

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES

IFIP T C . 2 W O R K I N G C O N F E R E N C E
"System Description Methodologies"

May 22-27. 1983
Kecskemét, Hungary

Tanulmányok 150/1983

A kiadásért felelős
DR VÁMOS TIBOR

Szerkesztette:
KNUTH ELŐD

ISBN 963 311 164 1
ISSN 0324-2951

C O N T E N T
Page

B. LUNDBERG: On relative strength of information model 5
M. DE BLAS I, G. TURCO: Methodology for the representation

of software production processes 21
U. SCHMIDT, R. VÖLLER: The Development of a Machine

Independent Multi Language Compiler System Applying
the Vienna Development Method 51

B. HOLTKAMP, H. KAESTNER: A System Model for Vertical
and Orthogonal Migration 71

j. DIEZ: Towards an Information System Development
Environment ... 95

R.E.A. MASON: Concrete Use of Abstract Development
Formalisms ... 95

C. BAT IN I, M. LEN ZER IN I: A Conceptual Foundation for
View Integration 109

M. LISSANDRE, P. LAGIER, A. SKALLI: SAS - A Specification
Support System ..241

M. MAIOCCHI: The Use of Petri Nets in Requirements and
Functional Specification1 6 7

H. EVEKING: Nonprocedural Specifications of Hardware 189
I. BALBIN, P.C. POOLE, C.J. STUART: On the Specification

and Manipulation of Forms 213
J. A. STANKOVIC: A Technique to Identify Implicit

Information Associated with Modified Code 227
R.J. THOMAS, J.A. KIRKHAM: MICRO-PSL and the Teaching of

Systems Analysis and Design 259
G. DAVIDj W. GRAETSCH: A Hierarchical System Model for

Vertical Migration

Page
H. KLEINE: Methodology for System Description Using

»the Software Design & Documentation Language 285
V.H. HAASE: Modular Design of Real-Time Systems 329
S. MACHOVÁ, B. MINIBERGER: Description of Decision

Tables by PSL/PSA 347
S. MAC HOVÁ: PSL/PSA - A Methodological Tool for T.he -

saurus Creation 359

ON RELATIVE STRENGTH OF INFORMATION MODELS

Bengt Lundberg
SYSLAB

Department of Information Processing
and Computer Science

University of Stockholm
S-106 91 Stockholm, Sweden

Abstract:
The concept of information model is since long employed
to denote a representation of abstract knowledge about a
perceived portion of the real world. When an information
model is constructed it is changed (refined) in order to
be an as precise as possible description of the considered portion of the real world.
In the paper the changes applied to an information model
are discussed and analyzed from a formal point of view.
Thereby, it is assumed that an information model is
represented in a first-order predicate logic language. Within the framework given by predicate logic the relative strength of information models, and of the
constructs constituting them, are discussed and
examplified. Further, it is shown that an assumption of
the existence of instances of the employed predicates can
be useful, and practical, in order to find
incorrectnesses. It follows, in particular, that it is
important to represent implicit assumptions explicitly.

This work is supported by the National Swedish Board for
Technical Development (STU)

6

1. INTRODUCTION
The area of information modelling, or conceptual
modelling, has been the objective of intense research
during the last decade. A number of approaches to
information modelling and, in particular, formalisms for
the representation of information models have been
presented, e.g. (Sen-77, Hou-79, Bub-80). During the last
years first-order predicate logic has been employed as
the basis for the analysis of formalisms of information
models, but also as a representational formalism, e.g.
(Bub-80, Rei-81, Lun-82a). In this paper we discuss and
analyze from a formal point of view the process of
changing an information model aiming at a more precise
(or, stronger) information model with respect to an
assumed universe of discourse.
The relative strength of information models, and the
constructs within them, are discussed. Further, it
suggests that an information model should be made as
complete as possible, in particular, implict assumptions
should be made explicit. Also, an existence assumption is
introduced and discussed with particular attention to its
application to information modelling.

2. THE CONCEPT OF INFORMATION MODEL
When a portion of the real world, usually called a
universe of discourse (ISO-82), is considered, two types
of knowledge about it can be identified, namely: concrete
knowledge and abstract (or, general) knowledge. With
concrete knowledge is meant such knowledge that refers to
states-of-affairs in the universe of discourse, e.g. "Jim
earns 1000". With abstract knowledge is meant such
knowledge that refers to conditions holding for types of
states-of-affairs, e.g. "all employees have a salary".
An information model is defined to be a representation of
abstract knowledge about a universe of discourse. Thus,
representations of concrete knowledge is not considered.
When referring to a universe of discourse the intension
is to refer to the structural properties of the perceived
states of the real world, i.e. a particular set of
entities is not assumed in the real world.
In what follows we will assume that an information model
is represented in a first-order predicate logic language.
This inplies that an information model is constituted by
a number of first-order sentences which are the non-
logical axioms of a first-order theory for which the
universe of discourse is a set of models. Further, it is

7

assumed that the identity relation holds in the universe
of discourse, i.e. we have theories with equality. This
implies that function symbols and individual constants
are dispensible, i.e. the only non-logical symbols of an
information model are the predicate symbols.

3. DEVELOPMENT OF AN INFORMATION MODEL
When an information model is constructed for a universe
of discourse two principal strategies can be applied:
a) define the types of state-of-affairs that are

considered, i.e. define the employed predicate
symbols, and then declare sentences reflecting
abstract knowledge in the defined language.

b) start with a part of the universe of discourse and
define the language for it and represent the abstract
knowledge about it, then extend the language of the
information model and the set of sentences.

This can be represented graphically as follows:

number of
sentences final information

Figure 1

Strategy b is the more practical strategy, but from a
theoretical point of view the interesting strategy is

8

strategy a. Further, strategy b can be reduced to
strategy a by considering it as an interactive procedure
that extends the language of the information model and
adds sentences the information model. When the
information models is constructed it is assumed that its
sentences are true (satisfied) in the universe of
discoulp. This immediately implies that the information
model is consistent as it has a model. The final
information model is also assumed to have the properties
that it is finite and that all perceived abstract knowledge about the universe of discourse is represented.

4. CHANGING AN INFORMATION MODEL
Assume that a partial information model 01 is obtained,
which is changed and another one 02, is then obtained.
Four types of changes can be considered:
- a predicate symbol is added
- a predicate symbol is excluded
- a sentence is added (without changing the language)
- a sentence is excluded (without changing the language)
As pointed out above we assume that the information model 01 is satisfied in the considered universe of discourse.

4.1 Addition of a predicate symbol
When a predicate symbol is added to the language of the
information model this will have no formal implications
on the information model. However, from the point of
interpretation it implies that a type of states-of-
affairs is considered in the "new" information model 02
that was not considered in 01. In order to only represent
the implied extension of the universe of discourse of the
information model a tautological sentence can be added.
Example: Assume that also employees are considered in

the universe of discourse, then the
tautological sentence
Vx(emp(x) — > emp(x))
can be added.

An addition of tautological sentences to an information
model adds no knowledge to it as a tautological sentence
is satisfied in all universes of discourse.

9

4.2 Exclusion of predicate symbols.
When a predicate symbol of an information model is
excluded it implies that a type of state-of-affairs in
the universe of discourse is disconsidered. When a
predicate symbol is excluded from the information model
also those sentences that include the excluded predicate
symbol must be excluded, or changed. Then three cases can
occur:
a) tautological sentences are excluded, this will not

influence the remaining information model (cf. above).
b) sentences defined over the excluded predicate symbol

only are excluded, neither this case will influence
the remaining information model as the sentences are
independent of the rest of the sentences. The
resulting information model is satisfied in the
universe of discourse but can become less informative
than the original information model (see also section4.4.) .

c) sentences including the excluded predicate symbol are
exluded. This case will be discussed in section 4.4.

4.3 Addition of sentences.
When a sentence e is added to an information model 01,
giving 02, three cases can occur (cf. Lun-82b).
a) It holds that -e is deducible from 01

This means that if e is added to 01, the extended
information model, 02, is inconsistent. This implies
that 02 is not satisfied in any universe of discourse
and in particular not in the considered one.

b) It holds that e is deducible from 01
Due to the soundness theorem for predicate logic this
implies that the sentence e is satisfied in all models
that satisfy 01, thus no additional knowledge is represented in 02 relative 01 and, thus, the sentence
e is redundant in 02.

c) Neither e nor -e is deducible from 01
In this case the "new" information model 02 will be
more informative than 01. But, this does not imply that it really exist a model for 02 that does not
satisfy 01. This latter case will occur as soon as we
have an information model that is not complete, e.g.
when natural members are considered in the universe of
discourse.

10

4.4 Exclusion of a sentence
Assuming that the information model 01 is satisfied in
the universe of discourse and a sentence e is excluded
then it can occur that 02 is less informative than 01.
This follows directly as whenever 01 is satisfied in the
universe of discourse so are all of its sentences and if
one sentence is excluded the rest of sentences are still
satisfied in the universe of discourse (cf. section 4.2).
However, if the excluded sentence e is not deducible from
02, then 02 will be less informative than 01, i.e. e is
not redundant in 01.

4.5. Discussion.
The maininformation
correctness
information
correctness

problem concerning the representation of
models in predicate logic is that of
checking. Assuming that the sentences of an
model are syntactical correct the only
criterion that can be applied is that of

consistency. As we have pointed out above the consistency
of an information model can be violated only when a
sentence is added to it. For example, assume that a
sentence is added to an information model and that the sentence does not violate the consistency. In such a case
no formal criterion of correctness of the sentence with
respect to the other sentences is available.
Example: Assume that

obtained:
the following information model is

Vx(secretary(x) -> emp(x))
and assume that the following sentence is added
Vx(seeretary(x) -> emp(x) V board-member(x))
for the resulting information model it holds:

the information model is consistent
the second sentence is deducible from the the first sentence

But, should the second sentence replace the first sentence?
In order to increase the capability of determining the
resulting information model after a change we have to
find suitable meta-rules which can support a user when a
model is changed. Consider the above example, in such a

11

case one could apply a rule saying that whenever the
sentences include the same predicates then the sentences
have to be intuitively inspected for correctness (i.e.
with respect to the considered universe of discourse).
However, such principles are outside the formal
processing of information models.

5. RELATIVE STRENGHT OF INFORMATION MODEL

In what follows we will assume that the language of two
information models, 01 and 02, are identical, i.e. they
are defined over the same predicate symbols.
The information models are said to be equivalent, written
01=02, if it holds for any sentence e that
01 h e if and only if 02 h e
Further, we say that 02 is (deductively) stronger, or
more informative, than 01, written 01>>02, if for some
sentence e it holds-that
02 h e and not 01 h e
We also say that an information model 0 is optimal if it
does not exist a sentence e reflecting perceived abstract
knowledge such that
not 0 h e
This should not be confused with the stronger concept of
completeness of theories. Only for very simle cases it is
possible to arrive at a complete theory (information
model) and that is the reason for the weaker concept of
optimality which refers to the perceived abstract
knowledge. A theory is said to be monomorphic if it is
consistent and all its models are isomorphic to each
other, thus a monomorphic theory specifies all of the
structural properties of its possible models (Car-54).
Further, an information model 0 is said to be non-
redundant if for any sentence e in 0 it does not hold
that e is deducible from 0 - {ej .

6. APPLICATIONS TO INFORMATION MODELS
In this chapter we will analyze and discuss some examples
of constructs in information models with respect to their
relative strength and its implications on the strenght
of information models.

12

6.1 A simple example
Assume that we have the following concrete knowledge
about a universe of discourse:
"Jim owns EMM300"
"John owns EUJ399"
"Jim owns LA6880"
An initial information model 01 is constructed:
01=(vxVyVzVuVv(own(x,y) & own(x,z) & own(x,u) & own(x,v)

(y=z) V (y=u) V (y=v) V (z=u) V (z=v) V (u=v))J
Then a sentence e is added to 01, giving 02=01U fe} , where
e = VxVyVzVu(own(x,y) & own(x,z) & own(x,u) — >

(y=z) v (y=u) v (z=u))
The relationships that hold for 01 and 02 are:
- 0l>>02 as the sentence e can not be deduced from 01
- 02 is redundant as we can let 02= {e?
- we can say that 02 is optimal as it is assumed to

reflect the perceived structural properties of the
concrete knowledge above.

6.2 A typical example
Assume that we have the following abstract knowledge
about a universe of discourse.
"all employees has a salary"
The predicates of the intended information model are:
exp(x) "x is an employee"
sal(x) "x is a -salary"
esal(x,y) "employee x earns the salary y"

Assume that an initial information model is
01 = [vx(emp(x) — > 3y(sal(y) & esal(x,y)))(

13

This information model can be
any pair of entities to
'esal(x,y)'. Assume that a
declared:

made stronger as it permits
satisfy the predicate

second information model is

02 = {vx(emp(x) — > y(sal(y) & esal(x,y)))
VxVy (esal (x , y) — > emp(x) & sal (y))}

This information model is stronger than 01 as it restrics
the instances for 'esal' to be pairs of entities where
the first entity is an employee and the second is a
salary. We say that we "close" the predicate 'esal' by
the second formula. Further, the added sentence is not
deducible from 01, i.e. a closing of the predicates makes
the information model stronger.
The two formulae of 02 are typical instances of
constructs of most approaches to information modelling.
The first formula reflects a so called totality (total
function (Bub-80)) which states that all instances of a
set of entities are related in a particular way to other
entities. The second formula represents a so called
domain declaration which states that the entities of an
association type are of certain types.

6.3 Relative strength of constructs.
The information model 02 of the preceeding section is a
quite typical instance of information models as it
expresses properties of all the instances of a set of
entities. However, it should be noted that it is not
assumed that it exists either exployees, salaries or
esal-associations. In the next section we will discuss a
possible assumption of existence of extensions of
predicates. Here we will consider some general patterns
of constructs and discuss their relative strength.
In most basic textbooks on predicate logic four basic
constructs are presented and discussed; they are of the
types:
Vx(trucker(x)
3x (trucker (x)
Vx (trucker(x)
3x(trucker(x)

— > employee(x))
& employee(x))
& employee(x))
— > employee(x))

The first
construct.
universes

construct implies the fourth, which is a
The fourth construct is satisfied in
of discourse except those in which, e.g

exists truckers and all of them are not employees.

weak
all
, it
This

14

type of construct will
cases. The third type of
states something about
discourse, which probably
cases. Of more interest
and second types.

hardly be useful in practical
construct is very strong as it
all entities in the universe of
will be to strong in practical are the constructs of the first

First of all, we have to point out that the
formulae above are incomparable in that neither
are deducible from the other.

two first
of them

Let us consider the first formula, which states something
about the instances of a set of entities. This type of
construct has earlier been used in several approaches to
information modelling. Examples are the totality
constructs and domain declarations, which were discussed
in section 6.2.
An alternative of the general pattern of the first
formula is:
Vx (secretary(x) V trucker(x) — > employee(x))
This formula is stronger than, say
Vx (secretary(x) — > employee(x))
as the former states that those who are secretaries or
truckers are employees and the latter states that
secretaries are employees. Further, the former formula is
reducible into
Vx (secretary(x) — > employees(x))
Vx (trucker(x) — > employees (x))
A weaker formula is
Vx (secretary(x) & trucker (x) — > employee(x))
which states that those who are both secretaries and
truckers are employees. This formula is not reducible.
Correspondingly, we find that, e.g.
Vx (employee(x) — > secretary(x) V trucker(x))
Vx (employee(x) — > secretary(x) & trucker(x))
are weaker respectively stronger than, say
Vx (employee(x) — > seeretary(x))

15

which is one of reductions of the implication with a
conjunction in the consequent.
From these examples we conclude that in practical cases
we should identify abstract knowledge that holds for as
large as possible sets of entities and for which as many
as possible properties hold. In particular, we have to
"close" the predicates as much as possible (cf. section
6.5.) .
Now, let us consider the second type of constructs. The
basic construct is, say,
3x (secretary(x))
This construct is of course weaker than
3x (secretary(x) & trucker (x))
as the latter states that it exists an entity that is
both a secretary and a trucker. A weaker formula is, say,
3x(secretary(x) V 'trucker(x))
which states that is exists an entity that is a secretary
or a trucker.
From these examples we conclude that one should if
possible state that it exists entities which have a
combination of properties. This is still more obvious if
we combine the principal types of constructs, e.g.
Vx(seeretary(x) — > employee(x))
Sx (secretary(x))
The first formula does not imply the existence of a
secretary and then not the existence of an employee. If
the second formula is also declared in an information
model it immediately follows that it also exists
employees.

6.4 Discussion on an existence assumption.
In the preceeding section we pointed out that one should
if possible declare in an information model that it exists entities with certain properties. In this section
we will discuss the implications of an assumption which
states that every predicate has an instance. One can
easily identify arguments supporting such an assumption,
but also arguments against it.

16

An argument supporting the existence assumption is:
- when an
predicate
including
discourse
to by the

information model is constructed and a
symbol is employed it exists a reason for
the predicate symbol, i.e. in the universe of
it exists state-of-affairs which are referred
predicate symbol.

However, a universe of discourse refers to a number of
states of a portion of the real world and the existence
assumption would then imply that in every state it exists
an instance of the predicate symbols. This argument can
easily be refused by assuming that the predicates include
a variable which refers to states. Then, the existence
assumption would be restated to: "it exists a state such
that it exists ...". But, this is only a reduction of the
problem and the same argument holds against the existence
assumption in this case. Thus, we conclude that from a
pure theoretical point of view an existence assumption
should not be made. But, from a practical point of view
it should be made as long as its advantages and
disadvantages are considered.
Let us illustrate the advantage of the existence
assumption by an example:
Assume that the following abstract knowledge holds for a universe of discourse:
"all who has a salary are employees"
"nobody is both an employee and a shareholder"
"every shareholder has a salary".
This is represented as follows:
VxVy(esal(x,y) — > emp(x))
- 3 x (emp (x) & sh (x))
Vx(sh (x) — > 3 y (esal(x,y)))
This set of formulae is consistent. However, from
intuitive considerations it is concluded that it must be
inconsistent. But, this is due to the implicit assumption that it really exists a shareholder. If this is assumed
and included among the formulae above we will immediately
have an inconsistent set of formulae. Thus, in this case
the existence assumption is advantegous.
The following examples shows that one has to be aware of
the disadvantages of the existence assumption. Assume that
for a universe of discourse the following abstract
knowledge holds:

17

"if there is a secretary there are no truckers"
"if there is a trucker there are no secretaries"
This is represented as follows:
3x(secretary(x)) — > Vx(-trucker(x))
This formula is consistent. If the existence assumption
is made then we have to add the following formulae:
Jx3y (secretary (x) & trucker (y))
Then, the extended set of formulae will immediately
become inconsistent as the only universe of discourse
that satisfies the original sentences is that in which
all entities are secretaries or all entities are
truckers, i.e. either of the sets of entities must be
empty. Thus, in this case it was a disadvantage to assume
the existence of an instance of the predicates.
However, the above case can be easily avoided by making
the idea of states of the universe of discourse explicit.
The abstract knowledge can then be restated as follows
"if there is a
trucker"

secretary in a state then there is no

which is represented as follows
Vx (3y (secretary (y,x)) -> Vy (-trucker (y,x)))
and the existence assumption gives
3x3y3z 3u (secretary(x,y) & trucker(z,u))
With this approach we avoid an inconsistency of the information model.
From a practical point of view we conclude that the
existence assumption is advantageous as:
- it makes the information model stronger, (cf. section

6.3)

- it makes it more probable to find an inconsistency (cf.
above)

- existence of entities are usually assumed in every-day reasoning (cf. above)

18

However, we have to be careful with the existence
assumption when, as above, disjoint sets of entities are
considered and, in particular, as in the last example,
mutually exclusive sets of entities are considered.

6.5 Closing an information model
In section 6.2 we introduced the idea of closing a
predicate which was examplified by a so called domain
declaration, e.g.
VxVy(esal(x,y) — > emp(x) & sal(y))
The formula states, e.g., that those objects that have a
salary are employees. However, this is all that the
formula represents. When such a formula is represented in
an information model it is usually implicitly assumed
that the objects that have a salary are employees, and
are of no other types, such as shareholders. In order to
obtain a stronger information model we should also state,
if possible in the actual case, that the objects that
have salaries are not also shareholders. This means that
it should be stated both what "holds" and what "does not
hold" for a set of entities. Thus, we can complete the
above formula with the following:
-3x3y(esal(x,y) & shareholder (x))
which is equivalent to
VxVy(esal(x,y) — > - shareholder(x))
However, this is not equivalent with that the sets of
employees and shareholders are disjoint as an entity can
be an employee who does not have a salary.
The idea of closing the predicates of an information
model is quite similar to the closed world assumption of
data bases, cf. (Rei-81). In our context the assumption
implies, in principle, that an information model can be
made complete (in the logical sense). However, as we
pointed out above, we can not expect an information model
to be complete (cf. chapter 5), but there are good
reasons for aiming at "complete" (or, optional)
information models:
- an information model becomes stronger
- implicit assumptions are made explicit.
These arguments imply that correctness checking of an
information model will be more efficient, in particular
consistency checking (cf. section 6.4).

19

7. CONCLUSIONS
In this paper we have focused on the process of changing
an information model in order to obtain an information
model that is as precise as possible with respect to the
considered universe of discourse. Some principles to be
applied in the construction of information models in
order to obtain the above goal are presented. These
principles include that the employed predicate symbols of an information model should be "closed" such that their
instances are completely characterized. Further, it is
proposed that an existence assumption about instances of
the predicates should be made, though it has a
limitation, which is pointed out. The relative strength
of some typical constructs of information models are also discussed and examplified.

REFERENCES
Bub

Car

Hou-

Iso-

.Lun-

Lun-

Rei-

Sen-

80 Bubenko, Janis, jr.: "Information modeling in
the context of system development", IFIP-80, Tokyo, Japan, 1980.

54 Carnap, R.: "Einfurung in die symbolische
Logik, mit besonderer Berücksichtigung ihrer
Anwendung", Wien, Austria, 1954.

79 Housel, B.C., Waddle, V., Yao, S.B.: "The
functional dependency model for logical
database design", IBM Res.Lab., San Jose, USA, 1979.

82 Griethuysen, J.J. (ed): "Concepts and Termino
logy for the Conceptual Schema and the Informa
tion Base", ISO TC97/SC5/WG3, 1982.

82a Lundberg, B.: Contributions to Information
Modelling, Ph.D.-thesis, Stockholm, Sweden,
1982.

82b Lundberg, B.: "IMT - an Information Modelling
Tool", IFIP WG 8.1 Work.Conf. on Automated
Tools for Information Systems Design and
Development, New Orleans, USA, 1982.

81 Reiter, R.: "Data Bases: A logical perspec
tive", SIGMOD, Vol 11:2, 1981.

77 Senko, M.E.: "Conceptual schemas, abstract data
structures, enterprise descriptions", Internat.
Comp. Symp., 1977.

METHODOLOGY FOR THE REPRESENTATION
OF SOFTWARE PRODUCTION PROCESSES

M. De Blast and G. Turco
Istituto di Scienze dell'Informazione ,

Universita' dl Bari, Italy

1.INTRODUCTION

Software production processes are measurable entities, as are

software products themselves. They also include software products, but
their essential components are production activities. In this study,
"production activity" is taken to mean the sum total of manual and

automatic operations required to pass from one product to another.
Among production activities, even the measurements are to be

22

considered. In this case, two levels of analysis are established: the
first refers to the object to which the measurement activity is applied

and the other to the activity itself.
The production process is an entity in development, not terminated

as on the contrary is a software product. The analysis of a production

process is directed towards the knowledge of objects which must still be
produced, with the aim of influencing production mechanisms themselves.

Elshoff /1 / uses complexity as a control variable in the production

process: the programmers are constantly supplied with feedback on the
code which they are producing, so that when it becomes too complex, they
are asked to reprogram it until values of acceptable complexity are

obtained.
Belady and Lehman /2/ see the large software systems as organisms

which change during their lifetime in relation to their environment.

We maintain the necessity of intensifying the interactions with the
environment during the initial stages and decreasing them after the
product has been released. This may be done by means of measurements, as
in Elshoff, which generate a feedback on the process itself.

The analysis of production processes must have previsional

characteristics in relation to the product to be obtained. De Miliő and
Lipton /3/ suggest that ideas should be taken from less precise sciences
than Physics -for example Meteorology or Economics-, since in these, as

in Software Science, the predictive component is much more important than
the explanatory one.

The summary of the Panel Findings of /4/ states that: "A natural

23

dichotomy exists in the interests of those who study software metrics.

There are those whose interests lie in studies of the creation and

management of programs - in human performance. And there are those whose

interests lie in studies of the object produced - in program performance.
Although it is generally agreed that there ought to be a natural

relationship between these two types of studies, we see no unifying
theory developing in the near future".

So, software products and production processes should be represented

in the same space and analytical relations between the former and the
latter should be established.

Belady /5/ also maintains that it is difficult to develop a metric
for both products and processes. Many experiments (see for example

Sayward /6/) have been conducted to measure products and few to measure

processes. Sayward also reports various experiments which relate the two

areas. However, these suffer from the lack of a unifying theory based on
a univocal product and production process representation.

This study introduces a definition space for production processes.
In this space, a production process corresponds to a trajectory made up
of segments representing the activities. The final and intermediate
points correspond to the various products obtained during the entire

process. Or else they may be isolated from the trajectory in order to

represent products which already exist, and can be used in the production
process.

Section 2 deals with the definition space of software production
processes.

24

In the Sections following, the representation of processes and

products in this spa<^, its metric basis and usage of analytical

relations as previsional and comparing tools, are developed.
An application of the methodology is carried out on some production

processes studied in a preceeding paper /7/.

The tools for production process measurement, introduced in /7/, are
described in detail in /8/, where a presentation is made of an
application in an industrial environment of the methodology proposed for
the production of large scale software.

2. DEFINITION SPACE OF SOFTWARE PRODUCTION PROCESSES

A software production process can be represented by a trajectory of

a point moving through a space, whose coordinates are measurable
properties such as: production time, programming cost, functional

requirements, execution time, memory occupation, level of portability,
maintenance level, readability, complexity, etc.

According to the production tools available (hardware and software)

and the preselected strategies, we will have various trajectories and
various arrival points of these trajectories. The choice of which
trajectory to follow should take into account those arrival points found

within a predetermined area of the definition space ("area of

acceptability")

25

Intermediate points may also influence the choice of optimum

trajectory. Assuming that time is a privileged variable, it may be

interesting, for example, to determine trajectories which connect
products, P(t), obtained at different times, ti and tf, with equal

functional characteristics, but with different performances, whose final

points, P(tf), are of course still within the area of acceptability
("prototyping" and "tuning").

In certain cases, it may be preferable to follow this kind of

trajectory, instead of one which has a final point with greater
characteristics, but no intermediate points of the type described. In

fact, in this way, we have the advantage that, from the first phases of
software generation, a product is already obtained with the required
functionality, even if the other prerequisites are not yet satisfied.
This is useful for testing and evaluation purposes.

Groups of variables in this space may be part of particular metric

bases, according to which aspects of product or production process are

enphasized in the analysis. Among the most important, we indicate the
well-known metrics based on the analysis of the program text (Halstead
/9/) and those, complementary to them, which are based on its history of
execution (Knuth /10/).

The software product continues its trajectory even after what we
have called its arrival point. Actually it is at this point that it

begins to exist as a "finished product". From this moment on, other
variables become important, specifically: costs of maintenance, transport
if any, modification, extension, error elimination, execution time,

26

occupation of memory and of other resources.
It is essential that the entire trajectory, and not only the point

determining the final product, is situated, from this moment onward, in
an area of acceptability, in order to ensure that the quality
requirements, whether set or forecast, will be constantly satisfied.

Many quantities possess this double aspect which refers to "before"
and "after" the product has been obtained. That is, there is one cost for
preventive therapy and one for the intervention on the product. For

example, Jones /11/ separates quality measurements into measures of
defect removal efficiency and defect prevention.

Thus, the conclusion reached is that the trajectory should be chosen

according to the arrival point of the product and the intermediate
points, and also according to "future" points. How to choose a trajectory

on the basis of measurements of a product which still must begin to

exist, is a problem which, within other sciences, is solved in two

possible ways:
a) making use of simulators which, by underlining determined

characteristics each time, also allow their measurement and thus the
evaluation and choice of the trajectory which optimizes that partial set
of characteristics;
b) determining other variables, from which "future" variables may be
deduced by means of analytical relations. This is equivalent to
increasing the dimensions of the definition space, in order to
incorporate these new and fundamental coordinates.

Both methods must generate 1) an adequate instrumentation for the

27

measurements of the quantities of interest, and 2) a set of analytical
relations and/or invariance principles for the interpretation of

measurements carried out. The difference between the two methods lies in

the varying importance assumed by the two above mentioned points.
Each time one proceeds towards such a modelization, introducing

groups of variables characterizing each aspect of a software product or
of a production process, with tools for their measurements and analytical
relations for their interpretation, a definition is made of a "Physics"

or, better still, of a branch of Software Physics.

Returning to the concept of a trajectory in a definition space of
software products, it is worthwhile focusing attention, for a moment, on

particular types of trajectories: those which join two points of two
distinct trajectories, as in the conversion of a product from one
computer to another.

In this operation, the most obvious variable is the cost of
transport, which may vary to a great extent, according to the level of
portability of the original software. Moreover, if this is not portable,
there are two groups of trajectories, whether or not the arrival product
is portable, thus causing a notable difference in transport cost. The
importance of this variable is so great as to wrongly overshadow other

factors such as: time efficiency, memory occupation, level of

maintainability, etc., thus limiting us to a simple maintenance or

generic improvement of values assumed in the original product. Also in

this case, a physical approach cannot avoid the examination and
measurement of all variables on which software product trajectories

28

depend, so as to forecast the characteristics and performance of the

final product, thereby carrying out the choice of the trajectory which

achieves the best compromise.
Tools used in the software production, such as languages, compilers,

interpreters, code generators and operating systems, are software

products as well. The characteristics of products to develop and thus the
various trajectories are dependent on them. Generally, software
production tools correspond to isolated points in space, since they are
almost always products already obtained, supplied by the firm or by an
external software manufacturer.

In other cases, production tools correspond to final trajectory

points, if it is the user who must produce them. Testing and debugging
tools and precompilers, are examples appearing in this category.

Generally, we may safely say that the measurement tools themselves are to
be measured and evaluated in the production space.

Furthermore, it is often the case that, even if products supplied by
an outside manufacturer are involved, they lack evaluation in terms of

even such basic figures as execution time and the like, so that, in order
to carry out our analysis, it is necessary to have the proper measurement
tool available for these products as well.

As far as the analytical relations existing between production
process variables are concerned, we have already seen their previsional
properties with regard to characteristics of products still to be
obtained. We have also insisted on the importance of comparing the
various trajectories with one another, not only on the basis of puntiform

29

characteristics, but also of continuous intervals of the variables. Thus,
it is important not only to obtain analytical relations between the

variables of a production process, that is, relations along a single

trajectory, but also to obtain analytical relations between the
trajectories, eventually taking one of them as a trajectory of reference
and relating the others to it.

3. MODELS

As examples of software production processes, we take the ones

studied in /7/. The following is a brief description of the corresponding
models.

Hypotheses made in /7/ on the environment included:

the existence of three language levels: HLL (High Level Language), ILL
(Intermediate Level Language) and DEL (Directly Executable Language),
with no reference made to the particular languages used;
- the use of normal production tools, among which in particular there
were both an interpreter and a code generator from ILL to DEL;
- the use of "tuning" methodologies.

On the basis of the above, five alternative models were formulated:

1) DEL model, consistent in the writing in DEL (or in the symbolic

correspondent): it defines a machine at one level (Fig. 1.1);
2) The "interpretive" model (Fig. 1.2), which concerns the writing of

30

DEL
1) DEL model

2) Interpretive model 3) Generative model

4) Interpretive 5) Generative

+tuning model +tuning model

Fig.l Software production models

31

programs HLL which, for reasons of portability, are compiled in ILL and
then interpreted in DEL;

3) The "generative" model (Fig. 1.3), which differs from the interpretive
model in that it uses a code generator to pass from ILL to DEL;
4) The interpretive model with tuning (Fig. 1.4);
5) The generative model with tuning (Fig. 1.5).
Models 4 and 5 are respectively models 2 and 3 optimized in execution

time. The tuning methodology is applied by measuring the critical HLL
areas and substituting them with DEL code.

4. PRODUCTION TRAJECTORIES

An observation which may be made, before moving on to the
application of considerations made in the preceeding Sections to models

introduced, is that, in order to represent entities (activities and
products) in a definition space of production processes, their metric
basis should be defined. On the other hand, this metric may only be

deduced by analysis of activities involved in the different production

processes, so that it is preferable to follow the order of first
introducing the production trajectories - referring to "production time"

- and then, in the following Sections, the coordinates and analytical
relations essential for their analysis.

Some definitions are given and then "elementary" trajectories are

32

introduced.
A trajectory, within the definition space, is composed, as has

already been stated, of segments and vertices: the former indicating
production activities and the latter, the products. A segment always goes
from one product to another, or rather always joins two vertices. The

first segment also begins from a "product", supplied by the sum total of
the initial unformalized specifications of the product to be obtained.

We shall follow the convention of labelling only the vertices - not

necessarily all of them - , reporting, for the sake of brevity, the
languages in which the products are obtained.

The first kind of trajectory that we shall consider, concerns
measurement activities. Let us take, for example, the activity of

counting n , the number of instructions executed in a given DEL program

run. The corresponding diagram is shown in Fig. 2. It represents a

measurement activity which leads to the passage from DEL product to DEL:n
product.

The two usual ways of carrying out measurement, using

instrumentation or interpretation, are represented respectively in Fig.3
and in Fig.4.

Interpretation activities are denoted by dashed segments, in order

to indicate the fact that they are not activities of transformation from
one product to another, but rather of execution of a product on a machine
whose language is expressed by the second vertex. The measurement of n
in Fig.4 is seen as a minor variation in the interpretation activity.

Another kind of trajectory is found in "conversion" diagrams, which

DEL: Kl

Fig.2 Measurement trajectory of n
DEL

DELS

DEL
Fig.3 Measurement of n by means of DEL instrumentation

«
DEL

Fig.4 Measurement of

DEL:*.

n by means of interpretation

Fig.5 Diagram of conversion from machine D to machine G

Fig.6 Diagram of conversion of a DELa product to a DELb machine,

examining five different production processes, leading to products all
functionally identical.

34

lead to the passage from a trajectory to one or more different
trajectories. An example of a conversion diagram is supplied in Fig.5,
which represents the case of two products, functionally identical, but
implemented on different machines. In this case, the two processes share

only the initial analysis activity, while they diverge in the final

production activities.

In a more general way, conversion diagrams may be interpreted as the

representation of altenative production processes obtaining functionally
identical products. Such processes may have some sections in common, in

both the initial and final parts, supplying different products in one

case and the same product in the other. The diversification of final
products does not necessarily mean the use of different machines, but
much more often different procedures making use of the same hardware.

A problem of conversion from a DELa to a DELb machine, which
examines various alternatives, such as those outlined in the preceeding
Section, may be represented schematically as in Fig.6.

The sum total of initial activities, common to the various
trajectories, has no influence on the relative evaluation of the various
production processes. Thus, this evaluation may include the production

process followed to obtain the product to be transported, or else it may
be limited only to alternative processes.

In any case, the diagram of conversion is transformed into one of
"selection" between various independent alternatives. Fig.7 traces the
selection diagram for the five models introduced in the preceeding

35

Section, and Tab.l lists the corresponding products.

(1) DEL writing. Reference trajectory.

Hll

(2) HLL writing, ILL compilation, interpretation.

HLL

(3) HLL writing, ILL compilation, DEL code generation.

Fig.7 Production trajectories for: 1) DEL, 2) Interpretive, and 3)
Generative models.

36

HLL

ILL

HLLuc + HLLc

.JHLLvic+DELc

■^Unt-jjXLc.
------------ - DELM t + DELc

(4) HLL writing, ILL compilation, interpretation with HLLc measurement,
rewriting of HLLc in DEL, ILL compilation, interpretation.

HLLnt+HLLc

(5) This is identical to (4), except for the latter activity which

involves DEL code generation.

