of this requirement and allow this limit
to be exceeded. In this case any new code allowing a new
instantiation of PROCESS A will identify the CARDINALITY
requirement. Determining i1f the requirement i1s met may still be

quite a difficult task.

DERIVATION and PROCEDURE relationships are comment entries
about RELATIONS or SETS, and PROCESSES, respectively. Whenever
code entities corresponding to RELATIONS, SETS, or PROCESSES are
modified the programmer will automatically be given the
DERIVATION or PROCEDURE comments for determination of possible
implicit i1nformation contained therein. A PROCEDURE comment
about PROCESS A might state "it was decided to use QUICKSORT as
the sorting algorithm because we expect very large lists of
highly unsorted elements.'” A programmer could easily decide to
change the system by substituting another sort algorithm from a
library not knowing the implicitly stated assumptions about the

inputs to the sorting algorithm.



246 Page 19

4.3 Remarks On Implicit Information

We believe that the technique of i1dentifying implicit
information presented iIn this paper can have a substantial impact
on improving the modification process. The technique helps the
programmer or designer avoid many difficult XJi detect errors. To
date, there are no techniques to help detect some of these
errors. However, the technique 1is not a panacea. At times,
implicit relationships exist 1In the system without anyone®s
knowledge. It seems i1mpossible to automatically identify these
relationships. Only through a laborious debugging process are
these 1mplicit relationships found, 1f ever. Once 1identified,
though, they can be added to the specifications and, thereafter,
always identified at the proper time during subsequent

modifications.

In practice, the most difficult implicit relationships to
identify are often related to timing and other real-time 1issues.
This implies that more effort at understanding these issues while
writing the specifications, as well as better facilities iIn
specification languages for describing real-time requirements are
required. If these two things are done then, iIn theory, implicit
information iIn real-time 1issues <can also be handled by our

technique.

Note that the MAP is the tool which 1Integrates the
specification tools with the programming language tools. Such a

MAP tool 1s of utmost 1i1mportance 1iIn developing an integrated

software engineering environment. Another approach, currently



247 Page 20

being actively researched, 1is to automatically generate correct
code directly from specs (either iIn one step or incrementally).
This would eliminate the need for a MAP program. However,  this
research has not vyet progressed enough to be useful for large
complex systems. Until such an occurrence, a MAP program 1is
invaluable. Furthermore, a MAP tool can be implemented with

today®s technology.

5.0 SUMMARY

Modifying the code of large complex systems 1is extremely
difficult and costly. This is often due to the large number o07?
complex interactions In such systems. Good design methodologies
attempt to limit the IiInteractions. Invariably, however, the
programmers are unaware of some of the explicit and implicit
relationships and requirements that exist, giving rise to errors,
This paper reports on a technique to systematically identify
related entities iIn the system, assuming that specifications are
written iIn PSL and that the code is written iIn ADA. This 1is
accomplished by a set of proposed tools, MIG/MIA/MID/MAP. Ac
important result is that even implicit relationships which are
often the cause of the most difficult to detect errors, can be
identified by this technique. OF course, all that is needed to
extend this technique to other specification and/or programming
languages is different MIG/MIA/MID/MAP programs. The tools could
also be extended to 1i1nclude code performance evaluation

[14][15][16] and testing i1nformation.



248 Page 21

Note also, that the mapping between complex languages such

as PSL and ADA requires some human iInteraction. Since

elimination of the need for human interaction is desirable, this
IS where continued vresearch 1is required. Possible solutions
include the use of more formal specification and programming

languages, and automatically generating code from specifications.

The tools proposed here have not been implemented due to
lack of resources. However, we believe that the merit of the
main i1deas presented here i1s shown both by a description of how

to implement the tools and by specific examples of their use.

6.0 REFERENCES

[1] Adam A., P. Gloess, and J. P. Laurent, "An Interactive
Tool For Program Manipulation,”™ Fifth International
Conference on Software Engineering, San Diego, California,
March 9-12, 1981.

[2] Azuma, M., M Takahashi, S. Kamuja, and K. Minomura,
"Interactive Software Development  Tool: ISDT," Fifth
International Conference on Software Engineering, San Diego,
California, March 9-12, 1981.

[3] Cheheyl, Maureen Harris, Morrie Gasser, George A. Huff, and
Jonathan Millen, "Verifying Security,” Computing Surveys.
Vol. 13, No. 3, Sept. 1981, pp.- 279-339.

[4] Felty, James L., and Mark Davis, '"SPAR (Source Program
Analyzer and Reporter),"™ [1R-215-1, Intermetrics, Inc.,
January, 1978.

[5] Ichbiah, Jean, et al, Reference Manual For the ADA
Programming Language, Proposed Standard Document, United
States Department of Defense, July, 1980.

[6] Landwehr, Carl E., "Formal Models for Computer Security,”

Computing Sur.YsLh Vol. 13, No. 3, Sept. 1981, pp-
247-278.

[7] Levene, A. A. and G. P. Mullery, "An Investigation of

RequirementSpecification Languages: Theory and Practice,"”
IEEE Computer. Vol. 15, No. 5, May 1982.



[3]

[°]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

249

Page 22

Ludewig, Jochen, "Computer-Aided Specification of Process
Control Systems," IEEE Computerr Vol. 15. No. 5, May 1982.
Medina-Mora, R., and P. H. Feiler, ""An Incremental
Programming Environment,”™ I1EEE Transactions on S oftware

Engineering T Vol. SE-7, No. 5, September 1981.

Miller, Ed, Tutorial; Automated g f£s.r SeEtMRtrsg
Engineering. IEEE Computer Society, November 1979.

Popek, Gerald J., and David Farber, "A Model for Verification
of Data Security iIn Operating Systems,'"™ CACM. Vol. 21, No.
9, Sept. 1978, pp. 737-749.

Stankovic, John A., Structured Systems M Their Perf9rmanc.fi
Improvement Through Vertical Migration. UMl Research Press,
Ann Arbor, Michigan, 1982.

Stankovic, John A., Software Tools For the Support of System
Modification, Final Report, Naval Underwater Systems Center,
Newport, Rhode Island, January 1982.

Stankovic, John A., "Good System Structure Features: Their
Complexity and Execution Time Cost,”™ IEEE Ir.ahfiAgdL.QJlg. Hu
Software Engineering. Vol. SE-8, No.- 4, pp- 306-318, July
1982.

Stankovic, John A., “Improving System Structure and Its
Affect on Vertical Migration,™ Microprocessing and
Microprogramming. Vol. 8, No. 3,4,5, pp- 203-218, December
1981 .

Stankovic, John A., "TheTypes and Interactions of Vertical
Migrations of Functions iIn a Multi-Level |Interpretive
System," IEEE Transactions gji Computers. Vol. C30, NO. 7,

PP. 505-513, July 1981.

Stockenberg, John E. and Andries van Dam, "STRUCT
Programming Analysis System," IEEE Transactions gji Sgl-tvarfi
Engineering. Vol. SE-1, No. 4, December 1975.

Teichrow, D., and E. A. Hershey 111, "PSL/PSA: A Computer
Aided Technique for Structured Documentation and Analysis of
Information Processing Systems,” XEEE Transactions Un
Software Engineering. SE-3(1) pp- 41-48, 1977.

AN/UYK-7/SHARE-7/URL User"s Manual, Part 1,Electronic
Systems Division, Department of the Air Force, June 1978.



250
Page 23

Figure 1- Hypothesized PS. Structure Mgp

Process B Process D

es/Used By Uses/Used By

Process C
Uses /Used By rogats
Process A
"Object"
name and
type
eceives/
. eceived by ® Other PSL
. ; « Relationships
enerates - Associated with
enerated by Attributes * this Object
Employee-Info Pay-Info

Machine Code

Name

Legerd
Bo<: Representes P dbjects cottaining their rene ad type
Acs:  Represents P9 relatioships

Note: By folloving lirks all related entities can be determined.



FIGURE 2: MIG/MIA/MID/MAP Tools 251
ADA ! ADA OBJECT CODE
a
SOURCE CODE COMPILER
PREVIOUS MIG ‘ 16 TOOL MIG
M
STRUCTURE MAP BN et STRUCTURE MAP
(if any)
(@ MIG
MIG MIA _ ——"RERIS
SIRLCIURE VP RRRSTAL ~ RAHICS
DIFAY
) MIA
PSL
DATA STRUCTURE =
(output from PSL)
specifications db
‘ MAP GRAPHI
‘__.. le —p! MID | I——
TOOL TOOL DISPLA
MIG
STRUCTURE MAP

1 {code database)




Note: This can be built up over multiple separate compilations.

Procedure
MAIN Procedure Level 2 Level 2
Procedure
Level 1
Procedure -
Information (%
ARgmEnk N Procedure »
S Level 2
Forma) Procedure
Parameters Level 4
Procedure Procedure
Level 1 Procedure Level 3
‘r_gr_____.__~——-——v Level 2
Declarations ! "”/,/4’ Vol
§ 4 1 Procedure
Level 4
I
o
Statement o
Segment |
— Statement-———{Statemen S > END
Symbol
Table
Nested
Statement]
R R ‘; N
B y== £ 192 o e —_
roj—= fl= 4 & s | =
e — e —— e e t ~—
r i g s ) e —‘-J
e — e | — ] — d e
n — 0] = Wi e —_—
c — G s : i D iy
e e e
d S d f
n

|
-

FIGURE 3 MIG: Structure Map



253 FIGURE 4: Control Flow Display

PACKAGE
NAME
WITH STANDARD 1/0 « Bold Type ¢ Color-5
PROC
FIND-IT 17
S . ;
Color-6 Hidden Detail
A
FN
Lose-1T Y
S
in Color-3 Hidden Detail
25 PROC
NTER
E Y Hidden Detail
S -see data flow example
|
A:=B
]
C:=D
|
FIND-IT

].END-PACKAGE _L abort statement

S Specifications
S3Hidden Detail

Page 26

Dlar-6

Further
Hidden Detai



Page 27

FIGURE 5: Data Flow Display, Part 1

PROC
EXAMPLE T

some declarations

John:Man;
Ed:Boy;

MARK renames TOM;

other declarations

John
Example
Example-2
Fixed size
Other-module But you
i can scroll
User lightpens name JOHN Many-more through
and asks for all users all names

Note: Only users of this particular
entity "John" are listed.

Note: This 1is the first level of detail.
By now lightpenning the subprogram
name in the above bhox one gets the
actual location(s) doing the refer-
encing. (See Figure6).

*For this figure we use size of 4 but on the.actual display it would
be set to a larger number.



FIGURE 6: Data Flow Display, Part 2 255

Ntfte: Seeing Figure 5 on the screen, suppose a user lightpens the word
"Example™ in the box below the identifier JOHN. He may get the following

display.

IRoc
EXAMPLE 1 JOHN[5]

John Man;

John:=35

1f then
JOhjiii////r

else

end 6f display window

R o

Note: Three references in this module are visible on the display, but
the JOHN[5] display indicates a total of 5 are made. Scrolling the con-
trol flow s necessary to view the other 2 references.



TABLE 1

PSL OBJECT TYPE ALLOWABLE ADA CONSTRUCTS

Attribute All Ada constructs are allowable
Ex. - characteristics of types and
subtypes. BASE, RANGE. FIRST, LAST.
POS, SUCC, PRED. VAL. DIGITS.
ARRAY. MANTISSA. EMAX. SMALL.
LARGE. EPSILON, LENGTH, etc.

Attribute- Specific values of ADA constructs

Value corresponding to Attributes listed
above

Classification PRIVATE and to some extent
visibility rules.

Condition Boolean data type, exceptions

Element Fields of a record, elements in
an array, constants, variables

Ent ity Any ADA data representation, e.g.,
ARRAYS. CONSTANTS, RECORDS, etc.

Event TASK, RENDEZVOUS, SELECT. WHEN.
DELAY. ENTRY. INTERRUPTSCALL

Group TYPES. ARRAYS, RECORDS

Inputs FILE

Interface NA

Interval DELAY or via human interaction

leyeord NA

Mai Ibox NA

Men o Human interaction and comments

Output s FILE

Problem- NA

De finer



PSL OBJECT TYPE

Proce ss

Processor
Relation
Resource
Re seuree-
Usage-
Parajae ter

Secur ity

Source
SET
Synonym

Systea-
Paraaeter

Trace-ley

Unit

257

TABLE 1 Coat.
ALLOWABLE ADA CONSTRUCT
PROCEDURE, TASI, FUNCTION,

PACKAGE
NA

Acess types and human iInteraction

NA
NA

PRIVATE and to some extent
visibility rules*

NA
Any coapound data structure
RENAME

Constants, representation specs,
human interaction

NA
NA

Page 30



Object

Set

Process
Interfaces

Inputs

Outputs

Processes

Processors

- 258

TABLE 2:

PSL
Relationship

Subset of/subsets

Uti lize/Utilized by
Subparts are/part of

Subparts are/part of

Subparts are/part of

Subparts are/part of

Subparts are/part of

Page 31

P RAATIONSHIPS  ADA GIE
P SYSTEM STRUCTURE  RELATIONSHIP

Object

Set

Process
Interfaces

Inputs

Outputs

Processes

Processors

ADA Construct

Implicit in Compound

Structure Declarations

Call statements
NA

In Declaration for
Records of a File

In Declaration for
Records of a File

Nested Declarations
of Procedures, Func-
tions, Tasks and
Packages

NA



457 -

MICRO-PSL and the
Teaching of Systems Analysis and Design

R J Thomas
J A Kirkham

University of Bradford, U.K.

Working Conference
on
Systems Description Methodologies
May 23-27, 1983

Kecskemet, Hungary

IFIP TC2 Programming



260

MICRO-PSL and the Teaching of Systems Analysis & Design

Introduction

Systems Analysis and Design has been taught as an academic discipline at
Bradford for the past ten years to both Postgraduate and Undergraduate
students. In that time our teaching method has slowly evolved from the
traditional approach to Systems Analysis with its well known phases of
investigation, analysis, design and implementation. In this approach the
analysis consisted of the distillation of the results of the initial
investigation into a suitable documented form. This was followed by a
design stage which considered each of the required outputs and then derived
the inputs, files and processes needed to produce them.

No formal step by step methodology was used in this procedure. The students
were expected to acquire the "principles™ of analysis and design by applying
the various tools that they had been given to a large and diverse set of
Case Studies, each of which attempted to simulate a real life situation.
The outcome was inevitable. Good students were able to improvise on the
outline instructions they had been given and were able to synthesise them
into a workable methodology. Poor students were lost. What was needed was
a more rigorous approach - a formal step by step methodology which would
take them from the initial problem definition to the final physical system
specification. (Similar problems of a lack of a formal design methodology
were encountered by teachers of computer programming before the advent of
Structured Programming).

Current Teaching Methodology

Our current teaching is based upon Gane and Sarson's and Page-Jones's
Structured Systems Analysis and Design Methodologies (1),(2). Gane and
Sarson begin the IPS development cycle by describing the flow of information
through an existing system using a logical Data Flow Diagram (DFD). Systems
are modelled using only three basic symbols (Figure 1) which represent an
EXTERNAL ENTITY (a source or destination of data), a DATA STORE and a
PROCESS. Information travels between these three types of object via Data
Flow lines, each such line representing a pipe-line along which the data
named on the line will flow.

Atypical example isshown in Figure 2where a CUSTOMER sends ORDERS which
may be physically contained in a letter, a telephone call or a satellite
link to the process PROCESS-ORDERS. The process is something which we are
interested in analysing and which will subsequently become the subject of a
more detailed DFD. It may be a room full of clerks, a computer program or a
combination of both. It uses data from the data stores PRODUCT-DATA and
CUSTOMER-DATA to check the validity of the ORDERS and if all is well
INVOICES (together with the goods ordered) are sent to the CUSTOMER. At
this point in the definition of the data flow within the system, there is no
mention of how the various activities are carried out. This clearly
differentiates between the logical analysis phase of IPS development and the
subsequent physical design and implementation.

continued



261

MICRO-PSL, Kecskemet, May 1983 ()

The analysis continues as PROCESS-ORDERS is expanded to show the main data
flows within the process, without showing any error or exception handling.
This is called a first level diagram and is designed to show the overall
flow or "big picture” of the system. Figure 3 shows PROCESS-ORDERS
expanded into a typical level 1 DFD. The processes defined at this level
are expanded at the second or lower levels to include the detail of error
and exception handling.

Once the DFD's have been constructed in sufficient detail, the data elements
used in the system are identified, named and placed in a data dictionary.
Figure 4 contains illustrative examples of the five types of forms used to
describe each Data Element, Data Structure, Data Flow, Data Store and
Process within the system.

Gane and Sarson suggest that the data dictionary could be maintained as a
set of index cards with the cards grouped alphabetically within type for
ease of access. However it should be clear that maintaining such a
dictionary would be a much simpler task if the records were held on a
computer. Furthermore the ability to sort, sift and select the data would
then be considerably enhanced.

At the end of this analysis the DFD's and data dictionary make up a
comprehensive description of the system called the iogical functional
specification which describes what the system does (or is to do) without any
reference to its physical implementation. This clear separation of the
specification and analysis of IPS requirements from the subsequent design
and physical implementation of a system is a valuable feature of the Gane
and Sarson approach.

Furthermore, the hierarchical nature of the DFD's imposes a top down
approach to the analysis of information flows, providing a more rigorous
methodology in the analysis phase.

At this point, however, the formal methodology disappears. We revert to our
earlier approach to designing systems. Using our ingenuity and our
experience (where do students get their experience from?) we eventually
arrive at a complete specification of the physical system required to solve
our problems. This specification consists of the traditional documentation
of inputs, outputs, files and processing which we were producing ten years
ago.

Clearly our attempt at devising a complete formal methodology for systems

analysis and design has not made much progress beyond the specification of
requirements and analysis stages of systems development.

continued



262

MICRO-PSL, Kecskemet, May 1983 3

3.

Problems with Current Teaching Methodology

3.1 Our current methodology is a mixture of new ideas (Structured Systems
Analysis) and traditional techniques (Input, Output, Database design).
It lacks a clearly defined step by step methodology which will take us
from the initial problem definition to the final systems specification.

3.2 Gane and Sarson's and Page-Jones' methodologies require the drawing of
a large number of DFD's of varying complexity. Drawing and modifying
the diagrams is a difficult and time consuming task. With the
subsequent computer run diagrams of the physical system to be drawn as
well, it is clear that drawing and maintaining the diagrams is a major
problem.

The Data Dictionary supporting the DFD's is also produced manually.
This is a laborious, error prone procedure and a source of some
frustration among the students. Changes to the DFD's mean
corresponding changes to the Data Dictionary with the consequent
problems of maintaining consistency between the diagrams and the
dictionary.

3.3 Student solutions to Case Studies consist of a set of DFD's, a data
dictionary and a specification of all inputs, outputs, files and
processing required. Checking a single solution manually for
completeness and consistency as well as the "quality” of the proposed
design is a very difficult task. W.ith groups of 25 students or more it
becomes virtually impossible. Something must be done to alleviate this
problem.

Computer-Aided Systems Analysis - MICRO/PSL

We have been aware for some time that a computer could be used to provide
assistance in systems development. In fact in 1977-79 we were using our own
systems documentation software package at Bradford on Systems Analysis
courses (3).

During 1979 we investigated the possibility of using the ISDOS PSL/PSA
system (4) at Bradford but at that time our central computing facilities
proved to be insufficient to handle the package. Consequently, we decided
to try to develop a much smaller package based upon both the language PSL
and the reporting facilities of PSL/PSA.

MICRO-PSL is a software system which has been developed at the University of
Bradford with SERC support. The system is modelled on the PSL/PSA mainframe
package developed by the ISDOS group at the University of Michigan, USA(4).
It consists of a language PSL which is used to describe functional
specifications of information systems, together with a program suite which
analyses the PSL statements and stores the specification on a database. A
Report Package is provided which enables the analyst to check on the
consistency and completeness of the specification.

continued....



263

MICRO-PSL, Kecskemet, May 1983 (4)

4.1 Problem Description in P5L

4.2

Functional models are described by a series of English like PSL
statements which are checked for correct syntax and then stored in a
data base. For example the DFD shown in Figure 2 is written in PSL
as:-

DEFINE INTERFACE CUSTOMER;
GENERATES ORDERS;
RECEIVES INVOICES;
DEFINE PROCESS PROCESS-ORDERS;
RECEIVES ORDERS;
DERIVES INVOICES;
USES PRODUCT-DATA,
CUSTOMER-DATA;
DEFINE SET CUSTOMER-DATA,;
CONSISTS OF CREDIT-STATUS;
USED BY PROCESS-ORDERS;
DEFINE SET PRODUCT-DATA;
CONSISTS OF PRODUCT-DETAILS;
USED BY PROCESS-ORDERS;
DEFINE INPUT ORDERS;
GENERATED BY CUSTOMER;
USED BY PROCESS-ORDERS;
DEFINE ELEMENT CREDIT-STATUS;
CONTAINED IN CUSTOMER-DATA;
DEFINE OUTPUT INVOICES;
RECEIVED BY CUSTOMER,;
DERIVED BY PROCESS-ORDERS;

These PSL statements are input to MICRO-PSL which checks and stores
them in a data base. The first and subsequent levels of the model are
developed in a similar manner and stored in the data base.