HLLnc + HLLC
----- (5) -fvoho HLLmc + HLLc onward.

(5') HLL writing, HLLs instrumentation, ILL compilation, DEL code

generation, execution to obtain HLLc, then (5), from HLLnc+HLLc onward.

Fig.7 (Cont.) Production trajectories for: 4) Interpretive + tuning, 5)

and 5') Generative + tuning models.

37

Table 1. SOFTWARE PRODUCT LIST

Product Definition

a) DEL Program written in Directly Executable Language
b) HLL Program written in High Level Language

c) ILL Program in Intermediate Level Language, obtained by
compilation from HLL

d) DELg Program in Directly Executable Language, obtained by
code generation from ILL

e) HLLnc+HLLc Program in High Level Language measured to detect
the critical areas HLLc

f) DELc Critical areas rewritten in Directly Executable Language

g) HLLs Program in High Level Language instrumented to detect
critical areas

h) ILLS Program in Intermediate Level Language obtained by
compilation from HLLs

i) DELS Program in Directly Executable Language, obtained by
code generation from ILLs

j) ILL/DEL Interpreter of Intermediate Level Language in a
Directly Executable Language machine

k) ILL/DELg Code generator from Intermediate Level Language to
Directly Executable Language.

38

The trajectories of Fig. 7.1, 7.2 and 7.3 reflect the simplicity of
the corresponding models. It is only worth noting that there is a
diversity of products obtained by the first and the third process, from
which the different notations, DEL and DELg, are taken. As can be readily
seen, there is a difference not only in the text of the two programs, but

also in their properties, as a result of the different DEL and DELg
language levels. This is evident from measurements of ILL power carried
out in relation to both of them (/7,8/).

The trajectories related to models with tuning (Fig. 7.A, 7.5 and
7.5') are increased by the insertion of measurement activities.

In Fig. 7.4 and 7.5, after obtaining the product in ILL, measurement

is carried out of the critical areas, by means of a modified interpreter.

The product obtained is the knowledge of the critical part HLLc. The

measurement activity in both production processes is then followed by the
rewriting of HLLc in DELc.

It is noteworthy that DELc is to be considered different from DEL,
since the rewriting is less expensive than the writing activity.

Rewriting is followed by integration and compilation in ILL. Lastly,
the two processes are differentiated by the final activities of
interpretation and code generation respectively.

A variation of the trajectory in Fig. 7.5, indicated in Fig. 7.5',
involves the use of code generation from the initial activities onward.
To allow for this, an HLL instrumentation is used, followed by code
generation and compilation, according to the HLLs, ILLs and DELs chain.
The instrumented program is then executed to determine the critical areas

39

HLLc: it is at this point that the trajectory in Fig. 7.5' is converted

to that of Fig. 7.5 for the final activities of DELg+DELc production.

5. METRIC BASIS

Now, for each product of Table 1, the variables which characterize
it are to be determined in the light of the theory which is being
constructed. That is, a definition must be made of all the variables (and

only those) from whose value one can predict the characteristics of the

final products, by means of suitable analytical relations. This ensures
that the system of variables is complete and minimum.

In the construction of the system of variables, a useful nucleus for

starting is supplied by precisely those variables which characterize the
final products. It is assumed that the only variables of interest for

these products are those which define that we have called AREA OF
ACCEPTABILITY.

For example, in /7/, the proposal was made to choose, from the

possible production processes, those for which the following remained

within predetermined limits of acceptability:
C, the production cost;
T, the execution time;
0, the memory occupation; and
P, the portability,

40

on the understanding that working methods which guarantee
maintainability, reliability, readability and expandability, would in any
case be followed. Table 2a summarizes these variables.

This first set of variables is then enlarged with variables which
define intermediate products and can influence the properties of final

products.

These are, above all, the variables related to the METHODOLOGY. In
tuning methodology, we define (Table 2b):

p = T(HLLc)/T(HLL) , and

r = 0(HLLc)/0(HLL) ,

i.e. the fractions of execution time and of memory occupation of critical

areas, denoted here by HLLc, with respect to the whole program HLL. They
are measured by the activities which produce HLLnc+HLLc in Fig. 7.4, 7.5
and 7.5'.

Another set of variables is realated to the TOOLS used in the
production processes. In our case, the tools which have a notable
influence on the final products are the interpreter ILL/DEL and the code
generator ILL/DELg (products j and k in Table 1). The quantities defined
for these products also characterize the languages between which they
operate, i.e. ILL and DEL.

In Table 2c these variables are defined. They are the
'interpretation cost' and the dynamic and static 'powers' of ILL with

41

respect to both DEL and DELg. All these depend on the relative
characteristics of the languages involved as well as on the tools used.

Lastly, some variables are concerned with the LANGUAGES alone.

Generally, they are instruction execution times and instruction lengths.

Table 2. THE METRIC BASIS

a) Variables defining the area of acceptability:
C PRODUCTION COST

It includes cost of programming, debugging and testing

activities. On the contrary, the costs of automatic activities,

such as compilation, code generation and measurements of
critical areas, are neglected compared with the above.

C(DEL), C(HLL) and C(DELc) are, thus, the only costs to be

measured.
T EXECUTION TIME
0 MEMORY OCCUPATION

P PORTABILITY

b) Variables related to the methodology:
r = 0(HLLc)/0(HLL)

Fraction of the HLL program to be rewritten in DEL, resulting
from the measurement activity of the critical HLL areas.

P = T(HLLc)/T(HLL)

42

Fraction of time spent in critical areas.

c) Variables related to the tools:
N INTERPRETATION COST OF ILL

It is the mean number of DEL instructions that the interpreter
carries out to extract, examine and execute an ILL instruction.

Mt POWER OF ILL
It is given by the mean number of DEL instructions which would

carry out the same operation as a single ILL instruction. It
can be measured considering two "equivalent" programs in DEL
and in ILL, i.e. a program written in DEL and another in HLL

(compiled in ILL) for the same problem. By dividing the number
of instructions executed in each of the two programs one

obtains the power of ILL.

Ms STATIC POWER OF ILL

The same as Mt, except that it is given by the ratio of the
lengths of the two programs.

M't APPARENT POWER OF ILL
It is the power of ILL calculated with respect to DELg,
i.e. it is the mean number of instructions executed in the

generated program for carrying out the operation of a single
ILL instruction.

M's APPARENT STATIC POWER OF ILL
Static power of ILL with respect to DELg. Both M't and M's
are greater than Mt and Ms respectively. In other words, ILL,

43

when related to its DELg, seems more powerful than it really
is.

d) Variables related to the languages:
k DEL INSTRUCTION EXECUTION TIME

1(DEL) DEL INSTRUCTION LENGTH

1(ILL) ILL INSTRUCTION LENGTH

All these quantities are to be taken as weighted averages.

6. ANALYTICAL RELATIONS

The variables C, T, 0 and P, which define the final products, are
related to the other variables introduced in Section 5 by means of a

number of formulae which we have grouped in Table 3. These expressions

furnish the values of C, T, 0 and P, relative to those of process 1 or
DEL process, except for the portability.

The deduction of these relations is given in /7/. Here, however, we

illustrate their use as previsional tools and in the comparison «in
different processes.

Table 3. ANALYTICAL RELATIONS

Cl = C(DEL)

C21 = C(HLL)/C(DEL)

44

C31 = C(HLL)/C(DEL)
C41 = C21 + r = C(HLL)/C(DEL) + r

C51 = C31 + r = C(HLL)/C(DEL) + r

TI = T(DEL)

T21 = N/Mt
T31 = M't/Mt
T41 = (l-p)T21 + p = (l-p)N/Mt + p

T51 = (l-p)T31 + p = (l-p)M't/Mt + p

01 = O(DEL)

021 = l(ILL)/(l(DEL)Ms)

031 = M's/Ms
041 = (l-r)021 + r = (l-r)l(ILL)/(l(DEL)Ms) + r

051 = (l-r)031 + r = (l-r)M's/Ms + r

Pl = 0

P2 = 1
P3 = 1
P4 = 1-r

P5 = 1-r

As far as the costs are concerned, as a consequence of that which
has been asserted in Table 2a, we consider only the writing activities,
i.e. programming in HLL, in DEL and reprogramming critical areas in DEL.

45

As can be seen in Table 3, the relative costs all depend on the
ratio:

C(HLL)/C(DEL) .

This is a constant characteristic of the production environment which can
be easily measured.

The last two costs refer to the processes adopting the tuning

methodology. Their expression:

C41 = C51 = C(HLL)/C(DEL) + r , (1)

is a linear function of r, i.e. of the fraction of code which we decide
to rewrite.

The variables r and p are of course related to one another (see

Knuth /10/). That is, if we reprogram a small fraction of code, we will
have a low cost, but likewise we will have little improvement in
execution time. In quantitative terms, this can be evaluated from the
expressions reported in Table 3 for the relative times using tuning:

T41 = (l-p)T21 + p

T51 = (l-p)T31 + p ,
(2)

which establish a relationship between the times without tuning and those

46

with tuning. The quantity (1—p) can be defined as the 'time reduction

factor' for processes which adopt tuning.

Thus, the expressions (2) can be used together with (1) for deciding

an optimal choice of the parameters p and r, which obtain the maximum

improvement in execution time remaining, at the same time, within

acceptable costs.
Passing to the terms T21 and T31, it is seen in Table 3 that these

can be expressed by means of more 'fundamental' variables:

T21 = N/Mt

T31 = M't/Mt

i.e. by means of the ILL interpretation cost and the ILL powers. This

gives us the possibility of an "a priori" evaluation of the times. In
addition, the two processes, interpretive and generative, can be compared

with one another, by remembering, from Table 2c, the definitions of N and

M't. From these one has:

M't < N

and, then:
T31 < T21

and
T51 < T41 .

47

Again, only by taking measurements on the tools used, we have
obtained quantitative statement of the known property that affirms that

the code generated is more efficient in execution time than the code

interpreted. Indeed, from these expressions, we can also say how much
more efficient the former is than the latter. A quantitative knowledge is

always essential, if a trade-off has to be reached between various
performance requirements.

We can make analogous considerations on the memory occupations,

except that static quantities are to be taken into account.

Finally, we see from Table 3 that the portability is also

quantified, using tuning. Thus, the choice of the size of critical areas

to reprogram has to be made also taking into account this variable.

7. CONCLUSIONS

We believe that it is always possible, in each production
environment, to represent both the software products and the software
production processes in the same definition space with a restricted

number of coordinates. This has been demonstrated for the environment
studied in this paper.

We have constantly tried to reach generality. Abstraction from our
environment lead us to obtaining a metric basis and a system of
analytical relations. These can constitute, we hope, a starting basis for

48

development of a theory incorporating instances from other environments.

REFERENCES

/1/ J.L.Elshoff, "A Review of Software Measurement Studies at General
Motors Research Laboratories", Proceedings of the Second Software Life

Cycle Management Workshop, 166-171, IEEE, New York, 1978

/2/ L.A.Belady and M.M.Lehman, "The Characteristics of Large Systems",
Research Directions in Software Technology, 106-138, MIT Press,

Cambridge, Massachusetts, 1979

/3/ R.A.DeMillo and R.J.Lipton, "Software Project Forecasting", in

F.G.Sayward, M.Shaw and A.J.Perils, editor, Software Metrics: An Analysis
and Evaluation, 77-94, MIT Press, Cambridge, Massachusetts, 1981

/4/ F.G.Sayward, M.Shaw and A.J.Perils, editor, "Sofware Metrics: An
Analysis and Evaluation", MIT Press, Cambridge, Massachusetts, 1981

49

/5/ L.A.Belady, "Software Complexity", Software Phenomenology, 371-383,
AIRMICS, Atlanta, 1977

/6/ F.G.Sayward, "Design of Software Experiments", in F.G.Sayward,
M.Shaw and A.J.Perlis, editor, Software Metrics: An Analysis and
Evaluation, 43-59, MIT Press, Cambridge, Massachusetts, 1981

/7/ M.DeBlasi, D.Marino, O.Murro, "Une methodologie pour devaluation de
strategies de production de logiciel", Actes des Journees BIGRE 82,
113-127, Grenoble, 1982

/8/ M.Carulli, C.Marzano, V.Tetro, G.Turco, "Valutazione delle Strategie

di produzione del software: risultati di una metodológia", Atti AICA,

53-59, Padova 1982

/9/ M.H.Halstead, "Elements of Software Science", New York, Elsevier,
1977

/10/ D.E.Knuth, "An Empirical Study of FORTRAN Programs",

Software-Practice and Experience, Vol.l, 105-133, 1971

/11/ T.C.Jones, "Measuring Programming Quality and Productivity", IBM
System Journal 17 (1), 1978.

The Development of a Machine Independent
Multi Language Compiler System

Applying the Vienna Development Method
Uwe Schmidt Reinhard Völler

Institut für Informatik und Praktische Mathematik
Chri sti an-Albrechts-Uni versi tat Kiel

1 Project Background and Motivation
Since 1980 the Computer Science Department of Kiel University

and Dietz Computer Systems, Mülheim, FRG, have been cooperating
in the development of a uniform compiler system for the languages
BASIC, COBOL, FORTRAN and PASCAL, supported by Dietz.

A main requirement was the easy portability of the system
to new computers and a high code efficiency, because the source
languages are used for systems programming and CAD applications.

For this purpose a machine independent high level intermediate
language was derived from formal denotational semantics specifi
cations of the source languages. In this language CAT (Common
Abstract Tree Language) programs are represented as abstract
program trees. CAT is especially suited for the implementation
of the four languages mentioned above, but other languages
can be compiled into CAT as well. If necessary new constructs
can be added.

The specifications of the compiler front ends are derived
from the specifications of the dynamic semantics of the source
languages. This approach assures the correctness of the compi
lation process.

The front ends can be kept relatively simple, because of
the high level of the intermediate language. Input for the
front ends is an abstract program tree constructed by a parser,
which is automatically generated. The machine independence
of CAT guarantees the portability of the system.

52

The target machines and the respective machine languages
are formally specified in a uniform manner. These specifications
lead to compiler back ends, which convert the trees of the
CAT language into sequences of machine instructions. The conver
sion of the back end specifications is to a large extent done
automatically.

The Vienna Development Method (VDM) [1] is used for the
specification of all languages and compiler front and back
ends. This formal method automatically yields complete and
provably consistent specifications, which can systematically
and in part automatically be transformed into high level language
programs.

The following diagram gives a general view of the entire
system:

Source
Languages
Compiler
Front
Ends

Compiler
Back
Ends

Machine Code I Machine Code II

53

2 The Development of the Intermediate Language
2.1 The Need for Formal Language Definitions

The existing language definitions for BASIC, COBOL, FORTRAN
and PASCAL are all informally written in natural language and
thus leave room for different interpretations. To eliminate
the ambiguities and inconsistencies of these definitions, we
extract formal denotational specifications from the language
standards and manuals [2,3,4,5],

A further advantage of this approach is that now the com-
parizon of different languages is made considerably easier.
The formalization of language descriptions helps to detect
constructs, which are semantically but not syntactically equiva
lent, as well as constructs with the same syntax but different
semantics. This approach was also recently chosen in a language
comparizon of CHILL and Ada [6,7].

The language used for these descriptions is META IV, the
specification language of the Vienna Development Method. The
META IV specifications consist of an abstract syntax, which
abstracts the strings defined by the concrete syntax of a lan
guage to mathematically tractable objects, such as trees, sets
and maps. Additional contextual dependencies of the syntactic
objects are formulated through the "is-wel1-formed"- functions
of the static semantics. Interpretation functions of the dynamic
semantics associate objects from semantic domains, which consist
mainly of a storage model, to the syntactic objects. These
descriptions form the basis for the derivation of the intermediate
language and the development of the compiler front ends. They
are automatically complete and their consistency is provable.

54

2.2 The Derivation of CAT
The derivation of the intermediate language is based on

the interpretation functions defining the dynamic semantics
of the various language constructs. In order to identify con
structs with common semantics, the interpretation functions
use the same semantic domains [8].
2.2.1 The Common Storage Model

The most important of these domains are the domains needed
for the storage model. Without such a common storage model
the interpretation functions are not comparable. The complexity
of this model varies with the different source languages.

Since PASCAL allows references to values of structured vari
ables, a model of structured values of array and record variables
is necessary. This model must also reflect the changes of a
value of a record variable caused by an assignment to a component
in a variant part.

The model must be general enough to cope with the effects
caused by FORTRAN EQUIVALENCE statements and COBOL REDEFINES
and RENAMES clauses. These constructs permit the implicit rede
finition of overlayed variables. Therefore information about
the relative position in store and the length of a value is
needed. The programmer can define the storage layout of data
using the COMMON and EQUIVALENCE statements in FORTRAN and
thus exploit the side effects of assignments to equivalenced
variables. The same applies to COBOL data records.

We model a value as a map from pairs of natural numbers
to elementary values:

Val = (Rad Freead)— > Simpleval
Simpleval = INTG | REAL | ...
Rad = NO
Freead = NO

Addresses are pairs of locations and relative addresses:
Locval = (Loc Rad)

55

Rad denotes a relative address, Freead the first unused
address. In the environment we keep information about the offsets
of record fields.

The following META IV function specifies the updating of
a storage cel 1:
1. 1 store(loc,rad,len,vm)(stg) =
. 2 if loc not 6 dom stg

then error
else
let ovm = stg(loc)

,chg-locs = (i,j) I ((i,j) 6 dom ovm) &
n {rad:rad+len-l|

. 3

. 4

. 5

. 6

. 7

. 8

. 9

.10

.11

.12

.13

.14

.15

.16

.17

.18

,(min,) e chg-locs s.t.
(A (i,j) e chg-locs)(i f min i > min)

,(,max) e chg-locs s.t.
(A (i,j) e chg-locs)(j f max => j < max)

,ovm' = (ovm - chg-locs) +
[(k,k+l) :- UNDEF | (min <= k<= rad) v

(rad+len <= k < max)]
,nvm = ovm' + [(i+rad,j+rad) vm((i,j)) |

(i,j) e dom vm]
in stg + [loc h nvm]

type: Loc Rad Len Val — * Stg — » Stg
The location referenced must be a valid address (.2-.3).

The old value is read and that part of the value computed,
which overlaps with the new value (.4-.10). Components, which
only partially overlap are set to an undefined value (.11-.13).
Finally the value is updated and a new storage returned. The
function for reading a value from store is similar:
2. 1 read(loc,rad,el)(stg) =
.2 if loc not e dom stg
. 3 then error
. 4 else
. 5 let vm = stg(loc)

.6 ,v = [(i-rad,j-rad) vm((i,j)) |

.7 ((i,j) 6 dóm vm) & (̂ i:ĵ c r̂ad:rad+el])]

. 8 in if (union I (i»j) 6 dóm v ̂ ̂̂ O..el-l̂)

. 9 then error

.10 else v

.11 type: Loc Rad NO — > Stg — > Val
The value to be read is specified by a location, an offset

within the location and a length (.1). The entire value is
read and those components extracted, which are selected by
the offset rad and the length el (.4-,6). If the value is not
well-formed an error occurs.

Having defined a common storage model for the four languages,
we now turn to the identification of the syntactic constructs
to be included in the intermediate language.
2.2.2 The Elements of the Intermediate Language CAT

The syntactic objects necessary for a common intermediate
language are chosen from the union of all syntactic objects
of the source languages according to the following criteria:

- From language elements which have the same semantics
in several source languages only one is chosen for the
intermediate language.

- If a syntactic object of one language is the general
case of one or more objects of other languages, then
only this element is included in the intermediate language.

An example is the loop-statement, we included in CAT. It
implements the PASCAL repeat-, while- and loop-statements and
is also used for the implementation of the FORTRAN DO- and
the PASCAL for-statement. Its abstract syntax and dynamic seman
tics are:

57

Loop :: s-ini : Statement
s-exit : Expr
s-fin : Statement

3. 1 i-loop(mk-Loop(s1,c,s2),env)(stg) =
. 2 let f(fstg) = (let stĝ = i-statement(ŝ ,env)(fstg)
. 3 »(mk-TviVp),stg2)
. 4 = e-bool(c,env) (stĝ)
. 5 in if = 0
. 6 then f(i-statement(s2,env)(stg2))
. 7 else stg2)
. 8 in f(stg)
. 9 type: Loop Env — » Stg — » Stg
This construct implements a while-loop, when si is the empty

statement and a repeat-statement, when s2 is empty.
- Complex objects which can be broken down into a sequence
of simple objects already in the intermediate language
are ommitted.

The for-statement from PASCAL and the DO-statement from
FORTRAN can be broken down into a series of assignments, a
test and a loop-statement and are therefore not included in
the intermediate language.

- Finally new objects are defined, which implement several
other constructs of the source languages.

We may take the exception handling facility in CAT as an
example. This construct is similar to the exception mechanism
in Ada and can be used for the implementation of global jumps
in PASCAL, ON ERROR conditions in COBOL, exception handlers
in BASIC and the handling of runtime errors.

It is necessary to reach a compromise between the size of
the intermediate language and the complexity of the compiler
front ends. The front ends can be kept simple through the direct
inclusion of language constructs. This should always be done

58

for constructs present in several languages. However this leads
to a large intermediate language to be handled by the compiler
back ends. A small intermediate language on the other hand
requires that the front ends must perform relatively complex
transformations. This could lead to unnecessary duplicate work.
A construct should not be broken down into instructions, which
later have to be recombined by the compiler back ends.
The approach taken assures the completeness of CAT, because

only constructs which are implementable by means of other lan
guage elements are not directly included in CAT.

The abstract syntax and the static and dynamic semantics
of the included objects yield a formal specification of the
intermediate language.
2.3 The Specification of the Compile Algorithms

The partial evaluation and the rewriting of the interpretation
functions lead to transformation functions mapping the different
language elements to syntactic constructs of the intermediate
language. They form the specification of the compiler front
ends.

The information in the environment is known at compile time
and can be used in the partial evaluation of the interpretation
functions. However the information contained in the storage
is only known at runtime. Therefore every time a storage access
is performed or a state transformation made, code has to be
generated, which performs the state transition at execution
time. The following functions give an impression of the relation
between the interpretation and compilation functions:

59

4. 1 i-repeat-st(mk-Repeat-st(c,st),env)(stg) =
. 2 let f(fstg) =
. 3 let fstĝ = i-statement(st,env)(fstg)
. 4 ,(fstg2, mk-Tv(v,)
. 5 = e-bool(c,env)(fstĝ)
.6 in if v = 0
. 7 then f(fstg2)
. 8 else fstg2
. 9 in f(stg)
.10 type: Repeat-st Env — > Stg — > Stg

5. 1 c-repeat-st(mk-Repeat-st(c,st),env) =
. 2 let loop =
. 3 let est = c-statement(st,env)
. 4 ,cc = c-bool(c,env)
. 5 in mk-Loop(cst,cc,NIL)
. 6 in loop
. 7 type: Repeat-st Env -- Loop
The resulting specifications are then transformed by hand

into executable PASCAL code.

60

3 The Development of the CAT Compilers
The CAT compilers of different target machines are all of

the same structure and are developed following a uniform approach
[9].

First a simple, universal, low level language CAL (CAT Assembly
Language) is defined.
3.1 The CAT Assembly Language
Syntactic Domains of CAL
1. 1 CAL-program — Instr *
. 2 Instr = Assign | Branch | Jump [Label
. 3 Assign Var Expr
. 4 Branch Expr Label name
. 5 Jump Expr
. 6 Label Label name
. 7 Expr = Const | Var | Operation
. 8 Const Mode Val
. 9 Var Mode Rad Base [lx]
.10 Operation Mode Opcode Expr *
.11 Base,lx = Expr
.12 Rad = INTG
.13 Val = INTG | "all other CAT values"
.14 Mode = Subr-mode | "all other CAT modes"
.15 Subr-mode • • • • Lb Ub
.16 Lb, Ub = INTG
A program in the CAT Assembly Language consists of a sequence

of instructions (.1), which is interpeted sequentially. There
are only four kinds of instructions: assignments, conditional
and unconditional jumps and labels (.2).

61

The components of an assignment are a variable as destination
and an expression as source (.3). Components of a conditional
jump are a boolean expression and a label (.4). The destination
of an unconditional jump is determined by an expression (.5).

We distinguish three kinds of expressions: constants, vari
ables and operations (.7). All expressions contain a mode descri
bing the kind of the result. The address of a variable consists
of a constant offset, a base expression and an optional index
expression (.9). The opcode of an operation determines the
function to be applied to the evaluated argument expression
list (.10).

The recursive definition of expressions allows arbitrarily
complex operations and address expressions. The domains for
values and modes are taken from the CAT language.

62

3.2 The Structure of the CAT Compilers
The translation of CAT into

is performed in three steps. The
the structure of the compilers:

a concrete machine language
following diagram illustrates

Target Machine Code

- 63 -

First all CAT language elements are mapped to corresponding
CAL instructions for an "ideal" CAT machine, that is a machine,
which directly implements the operators and functions used
in CAT. This step includes the resolving of control structures,
the declaration evaluation and the storage allocation. Except
for the storage allocation this step is machine independent
and identical for all compilers.

The second step is the real machine code generation phase.
In this phase opcodes of the target machine are substituted
for CAT opcodes with the same semantics. Complex instructions
are broken down into sequences of simpler instructions. The
necessary temporary allocation is performed by the variable
allocation routines.

The quality of the generated code is determined by this
second phase and the variable allocation scheme. The development
is based on a formal description of the available machine instruc
tions.

A final simple step generates the concrete bit pattern of
the instructions required by the target machine. Here the label
evaluation and optionally a peephole optimization is done.
3.3 The Machine Descriptions

The description of a specific target machine contains the
context conditions for the instructions and the meaning functions
for the available opcodes.

The context conditions are given by a set of "is-well-formed"-
functions (similar to the specification of the source languages),
describing the limitations operands are subject to on the con
crete target machine (one-, two- address instructions, register
instructions).

Basis for the formal description are the informal descriptions
in the manufacturers' manuals.

64

Example: specification of addition instructions for one of
the target machines (National 16000 processor).

opcodes operation description and operand restrictions
ADD d := ê + ê

- addition of signed integers
- overflow test
- first operand ê = destination d
- d general address
- general operand

ADDQ

INDEX

d := + c2
- addition of signed integers
- overflow test
- first operand ê = destination d
- d general address
- C£ integer constant in £-8..7̂
d := (e: * (e2 + 1)) + e3
- arithmetic with nonnegative integers
- no overflow test

- d,ê general purpose registers
- ^2,e3 9eneral operands

The following excerpt of the "is-wf-move"- function shows
the formal version of these context conditions for "add"- instruc
tions.

65

1. 1
. 2
. 3
. 4
. 5
. 6
. 7
. 8
. 9
.10
.11
.12
.13
.14
.15
.16
.17
.18
.19

is-wf-move(d,s) =
let rak-Operation(m,op,el) = s in
cases op :
(ADD -> el =<6^ 2)

& d = ê
& is-general-addr(d)
& is-general-opnd̂)

,ADDQ -> el = <6^ 2)
& d = e1
& = mk-Const(m2,V2) & v̂ g -̂8..7|

, INDEX -) el =<6^ 62,63^
& d = ê
& is-gpr-addr(d)
& is-general-opnd̂)
& is-general-opnd̂)

)
type : Var Expr — > BOOL

The functions is-general-addr, is-general-opnd and is-gpr-addr
are the predicates to be met by the operands.
3.4 The Derivation of the Codegenerators

From the predicate function "is-wf-move" a routine "gen-wf-
move" is constructed which transforms the instructions generated
in the first machine independent compiler phase into a sequence
of well-formed target machine instructions.

First the opcodes of the "ideal" CAT machine are replaced
by opcodes of the target machine. The replacement of the integer
addition operator +. by National 16000 opcodes is shown in
the following excerpt of "gen-wf-move":

66

2. 1 gen-wf-•move(d,s) =
. 2 let mk-Operation(m,op,el) = s in
. 3 cases; op :
. 4 <+i ̂ let <ê ê) = el in
. 5 if { s-Lb(m)..s-Ub(m)] c (.min-int. .max-int }
. 6 & ê = mk-Operation(m1,*i ,<ê ,ê))
. 7 & s-Lbis-Modeiê)) > = 0
. 8 & s-Lb(s-Mode(e-|̂)) > 0
. 9 & s-Lb(s-Mode(e2)) >= 0
.10 then gen-wf-move(d,
.11 mk-Operation(m,INDEX,<e11,c-sub(e12>one),e2>))
.12 else gen-wf-move(d,
.13 mk-0peration(m,
.14 if e2 = mk-Const(m2,v2) & v2 6 ̂ -8..7 ̂
.15 then ADDQ else ADD,
.16 (. >e2^))
.17 :
.18 :
.19)
.20 type : Var Expr ==)

First it is checked, whether the addition is implementable
by an "INDEX"- instruction. It is tested that no overflow can
occur (.5), that the first subexpression is a multiplication
(.6) and that all operands are nonnegative (.7-,9). Otherwise
the "ADDQ"- or "ADD"- opcode is selected. After the selection
of the appropriate operators the operands are manipulated to
meet the requirements of the context conditions. This may lead
to the generation of additional instructions. The second excerpt
of "gen-wf-move" demonstrates these transformations for the
opcodes "ADD", "ADDQ" and "INDEX".

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

67

gen-wf-move(d,s) =
let mk-Operation(m,op,el) = s in
cases op :
(ADD,ADDQ ->

let <epe£) = el in
if = d 1 is-general-addr(d)
then if is-general-opnd̂)

then out-move(d,s)
else gen-wf-move(d,

mk-0peration(m,op, <ei>
gen-general-opnd̂)̂))

else
let ê 2 = gen-indep-expr(e2,d)

,d̂ = gen-general-addr(d)
in (gen-wf-move(d̂ ,ê)

;gen-wf-move(d^,mk-0peration(in,op,^dpe22^)))
, INDEX ->

let <epe2,e3) = el in
if is-gpr-addr(d)
then if = d

then if is-general-opnd̂) & is-general-opndíê)
then out-move(d,s)
else gen-wf-move(d,

mk-0peration(m,op,
<e1,gen-general-opnd(e2),

gen-general-opnd(e2)̂))
else (gen-wf-move(d,ê)

;gen-wf-move(d,mk-Operation(m,op,<d,62,63))))
else gen-wf-move(d,gen-gpr-addr(s))

)
type : Var Expr ==)

68

In this process the operands are transformed to successively
fulfill the "is-wf"- predicates. For the "ADD"- and "ADDQ"-
instructions first the conditions for the destination d and
the first operand ê are tested (.6). If these predicates are
met, the second operand ê is checked (.7) and the instruction
is emitted or a new simpler second operand is computed (.9-.11).
If d f ê or d is not accessable ê is simplified to make the
evaluation of independent of d (.13) and d is made accessable
(.14). Now code for the evaluation of ê in d and the addition
is generated (.15-.16).

The "gen-wf-.. . functions are associated with the "is-
wf-..."- predicates that the following equation holds for all
expressions e :

is-wf-...(gen-wf-...(e)) = true
The following function "gen-gpr-addr" for evaluation of

an expression in a general purpose register is a characteristic
example for the "gen-wf-..."- functions:
. 1 gen-gpr-addr(e) =
. 2 if is-gpr-addr(e)
. 3 then e
. 4 else (def t : alloc-gpr(s-Mode(e))
. 5 ;gen-wf-move(t,e)
. 6 ;return t)
. 7 type : Expr ==) Expr

In contrast to the implementation of the compiler front
ends the codegenerators are automatically generated from the
specifications written in a subset of META IV without manual
interference. This prevents errors introduced by a manual conver
sion of the formal discriptions into executable programs.

69

4 Project Status
For three years two people have been involved in this project.

A PASCAL-CAT compiler front end and two CAT compiler back ends
for DIETZ-621 and National 16000 have been implemented. The
entire system is written in PASCAL and running on a DIETZ-621
with 2 * 40 Kbyte of storage. The quality of the generated
code is comparable to good handcoded assembly language programs.
It has turned out that the code runs up to 20% faster than
the code generated by the PASCAL compiler, which is up to now
used for systems programming by DIETZ. The implementation of
a CAT compiler for a new target machine requires an effort
of approximately six man months. There are no restrictions
to the applicability of our approach to existing conventional
processors.

The specifications of the compiler front ends for the four
source languages are complete (with the exception of COBOL
where only the translation of the data structures was specified).
The CAT definition is a document of approximately 3000 lines
of META IV formulae. The PASCAL specification has about the
same size. It took about six man months to extract a formal
specification for FORTRAN 77 from the ANSI- standard. This
excludes the FORTRAN 1/0 and runtime support. The compile algo
rithm for PASCAL consists of 1600 lines of META IV corresponding
to a 6000 line PASCAL program. The specifications of the code
generators for the DIETZ-621 and the National 16000 processor
have a size of about 3000 lines each. They are written in a
restricted subset of META IV and can be compiled into PASCAL
programs.

The correctness of the development of a code generator is
supported considerably by the application of the Vienna Develop
ment Method [10,11], Costly design errore are avoided. It has
been shown that a formal method like VDM can be applied in
a real life industry project with good success. Without this
tool it would not have been possible to develop such a universal
system in such a short period of time.

70

5 References
[1] Bjorner, D., Jones, C.B., The Vienna Development Method:

The Meta-Language, Berlin, Springer, LNCS 61, 1978
[2] Jensen, K., Wirth, N., PASCAL User Manual and Report

Berlin, Springer, LNCS 18, 1974
[3] ANSI X3.9, American National Standard Programming Language

FORTRAN, New York, American National Standards Institute,
1978

[4] ANSI X3.23, American National Standard Programming LanguageCOBOL, New York, American National Standards Institute,
1974

[5] ANSI X3.J2, American National Standard Programming Language
BASIC, Draft Proposal, New York, American National
Standards Institute, 1980

[6] Meiling, E., Palm, S.U., A Comparative Study of CHILL
and Ada on the Basis of Denotational Descriptions, DDC 66/1
982-12-31, Dansk Datamatik Center, Lyngby, 1982

[7] Meiling, E., Palm, S.U., A Storage and Environment Model for CHILL and Ada, DDC 66/1982-12-24, Dansk Datamatik
Center, Lyngby, 1982

[8] Schmidt, U., Völler, R., Die formale Entwicklung der
maschinenunabhängigen Zwischensprache CAT, Gl - 11.
Jahrestagung, Berlin, Springer, Informatik-Fachberichte
50, 1981

[9] Schmidt, U., Völler, R., Die Entwicklung eines portablen
Übersetzersystems mit der Vienna Development Method, Implementierung PASCAL-artiger Programmiersprachen,
Berichte des German Chapter of the ACM 11, B. G. Teubner,
Stuttgart 1982

[10] Bjorner, D., The Systematic Development of a Compiling
Algorithm, Techn. Rept. ID681, Dept, of Comp. Sei.,
Techn. University of Denmark, Kopenhagen, 1977

[11] Bjorner, D., Programming Languages: Formal Developmentof Interpreters and Compilers, in Móriét, E., Ribbens,
D., International Computing Symposium 1977, Proceedings, Amsterdam, North-Hoi 1 and Publ. Comp., 1977, p. 1

A System Model for Vertical and Orthogonal Migration*
B.Holtkamp, H. Kaestner

University of Dortmund, Informatik III
Postfach 500500

D-4600 Dortmund 50, F.R.Germany

1 Introduction
Vertical and orthogonal (or outboard) migration are well-known
techniques to improve the performance of a computing system seen
as a hierarchy of software/firmware/hardware. To apply both
techniques the following steps have to be performed:
1. identification of suitable candidates (system components) to

be migrated,
2. prediction of results (performance improvements) that can be

expected,
3. implementation of the components selected in step 1 and 2,
4. verification of the system's behaviour after the migration

process with respect to the results of step 2.
Changing the implementation environment of a system's component
(i.e. migrating this component either vertical or outboard)
needs a careful investigation of the component's interconnec
tions. This can be done best if there is a modelling tool by
which the relevant structures of the real system can be
described.
With regard to vertical migration such system models have been
evaluated ([STO 78], [STA 81], [DAV 83]). For a combined ap
proach to both vertical and orthogonal migration a different
model is needed. It has to allow the description of parallel
processes which are most important for orthogonal migration.
In this paper we present a system model which fulfills the above
requirement. It is exactly described in the next chapter. In
chapter 3 we discuss structural constrains for migration candi
dates in terms of our system model. Thus it is demonstrated how
the model serves as a base for the migration steps described
above. Chapter 4 shows how the structural aspects discussed so
far can be combined with data on the dynamic system behaviour to
give a framework for migration step 2.