Entry of PSL Description

PSL statements are entered into MICRO-PSL by the user of the system via
a VDU. The accuracy of each statement is initially checked for correct
syntax and then for consistency against any PSL statements already
entered into the MICRO-PSL database. The parsed form of the statement
is then displayed on the screen to allow for immediate correction,
should this be necessary.

As an illustration when the statement:-
USES ORDER TO UPDATE PRODUCT-DATA;

has been entered, this would be analysed and displayed on the screen
as:-

USES

ORDER UNDEFINED
TO

UPDATE

PRODUCT-DATA SET

5
Accept, Reject, Edit ?

continued....



264

MICRO-PSL, Kecskemet, May 1983 (5)

4.3

The statement has been analysed into its constituent parts and the
object ORDER is reported to be UNDEFINED. Although the statement is
syntactically correct and would be stored on the database if Accepted,
it may be logically incorrect.

The UNDEFINED message could have arisen from missing the S at the end
of ORDER in which case the user can add the S to the original statement
immediately using the inbuilt editor.

Similarly, the statement:-

USES ORDERS TO DERIVE;

would be analysed and displayed as:-

USES

ORDERS INPUT

TO

DERIVE

Reject, Edit ? OBJECT MISSING

A fatal error has occurred which is reported at the point of failure.
The user can only Edit or Reject the statement at this point, since
Acceptance of the statement is out of the question.

Generating Reports from the MICRO-PSL Database
A sample of the reports currently available with MICRO-PSL are:-

4.3.1 Data-Process-Interaction Report (Figure 5)

This report shows the ways in which the objects in the system
are either received or generated or used by the processes
defined in the target system.

It is used to check on the completeness of the system definition
e.g. Are there any processes which do not generate any outputs
or receive any inputs?

4.3.2 Dictionary Report (Figure 6)

This report presents the definitions associated with each name
used in the description of the target system. It is used by
analysts to maintain the definitions of names in the database
and as a tool for communication with the users of the target
system.

Clearly this report serves the same function as the Data
Dictionary developed using Gane & Sarson's Methodology.

continued....



265

MICRO-PSL, Kecskemet, May 1983 ®

4.3.3 Formatted Problem Statement (Figure 7)

This report provides a complete description in PSL of one or
more names in the Analyser database. Since the FPS presents the
complete information held for any name in the database, it is
usually recommended that an FPS for all names be maintained as a
reference and updated when changes are made to the database.

4.3.4 Structure Report (Figure 8)

This report presents the hierarchical relationships between
objects in the database. It is used by analysts to maintain the
consistency of any structures defined for the target system.

Using such reports individually or in combination, the analyst is able to
check on the accuracy and completeness of the functional specification.
Changes to the data dictionary to correct any omissions or inconsistencies
are then easily accomplished on the computer.

The language used with MICRO-PSL is a subset of PSL. The subset has been
chosen to cater for a teaching environment, e.g. aspects related to the
management of large projects have been omitted.

Similarly the reporting facilities on Version 1 of MICRO-PSL have been
restricted to the Michigan PSA reports which would be of most immediate
value to trainee systems analysts. (FPS, DICT, DPI, NL, STRUCT).

Although MICRO-PSL was originally developed on an FIP1000 computer, it has
since been transferred to our mainframe CYBER computer to provide
simultaneous on-line access to the package for a large number of users. It
will be wused for the first time on Systems Analysis courses by our
Postgraduate students this year where we intend to use it as a Data
Dictionary facility in conjunction with Gane & Sarson's DFD's.

Although we are pleased with the progress on MICRO-PSL and value the
assistance it provides, it is still a long way short of the facilities which
a computer could provide in the systems development process. The following
section deals with the features we would like to see in an improved package.

3. Reguirements for a Computer Aided Systems Analysis Teaching Package
5.1 A Consistent, Complete Teaching Methodology

Our experience of teaching of Systems Analysis during the past ten
years has impressed upon us the need for a formal methodology. This
should provide us with a step by step procedure to follow; which starts
with the specification of systems requirements and ends with the
physical systems design. Two such methodologies have recently been
brought to our notice, one by Winchester (5) and the other by the ISDOS

group (6).
continued....



266

MICRO-PSL, Kecskemet, May 1983 )

3.2 Computer Assistance

When an acceptable methodology has been defined, it would be valuable
in a teaching environment if any computer assistance could be
'methodology driven'. This would mean that a student would be required
to follow a predetermined set of procedures (some or all of which might
be computerised) with the computer package leading the student from
stage to stage of the systems development, as each is satisfactorily
completed.

In terms of individual elements of such a computer package, the advent
of sophisticated graphics terminals makes it even more likely that the
way forward will be through a ‘picture’ based methodology, rather than
the current text oriented ones.

We are currently investigating the problems of developing a graphics
interface to MICRO-PSL which will remove the need for students to draw
the Gane & Sarson DFD's by hand.

Conclusion

As teachers of Systems Analysis and Design, we feel that a satisfactory
teaching methodology for the systems design process has yet to be defined.
We would like to see such a formalism defined as a completely separate
exercise from possible computer assistance to allow us to teach the
principles involved, before applying them to practical applications. Qur
particular interest would then be in the development of computer aids to
support the proposed methodology with emphasis being placed on providing a
useful set of teaching tools.

Bibliography

1.

2.

Structured Systems Analysis - C.Gane & T.Sarson, Prentice-Hall 1979.

The Practical Guide to Structured Systems Design, M.Page-Jones, Yourdon
Press 1980.

Computerised Documentation in the Teaching of Systems Analysis and Design.
R.J.Thomas, Computer Bulletin, June 1979.

ISDOS Project, University of Michigan, Ann Arbor, USA.

Requirement Definition and its Interface to the SARA Design Methodology for
Computer-based Systems. J.W.Winchester, J.R.Hughes Aircraft Corporation
1980.

The use of PSL/PSA with Structured System Development Methodologies. ISDOS
Project, August 1982.

February 1983



46F-

A Hierarchical System Model for Vertical Migration*

by

Gabor David
Computer and Automation Institute Budapest
Hungary

and

Wolfgang Graetsch
University of Dortmund
West Germany

Abstract

In the following paper a new system model for vertical migration
purposes 1s presented. The model is based upon an architecture
description language. It allows especially the modelling of
hierarchical structures which are not only oriented to tradi-
tional software/firmware/hardware borders.

Keywords

vertical migration, system model, hierarchical structures, mi-
gration of functions and data structures

* This work has been partially supported by Deutsche
Forschungsgemeinschaft (DFG) under contract Ri 367/1
and by the Hungarian Academy of Sciences.



268

1 Introduction

Vertical migration is a well known technique to improve the per-
formance of a computing system. In i1ts original form functions
are moved from software to firmware. Generally vertical migra-
tion is applied to existing systems. The rearrangement of func-
tions leads to a partial redesign of a system which may affect
large parts of 1t. Thus system design and models for this pur-
pose play an important role for vertical migration, too. Another
goal of vertical migration 1i1s an iImprovement of the system
structure.

There are two approaches for migration either iInstruction-
sequence oriented or function oriented. The first one 1Is espe-
cially tailored to the architecture interface of a computer
(machine language) . For the more general function oriented ap-
proach Stockenberg |[Sto 78] developed a hierarchical system
model which 1is oriented to the multi-level interpreter hierarchy
(software/firmware/hardware) of a von Neumann computing system.
Up to now this model 1is the only one for function oriented mi-
gration. For each level mapping and execution actions are dis-
tinguished. Mapping actions map flow of control and data parame-
ters from the caller to the level of the called function and
back. Execution actions refer to those steps that perform the
semantic operations for the i1nvoked function.

IT we Mook at the design of-a classical von Neumann computer
there 1Is a strong separation into control and data. We can find
examples for this principle either iIn the CPU, separated iIn con-
trol unit and arithmetic unit, or even iIn application programs
which are separated into data parts (declarations) and func-
tions .

Function oriented migration and underlying system models only
deal with the flow of control iIn a computer. As new VLSI tech-
nology offers possibilities for high speed memories accessible
only by microprograms data migration leads to performance im-
provement as well as structural improvements. One major problem
in VLSI technology 1is the data access through inter-chip connec-
tions. Thus data and functions should not be separated on dif-
ferent storage types but migrated together.

In this paper we Tirst state requirements for a system model
which should be a base for vertical migration. Then we discuss
why the model of Stockenberg and even the improved one by Stan-
kovic [Sta 81] 1is insufficient to fulfill the requirements. Then
we proceed with our system model for migration.

In the fourth chapter the system model 1is applied to parts of
the UNIX operating system [Rit 74]. Finally we discuss the qual-
ity of the model compared to the requirements.

2 Requirements

In general there is a need to have a vertical migration oriented
system model for the following purposes:



269

better understanding of the system architecture which 1s de-
fined by functions, data, and their structure on different
levels (software/firmware/hardware). Note that this defini-
tion covers disciplines like computer architecture or operat-
ing system architecture.

identify the functions and their relations to the whole sys-
tem .

a system model should supply tools for vertical migration 1in
the general sense where the system is multi-layered iIn its
firmware and even hardware structure

The requirements derived from these purposes stated above are:
A system model should

1. provide a multi-level system description which is not only
oriented to traditional software/firmware/hardware borders.
For instance large software systems may be hierarchically
structured with several levels, too,

2. offer level-independent language and language primitives, the
same formal language should be used for description (specifi-
cation) of any system level,

3. be realization independent,

4. support a method to i1dentify and isolate the functions to be
migrated taking control flow and data accesses iInto account,

5. support verification methods iIn order to verify functions
which had been migrated and to verify that part of the system
in which migration had been performed,

6. be computer aided because of the growing complexity of sys-
tems ,

7. contain interfaces to monitoring tools. Performance monitors
are used 1iIn order to get iInformation about the dynamic
behaviour of a system. Then migration candidates are select-
ed .

In the following subsection we discuss why the
Stockenberg/Stankovic approach only partly fulfills the require-
ments. The approach serves as a global system model. A detailed
analysis of UNIX [Bio 82a] however showed that we can find many
smaller levels i1nbetween not covered by their model. Thus (1) 1s
partially fulfilled. Further theilr approach does not fit the
criterias of level 1ndependent language primitives (2) and part-
ly only (4). Concerning the fourth point Stankovic [Sta 81] im-
proved their original model treating functions and data struc-
tures together. Components (modules) in his system model are in-
terconnected according to coupling and cohesion parameters of
the Structured Design methodology [Mye 76]. This heuristic
methodology had been originally developed iIn software engineer-
ing research but poorly supports the vertical migration process
of functions and data.



270

Requirement (3) i1s fulfilled as well as the the Ilast one (7).
This means that an interactive evaluation system [Sto 75] had
been developed which graphically represents the system structure
In connection with monitoring results. So computer aided model-
ling (6) 1s partly achieved. Finally it should be noted that no
verification methods (6) are provided.

3 A New System Model based on Architecture Language

3.1 Definitions
Modern programming languages offer a module concept which can be
classified as a software counterpart of a frame, the basic enti-
ty iIn Architecture Language (AL).
The basic i1deas of AL are
the arcitecture (including data and functions iIn every system
level) can be described componentwise i1ndependent of the
realization
every component can be represented as a frame

a frame can be manipulated i1ndependently from others (change,
test , verify)

In our terminology a model of a system is a triplet (PDS,PF,SF)
- PDS : primary data structures used by the primary functions

- PF = set of primary functions

- SF  : set of system functions

This definition is very general and covers the interfaces which
enclose the analysed system. By vertical migration the set of
primary functions will not be affected, migration 1is performed
only inside.

A model of a level of a system is also a triplet (DS,EF,DF).

- DS : 1is the set of data structures involved 1In this system
level

- EF : i1s the set of elementary functions provided by lower
levels. At least EF 1i1s contained in or equal with the

lowest level (PF)

- DF : 1is the set of defined functions for higher levels
On the highest level DF contains or equals with SF

As an example we consider a model for the migration of operating
system functions to the firmware level. In this case

PF : are functions defining the microarphitecture (for exam-
ple ALU functions or functions of the memory management
unit). They are used by microprogrammers and provided
by the hardware



271

SF = system calls defining the operating system interface.
These functions are either used by system and applica-
tion programmers

PDS: provided by the hardware like internal and general pur-
pose registers, main memory, processor status word.

A detailed analysis of UNIX results In a 25 level hierarchical
structure [Bio 82a]. For instance an 1/0 system provides a set
of access functions for the attached 1/0 devices as defined
functions. Elementary functions which are needed are process
synchronization, timing Tfunctions, and buffer manipulation
routines. Higher Ilevels like parts of the file system make use
of the functions DF defined by the 1/0 system.

Let us assume two level models which are illustrated 1i1n Tig.
3.1:

System:

SF (System Functions)

OS[A1,EF[A1.DFIAT) Level A
OCSB1.EFBI1.DFBD Level B

PF (Primary Functions)
We iInvestigate three kinds of relations, either between
functions (see section 3.2)

data structures i i i i
(DS[A] # DS|B], relations # will be discussed and explained
in section 3.3)

access relations of functions to data structures

For data migration it is iImportant to classify data accesses.
For instance on a machine language level data accesses 1Iis
performed via several addressing modes. Concerning complete
functions data accesses to complex structures consists of
search or update operations. More details concerning this re-
lation can be found iIn [Bio 82b].

3.2 Function Structure Relationships

Thene are following relations between elementary and defined
functions:

EF[A] = DFJA] Within a level A another s.et of defined fTunc-
tions can be derived. In other words defined
functions use (call, i1nvoke, activate) elementa-
ry functions provided for this level.



272

EF[A] <= DF[B] Elementary functions of model A equal with the
defined functions of model B. This relation
expresses the connection between consecutive
levels.

The steps of system modelling for vertical migration include:

find pairs of consecutive level models A,B, for which elemen-
tary functions EF[A] <=> DF[B] (defined functions)

perform inside the transformation EF[A] = DFJA]

repeat these steps such a way that the primary functions PF
<=> EF[L] equals the elementary functions of the Ilowest level
L and the defined functions DF[H] <= SF for the highest lev-
el H.

3.3 Data Structure Relationships

Vertical migration experiments of functions from software to
firmware demonstrated that the achieved performance improvement
was less than originally intended [0Olb 82]. One reason 1is due to
the fact that data which iIs accessed by microprogrammed func-
tions resides In main memory. Thus read/write cycles during mi-
croprogram processing iIncrease the execution time.

Furthermore if virtual machines should be implemented by means
of wvertical migration structural imbalances remains. Functions
and data are separated on different types of storage (writable
control store, main memory).

Our modelling approach provides a base not only for migration of
functions but for migration of data structures, too. Thus the
important role of data structures for system design and complex
relationships between various types of data iIs Investigated.

In the following section we will defines some data structure re-
lations. Elementary data structures iIn Architecture Language
notation are described iIn [Dav 81]. They consist of data types
bit, byte, word, integer, real, character, and boolean. Struc-
tured data types can be constructed by array or record declara-
tions. We will refer to the following data type declaration in
the next sections:

structure rec <S[1]:T[1].SI2]1:T[2],---.SINn]:T[n]>;

S[i1]"s are selectors of record components and T[i]"s are basic
data types or have been already defined. The declaration of an
actual 1instance (REC) of this type has the form

structure(rec) REC;

-Moder software development should be based upon a module con-
cept . This means that functions and data are grouped into
modules. Data can only be accessed by functions iIn that particu-
lar module. Modules can be grouped iIn hierarchical structures.
They are interconnected only by function calls. Concerning this
ideal structured system relations DS|JA] # DS[B] defined below



273

would be empty. This ideal scheme i1s not always possible to iIm-
plement because hardware related tasks (resource management) of
operating systems leads to relations defined below. There are
following possible relations and operations on data structures
crossing level boundaries:

%
REFINEMENT

Formally the declaration
structure rec <S[1]:<s[11] :T[11], -- ,s[Im]:T[LIm]>, -..,S[n]:T[n]>

iIs a refinement of the data type 'rec” iIn i1ts component of type
T[1] selected by S[1]-

Another way iIs to redefine T[1] by
structure T[1] <s[11]:T[11],---,s[Im]:T[Im]>

in the same frame but iIn this case the data type 'rec’” would be
refined by those T[i] (1=l,...,n) components, for which T[I] =
T[1]- So these two ways to refine a data type are not
equivalent .

Refinement plays an important role during system design. In the
UNIX file system Tile names are specified by the user by path
names, each subcomponent specifies a directory. The task of the
logical file system is the conversion of a path name Into a
unique Tile 1identifier.

Within the next lower level, the basic file system, fTiles are
only 1identified by a unique number. Files are organized on a
disk In units of 512 byte data blocks. The conversion of path
names 1s supported by directory files containing one entry for
each file. The first part of an entry is a name field (part of
the path name), the second part is a unique FTile i1dentifier ei-
ther to specify the fTile itself iIf the path name 1i1s completely
scanned or the next directory. So we can see that a directory
file 1s a refinement of a normal file data block.

ALLOCATION

If a software function is migrated to the firmware implementa-
tion level address calculation for arrays or records have to be
implemented explicitly. Normally this is done by a sequence of
compiler generated machine instructions.

Additionally If we consider data migration to a new high speed
memory which 1s only accessible by microprograms completely dif-
ferent storage access functions have to be used.

Let us assume that x is an already defined data type and REC 1is
declared as above. Then

REC <§j x>

iIs an allocation statement. So REC[SJ] can be wused on the
current level (and on higher levels) as an x-type and on lower
levels as the original Tj-type.



274

A realistic example In the UNIX system is the "user" data struc-
ture describing the state of a process In the system (open
files, user identification, 1/0 operation parameters). Let us
assume W (virtual memory) as the data structure for main memory
which is addressed by virtual addresses. The actual ‘'user”
structure which represents a running process iIs always located
to the same virtual address 0140000 (octal value). This relation
can be expressed as

VM <0140000 : user>

On a lower level however VM [0140000] specifies a single byte.
Internally a change from one active process to another ready one
can be performed changing the content of a dedicated memory
management unit register. This hardware unit performs the map-
ping from physical to virtual addresses.

EXPANSION, REDUCTION

Again we try to motivate this relation by an example. The UNIX
operating system kernel contains large data structures
(records). An analysis [Hen 81] showed that many data structures
are overloaded: Too many functions access the same data struc-
tures. No module concept i1s followed iIn the UNIX system. Simi-
lar experiences have been reported for large IBM operating sys-
tems. Vertical migration investigations [Bio 82b] also demon-
strated this problem: If a data structure 1is migrated all the
accessing functions have to be migrated too. But as a fast local

store for microprograms is limited iIn size this is not possible
in any case.

Originally these data structures had been designed step by step
according to the hierarchy imposed by the calling relationship
of functions. At a low level the structure name and a few com-
ponents are TfTixed. Going to higher levels more components are
needed which results in the final data structure design. It we
want to migrate functions and data we have to iInvestigate the
original design iIn order to isolate data and function parts of
the system.

Formally a sequence

structure r ;
structure r<S[1]:T[1]>;
structure r<S 2] TI2]>;

structure r<S[n]:T[n}>;

declares the same type as "‘rec” . The single declarations iIn each
line can be i1ncluded at different levels of the hierarchy.

In the UNIX file system files can be grouped 1i1nto directories.
Even directories can be comprised In new ones. This results In a
tree like structure of all directories and files iIn the system.
In this scheme files and directories can be uniquely specified
by path names.



Formal ly 275

structure filesystem <P[l1]:directoryP[n]:directory,
P[n+1]:Ffile, ..., P[m]:file>

P[i] are appropriate path names. Data types directory and Tile
may be already defined. For instance this TfTile system can be ex-
panded by

structure filesystem <P[k]:directory>
for a new path name P[K].

We say that B is a REDUCTION of A if A i1s an EXPANSION of B.

EXTENSION ,RESTRICTION,EQUIVALENCE

These relations are meant as for sets. DSJA] is an extension of
DS[B], if DS[A] contains DS[B]. In this case DS[B] is a res-
triction of DS[A]. If both conditions are valid they are
equivalent sets of data structures.

Especially for protection iIn operating systems a reader can iIma-
gine the importance of relations like RESTRICTION and REDUCTION.

3.4 Frames Put Together to Make Models

A frame in AL consists of an iInterface, specification, and 1Im-
plementation part. In the iInterface part the data structures DS
are declared. In the specification part the set DF (defined
functions) 1is specified. The set of elementary functions is iIm-
plicitly declared by the undefined function symbols of the actu-
al frame. Furthermore there are elementary functions of AL i1t-
self (e.g. assignments, control structures) from which AL as-
sumes a default interpretation. It is also possible to redefine
them during system design.

It should be noted that the specification part will never be ex-
ecuted. The iImplementation part describes how the functions are
performed.

The typical steps In AL are to put frames together

merge two frames F[X] and F[Y] into one F[Z] = F[X] + F[Y]
Thereby the number of defined functions but also the number
of elementary functions 1iIs iIncreased.

invoke a frame F[Y] from the implementation part of some oth-
er frame F[X]

Thereby for the combined frame the number of elementary func-
tions 1is reduced

A model M[X] = (DSIX],EF[X],.DF[X]D of a system level X <can be
described by means of a frame F[X]-



276

FRAME F[X] (input parameters; output parameters)
INTERFACE
description of DS[X];
SPECIFICATION
definition of DF[X];
description of processes activating these functions;
activation by guarded commands [Dij 75]
IMPLEMENTATION
may be either software, firmware, or hardware
invocation of other frames;
ENDFRAME

On this base vertical migration can be performed In two dif-
ferent approaches:

do not change iInterface and specification, change only the
implementation part (for instance from software to firmware)

- restructure the system at least partly thereby changing in-
terface, specification, and implementation parts of some
frames .

Less attention has been paid iIn the literature to an activity
which consists of deciding on the hardware/software implementa-
tion of functionality iIn any particular level. Once the func-
tional design of a system is complete (interface and specifica-
tion) the implementation activities should take place separately
but 1teratively until the desired system attributes seem to be
best attained.

Chapter 4 contains an example of AL for a small part of the UNIX
system. Especially the invocation scheme between frames has to
be carefully investigated for vertical migration purposes:

todays computer architectures do not utilize a firmware to
software subroutine call.

Generally iIn a multi-level interpreter hierarchy control flow
is limited such a way that functions can only activate other
ones on lower levels but not In the opposite direction. This
iIs the reason why the hierarchical calling rule have always
to be kept i1f functions move downwards by vertical migration.

iT there are loops in the procedure calling graph on the
software level however we have to think about a redesign or a
combination of all the functions involved iIn this loop Into a
single level, described by a frame. Then we can decide for
an appropriate implementation, iIn this case eilther software
or firmware.

in hardware there are no software concepts like a subroutine
call with a shared usage of functions. If the hardware level
is involved iIn vertical migration the structure of the system
has to be restricted iIn this respect

firmware monitoring [Hoi 82,Gra 82] had been especially
tailored to the measurement of software functions as a base
for vertical migration decisions (and requirements for archi-
tecture support).



277

4 Case Study of an Operating System Memory Management Function

The fTollowing small example has been taken from the UNIX operat-
ing system running on a PDP-11 computer. Implementation details
have been omitted as far as possible In order to be understand-
able for a reader not fTamiliar with details. The function
"memory-allocate"™ performs an algorithm for main memory manage-
ment according to a first fit strategy. Although the example is
very small 1t should be general enough. Furthermore i1t 1iIs a
well known algorithm known from operating systems. Two major
problems are discussed along with the presentation of this sim-
ple example

- Tfunction refinement problem
Up to what extend should a function be refined (decomposed)
into smaller ones before parts of it are migrated to a lower
level (which functional refinement i1s appropriate for a cer-
tain 1mplementation level).

the distinction between strategies and mechanisms

A general accepted rule for migration states that only so
called mechanisms should be migrated [Bro 76]. Strategy
routines should be avoided for migration to lower implementa-
tion levels because changes are more likely to occur.

IfT we consider the resource main memory it can be modelled as
structure M < [1:248K] : bit(8) >

For the declarations a shorter notation 1is wused (IK equals

1024). Memory as seen from the machine architecture interface

Is accessed usually via a memory management unit, thereby speci-
fying virtual addresses instead of physical addresses.

structure W < kernel-space : [1:56K > b1t(8)
user-space : [1:192K] : bit(8)
1/o0-page : [1:8K] > b1t(8) >

The selection either of kernel space and 1/0 page or user space
depends on the actual mode of operation. One task of the
operating system iIs the management of the user-space among a
varying set of processes. The frame "memory-allocate™ manipu-
lates a data structure "user-space-map'" for this purpose:

structure user-space-map < [0:N]:
< size : bit(16), /* size of a free storage block */
< addr : bit(16) > /* start address of a free block */

Continuous storage blocks are obtained from this pool.



273

FRAME memory-allocate(map,required-size ; map,return-address)

INTERFACE
struct(user-space-map) map;
bit(16) required-size,return-address;

SPECIFICATION
bit(16) i;
iIfT (required-size > 0)

then search-for-enough-space (map,required-size,i);
allocate-resource (map,required-size,
return-address,i);
compress-resource-map (map,i);

iIT (required-size <= 0)
then return-address = 0O;
IMPLEMENTAT ION

two-comp-table-search (map,required-size; 1);
allocate-table (map,required-size,i ; return-address ,i);
compress-zeros (map,i; map);

test-zero (required-size; return-address);

ENDFRAME

In the first line iInput and output parameters separated by a
semicolon are specified and further precisely defined iIn the in-
terface part. Data structure "map" is changed by the frame. So
it has to appear either as input and output parameter.

In the specification part two guarded commands controls the ac-
tivation of the following processes. This implies that the se-
quences defined subsequently can be executed in parallel. AL
specification offers on each level actually modelled the possi-
bility for parallel processing. As vertical migration is a tech-
nique for monoprocessor systems parallelisms is a possiblity
only for lower levels. Firmware structures for iInstance offers
possibilities for parallel execution.

Mainly iIn the specification of this frame a functional decompo-
sition 1s performed. The functions specified here must be exe-
cuted by the i1nvoked frames of the implementation part which is
written in a data flow language. The invoked frames with actual
parameters are given iIn fig. 4.1.



279

required-
map size
! T T
! v :
! v 1 i
' 1 TWO-COMP-TABLE- ! ! v
vl SEARCH _ I TEST-ZERO
[ | j ? I
1 1 : 1
L ! Vi ! !
J \Vi V; J 1
1 = ALLOCATE-TABLE =<——— | :
- I 1
>
\Y \Y
; COMPRESS-ZEROS !
- ! |
!
Vv map VvV return-
address

Figure 4.1: Data flow diagram of memory-allocate

In the following we will describe the iInterface and specifica-
tion parts of the invoked frames.

FRAME two-comp-table-search (map,required-size; 1);

INTERFACE
struct (user-space-map) map;
bit(16) required-size,i,m;

SPECIFICATION

function search-for-enough-space (map,required-size, 1);

begin
m = 0;
while(map[m][size] < required-size && map[m][size] > 0)
m =m+ 1;
it (map[m][size] =0 ) 1 = -1;
it (map[mj[size] >= required-size) 1 = m;

end

search-for-enough-space (map,required-size ,i);
ENDFRAME

This frame implements a search algorithm looking for the TFirst
free slot which fits the requirements. If the strategy has to be
changed for instance to best fTit only this frame is affected and
has to be modified.



280

For a software implementation the reader will easily verify that
this refinement 1s too detailed. For a firmware version however
this refinement iIs appropriate if It Is compared with the com-
plexity of a normal machine instruction.

FRAME allocate-table (map,required-size,i ; return-address,i);

INTERFACE
struct (user-space-map) map; _ i i
bit(16) required-size,i,m,return-address;

SPECIFICATION

function allocate-resource (map,required-size,
return-address,i);

begin
if (1 = -1) return-address := O;
if (i >0 ) return-address := map[i1][addr];
map[i][size] := map[i][size] - required-size;
map[i1][addr] := map[i1]][addr] + required-size;

end

allocate-resource (map,required-size,return-address,i);
ENDFRAME

FRAME compress-zeros (map,i; map);

INTERFACE
struct (user-space-map) map;
bit(16) i

SPECIFICATION

function compress-resource-map (map,i);
begin

if (1 > 0 && map[i][size] = 0)
then begin
k =1+ 1;

while (maplk][size] > 0)
beg iIn

map[k-17 := map[K]; k := k + 1;

end ;

compress-resource-map (map,i);
ENDFRAME

Frame 'compress-zeros'™ shifts the memory map from the end of the

table to the empty slot (if any). Thereby the end of the user
space map must be iIndicated by a zero field. The implementation



281

parts are omitted iIn this example. [In the specification parts
functions are activated without any guard. In this case a short-
er notation is used which means that the guard is always true.

By now functional, structural or topological, and the modeling
completeness can be checked:

Functional completeness

In the frame memory-allocate the elementary Tfunctions are
search-for-enough-space, allocate-resource, and compress-
resource-map. The mmplementation part invokes frames, in
which these functions are defined functions. The definition
there use only AlL-defined functions which are elementary
ones. So there 1is not any function open iIn this context. The

functional completeness i1s checked using the SPECIFICATION
parts only.

Data structure completeness

In our example we start from the IMPLEMENTATION part of the
frame memory-allocate (see fTig. 4.1). For each iInvoked frame
it iIs easy to verify that the parameters are matched. This

type of completeness is frequently refered as the topological
one .

Modeling completeness

From the SPECIFICATION parts of the frames two-comp-table-
search, allocate-table, compress-zeros, and test-zero and
from the IMPLEMENTATION part of the frame memory-allocate it
can be verified that the specification of memory-allocate
will be executed correctly by the implementation. The under-
lying assumption 1is that the invoked frames will do what 1is
stated iIn their SPECIFICATION parts. This completeness 1iIs a

local one because this 1is applied to the frame memory-
allocate only.

5 Conclusion

We fTinish this paper comparing the requirements and explaining

how a system model based on Architecture Languages satisfies
them :

multi-level system description (1), realization i1ndependency
©)

Frames are connected only via implementation parts. They can
invoke each other. Actual parameters are specified by data
lines. Frames are the components realized either by software,
firmware, or hardware. Specification parts of diffent frames
are iInvariant against changes of the 1i1mplementation part.
Thus multi-level system description is achieved which is also

realization independent in i1ts interface and specification
part .

level independent language (@)

IS a requirement which is achieved for the 1interface and
specification part. Data lines connecting frames are formal-
ly defined by data structure declarations based upon the
smallest unit which is a bit. Specifications are defined In a
formal language i1ndependent of the realization.



282

identification and isolation of functions and data (4)

There are no global variables in the language concepts of AL.

Each data structure used by a function must appear in the iIn-

terface part. Functions can invoke other functions with the

specified parameters of the interface. Data structure rela-
%ions have been defined precisely In section 3.3. In this
orm

they can appear in different interface parts of frames.

verification (5)_ o i i

In AL the following verification methods are assumed: simula-
tion
pleteness. The check for completeness is a part of the syn-
tactical analysis, so 1t can be automatically be performed.
Another method 1is the logical completeness based on guards.

and check for the functional and data structure com-

computer aided methodology (6)
AL 1s not a manual method but a computer aided one because
the description of frames 1i1s based upon formal languages.

interfaces to monitors (7) i i i i
Dynamic parameters of monitoring are assigned to functions in

the

specification parts. On this base vertical migration de-

cisions can be made.

6 Literature

[Bio

[Bio

[Bro

[Dav

[Dav

[Dij

82a]

82b]

76]

80 ]

81]

751

Block, H. , Graetsch, W., Kaestner, H.

Documentation of the UNIX System

Internal Report 4, Project Vertical Migration, Univer-
sity of Dortmund 1982

Block, H.
Untersuchung zur Migration von Datenstrukturen
Diplomarbeit, Universitaet Dortmund, Oktober 1982

Brown, G.E., Eckhouse, J.R.
Operating System Enhancement Through Microprogramming
Sigmicro, March 1976, Vol. 7, (29-33)

David, G.

Restructurability - A Tool for System Development,
Proc. IFIP Working Conf. on Firmware, Microprogram-
ming and Restructurable Hardware, Linz, 1980 North-
Holland , 1980, (135-158)

David, G. , Losonczy, |I., Papp, S.D.

Language Support for Designing Multilevel Computer,
Systems. Handler, W. ed. CONPAR®"81, Springer Verlag
Lecture Notes on Computer Science, Vol 111, 1981,
(85-100)

Dijkstra, E.W.

Guarded Commands, Nondeterminancy and Formal Deriva-
tion of Programs

Comm. ACM, 18, 8(1975)



IGra

[Hen

JHol

[Mye

[01b

[Sto

[Sto

82]

81]

82]

76]

82]

74]

81]

75]

78]

283

Graetsch, W., Kaestner, H.

Firmware Monitoring of the UNIX Operating System,
Internal Report 5, Project Vertical Migration, Univer-
sity of Dortmund 1982

Henry, S. Kafura, D.

Software Structure Metrics Based on Information Flow
IEEE Trans, on Software Engineering, Vol . SE-7, No. 5,
Sept. 1981

Holtkamp, B., Kaestner, H.

A Firmware Monitor to Support Vertical Migration Deci-
sions iIn the UNIX Operating System,

15th Annual Workshop on Microprogramming, Oct. 1982
Palo Alto, California

Myers, G.J.
Reliable Software Through Composite Design
Mason/Charter Publishers, London, 1975

Olbert , AG.

Crossing the Machine Interface

15th Annual Workshop on Microprogramming, Oct. 1982
Palo Alto, California

Ritchie, D.M., Thompson, K.T.
The UNIX Time Sharing System
Comm. ACM, Vol. 17, No. 7, (365-375)

Stankovic, J.A.

Improving System Structure and its Affect on Vertical
Migration

Microprocessing and Microprogramming 8 (1981), 203-218
North-Holland Publishing Company

Stockenberg, J.E., v. Dam, A.

STRUCT Programming Analysis System

IEEE Trans. Software Engineering, Vol. SE-1, No. A4,
Dec. 1975

Stockenberg, J.E. van Dam, A.

Vertical Migration for Performance Enhancement iIn Lay-
ered Hardware/Firmware/Software Systems,

Computer, Vol. 11, No. 5, (39-50)






IU 5

METHODOLOGY -for SYSTEM DESCRIPTION
USING THE
SOFTWARE DESIGN é& DOCUMENTATION LANGUAGE

by
HENRY KLEINE

ABSTRACT

The Software Design and Documentation Language <SDDL> can be loosely
characterized as a text processor with built-in knowledge of, and
methods for handling the concepts of structure and abstraction which
are essential for developing software and other information intensive
systems. Several aspects of system descriptions to which 3DDL has-
been applied are presented and specific SDDL methodologies aevelcped
for these applications are discussed.

INTRODUCTION!

The Software Design and Documentation Language (SDDL) [17],
originally conceived as a simple, convenient pseudo code processor for
developing program designs has evolved into a more sophisticated tool
which can now be applied to a broader range of software development
tasks. The evolution of SDDL includes many improvements to the
language and the computer processor but the primary growth is in the
area of new discoveries in methodology [18,193. Thus, SDDL
capability has expanded upward in the hierarchy of system description
actions to include activities such as the specification of general
system requirements and program functional requirements. It has
expanded downward to include documentation and pretty-printing of
structured programming languages, and it has expanded laterally to
include methods for describing rules and formats for specifying
program input data. It has even developed tangentially to include
methodology for handling genealogical family trees. In general, the
scope of SDDL has grown in the direction of handling information that
is best <conceived and represented in a structured format.

This paper presents the results of one phase of research carried out
at the Jet Propulsion Laboratory, California institute of Technology,
under Contract NAS?-108, sponsored by the National Aeronautics and
Space Administration.



286

As the author of SDDL | am pleased to acknowledge my contribution to
this technology but the greater credit tor its current utility as a
software development tool belongs to the many users who have contri-
buted imaginative methodology and suggestions tor improvements in the
capabilities of the processor itself.

SDDL OVERVIEW DESCRIPTION

SDDL can be described simplistical 1y as a language processor with
built-in knowledge of and methods for handling the ~concepts of

structure and abstraction which are fundamental to software
development specifically and to the description of information
intensive systems in general. SDDL is comprised of a language, a

processor, and methodology for their use. The SDDL syntax consists of
a small set of keywords which are used to create design structures in
the manner of Structured Programming CI1,3,9,111 and a set of
directives which provide the user with control of the SDDL processor
formatting functions.

Since SDDL only formats the input and does not produce executable
code, only two structures, the Module and the Block, are needed to
specify a design. Modules are used to represent abstractions which
are complete and independent enough (a subjective user opinion) to be
treated as separate entities. Modules are given descriptive names and
their interrelationships are stated explicitly by means of a module
invocation statement reference (analogous to a programming language
CALL statement) within the module. Blocks are the lower level
constructs, such as iterations, conditionals and sequences which are
used to represent concepts or algorithms internal to a module. Both
kinds of structures vrequire an initiator keyword statement and
optionally may have a terminator, a substructure, and/or an escape

keyword statement. A keyword statement is a statement which begins
with a predefined keyword such as CALL, IF, ELSE, etc. The user can
use pre-established sets of keywords or may define keywords

specifically tailored for the task at hand.

The actions taken by the processor in response to keyword statements

are quite simple but effective for communicating structured
information. Indentation of statements within structures and flow
lines which highlight both structure escapes and module invocations
provide a visual, two-dimensional information display that is

topologically equivalent to a conventional flow chart. This technique
captures most of the advantages offered by flow charts without their
attendant disadvantages. This formatting capability is illustrated
throughout the example in Appendix A.

SDDL Directive statements provide the user with the means to control
document formatting and to direct the production of cross reference
tables and other document summary information. The functions
performed by the SDDL processor are summarized in the following list:



287

Document Formatting:

Line numbering -for input file editing.

Indentation to display structure logic.

Structure logic error detection.

Flow line arrows to accentuate structure escape statements.
Flow line arrows with page references to module invocations.
Special handling for title pages and commentary text segments.
Input and output line continuation.

Line Splitting (partial right justification of output Ilines)

Document Summary Information:

Table of contents.

Module invocation hierarchy (tier chart).

Module cross reference table.

User selected cross reference tables.

General cross reference table (includes all 1i1dentifiers).

Processor Control Capabilities:

Page margins, length, numbering, heading and ejection.
Structure iIndentation amount.

Deletion of leading blank characters on input lines.

Input line numbering sequence.

Keyword definition.

User cross reference table definition.

Specification of a label field on the input fTile.
Specification of a sequence number Tield on the input file.
Options for suppressing selected processor features.
Selection of comment delimiter characters.

The basic formatting functions of SDDL, which are easily mastered, are
all that the user needs to begin laying out the specification of a
design. With SDDL directives the user can define new structures,
control the capture of 1identifiers for cross referencing, control
document Tformatting, and selectively suppress the generation of
summary reports. These capabilities in themselves have value only as
computer automated documentation conveniences, but 'convenience™ can
have a much greater meaning when it has the effect of freeing the
document creator from the many tedious, repetitious tasks not related,
but unfortunately necessary for document preparation. Furthermore,
when these conveniences are augmented by methodology that Tfacilitates
the conveyance and understanding of the elements of a system®s
description they also assist the document reader in the same way.

Elimination of these tedious, repetitious tasks by means of computer
automation 1is like oiling the interacting parts of a mechanical device
to reduce friction. Just as mechanical drag expends energy for work

which does not contribute to the direct purpose of the machine, so
"Cerebral Drag"” drains energy from both the writer and the reader for
work which is not directly related to creating or understand a
document. Thus, these simple capabilities, when applied with
imagination and insight iIn the development of the documentation can be
utilitarian and functional.



288

EXAMPLE APPLICATION OF SDDL

The system selected to illustrate the use of SDDL 1is the SDDL program
itself. Because of obvious space limitations the example document
(Appendix A) has been greatly shortened by 1) omitting some of the
system description capabilities to which SDDL has been successfully
applied, and 2) by -carrying the level of the documentation deep
enough to convey just the essence of meaning and style.

The system description areas exemplified below include:
1. Statement of the overall objective of the system
2. Hierarchical Input-Process-0Output development (HIPO)
3. SDDL detailed design
4. Pascal source code
5. SDDL program invocation command
6. Formal syntax definitions
Some system description capabilities which have been omitted are:
* Function requirements specification
* Genealogical fTamily tree

* Documentation of program source code for SIMSCRIPT 11.5 and
FORTRAN 77.

GENERAL COMMENTARY:

In the following discussion of the example problem some SDDL
capabilities which apply in general to all usage ( e.g., title pages,
table of contents > are mentioned where they first occur iIn the
document. The page and line numbers noted in the discussion refer to
page and line numbers of the example document iIn Appendix A. Page
references are given at the top of each subsection and the 1line
references appear within the text enclosed iIn angle brackets, < >.

Unnumbered Title Page:

SDDL provides processor directive statements that allow the wuser to
delimit a group of 1input lines which will be the content for a title
page. The processor enters the title page heading into the document
Table of Contents and boxes and centers the contents of the title on a
new output page. The choice of the character- to be used to form the
box 1is a user option.



289

Page I: Table of Contents:
The Table of Contents is produced automatically by SDDL. Note that
there are three levels of indentation: The top level 1is -for titles,
the second level —-for modules, and the bottom level tor module
substructures.