* This work is partially supported by DFG (Deutsche
Forschungsgemeinschaft) under contract Ri 367/2-1

72
2 System Model
The migration system model that is introduced in this chapter
allows the abstract description of systems to which the migra
tion technique is applied. It helps to identify the candidates
to be migrated and to investigate structural requirements for
them.
There are two areas which influenced our model. The first one is
related to the concrete structure of basic software in a comput
ing system. According to [LAU 78] operating systems and real
time systems can be constructed in two ways:
1. using a procedure-oriented approach
2. using a process-oriented approach
Both approaches are supported by modern systems implementation
languages like ADA [LED 81] and Modula-2 [WIR 80]. Consequently
our system model also has to allow the description of such
structures.
The second area is related to the hardware support for orthogo
nal migration. For our purposes we assume a hardware system
having attached one or more coprocessors to the same system bus.
These systems are further distinguished according to the copro
cessors' ability to access main memory or not.
With these two areas in mind we describe our model in a top-down
manner.
A system is defined as
S = (SGS, SAL, SPS, SOS, SAS)
with

SGS is the system's global state space
SAL is the system's access list (defined at the end of this

chapter)
SPS is the system's procedure set
SOS is the system's object set (possibly empty)
SAS is the system's action sequence which is performed when

the system is initialized.

Objects are optional so that programs to be implemented in languages like PASCAL or C can be directly modelled.
The concept of objects serves two purposes. First it allows to
define the components of a system by means of a set of opera
tions. These operations are the only ones which can manipulate
the internal representation of the component thus preserving its
invariant properties [JON 78]. By adding one or more object
managers to each object [JAM 77] along with an appropriate set
of actions, process systems can be modelled.

73

Formally an object is defined as follows:
0± = (0iN, OiSS, OiAL, 0i0S, 0i PS, 0i MS, CKAS)
with

0iN is the name of object i
OiSS is the state space of object i
OiAL is the access list of object i which defines the accesses that may be performed from outside the object

and to its environment (see the end of this chapter)
OßS is the object set of object i, i.e. the set of (nested) objects local to the current object
OiPS is the procedure set of object i
0 ̂MS is the object manager set of object i
0 .ASl is the action sequence of object i which is performed

when the object is initialized.

An object manager has the following components:
M ij = (Miß, M i jSS, MijPS, MijAS)
with

Mi j N is the name of object manager j belonging to object i
MijSS is the state space of the object manager j belonging

to object i
M ±j PS is the procedure set of object manager j belonging to

object i
M ij AS is the action sequence of object manager j belonging to object i

In terms of our definition a procedure looks similar to an object manager:
Pj t = (XP^N , XP^FPL, XP^SS, XP^PS, XPjjAS)with

XP*N is the name of procedure k within X = (S or 0i or
M ij)

XP^FPL is the formal parameter list of procedure k within X
XPkSS is the state space of the procedure k within X
XPkPS is a set of procedures local to procedure k within X
XP kAS is the action sequence of procedure k within X which

is performed each time the procedure is called

The main difference between an object manager and a procedure is
with regard to the actions which may be used and the relation to
their environment.
An action sequence describes the transformations to be performed
either on the local or the surrounding global data space:
AS — (a^,■••,an)
with

a i : xSS-- > xSS
Each a is an element of the set of elementary actions which are
defined for our model. We distinguish between normal actions
(denoted by A) and special actions which are relevant for vert
ical and orthogonal migration. First of all there is the
procedure call denoted by:

peal 1 = (XP^N, XP^APL)
with

XP^N is the name of the called procedure
XP^APL is the list of actual parameters

To describe the actions of processes we follow the concept of
"synchronizing resources" [AND 81]. The operations which may be
performed on an object have to be defined in the in actions
within the object manager:

in = (oj , . .., om)
where each o1 describes an operation which is defined within the
in action.
Each operation has the form:
Oj = (OjN, o^BE, o^FPL, o^IR, o^SE, o^AS)
with

o^N is the name of operation 1
OjBE is a Boolean expression
OjFPL is the formal parameter list of operation 1
o^IR describe the invocation restrictions (either call or send)
o^SE is a scheduling expression
o^AS is an action sequence.

The name of the operation and the Boolean expression constitute
a guard [DIJ 75]. The guard is true if at least one pending in
vocation of the named operation and the corresponding Boolean
expression is true. If there is more than one pending invoca
tion, these are ordered by increasing values of the associated
scheduling expression (if this is omitted, the order is unde

75

fined) .
Execution of an iji action proceeds as follows. If at least one
of the guards is true, an arbitrary one is chosen. The first of
the pending invocations of the associated operation is selected
and the action sequence is executed. If no guard is true, the iri
action is delayed until at least one of them becomes true. The
in action terminates when one of the operations has been execut
ed .
For the invocation of operations there are two actions cal1 and
send :

call = (o^N, oiAPL), send = (o^N, oiAPL)
with

o^N is the name of an operation to be executed
o^APL is the list of actual parameters supplied for the invocation .

If the operation is invoked by cal1, the invoking object manager
is delayed until the operation has been executed by the object
manager supplying it within an ill action. If on the other hand
invocation is by send, the invoking object manager may continue
its actions as soon as the actual parameters (message) have been
transmitted.
Objects, object managers and procedures each represent a natural
border around the data structures and operations respectively,
which are defined in the corresponding state space (xSS) or
within an jin action. There are two principal ways in which these
borders can be crossed. The first is an implicite one and holds
for the following conditions:
a: A procedure nested within another procedure may directly ac

cess the local state space (XP^SS) of the surrounding pro
cedure .

b: A procedure with an object or object manager may directly ac
cess the 0 SS of the surrounding object or the M^.SS and CKSS
of the surrounding object manager and the corresponding object .

These conditions correspond to the scope rules of traditional
block structured languages. They are not valid, however, for ob
jects. For this reason we introduce the notion of an object access list:
O^AL = (OiDOL, OiDDL, OiUOL, 0_£ UDL) with

0 jDOL is a list of operations which are defined within the
included object manager and which may be invoked from
outside

O^DDL describes a subset of 0^SS which may be accessed from
nested objects

76

O^UOL is a list of operations defined in DOLs of other ob
jects and invoked by the object manager of this object

O^UDL describes those data structures of an outer object or the system which are accessed by this object.

The system access list SAS has the same form as the component
OiDDL.
This completes the presentation of our system model. In the next
chapter we will use it to discuss structural aspects of vertical
and orthogonal migration.

3 Structural Aspects of Migration
The system model which has been formally introduced in the pre
vious chapter will now be used to discuss structural aspects of
both vertical and orthogonal migration. For these purposes we
define some metrics on those components that can be migrated.

3.1 Migration Metrics
As we have pointed out in the introduction one needs to know the
exact interaction of a migration candidate with its environment.
In terms of our system model the components object, procedure,
and object manager are possible candidates for migration. This
means that for these candidates the interaction with the en
vironment is specified by accesses to global data structures and by the execution of the actions peal1, call and send.
A convenient tool to describe the latter form of interaction is
by means of call graphs. To model the aspect of data passing by
means of these calls and the aspect of accessing global data
structures, we will introduce some terms which are also used in
the field of software structure metrics [HEN 81].

Definition 3.1:

a) The global data flow function gdf(P) of a procedure P is de
fined as the size of the global data structures, which P
accesses in outer procedures or in the surrounding object
manager or object plus the size of the externally accessed
data structures (defined in the UDL of the corresponding object) .

b) The local data flow function ldf(P) of a procedure P is de
fined as the size of all parameter lists contained in actions
of type peal1 within P.

c) The procedure cal1 out-degree pcout(P) of a procedure P is
defined as the number of actions of type pcall contained in P.

77

d) The procedure cal1 in-degree pcin(P) of a procedure P is de
fined as the number of actions of type peal1 outside P which
call P.

In a similar way corresponding functions for object managers and
objects can also be defined.

Definition 3.2:

a) The global data flow function gdf(M) of an object manager M
is defined as the size of those data structures, which M
accesses in the corresponding object, plus the size of the
externally accessed data structures (defined in the UDL of
the object).

b) The local data flow function ldf(M) of an object manager M is
defined as the size of all parameter lists contained in ac
tions of type call and send within M.

c) The send out-degree sout(M) of an object manager M is defined
as the number of actions of type send contained in M.

d) The call out-degree cout(M) of an object manager M is defined
as the number of actions of type call contained in M.

e) The send in-degree sin(M) of an object manager M is defined
as the number of actions of type send outside M which invoke
an operation contained in the DOL of the corresponding object.

f) The call in-degree cin(M) of an object manager M is defined
as the number of actions of type call outside M which invoke
an operation contained in the DOL of the corresponding object .

Definition 3.3:

a) The global data flow function gdf(0) of an object 0 is de
fined as the size of the data structures contained in the UDL.

b) The local data flow function ldf(0) of an object 0 is defined
as ldf(M) of the included object manager.

The metrics defined above will now be used to describe structural aspects of migration.

78

3.2 Structural Aspects of Vertical Migration
According to the two principal structures of operating systems
(see section 2 of chapter 2) we will discuss vertical migration
for both of them separately.
In a procedure-oriented system we assume to have no objects.
Thus we are only concerned with attributes of procedures.

Definition 3.4:
A procedure P is vertical migratable from a structural point of
view if
a) pcout(P) = 0 or
b) all procedures contained in the call subgraph with root P are

"migratable".
Part a of the definition is related to the fact that software
functions cannot be called from the firmware. Thus only leave
nodes in the call graph (part a) or complete subgraphs (part b)
can be migrated.
LemmaFor two procedures Pi and P 2 with pcout(P_j) = pcout(P2) = 0. P,
is a better candidate for vertical migration from a structural
point of view than P2 if one of the following conditions hold:
a) gdf(Pj) -(P 2)
b) PL(P i) < PL(P2)
c) pcin(P_j) > pcin(P2)
The background for this lemma is given by some hardware restric
tions. The first one is that main memory references slow down
the execution of microprograms and the second that the number of
internal registers for local variables is limited.
The aspects discussed for procedure-oriented systems are also
valid for process-oriented ones. This is because objects
managers can also be seen as procedures as there is no parallel
ism between software and firmware.

3.3 Structural Aspects of Orthogonal Migration
For orthogonal migration we assume a system with objects.
Depending on the coprocessor's local memory size, complete ob
jects or some procedures (not necessarily contained in the same
object) might be candidates for migration. With regard to single
procedures there is no structural difference to vertical migra
tion .
In hardware systems, where the coprocessor has no direct access
to the main memory, all objects which have a non-empty UDL can
not be considered for orthogonal migration.

79

In general the main problem with orthogonal migration of objects
is related to the communication structure between the object
managers. As it makes no difference whether (running on the
main processor) invokes an operation of M2 (running on a copro
cessor) or vice versa, invocation directions are not important.
Instead we can concentrate on the communication relations of
single boject managers.

Definition 3.5:

a) An obj ect manager M is of define-type NIL, if it does notcontain an action of type in.
b) An obj ect manager M is of define-type cal 1, if all operationsin DOL are: invoked by actions of type cal 1.
c) An obj ect manager M is of define-type send, if there is at

least one operation in DOL which is invoked by an action of
type send.

d) An object manager M is of use-type NIL, if UOL of the
corresponding object is empty.

e) An object manager M is of use-type call, if all operations
in UOL are invoked by actions of type call.

f) An object manager M is of use-type send, if at least one
operation in UOL is invoked by an action of type send.

Definition 3.6:
An object 0
define-type

is of type
tjand use- 11 type/t. 2> t2-

if its object manager is of

With these definitions we get the following type of objects(sorted according to decreasing suitability for orthogonal migration) :

NIL/NIL These objects only make sense if they access global data
structures (e.g. monitoring processes). In this case they are good candidates for orthogonal migration.

The following type group of objects contains either a define-
type or use-type send or both. They represent suitable candi
dates for orthogonal migration because the send action activates
a process (object manager) which may run in parallel, if the
corresponding object is on a different (co)processor:
NIL/SEND
SEND/SEND
SEND/NIL
SEND/CALL
CALL/SEND

80

The remaining three types NIL/CALL, CALL/NIL, and CALL/CALL are
no good candidates from a structural point of view, because they
do not imply any parallelism.
Beside the type of an object the ldf(M) of its object manager is
also important. It can be used to define a sequence between ob
ject managers of same type.

4 Quantitative Aspects of Migration
In this chapter we will introduce some cost functions with re
gard to migration candidates. Their purpose is to valuate the
dynamic behaviour of the candidates and their hardware dependen
cies. They provide a base for the selection (step 2 of the mi
gration technique) of migration candidates.

4.1 Quantitative Aspects of Vertical Migration
For the valuation of migration candidates we can differ between
static and dynamic measures. As a general static parameter the
control store space request is accepted (see [LUQ 80],
[STO 78]) .
So the static costs C s for a procedure P are expressed by the
following term:

C s (P) = L m (a i) i = l
with m (aj) is the memory space for a2 and ai eXAS.

However, the static costs of a function are not a sufficient
criterium for the selection of migration candidates. They must
be weighted with the dynamic behaviour of a procedure with
respect to the architectural characteristics of the processor.
As dynamic parameters execution frequency and average execution
time are considered. Based on [PRY 82] execution time can be
composed of instruction fetch and execute time (Tx) and the time
for data references devided into global (Tg) and local (T2)
ones. The division of global and local data references seems to
be necessary, because on one hand their access characteristics
normaly differ and on the other hand the firmware level often
provides more registers into which local data structures can be
mapped. The dynamic costs of a procedure are described by the following equation:

= n x T
with n : execution frequency

T : average execution time
In order to ease the prediction of time savings for the migrated
version of a function, the average execution time is splitted:

81

T = Tx + Tg + Tj
Tg and can be written as

T = Ng grr * v * tg*

Tl = $ (Nir Ci] * tjr[il * W*®i=l
where the N denotes the number of global or local read and write
accesses, respectively, and the corresponding t characterizes
the time effort for such an access that depends on the address
ing mode and processor speed. The references to local data are
devided into different classes because various addressing
modes can be used.
For the estimation of time savings the dynamic costs C^.for the
migrated version can be calculated follows:

Cä • - » * + T, + TJ.)
How to calculate Tx< and Tj> is not further considered here, be
cause it is not important for our model. What we can derive from
the above equation is a weight Wpfor a migration candidate:

W = (C . - C,,)/Cp v d d' '' s
While static measures can be calculated by a modified compiler,
the only way to get information about the dynamic parameters is
using a monitor. A well-suited tool for measuring the quantities
mentioned above is described in [HOL 82]. The architectural
parameters (t , t , t̂ r , tlw , number of registers
on firmware leivel) are specified in processor manuals.
To perform the selection process structural and quantitative as
pects can be combined in the following backtracking algorithm:

In the first step all procedures with pcout(P) = 0 are sort
ed by decreasing weight W . They constitute the basic set of
migration candidates.
In a second and further steps those procedures are added,
which only call members of the basic set. Their weights,
which do not include the weights of the called functions,
have to be corrected, i.e. the ldf and pcout will have an
effect because intra level data and control transfers are
moved from software to firmware level.
Finally from this set those elements are taken which result in a control store filling with maximum weight.

4.2 Quantitative Aspects of Orthogonal Migration
Similar to our discussion on structural aspects we will first
consider procedures as candidates for migration. The cost func
tions Cs and C d of the previous section can also be applied for
orthogonal migration. They now look like:
MPC s (P) static costs for procedure P when implemented on the main

processor

82

C s (P) static costs for procedure P when implemented on a copro
cessor

MPC d (P) dynamic costs for procedure P when implemented on the
main processor

cf(P) dynamic costs for procedure P when implemented on a coprocessor

In terms of these functions a necessary condition for procedure
P to be a migration candidate is:

CP MPCC/ (P) < (f/ (P)
For the second type of system, i.e. with objects, we will res
trict ourselves to the migration of complete objects. Function
C* can be defined as above. For function we will not take
single actions as a measurement unit, but the operations listed
in DOL. is then defined as:

oeDOLIn each TQ the communication costs are included.
It is not possible to predict the absolut time savings for
orthogonal migration because this depends on the degree cf
parallelism within a system. In the worst case there is no other
process that can be set up, in the best case time saving is
equivalent to the offloading of t,he main processor by the migra
tion candidates or even better if the execution on the coproces
sor is faster than the original version. Therefore the cost
functions given above can only be used to sort the objects of
equal type (according to definition 3.6).

5 Conclusions
In this paper we have presented a system model that allows to
describe the structure of systems to which vertical and orthogo
nal migration techniques are applied. In terms of this model we
have discussed structural as well as quantitative aspects of
both kinds of migration. This demonstrates the suitability of
the choosen approach to serve as a base even for a formalization
of the whole migration process.

83

6 Literature

[AND 81] Andrews, G.R.
Synchronizing Resources
ACM Transactions on Programming Languages and Systems, vol 3, no 4, October 1981, pp 405-430

[DAV 83] David, G., Graetsch, W.
A Hierarchical System Model for Vertical Migration
Submitted to IFIP Working Conference on System
Description Methodologies Kecskemet (Hungary), May 23-27, 1983

[DIJ 75] Dijkstra, E.W.
Guarded commands, nondeterminacy and formal derivation
of programs.
CACM 18, 8 (August 1975), pp 453-457

[HEN 81] Henry, S., Kafura, D.
Software Structure Metrics Based on Information Flow
IEEE Transactions on Software Engineering, vol SE.-7,
no 5, September 1981, pp.510-518

[HOL 82] Holtkamp, B., Kaestner, H.
A Firmware Monitor to Support Vertical Migration Deci
sions in the UNIX Operating System
Proc. 15th Annual Workshop on Microprogramming, SIGMI-
CRO Newsletter, vol 13, no 4, December 1982, pp
153-162

[JAM 77] Jammel, A.J., Stiegler, H.G.
Managers versus monitors
In: Information Processing 77, B. Gilchrist (Ed.). El
sevier North-Hoiland, New York, 1977, pp 827-830

[JON 78] Jones, A.
The Object Model: A Conceptual Tool for Structuring Software
In: Bayer, R., et al. (eds.): Operating Systems - An
Advanced Course, Lecture Notes in Computer Science 60, Springer Verlag, 1978

[LAU 79] Lauer, H.C., Needham, R.M.
On the Duality of Operating System Structures
ACM Operating Systems Review 13 (2), March 1979

[LED 81] Ledgard, H.
ADA - An Introduction
ADA Reference Manual (July 1980)
Springer-Verlag, New York, Heidelberg, Berlin, 1981

[LUQ 80] Luque, E. , Ripoll, A., Ruz', J.J.
Dynamic Microprogramming in Computer Architecture
Redefinition
Euromicro Journal, no 6 (1980), pp 98-103

84

[PRY 82] Prycker de, M.A Performance Analysis of the Implementation of Ad
dressing Methods in Block-Structured Languages
IEEE Transactions on Computer, vol C-31, no 2, Febru
ary 1982, pp 155-163

[STA 81] Stankovic, J.A.The Types and Interactions of Vertical Migration of
Funktions in a Multi-Level Interpretive System
IEEE Transactions on Computers, C-30(7), July 1981

[STO 78] Stockenberg, J.Vertical Migration for Performance Enhancement in Lay
ered Hardware/Firmware/Software Systems
Computer, vol 11, no 5, pp 35-50, 1978

[WIR 80] Wirth, N.
MODULA-2
ETH Zuerich, Reports of the Institute for Informatics
No. 36, March 1980

- 85-

TOWARDS AN INFORMATION SYSTEM DEVELOPMENT ENVIRONMENT

Jan Dietz
Eindhoven University of Technology,
Department of Industrial Engineering,
P.0, box 513
5600 MB Eindhoven, the Netherlands

SUMMARY

The aim of IS development is to produce effective and efficient IS in an
effective and efficient way. This paper deals with several aspects of
effectiveness and efficiency, especially their establishment for evolving
IS.
The need for appropriate intellectual aids and matching practical tools,
together called the IS development environment, is being argued.
The use of prototyping, simulation and specification languages is
emphasized, and there is some elaboration on the subject of specification
languages.

86

1. INTRODUCTION

This paper describes ideas about IS and IS development, which the author
considers useful to explore further. They constitute the framework for his
research on IS development aids.
The aim of IS development is to produce systems that are effective, i.e.
they behave as needed, and that are efficient, i.e. they operate without
waste of resources.
The first research goal is to investigate the possibilities of specifying
the behavior of a system such that the following requirements are met:
- completeness, i.e. a design, specified in this manner should contain

all information needed for the subsequent detailing and realization;
consistency, i.e. there shall be no conflict between parts of the
description;
clearness: there shall be no ambiguities; a point of special care
will be the precise definition of the system's semantics;
formality: a specification should be formally testable on completeness
and consistency.

If one could specify a system in this manner it seems fairly feasible to
generate its realization. Another motive for the research is that in the
future not only people might use IS, but automated IS might use each other
as well. This implies that a formal and precise specification of the
system exists and is part of the system itself.

2. INFORMATION

Information systems produce information. Before discussing IS properties
it seems wise to take up the subject of information first, because
eventually the production of useful information is what it is all about.
A sound basis for studying the concept of information is provided by the
science of semiotics (see e.g. [Morris 55] and [Nauta 72]). The central
concept in semiotics is semiosis, this is a process in which something is a
sign to some organism. The sign stands for something else (the referent)
and causes effect in the agent of the process (the interpreter). Semiosis
thus is a 'mediated-taking-account-of'.
The study of signs is subdivided into three fields:

pragmatics: deals with the origin, uses and effects of signs;
semantics: deals with the signification of signs;
syntactics: deals with the form of signs without regard to their
specific significations or their relation to the behavior in which they
occur.

87

The notion of information is usually considered to be the effect a sign
causes in the interpreter: if the sign has no effect, it doesn't contain
information, if it has a great effect it is said to have a high informa
tional value.
An essential condition for a sign to cause any effect is that its
signification is understood by the interpreter.
In the same manner as the effect of a sign is conditionally determined by
its signification, is its signification conditionally determined by its
form, since signs can only be discriminated by their form. So pragmatic
meaning presupposes semantic meaning and semantic meaning presupposes
syntactic meaning. This is a very important point, since it shows that
semantic meaning is carried by the sign's form and can be derived from its
form only.
Semantic meaning also is something that the communicating interpreters must
agree upon: signs do not possess any inherent semantic meaning. The major
concern of automatic sign (=data) processing must therefore be to preserve
semantic correctness and clearness.
In the remaining part of the paper the word 'information' is used to
emphasize the pragmatic aspect of signs. The word 'data' will be used as a
neutral term for signs.

3. INFORMATION SYSTEMS

Let us now focus our attention on the IS and its environment, and consider
a situation like the one pictured in figure 3.1., consisting of:

an object system (OS) as an organized part of the real world, in which
activities are performed by agents (these may be human beings but also
artifacts);

- an information system (IS), as the informational aspect system of the
OS, i.e. the whole of operations, means and material aimed at the
production of information to be used by the agents;
an interface through which observations about the OS status and status
changes flow into the IS and useful information flows from the IS into
the OS. Next to this (functional) interface one may perceive an
operational interface, through which the interaction between the agents
and the IS takes place.

88

fig 3.1.
The boundary of the OS is considered to be wider than usually, and
therefore needs some explanation. In fact it includes all agents to which
data are sent by the IS and all sources from which data are received by the
IS. When talking e.g. about an order system it includes the customers and
the suppliers, when talking about a payroll system it includes the
employees, when talking about a bank accounts system it includes the
accountholders (customers) etc..
With the knowledge from the previous paragraph one could call an IS a sign
processing and sign producing system.
If we consider the IS from the viewpoint of IS development we can make the
observation that the IS and the OS must 'fit' together and that there will
be something like a 'best' IS for a particular OS. What then determines
the quality or fittedness of an IS?
It will be clear that a key factor must be the informational value of the
signs which I consider to be determined by three factors:
- the effect of the sign, based on its signification: it must reduce the

agent's uncertainty about what decision or action to take;
- the moment of receiving the sign: if it is too late it is of no use,

the agent already had to take action;
- the agent that receives the sign: the sign should be sent to the agent

that needs the information, and perhaps even is not allowed to be
received by other agents.

Shortly one could say that the IS should produce the right sign on the
right moment and deliver it to the right agent. The measure by which this
goal is achieved is called the effectiveness of the IS.
The other, complementary, quality factor (called efficiency) is determined
by the measure of consumption of resources like data, people, energy,
storage capacity, processing power.
Many quality terms in vogue nowadays, like maintainebility, flexibility,
userfriendliness, robustness etc. may more precisely be defined in terms
of the effectiveness and efficiency factors.

89-

In describing IS behavior I make a distinction between functional behavior
and operational behavior.
The specification of the functional behavior includes the description of
the output data, the input data, the stored data and the relationships
between them.
The specification of the operational behavior basically states when output
data are produced and input data are accepted.

Time plays an important role in IS, a role which seems often to be
neglected. An IS contains a data model of the OS. There is however a
delay in the accuracy of the model: a status change of the OS at time tl
is recorded in the IS at time t2 (t2>tl). For a semantically correct
specification of the functional behavior of the IS it is necessary to take
account of this delay, which can be done in two different ways.
The first one is to make use of the specification of the operational
behavior of the IS. In the operational model one can force a process not
to be executed until certain conditions are met. This approach is taken
e.g. by PSL/PSA [Teichroew 77].
The other way is to record explicitly the origination time of data, an
approach taken e.g. by DADES [Olive 82]. I have a preference for the
latter one because it is more rigorous.

4. DEVELOPING INFORMATION SYSTEMS

Effectiveness and efficiency change during the system's life. In fact they
are always decreasing. The evolution of the OS as well as the emergence of
new technologies lower the actual effectiveness and efficiency of the IS.
As a matter of fact, but often overlooked: the very implementation of a
new IS changes the OS (by definition!), evoking new needs and new
possibilities, thus lowering its effectiveness.
Developing IS therefore is an endless process: there always is a
'solution' and there always can be found a better one.
In contradiction with many other authors I can, when talking about systems
development, only distinguish between two essentially different activities:
design and construction ^realization).
The design process can best be defined as the creative activity of
concurrently studying problems and generating solutions [Alexander 70]. By
problem is meant any situation in which there is perceived to be a mismatch
between what is and what might or could or should be. The design process
shows a constant alternation of analysis and synthesis, intertwined and
distinguishable but not separable.
The point that I would like to stress is that there cannot exist
requirements or needs distinct from solutions or fulfillments, because a
requirement or need can only be expressed in terms of solutions: both
requirements specifications and program specifications are design
specifications, they only differ in the level of detail. This may sound
embarrassing to people, who like to consider the expression of the problem
and the specification of the solution as two really separable activities.

90

During the design process the designer constantly takes design decisions,
each design decision being a step forwards to the end solution. At the
same time the problem gets better defined and the set of possible solutions
is reduced. Initially one starts with an empty problem and thus an
infinite solution space. However from the very first contact of the
designer with the problem area, the problem gets shaped and big parts of
the solution space are cut off.
At every step the designer should strive for a minimal reduction of the
solution space. This needs creativity and a permanent resistance to time
pressures and the habit of following known patterns. However proceeding in
this way is a prerequisite for achieving 'quality' systems.
Developing IS also rarely is developing from scratch. Nearly always it
will be a matter of modifying and extending the existing 'solution'. This
stresses the point of precise specifications of a system's behavior and
thus the need for specification languages.

5. INTELLECTUAL AIDS TO IS DEVELOPMENT

Developing IS is dealing with multitude and complexity, which makes it
necessary to expose the problem situation from several different
viewpoints, an approach advocated e.g. by Ross [Ross 77]. There are,
several intellectual aids well identified now for dealing with multitude
and complexity. In [Krakowiak 78] they are listed for the area of program
development:
- decomposition of a complex object into more manageable parts is an old

methodological principle. However it must be conducted in a systematic
fashion and appropriate guidelines are needed;

- abstraction is the intellectual operation whereby a representation, or
abstract model, of the behavior of a complex object is constructed,
which only retains some relevant properties and omits irrelevant ones;
refinement is the process by which abstract objects are eventually
implemented. The elementary refinement step is to construct an object
in terms of more primitive objects by the application of a set of
composition rules.

Next to these general aids I find two ideas particularly appealing and use
ful for the area of IS development•
One of them is the level model [e.g. Berg 79], which is elaborated into
the engineering paradigm by [Ramamoorthy 78]. The creation of a solution
to a problem is viewed as a transformation P(needs)=product. In a large
and complex design situation, different phases are gone through and the
transformation takes on a number of distinctly recognizable forms:

needs = FormO
Pl(FormO) = Forml
P2(Forml) = Form2

91

Pn(Formn-l) = Formn
Formn = product

The paradigm shows the systematic evolution from the first, coarse, design
(needs) to the last, fine, design (product). The idea incorporates
decomposition, abstraction and refinement, and it would particularly be
useful if each Forrni can be expressed formally and if each transformation
can be verified formally.

The other attracting idea is that of viewing an IS in each of three
different domains [Winograd 79]: subject domain, domain of interaction,
and domain of implementation. Each viewpoint is appropriate (and
necessary) for understanding some aspects of the system and inappropriate
for others.
In the subject domain the universe of discourse is described: the objects
and processes in the OS of which the IS is to be a model. In this domain
the functional behavior of the IS is defined.
In the domain of interaction the relevant objects are those that take part
in the system's interaction with its environment: users, files, questions,
answers, forms etc.. The processes to be described are those like querying
the system and performing a system function. In this domain the
operational behavior of the system is specified.
The behavior within the boundary of the IS is seen in the domain of
implementation. A description in this domain consists of specifications of
(sub-) components and the interactions between them. This, I think, can
recursively be considered a system, that can be viewed in each of the three
domains.

6. PRACTICAL TOOLS NEEDED

The professional system designer clearly needs help to perform his task, a
help which can be provided by a set of well chosen intellectual aids,
supported by a set of matching tools, together called a system development
environment.
This environment must be helpful in establishing and maintaining effective
and efficient IS and must support all distinct design and construction
phases. There are three topics that deserve special attention.

The first one is what I would like to call the functional quality of an IS.
It means that the IS produces the right information and that it makes to
that end efficient use of the data resources (input data and stored data).
A very powerful tool to support the activities concerning the establishment
of functional quality is the technique of (rapid) prototyping.

92

The second topic, strongly related to the previous one, is what I would
like to call the operational quality of an IS. The concern in this aspect
is that the information is produced at the right moment and delivered to
the right agents, and that all input is processed in due time. The main
variables in an operational model are the processing and storing capacities
of the physical resources used. A well-known and powerful aid for this
kind of work is simulation [e.g. Bodart 79].

The remaining topic is that of the preservation of the IS semantics during
the subsequent design steps up to the final, realizable, one. More
generally stated it is the problem of establishing the semantic equivalence
of two different specifications of the same system.
Conforming to the engineering paradigm one would need several specification
languages, each of them best fitted to a certain level. The particular
concepts and constructs wanted in a specification language depend heavily
on the specific application area. To meet the need for variety in
specification languages, I prefer to think of either universally applicable
formalisms, containing a very limited set of primitive concepts and
constructs and the possibility to define new ones (e.g. SDLA [Knuth 82],
or a meta system for the generation of arbitrary formalisms, like SEM
[Teichroew 79]. I think that both approaches offer a basis for a rigorous
definition of the semantics of specification languages.
The problem of identifying a particular level (for a particular application
area) and the corresponding specification language is equal to the problem
of determining the right level of abstraction. It will be clear that in my
view satisfactory solutions can only be given by the 'best' designers.
I see many formalisms or models in use or proposed lacking the right level
of abstraction. Let me take the ERA-model (Entity-Relationship-Attribute)
as an example to illustrate what I mean. The ERA-model leads, as I see it,
to a premature and often unconscious decision about how values of object
properties are stored and thus to an unnecessary limitation of the design
freedom in the steps to come.
Attribute values in the ERA-model are tought of as record elements, more
strongly connected to the object than relationship values, which are mostly
seen as separately stored data.
A right level of abstraction in the early design steps would be to consider
all property values as function values, e.g. articlename = fl(article),
but also: averagestock = f2(article .period). In this way one abstracts
from how the values are produced. The idea of access-functions is very
well described in [Abrial 74].

93
REFERENCES

Abrial 74

Alexander 70

Berg 79

Bodart 79

Knuth 82

Krakowiak 78

Morris 55

Nauta 72

Olive 82

Ramamoorthy

Ross 77

Teichroew 77

J.R. Abrial: 'Data Semantics', in: Data Base Management,
W. Klimbie and K.L. Koffeman eds.
North-Holland publ. (1974)

C. Alexander: Notes on the synthesis of form.
Harvard University Press (1970)
H.K. Berg: 'Towards a uniform design methodology for soft
ware, firmware and hardware', in: The use of formal speci
fication of software, W. Brauer ed.
Springer Verlag (june 1979)
F. Bodart, Y. Pigneur: 'A model and a language for functio
nal specification and evaluation of information systems
design', in: Proc. IFIP TC8 WC on formal models and practical
tools for Information Systems design, H.J. Schneider ed.
North-Holland publ. (april 1979)

E. Knuth, F. Halász, P. Rado: 'SDLA, system descriptor and
logical analyzer', in: Proc. IFIP TC8 WC on comparative
review of information systems design methodologies, T.W.
Olle, H.G. Sol, A.A. Verrijn-Stuart eds.
North-Holland publ. (1982)

S. Krakowiak: 'Methods and tools for information systems
design', in: Information Systems Methodology.
Springer Verlag (1978)

C. Morris: Signs, language and behavior.
G. Braziller, New York (1955)

D. Nauta: The meaning of information.
Mouton, The Hague/Paris (1972)

A. Olive: 'DADES, a methodology for specification and design
of information systems', in: Proc IFIP TC8 WC on comparitive
review of information systems design methodologies, T.W. Olle,
H. G. Sol, A.A. Verrijn-Stuart eds.
North-Holland publ. (1982)

78 C.V. Ramamoorthy, H.H. So: 'Software requirements and speci
fications, status and perspectives, in: Tutorial on software
methodology.
IEEE (1978)

D.T. Ross, K.E. Schoman: 'Structured analysis for requirements
definition', in: IEEE Trans, on S.E. vol 3,1 (jan 1977)

D. Teichroew, E.A. Hershey III: 'PSL/PSA, a computer-aided
technique for structured documentation and analysis of infor
mation processing systems', in: IEEE Trans, on S.E. vol 3,1
(jan 1977)

94

Teichroew 79

Winograd 79

D. Teichroew, P. Macasovic, E.A. Hershey III, Y. Yamamoto:
'Application of the entity-relationship approach to infor
mation processing systems modelling', in: Entity-Relationship
approach to systems analysis and design, P.P. Chen ed.
North-Holland publ. (1979)
T. Winograd: 'Beyond programming languages', in: Comm, of the
ACM vol 22,7 (july 1979)

-95-

CONCRETE USE OF ABSTRACT
DEVELOPMENT FORMALISMS

R.E.A. Mason

Department of Computing and Information Science
University of Guelph

Guelph, Ontario, Canada, NIG 2W1
April 15, 1983.

ABSTRACT

The literature of Software Engineering demonstrates a wide variety of
approaches to systems development amongst scientists and practitioners who
cannot communicate effectively amongst themselves. This paper discusses the
need for agreement on a taxonomy of programming, as an aid to better
communication. Using a taxonomy as a framework for discussion, the paper
reviews some of the the current ideas on formalism, and proposes that methods
currently in use, especially in the development of Interactive Information
Systems, represent valid abstract formalisms which can contribute ideas of
value to other domains of software engineering.

1. INTRODUCTION

The Proceedings of the 6th International Conference on Software Engineering
contains a great many papers of interest to practioners and software
engineering scientists. It also illustrates, like much of the recent
literature, a serious problem in software engineering: namely that it is very
difficult to understand whether progress is actually being made in this field.
In his classic Turing Award lecture ten years ago (1), E.W. Dijkstra described
as a very real possibility, his vision that "well before the seventies have
run to completion, we shall be able to design and implement the kind of
systems that are now straining programming ability, at the expense of only a
few percent in man-years of what they cost us now, and that besides, the
systems will be virtually free of bugs". In his lecture, Dijkstra
demonstrated that the problems were generally recognized, and that there was
an economic need for solution of the problems. In his lecture he presented
arguments in support of the technical feasibility of solutions to the
programming crisis.
It is self-evident that this vision of the future has not come to pass, at
least for many who are still proposing tools, techniques, ideas which strive
towards cost-effective production of better computer programs. Consider the
probable reaction of a "typical" programmer in the data-processing department
of a Canadian insurance company to some of the papers presented at the 6th
International Conference on Software Engineering:

* Greenspan, Mylopoulos and Borgida (2) "adopt the view that software
requirements involve modeling of considerable real-world knowledge,
not just functional specifications." They propose a framework which
allows information about the real-world to be consistently recorded

96

and manipulated to describe an applicaton. Of course, our programmer
knows this from empirical observation. He notes that the authors
intend to set up a structured lexicon of terms relevant to the domain
of discourse (a hospital). He notes they have other research
underway on aspects he knows need solution. He wonders whether it
will be successful; and if it will ever apply to his application
domain.

* Boehm, Eiwell, Pyster, Stuckle and Williams (3) present an overview
of the TRW integrated software support environment, a range of TRW
tools, and the study which resulted in development of this sytem.
Our programmer applauds the comprehensiveness of the approach, which
projects a four times improvement in programmer productivity by 1990.
Perhaps his company should get TRW to develop its next system?

* Bauer (4) advocates strict formalization in the program construction
process, based upon one specification, which will be transformed into
a correct program. Our programmer notes that Bauer understands the
problem well, gives proper emphasis to the need for the client to
understand the specification, etc. But he wonders whether his boss
will go to court to have it proven that the client did indeed agree
to the specification, or whether both he and his boss will simply be
fired by the insurance company, when it turns out the client did not
get "what he wanted."

Are these papers relevant? Are the many others (a few as good as those
mentioned here) in the 6th International Conference on Software Engineering
relevant? Are the very many other software engineering papers published each
year relevant to our programmer? I do not answer these questions, because our
programmer is hypothetical. What does matter is that, while the authors of
the papers appear to be in agreement on some matters of importance, it is
difficult to know the bounds on that agreement. Let us consider posing, to
the authors of each paper the question: would you propose to apply your ideas
to a typical development in a typical Canadian insurance company, within the
next 5 years?
2. TAXONOMY OF PROGRAMMING

The authors of the papers cited cannot, I believe, answer such a question. At
an ACM Workshop on Rapid Prototypng (5) in 1982 a half-day was spent by the
participants discussing in detail, and with vigour, variants of the
"waterfall" system development cycle. There was heat, but little light.
Experts disagree what the stages of development are, let alone what they ought
to be. A longer period was spent discussing what a "prototype" is; although
many of us have written papers on the subject, we cannot yet be certain there
is a subject. We would certainly, therefore, agree that the hypothetical
programmer introduced above is sufficiently ill-defined that the question
cannot be answered! Yet, one has a vague feeling that all the last three
authors cited, and perhaps even the first, intend their work to be relevant to
the "typical" data-processing context. Someday, if not now.
I propose that it is desirable, perhaps necessary, to establish some
classification of characteristics important to software systems development,
so that those interested in the subject can understand one another; so they

2

97

can understand each others' assumptions; so they can communicate. Others have
proposed classifications (6,7) which serve valid but limited purposes. The
purpose of the classification I suggest below is to understand what
programming is.

Definitions of programming are personal and determined by the individual's
goals. One programmer has finished his work when an algorithm is written
(correctly) on paper. Another must produce a system which will deliver
reports to a client. A third must alter an existing system to meet a new
requirement. What is needed is a classification which will permit precise,
(or more precise) discussion of such distinctions. We require the ability to
communicate precisely about our shared concepts. We require a language, one
which assigns special meanings to common words.
2.1 Dimensions of a Programming Taxonomy

The theory and practice of programming may be viewed from many perspectives.
What follows is an attempt to describe three such perspectives or dimensions,
and then to define in more detail each of those dimensions.
The dimensions delineate separate sets of concerns. The sets chosen are felt
to encompass important aspects of programming, though perhaps not all such
aspects. The dimensions considered are the program development cycle,
programming domain, and programming resources.
2 .1 .1 Program Development Cycle

It is generally agreed that it is important to consider the stage of
development of a program; the terms used to describe the specific stages, i.e.
the model for the cycle itself, has no general agreement. Figure 1, below,
suggests three such models all of which are familiar, and possibly acceptable.
Other models have been proposed (e.g. 8), for programming domains which are
not so often discussed.

3

98

4

Figure 1. Three Models of the Program Development Cycle

DETAILED MODEL SIMPLER MODEL SIMPLE MODEL

Identification \
> Requirements - -> Specification

Feasibility /
Analysis \ \

> Architecture 1
Des ign / 1I
Coding \

1> Construction
> Development 1

Testing /
Documenting \ /> Implementation
Cutover / \

I
Operation \

1> Certification
> Operation 1

Modification / /

It is clear that, in many programming domains, such models may be mapped to
one another. When one comes to consider less traditional models, say one
involving prototypes, the agreement amongst authors on the description of the
Development Cycle dimension often breaks down. Note, in the models presented
here, the "Operation" phase is ambiguous: another kind of problem. This paper
does not discuss the Program Development Cycle dimension of a taxonomy
further.
2 . 1 . 2 Programming Domains

The object of the Domain dimension is to permit differentiation amongst a
reasonable number of kinds of programming problems. There are a variety of
problem domains within which the development of computer applications takes
place, and the degree of success achieved with a specific programming
methodology seems to depend upon the domain within which it is applied. This
second dimension of a programming taxonomy, characterizing "typical" domains,
is suggested in order that discussion of such dependencies may be orderly.
The names here attached to each domain are personal to this author, but the
descriptions may be more definitive. Five such Programming Domains are
discussed below, each representing a blend of problem size and problem type.

99

5

(i) Complex Applications

This domain is concerned with functionally complex computer applications,
usually on a very large scale. The application may be highly specialized,
such as an airline reservation system. Or it may be multi-faceted, as in an
automated military defense system. The important characteristic is a great
complexity arising from organizational, geographical, or technical application
factors. Accompanying this complexity degree of specialization among
personnel involved in development. The development system described by Boehm
(3) seems to be directed towards a Complex Application domain.

(ii) Data Processing

This domain includes operational automation computer applications in business
and government. Its characteristics include an application emphasis on data
manipulation, numerous interfaces with existing systems, and problems relating
to the understanding of client requirements. Modification and evolution of
existing operational programs is often a critical concern.
(iii) Information Systems

This domain is intended to characterize situations in which the major
programming problems concern data access and presentation, rather than data
manipulation. Interactive Information Systems (IIS), as defined by Wasserman
(6) are one example. Applications such as the development of a microcomputer
spreadsheet package might be another. One would expect applications where
presentation concerns predominate to be developed using different tools,
languages, development cycles, etc.
(iv) Scientific Programming

This domain is concerned with providing computer facilities to aid research,
analysis or experimentation in any field of endeavor. Whereas the Data
Processing and Complex Application domains are concerned with providing
stability of functional service (with some slow evolution), the scientific
domain is most often concerned to provide rapid evolution. Indeed, "Dynamic
Programming" would be a better label, but this phrase has another meaning. In
this domain, the solution of some problems typically requires the discovery or
selection of an appropriate algorithm. "Problem Solving" or "Decision
Support" applications in business are also included in this domain.
It is unusual to find large groups of programmers working on a single problem
of this type, but there may be individual workers in many different locations
all working on the same problem. This aspect results in great value being
attached to correctness, comprehensibility and other program characteristics
which are often not overriding in other domains.
(v) Individual Support

It is useful to complete the spectrum of domains by envisaging a one man/one
computer situation in which the computer is used to provide personal support.
This, then, is the natural environment of the personal microcomputer system.
A microcomputer-like Individual Support domain is also the target of many data

100 6

processing application subsystems which attempt to provide programming
facilities (query languages, report generators, etc.) for non-data processing
"users". The key to this domain is a set of facilities which are easy and
natural for people to use. The emphasis is on supporting programming by
people not trained in computing.
In summary, the five domains described above represent a spectrum of
situations within which programming occurs. The first four domains often
employ formally trained "programmers" and "analysts", but the expectations
from such persons are different in each domain. Not many real-life situations
will cleanly fit within a single such domain, yet most real-life situations
can be identified with these categories. This paper returns to a discussion
of the programming domains, but a third dimension of the taxonomy is
introduced first.
2 .1 .3 Programming Resources

Adopting a broad definition of programming, the programmer is any person
engaged in building systems. In the domain of Complex Applications,
individual programmers will provide highly specialized skills with limited
personal scope of influence over the entire system. Some programmers will
design, some will code, some will test, others will manage. All will be
specialists. At the other extreme, in Individual Support domains, one person
performs all these functions, and is also user. The third dimension of the
programming taxonomy includes the various resources, human and material, which
are brought to bear on system building in all domains.
The primary resources involved in programming, within all programming domains,
involve skills possessed by individuals, and facilities to enhance these
skills. Because computer programming is labour intensive, it is useful to
distinguish a few different "programming" skills which are required, in
addition to the other types of resource. Specific resources which are
commonly needed in all domains include the following:
* Problem Skill, which relates to the understanding of the nature of the

problem and application of analytical skills to the solution of the
problem.

* Programming Skill, which is the ability to effectively use design
techniques and programming languages. Programming Skill is a requisite for
all programming environments. The objective of the Individual Support
domain is to eliminate the need for formal training to develop this skill.

* Communication Skill, which is the ability of the programmer to communicate
with colleagues working on the same problem.

* Management Skill or resource is the ability to organize and direct the
application of the other resources.

* Application Structure is perhaps the least recognized important resource
available to programmers. It is the key to design of programs in both the
Data Processing and Scientific Programming domains. Application structure
is necessary to the mangement as well as design of Complex Applications.
As is suggested below, effective methodologies may recognize and take

101 7
special advantage of this resource.

Methodologies and Tools represent other resources which, like Management
Skill, achieve their effects through their influence on the use of other
resources. Computer cycles, storage space, language processors, and
conceptual approaches all fall into this category.

Time is the one depletable resource in any system development. The
Programmer and Management resources (skills) may indeed be enhanced by the
passage of time: time permits experience to be gained.
2 .2 Why These Dimensions? »

Other categories of factors which influence programming success are
certainly possible; the taxonomy presented here is, as previously noted,
intended to be illustrative. But it is not completely arbitrary. The
attempt should be to agree upon some taxonomy which exposes issues of
importance in software engineering. A large concern of that field is to
identify tools, or systems of tools, or methodologies, or management
techniques, which will improve programming effectiveness. If the taxonomy
can be shown to be useful in describing why some tools work, and if it can
help identify new tools which prove to work, the taxonomy can represent a
basis for a valid theory.
3. METAPHYSICAL (ABSTRACT) FORMALISMS

Bauer, in the paper previously cited, has argued that the need for
formalization is inherent in computer science, and arises because "the
computer itself is absolutely formal in its contact with people." Bauer
develops the content of the three-stage development cycle which is called,
in Fig. 1 above, the "Simple Model." He then proposes that "the formal
essence of rational specifications" can alternatively be expressed by
algebraic abstract types, by predicate logic, by non-determinism, or by
higher order functionals. He illustrates use of the first of the three
tools, but is forced, in his discussion of the consequent stage three,
Certification, to introduce discussion of the role of "Judge", a legalistic
approach which will not be encouraging to those attempting to have programs
developed for them.
Bauer's approach, as it regards Programming Domain, seems primarily from
the perspective of what is above termed Scientific Programming. Despite
allusion to other programming domains the assumptions of his methodology
make this probable. (Absence of formal discussion of programming domains
in much of the published work often forces us to infer the domain of
application.) Furthermore, Bauer's discussion of the resources used for
the programming task is also informal, and the absence of a structured view
leads to some confusion. Bauer notes that "high-ranging people (lack time
to) acquire the fundamental knowledge of a computer scientist." It appears
also that computer scientists lack the will to acquire knowledge of
alternative formalisms. The resource dimension of the programming taxonomy
attempts to separate the various skill concerns in program development,
recognizing that these different resources will be supplied from different
sources depending upon both the Programming Domain, and the stage of the
Development Cycle. The next section of this paper presents an alternative

102

formalism which has proven to be of great value in actual Information
Systems domains. Section 5 compares some aspects of this formalism and
that of Bauer, in the framework of the taxonomy.
4. FORMAL DEVELOPMENT OF INFORMATION SYSTEMS

The methodology presented below is in fairly wide use in industry for the
development of IIS systems. Informal approaches which are highly similar
have been employed for some time. The more formal approach, developed
primarily by Art Benjamin of On-Line People, has been described previously
by Mason and Carey (9) from which the description below has been adapted.
A commercially available tool which supports the method is described in
(1 0).

4.1 Architecture

The methodology is called Architecture-Based Methodology, and it takes its
name from the analogy with the architected approach to a building or other
structure, in the manner suggested by Ross and Schoman (1-1). The essence
of the methodology is that the system designer, or architect, develops a
view of the system based on its external description or appearance. The
designer works inward from this view, to develop system details always
consistent with the external appearance of the system. The important role
of the system designer in the earliest stage of development is, like the
role of the architect, finding a realistic expression of the system's
appearance which is both understandable and acceptable to the users.
Traditional methodologies tend to emphasize acceptability and function at
the expense of understandability, but of course a system description which
is accepted, but not understood, is not really accepted.
This methodology emphasizes, from the beginning of a project to its
conclusion, the overriding importance of the user's ability to understand
the developers' interpretation of his requirement. That is, there is a
great emphasis on the Communication Resource of the taxonomy.
Thus the description of the external appearance must be embodied in some
form of specification which is capable of complete and unambiguous
interpretation by the users. Such a specification is analogous to the
architect's drawings or scale model for a building: it is an effort to
communicate to the users (or the customer) within a discipline which also
provides consistent but more detailed descriptions for the engineers and
builders who will later build the actual structure. An approach which
employs an interactive screen-oriented scenario, which behaves like the
proposed system, is a direct and simple solution to this problem for IIS
projects.
4 .2 Transaction Screen Perspect ive and Dialog-Based Design

The second element of the architecture approach is the adoption of a common
view or design-concept for the underlying structure of all applicatons. As
the building architect keeps in mind fixed concepts of how a house will be
constructed, so the system architect has fixed views of appropriate
structures which apply in well-understood situations. The transaction
screen perspective, the view that the application consists of a series of

8

103

Input-Process-Output sequences of screens, is a key to effective
development of many business systems, particularly IIS. The linkages
between screens in a sequence may be data-dependent in some instances, and
fixed in others, but these are elaborations. The operational user
interacts with the system in a dialog, viewing sequences of screens,
entering data into fields in screens, and being concerned only with the
behaviour of the data and the screens.

The screen-oriented dialog perspective provides strong support to
architecture approach, since it is easy to implement screens and sequences
of screens, if the data content is fixed. The concept of the "scenario"
begins here, as a special class of prototype in which a sequence of
computer-display screens behaves exactly as the final screens in the
application system are intended to behave. In the scenario, however, the
user must follow a fixed script, since the application logic is not yet
implemented.
Clearly, such scenarios are an improved means of communication with the
users of a proposed system. Adoption of the transaction screen
perspective, which permits easy development of such scenarios, represents
an attempt to exploit the Application Structure resource inherent in the
Information Systems Programming Domain. It also constrains the
applicability of the methodology.
4 .3 Project Management

In addition to adopting a conceptual approach (architecture) and a design
approach (transaction oriented screen dialogs), a complete methodology

» should consider the project management and control approach within which
the design will be articulated. That is, the Programming Resources should
be formally considered by the methodology. The Architecture-Based
methodology is directed to a management environment in which the user and
developer roles are distinctly different. This is not a methodology
intended for do-it-yourself programming by end-users. In fact the
methodology is intended to support three separate and distinct roles.
The user role is to determine the functional needs of the system, and to
understand completely the external appearance of the system. The user, who
may be at times the operational user and at other times the user manager,
concentrates on user concerns: function, operational sequences, timing and
performance, usability, etc. Tools and methods used in determining the
system specification are directed at ensuring the user's full and complete
appreciation of these concerns.
The developer's role is to achieve an accurate, complete and timely
translation of the system specification into a working product. The
developer role is thus the traditional one for managed software development
environments, although the nature of the work itself may be non-traditional
because the tools used are new. For example, the system specification is
represented by a series of machine^implemented application scenarios,
rather than functional flow-charts or application structure diagrams.
Using tools designed for this purpose and adopting the program structures
just described, a good deal of traditional design and development may be
eliminated.

104

The building of understanding between user and developer can be assisted by
tools and methodology, but this understanding cannot be left to tools
alone. A third and bridging role is essential to strengthen the Management
Resource typically available within the IIS Programming Domain. This is
the role of architect. The architect has responsibility for ensuring that
the user(s) understand the system specification, and that the developer(s)
deliver the product specified. This role is supported both by tools and by
the personal characteristics of the architect. The architect must develop
adequate trust among the three parties, and must maintain the integrity of
the development process by adhering to the methodology.

4 .4 Iterative Design

The final element of the methodology is the view it adopts of the
Development Cycle. Development of interactive systems must be viewed as an
iterative process. The user's understanding of requirements in the
business environment normally evolves rapidly, especially where new
approaches, such as IIS applications typify, are involved. A process which
exposes the user to life-like scenarios of the final application will lead
to wide exploration of application alternatives during the earliest stage
of development. The development cycle will emphasize efforts during this
requirements stage. Iteration at this stage, when supported by effective
tools, will reduce later costs.
The benefits of an iterative approach are strongly supported in the
literature relating to prototypes. The Architecture-Based methodology
considers three specific levels of iteration within the specifications
phase, and then proceeds to system development. The first set of
iterations make use entirely of scenarios constructed from sequences of
fixed-information display screens. Since the scenario screens must
simulate user-computer dialogs, it is essential that these
fixed-information screens be capable of accepting user data. However, no
data analysis occurs on entry, and the scenario proceeds according to a
script developed by the system architect. User and architect iterate on
scenarios until an adequate first-level representation of the application
is reached. This iteration process leads to agreement on such matters as
screen-flow sequences, screen content, and whether the application is to be
menu-driven or forms-driven, question and answer, etc. It also clarifies
details including screen layouts. The user gains an excellent
appreciation, where the architect is skilled, of the options available, and
their implications for the application.
Many applications require that particular attention be paid to the details
of data-dependent calculations. In these cases, a second-level iteration
is required, in which actual database interactions and application
computations on limited samples of data occur. This is considered to
constitute a demo or demonstration, and assists in the clarification of
both application logic and more detailed screen-flow sequences. The demo
phase represents a partial implementation of the full application.
Emphasis is on quick implementation of key or controversial areas of the
system. The architect works with both users and developers during this
stage.
Often, at this point, many relatively straightforward parts of an

10

105

application will not have been seen by the user in scenarios. That is, the
specification will be incomplete in its details. A final series of
iterations then may take place on a complete specification of the system.
Application logic may be implemented; error-handling and recovery
procedures are specified, and a "prototype" of the entire application is
prepared. This prototype is exercised for users, and evolves to become the
final system specification. The architecture-based methodology considers
this prototype as being what Keen and Gambino (12) call the version 0
release of the system. Carey and Mason (13) have reviewed the meanings
attached to the word "prototype" in some of the recent literature. They
discuss in more depth distinctions between the various kinds of prototype
referred to in the above description of this methodology.
5. METHODOLOGY AND FORMALISM

The IIS methodology has been demonstrated by considerable use to have great
value within its intended Application Domain. What makes it formal? The
language employed for specifications, namely a scenario of the desired
product, appears to be effective, but informal. Most of us would agree
that this specification language is far from being as formal as, say, the
abstract algebraic specification of Bauer. This is not, however, the case.
The dictionary meaning of "formal" refers to the essence of a thing. "Of
the outward form, shape, appearance, arrangement, or external
qualities..... explicit and definite." (14) What could be more explicit
or definite, what could better describe the form and external qualities
than a scenario?

The architecture methodology is as formal for the Information Systems
domain, as is the abstract type for the Scientific domain. Both instances
require that the user and developer agree upon a mutually-comprehensible
specification language. The important characteristics of that language
include precision and compactness, in addition to comprehensibility. The
existence of tools supporting the specification language, as in the case of
the IIS architecture methodology, enforces the formalism which users and
developers must both agree upon.
Bauer notes that the formal specification is the "pivot". Construction of
the actual program can indeed, with appropriate tools, be performed
mechanically. In the IIS case, tools do exist to perform such
translations; in the case of abstract algebraic types, mechanical
translation capability exists, perhaps, if the algebraic (specification)
language is appropriately selected.
5.1 Comparing Two Formalisms

If it can be agreed that the architecture approach is indeed sufficiently
formal, it should be examined to determine whether it has anything to
contribute to other programming domains. It is remarkable that the
methodology for IIS proposes three development stages. These stages appear
to map well to the three-stage process proposed by Bauer:

11

106

Bauer Architecture

Specification Scenario
Construction Iteration on Demos
Certification Version 0

Since the two approaches seem to describe similar approaches to similar
problems, it is tempting to believe they are equally valid, each in its own
Application Domain. This is not the case; I would propose that the
architecture approach has a significant advantage. Each methodology
embodies an analogy. In the architecture methodology this has been noted,
and is imbedded in the name. Bauer's methodology might be termed
"judicial". Both approaches recognize the great importance of a
professional approach, but Bauer chooses a different profession.
The essence of the difference is that the architecture approach clearly
identifies the need for independent professional guidance throughout the
development process. In effect, this approach argues for the creation of
an important new profess ion: that of programming architect.
If this idea is applied to Bauer's approach, it improves the liklihood of
successful systems being developed. Rather than judging, upon conclusion
of the product construction, whether the "contract" has been fulfilled by
the computer professionals, the customer would hire a programming architect
to ensure, throughout the specification and construction, that the
specification is continuously adhered to. This is simply a restatement of
the view that verification should be a continuous process which occurs
throughout the development cycle. Client managers and computer scientists
do agree on this. The formal architecture methodology suggests a means of
achieving it.
It was suggested in 4.2 above that the inherent "structure" of a
programming problem represents a valuable, and often overlooked, "resource"
for the programmer. In the Scientific Programming domain, such structure
is often directly reflected in use of a design language which is itself
formally structured. In the Information Systems domain, similar structure
can be imposed upon the problem, and results in the opportunity to achieve
great benefits. The methodology for IIS presented above exploits such
structure by adopting the Dialog-Based Design structural model. In effect,
some of the "how" was fixed prior to deciding "what". While mathematical
expression of its formality has not been developed, there can be little
doubt that both the nature of the Application Structure resource and the
benefits of exploiting it are similar to what is achieved by mathematical
approaches in Scientific Programming.
Finally, it was noted above that the scenario as specification may be
incomplete. This may dissatify those who have considered that completeness
is a critical specification attribute; however such considerations are
highly Domain-dependant. There is a natural conflict between completeness
and comprehensibility in specifications, and the IIS (and possibly the Data
Processing) domains demand more of the latter than of the former. If user
and developer have agreed upon methodology, formalism is not sacrificed.

107
13

6. DISCUSSION

This paper has proposed a taxonomy of computer programming, and
demonstrated how it might apply to discussion of two quite different
programming methodology proposals. The comparative discussion was aided by
the fact that both methodologies employ three-stage Development Cycles
which are obviously similar in intent. The domain of programming concern
of the two methodologies is quite different, as are the Programming
Resources emphasized in each case.

The idea is intriguing that a methodology intended for use in a Programming
Domain having "appearance" rather than "substance" as a major concern might
offer something to to other domains. At the ACM SIGSOFT Workshop on Rapid
Prototyping it was evident that workers in the IIS field had achieved a
more advanced degree of implementation of formal approaches; the one
described here is but one example. A major argument of this paper is that
these approaches may indeed be formal, where they are based upon agreed and
enforced use of a particular specification language. Mathematical
formalisms are not appropriate in some Application Domains, and they are
certainly not the only valid formalisms.
The taxonomy is an attempt to permit analysis of the different
characteristics which specific programming projects may have, in a manner
which can lead to valid conclusions about programming in the general case.
Although use of the taxonomy as a framework for comparison of approaches
can be fruitful, it is premature to claim that the taxonomy can form the
basis for a theory of programming. Indeed, it is far from certain that the
dimensions of the taxonomy are even the appropriate ones. Nevertheless,
some such approach may be promising.

The problems with any conceptual subdivision of a complex activity into
components are many. One set of problems arises from the words which we
use to label concepts. It is very difficult to enforce the discipline
implied by new definitions for old words, except in very narrow fields.
Programming is not a narrow field. A second kind of problem arises from
the lack of shared experience. Workers in one Application Domain rarely
possess the direct experience of another domain which permits effective
communication in the absence of agreement on terminology.
A third problem in taxonomy development is sociological. There is little
incentive for the documentation of formal concepts relating to domains
which may appear to some to be undisciplined and chaotic. The effort to
understand and describe these formalisms is great, since they are not
founded on two-dimensional mathematical logic. The rewards in this area
are not in description on paper of formalisms ill suited to such a medium.
However, the economic and societal importance of understanding (and
correcting) the problems of such domains is great. A purpose of this paper
is to illustrate that this task is not only possible but that it may
contribute to progress in more structured domains.
Concrete uses of development formalisms should be sought out and studied.
They have much to contribute to computer science.

108
14

7. ACKNOWLEDGEMENT

This work has been supported by the Natural Sciences and Engineering
Research Council of Canada, under grants A3045 and A5547.

REFERENCES
(1) E.W. Dijkstra, "The Humble Programmer", CACM 15 (October 1972),

pp. 859-866.
(2) Greenspan, S.J. and J. Mylopoulos, A. Borgida, "Capturing More

World Knowledge in the Requirements Specification. Proc. 6th International
Conference on Software Engineering. Tokyo September 1982, pp. 225-234.

(3) Boehm, B.W., J.F. Elwell, A.B. Pyster, E.D. Stückle, R.D.
Williams, "The TRW Software Productivity System". Proc. 6th International
Conference on Software Engineering. Tokyo September 1982, pp. 148-156.

(4) Bauer, F.L. "From Specifications to Machine Code: Program
Construction through Formal Reasoning." Proc. 6th International Conference
on Software Engineering. Tokyo September 1982, pp. 84-91.

(5) Zilkowitz, W.V. ed. , "Workshop Notes, ACM SIGSOFT". Workshop on
Rapid Prototyping. Columbia, Maryland, April 19-21, 1982.

(6) Anon, "Quantitative Software Models", Data Analysis Center for
Software, Rome Air Development Center, March 1979.

(7) Houghton, Jr., R.C. "Software Development Tools", National
Bureau of Standards Special Publication 500-88, February 1981.

(8) Brittan, J.N.G., "Design for a Changing Environment", The
Computer Journal, Vol. 23, No. 1, January 1979, pp. 13-19.

(9) Mason, R.E.A. and Carey, T.T., "An Approach to Prototyping
Interactive Information Systems", Proc. 3rd International Conference on
Information Systems , Ann Arbor, Michigan, December 1982.

(10) Mason, R.E.A. , T.T. Carey and A. Benjamin, "ACT/1: A Tool for
Information Systems Prototyping", ACM Workshop on Rapid Prototyping,
Columbia, Maryland, April 19-21, 1982.

(11) Ross, D.T. and Schoman, K.T. "Structured Analysis for
Requirements Definition", IEEE Trans. on Software Engineering, Vol. SE-3,
NO. 1, January 1977, pp. 6-15.

(12) Keen, P., and Gambino, T.J., "The Mythical Man-Month Revisited",
Proc. APL 1980, pp. 630-648.

(13) Carey, T.T. and Mason, R.E.A., "information Systems Prototyping:
Techniques, Tools, and Methodologies," INF0R. Canadian Journal of
Operational Research and Information Processing, to appear.

(14) Concise Oxford English Dictionary.

- 109-

A CONCEPTUAL FOUNDATION FOR VIEW INTEGRATION

C. BATINI, M. LENZERINI
Istituto di Automatica - Universitä di Roma
Via Buonarroti 1 2 - 00185 Roma - Italy-

Abstract.
View integration is a critical activity in data base

design. Several methodologies for view integration have
been proposed in the last years that afford the problem
with different strategies and in the context of different
data models. In this paper a general framework for comparing
existing approaches and giving a conceptual foundation to
the area is proposed. Within a model independent approach
we investigate the activities involved in the integration
process, in terms of semantic checks that are^to be per
formed, types of restructuring that are usually needed and
types of procedurality that can be chosen.

110

CONTENTS
1. Introduction
2. A model independent approach to view integration
3. Activities and concepts involved in view integration

3.1. Semantic checks
3.1.1. Conflicts analysis
3.1.2. Interschema properties analysis
3.1.3. Indications and scenarios

3.2. Transformations
3.3. Types of proceduralities

3.3.1. Linguistic transformations
3.3.2. Design strategies
3.3.3. Order of integration between schemata
3.3.4. Order of integration between concepts to be

merged
3.3.5. Order of integration between modelling

structures
4. Conclusions and further research.

Ill

3.

1. INTRODUCTION
In recent years a lot of effort has been done to pro

vide effective research guidelines for conceptual data base
design methodologies (see [13],[14],[16]).Conceptual design
of a data base is usually seen as divided into two steps:
- view modelling, during which user requirements are formally
expressed by means of several user conceptual schemata

- schema integration (or view integration), that merges
such schemata into a unique global schema of the applica
tion.

The design of the n user schemata may be in general
developed independently, by different analysts and at dif
ferent times. As a consequence, several complex tasks are
to be managed during integration: finding the common parts
between the different schemata, finding the different re
presentations chosen by the analysts, in case discover
inappropriate or unreliable choices; finally, discover in
terschema properties, i.e. properties involving data be
longing to different schemata that were hidden to the ana
lysts in former design steps.

The topic of schema integration has been recently
addressed in several papers (see [3] , [7] , [8] , [1 0] , [11] , [1 5] ,[1 7],
[2 0]) that give different answers to issues pointed out in
[13],[14],[16]). Practically, all those papers concern only
with data integration, and do not address the topic of
integration of dynamic aspects of the application. While
such papers are important contributions to the problem, we
believe that it is now the moment of developing, together
with new ideas, a general framework for comparing existing
approaches and the topics pointed out. In developing such

112

4.

investigation we have three goals:
1 . find criteria of classification and comparison of ex

isting methodologies for view integration.
2 . give a conceptual foundation to the area of view in

tegration, describing concepts and activities typical
of the area without referring to any particular data
model and methodology.

3. provide general guidelines, in a moment in which the
research in the field is at a mature stage, for a
schema integration methodology "parametric" with respect
to the conceptual model.

The paper is organized as follows.
In Section 2 we develop a general framework to view in
tegration, introducing several concepts that globally pro
vide a model independent approach to this topic .
In Section 3 we analyze in detail the activities involved
in the integration step in terms of semantic checks that
are to be performed, types of transformations that are usually
needed and types of procedurality that can be chosen.
In Section 4 we examine future research perspectives for
this area.

2. A MODEL INDEPENDENT APPROACH TO VIEW INTEGRATION
In order to develop a general framework to view in

tegration we need to introduce several concepts.
Data base design consists of a process of representa

tion of a piece of the real world of interest {Universe of
Discourse, UoV) on a computing machine.

Conceptual design is the phase of data base design in

113

5.

which the UoV is formally described independently from the
implementation environment (see [13]). Such a phase involves
both static and dynamic aspects of the UoV, i.e. data, opera
tions and events. In this paper we'll deal only with data
design, whose goal is to obtain a formal description of
data, called conceptual schema.

A data model may be seen as the formal language in
which the conceptual schema is expressed; it consists of a
set of structures in terms of which the objects of the UoV
are described. Following the approach of [18], the allowed
structures of a data model are specified in two complementary
ways: classification structures and integrity constraints.

Classification structures are the structures by which
the objects of the UoV are classified on the basis of common
properties, giving raise to the concepts (or classes) of
the conceptual schema. A class represents a set of objects
of the UoV, called the instances of that class. For example,
if entity type is a classification structure of the selected
data model, the entity type EMPLOYEE, representing the class
of persons employed in a certain enterprise of the UoV, may
be a concept of the corresponding conceptual schema; each
employee is an instance of the entity type EMPLOYEE.

Integrity Constraints are the structures that allow to
specify rules on the concepts of the conceptual schema,
reflecting semantic constraints on the corresponding objects
of the UoV. For instance, if in the UoV the employees cannot
earn more than their manager, an integrity constraint may be
defined on the concepts EMPLOYEE, SALARY and MANAGER in
order to represent the fact that the salary of an employee
must be lower than the salary of its manager.

Two conceptual schemata are equivalent if they can

114

6.

represent the same universes of discourse.
The above definition of equivalence is obviously not

constructive: another definition will be given in Section 3.
Union of two (n) Universes of discourse is the Universe

of discourse whose things and happenings are the union of
things and happenings of the two (n) universes of discourse.

Coming to a definition of integration, it is clear
that we need a definition that does not distinguish between
equivalent schemata.

Given two Classes of Equivalence of Conceptual Schemata
C^,C2 (the definition is obviously extensible to n classes)
their Integration I(C^,C2) is the class of equivalence (of
schemata) that represents the Universe of Discourse union
of the two Universes of discourse represented by the given
classes. In the following we will also speak of integration
of schemata as an obvious extension of integration of classes
of equivalence.

In terms of the above definitions we may say that the
main role of a view integration methodology is to describe
a way to obtain I from C>|,C2 without repeating the entire
conceptualization process for the Universe of Discourse
U o V = UoVj U U0 ^ 2 > the Universes of Discourse from which
C^,C2 are derived. The reason for assuming UoP^Uof^ as
input for the design process comes indeed from organization
constraints and from an hypothesis of "linguistic homoge
neity" that can be made only within users, documents, etc.
that describe each of the Universes of Discourse.

The tasks of such a methodology can be very complex.
The reason for this comes from the following observations.

Assume for the moment that objects and properties of
objects of the part of the UoV common to UoV̂ and UoC>2 have

115

7.

been modelled exactly in the same way (i.e. by means of the
same names, classification structures, and integrity con
straints allowed in the model) in and C2 - We call this
assumption on the design, strong cohesion between schemata.

Strong Cohesion may be lost in the design for several
independent reasons (we refer to this situation as Weak
Cohesion Assumption):

1. In the model several equivalent representations exist
for the same Universe of Discourse (Lack of Model Or
thogonality) (see an example in fig. 1 , where dotted
lines describe identifiers and symbols 1 , 1 and 1 ,n de
scribe minimum and maximum cardinalities of instances
of entities involved in relationships [7].

2
Fig. 1: Example of Lack of Model Orthogonality.

In the design process, different perceptions may have
been adopted by different designers in modelling the

116

8.

same objects (Pluralism of perceptions). See for in-

and Project is explicitely perceived by the designer in
, while in C2 is implicitely perceived through entity

Department.
3. In the design process, different abstraction levels may

have been chosen to represent objects that belong to the
same classes (Heterogeneity of Abstraction Levels). See
for example fig. 3, where entity Person in C2 is at a
higher abstraction level with respect to entity Employee
in C-j .

cl c2
Fig. 3: Example of Heterogeneity of Abstraction Levels

117

9.

4. Several erroneous choices may have been made in the
schemata for names, classification structures, integrity
constraints, so that the conceptual design applied to
UoVj , Uoi?2 n°t Produce as a result the "true"
schemata and C2 but two schemata C^rC^ not equivalent
to them (Lack of Design Reliability). See for example
fig. 4, where it has been erroneously assumed in that
an employee must be assigned to a unique project.

Fig. 4: Example of Lack of Design Reliability.
A "good" methodology for view integration should provide
strategies to manage all of the above situations. In the
next section we go deeper into the analysis, putting in
evidence the activities and the conceptual cathegories
involved in the integration process independently from
the particular data model chosen in the methodology.

118

10.