Page 1: Statement ot the Overall Objective ot the System:

The purpose ot this module 1is to iIntroduce the objective ot the system
in a general way as an explanation tor the new reader. It can also
serve a stronger role as an 1iIntormai contract between customer and
implementer stating the agreement regarding the overall purpose ot the
ettor t.

The text ot the statement ot objectives is automatically boxed as was
the title. Text boxed in with asterisks (reterred to as a TEXT BOX)
within a module as shown <29-42> ditters from a TITLE BOX in that it
is printed iIn the exact context in which it was tound and 1is not
centered on the page or entered into the Table ot Contents.

Note that on this and on all other output pages, the [line numbers
printed on the lett margin correspond exactly to the line numbers ot
the input source tile. This precise correspondence greatly
tac ilitates the source tile editting process.

HIERARCHICAL-INPUT-PROCESS-OUTPUT DEVELOPMENT
Pages 2 - 4: Hierarchical Input-Process-Output (HIPO) C33J:

Throughout this document, heading lines unique to each section are
printed at the top ot all pages. This was accomplished by inserting a
SDDL heading directive at the beginning ot each section spéci tying the
heading text desired.

Page 2: Title Page Introduction to the HIPO Section.
(Omitted to conserve space)

Page 3: Top Level ot the HIPO Development:

A TEXT BOX 1is used to provide a general description ot the module
content. The contents ot this module are structured to represent the
three parts ot the HIPO concept. INPUT, PROCESS, and OUTPUT have been
previously detined as SDDL keywords so that the processor can
au tématical 1y provide indentation to display the HIPO structure.
Input and output data elements are numbered sequentially and the
numbers are enclosed iIn square brackets tor automatic entry into the
"HIPO DATA SETS"™ cross reference table. The square brackets and a
corresponding title for the cross reference table have been previously
defined by a SDDL directive statement. The word EXECUTE has also been
defined previously as a module invocation keyword. This causes the
processor to add the right hand arrow to the statement and enter  the



290

paoe number of the module that was referenced < 68 & 69> . The short
right hand arrows <67,70> are not produced automatically but are part
of the source input line. Their purpose 1is to point to the output
data element which 1is produced by the stated action. To increase the
visibility of the data element number it is automatically justified at
the right hand margin. The right justification function was triggered
by a user defined special character placed in the input statement.

Page 4 Top half: HIPO Description of the SDDL First Pass

This module 1is called from the HIPO-DEYELOPMENT module <68>. It 1is
developed iIn the same manner as above to describe the data processing
steps of the fTirst pass operation.

Page 4 Bottom half: HIPO Description of the SDDL Second Pass

This module is also referenced by the top level module <69>. It
describes the actions of the second pass operation.

Since this module and the preceding one are small they were both
printed on a single page to conserve space. This was done with the
SDDL page compression directive. This directive does not appear 1in
the document but the reader may note that the input 1ine number of
this directive <101 > does not appear 1In the printout.

Page 21: Module Invocation Tree, Summary Report

The Module invocation tree <tier chart) provides a summary report
which displays the module 1invocation hierarchy. The HIPO elements <2-
4> are segregated from the other elements because they are not linked
by module invocation statements. In this example the tree is quite
shallow because the lower levels of the example have been omitted.

Page 23: Module Cross Reference Table, Summary Report

The modules wused for the HIPO description also appear iIn the
alphabetically ordered Module Cross Reference Table. Note that the
HIPO modules have all been prefixed with "HIPO " so that they all
appear together in the alphabetical listing.

Page 25: Cross Reference Listing for HIPO DATA SETS

The data elements of the HIPO description which were prefixed by a
number enclosed iIn square brackets are all included in this cross
reference table. An SDDL directive was used to designate the
underscore and both square brackets to be used to form identifiers.
This was done as a matter of style.



291

SDDL DETAILED DESIGN

Pages 5-9: Pseudo Code Development of the SDDL Detailed Design

Page 5: Title Page Introduction to the Detailed Design Section.
(Omitted to conserve space)

Page é: Description of the Data Structures of the Design

As In the previous modules a TEXT BOX <131-135) 1is used to provide a
brief description of the purpose of the module. Such descriptive
commentary, now widely recognized as good programming practice, is
well set off by the enclosing TEXT BOX.

The data structure for the SDDL processor includes hierarchies of
scalars, arrays, and linked lists of records. The hierarchical nature
of the data is captured by means of indentation. To produce the
indentation automatically, an SDDL directive statement was used to
define keywords LIST and MEMBER as block initiators. For reasons of
style, a special non-printing directive statement <155) was used to
close the block structures rather than use a block terminator keyword.
Thus, the iIndentation for the structure <143-154) specifies a linked
list comprised of entities, dx.ENTRY <145), each of which
individually “owns™ another Jlinked [Qlist comprised of entities,
dx.REFERENCE <152).

The data element names are all prefixed with a two character notation
to i1dentify each datum with the specific area to which 1t belongs. For
a complex design document this prefix is very helpful because it makes
the context and relationship of the datum immediately clear. Although
this prefix notation may initially be bothersome to the reader it
quickly becomes natural to ignore it while reading the document and
yet the important information 1is always present when, as 1is often the
case, It IS needed.

Data definitions further augment the document and, where the
information is available, data types, ranges, default values, etc. can
be added.

Page 7: Top Level of the Detailed Design Development:

This module describes the top level of the design as a number of steps
to be performed iIn sequence. To emphasize the sequential nature of
the design a block structure comprised of initiator keyword FIRST and
substructure keyword NEXT has been defined. This construct is defined
as a '"Comment Structure™. The individual FIRST-NEXT Qlines are
obviously comments and the entire construct is a structure in the
sense that the statements following each comment pertain to and are
within the scope of the preceding comment. The reader may note that a
clear overview of a module is easily gained by examining the TEXT BOX
and the sequence of FIRST - NEXT statements. Furthermore , by
including these same constructs as comments iIn the final program code



292

a well documented link 1is established between the design and the code
documents. Examples of this method can be found on line pairs <173
293>, <178 : 296> and <229 : 391>.

This module provides another illustration of the module 1iInvocation
statement <179,188>, in this case using CALL as the invocation
keyword. It also illustrates the SDDL actions taken when an output
line exceeds the defined page width <138>. Note that the continued
part of the line does not have a line number since it is part of the
preceding input line <188>.

Page 8: Detailed Design for the First Pass Program

This module 1illustrates the action the SDDL processor takes when
modules referenced in invocation statements do not exist in the
document <201,203,200, 213> The blank appearing in the page number
field give a clear reminder that the module was omitted. This module
also 1illustrates the use of conditional and iteration constructs. The
ELSE keyword <203>, has been defined as a substructure of the IF block
construct. This causes the processor to un-indent to the level of the
corresponding initiator statement <205>, print the line, and then re-
indent to continue the structure. The keyword ENDIF is wused to
terminate this structure <214>. The same structure <209 - 211>
illustrates structure nesting.

Page 9 Top half: Design for the Second Pass Program

This module references data elements defined in the HIPU section
<230,231 ,233,239,242>. These references have also been automatically
captured iIn the cross reference tables.

Page 9 Bottom half: Detailed Design of the Statement Input Module

This module illustrates the effect of the block escape statement. The
keyword EXITLOOP <267> has been defined as an escape for the LOOP
REPEAT block construct. This causes the processor to produce a left
arrow to the level of the parent construct calling attention to the
escape from the construct.

SDDL PASCAL CODE
Pages 10 - 14: Pascal Source Code Processed Through SDDL

SDDL  is well suited for process ing valid program code wr itten iIn a
Structured Programming Language [21,313 since the user, by means of
the keyword definition directives, can easily define structures to
match the syntax of the target language. This keyword definition step
usually requires no more than ten directive statements and iIn the case
of Pascal the structures are predefined. The SDDL processor itself
was originally written 1in the SIMSCRIPT 11.5 Programming Language C153
and later improved and written in Pascal [12,26,29,323.



293

The code modules shown below are excerpts from the Pascal version. The
Pascal language did present some problems that required the creation
of a few new SDDL techniques and some Pascal coding style conventions.
The primary change was due to the Pascal block structure which permits
procedure nesting. Since this 1is not possible with SDDL it was
necessary to use the Pascal fTorward reference capability to predefine
the procedures in order to avoid having to nest them. One could argue
that the resulting document 1is easier to read and understand because
the declarations and the programming In an outer block are not

separated by the insertion of nested inner blocks. Yet the
relationships between the modules is clearly shown by means of the
module invocation references (generated by SDDL. The use of the

forward references also allowied the code modules to be presented 1in
the document iIn a top-down order that otherwise would not have been
poss ible.

The data declaration section of the program has been omitted from the

example below since 1iIts representation in SDDL did not use any special
features.

Page 10: Title Page Introduction to the Pascal Code Section
(Omitted to conserve space)
Page 11: Pascal Code for the Top Level Driver

As shown 1In the previous sections, each module begins with a brief

description enclosed iIn a TEXT BOX. In this case, since the source
lines are valid Pascal code it was necessary to enclose the entire box
in Pascal comment delimiters <285,291). Note also, that since Pascal

makes no provision for the declaration of a Main Program, a comment
statement has been added for this purpose <284) and for a terminator
statemen t <313).

Structures BEGIN-END <292,312), and IF-ELSE <297,299) used in this
module are automatically predefined and available to the user. Note
that the IF construct requires a terminator, <ENDIF>, which has been
entered with a Pascal comment <311).

Pascal and SDDL syntax differ 1in that the latter requires a specific
keyword to call a module and Pascal does not. Thus the keyword,
<CALL>, which is a Pascal comment, has been used for this purpose
<301,303,304,305,308,309).

The (FIRST - {NEXT comment structure discussed earlier is included
here to maintain the correspondence between detailed pseudo-code
design and implementation code.

This procedure also demonstrates the use of revision notation
<297,300). The processor automatically right jJustified the revision
notes against the right margin and captured them for entry into the
cross reference table on page 27 under the title "REVISIONS™.



294

Page 12: Pascal Code -for the First Pass Operation

This procedure demonstrates the capability to define specific
indentation for certain structures. In this case, to avoid excessive
indentation, the PROCEDURE structure was defined with Zero
indentation. Furthermore, there 1is no terminator keyword defined for
the PROCEDURE structure. This was done because Pascal uses the word
END for many terminators and it was elected to use END to match with
BEGIN since this structure receives the greatest use and benefits most
from having a terminator keyword. The BEGIN-END construct was used
here to form an iteration structure <325,326,339> .

Page 13: Pascal Code for the Statement Reader Module

This procedure demonstrates the use of program variable names that
match corresponding names in the design document <370>.

Page 14: Pascal Code for the Second Pass Operation
As on the previous page, most of the body of this procedure has been
omitted to conserve space. An example of how the Pascal scope

statement is structured using the BEGIN-END construct 1is shown
<392,393,481 >.

SDDL PROGRAM INVOCATION COMMAND

This section provides a description of the sequence of input that the

user must provide to command the execution of the SDDL processor. As
is often the case, the explanation of the input to the command 1is much
more complex than the command itself. This 1is especially so when the

input instructions are very short, as in this case, where only the
execution command word and the names of the input and the output Tfiles
are required. Nontheless, the full explanation 1is necessary 1iIn order
to cover non-obvious aspects of the command such as allowable inputs,
defaults, and error situations.

Although the 1iInstructions presented in this example are few and
simple, they perform the same function as wouiu any large, complicated
user®s guide which describes the input sequence and allowable data
values for the specific 1nput data required to run the program.
Another example of an 1input specification document can be found iIn the

Formal SDDL Syntax Definitions in the next section. There the
specifications are different only iIn that they are given as general
rules rather than detailed 1instructions. It can be seen that iIn each

of these cases the input specification document 1is a data preparation
“program' which must be executed by the user rather than a computer.
This program differs from other computer prograrris only iIn its
programming language, natural English, and the processor, a human
being. Since the design and structure of this program can be
developed with the same concepts as a computer program it follows that
SDDL can be used advantageously in this task as well. It 1is this
rationale that led to the use of SDDL to develop the "Input Format



2SS

Specification Document”™ methodology which, in a greatly simplified
version, is discussed below.

Page 15: Title Page Introduction to the SDDL Execution Command
(Omitted to conserve space)

Page 16 - 17: Input Procedure for the 3DDL Execution Command

Since 1t 1is necessary to define the 1input procedure as a sequence of
operations, the FIRST-NEXT comment structure <422,425,432,450,457,472)
was used to create an outline of the steps. The first step directs
the wuser to enter the processor invocation command. The word ENTER
<423,426,433,451,458) was used to tell the user what must be typed.
To emphasize the fact that a user input is required an SDDL directive
was used to define ENTER as a module escape keyword. This causes the
processor to produce the arrow to the left hand margin as shown.
Notice that this use of the escape statement is different than
previously where it was used to indicate an escape from a functional
control construct. Here it is used simply to call the user®s attention
to the fact that input 1is required at this point. In another
important way, however, both examples are the same iIn that their
purpose is to call the reader®s attention to an important bit of
information. Since the sole functionof documentation is to provide
information, it iIswise to use every technique available toenhance
document readability and reduce cerebral drag.

Because of the nature of the input, the next step <425-430) happens to
be a user option. The information for this step belongs at the same
level as the rest of the FIRST-NEXT structure so the keyword OPTIONAL
<425,450) was added to the structure definition as a synonym to NEXT
to maintain this consistency.

In the event that the user exercises this option the processor must

provide a response as indicated <429). Note that for emphasis the
computer®s response was enclosed in a TEXT BOX but 1iIn this case an
angle bracket, )., was selected for the boxing character. This was

easily accomplished with the boxing character option available with
the SDDL Text directive.

The next step, which calls for the entry of the name of the user”s
input Tile <432,433), presents some complications since certain
defaults are permitted and error conditions could occur as a result of
faulty input. These exceptions are explained by NOTE statements <435-

448) . To call attention to this iImportant information the word NOTE
was added to the FIRST-NEXT structure definition as another synonym to
the NEXT keyword. This causes the processor to bring the statement

out to the same level of indentation as the other elements of this
structure. The selection of this or another technique to emphasize a
line 1is strictly a matter of user®s 1iImagination and style.

With the instructions for entering the name of the user®s input Tile
completed, the next input required is the name of the output Tile.
Here the user has the option <450-455) of starting a new input 1line
before entering the output file name.



296

The next step directs the user to supply a file name <457-458) or use
the defaults supplied by the command and explains the default
mechanism employed <459-470>.

Finally, the last step describes the actions taken to process the
user"s document and signal the completion of the processing step <472-
483> .

FORMAL SYNTAX DEFINITION

Pages 18-20: Top Down Definition of the SDDL Syntax

This Tfinal section of the example document presents the top levels of
a top-down structured formal definition of the SDDL syntax. Formal
language descriptions are highly structured documents and it is
therefore not the [least surprising to find that SDDL can be used
effectively to describe its own syntax. The document here, as in the
previous section, makes important use of the FIRST - NEXT construct
including the added keyword, OPTIONAL, to specify the order 1in which
the parts of the language must be used. Another construct added 1is
the SELECTION - OR - END_SELECTION_OPTIONS for situations where the
user s required to select one item from a list of alternatives.
These and other techniques are discussed below in the context of the
examp le .

Page 18: Title Page Introduction to the Syntax Definition
(Omitted to conserve space)

Page 1? Top half: Top Level Syntax Definition

As noted previously, the FIRST - NEXT construct <511,514) gives the
reader a quick preview of the contents of a module. In this case it
shows that at the top level there are only two steps. The first is a
special case of an optional output suppression directive which, if
used, must be the Tfirst line of 1iInput. The word SEE was defined as a
module invocation keyword to use for referencing this and other
directive definitions <512>. The second step of this module defines
the entire syntax in three high level parts. The ITERATION
END_ITERATION <515,523) structure specifies that they may be used as
often as desired, and the SELECTION - OR - END-SELECTION-OPTIONS
structure <516,513,520,522) shows that they may be used in any order .
The three Ilower level parts, which are fully defined on later pages,
are pointed to by module invocation statements <517,519,521) which use
an asterisk, *, for the invocation keyword. Here again, the choice of
the asterisk for this purpose is strictly a matter of user preference.
This section of the document also uses the underscore, period, and
dash characters as concatenation marks to form single identifiers out
of two or more words <509,512,517).



297

Pacié 1? Bottom half: Syntax Definition for a Title Page

This module, which was referenced from the preceding module <517>,
defines the syntax for specifying a title page. Here again the FIRST -
NEXT structure, with a slight variation for a special effect,
provides a crisp overview of the three parts of the title page
construct. The variation was the definition of keywords »FIRST
»NEXT (note the asterisk as part of the word) as substructures for the
module initiator keyword instead of an iIndependent structure. This
was done so that the sections named iIn this way <530,543,548) would
also appear in the Table of Contents. The FIRST - NEXT comment
structure 1is used iIn the usual way <531-541) to define the subparts of
the directive statement. In this <case a terminator keyword,
END-STATEMENT, was added to the FIRST - NEXT structure to terminate
the definition of the title iInitiator directive statement <541).

Page 20: Syntax Definition for a Module

The specification of a module construct 1is similar to a title page.

As can be seen from the high level »FIRST - »NEXT statements, it is
comprised of three parts (initiator<559) - body<576)
terminator<595)) but the subparts iIn this case are more complex. The

first part of the initiator statement definition requires an 1iInitiator
keyword <5S0> but since the choice of the keyword 1is a user option, no
specific word can be shown in this context. Therefore, the syntax
description document supplies a reference to a submodule which
provides a display of the available built-in keywords and structures.
The next part of the module initiator statement shows that an optional

"noise word" to enhance the appearance of the statement, may be
entered next on the line. Of the three available choices, FOR<564),
TO<566), and any punctuation character<568), the Ffirst two are

obvious but the third requires additional clarification so a reference
is made to a lower level module for a full explanation.

The first and third parts of. the module structure definition consist
of definitions of single SDDL statements. The middle part, which is
the body <578 - 593) of the module construct, gives the reader a list
of the essential elements of SDDL and provides page references to
lower level modules where complete detailed definition of the syntax
can be found.

SDDL SUMMARY TABLES
Page 21: Module Invocation Tree (Tier Charb)

The Module Invocation Tree, or tier chart, uses i1ndentation to show

the "caller --> called” relationships among the modules. The tree is
formed by Jlisting all called modules under its caller at the next
lower level of indentation. Line numbers shown at the left of the

page are used for referencing back to previously completed branches.

Page 22: Module Invocation Tree Continued (Omitted)



298

Page 23: Module - Cross Reference Listing

This summary 1is an alphabetical, "called — > caller” report of all of
the modules identified iIn the document by either a module initiator
or a module invocat ion statement. For each entry in the table a list
of line numbers, module names and page numbers of the modules where
the entry appeared is given.

Page 24: Module - Cross Reference Listing Continued (Omitted)

Page 25: Data Items - Cross Reference Listing

This table shows how the prefix used to identify a particular class of
data causes all the elements of that class to be grouped together
because of the alphabetical ordering.

Page 26i HIPO Data Elements - Cross Reference Listing

This cross reference table was set up to capture the data elements of
the SDDL HIPO development. The punctuation characters defined to be
used to form identifiers for this table are the left and right square
brackets. The wunderscore was defined as a concatenation character
which does not produce an entry into the cross reference table.
This, and the other cross reference tables are structured exactly as
the module cross reference table discussed above.

Page 27: Revisions - Cross Reference Listing

The last table contains only two entries corresponding to program
revisions. Some examples of other uses for cross reference tables
like these are to capture references to notes for program rehosting,
technical memoranda, technical 1liens, and requirements items.

CONCLUSION

Throughout the development of a system description, the SDDL design
document should always represent the definitive word on the current
status of the ongoing, dynamic development process. It iIs essential
that this document be easily updated and readily accessible in a
familiar, 1informative, readable form to all members of the development
team. This design document 1is the medium of communication between
designer®s creative thinking and the receiver of this iInformation. In
creating such a document there is a trade-off between applying minimal
effort, which 1increases the reader®s burden, and applying a great
amount of effort which minimizes the reader®s task. For any serious
task the efficient choice iIs to minimize the reader"s effort since
this iIs the task repeated most often. Even the writer must also read
the document many times over. By automating many of the tedious
repetitious chores which get in the way of productive effort, SDDL
helps the writer produce a document that 1is structured and Tformatted
in a way that also reduces the effort required by the reader. Thus,



299

the purpose of SDDL is to provide a bridge between the software
developer and the reader which will reduce effort and enhance
effectiveness for both.

The importance of readable documentation cannot be overemphasized.
Reducing the cerebral drag in the reading of a complex, information
intensive document greatly enhances its effectiveness as an iInstrument
for reconciling misunderstandings and disagreements in the
evolutionary development of all aspects of the system description.
The structure formats, page references, and cross reference tables
produced by SDDL make the structured walk-through technique [30] for
joint verification of the design concepts a practical reality. The
design document also supports project management by providing current
documentation of progress and recording task responsibilities.