3. ACTIVITIES AND CONCEPTS INVOLVED IN VIEW INTEGRATION
Topics pointed out in section 2 are afforded by ex

isting methodologies for view integration with different
strategies. Abstracting from specific proposals, we may
single out the following concepts as peculiar of view in
tegration .
a. Several semantic checks are to be performed by the de

signer in order to gain complete visibility on the
meaning of the concepts in the schemata.
In order to support such investigation, several types
of indications can be considered, i.e. suggestions based
on heuristics that guide the designer in its activities.

b. Several possible transformations are logically related
to semantic checks and corresponding indications.

c. Several different types of procedurality can be pro
posed to perform the above checks.

In the following, we analyze in detail each of the
above concepts.

3.1. Semantic checks
In comparing the schemata to be integrated, two dif

ferent activities can be distinguished:
a. Conflicts analysis, whose goal is to find and conform

the parts of the schemata representing the same piece
of the UoV.

b. Interschema properties analysis, that looks for hidden
properties between concepts belonging to different
schemata.

In the following, we describe the characteristics of

119

11

these activities, assuming that the integration of two user
schemata (S1,S2) is to be carried on. Furthermore we ana
lyze the concepts of indication and scenario, that are
useful to support the designer in semantic checks.

3.1.1. Conflicts analysis
The goal of this activity is to find all the concepts

that are common to S1 and S2, and conform their representa
tion .

The structure of this activity is the following:

INPUTS : S1 ,S2
OUTPUTS : SS1 C S1, SS2 C S2

such that: SS1 = rep(x) x C UoVj
SS1 = rep(x) x C UoI?2

where:
- x is the maximum subset of UoV^ Cl UoC^ represented both

in S1 and S2.
- S = rep(Li) means that conceptual schema S is a representa
tion of the Universe of Discourse U.

During this activity all types of conflicts among the
representations of the same objects in the schemata to be
integrated are to be discovered. Conflicts may be classified
as:
- naming conflicts
- structural conflicts
Naming conflicts

Let's call S1 Cl S2 the schema obtained considering

120

12.

those concepts that have the same name in S1 and S2.
Since under weak cohesion assumption SS1 and SS2 are

in general different from S1 n S2, this activity can be a
very complex one.

The reasons for such difference come from naming in
coherences between S1 and S2 and lack of design reliability,
e .g. :
- inter schema homonymies between S1 and S2 that imply the
presence in S1 n S2 of concepts representing objects that
do not belong to UoV̂ n UoC^•

- interschema synonymies between S1 and S2, that imply that
objects in UoV ̂ n UoV^ are not represented in S1 H S2.

- intraschema homonymies or synonymies (due to lack of
design reliability) with analogous consequences.

Most of the methodologies mention naming incoherences,
while only some of them ([7] , [11] , [15]) give specific guide
lines to detect and solve them. Intraschema incoherences are
mentioned only in [7]. In [3] the Universal Relation As
sumption [6] is implicitely assumed: this assumption, in
data base design, implies the absence of naming incoherences.
Structural Conflicts

When finding the common part, an activity of comparison
of information content of the schemata has to be performed.
Such comparison can involve conceptual structures at dif
ferent level of granurality, i.e. atomic concepts, simple
fragments, or even the entire schemata. E.g. in [8] it is
suggested to compare pairs of concepts, while in [15] a
comparison activity is performed on subviews, that correspond
to simple fragments of the schemata.

Under weak cohesion assumption, several possible re
lationships may hold among conceptual structures repre

121

13.

senting the same piece of UoV: we call them Equality, Equi
valence, Containment, Compatibility.

Equality
The structures are equal if the piece of the UoV they
represent has been modeled by means of the same names,
classification structures and integrity constraints al
lowed by the model.
Equivalence and Containment
The structures are equivalent if, even though they are
not equal, they have the same information content. The
equivalence is related to the concept of lack of model
orthogonality.

Several definitions of equivalence have been proposed
in the literature in different contexts (see for instance
[5] ,[6] ,[12]) .

We assume here a definition based on an approach ap
peared in [1].

Informally speaking, we can say that a schema S1 is
less informative (<) than a second schema S2 if for every
database i1 that is an instance of S1 a database i2, in
stance of S2, exists that has the same set of answers to
queries. If S1 < S2 and S2 < S1, we say that they are
equivalent.

The above definition provides a framework also for a
concept of information containment.

The equivalence concept is explicitely used in [7] and
in [15]. In [15] two different equivalences are taken into
account, i.e. representation equivalence and restructure
equivalence, defined on simple structures; the information
on equivalent structures is considered as an input to the
integration process. Equivalence is implicitely used in [3]

122

14.

where, under the Universal Relation Assumption,the integra
tion corresponds to merging sets of functional dependencies
with the same closure.

With regard to the information containment concept, we
notice that it is closely related to the activity of re
dundancy analysis, present in several methodologies ([3],
[7] ,[11] ,[15] ,[20]) .

In general, if a containment relation occurs between
two structures belonging to different schemata, such con
tainment gives raise to redundancy when the structures are
put together in the integrated schema.

It is well accepted that redundancy analysis is a
task of view integration: it is questionable [8] if all
types of redundancies should be also eliminated during view
integration.

Consider for instance the case of two paths in an
Entity Relationship Model (see fig. 5) that are merged in

Fig. 5.
the integrated schema.

In case each of the relationships A-B,B-C,A-C can be
derived by the remaining ones, no argument exists at con
ceptual design level to choose which of them to mantain
in the integrated schema.

It is a task of physical or transaction design to
choose either to represent redundant paths in the final

123

15.

database schema and mantain them because of response time
needs or to get rid of redundancy by selecting the more
convenient path from the viewpoint of overall system's
performance.
Compatibility

Quoting from [13] "a framework for rules needs to be
developed to test views for merge compatibility".

What is compatibility? Intuitively, two conceptual
structures are compatible if classification structures and
integrity constraints referring to the same objects of the
UoV are not contradictory.

In the view integration field the concept of compati
bility and contradiction is strongly related with the so
called closed world vs. open world assumption.

The closed world assumption states that a sentence on
the objects represented in a conceptual schema is considered
true if it is explicitely stated in the schema or is de-
ducible from explicit sentences in the schema. In any other
case the sentence is considered false.

In the open world assumption all sentences not stated
in the schema or not deducible are considered unknown.

The closed world assumption is implicitely assumed in
[1 0],where in the framework of the structural model two
entity relations that represent the same object classes but
have different attributes in the schemata are not considered
mergeable; in order to superimpose them, two new subrela
tions are created in the integrated schema.

The open world assumption is implicitely assumed in
[7] , [11] ,[15] where pairs of compatible concepts are merged
and the new concept in the integrated schema inherits all
their properties.

124

16.

Examples of contradictions in the open world assumption
are in [7] different min or max cardinalities for
entities in the same relationships and in [15] different
types of dynamic behaviour of concepts in the two schemata.
Under open world assumption, contradictions are usually
managed suggesting further investigation with the user.

3.1.2. Interschema properties analysis
Interschema properties are all the modelling features

defined between different concepts in different schemata
that were, as a consequence, hidden to the analyst in the
design of a single schema.

Some of the interschema properties correspond to the
discovering of a redundancy (see case 1 of fig. 6 , where
the redundancy is in the fact that all the instances of B
are also instances of A);as we said in the previous section,
in this case they reflect the presence of an information
containment relation between fragments of the two schemata.
Other interschema properties simply reflect new properties

Fig. 6.

125

that are needed to gain completness in the representation
of the global UoV (see case 2 of fig. 6).

In [17] it is shown the strong influence of the as
sumption of Heterogeneity of Abstraction Levels in the disco
vering of interschema properties.

In [10] interschema properties are used for gaining
completness as well as constructing external views that
have the property of being a proper subschema of the global
schema.

Interschema properties are managed also in [7] ,[15].
At the end of this section we compare in Table 1 the design
assumptions introduced in section 2 with the above described
design activities, attempting an evaluation of their in
fluence on such activities.

Lack of
Model
Orthogonality

Pluralisms
of
Perscections

Heterogeneity
of Abstraction
Levels

Lack of
Design
Reliability

Conlfict
Analysis si si wi si

Interschema
Properties
Analysis

wi si si si

si = strong influence
wi = weak influence

Table 1.

3.1.3. Indications and scenarios
Generally, a methodology should provide guidelines in

_ 126 '

18.

order to perforin effectively and efficiently the investiga
tions outlined in the above sections: such guidelines can
be provided in the form of indications, i.e. situations
that reveal potential conflicts, guide the designer and
control the combinatorial explosion of possible investiga
tions . Several factors can influence the way in which in
dications are managed in a methodology:
1 . the conceptual model; e.g. a rich linguistic capability

to express integrity constraints can be used in evalua
ting the similarity of concepts that are potential syno
nyms .

2 . peripheral information3 collected by the methodology,
i.e. information on the neighbours of the UoV that is
not destined to be represented in the conceptual schema
and is collected and used to make more reliable the
analysis on data represented in the conceptual model.
In [19], for instance, keywords are collected for each
concept, that represent a meaningful subset of its
"neighbour concepts". Two concepts are considered po
tential synonyms if most of their keywords are equal.

3. linguistic heterogeneity between users, conventions,
standard documents of the different subsystems of the
organization.

At present, indications are dealt with in the methodo
logies for several goals.

In [11] similarity indications are suggested for
discovering interschema naming incoherences. In [7] concept
likeness/unlikeness are suggested for interschema incohe
rences and interschema properties, and multiname anomalies
for intraschema incoherences; new cycles occurrences (in

127

19.

the integrated schema) are suggested for redundancy analysis.
In [15] view similarity is used for compatibility analysis.

Indications are potential motivations for some more
investigation with the user: the investigation can lead
the designer to discover either a conflict or an interschema
property. As a consequence, several alternative modifica
tions to the schemata are logically related to an indica
tion; a methodology should suggest, for every specific in
dication, several corresponding scenarios, i.e. the type
of conflict or interschema property the indication, in the
given context, potentially reveals and the related modifica
tion to the schemata. Methodologies differ in the way in
which they manage scenarios. Most of them suggest usually
only one scenario: e.g. in [14], when an incompatibility is
discovered between views, as a general policy the integrated
view will include the more constrained one. In [7] usually
several scenarios are suggested.

3.2. Transformations
When the schemata object of the integration process are

analyzed, several possible transformations are needed that
change some part of the schema in a new one.

Transformations can be classified in several ways. We
propose here a classification (see fig.7) based on the
definition of equivalence we have given in section 3.1.

Transformations
1-------------------l— ------------------- 1Information Information

Preserving Changing
1

Comparable Not-comparable

Fig. 7

128

20.

In format-ion preserving transformations occur when for
some design goal the designer aims at changing the syntactic
representation of the schema, without changing its informa
tion content.

In [7] , several equivalence transformations are sug
gested in order to unify types of concepts with the same
name in the two schemata and simplify further design deci
sions .

Information changing transformations can be classified
in:
- Comparable transformations when the information content
of the two schemata can be compared, i.e. we can say that
the previous schema is more (less) informative than the
restructured one.

In [15] several "enhancement operations" are suggested
that enrich the information content of schemata. In [7] when
incompatible representations appear in the two schemata for
concepts with the same name, one of the two concepts is
modified. Similar transformations appear in [10] ,[15] ,[20]
in a phase of the analysis that concerns concepts in the
integrated schema.
- Not comparable transformations are usually needed when

owing to previous insufficient or unreliable design, con
flicts arise (e.g. homonyms or synonyms) that must be
solved with a renaming or change of the structure.

Existing methodologies have different approaches
in suggesting when affording transformations.

In [1 0] ,[1 5] ,[20] firstly schemata are merged and then
transformations are performed on the integrated schema. In
[7] some transformations an performed on input schemata and

129

21 .

others on the integrated schema.
Notice that at the end of the integration process it

is usually convenient to perform further transformations
on the integrated schema for goals different from those
examined till now, i.e.:
1. express as far as possible by means of the model itself

all the integrity constraints otherwise expressed by
means of natural language. We call autoexplicativity this
quality of the design.

2. gain further clarity and simplicity in the representation
of the UoV.

Similar goals are also typical of the view modelling
step of conceptual design; the analysis can be reproposed
now for two different reasons:
1. this is the final step of conceptual design, and so it is

crucial at this point to gain high quality of the design.
2. only at this phase of the design it is possible to get a

centralized view of the global UoV of interest for the
application.

3.3. Types of pvocedvxality
Several types of procedumlity can be used in a view

integration methodology, corresponding to the different
choices that the designer has at is disposal in creating a
partial ordering between the different design steps that
are to be performed.

They may concern:
1. Linguistic transformations
2. Design strategies
3. Order of integration between schemata

130

22.

4. Order of integration between concepts to be merged
5. Order of integration between modelling structures.

In the following we analyze the above procedualities.

3.3.1. Linguistic transformations
The fundamental goal of a Methodology for Data Base

Design is to transform a user oriented linguistic repre
sentation (l.r. in the following) of requirements into a
DBMS oriented one.

In order to simplify and make more reliable such
transformation, the introduction of two intermediate pha
ses in such transformation process is usually proposed
(see [13],[14]), i.e., from the bottom the top:
1. a 1. r. independent from the user and the DBMS, usually

called conceptual model.
2. a. l.r.independent from the user and from conceptual model,

i.e. obtained from the initial requirements in such a
way that no choice has to be made at this level, re
garding the structures used to represent the information
of interest. According to [14], we call this l.r., Re
quirements Model. We adopt the term Requirements Schema
to indicate an instance of it.

See in fig. 8 a comprehensive representation of the
above terminology.

Integration can be in principle performed at each of
the above levels. For instance:
1. The enterprise schema mentioned in [14] can be con

sidered as the result of a first integration step afforded
before Conceptual Design (it is indeed usually considered

131

23 .

I/O Description

user requirements
4-_______

Requirements
Analysis---- r ----Requirements Schema

4
Conceptual

Design
4

Conceptual Schema
4_________

Logical + Physical
Design
4

Logical + Physical Schema

character of the linguistic
representation
user oriented

independent from the user and
from the conceptual model

independent from the user and
from the DBMS

DBMS oriented.

Fig. 8 .
as an input to conceptual Design).

2. integration can even be performed during logical design.
Synthesis algorithms in [3],[4] are examples of such
approach.
Most of the methodologies perform integration at the

conceptual level. This approach can be considered as a tra
deoff between two different requirements:
a. as in software design, in data base design too error

cost increases dramatically during the life cycle of
the application. This aspect should justify when possible
an integration "in the head of the designer".

b. on the opposite side, due to the great complexity of the
integration process, it seems better to perform such
activity only when formal, unambiguous representations
have been produced.

132

24 .

3.3.2. Design strategies
As we pointed out in [2], in data base design we can

use the terms "top-down" and "bottom up" to characterize
the different strategies proposed in the literature for
conceptual design.

For instance, the refinement of an entity into a more
complex structure that inherits its links in a conceptual
schema can be considered as a top-down activity, while the
integration of two schemata (or else of a new entity to
a schema) is a bottom-up activity.

In principle, the designer of a conceptual schema
should be allowed to intermix top-down and bottom-up acti
vities. As a consequence (while methodologies usually pro
pose two distinct and clearly specified activities for view
modelling and schema integration) in general the integration
step should be allowed at any level of refinement, in order
to carry on the design intermixing view modelling and
schema integration.

Most of the existing methodologies for view integra
tion do not afford this problem: they assume that the view
modelling process has been concluded so that the schemata
to be integrated are assumed as specified at the final level
of refinement.

Some basic concepts regarding to this aspect can be
found in [17] , where the proposed data model is based on
abstraction mechanisms and general guidelines to integrate
user views possibly specified at different levels of ab
straction are provided.

3.3.3. Order of integration between schemata
This aspect involves two related problems: giving a

133

25 .

general strategy for the entire integration process in order
to produce a global schema from several conceptual schemata
and providing criteria for the choice of the order of ag
gregation of such schemata.

With regard to the first point, the concept of -integra
tion tree can be introduced: let's call CA ,...,C the schema-1 n
ta to be integrated (user schemata in the following) and
CS the global conceptual schema.

The procedurality of the integration process can be
represented by means of a tree according to the following
rules:
- the root represents the global schema CS
- the leafs represent user schemata , . ..,C
- the intermediate nodes represent partial integrated
schemata

- for each node, its children represent schemata from which
it has been derived by means of an integration step.

Stating the structure of the integration tree corresponds
to provide the general strategy to accouplish the integra
tion process. Most of the methodologies, for example, agree
in adopting a binary tree because of the increasing com
plexity of the integration step with respect to the number
of schemata to be integrated.

The proposals in [3],[20] can be considered exceptions
to this rule: n-ary integration steps are allowed in their
approaches in which however, the types of conflicts and
situations taken into account in the analysis is quite
limited.

With respect to the balancing of the integration tree,
two alternative choices have been proposed: respectively a

134

26.

completely balanced [17] and a completely unbalanced binary
tree [7].

In [17] it is argued that the balancing of the integra
tion tree minimizes the number of comparisons between con
cepts of the schemata that are performed at intermediate
steps in the integration process. In the approach of [7]
the integration of schemata with higher relevance is anti
cipated so to obtain a better convergence and stability in
the construction of the partial integrated schema.

3.3.4. Order of -integration between concepts to be merged
This aspect and the next one is meaningful when a

procedural!ty has been chosen for the integration of schemata,
and two or more schemata are to be integrated in a new one.
At this stage, in order to discipline the explosion of
possible activities, at least two different strategies can
be chosen.

A first class of strategies proceed imposing an
order to classification structures allowed in the model,
and integrating in such order the corresponding "layers"
of the schemata.

A possible criterion for the choice of the order
should tend to anticipate as soon as possible the most
critical choices, achieving fastly a first convergence of
the design.

We show,for example (see fig. 2),the metaschema of an
Entity Relationship Model [9] enriched with subset and ge
neralization abstractions for entities (Sub and Gen rela
tionships) and min and max cardinalities. We assume the
metaschema selfexplanatory, except for symbol:

135

27.

called underlying attribute,i.e. the attribute of the entity
at the uppdr level in the generalization whose values cor
respond to names of entities at lower level.

Sentence

Since in such a model the entity concept is the most
significant one, if this procedurality and this model are
assumed it is useful to anticipate entity analysis. In
several methodologiesf 1 0] , [1 5] this criterion is widely
applied.

136

3.3.5. Order of integration between modelling cathegories
A second order that could be chosen with the goal of

finding layers of the schemata to be subsequently integrated,
is based on modelling cathegories i.e.:
a. names
b. classification structures
c. integrity constraints.

The idea here is that the naming activity is the most
primitive one when a Universe of Discourse is conceptualized
in a schema. As a consequence, when two or more schemata are
integrated, first of all names of concepts are unified in
dependently from classification structures and integrity
constraints chosen for modelling there. Subsequently, clas
sification structures of the concepts with the same name
are analyzed, attempting to unify them according to tran
sformations that preserve equivalence. Finally, integrity
constraints are analyzed in order to check their compati
bility. Such an approach is chosen in [7].

4. CONCLUSIONS AND FURTHER RESEARCH
In this paper an attempt was made to develop a general

framework and give a conceptual foundation to the area of
view integration.

Research and practical experience are needed to compare
existing methodologies and integrate the most effective ap
proaches for single activities.

Furthermore, tools are to be developed that support
the designer in suggesting indications and scenarios and
perform transformations. Moreover, the integration of
dynamic aspects has to be afforded; this aspect is practic

137

ally ignored in existing methodologies.

ACKNOWLEDGMENTS
The authors wish to thank Giovanni Vocalelli for useful

discussions and suggestions.

REFERENCES
[1] P. ATZENI, G. AUSIELLO, C. BATINI, M. MOSCARINI: In

clusion and equivalence between relational data
base schemata. Theoretical Computer Science 19,
1982.

[2] P. ATZENI, C. BATINI, M. LENZERINI, F. VILLANELLI:
INCOD-DT: A System for conceptual Design of Data
and Transactions in the Entity - Relationship Model,
Proc. 2nd Int. Conf. on the Entity Relationship
Approach, Washington, 1981.

[3] S. AL-FEDAGHI, P. SCHEUERMANN: Mapping considerations
in the design of schemas for the relational model.
Techn. Rep. N. 79-05 Northwestern University,
Illinois.

[4] P. BERNSTEIN: Synthetizing third normal form relations
from functional dependencies. ACM Trans, on Data
base Systems, vol. 1, N. 4, 1976.

[5] M. BILLER: On the equivalence of Data Base Schemes: a
semantic approach to data translation. Information
Systems, Vol. 4, 1979.

138

30.

[6]

[7]

[8]

[9]

BEERI, P. BERNSTEIN, N. GOODMAN: A Sophisticate's
introduction to database normalization theory.
Proc. Conf. on Very Large Data Bases, 1978.

BATINI, M. LENZERINI: A methodology for data schema
integration in the Entity-Relationship Model.
Technical Report R82.08 Istituto di Automatica,
1 982.

BATINI, M. LENZERINI, M. MOSCARINI: Views Integra
tion, in S. Ceri (ed.): Methodology and tools
for data base design. North-Holland 1983.

5. CHEN: The Entity Relationship Model: Toward a
Unified View of Data. ACM Trans, on Data Base
Systems, Vol. 1, N. 1, 1976.

[10] R. EL MASRI, G. WIEDERHOLD: Data model integration
using the structural model. Proc. ACM Sigmod
Int. Conf. Boston, 1979.

[11] B. KAHN: A Structural Logical Data Base Design Metho
dology PhD Thesis, University of Michigan, 1979.

[12] P. KANZIA, H. KLEIN: On the equivalence of databases
in connection with normalization. Proc. Int.
Workshop on Formal Bases for Data Bases,
Toulouse 1979.

[13] V. LUM et al. 1978: New Orleans Data Base Design Work
shop. Report Proc. 5th Int. Conf. on Very
Large Data Bases, Rio de Janeiro, 1979.

[14] S. NAVATHE et al.: Information Modelling tools for
Data Base Design. Data Base Directions,Fort
Lauderdale, 1980.

139

[15] S. NAVATHE, S. GADGIL: A methodology for view integra-
j_ I-tion in logical data base design. Proc. 8 Int.

Conf. on Very Large Data Bases, Mexico City
1 982.

[16] Proc. New York Symposium on Database Design, New York
1 978.

[17] T. TEOREY, J. FRY: Design of Database Structures,
Prentice Hall 1982.

[18] D. TZICHRITZIS; P. LOCHOVSKY: Data Models. Prentice
Hall 1982.

[19] M. TARDIEU, D. NANCI, D. PASCOT: Conception d'un
Systeme d 'information - construction de la
base de données, Edition d 'organization Paris
1 979.

BING YAO, V. WADDLE, B. HOUSEL: View Modelling and
Integration Using the functional data model.
IEEE Trans, on Software Engineering, Vol. SE8,
N. 6, 1982.

[20] S.

t A

SAS - A SPECIFICATION SUPPORT SYSTEM

Michel LISSANDRE, Pierre LAGIER, Ahmed SKALLI

I G L — Institut de Génié Logiciel — Paris, France

♦♦♦♦♦♦♦

(^ C o p y r ig h t IGL, 1982

ABSTRACT

The software crisis has shown the utmost im portance of building up any system

development on "good" specifications.

SADT*, the w e ll-know n Softech's graphical method has been applied to a

broad spectrum of complex system engineering problems. Perhaps because

of its graphical aspect, the method is not currently fully automated by a tool

which would be at once complete, accessible, portable, and which would

support the varie ty of ways to practice SADT.

SAS, tool currently developed by IGL aims at becoming such a tool. SAS allows

to create and edit diagrams, to build "k its ", sets of diagrams which, by the

bringing of a reader/author cycle procedure into operation, assure quality

to implement this reader/author cyc le , to maintain the project files, to per

form some syn tactic and semantic checks, along with quality and productiv ity

measurements.

The developments of this tool, being of the incremental type, has led to a

first release in February 1983 and will be pursued until 1985.

* SADT is a trademark of Softech, USA & IGL, France.

142

1. BACKGROUND

The cost of software development and m aintenance, the impact of analysis

and design errors, and the shortcomings of traditional analysis and design

approaches have brought about a software crisis.

Until recen tly , software professionals responsible for analysing users' require

ments and designing computer based systems have had to spend a significant

amount of time creating at once the analysis and design approaches to be

used, the environment in which to bring them into operation, as well as sol

ving the technical problems at hand.

Sofware engineering is a disciplined and controlled approach that deals with

many key problems associated w ith software development. The fram e-work

is established by a uniform system life cycle that incorporates the standard

procedures and documentation that are necessary for analysis, design, and

implementation activities. Underlying this standardization is the successful

application of a variety of tools and techniques that take advantage of the

principles of structuring.

During the last decade, research has concentrated on techniques for defining,

analysing, and documenting the requirements for systems. Many of these tech

niques complement other structured techniques in the system development

life cyc le such as structured programming. The objective of structures analysis

is to provide a methodical approach for documenting system requirements

and analysing the integrity of the requirements. The essential pu jose is to

thoroughly evaluate the needs and requirements which the sys em must satisfy,

commonly called problem defin ition, preceding the actual design and implemen

tation phases of the system development life cycle.

Manual structured analysis techniques are very e ffectiv for small problem

definition activities. The magnitude of the creation, m ruitenance, an„; review

of large problem definitions has made it practical to '.evelop computer-aided

support tools.

/

- 143 -
- 3 -

However, the existing tools deserve one or more remarks among the following :

♦ They are dedicated to a particular type of software (process control,

management,...) or to a particular type of specification (performance ana

lysis, simulation, implementation, static description,...).

♦ They are only used by software professionals.

♦ There is only one way to operate them.

♦ The specifications they generate are d ifficu lt to understand and even read,

which makes their control by non-specialists almost impossible.

Of course, these tools may be very useful in their own application domain,

but it is a commonly made mistake to expect them to provide more than what

they can do, or to fulfill a d ifferent purpose than the one they have been de

signed for.

The tool we shall present differs from those mentioned above in the following

points :

♦ It must be easy-to -learn and easy-to -use , thus, non-specialists, and of

course non-software professionals (customers, users, managers,...) will benefit

of its use.

♦ It must cope with various ways of practicing the supported specification

method. Specifying and designing complex systems is a creative process.

Two analysts may then come to similar results by different means, even within

the strict bounds of a rigorous, disciplined method, if the tool does not allow

each analyst to follow his way of th inking, it w ill not be used, or will be misused

by this analyst, with all the negative consequences.

♦ It must support the analysis and specification of all kinds of systems : software

systems, embedded systems, but also systems where computers play only a

marginal role, or even are completely missing : "P3 systems" (Paper, People,

Procedures). It must allow to specify at various abstraction levels and from

various viewpoints.

144

♦ It must — last but not least — provide a solution to the major problem of any

specification : its legibility by people of various skills. It must allow and make

it easier to communicate the specifications between all the partners involved

in any big pro ject. The specifications produced w ith this tool must be found

as clear, readable, understandable, checkable and verifiable by the "upstream "

intervening parties (customers, operators and various users, main contracto r,...)

as by the "downstream " ones (subcontractor, designers, implementers, mainte

nance team s,...).

2. S A D T

Softech has developed a methodology to deal w ith these problems, known

as SADT (Structured Analysis and Design Technique) and, together with a

few European companies (1GL being one of those fo r the French speaking

European and African countries), offers licensing, tra in ing, and consulting

assistance in its use.

SADT supplies its manual user w ith a good answer to the last three points

referred to above.

Today, hundreds of projects and thousands of analysts have used SADT all

over the world. Hence it is very likely that the reader of this paper already

knows SADT. H e/she should then skip this chapter where the major concepts

will be briefly described, highlighting the features which will impose specific

functions to a supporting tool.

Since its development, SADT has been presented in various papers [R O ^S -T ó],

[ROSS-77a], [ROSS-77b], [DICKOVER-77], [CONNOR-80] in which the rea

der can find additional information. This paper only gives a summary, highly

based upon [RO SS-76] and [CONNOR-80].

SADT is a methodology developed by Douglas T. Ross in 1974 that is useful

for system planning, requirements analysis, and system design. It was created

to provide a rigorous, disciplined approach to ach ieve understanding of user’s

145

needs prior to providing a design solution. SADT did not evolve from a design

technique, but rather was developed by examining the problems associated

with defining system requirements. It is generally not used for software module

(program) detailed design because SADT does not contain the constructs neces

sary for program design (sequence, selection, and Iteration).

SADT provides the user, the system analyst, and the system designer with

a diagramming technique to structure tfye products of analysis ana design,*
a set of methods to structure the procedures of performing analysis and

design, and a set of management and human factors to structure the overall

process of analysis and design.

There are seven fundamental concepts underlying SADT :

♦ Complex problems are best a ttacked by building a model which expresses

an in -depth understanding of what the problem is and which is suffic iently

precise to serve as the basis for the problem solution.

♦ Analysis of any problem should be top -dow n , modular, h ierarchic and struc

tured.

♦ The model should be represented by a diagramming technique which shows

component parts, their interfaces, and how they compose a hierarchic structure.

♦ The model-building technique must represent both things (ob jects, documents

or data) and happenings (activities performed by men, machines, computers,

software). The model must show both aspects properly related.

♦ The analyst should differentiate as much as practicable between an initial

functional model of functions to be performed and a subsequent design of

model of how those functions will be performed.

♦ Analysis methods must support disciplined, coordinated team work.

♦ Ali analysis and design decisions and comments thereon must be in written

form and available for open review by all team members.

146
- 6 -

A natural language is not precise enough to express requirements and system

designs and to ensure cost-e ffective system development. Natural languages

tend to be verbose, redundant, and subject to interpretation. Therefore, in

order to take advantage of the principles of structuring, it is imperative that

we should employ a graphic technique that focuses on displaying activities

and data, a llows the gradual introduction of deta il, and is suitable for showing

information in a top-dow n manner.

Using a graphic technique to explain requirements or a system design involves

developing a model. A model is a representation of reality —an "expression

of one thing w e hope to understand in terms of another we th ink we do under

stand" [WEINBERG-75].

A SADT model is an organized sequence of diagrams. A h igh-leve l overview

diagram represents the whole subject. Each low er-leve l diagram shows a limi

ted amount of deta il about a well-constrained top ic . Further, each low er-leve l

diagram connects exactly into the model to represent the whole system, thus

preserving the logical relationship of each component to the tota l system

(See figure 1).

Figure 1 —Hierarchical Structure of SADT Diagrams

147

5ADT analyses two major aspects of each system — its data and its activities.

This is done by aeveloping tw o complementary models, an activ ity decomposi

tion and a data decomposition. The activ ity decomposition details the happenings

as activ ity boxes, while showing the things that interrelate them as data arrows.

The data decomposition details the things of the system as data boxes, with

the happenings that interrelate them shown as a c tiv ity arrows.

Each SADT model consists of diagrams made up of three to six boxes, and

arrows. On an ac tiv ity diagram w ith in an ac tiv ity model, the boxes represent

activ ities, and the arrows represent data. It is just the opposite on data diagrams.

On an activ ity diagram, a box is named with a verb . The le ft-hand side of

the box is used to show input data , labelled with a noun, to be transformed

by the activ ity : the incoming data flow . The righ t-hand side of the box shows

output data, which is data transformed by the a c tiv ity that is to be used else

where, that is, outgoing data flow .

Unlike other diagramming techniques, SADT also describes control and sup

porting mechanisms. The top of the box is used to show control data, which

are data that constrain the operation of an a c tiv ity . This information has two

major purposes. First, the distinction between input and control allows the

system analyst or designer to exp lic itly show data tha t are not transformed

into output, and therefore, are used to modify the behavior of an ac tiv ity .

Second, the introduction of contro l data allows the analyst or designer to

evaluate the cohesiveness and functional representation of all of the boxes

on a diagram. If all relationships were truly in p u t/o u tp u t, procedural coupling

would be the only degree of strength that could be evaluated [M Y E R S -75].

Constraint relationships must be shown in order to distinguish between the

degrees of binding and to allow a Qualitative evaluation of the decomposition

to be performed.

On an activ ity diagram, the bottom of the box is used to show a supporting

mechanism of the activ ity . That is, if the analyst or system designer wishes

to describe organizations that perform a given a c tiv ity , the mechanism arrow

is used to identify the departm ent, section, or even the individual that is res

ponsible for the activ ity . Another extremely important use of the mechanism

side of the box is for cross-re ferencing models.

148

An example of a SADT diagram is shown in Figure 2.

U S E D a : C A T £ • V O •? K ? ; G D A T E C O N T E X TP R C . E C T R E V Ü P A F T t
• R g r O M M E N O E t ’h--------N O T E S 1 2 3 4 5 6 7 8 3 1 0 !C \ T :0 N

NOOE irTTC Í: ' " IS Ü M äT«
A0 RUN F A R '.!

Figure 2 — SADT A ctiv ity Diagram

The final step in the modeling process is to tie together the activ ity and the

data portion. Each decomposition is checked to make sure that its use of dual

elements is coherent. This process reduces errors and oversights and assures

consistency in further work.

No one person can completely understand every aspect of a complex system

within the time limits usually imposed. Even if this were possible, it would place

an undesirable demand upon one person. Analysis requires disciplined, coordi

nated teamwork. Consequently the insights and views of project personnel

must be communicated effectively at every step and level of analysis to insure

that the SADT models reflect the best thinking of the team. Adequacy and

149
i
i-

quality must be assured by regular, critical review , so that changes and correc

tions can he made on an incremental evolutionary basis.

Because SADT starts with single black box and proceeds to increasingly de

tailed diagrams of elements of the problem, documentation becomes available

on a continuous basis. At each step decisions can be seen In context and

challenged while a lternative approaches are available. The documentation

provides the basis for decisions and vastly improves the visibility of the pro

ject to the team and to management.

Cooperative teamwork demands a clear definition of the types or interactions

which should occur between the staff involved. SADT anticipates this need

by establishing titles and functions of appropriate roles.

Throughout a project the draft versions of the diagrams produced are distri

buted to other project members for review and comment. SADT requires that

each person making comments about a diagram will make them in writing

and submit them to the author of the diagram. Such an approval cycle con

tinues upward in the organizational structure until the diagrams and eventually

the entire model are officially accepted.

A SADT librarian provides filing, distribution, record-keep ing support, and pre

cise control over the status of the evolving model. Since everything is on re

cord, future enhancement and system maintenance can refer to previously-

taken decisions.

3. S A S (from the French " Systeme d'A ide ä la Specification")

SAS takes advantage of the solutions brought up by SADT to the problem

mentioned in chapter 1, mainly the communication problem, but provides its

user with a set of additional facilities :

- training aids ;

— computer assisted drawing ;

150

— automatic controls and verifica tion of :

. conformance to 5ADT basic rules,

. coherence of boxes, arrows and labels within a diagram,

. coherence of diagrams w ith in a model,

. coherence of models within a project ;

— program design aids ;

— complexity measurements ;

— productivity measurements ;

SADT, as supported by SAS is the standard SADT as developed by Softech,

and as used since. Its wide usage makes it now possible to consider SADT

as a "standard". Because of this w ide usage, SAS has been designed to be

highly portable so that organizations using equipments ranging from top scale

micros (on local networks or not) to big main frames, may benefit from its

use.

The functions SAS performs are — charity begins at home —expressed by

the SADT diagrams shown in Figure 3 to 7.

However, SAS' major points are being discussed in the following paragraphs.

This section deals w ith the functions represented by the following boxes of

the model :

— Create kits (Diagram AO, box 2)

- Criticize kits (diagram AO, box 2)

— Handle models (Diagram AO, box 4)

(more specifically : Supply users with documents (Diagram A4, box 3)

3.1. Creating and editing diagrams

(more specifically :

. Create a new diagram

. Obtain inputs from external authors

. Update diagrams

(Diagram A l, box 2)

(Diagram A l, box 3)

(Diagram A l, box 4))

1 MTEr?V 1 EW NOTES_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

TECHN ICO- COMMERCIAL DOCUMENTS_ _ _ _ _ _ _

EXTERNAL PIAC-■r3HM£NTS.REACTIONS

MANAGERS A TECHNICAL COMM. DIRECTIVES

n- TEAM OBJECTIVES

ASSIST
S.A.D.T,
USERS

DIAGRAMS.COMMENTS.REACT IONS

PROJECT DOCUMENTATION

MEASUREMENTS A CHECKS

WOEUD > SAS/A-0 r im « ASSIST S « A , P • T . USERS NUMERO <

151

15
2

CljVTF.AI GÜ-'F'TtVFS

«OU'D . S A S / A 0 T1TRE * ASSIST S.A.D.T USERS NUMERO i

»aeuD > S A S / A 1 IHRE . CREATE KITS numero *

153

15
4

SAS/A4 IURE i HANDLE MODELS NUMERO

#

woEUD ’ S A S / A 5 IHRE * MESURE AND VERIFY NUMERO >

155

156

The legibility criterion

SADT syntax rules are precise but not very numerous. Therefore the SADT

author has some freedom of action when drawing diagrams. V\ithin the bounds

set by the rules, he has to strain a fter the highest readability. To this end,

he may set out boxes, arrows and labels "a t best". The method gives guide

lines for this drawing process, but the author’ s perception —conscious or

unconscious — of the clarity of his diagram and of the understandability of

his message also plays a large part.

SAS does not hinder the author from creating clear diagrams. To a certain

extent, SAS enhances even diagram c la rity , from the first step, when the

first draft emerges from the previous sketches, to the last ones, when the

draft evolves with the various comments and revisions. SAS has been de

signed to meet that purpose, whatever inpu t/oupu t device and operating

mode is choses. This had led to establishing a trade -o ff between the num

ber of data to input to SAS and the complexity of the algorithms providing

automated drawing.

In fact, this trade -o ff point moves, while creating a diagram, fro a higher

degree of autom ation, at the beginning to a lower one later, when re author

tries to enhance the legibility, once the correctness and the completude have

been checked. This move is of course lim ited in batch input mode, but can

be done ite ra tive ly , according to the author's "sty le" when creating a dia

gram element after element.

However th is feature will depend upon the characteristics of the input/ou tput

devices w h ich will be used with SAS.

These devices may have various graphic resolutions and various interaction

capabilities. They may be choses among the following :

♦ Input devices :

— graphic screen (700 K pixels minimum, with any pointing device :

light pen, "m ouse", cross-hair...)

— digitalizer

— semi-graphic screen

— alphanumeric screen

157

♦ Output devices

— graphic screen

— plotter

— sem i-graphic screen

— semi-graphic printer

SAS does not allow the output of diagrams on alphanumeric screens or printers,

as the quality of such diagrams would be so poor that the advantages of SADT

would be lost, for the most part.

Operation modes

As mentioned above, SAS can be used in a varie ty of ways.

♦ Interactive input : will be used in two major circumstances :

— Complete creation or modification of a diagram on a graphic w ork

station.

This creation will be done in any order, according to the actual sequence

of thought of the author.

Any logical component of a diagram can be added, modified or suppressed

to the being built diagram by performing the adequate sequence of steps

among the following :

step a : selection of a basic component type (box, arrow, label, ICOM

code).

step b : constitution of a complex com ponent (e.g. : labelled box, arrow

network, ...).

step c : selection of a component (basic or complex), alrea 1y existing

in a diagram.

step d : allocation of position parameters to a component (or modifica

tion of previously allocated ones).

step e : declustering of a complex com ponent into its basic constituants.

158

Ali possible combinations of these steps are allowed : if step c may be

sufficient to delete an item, one may need successively c, a, b, d to

modify an existing component (while increasing its complexity).

As discussed below, step d is not mandatory : when enough information

is provided to SAS, an automatic drawing is displayed. The author has

then the possibility to modify e.g. the geometry of an arrow or the posi

tion of a label in order to increase the dia gram’s legibility.

— Transfer of a sketch (previously done with paper and pencil) Into

a clear diagram.

In this case, the author knows, from the very start of h is/her work session,

all the diagram's components and their relationships.

Consequently, the input of these components will me done by answering

system's prompts Q n batch input mode (see below).

When the whole diagram is entered (and autom atically draw), the author

may, as he would have Gone in the previous case, modify the position

parameters of the diagram's components.

This operation mode is preferably used on a graphic workstation, but

remains possible w ith only an alphanumeric keyboard. However, in the

latter case, the interaction is somewhat limited as the author will have

to consider the p lo tter output to determine where space is available

to modify the diagram accordingly.

Modifications of the contents of diagrams entered in the abo e mode

are done as in the first case, by updating their elements, bas i. or com

plex.

♦ Batch input

In this mode, diagrams are previously drawn manually by a SAD author, then

entered by an operator who will merely describe the existing diagram without

try ing to modify its layout.

159
- 19 -

The system will issue a set of prompts, designed such as to minimize both

the risk of omissions and the numbers of keys to press. The dialog uses the

SADT reference language (such as 1C2 meaning "second control of box 2)

and follows the sequence below :

— number of boxes

— position (coarsely defined) of the boxes

— for each box :

- label of the box

- for each output arrow :

.. label and attributes (tw o -w ays ? tunneled ?) at origin

.. for each destination :
. label, attributes and destination identity

— for each external input or control arrow :

- label, attributes and origin identity at origin

- for each destination :

.. label, attributes and destination identity

Answers and prompts will be displayed in tabular form : e.g. all data regarding

a given arrow are displayed in the same screen.

Modifications of a diagram entered in batch mode can be made by consulting

and updating the tables filled in while entering the diagram, or as if it had

been entered in interactive mode.

♦ S y n tact i cal _ch e c k s

The SADT syntax is checked by SAS : first, while entering a diagram, to deter

mine whether an element or an answer to a prompt is illegal (e.g. one cannot

specify an arrow joining the input side of a box to the control side of another),

second, when the diagram is declared as complete by its author or the operator,

to determine whether the combination of elements is illegal (e.g. one cannot

specify two arrows with the same label).

160
- 20 -

♦ Use & JDutput

Diagrams entered by one of the above means may then be :

— displayed on a graphic or sem i-graphic screen ;

— hard-cop ied (plotter, screen printer, graphic printer) ;

— transferred between nodes of a local network if the input/ou tput

devices are not the same a t each node ;

— syntactica lly checked within a model in order to verify that the paren t-

children relationship is correct (e.g. correctness of the ICOM codes) ;

— co llected into a kit for further reading (this involves an update of the

current model) ;

— enriched with comments (from readers) or with reactions (from authors).

Internal form

At this point of the discussion, it is worth noting the following : the diagrams

presented in figures 3 to 7 are functional a c tiv ity diagrams. They represent

what functions SAS has to perform , not how SAS performs them. Consequently,

the same word "diagram" (and "k it" or "m odel" which are made up by diagram

assemblies) may represent a diagram (or a sketch of a diagram) on paper,

a diagram as internally handled by SAS or the output, printed or displayed.

The internal form in which diagrams are manipulated by SAS is of primary im

portance : it is this form which will contain all data necessary to redraw a

diagram, w hatever the output device selected, but also to check its syntax,

establish various cross-references (e.g. : list all activities contro i'ac by a

specific data , list ail diagrams linked together by the "USED AT" fields,...)

and perform some measurements.

161 - 21 -

3.2. Quality assurance functions

This aspect could well be the purpose of another model of SAS, but build w ith

a different viewpoint. In the model shown, the quality assurance is shared

out among box la n d box 5of the AO diagram.

Reader-Author cycle

SAS entirely supports the reader-author cyc le , main means to ensure quality

when using SADT. This procedure is summarized in Figure 8.

Autho r L ib ra r ia n Commente r(s)

comments
on k i t

rev iew *
react ions

ta lks (i f
neces ary),

f’e ■» '■'t

Figure 3 — The SADT Reader/Author Cycle

SAS ensures the team coordination by means of a mailbox which implements

the communication and records the various activ ities performed. As an exam ple,

for every k it, SAS will record the kit number, the readers' list, the urgency

level, the times at which each reader (or the author) has to comment upon

the kit (or to react to the comments), and the actual times at which it nas

been done.

162
- 22 -

On SAS configurations allowing authors and readers to directly create, modify,

comment and react at their w orkstations, all the librarian's functions will be

performed by SAS. On limited configurations, or for users not willing to use

a workstation, an operator will perform the librarian's copying and distributing

jobs.

Measurements

As SAS handles diagrams in an in terna l form suites to algorithmic treatments,

it becomes easy to obtain quality measurements. Struct iral complexity metrics

allow SAS to rank any diagram from "Too simple" to "Too c amplex", thus per

mitting the p ro ject leader to tune the verification e ffo rt needec ' v the various

portions of the mode! and possibly the development and quality a' _ irance

resources needed for the later phases of the pro ject.

Productivity measurements are d irectly obtained from the records gathered

at the mail box level and ind irectly , from each author's workspace.

k. SAS STATUS

The development of SAS, which started two years ago is of the incremental

type. That is, a nucleus has been first realized. This nucleus, called release 1,

is a must for any environment or configuration. In addition to this nucleus,

additional releases are being, or w ill be developed. In theory, as 3.V‘ confi

guration can be made up by adding any number of releasee to relec'--' 1, but

In fact, it is ve ry likely that release 1, 2, 3 and may be r* will be re. .ested

by most users in large companies, whereas small organizations may still benefit

of a cheaper and simpler tool, made up by releases 1, 2 and 6.

Release 1

Uses currently a minimal configuration made up by a CALCOMP plotter and

a VT 100 input device, running under VMS on a VAX 11/780. It performs the

funtions represented by boxes 3 and 4 in diagram A2. It allows entering dia

grams (only in batch input mode), storing them, and editing them, as long

as the edition does not modify the number of the boxes. Syntactic controls

are made at the level of the diagram only. The p lotter performs the output.

163

Release 2 (Summer 1983)

Will use the same hardware configuration as release 1, but under UNIX *

[UNIX-78] . It will perform the functions represented by boxes 2 and 3 in

diagram AO. It will allow a hierarchical storage of all diagrams belonging to

a model, coherence checks between diagrams, and will perform the basic

duties of the librarian : handling diagrams, kits, models, and controlling the

reader-author cycle .

Release 3 (Winter 1983)

Will use a hardware configuration using the VS100 graphic device. It will per

form the functions represented by boxes 1 & 2 in diagram A l, allowing in terac

tive creation (and modification) of diagrams, w hatever the sequence in which

the various diagram elements are given to the system by its user.

Release 4 (Spring 198*0

Will use a configuration where VTIOO's and VSlOO's are mixed. Instead of

letting each user organize through UNIX the access to tvs files, it will manage

all projects and author's files. It will completely perform the funci ins repre

sented by boxes 2 & 3 in diagram AO.

Release 5 (Summer 1985)

Will use a database which will allow to perform the functions represented by

the six boxes in diagram A 5 and by box 1 in diagram AO. In addition, the func

tions represented by diagram, A 4 will be implemented d ifferently, allowing to

establish links with the activities performed later in the software life cycle .

Release 6 (Spring 1985)

Will allow the use of a semi-graphic prin ter as output device.

Note : Other tools providing extensions to the SADT method are also being
investigated. We hope current research in this area will extend SAS
to include such things as functiona l simulation, test generc on, sequen
cing, etc.

164

5. CONCLUSION

SAS is a support tool w h ich , if compared with other tools ([SARINA-79J ,

[SMITH-81]), which also support SADT, has a set of characteristics making

it particularly useful. Figure 9 summarizes these characteristics.

T oo l SAS

------------------------------ — |

IM P
r

AUTO IDEF-O

----------- ' 1

CATHERINE PASILA

B u ild e r IGL G rum m an S o fte c h L a t. N o k ia , S o fte c h T r iu m p h -A d le r

H a rd w a re independent In d ep e n d e n t CYBER PDP 11 T A

O.S. UNIX 9 CYBERNET NOS UNIX 9

In p u t de v ice s VT100 £i VS100 T e k tro n ixA01<./1015 T e k tro n ix
i»01 <í/A015 A lp h a n u m e ricVDU A lp h a n u m e ricVDU

O u tp u t d e v ice s
P lo t te r C A LC O M P ,

Hard Copy
P lo t te r C A LC O M P ,

H ard C o p y
P lo t te r C A LC O M P ,

Hard C opy
G rap h ic p r in te r

(DEC)
G raph ic p r in te r

P lo t te r

In te ra c t iv e c re a t io n
& e d it io n

Yes Yes Yes Yes Yes

B a tc h in p u t Yes No No No Yes

C o h e re n ce ch e cks Yes Yes Yes No Yes

L ib ra r ia n fu n c t io n s Yes No Yes No No

Q u a lity
M easu rem en ts

Yes No No No No

-

Figure 9 — Characteristics Summary

165

REFERENCES

B ARINA-79 Howard EARINA, W. COBEY, J. ROSENBAUM, Stephanie WHITE
"Automated Software Design"
Proceedings of IEEE'S third COMPSAC, November 6 -8 , 1979.

CONNOR-80 Michael F. CONNOR
"Structured Analysis and Design Technique — SADT"
Portfolio 32.0i».C2 —System Development Management
Pennsauken NJ : Auerbach Publishers, 1980.

DICKOVER-77 Melvin E. DICKOVER, Clement L. Me GOWAN, Douglas T. ROSS
"Software Design Using SADT"
Proceedings of the 1977 Annual Conference of the ACM,
Seattle, Washington, October 16-19, 1977, pp. 125-133.

MYERS-75 Gienford J. MYERS
"Related Software through Composite Design"
New York, NY : Van Nostrand Reinhold Co, 1975, p. 30.

ROSS-76
•

Douglas T. ROSS, John W. BRACKETT
"An Approach to Structured Analysis"
Computer Decisions (9), Sept. 1976, pp. 40-44.

ROSS-77a Douglas T. ROSS, Kenneth E. SCHOMAN Jr
"Structured Analysis for Requirements Definition"
IEEE Transactions on Sofware Engineering 3(1), Jan. 1977, pp. 6 -15 .

ROSS-77b Douglas T. ROSS
"Structured Analysis (SA) : A Language for Communicating Ideas"
IEEE Transactions on Software Engineering 3(1), Jan. 1977, pp. 16-34.

SMITH-81 Daniel G. SMITH
"AUTOIDEF-O : A New Tool for Function Modeling"
Softech Document Number TP 125 - Sept, 1981.

UNIX-78 (Several authors)
Special Issue on UNIX Time-Sharing System
BELL System Technical Journal 57(6), Ju ly -A ug . 1978, pp. 1897-2313.

WEINBERG-75 Gerald M. WEINBERG
"An Introduction to General Systems Thinking"
New York, NY : John Wiley & Sons, 1975, p. 28.

THE USE OF PETRI NETS IN REQUIREMENTS
AND FUNCTIONAL SPECIFICATION

M. Maiocchi - Isticuto di Cibernetica di Milano
Etnoteam S.p.A. - Milano

1. Introduction
In the recent years different approaches have been carried on
with the purpose of reducing the cost and increasing the qua
lity of the software products; these methods are generally re
lated to operating rules which guide the programmers in obtai
ning standard programs; often automatic tools are provided,
both for cost reduction purposes and as a constraint in avoi
ding deviations from the rules. While a certain number of pro
gramming methodologies has been set up, which are currently
widely used, the number of analysis methodologies is not so
high, and more and more for requirements definition methods.
In particular, we can see an increasing gap between the system
programmer and the applicative programmer know how, in particu
lar for business oriented programs: this fact is probably due
to the different production environment of the two kinds of
people, the former being close to software engineers, the lat
ter to customers which are not skilled in computers. More, whil*
the system programmers are surrounded by an organizational frame
due to the tradition of this kind of development, the business
oriented programmers have to deal with fast work group set up,
no tradition, no pre-existent development organization.
The paper will present a method based on the use of the Petri
Netsfor driving the requirements and functional specification,
and for allowing a reliable communication with the customer in
order to avoid ambiguities on the purposes and on the functions
of the system to be developed.
The method has been largely experienced: since 1977 more than
ten projects have been successfully carried out (for which is
known by the author: eight of them have been reviewed directly
by the author), sizing about 3-7 man years each.

168

The method is located in a software production cycle which
is shown in fig. 1:

Fig. 4
. starting from a document containing the Committer Needs, a
phase of Requirements Definition produces a document of Re
quirements Specification, which is input to the

. phase of Functions Definition, which produces a document of
Functional Specification containing also a high level descri
ption of the architecture of the product;

. following the FS document, it is possible to perform the De
sign phase, which provides the detailed Design Specification,
followed by

. the Implementation, which provides the sw product andthe do
cument Product Description, which is a refinement and comple
tion of the DS, which takes into account the implementation
details;

. concurrently with the Design and the Implementation phases,
the Test Planning and Preparation is performed, which produ
ces, starting from the FS, the Checklists (list of the items
to be controlled), the Tests Specification (which can be con
sidered as the FS for the tests) and the Tests Library (that
is the programs and the data to be used for controlling the
product) ;

. after the completion of the tests and of the product, the Qua
lity Control phase produces a Quality Control Report, through
a controlled tests execution, referring about the quantity of
the testing performed and about the resulting measured quality
of the product.

169

After the release of the first version of the product, each
of its parts (code, source, documents, etc.) is "frozen" and
the maintenance or the continuation follows repeating the
above phases on physically different pieces: a specific main
tenance phase is not recognized.
Documentation, Planning and Review are other activities always
present during each phase, but which cannot be assumed as spe
cific phases.
In the following paragraphs we will present and discuss the
various methods set up, integrated and experienced in each acti
vity.

2. PURPOSES OF THE METHOD
2.1 Requirements definition
We consider "requirements" of a software system the desired
behavior of the complete human and machine environment
in which the product will run.
For this reason, we need the capability of describing in a
simple, unambiguous way all the human and automatic proce
dures we want in a specific environment.
Such procedures can be characterized by:
. sequentiality or concurrency in the time;
. causal dependency or independency;
. starting of activities connected to the presence of condj.
tion status, resources;

. production, occupation, consumption of resources;

. production of conditions, status.
2.2 Functions definition
The activity of functions definition has the purpose of pro
viding a complete indication of the functions supported by
the product, and of the ’languages" for communicating with it:
. launch procedures
. commands
. input data and relative syntax
. ouput results and relative syntax
. error messages
. video masks
. etc.
Furthermore, the high level architecture of the product must
be defined, in order to provide any information suitable for
constructing development plans, and for evaluating the cost
for the implementation. By 'high level architecture' we mean
the specification of the main building modules of the product,
of their functional roles within the product, and a complete specification of the interfaces between the modules themselves
and with the host system.

170

No details are given on the internal subcomponents: these
details are given in the Design Specification.
2.3 Customer/supplier Communication
One of the main problems in the definition of business
oriented systems arises from the ambiguity in the communi
cation betwen the customer requiring the system and the
supplier which must build up it; the committer is general
ly unskilled in computers, does'nt know exactly what he want,
is not conscious of the problems (and the cost) due to changes
in specifications during the development, under-evaluates the
organizational role of a computer and the difficulties in
changing his own organization; the committee is never share
that the system described in the proposed documents has been
deeply and correctly examined and understood.
The resulting development activity suffers of changes in the
specifications, of discoveries of new items to be examined,
of unsactisfaction in performances and in the ease of use of
the final product: that is high costs and low quality.
The method based on the Petri nets addresses to "sharpen" the
communication between committer and committee, making it re
liable, unambiguous and allowing early reviews.
2.4 The development groups
For historical reason, the programmers devoted to business
application use mainly the programming Language COBOL, and
are educated through professional courses, avoiding accura
tely all the basic knowledges of the computer science (they
don't know at all terms as "predicates calculus", "recursion"
"concurrency" and so on) ; this fact can produce rejection of
new methods which could appear as too formal, too abstract,
too impositive; the change of this condition cannot be pro
vided within a project or with some kind of training: it is
required a cultural growth which imposes long periods; the
method based on the Petri nets is particularly suitable for
the environment depicted above, because:
. it has a "gentle face", which describes the object the pro
grammer deal to, in terms of the real objects, but allow
slippering toward abstraction;

. it can be used partially, obtaining advantages proportioned
to the partial use (the completely formal methods requires
the complete carrying out of the method for obtaing the re
suit: a partial application gives generally no results at
all) .

171

3. THE METHOD
3.1 Petri Nets
A Petri net is a "bipartite" graph in which two kinds of
nodes are recognizable: places and transitions. Oriented
arcs connect the two kinds of nodes, so that no two places
are connected together and no two transitions are connec
ted together. Fig. 2 represents a Petri net in which two
transitions occur, on with two places in input and with
one place in output, one with
one place in input (shared with
the previous transition) and
with two places in output.
The Petri nets can be interpre
ted as the description of a pro
cess in which events can occur
depending on a set of conditions,
determining other conditions: in
particular, each place can be in
terpreted as a resource and each
transition can be interpreted as
an activity: each activity can
take place only when their irput
resources are present, and its
happening produces the output re
sorces, consuming the input ones
(Fig. 3) .
By the way, the Petri nets can be
used in representing production
processes, and in particular, pro
grams connected together in a pro
cedure.
The presence of a resource in a
net is represented through a mark
in a place (indicated with a dot)
(Fig. 4) and the temporal evolu
tion of a net can be represented
through the flowing of the dots
through the net itself: when an
activity "fires" the marks are
drawn from the input and a mark
is put on each output place. For
example, the net of Fig. 4 repre
sent a process in a medical ana
lysis laboratory: when the rece
ptions desk is free and an appli
cant is present, the acceptance

F ig -

F ig . ^

172

operation can take place, produ
cing a test request form which,
together with the presence of a
doctor and of the patient, can
fire the drawing, producing a
sample and an updating of the
test request form; the reporting
activity must wait for the pro
duction of the result through
the analysis activity, producing
then the final report.
3.2 Petri Nets Graphical Modification
In order to make more apt the Petri
nets to our purposes, two kinds
of graphical changes have been
introduced: the former, an highly
evocative representation; the lat
ter, a set of summarizing forms
for common situations.
In Fig. 5 is represented an evoca
tive net,in which, each resource
has been replaced with a graphical

symbol representing
the problem entity in
a mnemonic form, and
each transition has
been represented as a
box containing the de
scription of the per
formed transformation:
the net represents more
concisely the work of
the previous medical
analysis laboratory, in
wich acceptance and dra
wing phases have been
put together.
The second kind of modi
fication refers to the
capability of represen
ting parallel or alter
nate feeding of the
transitions or genera
tion of the resources: for example,

Fi tr. 5

173 -

the first form of Fig. 6
is useful for representing
the operations on a file A
which can alternatively
produce a file B or an er
ror message C: the second
form can represent two pro
grams x and y accessing si
multaneously a file A; and
so on.
The illustrated extensions
of the graphical form are
not extensions of the Petri
nets capabilities: in fact
each new form can be explo
ded into traditional Petri
nets, in which,nevertheless,
it is difficult to attach a
meaning in term of problem
entities to each net element;
for instance, Fig. 7

F ig . <£>

shows the constructions of the
first form of Fig. 6 through
traditional Petri nets: no mea
ning can be connected to the
resource and to the transitions
X and ^ .
The Fig. 8 shows another exten

sion, in which it
is possible intui
vely to recognize
that the resorces,
through the transi
tion x, one of the
two resources D or
the couple B and C.

F ig . 6

174

3.3 The method
The method is summarized in Fig. 9, through a Petri net:
0. a first step defines the complete user environment in

which the product must be inserted as a single Petri
net, constituted by a single transition, with
evidence to the resources or to the conditions signi
ficant as input and output of the whole activity;

2. the net is then analized following a table called of
"local checks" (see later), which sets questions to the
analyst about the kinds of connections between the tran
sition and the resources, in order to verify the adequacy
of the net to the intentions of the analyst itself;

3. then the net is joined to a verbal description, in which
the significant attributes of the resources are described
(e.g., in a driven way, the accesses to the files, the
form of the commands, the kind and the number of some
sheets, the skill of the involved people, etc.), and the
performed activity is defined (what is performed, not how);

4. in the following step, a linguistic check is carried on,
in which all the parts of the language are examined in or
der to avoid ambiguities (unnecessary attributes, impreci
se articles, undefined numbers, impersonal forms, etc.);

5. then the net is exploded in another one, in which more
than a transition is defined (generally up to 6 - 7);

6. the exploded net is controlled through the so called "con
textual checks" table (see later), which sets questions
about the possible ways in which activities can occur (con
currently, interleaved, sequential, mutually exclusive,
etc.);

7. after the check, the net is anew verbally described, refer
ring to its dynamical behavior, whithout regard on the re
source or the activities;

8. the verbal description is then checked;
1. then each transition is insulated from the context, and

the process is iterated until the transitions can be consi
dered elementary , from the point of view of the executor
(that is, when a transition is operated by the some human
or automatic interpreter, or by a complex not involved in
the area to be changed by the product).

Let we see the complete cycle on a small example (taken from
a real product and extremely simplified for example purposes)
for the functional specification of a "cash and carry system

1/7 5 -

>̂9* 5
3.4 An example

3.4.0 Top level procedure description.
In this step the complete procedure is represented as
a unique transition, and the resources involved are
indicated in a concise way, collecting together the re
sources with some similarity of use or of nature (for
instance, all the disk files are indicated as an unique
resource). Fig. 10 shows an example of a system of ter
minals cash and carry which can operate concurrently
performing invoicing operations: the complete procedure
is seen as a unique transition, which has as input resou
rces:
. the unactive system, which will be activated through
. initialization commands;
. execution commands, which allow the invoicing opera
tions from the single different terminals, accessing
a set of

. files, containing informations on the customers, on
the products, etc.

176

The output resources are:
. the printed invoices;
. the terminal system,
which will be returned
in a unactive state;

. the files, which will
be released after the
operations, in an up
date condition (the
symbol '+' associated
to the arc indicates
an updating operation).

PROCEDURE TOP LEVEL

3.4.2 Local check
Fig. 40

The table shown in Fig. 11
in respect of a single
transition and the re
lative input or output
resources; by this ta
ble we can examine the
correctness of the net
of Fig. 10:
The invoicing system
(seen as a big black
box) requires joined
feeding of the unacti
ve system, of initia
lization commands,
of execution commands
and of the proper fi
les (until now not
yet completely spéci,
fied) and produces pa
rallely the possibly
up dated files, the
invoices and the una
ctive system (after
the daily operation
completion).
It seems to be correct,
so that we can carry
on the activity.

collects each possible situation

F ig . 41

177

3.4.3 Verbal description
The step requires the construction of a descriptive page
for the completion of a PSPN module (“) , in which:
. each resource is described in terms of its components
and of their meaning in terms of problem entities;

. the transformation of the transition is specified in a
summarized fopm.

So, we will define here the characteristics of the system,
of the file (at this point, a rough classification will be
adeguate), of the generic purposes of the commands, and so
on, and the functions to be performed.
The main purposé of the description is to define concisely
but in a not ambiguous way both the resources and the tran
sformations of the net; therefore, we require that each re
source is described in respect of:
. the kind of the physical support involved (disk, tape,
keyboard, etc.);

. the physical characteristics of the resource (when disk:
indexed, sequential, key format, size, ect.);

. the syntactical form (allowed characters and information
sequences, when from keyboard; record layout when on disk,
etc.);

. the synchronization needs (generally on disk resources)
and the relative locking level (volume, physical record,
or intermediate logical levels);

. the characteristics of the plural names, that is elements
number (defined or undefined, and, if defined, maximum and
minimum) and the predicate which define the set to which
the elements belong.

The description of the transformation can be performed (when
the cultural environment allows it)by means of a language

f

1

(°) The PSPN documentation technique requires the construe
tion of the documents as a set of PSPN modules, each
of them constituted by a couple of pages, in which the
left one contains highly summarizing schemata, drawings
or slogans, and the right one contains an indented
verbal detailed explanation.

\

178

which mixes natural language
to the construct shown in
Fig. 12, in a fashion, as
possible non-procedural: the
constructs refer to:
. a set of operations to be
performed, whithout spéci,
fying their sequéntiation;

. sequences of operations
(sometimes it is the best
way to specify transforma
tions);

. conditional operations
(when connected with the
first construct they are
quite similar to the "guar
ded commands" of Dijkstra);

. operations on "plurals".

N ON-PRoccoynAL specs
Á. NOM-SEG)uemcE

ira.vis .̂
jravis.

■ f . y-

1. SEäufcocE

Wnsf. y

1. C OUfclTt OHAL
if Ccv>A -WlC-l*

4Va.* ot
txuiif

4- MAN Y PO LD WfTSS
V X. J E (% j do

'tl'o.nsf. o(

F ig . 12.

3.4.4 Linguistic checks
The right part of a PSPN module, that is the linguistic
description of the net, must be controlled too: the con
trols can be considered as very tedious, but they reveal
very useful in avoiding the specifications ambiguity; they
are referred to the different parts of the speech:
. article: we must verify and must be able to state the
reason for their absence, definiteness or indefiniteness

. noun: each plural or collective must be specified by a
set of attributes for the individuation of the set to
which the intended elements belong;

. adjective/adverb: they must be unavoidable;
• vetb: subject and (for transitive verbs) object must be

always expressed or in any case not ambiguous;

179

. pronoun: their reference must be clear;

. conjunction: they must be properly used; in particular,
the or conjunction must be specified for representing
an "aut" or a "vel" conjunction.

3.4.5 Petri net refinement
The next step consist of the refinement of the previous
net, exploding the initial unique transition into a net in
which more transitions appear, corresponding to different
activity phases: the
example of Fig. 10 will
be developed as shown in
Fig. 13, in which three
different activities are
individuated:
. the first one is the
initialization of the
system, which allows
to obtain active ter
minals, able to accept
commands;

. the second one is the
reconfiguration of the
system, allowing the
activation of new ter
minals, or the deacti
vation of active termi
nals;

. the third one is the
operation with the ac
tive terminals, for the
invoicing purposes.

Fig. 13
3.4.6 Verification of the correctness of the net
The net describes completely the synchronization among the
various activities of the procedure and we are then able to
check the correctness of the description in respect of the
problem requirements. In particular, the net imposes a pre
cise description of the above synchronization aspects, so
that possible lacks in the requirements will be recognized
in the net as behaviour choices which must be analyzed for
approvation.
The control activity is carried on through both the check
table n.1 and the table of Fig. 14, in which more complete
topological situations are catalogued.

3.8 0

For the local checks:
. the initialization
requires the system
unactive and some i.
nitialization com
mand (correct), and
generates the active
system (correct);

. the reconfiguration
requires the active
system and some re
configuration com
mand provided through
terminal (correct),
but cannot produce
simoultaneously the
active and the unac
tive system as de
scribed: the net
must be changed by
introducing an al
ternative generation;
the encountered er
ror is evidently due
to a mistake done by
the designer, and no
lacks in requirements
can be observed at
this point;

. the operations requi.
re the active system
and the files and so
me operation command
provided through the
terminals for obtai
ning the correct in
voices (correct), and
generate the results
(the printed invoices)
updating the files and
releasing the active
system (correct);

L

CHECKS TAE>L6 u. 2.

A & C P E
u , vy
/íT Í vn
p C, H I 3 K

A
6. / _ i

/ 1
u

7 \ c
V 1

Fig. A4

So rue cktcx.
IHViliit" "die. Oftculiov-I
of y lefo«-«. x ?

How wani| cijttcs
<ae. allowed ?

of

Co m . f t infer-

x an A Camm o

fun COHCU»-r«.Hl

X OmH C<\n rnr\
COViCwKrt lij ?
5 4 H cYi r o n i z £tf> o n
is H ttd e d ?

A a I4ft rc soi>r
ccs mawei d \ o r u ?

H*st a. s*v<.
fie C
htvoHi«»is toward r?

the active system can feed alternatively the reconfigura
tion activity or the operations activity’, as shown in the
net ; we cannot decide when the description is or not cor
rect about this point, but a choice has been taken in the
net drawing: a lack in the requirements made it possible;
in fact , it is not acceptable that the activation of a
new terminal requires the stop of the operation on other
terminals: the net must be changed with a parallel feeding
situation.

For the contextual checks:
referring to the pre
vious example, as up
dated in Fig. 15 fol
lowing the indications
of the performed con
trols, we must verify
and declare: <
. limits in iterating
the operations acti_
vity (in the case,
none);

. limits in iterating
the reconfiguration
activity (in the ca
se, none);

. capability of acces
sing concurrently the
active system (in
this case, the capa
bility of turning off
a terminal currently
used, and some conse
guent protection about
it) ;

. optionality of the
resources: all are man
datory.

E X A M P L E : C O ÍR .E C T > o *J

ÍVJL

Fig. 45

Another not yet described check to be performed refers to
the net complexity:
it is very hard to keep under control a net in which many
resources and transitions appear, so that it is very impor
tant that the net explosion gives a small net at each step;
this can be generally obtained through a reduced explosion
of the resources (in the example, the unique splitted resour
ce is the system, as "active" or "unactive"): for example,
in the further developments, it will be necessary to distin
guish the various involved files; probably, it will be use
ful to divide them first as anagraphic-read-only files and
updated-work-files, and then, after other refinements, to
individuate the specific resources such as the anagraphic-
customer-file, the invoices-work-file, etc.
3.4.7 Net description
The net is described in the PSPN form, as performed in the
step 3, showing the dynamic behavior, without defining the
details on the resources or on the single transitions, which
will be treated later.

_ 182

3.4.8 Linguistic check
The activity is carried on as in the step 4.
3.4.1 Insulation
The specification of the procedure continues insulating
each transition of the previous refinement together with
the needed resources, cutting any not necessary arc. For
example, the transition
operations of Fig. 15
can be insulated and
then refined as in Fig.
16 , in which two kinds
of activities are reco
gnizable .
The refinement is check
ed and completed with a
linguistic description
as described in the abo
ve steps.
(Note, in the example,
that the resource files
must be accessed concur
rently and must be then
semaphorized; because
each invoice will occupy
more than one record of
an indexed invoice-file,
it will be needed some
semaphorization mechanism
at the level of the invo
ice number, for avoiding
concurrent access on the
same invoice).

TOP Down ReP lu tH EuT

The refinements go on until
the program level is reached,
that is until the transitions defined refer

___ EXAMPLE ________________ _______________________________

F ig . 4G

to a single pro

. IMVOtCf copy.
RESOURCES :

INVoicr H U M E f : I»«" TTY-icWa*
iHVcitcF'tLr. : dis*;

r<u>i'«L IWY-
Oit*.' sewt^'nore.

ov\ \ô .Vo\\
Vi uor«L

f f tA M S P P g .H AT I OP ■■
. \ f INV-NUM

sitdUfi
. iP IWy-WuH búséul

_______ l «.*

gram.
There is no
way to defi.
ne in a pre
cise fashion
what we mean
as "program",
because no li.
mits can be
effectively
imposed to the
top down deve
lopment; never
theless we can
try to give our
"definition" of
"program level"
and of "procedu re" :

F i g . 4?

183

a procedure is composed of a set of programs for which the
control sequence (or the set of control sequences) cannot be
completely fixed: we can think to different executors (machi
nes or men) working concurrently or with some synchronization;
a program is a set of operations for which the execution se
quences can be completely deterministic.
The definitions get a reason by the need of different design
methods: while programming methodologies such as Jackson's,
Warnier1s or PHOS can be applied to programs (in the sense
expressed above), the shown methodology can cover also the
upper levels of the procedures.
Fig. 17 shows a rough example for a program specification.
3.5 Operation timing and throughput of the whole system
The definition of the requirements of a system can be carried
out exactly following the above method, inserting in the de
scription all the involved activities, including the human
ones.
We will show a sketch of a requirement description for a wa
rehouse management, illustrating the capability of the method
of forecasting the general throughput of the system, with sug
gestions for alternative organization.
Fig. 18 shows a possible organization:
the ware reception activity starts with a man devoted to this
work, the arriving ware and an order list; the man ckecks
the arrived ware on the list, classifying it into three clas
ses: the ordered but not arrived is prepared for new ordering
(to be noted that scarce details are provided on this activity,

184

not a goal of the current description); the ordered and
arrived ware is input to the loading activity (which can
not start for the absence of the man) ; the unordered arrived
ware produces a call for a decision to the proper employee;
the decision allows the ware selection for refusing a part
of the ware, accepting a part and providing the resource
"man" for the loading activity; at this point the man is
anew available for the reception.
To be noted the direct connection providing the man to the
loading when no decision are requested.
The complete net throughput can be computed as shown the
following table:

ACTIVITY
MEAN HUMAN
TIME SPENT

% OF THE OCCURRENCE WEIGHTED
TIME

Reception 45 ' 100 45 '
Call for a
decision 45' + 5 ' 1 5 ~ 12*

Ware selection 30 ' 1 5 C? 5'
Loading 2h 100 2h

TOTAL TIME - 3h

The time for call for a decision has been evaluated suppo
sing 5 minutes for calling the responsable and -45'for obta
ining decisions on the whole arrived ware,weighting the
percentage of the occurrences as the 15% of unordered ware;
a larger fix time for reaching a far telephone would evi-
dentiate logistic problems.
At this point we can estimate the frequence of the invoca
tion of the whole activity, for planning the proper number
of employees: f.i., 2 arrivals in a day requires about 6
hours,that is 1 man , but the last arrival must occur not
later than in the early afternoon; 3 men can operate simulta
neously allowing 6 arrivals in a day.