REFERENCES and BIBLIOGRAPHY

1. Baker, F.T., "Structured Programming 1in a Production Programming
Environment,'” I1EEE leans.* 20 SciilwMije £ngc *, Vol . SE-1 , No. 2,
pp- 241-252. June 1975.

2. ————- , 'Chief Programmer Teams: Principles and Procedures,"™ IBM

Report FSC71-5108, Fed. Sys. Div., Gaithersburg, Md., june 1971.
3. ————- , and Mills, H.D., "Chief Programmer Teams,"
Vol. 19, No. 12, pp. 58-61, Dec. 1973

Daiamaiioa,

4. Brooks, F.P., ™"The Mythical Man-Month,"™ Datama tinn, Uol . 20, No.
12, pp. 45-52, Dec. 1974.

5. Caine, S.H., and Gordon, E.K., "PDL--A Tool for Software Design™,
Ec.ogc.am Design Language Befecence Guide, Caine, Farber and
Gordon, |Inc., Pasadena, Ca., Sept. 18, 1974.

6. Constantine, L.L., Eundamenlals nl Ecogcam Design, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1970.

7. Dahl, 0.J., and Hoare, C.A.R., "Hierarchical Program Structures,"”
Slruclured Bcpgcammlng, Academic Press, New York, 1972.

8. Dijkstra, E.W., "Notes on Structured Programming™, Slrucluced
Ecogcammlng, Academic Press, New York, 1972.

9. ————- , 'Structured Programming,”™ Soilwane Engineering len_hnS.ques,
NATO Science Committee, Edited by J. Burton, and B. Randall, pp.
88-93, 1969

10. Gray, M., Landen , K., Dooumenlallon Slandar-ds, Brandon Systems

Press, Inc., NY, 1969.

11. Hoare, C.A.R_, ‘Notes on Data Structuring”, Slcuoluced
Ecogcammlng, Academic Press, New York, 1972.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

300

Jensen, K., and Wirth, N., Easnal Lisen Manual and Reganl 2nd ed.,
Springer-Verlag, NY, 1974.

Katzan, H., Jr., Aduarmed EnngrammlLug, D. VanNostrand Re inhold
Co., NJ, 1970, pp- 152-163.

Kernighan, B.W., and Pl auger, P.J., lhe Elamaais ox Enngnammlng
SIxle, McGraw-Hill Book Co., New York, 1974, pp-36-39.

Kivi at, P.J., Villanueva, R., and Markowitz, H., Xhe 31MSEEl1El 11
Programming Language, Prentice-Hall, Englewood Cliffs, NJ, 1969.

Kleine, H., and Morris, R.V., "Modern Programming: A Definition",
S1GELAN hinlxnas, Vol . 9, No. 9, Sept. 1974, pp. 14-17.

——— , Snilwane De=mign .and Dnnumenla-tlnin lannuage , JPL Publ icat ion
77-24, National Aeronautics and Space Administration, Jet
Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena Ca.,
91103, Aug. 1977.

————— , Automating the Software Design Process by Means of the
SDDL"™ , Ennneedlngs of lhe No®. 15 Design Aulntrial-i-nn Cnnlenenne,
IEEE Catalog 378, Ch. 1363-1C, Las Vegas, Nev., June 1973, 371-
379.

————— ,"/A Vehicle for Developing Standards for Simulation Program-
ming"”, Ennneedlngs of Ulnlen®. ZZ SImulallnn Cnnlenenne, Highland,
Sargent, and Schmidt, eds., pp- 731-741.

Liskov, B., and Zilles, S., “"Programming With Abstract Data
Types®, SI1UELAL1 bInllnes, March 1974, pp . 50-59.

Miller, E_.F., Jr_., A Cnrngendlum nf Language Exlenslnns in Snggnnl
SInuniuned Programming, RN-42, General Research Corp., Santa
Barbara, Ca., Jan. 1973.

Mills, H.D.,"Top-Down Programming 1in Large Systems', in Debugging
lanh.nlg.ues In Lange Sxslems, edited by R. Rustin, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1971, pp-43-45.

Myers, G.J., Enmpnslle Deslgnu lhe Design nf£ MnnLulan Bnngnams,
Technical Report TR00.2406, IBM, PoughKeepsie, NY, Jan. 29, 1973.

Ogdin, C.A., Snlluiane Design inn MInnnnnmqulens, Prentice-Hall ,
Inc., Englewood Cliffs, NJ, 1973.

Peters, L.J., Sollwane Designs. blelhmd and lenhnlques, Yourdon
Press, NY, 1981.

Schneider, G-M_., Weingart, S.W., and Perlman, D.M., An InInndun-
Ilon In Ennnnaromxng and Ennhlem Snlulng Ullh Easnal, John Wiley,
NY, 1978.

Tausworthe, R.C., Siandandl-zed Denelngmenl ni Encopnlen Snilwane”
Eanl 1 Melhnds, Jet Propulsion Laboratory, Pasadena, Ca., 1976.



28.

29.

30.

31.

32.

33.

301

————— , Slaadaadlaad Qaualopinanl of£ Compulaa Solluiaaa® Eaa+x 11
Slandaads, Jet Propulsion Laboratory, Pasadena, Ca., Aug. 1978.
Wirth, N., Sxslamalla Ea-ogrammimg, Prentice-Hal 1, Inc., Englewood
Cliffs, NJ, 1973.

Yourdon, E., .Sla.ua—t.usad UalUhagnoilia , Prentice-Ha1ll, Inc., Engle-
wood CI iffs, NJ, 1973.

————— , laah.nlg.uas of Eaogaam Slauciuaa aad Qaslqgn, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1975.

Zaks, R., InlanaLunllam la E&S£6i_, P310, SYBEX, Berkeley, Ca.,
1930 .

HIPO - A Design Aid and Documentation Technique, IBM Corp ., Manual
No. GC"20-1851, White Plains, NY, IBM Data Processing Diu., 1974.



302

R e R R e o R R e e S S e e R R e e e S e R S e R R S e R

SOFTWAREDESIGN ANDDOCUMENTAT I0ONLANGUAGE (SDDL)

SDDLprocessor itself as theobject of the example

*
*
*
*
*
*
*

*

*

* An illustration of the application of SDDL using the
*

.

B e S S e S e S e S e S e S S S e R A e R R R e o o o R



PAGE

Cooo~NoOOlT A~ADMWN RO

LINE

20

45
52

102

125
130
166
192
220
249

275
284
314
342
377

406
414

498
509
528
530
543
548
557
559
576
595

303

TABLE OF CONTENTS

TITLE SDDL EXAMPLE
PROGRAM OBJECTIVES

TITLE HIPO DEVELOPMENT OF SDDL
PROGRAM HIPO_DEVELOPMENT FOR THE SDDL PROCESSOR
PROGRAM HIPO_SDDL_FIRST_PASS
PROGRAM HIPO_SDDL_SECOND_PASS

TITLE SDDL DESIGN DEVELOPMENT
PROGRAM DESIGN_DATA_STRUCTURE AND GLOSSARY
PROGRAM DESIGN_MAIN_DRIVER
PROCEDURE DESIGN_FIRST_PASS
PROCEDURE DESIGN_SECOND_PASS
PROCEDURE DESIGN_GET_NEXT_STATEMENT

TITLE PASCAL DEVELOPMENT OF SDDL
{PROGRAM CODE_MAIN>
PROCEDURE CODE_FirstPass;
PROCEDURE CODE_GetNextStatementd
PROCEDURE CODE_SecondPass;

TITLE SDDL INVOCATION COMMAND
SDDL PROGRAM_INVOCATION_FORMAT_SPECIFICATION

TITLE TOP LEVEL SDDL SYNTAX DEFINITIONS
SDDL_CONSTRUCT: SDDL-PROGRAM
SDDL_CONSTRUCT: TITLE-PAGE

»FIRST TITLE.INITIATOR.DIRECTIVE

»NEXT: TITLE-PAGE-BODY

»LAST: TITLE.BOX.TERMINATOR.DIRECTIVE
SDDL_CONSTRUCT: MODULE-GROUP

»FIRST MODULE.INITIATOR.STATEMENT

»NEXT: MODULE-GROUP-BODY

»NEXT: MODULE.TERMINATOR.STATEMENT

MODULE INVOCATION TREE

CROSS REFERENCE -- MODULE

CROSS REFERENCE -- HIPO DATA SETS
CROSS REFERENCE -- DATA ITEMS
CROSS REFERENCE - REVISIONS

PAGE



304

PAGE 1

28 PROGRAM OBJECTIVES

29
30
31
32
33
34
35
36
37
38
39
40
41
42

B e R R R R S R R R e S e R e R S e o R R R I o e R e e R R e e R S R R

* THE OBJECTIVE OE SDDL IS TO PROVIDE AN EFFECTIVE COMMUNICATIONS MEDIUM*
TO SUPPORT THE DESCRIPTIONAND DOCUMENTATION OF COMPLEX SOFTWARE
* SYSTEMS. THIS OBJECTIVE ISMET BY PROVIDING:

*

*

1. A DESCRIPTION LANGUAGE WITH FORMS AND SYNTAX THAT ARE SIMPLE,
UNRESTRICTIVE AND COMMUNICATIVE,

2. A PROCESSOR WHICH CAN CONVERT DESIGN SPECIFICATIONS INTO AN
INTELLIGIBLE AND INFORMATIVE MACHINE REPRODUCIBLE DOCUMENT,

LA R N

$ b % % *

3. METHODOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND THE PROCESSOR.

* *

AAAAA A A A A A A A A XA A A A XA A A A A A A A XA A A AKX AXA A A A AKX AR AAAAXAAAAAAAXAARAAAXAAAAAXAAXAAAXAAXAXAXK

43 ENDPROGRAM



305

PAGE

A OECHF KA AP R AP AA KA AR KA AP A AAKR A A A AAXRGECAIF A AR GAA Ak k | gphrs I t1*CS iOfC -SH#

*

This section exemplifies the use of SDDL to present a *
"HIERARCHICAL INPUT - PROCESS - OUTPUT"™ CHIPO) *
description of the SDDL system *

*

EEEE



75

306

SDDL HIPO DEVELOPMENT PAGE 3

52 PROG§AM HIPO_DEVELOPMENT FOR THE SDDL PROCESSOR

Eax e e o o b 4:'(****** R T e AR AT T T R T e e b e P P P S e e R P e e e e e P e e
*

*

* THE SDDL PROGRAM IS IMPLEMENTED IN TWO PASSES. THIS MODULE DESCRIBES *
* THE TOP LEVEL OF THE PROGRAM WHICH DOES THE INITIAL SET UP AND INVOKES#
: THE TWO PASSES TO COMPLETE THE PROCESSING. :
1

R R R R R R R R R R R R R R R R S

input:
C13_SDDL__INVOCATION_COMMAND
C21 SDDL OUTPUT FILE

PROCESS:
INITIALIZE THE SDDL PROCESSOR
ClI]—— >0OPEN 1/0 AND SCRATCH FILES

EXECUTE HIPO_SDDL_FIRST PASS--———————mmmmmmmmmmmmmme X 4
EXECUTE HIPO_SDDL_SECOND_PASS--——————— oo > 4)
APPEND EXECUTION SUMMARY DATA TO SDDL OUTPUT FILE — > c23

DELETE SCRATCH FILES
TERMINATE THE PROCESSOR

OUTPUT:
C23_SDDL_OUTPUT_FILE

77 ENDPROGRAM



SDDL HIPO DEVELOPMENT PAGE 4
78 PROGRAM HIPO_SDDL_FIRST_PASS

79 **********ﬁm***;*****;***************************************************

80 * *

81 * THE SDDL INPUT FILE ISREAD. THEINPUT ISFORMATTEDAND WRITTEN TO THE*

82 * SCRATCHFILE» AND CROSS REFERENCE ANDSUMMARY  DATAARE COLLECTED. *
* *

82 KA A A AKIA A A A A A A A A A AR A A A A A A A A A AR A A A AR A A A A A AAAAAA AT AAAAAAAAAAAAAAAAAAT A A XA AR AAX*

85

86 INPUT:

87 C33_SOURCE_DATA_FILE

88

89 PROCESS:

90 C31----»CONVERT SOURCE DATA TO STRUCTURED FORMAT >C43

91 DEVELOP TABLE OF CONTENTS DATA — > C53

92 CAPTURE FORWARD REFERENCES DATA — > C63

93 CAPTURE CROSS REFERENCE TABLE DATA — > 43

94

95 output:

96 [43_DOCUMENT_SCRATCH_FILE

97 C53 _TABLE_OF CONTENTS_FILE

98 C63 FORWARD_REFERENCE_SCRATCH_FILE

99

.00 ENDPROGRAM

02 PROGRAM HIPO_SDDL_SECOND_PASS

03 **********;****;******;***********«WWW«********************************

04 * *

05 *THE TABLE OF CONTENTS IS WRITTEN» FORWARD REFERENCES ARE MERGED WITH *

06 *THE BODY OF THE DOCUMENT AND THE CROSS REFERENCE TABLES ARE WRITTEN *
* *

8% AEAAEEEAEIXAITXAATAAXAAITXAITXAAXTAATXAITAAIAAIAAXAAIAAIAAIAAIAAIAAIAIAIAAIAXAIAAIAAIAAXAXAIAAXAXAIAXAXXIAXIXXXXXX

09

10 INPUT:

11 C43_DOCUMENT_SCRATCH_FILE

12 C53_TABLE_OF_CONTENTS_FILE

13 C63_FORWARD REFERENCE_SCRATCH_FILE

14

15  PROCESS:

16 C53—— »WRITE TABLE OF CONTENTS---> c23

17 C63»C43—»ADD MISSING PAGE REFS TOMODULE CALL STATEMENTS----> c23

18 C43—— »WRITE SDDL OUTPUT FILE----> c23

19

20  OUTPUT:

21 C23_SDDL__OUTPUT_FILE

22

23 ENDPROGRAM



308
PAGE

**

lé************************************************************************
* *

* This section exemplifies the use of SDDL for software design development *

*
EAE R e e o e S e o S S e e e S S e o SR S R R e R R R R A e e e e e e e S e R R R R R R



309

SDDL DESIGN DEVELOPMENT PAGE 6
130 PROGRAM DESIGN_DATA_STRUCTURE AND GLOSSARY
131 B e N et
132 *

134 *

135 ok ok ok ok ok ok ok ok K K K Kk ok ok ok ko k ok k ok K K K K K k k ok ok K ok K ok ok ok kK Kk ok ok ok ok ok g ok k ok ok ok ok K ok ok ok ok ok kK Kk k kS kkokS * ok Nk
. ,

133 * DATA STRUCTURES USED BY THE SDDL PROCESSOR ARE DEFINED AND EXPLAINED *
!

136

137 tb . INPUT.TEXT.BUFFER GLOBAL CHARACTER ARRAY CONTAINING A

138 SINGLE"STATEMENT FORMED BY CONCATEN-

139 ATION OF CONTINUED INPUT LINES

140

141 tb .TEXT.LENGTH LENGTH OF THE CURRENT INPUT STMT

142

143 LIST: dx.TOKEN.DICTIONARY LINKED LIST OF DICTIONARY ENTRIES

144

145 MEMBER ENTITY! dx.ENTRY SINGLE DICTIONARY ENTRY

146 dx .CHARACTER.COUNT TEXT LENGTH

147 dx .TEXT.POINTER POINTER TO ACTUAL TEXT FOR THIS ENTRY
148 dx .PROGRAM . NAME IF ENTRY 1S A KEYWORD THEN PROGRAM NAME
149 /ELSE NULL

150

151 LIST: dx.REFERENCES.TO.TOKEN LIST OF ALL REFERENCES TO THE TOKEN
152 MEMBER ENTITY: dx.REFERENCE SPECIFIC REFERENCE TO THE TOKEN

153 dx .PAGE .NUMBER REFERENCE PAGE NUMBER

154 dx -LINE.NUMBER REFERENCE LINE NUMBER

156

157

158 LIST: ms.MODULE.STACK PUSH-DOWN STACK OF NODES REPRESENTING

159 NESTED, CURRENTLY OPEN STRUCTURES

160

161 MEMBER ENTITY: mx.NODE OPEN STRUCTURE NODE

162 ms . INDENTATION.COLUMN STARTING PRINT COLUMN FOR THIS NODE
163 ms.STRUCTURE. ID IDENTITY OF ASSOCIATED STRUCTURE PARTS
164

165 ENDPROGRAM DATA STRUCTURE



310

SDDL DESIGN DEVELOPMENT PAGE 7

166 PROGRAM DESIGN_MAIN_DRIVER

167
168
169
170
171
172
173
174
175
176
177
170
179
180
101
182
183
184
185
186
187
188
&
189
190

. . Aok Ak AAAA A
O L P >Saieo>Seiaiaiaiaiaiaiaiaiaiaieier> 50> - aiated) 1SS0 SiaierSiaier= s> iatad) Sall SaSSukaier)) Tad hoo>Saied Tad BeooY Jaxdser SStaraser>
* *

» THE TOP LEUEL OF THE SDDL PROCESSOR IS SPECIFIED IN PSEUDO CODE *
kS

*
at************************************************************************

FIRST: INITIALIZE THE PROGRAM
ESTABLISH INITIAL VALUES FOR ALL PROGRAM VARIABLES
SET UP DEFAULT STRUCTURES
OPEN 1/0 AND SCRATCH FILES

NEXT: PROCESS THE USER"S SOURCE STATEMENTS
CALL DESIGN_FIRST_PASS - — o m oo oo > 8)

NEXT: PRODUCE THE DOCUMENT SUMMARIES
PREPARE THE MODULE REFERENCE TREE
PREPARE THE MODULE CROSS REFERENCE TABLE
PREPARE THE USER DEFINED CROSS REFERENCE TABLES
PRINT THE TABLE OF CONTENTS

NEXT: PERFORM THE SECOND PASS OPERATIONS

CALL DESIGN_SECOND_PASS TO MERGE TEXT BODY WITH THE FORWARD REFERENCE

PAGE  NUMBERS — = = = = == = = o > 9)
PRINT THE SDDL EXECUTION STATISTICS

191 ENDPROGRAM



311

SDDL DESIGN DEVELOPMENT PAGE 8

192 PROCEDURE DESIGN_FIRST_PASS

AAEAEAAAAAAAAXRAAAAKETAAAAAAAAAAAAAXAAAAAAAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXKX

193

194 * *
195 * SOURCE DATA 1S READ AND FORMATTED ONTO A SCRATCH FILE *
198

199 LOOP UNTIL ALL STATEMENTS IN C33_SOURCE_DATA_FILE HAVE BEEN PROCESSED

200 CALL DESIGN_GET_NEXT_STATEMENT----—--—-—-———-——— o ———— > 9
201 CALL DESIGN_TOKEN.FINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)>( )
202 IF dx.TOKEN.TYPE IS AN "IDENTIFIER"

203 CALL DESIGN_TOKEN .DICTIONARY. SEARCH-—-——=—-—————— o —— > )
204 ENDIF

205 IF THE TOKEN WAS FOUND AND IT IS A KEYWORD

206 CALL DESIGN_KEYWORD .STATEMENT .PROCESSOR--—-—=—=———————————————— > )
207

208 ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD

209 IF THE ms _MODULE.STACK 1S EMPTY

210 PUSH A DUMMY MODULE ONTO THE ms.MODULE .STACK

211 ENDIF

212

213 CALL DES IGN_SOURCE. LISTER TO WRITE STMT---—----—-——————— - ———— > )
214 ENDIF

215

216 FLUSH ANY "ERROR MESSAGES™ -TRIGGERED BY THE STATEMENT

217

218 REPEAT
219 ENDPROCEDURE



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

312

SDDL DESIGN DEVELOPMENT PAGE 9
PROCEDURE DESIGN_SECOND_PASS

* ok kK Kk Kk k kK kK Kk Kk kK kK Kk Kk k kK kK Kk k kK kK Kk k kK kK Kk k k kK Kk Kk k kK kK kK k k kK Kk k k kK k Kk k kK kK Kk k kK kK Kk k kK kK Kk Kk k kK kK Kk *k kK k Kk *k Kk k ¥ * *k *k *

*

* AFTER THE USER®"S INPUT TEXT HAS BEEN PROCESSED THIS MODULE MERGES
* THE FORWARD REFERENCES INTO THE BODY OF THE TEXT AND WRITES IT TO
* THE FINALOUTPUT FILE

FEAEKX AEE AAEAAEAEA AExAkXk Ahx AAxAAAAAAAAAAAAAEAEAAAAAAAAAALAAALAAAL AEhAEh A hhhiiix ik

* o4 kO oy

FIRST: MERGE THE FORWARD REFERENCES INTO THE BODY OF THE TEXT
REWIND [41_DOCUMENT_SCRATCH_FILE AND OPEN IT FOR INPUT
REWIND C6]_FORWARD_REFERENCE_SCRATCH_FILE AND OPEN FOR INPUT
READ THE DATA FOR THE FIRST FORWARD REFERENCE
LOOP UNTIL ALL LINES IN C43 DOCUMENT_SCRATCH_FILE HAUE BEEN PROCESSED