185
A different organization can be throught, as shown in Fig.19

which splits the activity into two steps performed by the
resources man 1 and man 2, with the following table:

ACTIVITY MEAN HUMAN
TIME SPENT

% OF THE
OCCURIENCE

WEIGHTED
TIME

Reception 45 ' 100 45 '
Call 45' + 51 fix 1 5 ~ 12'

Man 1
Selection 30 ' 15 - 5'

TOT. 1 ~ 1 h

Loading 2h 100 2h
Man 2

TOT. 2 2h

186

In this case, 7 arrival in a day can be carried on with three
men, the first operating as resource man 1 and the remainder
operating as resource man 2 and, furthermore, the latest arri
val can be delayed; the net shows clearly the possible concur
rencies among the various activities, allowing the choice of
the best solution and a quantitative evaluation of the opera
tional advantages in the use of the computers.
3.6 Petri nets, functional specification and design
A good functional specification should be completely independent
by the design of the system, allowing then the tailoring of the
architectural choices on the specific hardware or software;
nevertheless, a sketch of the proposed architecture must be
introduced in the document for planning purposes.
The shown method, involving "complex" but not "difficult" pro
blems can be considered simultaneonsly the definition of the
functional architecture of the system and the definition of the
physical structure of the implementation, as can be derived by
the operations which reach the description of the programs.
This fact is emphasized in the applications which are developed
as a set of "transactional routines" (generally reentrant) ma
naged by a specific added system monitor, whose purposes are
the best suspend/restart operation for each terminal, the re
sources sharing, etc.
The method depicted above can be used until the refinements
reach the level in which all the video "masks" have been described,
being each transition of the net of that level a "transactional
routine".
Let we se the example in Fig. 20

rig,. 2o

187

The examples pathial, refers to a (simplified) package for
office autojaation; initially a "main menu" is provided to
the user, which select a specific command. An 'E' indicates
the end of the activity; a correct command activates the se
lected operation; an errpneous selection provides a message,
allowing a new selection.
When the option 'C is selected, the "copy menu" takes place,
allowing the introduction of the proper data: uncorrect data
induce error message and the retry, correct data induce the
operation and the return to the "copy menu", the "end" sele
ction returns to the main menu.
The net shows clearly the structure of the dialogs and the
architecture of the functions (instead of a model based on
finite state automata, typical for this kind of applications,
but not expressive for the operational aspects), but i_s also
the physical architecture: the main characteristics of the
"transactiona routines" can be sommarized in a table such as
the following:

TRANSACTIONAL
ROUTINE

Starting
Mask

events next
routine

output next
mask

A main
menu

E
C D

exit msg
copy
menu

N C — create
menu

U B — update
menu

other A err.msg main
menu

i- * - * * • • • • • • • . 1

D copy
menu

end A - main
menu

correct D OK msg copy
menu

errors D err msg copy
menu

188

4. Acknowledgements
The method is origined from the contribution of many people,
amoug which particular thanks are due to G. Castelli, A.Cazziol,
G. Degli Antoni, G. Haus , R.Polillc, B.Zonta.
It has been applied in many medium sized projects by M.Maiocchi
and A. Cazziol of the Etnoteam S.p.A., by 0. Sticchi of the
TEMA S.p.A., by Bianchi of Parmalat and many others.
Requirements and functional specifications in the above expe
riences war related to systems devoted to medical analysis
laboratories management, cash and carry invoicing procedures,
book-keeping procedures, ware distribution companies management,
budget procedures, management and billing for water and gas di
stribution in government owned companiers, and so on.
Evaluation application on the timing and the throughput of the
system and on the resources allocation are mainly due to A.
Cazziol, which turned the results in costs/benefits analysis.
5. References
1. J.L. Peterson - Petri nets - ACM Computing Surveys -

vol.9, n.3, 1977
2. G. Castelli- M.Maiocchi - A methodology for the construction

and the verification of functional specifications for Soft
ware procedures and programs - HIS Software Production Con
ference - Bloomington Minnesota - March 1979

3. A. Cicu, G. Degli Antoni, M. Maiocchi, R. Polillo, G.Torriani
An integrated multilevel documentation approach - Successful
Software Management Techniques Conference - Bloomington
(Minnesota), March 1978

4. G. Castelli, M. Maiocchi, G. Haus - Verso unametodologia per
la costruzione di specifiche strutturate e corrette di proce
dure e programmi - Congresso AICA 1979 - Bari, ott. 1979

5. G. Degli Antoni, M. Maiocchi, R. Polillo, B. Zonta - How,
What, Why - 4th HIS International Software Conference -
Bloomington 1980

6. M. Maiocchi - Esperienze nell'uso di Reti di Petri perla
definizione di specifiche funzionali - Giornata di lavoro
su problemi di definizione di requirements, analisi e dise
gno di sistemi software - Obiettivo METÓD - Progetto Finaliz^
zato per 1' Informatica - CNR - 1980

7. S. Cappelli - L'uso di Reti di Petri nella specifica funzio
nale di programmi: un esempio reale - Obiettivo - METÓD -
CNR 1980.

NONPROCEDURAL SPECIFICATIONS OF HARDWARE

Hans Eveking

Institut für Datentechnik
Technische Hochschule Darmstadt

D-6100 Darmstadt, Fed. Rep. of Germany

CONTENTS

CHAPTER 1 HARDWARE SPECIFICATION TECHNIQUES

1.1 Introduction 3
1.2 The Requirements Of A Hardware Specification

Technique .. 4

CHAPTER 2 THE AXIOMATIZATION OF NONPROCEDURAL DESCRIPTIONS
2.1 Some Properties Of Nonprocedural CHDL's 5
2.2 Time Functions.................................... 6
2.2.1 Time Predicates..................................7
2.2.2 Time Operations..................................7
2.3 The Semantics Of Some Basic Language Constructs . . 7
2.3.1 The Semantics Of Expressions..................... 8
2.3.2 The Semantics Of Conditional Assignments 9
2.3.3 The Semantics Of Conditional Connections 10
2.3.4 Nested IF-THEN-ELSE-ENDIF Statements 11
2.3.5 Description Templates And Instances 12
2.3.6 The Axioms Associated With A Description 12
2.4 Language Constructs For Step-time Descriptions . . 13

CHAPTER 3 REASONING ABOUT NONPROCEDURAL DESCRIPTIONS

3.1 Inference R u l e s15
3.2 Correct And Equivalent Descriptions 16
3.3 Abstract Descriptions 17

SUMMARY

REFERENCES

FIGURES

191

CHAPTER 1

HARDWARE SPECIFICATION TECHNIQUES

1.1 Introduction
In the hardware design process, many levels coexist, for example,

the circuit, timing, gate, register-transfer and microprogramming
level. A group of items at one level is reperceived as a single
"chunk" at a higher level [1]. A network of gates, for instance, is
viewed as a single flipflop at the register-transfer level.

Assume that a hardware system is represented by a series of
descriptions d(l), •••, d(n) where each description corresponds to
some level (see Fig. 1). The description d(n) at the top-level is
viewed as the specification given to the user of the hardware system.
The specification of a microprogram instruction-set given to a
programmer may serve as an example. The description d(l) at the
bottom-level represents the implementation of the piece of hardware by
means of the most basic resources, for example, by means of a network
of gates. Moreover, each pair of descriptions d(i)/d(i-l), 1 < i _< n,
is viewed as a specification/implementation pair of descriptions where
d(i-l) is considered to be the implementation of the specification
d (i) .

Once we have decided to represent a hardware system by a series
of descriptions d(l), ..., d(n) at distinct levels, we are faced with
a number of problems. How can we show, for example, that d(1) finally
meets its specification d(n) ? And how can we make sure that the
descriptions d(l), ..., d(n) actually represent the same piece of
hardware ?

In many applications, the descriptions d(i) are written in
distinct and unrelated languages; some of the descriptions d(i) - in
particular at the higher levels - may even be stated infomally (formal
descriptions prevail at the bottom levels, e.g. the drawings, where
preciseness is necessary for the manufacturing process). The
verification of the specification d(n) is then based on the simulation
of a number of test cases at the lower levels.

In this paper, we will discuss a different approach where it is
assumed that all descriptions d(i) are written in some formal language
L(i). If these languages have a common kernel then we are in
principle able to prove by formal means that d(1) meets d(n). In the
next section, we will briefly survey the requirements of such an
approach.

192

1.2 The Requirements Of A Hardware Specification Technique

A description d(i) can be studied in two different ways (see Fig.
1):

1. We examine what the description d(i) does; the "what" x&
defined by the semantics of the language L(i) in which d(i)
is written. For example, a reasoning process about d(i) can
be based on the axiomatization of L(i). Note that the
precise definition of the semantics of each language L(i) is
crucial because a description d(i), in particular the
description d(n) provided to the user, can be studied
independently of the implementational details only if the
semantics of L(i) is known.

2. We examine how d(i) is implemented by the description d(i-l)
at the level below, for example, if we discuss how a flipflop
is implemented by means of a network of gates. Note that the
semantics of L(i) and L(i-l) must be given and must have a
common "kernel": otherwise we are not able to relate
descriptions in L(i) and L(i-l).

As a first requirement, we have thus to define the semantics of
all languages L(i). The CONLAN approach [2, 3] provides a means for
the precise definition of the semantics of a family of computer
hardware description languages (CHDL's) which are intended to cover a
variety of levels. All members of the family are derived from the
single root language BASE CONLAN. In Chapter 2, the axiomatization of
a small CHDL derived from BASE CONLAN will be discussed. We will
confine our discussion to nonprocedural descriptions that prevail the
gate, register-transfer and microprogramming level. A number of
concepts specific to the nonprocedural nature of these descriptions
will be presented.

As a second requirement, we have to show how descriptions at
distinct levels are related on the basis of an axiomatization. The
axioms associated with a description d(i) determine the correct
statements that we can make about d(i), i.e. those statements which
can be derived within the axioms. Although many details may be lost
at some higher level j, a description d(j) at the higher level is
still correct w.r.t. d(i) if the axioms associated with d(j) are
correct statements about d(i). This approach will be discussed in
Chapter 3.

193

CHAPTER 2

THE AXIOMATIZATION OF NONPROCEDURAL DESCRIPTIONS

2.1 Some Properties Of Nonprocedural CHDL's

Reasoning about a program in a common programming language - a
methodology which goes back to the work of Hoare [4] and Floyd [5] and
which is now represented by two books of Dijkstra [6] and Gries [7] -
is quite different from reasoning about a description written in a
nonprocedural CHDL. We will briefly review some of the basic
principles of nonprocedural hardware descriptions:

1. Nonprocedural descriptions do not have a termination
property, i.e. they describe the signal flow in a piece of
hardware and not a computation (in the CONLAN
frame-of-reference, we therefore talk about "descriptions"
rather than "programs"). Consequently, the notions of
partial and total correctness, pre- and postconditions do not
apply to nonprocedural descriptions.

2. The statements of nonprocedural descriptions are executed in
parallel. A locus of control is not implied; for example,
the values of x and y are interchanged by the following two
statements at each step of execution:

x<- y;
y<- x;

3. Nonprocedural CHDL's can be divided into step-time and
real-time languages. Real-time CHDL's provide a
delay-operator by which the delay of combinational circuits
and the delay of lines can be modelled. Step-time CHDL's,
e.g. the classical register-transfer languages like [8], are
intended to model the behavior of finite automata. Step-time
CHDL's do not have a delay operator; rather, an implied unit
delay is provided to reflect the state before and after each
state transition.

194

2.2 Time Functions
Our key concept for the axiomatization of nonprocedural

descriptions will be the notion of a time function (see the concept of
time functions in mathematical systems theory, e.g. [9]). The time
will be represented by the set T,

T = {U> yj N

where N is the set of nonnegative integers. Thus, T * {U, 0, 1, ...}.
A time function is a function with domain T. The range of a time
function f given by some set V defines the type of f, for example, a
time predicate has range V = {FALSE, TRUE), a ternary time function
has range {U, 0, 1), and a time operation has a subset of T as range.
In the following Figure, a time predicate p, a ternary time function f
and a time operation a are shown:

t U 0 1 2 3 4
p(t) TRUE FALSE TRUE FALSE FALSE TRUE
f(t) U 1 1 0 0 1
a (t) U U 1 1 1 4

Adopting the lambda-calculus, we define a time function f by
f = lambda(t) (...)

where the dots indicate the body of the function. The application of
the time function f to some element tl of T is denoted by f(tl). If f
is a time function and a is a time operation then f(a(tl)) denotes the
application of the concatenation of f and a to tl. In many cases, we
will define time functions by means of expressions. The lambda
expression

lambda(t) (f(t) = g(t)),

for example, denotes a time predicate which is TRUE at interval t if
the time functions f and g are equal at interval t. The application
of this time function to interval 4 of time, for example, is denoted
by:

(lambda(t) (f(t) = g(t))) (4).

As a basis for conditional definitions, we will employ the
IF-THEN-ELSE-ENDIF construct. The boolean and-operation, for
instance, is defined by:

and = lambda(p, q) (IF p THEN q ELSE FALSE ENDIF) .

Rather than

IF pi THEN ql
ELSE IF p2 THEN q2 ...

ELSE IF pn THEN qn ENDIF ... ENDIF

we will write:

IF pi THEN ql ELIF p2 THEN q2 • • • ELIF pn THEN qn END

195

2.2.1 Time Predicates
To denote time predicates, the logical operations & (and),

(or), ~ (not) and => (implication) will be used. We prefer standard
infix notation and will write p & q rather than and(p, q), for
instance. The following example shows the two time predicates p and q
and the time predicate lambda(t) (p(t) & q(t)):

t II 0 1 2 3 4
p(t) TRUE FALSE TRUE FALSE FALSE TRUE
q(t) TRUE TRUE FALSE FALSE FALSE TRUE
p(t)&q(t) TRUE FALSE FALSE FALSE FALSE TRUE

Definitions:
1. A time predicate p is a theorem iff p is TRUE for all

elements t of T:

(A t: p(t)) .
The time predicate lambda(t)(~(p(t)&q(t)) = ~p(t) | ~q(t)),
for example, is a theorem due to De Morgan's law.

2. Two time functions f and g are equal iff the time predicate
lambda(t) (f(t) = g(t)) is a theorem.

2.2.2 Time Operations

The usual arithmetic operations are extended to cope with the
undefined element U of the time set T. The subtraction, for example,
is defined as follows:

time_sub = lambda(tl, t2) (IF tl=U THEN U
ELIF 12=U THEN U
ELIF integer_less(t1, t2) THEN U
ELSE integer_subtract(tl, t2) END).

In this definition, integer_less and integer_subtract are the common
arithmetic operations with integers. We prefer the infix notation
"tl-t2" rather than "time_sub(11, t2)". Similarly, the addition in
the time set T is defined.

2.3 The Semantics Of Some Basic Language Constructs

In this section, the semantics of a number of constructs of the
nonprocedural CHDL SMAX (small and axiomatized) will be defined using
the concept of time functions introduced in the former section. SMAX
is a very small CHDL derived from BASE CONLAN.

196

2.3.1 The Semantics Of Expressions
In the CONLAN approach, a piece of hardware is described by means

of a set of carriers. Carriers are virtual points of observation in a
piece of hardware. Representing the history of values that can be
observed at a carrier, we associate a time function x with each
carrier x. SMAX provides carriers x of type ternary only, i.e. where

(A t: (x(t)=U) I (x(t)=0) I (x(t)=l)).

The symbols "||" and denote the and-, or- and
not-operations in ternary logic, respectively. If x and y are
carriers of type ternary then we associate with an expression "x &&
y", for example, the time function

lambda(t) (tand(x(t), y(t)))
where the tand function is defined in the following usual way:

tand = lambda(x, y) (IF (x=l) & (y=l) THEN 1
ELIF (x=0) I (y=0) THEN 0
ELSE U END)

Similarly, the ternary or- and not-operation tor and tnot,
respectively, are defined.

Expressions are delayed by the "%" delay operator. Let tfe be
the time function associated with an expression e. Then "e%n" where n
is a nonnegative integer denotes the time function

lambda(t) (tfe(t-n)).
If e is given by "x && y", for instance, then tfe becomes lambda(t)
(tand(x(t), y(t))). Hence, "(x && y)%n" denotes the time function

lambda(t) ((lambda(t) (tand(x(t), y(t)))) (t-n))
which is equal to the time function

lambda(t) (tand(x(t-n), y(t-n))).

SMAX descriptions provide an ASSERTIONS part [10] which consists
of a number of predicates separated by We are asserting that
these predicates should be TRUE at each interval of time. The
ASSERTIONS construct is a means to specify the assumptions that one
part of a system makes about the other parts (see the ASSERTIONS
construct of SPECIAL [11]). An example is given by the timing
conditions of integrated circuits, for instance, the set-up time
requirement on the data-input of a flipflop. To specify ASSERTIONS,
SMAX provides the operations and "=>" corresponding to
the logical operations introduced in section 2.2.1. With a SMAX
ASSERTION "p=>q", for example, we associate the time predicate

lambda(t) (p(t) => q(t)).

The SMAX predicate "sstable" test for stability. sstable(x, td) is
TRUE if x was stable in the last td time units. sstable(x, td)
denotes the time predicate

197

lambda(t) (stable(x, td, t))
where the stable-function is defined as follows:

stable = lambda(x, td, t)(A i: 0 < i td: x(t-i) = x(t)).
Assume an ASSERTIONS part

ASSERT pi, ..., pn ENDASSERT

and let tp1, . tpn be the time predicates associated with pi, •••,
pn, respectively. Then the ASSERTIONS part denotes the time
predicate:

lambda(t) (tpl(t) & ... & tpn(t)).
SMAX permits expressions to denote time operations, too. The

SMAX function "time" denotes the identity time operation

lambda(t) (t) .
For example, we may write an ASSERTION "(100 < time) => "(x = U)"
which requires x not to be undefined after 100 time units. The SMAX
function "sdelta" is defined as follows: sdelta(p) denotes the time
operation

lambda(t) (delta(p, t))
where the delta-function is recursively defined as follows:

delta = lambda(p, t) (IF t=U THEN U
ELIF p(t) THEN t ELSE delta(p, t-1) END).

delta returns the last time interval when the time predicate p was
TRUE:

t U 0 1 2 3 4
p(t) TRUE FALSE TRUE ' FALSE FALSE TRUE
delta(p,t) U U 1 1 1 4

Note that the domain of delta(p, t) defines the subset of T which
consists of all elements t where either t=U or p(t)=TRUE.

2.3.2 The Semantics Of Conditional Assignments

While expressions denote time functions, conditional assignments
and connections denote theorems. To model the properties of storage
elements, e.g. flipflops, SMAX provides carriers of type jternary
variable which have a retention property. With a single conditional
assignment to a carrier x of type tvar:

DECLARE x: tvar ENDDECLARE
IF a THEN x:= y ENDIF;
... "/other statements that do not affect x/"

where a and y may be any expression, the following axiom is
associated:

198

(At: x(t) = IF t=U THEN U
ELIF a(t)=l THEN y(t)
ELIF a(t)=0 THEN x(t-l)
ELSE U END).

In this axiom, a, y and x stand for the time functions associated with
a, y and x, respectively. In plain english, this theorem tells us
that the value of x at interval t is U if t=U, i.e. in the initial
state. If the condition a equals 1 at interval t, then x(t) is equal
to y(t); if a(t) is 0 then the old value x(t-l) is retained in x; if
a(t) is U then x(t) equals u, too. The following Figure gives an
example:

t U 0 1 2 3 4 • •

a (t) U 0 1 1 0 1 • •

y(t) u U 1 0 1 1 • •

x(t) u U 1 0 0 1 • •

A series of n conditional assignments:
DECLARE x : tvar ENDDECLARE
IF al THEN x:= yl ENDIF;
• • • 5
IF an THEN x:= yn ENDIF;
... "/other statements that do not affect x/M

has the semantics:

(At: x(t) = IF t=U THEN U
EtTF (al(t)=l)&(A i: 1 < i £ n: ai(t)=0) THEN yl(t)
• • •

ELIF (an(t)=l)&(A i: 1 £ i < n: ai(t)=0) THEN yn(t)
ELIF (A i: 1 £ i £ n: ai(t)=0) THEN x(t-l)
ELSE U ENDIF) .

Thus, the old value x(t-l) is retained if all conditions al, ..., an
are 0 at interval t. If a condition ai equals 1 and all other
conditions are 0 then x(t) is equal to the corresponding yi(t). In
all other cases, in particular if a collision occurs (two or more
conditions are 1), x(t) becomes U. Examples of application will be
given in section 2.3.5.

2.3.3 The Semantics Of Conditional Connections
Carriers of type ternary terminal^ are used to model combinational

networks without retention property. A single conditional connection
to a carrier z of type ttml:

DECLARE z: ttml ENDDECLARE
IF a THEN z.= y ENDIF;
... "/other statements that do not affect z/"

has the semantics:

(At: z(t) = IF t=U THEN U
ELIF a(t)=l THEN y(t)
ELSE U END).

199

Thus, a ternary terminal is unequal U only if the condition a equals
1:

t u 0 1 2 3 4 • • •

a (t) u 0 1 1 0 1 • • •

y(t) u u 1 0 1 1 • • •

z(t) u u 1 0 U 1 • • •

A series of n conditional connections:
DECLARE z: ttml ENDDECLARE
IF al THEN z.= yl ENDIF;

IF an THEN z.= yn ENDIF;
... "/other statements that do not affect z/"

has the semantics:
(At: z(t) = IF t=U THEN U

ELIF (al(t)=l)&(A i: 1 < i £ n: ai(t)=0) THEN yl(t)
• • •
ELIF (an(t)=l)&(A i: 1 £ i < n: ai(t)=0) THEN yn(t)
ELSE U ENDIF) .

Examples of application are shown in section 2.3.5.

2.3.4 Nested IF-THEN-ELSE-ENDIF Statements
Note that we did not separate the semantics of the IF-THEN-ENDIF

construct from the semantics of the assignment and connection
operations. Rather, we consider the conditional invocation of an
operation as a unity. This is due to the fact that in many CHDL's the
conditions and operations are much closer related than by the usual
concept where a boolean condition determines if an operation is
executed or not.

The semantics of nested IF statements, operations in the
ELSE-part, etc. are explained as follows: A nested conditional
assignment, for example:

IF a THEN IF b THEN x:= y END

has the semantics of:
IF a&&b THEN x:= y END.

A conditional assignment found in the ELSE-clause of an IF-statement:

IF a THEN ... ELSE x:= y ENDIF
has the semantics of:

IF ~'”a THEN x:= y ENDIF.

An unconditional assignment is a special case of a conditional
assignment where the condition a is 1 for '-(t=U). Similar rules apply
to conditional and unconditional connections. The THEN- and ELSE-part
may include more than one assignment or connection operation separated

2 0 0

by For example, we can simply write
IF a THEN x:= y, z.= k ENDIF

which is short for
IF a THEN x:= y ENDIF;
IF a THEN z.= k ENDIF.

2.3.5 Description Templates And Instances
SMAX incorporates the description template definition and

instantiation features of BASE CONLAN (see [2] for a detailed
introduction). Description templates define types of hardware
modules. The interface of a description is given by IN, OUT and INOUT
parameters defining the inputs, outputs and bidirectional connections.
Attributes of a description, e.g. delay attributes are specified in
the ATTribute section. Local carriers are declared between keywords
DECLARE ... ENDDECLARE. The statements in the body of a description
are separated by Finally, the ASSERTIONS are specified.

In Figure 2, two example description templates are given. The
first description shows a simple NAND-gate with two inputs. The gate
delay is modelled by an unconditional connection of the output to the
delayed inputs. The second description shows a rising-edge triggered
d-flipflop. The storage property is represented by a conditional
assignment to a local carrier ff of type tvar. The propagation delay
is modelled by an unconditional connection of the output x to the
internal carrier ff delayed by tp time units. The ASSERTION requires
the data input y to be stable for a set-up time of tsu time units
before the rising-edge of the signal a.

An instance inst of a description template tempi is instanciated
by means of the USE-statement:

USE inst(... "/actual IN/OUT/INOUT params./") :
templ(... "/actual attributes/") ENDUSE

In Fig. 3, two instances of dff and nand2 (see Fig. 2),
respectively, are used within a description ctrans.

2.3.6 The Axioms Associated With A Description
By means of the techniques introduced in the last sections, we

associate with the set of statements of a description d a set of
axioms. Any conclusion on the description d will be based on these
axioms. In Fig. 4, the axioms associated with the descriptions dff
and nand2 of Fig. 2 are given. In addition, the time predicate
associated with the ASSERTION of dff is shown.

Assume an instance inst of a description template tempi:

USE inst: tempi ENDUSE

The axioms of the description instance inst are derived from the
axioms associated with the description template tempi as follows:
Replace in the axioms associated with tempi

1 . all local carrier names by names qualified by the name of the
instance, for example, replace the local carrier x by inst.x.

2. all formal IN and OUT parameters as well as attributes by
actuals. If actuals are not specified in the USE statement
then use qualified formals.

In Fig. 5, the axioms of the description ctrans of Fig. 3 are
derived from the axioms of dff and nand2.

2.4 Language Constructs For Step-time Descriptions
In the last sections, we have introduced a number of language

constructs for nonprocedural descriptions in order to model the
behavior of a piece of hardware in real-time. The specification given
to the user of such a piece of hardware* for example, the microprogram
instruction-set obeys in general a different concept of time. In the
example, the behavior of the machine is defined by a set of
microprogram instructions each relating the state of the machine
before and after the execution of one microinstruction; the
microprogrammer is never allowed to refer to the state three
microinstructions before, e.g. by means of a delay operator !

Descriptions with a simple before/after concept of time are
called descriptions in step-time. From an implementation point of
view, descriptions in step-time are intended to model a system at
selected intervals of the real-time only and introduce thus a temporal
abstraction (see section 3.3). The real-time intervals are selected
by means of a reference signal, typically by means of a clock signal.

To provide a language for step-time descriptions, we will adopt
the language constructs of sections 2.3 with the following exceptions:

1. The delay operator "%" and functions like sstable and sdelta
that do not make sense in a step-time environment are
removed.

2. Carriers of type tvar are not adequate to reflect the
before/after relation. The type tvar is replaced by a new
carrier type tudv (_ternary unit d_elay variable) where a unit
delay of the transfer condition as well as of the source is
assumed. Rather than

DECLARE x : tvar ENDDECLARE
IF a%l THEN x:= y%l ENDIF, ...

we will simply write:

DECLARE x: tudv ENDDECLARE
IF a THEN x<- y ENDIF; ...

The following axiom is associated with a single conditional
transfer:

(At: x(t) = IF t=U I t=0 THEN U
ELIF a(t-1)=I THEN y(t-l)
ELIF a(t-1)=0 THEN x(t-l)
ELSE U END).

The following Figure gives an example of the behavior of the
conditional transfer:

t u 0 1 2 3 4 • • •

a(t) u 0 1 1 0 1 • • •

y(t) u u 1 0 1 1 • • •
x(t) u u u 1 0 0 • • •

A series of n conditional transfers:
DECLARE x: tudv ENDDECLARE
IF al THEN x<- yl ENDIF;
IF an THEN x<- yn ENDIF;
... "/other statements that do not affect x/"

has the semantics:

(A t: x(t) =
IF t-U I t=0 THEN U
ELIF (al(t—1)=1)&(A i: 1 < i < n: ai(t-l)=0)

THEN yl(t-l)
• • •

ELIF (an(t-l)=l)&(A i: 1 < i < n: ai(t-l)-O)
THEN yn(t-l)

ELIF (A i: 1 £ i £ n: ai(t-l)=0) THEN x(t-l)
ELSE U ENDIF) .

For the specification of microprogram instruction sets, the
ACTIVITY declaration and invocation feature of BASE CONLAN
will be adopted in a very restricted way. In SMAX,
activities are viewed as parametrized macros's. Local
carriers must not be declared in the body of an activity.
Carriers of the enclosing description segment may be imported
via the IMPORT statement. The invocation of an activity
simply means the textual substitution of the activity's body
where formal parameters (if any) are replaced by actual ones.
For an example, see Fig. 10 which will further be discussed
in section 3.3

203

CHAPTER 3

REASONING ABOUT NONPROCEDURAL DESCRIPTIONS

3.1 Inference Rules

In a reasoning process about a hardware description, we will
conclude that a tine predicate is a theorem from the axioms associated
with the hardware description. A number of inference rules guide the
reasoning process. We will write inference rules in the form:

al, ..., an

c

which has the following meaning: If the antecedents al, ..., an are
theorems then so is the consequent c. Examples of application of the
following rules will be given in the next section.

1. Let f and g be time functions and let a and b be time
operations. Moreover, let P(string) denote some time
predicate P in which string is found and let P(x/string)
denote the time predicate P where some free occurrences of
string are replaced by x. Then the following rule applies
(substitution of equals for equals):

(A t: f(a(t)) = g(b(t)))
(A t: P(f(a(t))) = P(g(b(t))/f(a(t))))

2. Let P(string) denote again a time predicate P in which string
is found. Let P(string//x) denote the time predicate P where
all free occurrences of string are replaced by x. Let a be a
time operation. Then the following rule holds:

(A t: P(t))
(A t: P(a(t)//t))

The second rule is justified because (a) if P(t) is a theorem
then it is TRUE for all elements of T and (b) the time
operation a has a range which is a subset of T.

204

3. The third rule deals with induction over the time set T. Let
P(t) denote a time predicate P with the time variable t and
let P(x//t) denote P where all occurrences of t are replaced
by x. Then

P(U//t), P(0//t), P(t) => P(t+l//t)
(A t: P(t))

If P is TRUE for intervals U and 0 and if from P(t) follows
that P is TRUE for interval t+1, then we conclude that P is
TRUE for all elements of T.

3.2 Correct And Equivalent Descriptions

Definitions:
1. A time predicate p is a correct statement w.r.t. a

description d if the theoremhood of p can be concluded from
the axioms associated with d.

2. A description d(j) is correct w.r.t. a description d(i) if
the axioms associated with d(j) are correct statements w.r.t.
d(i).

3. Two descriptions d(j) and d(i) are equivalent if d(j) is
correct w.r.t. d(i) and if d(i) is correct w.r.t. d(j).

4. A description d(j) is a correct description of d(i) w.r.t. a
representational function phi if the axioms of d(j) mapped by
phi are correct statements w.r.t. d(i).

We will first give some examples of correct statements w.r.t. a
description. The statement x(U)=U, for instance, is correct w.r.t.
the description delayel of Fig. 6. which follows immediately from
the axiom associated with delayel. Moreover, the statement

(At: x(t) = y(t-n))

is correct w.r.t. delayel: if t=U then t-n = U according to the
definition of subtraction given in section 2.2.2 and thus y(t-n) =
y(U) = U because y is assumed to be a carrier of type ttml.

A further example is given by the statement
(A t: c(t) = a(t-nl-n2))

which is correct w.r.t. the description twodelayel of Fig. 7.
Proof: On account of the former example,

holds for twodelayel:

(A t: b(t) = a(t-nl))
(A t: c(t) = b(t-n2))

205

H------+ b H------ +
a o— >— | ni |— >— o— >— | n2 |— >— o c

+------ h h------ +

Due to Rule 2 of the former section, t can be replaced by t.-n2 in the
first theorem yielding

(A t: b(t-n2) = a(t-nl-n2)).
Following Rule 1, we replace b(t-n2) by a(t-nl-n2) in the second
theorem which proves our statement.

An example of a correct description is given by the description
doubledelay (Fig. 8) which is correct w.r.t. the description
twodelayel of Fig. 7. However, doubledelay and twodelayel are not
equivalent because the axiom associated with the carrier b of
twodelayel can not be derived from the axiom associated with
doubledelay.

The description twodelayell of Fig. 9 corresponds to the
description twodelayel of Fig. 7 with one exception: the local
carrier b is replaced by the local carrier x. Defining a
representational function phi by

phi(x(t)) = b(t)

we can show that twodelayell is a correct description of twodelayel
w.r.t. phi. Representaional functions are used if, in the
specification, a carrier or a concept of time is introduced which is
not found in the implementation.

3.3 Abstract Descriptions

We consider an abstract description d(j) to be a correct,
less-detailed description w.r.t. a description d(i). In the hardware
design process, at least three different kinds of abstraction are
found by which a description d(j) may be less-detailed than d(i):

1. Spatial abstraction: some carriers are found in d(i) but not
in d(j) . The descriptions doubledelay and twodelayel of
Figs. 8 and 7 give an example of spatial abstraction: the
carrier b of the description twodelayel is not found in
doubledelay.

2. Abstraction by ASSERTIONS: some conditions which may occur
in d(i) are excluded by ASSERTIONS of d(j). An example of
abstraction by ASSERTIONS is given by the description dff of
Fig. 2 which is intended to model a "real" flipflop. The
"real" flipflop behaves anyway even if the set-up time
requirement in the ASSERTIONS part of dff is not satisfied.
For example, the flipflop may assume a meta-stable state
which is however very difficult to model. We therefore
exclude this undesired situation by means of an ASSERTION;
the simplified behavior specified in the body of dff holds
only if the ASSERTION is satisfied.

3. Temporal abstraction: The behavior of d(i) is only partially
defined by d(j) in the time-dimension. This kind of
abstraction is used if descriptions in real-time are

206

represented in step-time.
We will finally apply these concepts of abstraction to a simple

example where we assume a microprogrammable machine to be described at
three distinct levels. The microprgram instruction set is specified
in step-time (description d3 of Fig. 10) relating the state of the
machine before and after the execution of one microprogram
instruction. The machine is described at the register-transfer level
in step-time providing a functional description of the main registers,
busses and combinational networks (description d2 of Fig. 10).
Finally, the network of integrated circuits where the behavior of each
IC is represented in real-time is shown (see Fig. 11).

The concept of spatial abstraction is applied in the descriptions
d3 and d2 of Fig. 10. A number of carriers of d2, e.g. the ROM, the
decoders, etc. are not found in d3. The intention of d3 is to state
the effect of a microinstruction (and a microprogram) on those
carriers only which are accessible to the microprogrammer.
Implementational details which are invisible for the microprogrammer
are not represented.

Fig. 11 shows how one of the conditional transfers of d2 is
implemented by means of an IC network given by the description ctrans
of Fig. 3. In this example, all concepts of abstraction are mixed:

1. A number of carriers of the IC network are not represented by
d2, for example, the clock signal (spatial abstraction).

2. A number of conditions are excluded by ASSERTIONS.

3. The step-time description d2 (as well as d3) is intended to
model the behavior of the IC network only at those intervals
of time where the clock signal has a falling edge (temporal
abstraction). Step-time intervals are related to real-time
intervals by means of a representational function (Fig. 12).
The delta-function used in the definition of phi selects the
intervals where the clock signal has a falling edge. The
description d2 is a correct description of dl w.r.t. phi if
the additional ASSERTIONS of dl are satisfied. The proof
involves the application of the induction theorem of section
3.1 (see [10]).

SUMMARY

In this paper, the axiomatization of nonprocedural hardware
descriptions was discussed. The axiomatization of descriptions at
distinct levels provides a common semantical kernel by which
descriptions at distinct levels are related. The concepts of correct
and abstract descriptions were introduced and a number of examples of
application were given.

207

REFERENCES

[1] Hofstadter, D.R.: Godel, Escher, Bach: An Eternal Golden
Braid, Vintage Books, New York 1980.