READ NEXT INPUT LINE
IF THE LINE REQUIRES A FORWARD REFERENCE LINE NUMBER
ADD THE REQUIRED INFORMATION TO THE INPUT LINE
READ THE DATA FOR THE NEXT FORWARD REFERENCE
ENDIF
PRINT THE LINE TO C23_SDDL_OUTPUT_FILE
REPEAT

NEXT! PRINT THE REMAINING DOCUMENT SUMMMARIES TO C21_SDDL_OUTPUT_FILE
PRINT THE MODULE REFERENCE TREE
PRINT THE MODULE CROSS REFERENCE TABLE
PRINT THE USER SPECIFIED CROSS REFERENCE TABLES

ENDPROCEDURE

PROCEDURE DESIGN_GET_NEXT_STATEMENT

*
*
*
*
aC

INPUT LINES ARE READ AND IF LINE CONTINUATION IS INDICATED THE LINES *
ARECONCATENATED INTO A SINGLE STATEMENT. STATEMENT PARAMETERS ARE *
ESTABLISHED *

FIRST: GET THE FIRST INPUT LINE
READ THE INPUT LINE INTO THE tb.INPUT.TEXT.BUFFER

NEXT: CHECK FOR INPUT LINE CONTINUATION

LOOP UNTIL THE STATEMENT IS COMPLETE
FIND THE LAST NON BLANK CHARACTER OF THE LINE
IF THE CHARACTER 1S THE CONTINUATION MARK

READ THE NEXT INPUT LINE AND ADD IT TO THE tb.INPUT.TEXT.BUFFER

ELSE

<— EXITLOOP
ENDIF

REPEAT

NEXT: SET tb .TEXT.LENGTH

ENDPROCEDURE



313 PAGE 10

FAEAIAAIAIAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAiX

*

* This section exemplifies the use of SDDL to process
* the pascal implementation Of SDDL

*

* b % *

RS S o S o o R R R o O R o S R Rk Sk S SR R S e R ok S S e R R S O R R O R Sk o S R



314

PASCAL CODE FOR SDDL PAGE 11
284 {PROGRAM CODE_MAIN!
285 C
22515 J
287 * *
288 * THE TOP LEUEL DRIVER OF THE SDDL PROCESSOR 1S SPECIFIED IN PSEUDO CODE*
291 >
292 BEGIN
293 {FIRST: INITIALIZE THE PROGRAM>
294 {CALL! Initialization;—-—-————————— X )
295
296 {NEXT: PROCESS THE USER"S SOURCE STATEMENTS!!
297 IF NOT MoreData THEN 1 REU X16 !
298 WRITELN (Output/ “NO INPUT FOR THIS RUNT)
299 ELSE _
300 BEGIN | REU X17 !
301 {CALL! CODE_FirstPass;——————————— = =< 12)
302 {FIRST: DEVELOP DOCUMENT SUMMARIES!
303 {CALL! Producelnvocat tonTree ;- ——————————————————————————— > )
304 {CALL! ProduceXre-fTab les;----————--——--—--"-"—--"-"-"-"-"-"-""-"---"-——— > )
305 {CALL! ProduceTab leOfContents; ---———————————————————————— >( )
306
307 {NEXT: PERFORM THE SECOND PASS OPERATIONS!
308 {CALL! CODE_SecondPass;--———————-—--———-—————————————————— > 14
309 {CALL! EndSummary j;-—————————— e X )
310 END
311 {ENDIF!
312 END

313 TENDPROGRAM!



315

PASCAL CODE FOR SDDL PAGE 12

314 PROCEDURE CODE_FirstPass;
315

317 * *
318 * SOURCE DATA IS READ AND FORMATTED ONTO A SCRATCH FILE *
319 * *

321 >
322 UAR Keyword: KeywordSelector;

323

324 BEGIN

325 WHILE StmtFound DO

326 BEGIN

327 IF TokenType >= IldentifierToken THEN

328 BEGIN

329 ®CALL> LookupKeyword (FALSE; Keyword);----——————-------——————— > )
330 IF Keyword <> NIL THEN

331 mCCALL) ProcessKeywordStatement(Keyword)---—-—-———-——=———————————— > )
332 ELSE

333 «CALL> ProcessPass irestatement---- - - ————————————— —— > )
334 =CEND 1>

335 END

336 ELSE

337 MCALL} CODE_Ge tNextSt atement----—-——————————————————— > 13)
338 mCENDIF}

339 end ;

340 «CCALL> ReduceStack (0)-—--—--—— === > )

341 end;



316

PASCAL CODE FOR SDDL PAGE 13
342 PROCEDURE CODE_GetNextSt atement; -
343
344
345 * *
346 * INPUT LINES ARE READ AND IF LINE CONTINUATION IS INDICATED THE LINES *
347 * ARECONCATENATED INTO A SINGLE STATEMENT. STATEMENT PARAMETERS ARE *
34B : ESTABLISHED :

349

351 >
352 UAR 1i: integer;

353 cm char;

354

355 BEGIN

356 {FIRST: GET THE NEXT LINE OF INPUT>

357 |

358

359 * CODE BODY OMITTED *
360

361 >

362

363 {NEXT: CHECK FOR INPUT LINE CONTINUATION>

364 i

365 i<<*)> : **k**k**kkkk)*)*kk ! **‘**k**k***)* ! *******k**k*m*m****kkkk**kkk**k(()*‘kkk
366 * CODE BODY OMITTED *
368 >

369

370 {NEXT: SET tb.TEXT.LENGTH AND RETRIEUE FIRST TOKEN OF THE STMT>
371

372

373 * CODE BODY OMITTED *
374 FeeFe T T e e A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A KA A A KA KA A A A A A A A A A A A A A KA K AAK
375 >

376 END



377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

317

PASCAL CODE FOR SDDL PAGE 14
PROCEDURE CODE_SecondPass;

B R T T R e R R e e R e S R R R e R e R

* *

* AFTER THE USER®S INPUT TEXT HAS BEEN PROCESSED THIS MODULE MERGES *
* THE FORWARD REFERENCES INTO THE BODY OF THE TEXT AND WRITES IT TO *
* THE FINAL OUTPUT FILE *

*

AAEAXEAEAEAEAEAAEAAEAAAAAAEATAAAAALAAAAAAAATAAXAAAAAITAAAAAAATATAAXAAAAAATAAAAAAATAALAAAAITAAAAXKX

>
UAR Reference: ForwrdRefEntry;
I» Length» LineCount: INTEGER;

*

BEGIN
IFIRST: MERGE THE FORWARD REFERENCES INTO THE BODY OF THE TEXT>
WITH Reference DO
BEGIN
RESET (Scratch)»
RESET (ForuiardReferences );

R R S o S b S e e S e e e e S e S S S S S R R A R A e o o S S e e R R A e e e e

* CODE BODY OMITTED *

B R e o B o S e e S e e e S S S R S R S e S S e S R R A e e S e S R A e e o e

>
END

end;



318
PAGE 15

* *

* This section exemplifies the use of SDDL to describe the
* command for invoking the SDDL processor on the UAX 11/7B& *

*

*



414
415
416
417
41B
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
43B
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

319

SDDL INVOCATION COMMAND PAGE 16
SDDL PROGRAM_INUOCAT ION_FORMAT_SPECIFICATION

B e o o o = ((* -

* *
* THE STEPS FOR [INVOCATION OF THE SDDL PROCESSOR AND FOR *
* NAMING THE INPUT AND OUTPUT FILES ARE PRESENTED BELOW *

* *

******#**********>******************** = A IAIrAAAAAAAAAAAAAAAAAAAAAAikix-dhkihikiiikx

FIRST: Enter the SDDL invocation command
< —ENTER LITERAL: 0OSDDL

OPTIONAL NEXT: Start a new 1input line
< —ENTER: CARRIAGE RETURN
VAX RESPONSE:
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSD SSSSSSSSSSSSSSSSSSSSSSSSSSSSS>
> ENTER THE INPUT FILE NAME >
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSD> SSSSSSSSSSSSSSSSSSSSSSSSSSSSS>

NEXT: Specify the input file name
< —ENTER THE NAME OF THE INPUT FILE

NOTE:
IF THE FILE NAME EXTENSION 1S OMITTED
DEFAULT EXTENSION "SDD"™ WILL BE APPLIED
ENDIF

NOTE:

IF THE INPUT FILE SPECIFIED DOES NOT EXIST
VAX RESPONSE:
S>SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS>
> FILE NAMED DOES NOT EXIST, TRY AGAIN >
> ENTER THE INPUT FILE NAME >
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS>>
COMMAND MACRO RETURNS TO PREVIOUS STEP

ENDIF

OPTIONAL NEXT: Start a new input line

< —ENTER: CARRIAGE RETURN

VAX response:
SO SSSSSSSSSSSSSSSSSSSSSS55SSSSS5S5555>55>>

> ENTER THE OUTPUT FILE NAME >
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS>

NEXT: Specify the name of the output file
< —ENTER THE NAME OF THE OUTPUT FILE OR CARRIAGE RETURN
IF A CARRIAGE RETURN IS ENTERED

“"LIS"™ WILL BE APPENDED TO THE INPUT FILE NAME TO FORM THE
NAME OF THE OUTPUT FILE

ELSE IF THE EXTENSION NAME IS OMITTED
“"LIS"™ WILL BE APPENDED TO THE OUTPUT NAME SUPPLIED
ELSE

THE OUTPUT FILE NAME WILL BE USED AS SPECIFIED
ENDIF



320

SDDL  INVOCATION COMMAND PAGE 17
472 NEXT: SDDL processor 1is executed
j;f’l VAX RESPONSE:
475 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS>
j;g z INPUT/OUTPUT FILES ARE w"INPUT" & "OUTPUT™ ;
j;g ;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
jgg) THE SDDL PROGRAM 1S EXECUTED
%g% THE CONSOLE BELL 1S RUNG TO NOTIFY USER

485 END



321

* «
* TOP LEUEL *
* SYNTAX SPECIFICATION *
* FOR THE *
* *
* SOFTWARE DESIGN & DOCUMENTATION LANGUAGE *

PAGE

18



322

SDDL - SYNTAX DEFINITION PAGE 19
509 SDDL_CONSTRUCT: SDDL-PROGRAM
510
511 FIRST: The optional output suppression control
512 SEE SUPPRESS. OUTPUT. DIRECTIVE--———— === < )
513
514 NEXT: The document
515 ITERATION:
516 SELECTION:
517 * TITLE-PAGE--——------— X 19)
51S OR
519 * MODULE-GROUP—-—————— e >( 20)
520 OR
521 * FORMAT-CONTROL-DIRECTIVE-—-——=——————-—— - ————— X )
522 END_SELECTION_OPTIONS
523 END [ITERATION
524

526 END CONSTRUCT

528 SDDL_CONSTRUCT: TITLE-PAGE

529

530 «FIRST TITLE.INITIATOR.DIRECTIVE

531 FIRST: The DIRECTIUE keyword

532 LITERAL: »TITLE

533 OPTIONAL NEXT: The character to be used to enclose the text body
534 SELECTION:

535 Any PUNCTUATION» MARK» STRING» or COMMENT character

536 OR:

537 NULL (Default = LITERAL: *)

538 END_SELECTION_OPTIONS

533 NEXT: The title of the Title Page for entry into the Table of Contents
540 Any text

541 END_STATEMENT

542

543 «NEXT: TITLE-PAGE-BODY
544 Up to a full page of statements» none of uihich may begin with »END

345 (Note that these are lines» not statements)

546 (This therefore precludes the use of line continuation)
547

548 «LAST: TITLE.BOX.TERMINATOR.DIRECTIUE

549 FIRST:

550 LITERAL: «END

551 OPTIONAL NEXT:

552 Any additional notation (ignored)

553 END STATEMENT

554

556 END CONSTRUCT



323

SDDL -  SYNTAX DEFINITION PAGE 20
557 SDDL_CONSTRUCT: MODULE-GROUP
558
559 »FIRST MODULE.INITIATOR.STATEMENT
560 FIRST: The keyword for a MODULE INITIATOR
561 SEE BUILT. IN. KEYWORDS-—————— = o e e e e e e > )
562 OPTIONAL NEXT: Noise word
563 SELECTION:
564 LITERAL: FOR
565 OR
566 LITERAL: TO
567 OR
568 » PUNCTUATION
569 END_SELECTION_OPTIONS
570 NEXT: The name of the MODULE
571 * IDENTIFIER-—————— o m e >0
572 OPTIONAL NEXT:
573 Any text may be added to complete the statement
574 END_STATEMENT
575
576 »NEXT: MODULE-GROUP-BODY
577 ITERATION:
578 SELECTION:
579 * PASSIUE. STATEMENT === === = e e e e >( )
500 OR
581 * MODULE. INUOCATION. STATEMENT - === === = e e e >( )
582 OR
583 » ESCAPE. STATEMENT for the extantMODULE----—--———————————oeuu m—— M )
584 OR
585 * MODULE. SUBSTRUCTURE. STATEMENT forthe extant MODULE------————— X )
586 OR
587 * TEXT-BOX-GROUP--——————————— >( )
588 OR
589 * FORMAT-CONTROL-DIRECTIUE-=-——=——— === e e e e >( )
590 OR
591 * BLOCK-GROUP === == = = = — e e e e e e e >( )
592 END_SELECTION_OPTIONS
593 END_ITERATION
594
595 »NEXT: MODULE.TERMINATOR.STATEMENT
596 FIRST: The TERMINATOR keyword corresponding to the INITIATOR keyword
597 SEE BUILT. IN. KEYWORDS-—————— = o e e e >< )
598 next:
599 Any text may be added to complete the statement
600 END_STATEMENT
601
603

604 END CONSTRUCT



LINE

H
FBow~we ¢ rwN R

PAGE

e

H
PB4 FW F F AN XP © F F * FO 0N O AAW R

=

N
¥+ o+ + *Y #O

324

iolalalalaiel MODULE INVOCATION TREE ilalalakalel
OBJECTIVES

HIPO_DEVELOPMENT
HTPO_SDDL_FIRST_PASS
HIPO_SDDL_SECOND PASS

DESIGN_DATA_STRUCTURE

DESIGN MAIN DRIVER

DESIGN_FIRST_PASS
DESIGN_GET_NEXT_STATEMENT
DESIGN_TOKEN.FINDER
DESIGN_TOKEN.DICTIONARY . SEARCH
DESIGN_KEYWORD.STATEMENT .PROCESSOR
DESIGN SOURCE.LISTER

DESIGN_SECOND_PASS

CODE_MAIN
. Initialization
. CODE_F irstPass

LookupKeyuiord
- ProcessKeyuiordSt ate ment
. ProcessPassirestatement
- CODE_GetNextSt atement

ReduceSt ack
. ProducelnvocationTree
. ProduceXrefTab les
. ProduceTableOfContents
. CODE_SecondPass
. EndSummary

PROGRAM_INVOCATION_FORMAT_SPECIFICATION

SDDL-PROGRAM
SUPPRESS.OUTPUT.DIRECTIVE
TITLE-PAGE
MODULE-GROUP
FORMAT-CONTROL-DIRECTIVE

TITLE.INITIATOR.DIRECTIVE
TITLE-PAGE-BODY
TITLE.BOX.TERMINATOR.DIRECTIVE

MODULE. INITIATOR.STATEMENT
BUILT. IN.KEYWORDS
PUNCTUATION
IDENTIFIER

MODULE-GROUP-BODY
PASSIVE.STATEMENT
MODULE . INVOCATION.STATEMENT
ESCAPE . STATEMENT
MODULE . SUBSTRUCTURE . STATEMENT
TEXT-BOX-GROUP
FORMAT-CONTROL-DIRECTIVE
BLOCK-GROUP

PAGE 21



325

MODULE

CROSS REFERENCE LISTING
- —H++— —H+—

BLOCK-GROUP

PAGE 20 »NEXT: MODULE-GROUP-BODY
BUILT. IN.KEYWORDS

PAGE 20 »FIRST MODULE.INITIATOR.STATEMENT

PAGE 20 »NEXT: MODULE.TERMINATOR.STATEMENT
CODE_FirstPass

PAGE 11 (PROGRAM CODE_MAIN

PAGE 12 PROCEDURE CODE_FirstPass
CODE_GetNextSt atement

PAGE 12 PROCEDURE CODE_FirstPass

PAGE 13 PROCEDURE CODE_GetNextStatement
CODE_MAIN

PAGE 11 CPROGRAM CODE_MAIN
CODE_SecondPass

PAGE 11 -CPROGRAM CODE_MAIN

PAGE 14 PROCEDURE CODE_SecondPass
DESIGN_DATA_STRUCTURE

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
DESIGN_FIRST_PASS

PAGE 7 PROGRAM DESIGN_MAIN_DRIUER

PAGE 8 PROCEDURE DESIGN_FIRST_PASS
DESIGN_GET_NEXT_STATEMENT

PAGE B PROCEDURE DESIGN_FIRST_PASS

PAGE 9 PROCEDURE DESIGN_GET_NEXT_STATEMENT
DESI1GN_KEYWORD.STATEMENT . PROCESSOR

PAGE 8 PROCEDURE DESIGN_FIRST_PASS
DESIGN_MAIN_DRIUER

PAGE 7 PROGRAM DESIGN_MAIN_DRIVER
DESIGN_SECOND_PASS

PAGE 7 PROGRAM DESIGN_MAIN_DRIVER

PAGE 9 PROCEDURE DESIGN_SECOND_PASS
DESIGN_SOURCE.LISTER

PAGE 8 PROCEDURE DESIGN_FIRST_PASS
DESIGN_TOKEN.DICTIONARY .SEARCH

PAGE 8 PROCEDURE DESIGN_FIRST_PASS
DESIGN_TOKEN.FINDER

PAGE 8 PROCEDURE DESIGN_FIRST_PASS
EndSummary

PAGE 11 ~CPROGRAM CODE_MAIN
ESCAPE . STATEMENT

PAGE 20 »NEXT: MODULE-GROUP-BODY
FORMAT-CONTROL-DIRECTIUE

PAGE 19 SDDL_CONSTRUCT: SDDL-PROGRAM

PAGE 20 »NEXT: MODULE-GROUP-BODY
HIPO_DEVELOPMENT

PAGE 3 PROGRAM HIPO_DEVELOPMENT
HIPO_SDDL_FIRST_PASS

PAGE 3 PROGRAM HIPO_DEVELOPMENT

PAGE 4 PROGRAM HIPO_SDDL_FIRST_PASS
HIPO_SDDL_SECOND_PASS

PAGE =~ 3 PROGRAM HIPO_DEVELOPMENT

PAGE 4 PROGRAM HIPO_SDDL_SECOND_PASS
IDENTIFIER

PAGE 8 PROCEDURE DESIGN_FIRST_PASS

PAGE 20 »FIRST MODULE. INTTIATOR.STATEMENT

591

561
597

301
314

337
342

284

308
377

130

179
192

200
249

206
166

188
220

213
203
201
309
583

521
589

52

68
78

69
102

202
571

PAGE 23



C13
PAGE
£13. SDDL
PAGE
C23
PAGE
PAGE
C23 SDDL
PAGE
PAGE
PAGE
£33
PAGE

326

HIPO DATA SETS

CROSS REFERENCE LISTING
—+t -

3 PROGRAM HIPO_DEUELOPMENT
INUOCATION COMMAND
3 PROGRAM HIPO._DEUELOPMENT

3 PROGRAM HIPO._DEUELOPMENT

4 PROGRAM HIPO SDDL SECOND PASS
OUTPUT FILE

3 PROGRAM HIPO._DEUELOPMENT

4 PROGRAM HIPO SDDL SECOND PASS

9 PROCEDURE DESIGN_SECOND_PASS

4 PROGRAM HIPO SDDL FIRST PASS

£33. SOURCE_DATA_FILE

"'"PAGE
PAGE

3
PAGE
PAGE

4 PROGRAM HIPO_SDDL_FIRST_PASS
8 PROCEDURE DESIGN_FIRST_PASS

4 PROGRAM HIPO_SDDL_FIRST_PASS
4 PROGRAM HIPO_SDDL_SECOND_PASS

£43._DOCUMENT_SCRATCH_FILE

""PAGE
PAGE
PAGE

£53
PAGE
FMAGE

4 PROGRAM HIPO_SDDL_FIRST_PASS
4 PROGRAM HIPO_SDDL_SECOND_PASS
9 PROCEDURE DESIGN_SECOND_PASS

4 PROGRAM HIPO_SDDL_FIRST_PASS
4 PROGRAM HIPO_SDDL_SECOND_PASS

£53. _Th8LE_OF_CONTENTS_FILE

‘page
PAGE

£63
PAGE
PAGE

4 program hipo_sddl_Tfirst_pass
4 PROGRAM HIPO_SDDL_SECOND_PASS

4 PROGRAM HIPO_SDDL_FIRST_PASS
4 PROGRAM HIPO_SDDL_SECOND_PASS

£63 _FORWARD_REFERENCE_SCRATCH_FILE

"'"PAGE
PAGE
PAGE

4 PROGRAM HIPO_SDDL_FIRST_PASS
4 PROGRAM HIPO_SDDL_SECOND_PASS
9 PROCEDURE DESIGN SECOND PASS

67
62

70
116

63
121
239

90

87
199

90
117

96
111
230

91
116

97
112

92
117

98
113
231

117
75
242

93
118

233

118

PAGE 25



327

DATA ITEMS

CROSS REFERENCE LISTING

—++++++++H

dx .CHARACTER .COUNT

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
dx .ENTRY

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
dx.LINE.NUMBER

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
dx .PAGE .NUMBER

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
dx .PROGRAM.NAME

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
dx.REFERENCE

PAGE 6 PROGRAM DESIGN_DATA__STRUCTURE
dx .REFERENCES.TO.TOKEN

PAGE 6 PROGRAM DES IGN_DATA_STRUCTURE
dx .TEXT.POINTER

PAGE 6 PROGRAM DES IGN_DATA_STRUCTURE
dx .TOKEN.DICTIONARY

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
dx .TOKEN.TYPE

PAGE O PROCEDURE DESIGN_FIRST_PASS
ERROR MESSAGES

PAGE O PROCEDURE DESIGN_FIRST_PASS
ms . INDENTATION.COLUMN

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
ms .MODULE.STACK

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

PAGE O PROCEDURE DESIGN_FIRST_PASS
ns.STRUCTURE. ID

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
nx .NODE

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
tb . INPUT.TEXT.BUFFER

PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

PAGE 9 PROCEDURE DESIGN_GET_NEXT_STATEMENT

"b. TEXT. LENGTH
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

PAGE 9 PROCEDURE DESIGN_GET_NEXT_STATEMENT
PAGE 13 PROCEDURE CODE GetNextStatement

146
145
154
153
140
152
151
147
143
202
216
162

158
209

163
161

137
259

141
271
370

210

265

PAGE 26



328

REVISIONS
CROSS REFERENCE LISTING
—++++++++++H
*16
PAGE 11 {PROGRAM CODE_MAIN
*17

PAGE 11 {PROGRAM CODE MAIN

297
300

PAGE 27



Modular Design of Real-Time Systems

V.H.Hase, TU Graz

1. Distributed Systems

This paper deals with the construction of software for
distributed real-time systems. Both distribution and real-time
are necessary elements of our consideration: neither

"distr "bution-only’" - systems as ;.g- packet-switching networks
nor "‘real-time-only" problems like iInterrupt-handlers or
schedullers have the complexity of multi-micro-processor based
process-control systems we are regarding.

Computing systems which are no more von-Neumann machines are
used more and more frequently especially iIn process-control
and automation systems. Academic computer science seems 1o
ignore the fact that microprocessors applied in large control
systems constitute a distributed multiprocessor machine which
IS o more sequential iIn behavior, and does not have a global
system state. One field of application are SIMD (single -
instruction-multiple data) machines like array-processors; we
concentrate an MIMD (ulliple-instruetion-mullipie data) systems
with a large number of loosely-coupled processors working iIn
parallel, each of them resembling a sequential (Finite-state)
machine. Typical application fields are the control of large
machinery as e.g. iIn steel or chemical industry, of airplanes,
trains, power plants etc. (Fig.1l).



330

2. Software Construction

High level programming languages have been the most important
tool for the construction of programs. They have been designed
for the description of algorithms which are executed on single
sequentially working (von-Neumann) processors. That means that
actions have to be strictly ordered in time, concurrency is not
provided.

Whille these features map sufficiently good onto the architecture
of singleprocessor-machines this i1s no more valid for multipro-
cessors. W have to decide whether we add features (like syn-
chronization, tasking) to sequential programming languages or

if we decide to choose new structured methods for program
construction.Doing this i1t is extremely important to find a good
mapping of problem-structure onto software-structure , and of
software-strue ture onto hardware structure. Real-time requirements
can only ke met efficiently If the structures are very similar

( —> Fi1g.2).

3. Parallelisn vs. Sequentialism

Many '‘modem’'programming languages like ADA, CHILL, MODULA or
PEARL contain elements for tasking and synchronization. Neverthe-
less they are iIn principle algorithmic languages for sequential
machines. Parallelism iIs an "add upon™ - feature, and In most
cases also Implementation is like that: by a sophisticated
organization of the operating system parallelism is simulated

on sequentially working processors.



331

This type of multiprogramming operating systems becomes wvery
complex and unreliable iIf distribution and real-time requirements
are present. As software costs surpass hardware costs It seems
reasonable t map tasks 1:1 on microprocessors, and to have a
similar correspondence between hardware-connections of various
processors ,and software synchronization.

Following this scheme each processor In the system ideally
executes one seguential algorithm (in most cases a cyclic program);
these programs are coordinated by features which constitute a
global synchronization scheme. Not parallel features are 1ncorporated
In sequential programs, but rather seqguential programs are building
bricks in a parallel distributed construction process (Fig. 3).

4. How to use modulles as "‘programmer®s atomsl
We start from the following assumptions:

a) It is easy and well understood to write efficient ad
reliable sequential prograns in high level languages.

b) Distributed systems use software which consists of sequential
modulles which are executed (partly) Iin parallel, and which have to
be synchronized.

© If we define amodule as (the part of) a sequential program
between two points of synchronization, modules can be used as
bricks to build parallel programming systems, where software
structure I1s homomorphic to hardware structure, and software
synchronization s supported by hardware communication equipment.



332

In the PARC-method to be discussed here sequential and parallel
program construc.tion are strictly separated, only a small set of
control statements 1is sufficient to describe the synchronization
of sequential program modules, and semantics of parallel programs
can be defined by predicate transformers. The method has been
derived from Dijstras guarded commands [1] , has been developped
by Hailing and Haase [2, 3, 4] , axd iIs related toHoare™s approach
54 and the OCCAM-Language [6] -

The concept of guards (conditions) and actions is similar as iIn
Petri Nets [7]

A distributed programming system is composed out of a sequence
of PARCS (parallel constructs). Each PARC describes a set of
processes being executable on different (virtual) processors
(Fig- 49 in a phase of the operation of the system.
A PARC s a collection of conditional actions

(condition —> action)*
which can be executed in parallel. Actions are sequential programs
(modules) which are started when the condition becomes true.
Condition s a predicate on (@ subset of) the state of the systenm.
Actions may be marked as being executable only once (parallel-IF
style) or repeated ( parallel-DO-style).

Syntax
program I = pare*
pare -z = module [

PARC parc-name
conditional-action O conditional actionf*
ENDPARC parc-name



333

conditional-action :: = condition -V program
condition :: = Boolean expression
module :: = £global-sync™® module-name fglobal-sync] REPEAT

Comments: '"Boolean-expression 1l is defined over the state of the
environment which consists of the values of global variables and
of the occurence of communication signals. Global variables can
only be altered, and communication signals issued iIn the optional
"global-sync" parts of the actions. "Modules™, which may or may
not be REPEATed write only local variables, and are not allowed

to address communication signals.

Example

PARC INIT

STARTBUTTON —» STARTTRANSPORT  (TRANSPORT-ON)
STARTBUTTON AND TRANSPORT-ON — »  RESETPRESS 1
STARTBUTTON AND TRANSPORT-ON —>  RESETPRESS 2
STARTBUTTON AND TRANSPORT-ON -*  RESETCUTTER
STARTBUTTON AND TRANSPORT-ON — >  RESETSPOOLER
ENDPARC INIT

o o o O

PARC OPERATION

O TEMPERATURE > 1200 ANJ) BIOCKENTERS 1

AND TRANSPORT-ON — * OPERATEPRESS 1 REPEAT
BLOCKENTERS 2 AND TRANSPORT-ON —» OPERATEPRESS-2 REPEAT
BLOCKENTERS 3 AND TRANSPORT-ON —> START SPOOLER
SPOOLER FULL —» (SETSTOP) OPERATE-CUTTER
SETSTOP — > STOP-TRANSPORT  (TRANSPORT-OFF)
ENDPARC OPERATION

O 0O o O



334

Semantics: Semantics of PARC is related to semantics of
guarded commands as shomn In £3* and [H)- As the syntax
used In this paper does not distinguish between IF-PARCs
and DOPARCs - this 1i1s more useful for programming iIn
the large - the semantic has to ke derived from putting
together IF and DO-rules.

IT a PARC consists of a set of n repeated conditional-action
and a set of m not repeated conditional actions:

PARC name
cond ™ modul e

PI1 condn —> module n

O cond”™ —* module”™ REPEAT

0 condmR — > modulemR REPEAT
ENDPARC name
this iIs equivalent to:

PARC outer
true —» PARC i1nner-if
n true — PARC inner-do
ENDPARC  outer
with:
PARC  inner-if

condi —* module”

n cond, — module,

ENDPARC  1nner-if (this 1s a conventional 1FPARC)



335

and:
PARC 1nner-do
cod,JR —> module "R REPEAT

QcondmR —> modulemR REPEAT

ENDPARC 1nner-do (this i1s a conventional DO-PARC)

Predicate transformers for I and DO-parcs are equivalent to
predicate-transformers for guarded command sets (Ji]- D] m
SO the behavior of the whole system can be derived from the
effects of the va i1ous-modules taking iInto account the guarding
conditions. Correctness can strictly be derived In two steps:
first the iIndividual modules, afterwards the whole compound.

This 1s the same sequence as iIn the construction process.

5. A BExample
The PARC-method has been applied In a number of software-

development projects mainly In research environments. The con-
struction of a distributed operating system for a PDP-11 [8]
will be discussed In some detail; the control program for

a robot was iImplemented using PARCs on 8080 miICroprocessors;
recently we use 1t as a paper and pencil method for program-
ming iIn the large of telecommunication systems, e.g. multi-

microcomputer-gateways for network interconnection.



336

The PDP-11 project consisted of the implementation of an opera-
ting system able to interpret PARCs, and of the use of this
system iIn applications. The implementation iIs based on a virtual
machine model using Concurrent Pascal with the SOLO Operating
System an a PDP 11/45.

Our aim was the simulation of a distributed architecture by
means of a high-level language with pararllel prograaming fea-
tures. Pascal 15 used to describe one way In which PARCs can be
interpreted In a system with any kind of supervisory processor.
Hence some experimental experience can be gained with the concept
on a high level of descrption. A second aim s the definition of
a simulation model which allows the test of dedicated process
control applications including the development of a special pur-
pose operating system.

As a guideline we may quote Brinch Hansen

"Bventually industry will be using complicated specialized
networks of microprocessors. These dedicated computer systems
may not be programmable In the sense that they can execute arbi-
trary prograns. They may iIndeed one their efficiency to fixed
algorithms built into the hardware. But somebody must still
write ad verify these concurrent algorithms. It seems very
attractive to write a concurrent program in an abstract language,
test 1t on a minicomputer, and then derive the most straight-
forward multiprocessor architecture fron the program itself.”

The specification language structures are translated by a pre-
compiller written In Pascal Into a Concurrent Pascal target
sytem. Starting with the specification given by the PARC control
progran we generate a dedicated system which consists of three
parts (fig.5)



337

- the Concurrent Pascal kermel, responsible for processor

multiplexing, handling of monitor calls and 1/0;

- a skeleton of system components, responsible for the
execution of PARC-structures. This run-time system simulates
a distributed architecture, and all synchronization ad

communication mechanism required by a control program;

- problem-dependent sections; e.g. guard functions, condition
statement lists, and sequential modules.

The virtual machine built out of these parts simulates the
distributed microcomputer architecture specified iIn the control

program.

Although the monitor-concept of Concurrent Pascal i1s not ideal
for a microcomputer network [10], the access graph of the virtual
machine (Fi1g.6) reflects the main components of a distributed
system interpreting the PARC-structures. A group of components
working as the control unit of the system is responsible for the
execution of PARCs, implying evaluation of guards, execution of
entry and exit actions, and access to conditions, which are used
by more than one control module ('links'™).

The group of guarded processes, each running as a Concurrent
Pascal process, communicates via a shared data monitor. The two
subsystems exchange start- and termination-signals via a monitor
master .

This Concurrent Pascal system has been tested using various
classical examples iIncluding the producer-consumer problem, ad
a process control application (nixing of chemicals according to

given recipes).



338
The description of the implementation model by means of a high-
level language tumed out to be a clear, well-structured, easy-to-
modify, and easy-to-test approach. On the other hand restrictions
which the monitor concept imposes on the program design, the
language owverhead of Concurrent Pascal, and the poor program de-
velopment tools of the SOLO operating system reduce the applicability
of this implementation when solving "‘real’” process control problems.
It 1s therefore concluded that steps towards a more application
oriented implementation should be made.

6. Conclusion

An application oriented design concept for parallel programs as well
as a tentative implementation model was showm. It can be regarded as
the prototype of a kind of automation systems where not only the
application progran but also the architecture of the system (both
software, ad - In future - also hardware) can ke defined by the
user. This could be done using a single application oriented
description method. The key issue is the separation of sequential
prograns fran synchronization mechanisms. This structure can easily
be mapped on t a hardware architecture based on multiple micro-
processors ad a bus system. There IS mo necessity for complex

real-time-operating-systems iIn the individual processors.

The Concurrent Pascal implementation described is an experimental
system; it should be a model for a set of tools for the development
of control systems. These tools will consist of precompilers which
translate PARC-specifications iInto appropriate programming languages
(not necessarily PASCAL, also FORTRAN and BASIC are feasible), of



339

"'system-builder'-programs which analyse requirements and resources
and suggest suitable configurations, and of operating-system
skeletons (including device handlers, message protocols etc.).

All tools may ke implemented In software and/or firmware (ROVS).

We think that the approach to use sequential program-modulles as
they are, as building bricks for parallel ad distributed systems
IS both a proper engineering a well as an economic solution.

Acknowlledgement

I want to thank Horst Halling (Julich) and Wolf-Michael Dehnert
(Minchen) for several 1ideas which have been iIncluded iIn this

paper .

References

@1 EW.Dijkstra: A Discipline of programing,
Englewood Cliffs (1976)

(21 H.Halling, K.Blrger, H.Heer: Implementation and Application
of PARCs. SOCOCO 79, Prague (1979)
[3] V.Haase: Specification and Construction of Real-Time-Programs
with PARCs. Angewandte Informatik 5/80 (1980)
[4] V.Haase: Real-Time Behaviour of Programs: IEEE TSE 7,
p. 494 (1981)
[5] C.A.R.Hoare: Communication Sequential Processes, CACM 21,
p. 666 (1978)

[6] R.Taylor, P.Wilson: Process-oriented language meets demands
of distributed processing, Electronis, Nov.30, 1982

[7] J.L.Petersen: Petri Nets, AOM Comp.Surveys 9 (1977)

[8] W.M.Dehnert, V.Haase: High level language structures for
distributed real-time programs. S0COCO 79,
Prague (1979



340
9 P.Brinch Hansen: The Architecture of Concurrrent Programs.
Englewood Cliffs (1977)

[10] P.Brinch Hansen: Distributed Process - a Concurrent Programming
Concept. CACM 21/11, p.934-941 (1978)



of

W -

re \

z o %

« v vl i

E W W 1 .

a o g 3 SPoo L-\EQ

1 &

)

Affrom

O B @@

TPANSPOLT Precs 2 " SPoolLe¥
|7Lt’€51 CUI &
el
a SewsSor
‘“W‘*s‘—l control
. ou&pu
—-— | /{" P I/o [i‘:tT
Commryins Cals 0 te v
i"}“’{“m o locod
otber i Ps store

Figd : Mat'- Microprocessor Systew, o, frocess Cocrdro€.
(eteel rollico nuiee )




342

2 7 A
¢ 3 S
VRO,
_ L\ | /fw\ W
TRANSPOQRT —vom _
o e
PosTTian? _ P28 \Tron
4?::33-02, : SraeT T
tk\m_u?;@@ mA ,n..hann_v,—ﬂw_wwumﬂ_ m_:x..v;w 79%7? d \H_Fw;m
s - 7V pPress _ -«u&dnm_ # ‘ Q_
1 2 2 i g |
m§njt:.2 } _ 2 m E M _ oA _ b

PoSI\T 1ON-1 _. h _
TemeseAT, [
LR 7! _

SOFTWARE *

_éu usb. | Jpeess |

Rmﬁ?v“

Lo JL—b |




343 -

~5 =y

<Ss)lljoeliln-v ' N%®

Py O v/ vlie D 4«11l 00 d Wl

w>

N\ m—

BErpp  © =T O

F.\l\mﬂ\\w S ¥ »ﬂ_.ﬂl&_
W : L=\

ANz

g
e e 4o < gy Py S oosss e e & St et \'\\A \HW \

__ - — prei

| onvz

IYE]

i <3
s
780719

a. S NO/ILIGNOD

&



- -

C—Ohda’HOh‘? {Aege

Achon i

Sl | J$
U9t R0 lad; 2.
‘§¢

cond, honK- Yhe \L

4 cti4Si<ko wAiom IreXe*ladL (_ IF ~

comdl’ d»sm(UE

\5 SD ; ekl ("o

Cou oU'K'o u au? 6 C/fiki-u £

p4 rti UUE_ Coh”M"~FTtiCAS
£PeM K4 eji.iiza ]



345

PARC - problem -

control dependent virtual
execution

program parts

machine

Concurrent Pascal kernel

Fig. 5
TRANSLATION OF THE LANGUAGE STRUCTURES



346

shared data

link-handier

gp-one gp-n
KEY cm control module

EP guarded process

P, M, C system components of

type process, monitor and class

Fig. 6

ACCESS GRAPH



347 -

DESCRIPTION OF DECISION TABLES BY PSL/PSA

Svatava Machova - Bohumil Miniberger
Charles University Computing Centre
Malostranské nam. 25

118 00 Prague

Czechoslovakia

It is well known that decision tables can be usefully
employed to show the solution to any logical problem where
decision making is involved. Each decision table simply
lists in tabular format all the relevant conditions of the
problem together with all the possible actions, and
indicates the actions to be carried out when certain
conditions are true or false J/or immaterial/ /ICL General

Manual, 1972/.

A decision table is an important structured tool of

analysis. "When applied - and applied properly - a decision
table can be unmatched for clarity and precision. In
addition to being a descriptive tool, a decision table can

help you to think out policy in the making, to evaluate it

for completeness and consistency”™ /DeMarco, 1979/.

At first sight, the PSL/PSA user might feel that there



348

is no need having any furthér tools to express problem
specifications. But, how should we fill the gap between the
user and the analyst and detect the inaccuracies in
A

the word specification of the problem? Let us continue the
quotation from T. DeMarco so as to show when a decision table
should be used. "Suppose you query your user about his policy
for charging charter flight customers for certain inflight
services, and he tells you something like this: If the flight

is more than half-full and costs more than t 350 per seat,

we serve free coctails wunless it is a domestic flight. We

charge for cocktails on all domestic flights ... tut s,
for all the ones where we serve cocktails™. Expressing the
policy in the form of a decision table solves all of these
problems.

RUL E S

~ur-~

g 1. Domestic Y.N Y N Y N Y N
B 2. over half-fu Il Y Y N N Y Y N N
(o]

Z 3. Over t 350 Y Y Y Y N N N N
o)

>

2 1. Coctail served X x - 7 x 7 - 7
M

0 2. Free - X -

<

The condition entries are for YES, *N* for NO. The

action entries are *X* for execute action, *-* for do not

execute action



349

Interrogation marks and gaps must not occur in the decision
table. This is because they indicate that the decision
process is described in an incomplete way and all that a
system analyst can do is to make the user increase the
precision of the description of his decision system using
further queries. Hence, the use of decision tables s
especially convenient for the description of decision process
in all cases in which the subpolicy selection depends upon
combinations and conditions. This is an appropriate tool

for an interview carried out by the analyst, who is almost
ignorant about the real system in question (he is an analyst

by profession).

The decision tables can also be used in describing pro-

gramme specification - another form of flowchart record.

Because the PSL/PSA makes it possible to describe on
different levels of analysis very adequately both the
information structures and the data structures, it appears
convenient to use it for recording the procedural aspect
of the description phenomenon by means of decision tables

on the two Levels.

There are different processors, which, on the basis

of decision tables, design programmes for decision



350

processes /Pollack, 1965/. To our knowledge, it was U. Liebe
/Liebe, 1981/ that proposed the outputs of a certain processor
processing decision tables and designing a certain programme
based on them to be stored as a comment PROCEDURE in PSL/PSA.
Contrary to this, it is our concern to make it possible for
the user to describe the decision tables by means of PSL/PSA
even before the decision table is processed by a special
processor as a programme in some programming language. To
enable efficient operation with decision tables in the frame
of PSL/PSA, it is necessary to describe them not by comments,

but through PSL statements.