[2] Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill,
F. and Skelly, P.: CONLAN Report, Springer, Berlin
Heidelberg New York Tokyo, 1983.

[3] Piloty, R., Barbacci, M., Borrione, D., Dietmeyer, D., Hill,
F. and Skelly, P.: CONLAN - A Formal Construction Method
for Hardware Description Languages: Basic Principles,
Language Derivation and Language Application (3 papers),
Proc. NCC, Vol. 49, Anaheim 1980.

[4] Hoare, C.A.: An Axiomatic Basis for Computer Programming,
CACM, Vol. 12, 1969, pp. 576-581.

[5] Floyd, R.: Assigning meaning to programs, Mathematical
Aspects of Computer Science, Vol. 19, 1967, pp. 19-32.

[6] Dijkstra, E.W.: A Discipline of Programming, Prentice Hall,
1976.

[7] Gries, D.: The Science of Programming, Springer, New
York/Heidelberg/Berlin, 1981.

[8] Chu, Y.: An ALGOL-like computer design language, CACM Vol.
8, 10/1965, pp. 607-615.

[9] Windeknecht, Th.G.: General Dynamic Processes, Academic
Press, New York/London, 1971.

[10] Eveking, H.: The Application of CONLAN ASSERTIONS to the
Correct Description of Hardware, Proc. 5th Int. Symp. on
CHDL's, pp. 37-50, Kaiserslautern, 1981.

[11] Roubine, 0., Robinson, L.: SPECIAL Reference Manual, SRI
Technical Report, 1976.

208

FIGURES

user
L(n)

H---
1 d (i)

--h
1 L(i)

1+---
d(i-l) 1 L(i-l)

H— --------(-
d(l) I

+-
L(l)

Fig. 1: A hardware system represented by a series of descriptions
at different levels

DESCRIPTION nand2(ATT dnand: int)
(IN y, z: ttnl; OUT x: ttml)
BODY x.= '(y && z)%dnand

ENDnand2

DESCRIPTION dff(ATT tp, tsu: int)
(IN y, a: ttml; OUT x: ttml)
BODY DECLARE ff: tvar ENDDECLARE
IF a && '■'-a%l THEN ff:= y END IF;
x.= ff%tp
ASSERT
((a && "'a%l)=l) => sstable(y, tsu)
ENDASSERT

ENDdff

Fig. 2: The description templates dff and nand2

209

DESCRIPTION ctrans(ATT tp, tsu, tpnand: int)
(IN clock, y, cond: ttml; OUT x: ttml)
BODY DECLARE int: ttml ENDDECLARE

ENDctrans
USE nand2inst(clock, cond, int): nand2(tpnand);

dffinst(y, int, x) : dff(tp, tsu) ENDUSE

Fig. 3: The description ctrans consisting of one instance of dff
and one instance of nand2

(At: x(t) = IF t=U THEN U
ELSE tnot(tand(y(t-dnand), z(t-dnand))) ENDIF)

(At: ff(t) = IF t=U THEN U
ELIF tand(a(t), tnot(a(t-1)))=1 THEN y(t)
ELIF tand(a(t), tnot(a(t-1)))*0 THEN ff(t-l)
ELSE U ENDIF)

(A t: x(t) = IF t=U THEN U
ELSE ff(t-tp) ENDIF)

lambda(t) ((tand(a(t), tnot(a(t-l)))=l) => stable(y, tsu, t))

Fig. 4: The axioms and the time predicate associated with the
descriptions nand2 and dff of Fig. 2

(A t: int(t) =
IF t=U THEN U
ELSE tnot(tand(clock(t-dnand), cond(t-dnand))) ENDIF)

(A t: dffinst.ff(t) =
IF t=U THEN U
ELIF tand(int(t), tnot(int(t-1)))=1 THEN y(t)
ELIF tand(int(t), tnot(int(t-1)))=0 THEN dffinst.ff(t-1)
ELSE U ENDIF)

(At: x(t) = IF t=U THEN U
ELSE dffinst.ff(t-tp) ENDIF)

lambda(t) ((tand(int(t), tnot(int(t-1)))=1) => stable(y, tsu, t))

Fig. 5: The axioms and the time predicate associated with the
description ctrans

2 1 0

DESCRIPTION delayeKATT n: int)
(IN y: ttml; OUT x: ttml)

BODY x.= y%n
ENDdelayel
(A t: x(t) = IF t=U THEN U ELSE y(t-n) END)

Fig. 6: The description template delayel and its axiom

DESCRIPTION twodelayel(ATT ni, n2: int)
(IN a: ttml; OUT c: ttml)

BODY DECLARE b: ttml ENDDECLARE
USE dell(a, b): delayel(nl);

del2(b, c): delayel(n2) ENDUSE
ENDtwodelayel
(A t: b(t) = IF t=IJ THEN U ELSE a(t-nl) END)
(A t: c(t) = IF t=U THEN U ELSE b(t-n2) END)

Fig. 7: The description twodelayel and its axioms

DESCRIPTION doubledelay(ATT ni, n2: int)
(IN a: ttml; OUT c: ttml)

BODY c.= a%(nl+n2)
ENDdoubledelay
(A t: c(t) = IF t=U THEN U ELSE a(t-nl-n2) ENDIF)

Fig. 8: The description doubledelay and its axioms; doubledelay
is correct w.r.t. the description twodelayel of Fig. 7

DESCRIPTION twodelayel1(ATT ni, n2: int)
(IN a: ttml; OUT c: ttml)

BODY DECLARE x: ttml ENDDECLARE
USE dell(a, x): delayel(nl);

del2(x, c): delayel(n2) ENDUSE
ENDtwodelayell

Fig. 9: twodelayell is a correct description of twodelayel w.r.t.
the representational function phi: phi(x(t))=b(t) .

211

DESCRIPTION d3 ... BODY
DECLARE a, b, ...: tudv; bus, madr, ...: ttml ENDDECLARE
"/specification of the microprogram instruction set:/"
ACTIVITY loada BODY

IMPORT a, bus ENDIMPORT
a<- bus

ENDloada
ACTIVITY loadb BODY

IMPORT b, bus ENDIMPORT
b<- bus

ENDloadb
"/specification of the microprogram,
madr = microprogram address:/"

IF madr=100 THEN loada ENDIF;
IF madr=101 THEN loadb ENDIF;
• • •

ENDd3

DESCRIPTION d2 ... BODY
DECLARE a, b, ...: tudv; bus, romO, romi,

decodeO, decode 1, madr, ...: ttml ENDDECLARE
"/functional description of decoder and registers:/"
decodeO.= romO && '"“romi;
decodel.= romO && romi;
IF decodeO THEN a<- bus ENDIF;
IF decode 1 THEN b<- bus ENDIF;
• • •

"/description of the microprogram as the content
of a ROM, madr = ROM address:/"

IF madr=100 THEN romO.= 0, roml.= 0 ENDIF;
IF madr=101 THEN rom0.= 0, roml.= 1 ENDIF;
• • •

ENDd2

Fig. 10: The description of the microprogram and the microprogram
instruction set (d3) and the functional description at
the register-transfer level (d2)

2 1 2

DESCRIPTION d2 ... BODY
IF decodeO THEN a<- bus ENDIF;
• • •

ENDd2

DESCRIPTION dl ... BODY
USE registera(clock, bus, decodeO, a):

ctrans(tp, tsu, tpnand) ENDUSE;
• • •

"/ASSERTIONS that guarantee the correct
implementation:/"

ASSERT (clock%l&&(~~a)&&a%l)=0,
((~'~clock&&clock%l) = 1) => (a=a%l)&
(sdelta(("clock&&clock%l)=1)%1 jC tp+tpnand),
(("clock&&clock%l)=1)%tpnand => (bus=bus%tpnand),
(('clock&&clock%l)=U) =>
(sdelta((~''clock&&clock%l) = 1) = U)
ENDASSERT

END dl

Fig. 11: A conditional transfer at the register transfer level
and its implementation by means of the description
ctrans of Fig. 3

(A tau: a(tau) = IF (tau=U)|(tau=0) THEN U
ELIF decodeO(tau-l)=l THEN bus(tau-l)
ELIF decodeO(tau-l)=0 THEN a(tau-l)
ELSE U END)

phi(tau) = delta((~'~clock&&clock%l) = 1, t)
phi(tau-l) = delta(('■~clock&&clock%l) = 1,

delta(('"'clock&&clock%l) = 1, t)-l)

Fig. 12: The semantics of the conditional transfer of Fig. 11
referring to step-time intervals tau and the represen
tational function phi mapping step-time intervals tau
in real-time intervals t

On the Specification and Manipulation of Forms.
by

I. Balbin,
P.C. Poole,

and
C.J. Stuart

Department of Computer Science,
University of Melbourne,

Parkville 3052,
Melbourne,
Australia.

ABSTRACT

Electronic replicas of printed forms provide a very
convenient man-machine interface for capturing data.
The keyboard operator fills in the form ander the
control of the computer which can reject invalid
data. In many systems, the form is simply an I/O
filter and, while convenient mechanisms are provided
for describing the layout of the form, it is still
necessary to write a program to capture and validate
data and sequence the user through the form. In
this paper, we describe a high level language for specifying forms and a transaction processing system
for manipulating than. The specification is com
plete in the sense that it contains sufficient
information for the system to determine the source
of the data, what data is valid, how it is to be
displayed and the sequence of fields to be visited
which may depend on data previously input and the
state of the database. We argue that this approach
will significantly reduce the cost of producing
software for transaction oriented data processing
applications.

214

1. Introduction
Over the last few years, a considerable amount of research has

taken place into office automation. There are essentially two
approaches which have been explored in order to provide an automated
office. The first [12,15] involves the classic top-down design metho
dology which identifies the general overall requirements of an office
and then seeks to automate these. This method, while attractive in theory, has not yet led to many practical implementations. The other
approach [27-29] has been to identify common office functions. As the
requirements for each of these crystallise through the exposure of prototypes to the real world, one can continually gain valuable insights
which will eventually lead to integration.

We have been following the second approach focusing our research on
forms [16], which are electronic replicas of the printed business forms
commonly used for collecting information in the modern office. Some examples of printed forms which are in common use are cheques, tax
returns and bank withdrawal forms. After filling in a form, a check is
made to ascertain, as far as possible, that the information is correct,
after which the form is filed in a database. The act of filing the form
may itself trigger other activities such as updating the database.

FSL [1,2] (Forms Specification Language) is a very high level
language for specifying and solving a variety of business data process
ing problems by describing forms. The emphasis is not on how to solve a
problem but on what needs to be done. FSL provides convenient and powerful constructs and a natural language syntax for describing forms
which are amenable to the office worker who is not necessarily a com
puter programmer and who might normally solve such a problem manually.
A compiler translates the forms specification into a data structure
which is interpreted by TPS [22] , a Transaction Processing System,
designed to capture and manage data from the user(s) by way of a forms-
oriented interface. It has been implemented in C running under the
UNIX'*' operating system.

A printed form consists of text and indicators showing where the
user is to provide information. Similarly, a form specification in FSL
describes displayed text and the entities called fields which correspond to the places where information is collected and displayed. In a com
pleted form, fields have a content. In a printed form, these are
invariably provided by the user filling in the field; using TPS, the content may be supplied by the user or generated by the system and may
be confined to be in a particular domain.

It has been noted [11] that offices tend to be divided into organi
sational units such as divisions and departments. Each division uses a
number of documents or forms through which its data processing is accom
plished. We define such a related group of forms as a menu. The pro
cess of implementing a system for a particular application can then be
loosely described as follows:
(1) Identify the principal menus to be used by the organisation.
(2) Further subdivide each menu into a list of forms (or menus) .
(3) using FSL, specify the description of the fields comprising each

form.

1UNIX is a Trademark of Bell Laboratories.

215

(4) compile the forms into tables suitable for interpretation by TPS.
(5) invoke TPS, interactively filling in any form in the menu via a

cursor addressable display terminal.
It can be seen that the hierarchical organisation of forms models the
top down design process used in the construction of a total application.
In fact, this aspect of forms has been further developed and advocated in [14].

In section 2, we discuss some of the relevant literature. Section
3 describes FSL with appropriate examples and in sections 4 and 5, we present some implementation considerations with respect to TPS. Appen
dix A illustrates an example form template.
2. Related Research

There are essentially two complementary aspects in the specifica
tion of a form. One is the specification of the form fields themselves
and the other is the specification of the organisational flow of forms
amongst several workstations resulting from predefined trigger condi
tions. The former, which was loosely termed "integrity constraints on
forms", has been explored in [9,17,19,21], whilst the latter, which has
been termed "form management" or "forms manipulation", has been dis
cussed in [7,24-26]. We note that both aspects are vital to the overall
achievement of effective office automation. FSL is essentially a
language which concentrates on the form field definition aspect of forms research. Unlike earlier systems, e.g. SQL/PL1 [4], which coupled a
database management system with a general purpose programming language,
FSL directly incorporates these features, at the same time, relieving
the user of the task of dealing with the particular nuances of the DBMS.
A comprehensive discussion of the shortcomings of these systems can be
found in [3].

It is clear that the definition of a form includes such entities as
docuruents, pads, memos [18] or slips of paper [6]. Thus, we do not con
sider it desirable to differentiate between them. The specification language for the form should be general enough to include all of these.
There is some debate [7] , however, as to whether the form has been taken
out of its natural usage and coerced (as in QBE [29] for example) to
implement functions which, although contributing to integration, are not
necessarily the desirable solution. It can be argued that the condition
and repetition boxes of OBE are foreign to an end user whereas an
english-like statement is more appropriate.

FSL has been designed for the office worker and we have conse
quently made it non-procedural to keep it as simple as possible. Like
wise, BUSINESS [18] has also been designed with similar users in mind.
However, it is doubtful that the nested procedure, which is part of its syntax, is the "specification of a solution in terms already familiar to
the end user".

SBA [5] and QBE/OBE [27-29] are systems which serve as an interface
to the IBM query language QBE. Whilst CBE is relatively powerful [20]
and easy to learn [23], much of the data processing in an application is
done in a well structured and predetermined fashion which is performed

216

repeatedly. The transactions often modify the database in a variety of
ways depending on user input or the data that is accessed. At the same
time, we must admit that there are occasions when queries are desirable
and that the FSL-TPS system does not, as yet, have a satisfactory facil
ity to handle these.
3. Forms specification

One of the objectives of the FSL-TPS project was to produce a sys
tem which was data-driven. By contrast, most programs are procedure
driven, which means that they follow a fixed sequence of actions. A data-driven system responds to events which cause changes in some data
structure and the actions taken depend not so much on a fixed sequence
but on the nature of the event. In writing a program in FSL, one does
not write a set of procedures but, rather, provides a description of a
data structure and how it depends on user-provided or database-provided
information. This structure corresponds to a completed form which we
refer to as a form instance. TPS is used to construct a form instance,
an operation which corresponds to filling in the form, as it responds to
the events of the user entering data or to alterations of the database.

There are two primary components in the specification of a form.
The first consists of the form template, an example of which is given in Appendix A. This is the static text associated with a form type serving
to identify the nature of the form and its fields. The second component
is the specification of the individual fields comprising the form.
3_. 1_. Form Template.
3_.1_.1_. Heading.

A heading is a string of characters appearing on a form having no
particular connection with the individual fields. In Appendix A, for
example, the heading "REGULAR INVOICE" serves to identify the form to
the user but has no apparent importance with respect to any individual
field.
3̂.1_.2_. Prompt.

A prompt is a string of characters appearing on a form which serves
to identify a particular field. In Appendix A, for example, the prompt
"account no." indicates to the user that the field represents the
account number for the invoice. Since a prompt is necessarily associ
ated with a field, it is included in the field specification. The posi
tion, field identifier (if supplied) and prompt are called the location attribute of the field. Currently, the position, which is simply the
row and column number on the screen, must be supplied by the forms
designer as absolute or relative values. However, in an interactive
forms editor currently under development, these positions will be calcu
lated by the system.
3.2. Field Specification.

Once the location attribute has been specified, it is then neces
sary to specify the set of possible contents of the field. This is

217

termed the value attribute. From this specification, the system can
determine the size of the field and the source of the data, that is,
whether the content of the field will be input from the keyboard or gen
erated automatically by the system, either by evaluating an expression
or via an update after some other form has been filed. Hie way in which
the field is to be displayed may also be specified.
_3.2.1. Accepting Statement.

The content of a field may come fron a number of sources, the most
usual being from the keyboard when the user is interactively completing the form after invoking TPS. In all instances, however, the forms
designer requires the capability to specify the set of inputs which are valid and which may consequently be filed. In FSL, the accepting statement performs this task.
3̂.2̂.1_.l̂. Standard Types.

FSL provides a number of high level constructs which can be used to
specify the acceptance criterion. The field specification for the "account no." in Appendix A can be written in FSL using one of these as
follows :-

numbered field is prompted by "account no." at (2,20)
accepting integer(5);

indicating that valid n̂put is an integer in the range 0 to 99999. The
source of the input is, by implication, the keyboard. The key word num
bered causes the prompt to be preceded by a generated integer which can
be used to select the field for amendment. This feature is only available for fields where input may come from the keyboard. The actual
account number is called the key field and its content is used to iden
tify the record created through the form in the data base for subsequent retrieval or updating.

In some circumstances, the forms designer may wish to specify that
input from the keyboard is optional, i.e. that if characters are input, then they will be subjected to validation criteria, otherwise the null
input is acceptable. This may be specified in FSL by :-

accepting alphabetic(10) or null ;

3_.2_.1_.2̂. User Defined Types.
Often using a standard type is far too general. It is therefore

also possible to include specific strings in the accepting statement. Consider a field representing a part number for a particular product.
This part number consists of a string representing the year the part was
manufactured, the actual stock number of the product, and a string
representing the warehouse where the part is located. This field can be
specified in FSL by -

field is prompted by "part no." at (3,30)
accepting year:82..99 & '/' & integer(5) & alphabetic(2);

where is the concatenation operator. The input string consists of
four separate sections known as subfields. It is possible to extract

218

the content of a subfield, as in the year component above, by prepending
an identifier to the field and subsequently using it in an expression.
.3.2.2. Displaying Statement.

There is an important distinction to be made between the content of
a field in the record and the string displayed on the screen for a
field. In most cases, the forms designer will want these to be identi
cal. However, there are instances when a suitable mapping from input to
output is desirable. FSL supports this mechanism permitting a number of display formats. The displaying statement also allows the user to
display a different value on the screen for that field.

Source.
In the examples seen thus far, the source of the input to the field

has been implicitly specified to be the keyboard. In many instances,
however, the content of a field is determined solely by evaluating an
expression. In such cases, the key word assigning is used. Expressions
are made up of operands, operators and calls on system functions. Operands may be fields that are not local to the current form. Con
sider, for example, a field representing the sales tax on a product :-
field is prompted by "Sales Tax." at (4,10)

accepting real(6)
assigning (unit_price - discount) / 9.37 if year > 82

else (unit_price - discount - depreciation) / 9.37 ;
The content of the field is determined by a conditional expression which
takes into account the age of the product and its consequent deprecia
tion. In this instance, the content of the field is displayed automati
cally requiring no input from the user.

In addition to having fields which can derive their contents from
expressions, it is also desirable to have a facility which allows this
assignment to be overridden. For example, a field representing the
discount due to a customer may depend on the number of items purchased
from the particular sale as well as the number of items purchased over a
period of time. The company may, however, want to give a different
discount in exceptional circumstances. In other words, the company
wishes to use the value of the expression in the default situation only.
This may be specified by using the key words defaulting to instead of
assigning.
3_.2_.4_. Updated Fields

In the discussion thus far, the content of a field has either come
from the keyboard or by evaluating an expression or a combination of
both methods. There is one other important means by which the content of a field is determined and that is via updates initiated by the filing
of other forms. An example could be a field representing the total
number of products bought by a customer. The field is updated every time an invoice is lodged. A suitable specification for this field
would be :-

219

field is prompted by "overall sales" at (7,7)
accepting integer(5) updated from Invoices.key by
overall_sales + Invoices.key.number_soId;

The field (which in this case is not local to the "Invoices" form) is
updated every time an invoice is lodged using that customer's account
number.
3_.3_. Aggregate Fields.

A facility for aggregating fields is provided in the form of a table which may be thought of as an array of fields. An exit condition
can be attached to a field in such an aggregate which enables the user
to avoid having to complete all the fields in the table at execution time. An example of a table given in Appendix A consists of the product
name, description, quantity etc. This can be specified in FSL by :-
table with 6 entries {

field Product is at (+1,3)
accepting alphabetic(7) exiting if Product is '';

/* other table fields come here */

3_.4̂ Entry Condition.
After the location and value attributes for each field have been

given, the specification of the form is complete apart from information
which determines whether or not fields are relevant. An irrelevant
field is one which is not considered in the completed form; for example,
in the invoice form given in Appendix A, tax information may not be con
sidered if the customer is a reseller, as defined by field 2. The
designer may introduce entry conditions, which may be nested, to deter
mine if fields are to skipped over as irrelevant. For example, the fol
lowing FSL specification indicates that field_l is to be ignored unless
the condition is true.

field_0
enter if <condition> {

field_l is
}field_2 is

After the content of field_0 has been determined, TPS tests the entry
condition. If this evaluates to true, then TPS will guide the user to
field_l, otherwise the cursor will be directed to field_2.
£. Interpreting forms

The program TPS is used to interpret a set of forms and menus,
written in FSL. The user may select a form under menu control, and then
complete it as TPS captures, validates and displays the relevant data.
The completed form may then be filed, causing the execution of the
relevant updates. Furthermore, TPS allows several users to be accessing

2 2 0

and altering the database simultaneously, and ensures that the database remains consistent throughout. The algorithms used by TPS reflect the
data driven nature of FSL.
£. 1. The compiled form

The compiled form module, which we will refer to hereafter simply
as the form, is arranged as a set of field descriptions. The task of
TPS is to give each field a valid content and then to file the set of
field contents, which is the form instance, into the database.

In the compiled form, each field has four attributes. These are:
(1) the content attribute which describes how the content of a field is

obtained.
(2) the validity attribute which is used to determine whether or not a

particular content is valid.
(3) the display attribute which describes how a field is presented to

the user.
(4) the successor attribute which determines a successor to this field.
The first three of these are determined by the value attribute in FSL.
The successor attribute is the means by which TPS implements the FSL enter and exiting constructs. Normally, the successor of a field is the
field immediately following in the FSL source. However, depending on
the enter or exiting conditions, the successor of a field may be a later
field, indicating that the fields skipped over are irrelevant. The con
tent of an irrelevant field is always considered to be the null string,
and is displayed as such, regardless of other attributes.
4.2. Creating a form instance

TPS creates a form instance by evaluating attributes until every
field is either irrelevant or has a valid content which has been
displayed. There is no need to evaluate the attributes in any order,
although, in practice, there is a standard order in which fields are
usually considered.

An attribute may be given by an expression or some other means and
may thus depend on user input, the content of other fields or informa
tion from the database. Every time an attribute is evaluated, a record
is kept of any such dependencies. An event is the alteration of data on
which an attribute depends, so an event will trigger the re-evaluation
of any attributes which have had their dependencies altered. The evaluation of an attribute will then have other effects: altering the
display attribute will cause a field to be re-displayed on the screen;
altering the validity attribute will affect the validity of a field, and
possibly generate an error message; altering the content attribute will give the corresponding field a new content and altering the successor
attribute may make certain fields relevant or irrelevant.

The algorithm for completing a form may be very simply given as
follows:

2 2 1

while the form is not complete
wait for an event
while there is an attribute which requires re-evaluation

choose such an attribute
re-evaluate it
depending on the attribute type:
content

give the field a new content
validitymake the field valid

or generate an error message
displaydisplay the field
successor

check the relevancy of following fields

The algorithm described is non-determini Stic, as it is not speci
fied in what order attributes are to be re-evaluated. There is, how
ever, a natural order for evaluating attributes; they are ordered first
by fields, in the same order as given in the FSL source, and are ordered within fields in the order given in the algorithm above. Ihe events
will normally be user input to fields in the order given in the FSL
source. However, the user is not constrained to that order. It is possible to select fields at random in the form and enter or re-enter data.
4.3_. Filing a form instance

The database on which TPS operates has a very simple hierarchical
structure; it is viewed as a set of files, where each file is a set of
records. A form has associated with it a file identifier. When a com
pleted form instance is filed, TPS creates a record consisting of all
the field contents and files it in the identified file. The record
identifier is the content of the key field.

When filing a record, TPS must initiate the updates of other
records. The implementation of updates in the TPS abstract machine is
by a more procedural paradigm than the data collection and validation in
form creation, for efficiency reasons. The filing of a document does
not generate events but rather has associated with it the execution of a
procedure which performs all the necessary updates. In FSL, the update
construct is associated with the field whose value is updated rather
than the field(s) which causes the update - a feature which reflects the
non-procedural nature of the language. The FSL compiler must therefore
export an update directive to the form which initiates the update.
5. Transactions in a multi user environment

Each form defines a class of transactions on the database. Even
though TPS allows several users to create form instances simultaneously, the designer of the forms nay assume that all transactions are atomic.
TPS ensures that the total effect of simultaneous transactions is as if
they were totally ordered in time. The usual means of providing this

2 2 2

integrity were deemed unsuitable for TPS. Normally, a transaction causes locks to be placed on the database in such a way that other tran
sactions are prohibited from 'interfering' with it [8,10].

This scheme may be seen to be unsuitable for TPS. Consider the
case where a transaction reads some datum from the database with the
intention of modifying it and writing it back. Such a situation occurs
with the form shown in appendix A, where the invoice is used to update the stock levels (using the 'Qty' fields) of product records. The stock
level will be read to validate the 'Qty' field and ensure that there is
sufficient stock available to complete the invoice. Here, a lock must be placed on the quantity datum which prevents any other invoice tran
saction from reading it until the original transaction writes back the
altered value when the invoice is filed. This would cause unacceptable
delays in a real time retail environment with certain heavily used pro
ducts .

Given the data driven nature of form instance construction, there
is a natural way of providing database consistency which uses no locks
while transaction (or form instance) construction is taking place. This
method has more in common with that of Rung et. al. [13], although they
do not provide the interactive modification which we use.

In TPS, a transaction has two distinct phases. During the read
phase, no alterations may be made to the database. When data is read
during this phase, no locks are associated with it but a tag is pro
vided. If another transaction alters that data, then the tag is read, and a message sent back to the transaction which performed the initial
read, informing it that that data is no longer valid and the particular
operation must be performed again. During the write phase, a transac
tion is unrestricted and must operate on valid data. The only lock is a
total database lock which allows only one transaction at a time in a
write phase. This lock is acceptable in the TPS system since the write phase, which corresponds to filing a form instance, is completely
automated and may be performed by a background process without user
interaction. By contrast, the read phase, which corresponds to creating
a form instance, may take an arbitrarily long period of time while the
user enters data. During this time, no locks are created or considered.
5. 1_. The algorithm

When TPS evaluates an attribute that reads data from the database,
a note is made of the dependency in the same way as for dependencies on
other fields and labelled with the tag associated with the read opera
tion. If that data is altered, the database server sends a message to
the form interpreter with the tag and that attribute is queued for re-
evaluation in exactly the same way as when the user provides new data or
a field which the attribute uses is altered.

The effect for the user is that the form in use is dynamically
updated to reflect the current state of the database. In the example given above, simultaneous invoice transactions will use the same stock
level to validate the quantity field for a particular product. When an
invoice is filed, all other invoices have the quantity field re
validated immediately and those invoices which become invalid have an

223

error message produced on the screen.
£. Conclusion

Given the current trends in business data processing towards enä-
user programming, it is our belief that the FSL-TPS combination provides
a powerful yet easy-to-use facility for the solution of many common
office problems and one that will significantly reduce the cost of producing such software. In a prototype version of TPS, a complete data
processing system covering financial, stock and staff control was imple
mented as 63 forms written in FDL [19] by an analyst with very little computer experience. The whole system required only a few man-months of
effort to construct, once the systems analysis had been completed.

Future developments of the system include enhancements to TPS to
provide a mail facility and the integration of an interactive forms
design editor. This will significantly increase the level of automation
and make available a very powerful tool to the end-user.

REFERENCES
[1] B ALB IN I., POOLE P.C, "A Language for Specifying Forms", Proceed

ings of the Australian Computer Science Conference (6) , Sydney,
Australia, (February, 1983).

[2] BALBIN I., "A Users Guide to FSL" Technical Report, University of
Melbourne, (to appear April 1983).

[3] BERKOWITZ B.T., "Design of a Language for Coding Data-intensive
Applications Systems", MSc thesis,MIT, (June 1980).

[4] DATE C.J., "An Introduction to Database Systems", (3rd edition,
Addison Wesley).

[5] DE JONG S.P., "The System For Business Automation (SBA): A Unified
Application Development System", Information Processing 80,
pp.469-474 (1980).

[6] DENIL N.J., "A Business Language", IBM J. Res. Develop., Vol.24 (6)
(November 1980).

[7] ELLIS C.A., NUTT G.J., "Office Information Systems and Computer
Science", Computing Surveys, Vol.12 (1) pp.27-60 (1980).

[8] ESWARAN K.P., GRAY J.N., LORIE R.A., TRAIGER I.L., "The Notions of
Consistency and Predicate Locks in a Database System", Communica
tions of the ACM, Vol.19 (11) pp.624-633 (1976).

[9] FERRANS J.C, "SEDL - A Language for Specifying Integrity Con
straints on Office Forms.", Proceedings SIGOA Conference on Office
Information Systems, Vol.3 (1,2) pp.123-130 (June 21-23,1982).

[10] J.N. GRAY, R.A. LORIE, G.R. PUTZOLU, I.L. TRAIGER., "Granularity of
Locks and Degrees of Consistency in a Shared Data Base", Modelling
in Data Base Management Systems, G.M. Nijssen (Ed), pp.365-394
(1976).

224

[11] HAMMER M. HCWE W.G., KRUSKAL V.J., WLADAWSKY I., "A Very High Level
Programming Language for Data Processing Applications", CACM,
Vol.20 (11) (1977).

[12] HAMMER M., KUNIN J.S, "Design Principles of an Office Specification
Language", AFIPS Conference Proceedings., pp.541-547 (1980).

[13] RUNG H.T., ROBINSON J.T., "On Optimistic Methods for Concurrency
Control.", ACM Transactions on Database Systems, Vol.6 (2) pp.213-
226 (1981).

[14] KUO H.C., LI C.H., RAMANTHAN J., "A Form-based Approach To Human
Engineering Methodologies", Proceedings of the 6th International
Conference On Software Engineering, pp.254-263 (1982).

[15] LEBENSOLD J., RADHAKRISHNAN T., JAWORSKI W.M., "A Modelling Tool
for Office Information Systems", Proceedings SIGOA Conference on
Office Information Systems, Vol.3 (1,2) pp.141-152. (June 21-
23,1982).

[16] LEFKOWITZ H.C. et al, "A Status Report on the Activities of the
CODASYL End User Facilities Committee (EUFC)", ACM SICMOD RECORD,
Vol.10 (2-3) (August 1979).

[17] LUM V.Y., CHOY D.M., SHU N.C, "OPAS: An office procedure automation
system", IBM Systems Journal, Vol.21 (3) (1982).

[18] MILLER P.B., TETELBAUM S., KINCADE N.W., "BUSINESS - An End-User
Oriented Application Development Language", ACM SICMOD Record,
Vol.12 (1) pp.38-69 (October 1981).

[19] POOLE P.C., HOLLIER W.E., "A Forms-Description Language", Proceed
ings of the Australian Computer Science Conference (4), St. Lucia,
Australia., Vol.3 (IB) pp.143-153 (May 1981).

[20] ROBINSON M.A, "A Review of Data Base Query Languages", The Aus
tralian Computer Journal, Vol.13 (4) pp.143-159 (November 1981).

[21] SHU N.C., LUM V.Y., TONG F.C., CHANG C.L., "Specification of Forms
Processing and Business Procedures for Office Automation", Report
RJ3040, IBM Research Laboratory, San Jose, California., (September
1981).

[22] STUART C.J, "Transaction Processing Using Forms in a Multi User
Environment", Technical Report (to appear), University of Mel
bourne, (1983) .

[23] THOMAS J.C., GOULD J.D., "A Psychological Study of Query By Exam
ple", AFIPS Conference Proceedings, pp.439-445 (1975).

[24] TSICHRITZIS D., "A Form Manipulation System", Technical Report
CSRG-101, University of Toronto, (May, 1979).

[25] TSICHRITZIS D., "OFS: An Integrated Form Management System",
Proceedings 1980 Conference on VLDB, Montreal, Canada, pp.161-166
(1980).

[26] TSICHRITZIS D., "Form Management", CACM, Vol.25 (7) pp.453-478
(July 1982).

225

[27] ZLOOF M.M, "Query By Example", NCC (AFIPS) 1975, pp.431-437 (1975).
[28] ZLOOF M.M., "QBE/OBE: A Language for Office and Business Automa

tion", Computer, pp.13-22 (May 1981).
[29] ZLOOF M.M., "Office-by-Example: A business language that unifies

data and word processing and electronic mail", IBM Systems Journal,
Vol.21 (3) (1982).

226

APPENDIX A

An Example Fönn

REGULAR INVOICE
Invoice No. 1 Account No NameAddress
2 Con/Res __ Available Credit
3 Exempt 4 Reg. No. 5 Order No. 6 Rep. No.
7 Settlement Discount [y/n] 8 Job No. 9 Non-std y/n
Product Description Qty Tax Unit Price Discount Value

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 32 ' 33 ' 34 35 " 36 37
38 39 40 41 42 43 44
45 46 47 48 49 50 51

Sales tax on $
52 less purchases second hands - ______
53 superseded components - ______
54 Instructions _____________________________________ TOTAL $______
print, clear, delete, exit or amend by field _ blemishes renter b as discount

A Technique To Identify Implicit
Information Associated With

Modified Code

by

John A. Stankovic
413-5450720

Department of Electrical and Computer Engineering
University of Massachusetts

Amherst, Mass. 01003

Abstract
This paper addresses two of the most difficult problems

related to the modification of large complex systems. The first
problem is the (unknown) discrepancy that sometimes exists
between the specifications and the code itself. A MAP program
which can eliminate this problem is described. The MAP program
is but one of a set of tools for system modification that are
briefly presented here. The second problem is referred to as the
'implicit information' problem and arises in a number of ways,
For example, a programmer making a change to existing code can
cause complicated interactions in the system causing insidious
errors and violations of specifications. One reason for this is
that certain specifications may be implemented implicitly. A
technique to solve this problem and automatically identify
'implicit information' is proposed. Specific examples of
identifying implicit information, using PSL as the specification
language and ADA as the coding language, are presented in the
paper.

ork was partly supported by the Naval Underwater Systems Center,
t, R.I. under contract N000140-81-M-MY61.

2 2 8

1.0 INTRODUCTION

Large complex software systems are constantly in a state of
modification. By modification is meant the process of changing
requirements, specifications, design, or code due to required
functional updates,* performance enhancements, or detected errors.
In other words, large complex systems are usually in all phases
of the life cycle simultaneously with continual modifications
needed for a variety of reasons. The modification task is
typically very time consuming, costly, and error prone. It is
necessary to provide designers and programmers with tools
[1,2,4,10,12,13,14,17] to aid this complex modification process.
This paper describes a proposed set of modification tools that
deal with difficult modification problems. We refer to these
problems as the ’specifications to code mapping' problem and the
'implicit information' problem.

In section 2 four proposed modification tools and their
relationships are described. These tools are meant to deal
specifically with the two modification problems just mentioned.
In sections 3 and 4 respectively, each of these two problems is
discussed more fully by providing specific examples using PSL as
the specification language and ADA as the programming language.
For this short paper it is assumed that the reader is somewhat
familiar with PSL and ADA. Section 5 summarizes the results.

2 2 9 Page 2

2.0 MODIFICATION TOOLS

Tools such as PSL/PSA [18,19] support the continual change
that occurs in a complex system during the first three phases of
the life cycle (requirements analysis, specification, and
design). During these stages, the system is described in a
meta-language, PSL. This description is stored in a database in
computer processible