It is evident that out of the types of objects existing
in the PSL/PSA A 5.1 version /Language Reference Manual,
1981/ the objects of the type CONDITION, EVENT and PROCESS
appear to be semantically suitable for a description of
decision tables. The conditions of the decision table can
be described as a PSL object of the type CONDITION. The sum
of all the states of conditions from the decision table
important for evoking certain activities can be described
as a PSL object of the type EVENT. The activities can be

described as PSL objects of the type PROCESS.



351

In the A 5.1 version, the following relationships

between the object of the type CONDITION and that of EVENT

are admissible:

CONDITION user- name,

3ECOMING j~truej! [CALLS]j
I’ i | \] EVENT-name/s/,
]*false\] | causes]

If a name of a new relationship, e.g. 'CO-CAUSES*

inserted into the empty braces between CALLS and CAUSES,
the only PSL modification /together with the complementary
'‘CO-CAUSED BY* relationship/ will be materialized that is,
to our opinion, necessary for the user to describe the
decision tables. To facilitate the creation of a new output
reports representing decision tables we consider it
convenient to ask the user to have all the EVENT*s of one
decision table necessarily connected by the KEYWORD of the

same name,

Shouldthe wuser have the chance to operate with ISL&S,
[ Teichroew-Maca sovic-Hershey-Yamamoto, 1979/, and should he
be interested in a decision table description, he can use

this proposal for his inspiration.

Based on the description of decision table proposed by
means of PSL/PSA, A 5.1 version, output reports of various
kinds can be effected approaching at maximum to the usual
system of decision table representation. An output report

of this kind could be of the following form:



352

DECISION TABLES

KEYWORD DT-1

EVENT s

E-1 E-2 E-3 E-4 E-5
CONDITION-1 Y Y Y N N
CONDITION-2 Y Y N Y N
CONDITION-3 Y N - - -
PROCESS-1 X - X - -
PROCESS-2 - X X - X
PROCESS-3 - - - X -
PROCESS-4 - X - X -

CONDITION-1 - condi tion-name
CONDITION-2 - condi tion-name
CONDITION-3 - condition-name
PROCESS-1 - process-name
PROCESS-2 - process-name
PROCESS-3 - process-name
PROCESS-4 - process-name

At the Charles University Computing Centre Prague, the
PSL/PSA A 5.1 version has not been available up to now,

therefore the above-mentioned proposal has not been



353

implemented as yet. The decision tables had to be described
in the A 2.1 version, which is much less elegant. A detailed
description of the solution is nof interesting for an actual
user of higher PSL/PSA versions. It should only be added
that the set of all the states of conditions of the decision
table relevant for evoking certain activities have been
described by us as objects of the type EVENT, but individual
conditions have been described as ATTRIBUTES of that EVENT.
ATTRIBUTES acquiere values identical with the states of

conditions.

If it is possible to generate, in an automatized way,
the DATA DIVISION report for a programme written in the
language Cobol from the description of data structures
/Chikofsky-So-Gunnarson, 1980/, and if it is known that the
Cobol preprocessors convert decision tables directly to the
Cobol source programmes, then it is justified to assume that
it would be possible by means of the decision table
representation in PSL/PSA to rationalize appreciably the
writing of Cobol programmes. In the Appendix to this paper
/1/, the DT-1 given above is described by means
of PSL statements /and the relation ~"CO-CAUSES* betw-een

the objects CONDITION and EVENT proposed above is used in

it/, 111 the corresponding DT is given in its classic form,



354

/3/ a part of the programme in Language Like CoboL which.
should be generated on the basis of the DT-1 desri ption is

gi ven.



355

2 DECISION TABLE DT-1

RULES

1 2 3 4 5
1. PODMINKA-1 Y Y Y N N
2. PODMINKA-2 Y Y N Y N
3. PODMINKA-3 Y N - - -
1. P-1 X - X - -
2. P-2 - X X - X
3. P-3 - - - X -
4. P-4 - X - X -

3 THE topics of the programme IN LANGUAGE LIKE COBOL

WHICH SHOULD BE GENERATED FROM THE DESCRIPTION OF THE

DT-1 IN PSL/PSA

DECISION-TABLE-DT-1*
IF PODMINKA-1
IF PODMINKA-2
IF PODMINKA-3
sequence of statements for P-1
ELSE sequence of statement for P-2 ar.d P-4
ELSE sequence of statement for P-1 and P-2
ELSE |IF PODMINKA-2
sequence of statements P-3 and P-4

ELSE sequence of statements P-2*



DEF

DEF

DEF

DEF

DEF

356

EVENT gl
TRIGGERS P-2,
p-4;
KEY DT-1;
EVENT E-3;
TRIGGERS -1/
p-2;
KEY DT-1,"
EVENT £ig®
TRIGGERS P-3,
P-4/
KEY DT-1;
EVENT E-5;
TRIGGERS P-3 *
KEY DT-1,"
PROCESS P-1, P-

KEY DT-1;



1

DEF

DEF

DEF

DEF

CONDITION

CONDITION

BECOMING

CONDITION

BECOMING

TRIGGERS

357

APPENDIX

DESCRIPTION OF THE DT-1 BY MEANS OF PSL

DT-1/

DT-1/

DT-1/

PODMINKA-1;
BECOMING TRUE CO-CAUSES E-1,
E-2,
E-3;
BECOMING FALSE CO-CAUSES E-4,
E-5/

PODMINKA-2/
BECOMING TRUE CO-CAUSES E-1,
E-2,
E-4,*
FALSE CO-CAUSES E-3,
E-5/

PODMINKA-3;
BECOMING TRUE CO-CAUSES E-1/
FALSE CO-CAUSES E-2,'

E-1
P-1/

DT-1

STATEMENTS



358

LITERATURE:

CHIKOFSKY E. - SO L.K. - GUNNARSON K., Data Division /DDIV/
report in PSA Version A 5.2. ISDOS Technical
Memorandum 326, September 23, 1980.

DeMARCO T., Structured analysis and system specification. New
Jersey, 1979.

FULTON J., Some preliminary suggestions for enhancements to

PSA capabilities. ISDOS Newsletter 13, 1981,
No. 4, Enclosure B.S3.

ICL GENERAL MANUAL 4139. Appendix H. ICL Beaumont, OIld Windsor,
Berks., 1972.

LIEBE U., PSL/PSA supported microcode development. ISDOS
Newsletter 13, 1981, No. 4, Enclosure A.3.

LANGUAGE REFERENCE MANUAL, Problem Statement Language, ISDOS,
Ref. 81252-0351, Ann Arbor, 1981.

TEICH ROEW D.- MACASOVIC P. - HERSHEY III.E.A. - YAMAMOTO Y.,
Application of the entity-relationship approach to
information processing systems modeling. /In/
International Conference or Entity-Relationship
Approach to Systems Analysis and Design.

Los Angeles, 1979, 23-51.



PSL/PSA - A METHODOLOGICAL TOOL FOR THESAURUS CREATION.

Svatava Machova
Charles University Computing Centre
Malostranské nam. 25

118 00 Prague, Czechoslovakia

In general, the PSL/PSA A5.1 version may be regarded
as a tool for describing a real system, which makes it
possible to distinguish a certain number of types of objects
within this real system. Each object may acquire certain
properties /determined by the PSL/PSA designers/ and can
enter into certain interrelationships /also determined by
the PSL/PSA designers/. The PSL/PSA designers gave nhames to
the admissible types of objects, properties and relationship
/le.g. SET, ATTRIBUTE, DERIVES/. By the choice of names,
however, they largely determined the meanings that the users
may assign to the types of objects, properties and
relationships. Although the linguists gave evidence about
the fact that the words occurring outside any context are
of no meaning /Hjelmslev, 1953/ and that they acquire a
meaning only within a concrete text, a current user is not
aware of this fact and expects each separate word outside

the context to be of some meaning of its own. He assumes



360

wrongly that it is the meaning that he assigns to the

particular word most frequently within his own given sphere.

We feel that ¢t is because the individual users assigned
one single meaning to each of the words used in PSL/PSA that
some kinds of PSL/PSA modifications leading eventually to the

creation of the ISLDS /Bodart - Teichroew, 1981/ were required.

We will demonstrate in one instance that even PSL/PSA
A5.1 version can be operated as a metasystem provided that
there is a general underlying linguistic hypothesis saying
that isolated words are semantically empty and that an
arbitrary meaning based on convention between the users can

hence be assigned to them.

For information storage and retrieval systems thesauri
have to be designed. Roughly speaking, thesaurus is a
semantic dictionary consisting of descriptors and structural
interrelations between them. Usually the following relations
are distinguished between descriptors: equivalence, generic
hierarchy, partivity, association and antonymy. Thesauri are
usually large and in the course of their creation it is

convenient to be assisted by a computer.

The fact that thesauri are usually not created with

the assistance of a computer is due to the circumstances



361

that Ci) designing a software for thesaurus creation is
demanding and costly and (ii) a designer of thesaurus
with little experience does not know how to specify the

requirements for the software needed.

Although it is obvious that a software designed

exclusively for thesaurus creation offers an ideal solution,

there exist other possibilities for computer-assisted
tiiesaurus creation. It is posiible, indeed, to make use of
a software readily designed for other purposes. Before
starling the search for it, it is necessary to give an
ansver to the question as to what are the properties that

a software for thesaurus creation is supposed to possess.

| believe that the following properties are essential:

- ability to record different types of relations between
descriptors,

- ability to create automatically a complementary relation
to each relation described,

- easy updating of information stored,

- possibility of presentation of the stored data by means
of output reports enabling a differential view of the
same data,

- interactive processing,

- easy implementation on the computer available.

With view of the above properties | consider most
suitable generally for the creation of thesauri the data

dictionaries and that part of the software for automated



362

system modeling which fulfills the function of data

dictionaries without being so labelled.

The Charles University Computing Centre Prague began
to work in designin) software for a thesaurus of terms for
banking regulation; created by the Czechoslovak State Bank
/Hudec-Machovéa, 191;:/. PSL/PSA proved to be a very
appropriate methodical tool of thesaurus creation, provided
we accept the convention that some PSL reserved words will
be assigned specific meanings. The following specific meanings
of PSL reserved words were adopted for the thesaurus of

terms for banking regulations:

PSL Reserved Words Meaning Assigned

SET thesaurus,

ENTITY descriptor /one-word or multi-word/,
DESCRIPTION definiton/s/ of the descriptor,

SOURCE pub lication/s/ where the descriptor has

heen defined and/or occured,
SYNONYM/S/ descriptors in equivalence relation

/so-called “alias* relation/,
RELATION relations of generic hierarchy,

partitivity, association and antonymy

hetween the descriptors.



363

ATTRIBUTTES The class of objects of this type appears
to be ideal for this particular application.
It makes it possible to assign arbitrary
properties to an object, to name them and
to assess the value that the property
acquires in connection with the object in
question. For the descriptors /i.e. for the
objects of the type ENTITY/ the following
properties have been chosen: the date of

in:e':ion into the database, the occurrence
of tin? descriptor in some publication /up
to 10 potential occurrences/, foreign-
laiguage equivalents /English, French,
German, Russian/,

KEYWORDS connecting link of objects of different
types having relation to one SOURCE, or
descriptors related to other descriptors

by the same type of relation,

PROBLEM DEFINER the same as iIn current use,

MATLBOX the same as in current use,
CONSI ST S OF the same as in current wuse,
CONTAINED 1IN the same as in current wuse.

On the adoption of this convention, as far as the meaning
of the PSL reserved words 1is concerned, the thesaurus was

materialized 1in the form of a semantic network. The nodes of

the network are constituted by objects of several Kkinds:



364

(i) descriptors, (ii) properties of descriptors (creating
terminal nodes), (iii) sources in which the descriptors
occur, (iv) relations stated between the descriptors. The

edges between the objects remain labelled as proveded for

by PSL.

At present, works have been finished on the experimental
sample of thesaurus containing 110 descriptors. The thesaurus
is assumed to contain 3,000 descriptors the materials for

book edition of the thesaurus being made up by the PSL/PSA

reports.

Even in this relatively small extent of tiesaurus the
multiple advantage of the software chosen bee ane manifest:
- easy modification of the stored data /mocifications are
rather frequent at the early stages of thesaurus creation/,
- easy description of semantic relations between descriptors
/as can be seen from the Appendix, these relations are

fairly rich/,

- easy description of the place of occurrence of the descriptor

in the publications concerned and of the degree of
importance of the occurrence,

- easy description of publications,

- easy registration of workers responsible for the retrieval
in the publications,

- easy supply of information both to the designers and the
users of the thesauri. The following PSL/PSA output reports

are convenient: NG with various parameters, FPS with



365

various parameters, DICTIONARY with various parameters,
KWIC,

- possibility to supply information as reply /in the form
of a report/ to query /in the form of PSA commands with
parameters/ in such a way that the reply structure should

be in keeping with the functional perspective of the query.

The software chosen fails to enable to materi lize a
facet approach to the description of generic relations
between descriptors, but in the subject area in question it

is possible to do without facets.

The way of operation with a thesaurus created by means
of PSL/PSA software is comfortable and agreeable. It can
be assumed that it will contribute to frequent utilization
of thesaurus by managing workers and thus become one of the

basic resources of managing information.

LITERATURE:

AITCHINSON J» - GILCHRIST A., Thesaurus construction.
London, 1972.

BODART P. - TEICHROEW D., Les outils d*aide a la conception
d*un Systeme d’information. Informatique et
Gestion, 1981, No. 125, 47-55.

HJELMSLEV L., Prolegomena to the theory of language.
London, 1953.

HUDEC C. - MACHOVA S., Automation of control information in

a bank. Paper to be read at the INFOSEW®"83,

Pi estany, Slovakia, May 1983.



66

i3 APR 21+ 1983 119
CHARLES UNIVERSITYZVCUK d

PSA VERSION £t :os3 9

FORMATTED PROSLEM STATEMENT

PARAMETERS FOR FPS

NAME=QOBRAT NOINDEX PRINT NO3UyCH SMARG=mS NMARJI=20 AMARGE10 BMARGE25 RNMARGE?
DESG ONE=PSR=INE DEFINY COYMERNT NONEY<PAGE NONEW=LINE

°

1. ENTITY OBRAT]Y
2 DESCRIPTION]
3 PLNE ZNENI HESLQOVEHO SLOVAY
o "OBRAT".
5 CEFINICE:
6 OBRAT PEMEINT JE UHRN PLATEB V NZRODNIM HOSPODARSTVI 2ZA
7 URCITY CASIVY JSEK. TYTO PLATBY JSOU VZDY SPOJENY JEDNAK §
8 REALIZACI CEM 2RODAVANEH? 28021 2 SLUZEB, JEDNAK §
9 VYROYNAVANIM S?LATNYCH PLATEB RUZNEHO DRUHU,
16 (Fs=73)
1 OBRATEM SZ ROZ JMY UHRN PHIJMOVYCH A VYDAJOVYCH POLOZEK NA
12 JISTEN UCT I (sSJC)l
13 KEYWUDRDS 2230J=11581
14 ATTRISUTES ARE
15 DATUN=ZARAZINI~DI-TEZAURY
16 D*1982=0%=1%,
17 EKVIVALENT=-2NGLICKY
13 TIURNOVER,
19 EKYIVALENT=FR449CIUZSKY
20 C1IFFRE=D=A®FAIRES,
21 EAVIVALENT=120Fc Y
22 GILONUSATZ,,
22 EKVIVALENT=R ISy
24 DIHNEZNYJ=0BIROT]
25 CONTAINED I TZZAUR IS=VYRAZU=FANK=PREDPISU]
26 /% NI1GAT #/ RELATED T2
rdrg A KOV T=ULCT
22 Y1e A3DCIACE=?]
29 SOURCE 1§ A1SS,
35 FLVAICHI~SROVNIK,
3 SPTSIVIY~-SLOVNIK-JAZ=-CES<EHO]
32

33 EOF FOF FOF ENF E

-

o
4
m
el

-
~

NTER COMAAND (AUD ANY DARA;L



3T

PSA VERSION 2.1 APR 215 1983 11
CHARLES UNIVERSITY/VCUK

FORMATTED PROZLEM STATEMENT

PARAMETERS FOR FPS

NAMEsyVER “OINDEX PRINT NIPINCH SMARG®S NMARGe20 AMARG=1Q BMARGW2S RNMARAw70
DESG ONE=PER=LINE DEFI%T COTMENT NOMEY=-PAGE NONEW=LINE

1 ENTITY UVER}Y

2 DESCRIPTION]

3 PLME ZNENI HESLIOYEHD SLOVYA:

4 rUVEnTY,

5 DEFINICE:

6 UVER JEZ(1) v2TAK VZNIKAYICI PRI PREDANI HODNOTY DRUHYM K

? ROCASNEHMI PDZTTI; (2) FYRMA NAVIATNE REDISTRIBUCE DOCASME

8 SEBO TRVALI IVILNENYCH Z90ZNICH & PENEZNICH FONDU.

9 (FS=73)
13 UVEREM SE 02U1r POSKYTOVANI PENFZ NEBO 2B0ZI S TIM, ZE
11 5UDOY VRACEMY VERS ZAPLACENY POZrEJI. ($SJC)I
12 KEYLORDS 22301=1453]

13 ATTRIBUTES ARE

14 DATUH=24RAZINT-DITRZAURU

15 0-1982-05=19,

15 EXVIVALEMT = NGILT SKY

17 CRENIT,

18 EKYIVALENT=232 (¢dUZ3KY

13 CEOIT

2d CKYIVALSNT~3rcly

21 K¥ZDIT,

22 ZRYIVALEIUT=2 )54y

23 KREDIT)

24 CONTALLED T4 TZZAIR!S=YYRAZU=: ANK=PRE PISVU]
25 /* LTFT %/ RELATII TO

22 VELAD YIA AiTOHYMIE=1?

74 g /* LifT %/ BEELAT=Y 1O

2% PREOVOZLT=UVIR

29 wra PIY''OVA=POD-AZ2EHNQOST=13)
k 5% Fo LTRSS el RRUAT2) 1o

3 INYESTIANI-VYER

32 B 1 PIJ:IOVA=POD"AZEIIOST=14)
1 J* LIFT w/ 27LATI) TO

34 SEYIZ0Y=0v Y

S A PXJI'OVA=POD ‘AZENCST~15)
3y /* LTeHET wf BELASES T2
37 UVTRAVYYeV2T
3: P PYSINVL=POD-AZENOST~11)

34 S AICE T8 a3,

Gl Roag € iT3LOYIIK,

41 STISIW Y-S LOVNIK=JAZ=CESYENOD)
43

RS TAF SAE =UP BCE =%












	Tartalom
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	195����������
	196����������
	197����������
	198����������
	199����������
	200����������
	201����������
	202����������
	203����������
	204����������
	205����������
	206����������
	207����������
	208����������
	209����������
	210����������
	211����������
	212����������
	213����������
	214����������
	215����������
	216����������
	217����������
	218����������
	219����������
	220����������
	221����������
	222����������
	223����������
	224����������
	225����������
	226����������
	227����������
	228����������
	229����������
	230����������
	231����������
	232����������
	233����������
	234����������
	235����������
	236����������
	237����������
	238����������
	239����������
	240����������
	241����������
	242����������
	243����������
	244����������
	245����������
	246����������
	247����������
	248����������
	249����������
	250����������
	251����������
	252����������
	253����������
	254����������
	255����������
	256����������
	257����������
	258����������
	259����������
	260����������
	261����������
	262����������
	263����������
	264����������
	265����������
	266����������
	267����������
	268����������
	269����������
	270����������
	271����������
	272����������
	273����������
	274����������
	275����������
	276����������
	277����������
	278����������
	279����������
	280����������
	281����������
	282����������
	283����������
	284����������
	285����������
	286����������
	287����������
	288����������
	289����������
	290����������
	291����������
	292����������
	293����������
	294����������
	295����������
	296����������
	297����������
	298����������
	299����������
	300����������
	301����������
	302����������
	303����������
	304����������
	305����������
	306����������
	307����������
	308����������
	309����������
	310����������
	311����������
	312����������
	313����������
	314����������
	315����������
	316����������
	317����������
	318����������
	319����������
	320����������
	321����������
	322����������
	323����������
	324����������
	325����������
	326����������
	327����������
	328����������
	329����������
	330����������
	331����������
	332����������
	333����������
	334����������
	335����������
	336����������
	337����������
	338����������
	339����������
	340����������
	341����������
	342����������
	343����������
	344����������
	345����������
	346����������
	347����������
	348����������
	349����������
	350����������
	351����������
	352����������
	353����������
	354����������
	355����������
	356����������
	357����������
	358����������
	359����������
	360����������
	361����������
	362����������
	363����������
	364����������
	365����������
	366����������
	367����������
	368����������
	369����������
	370����������


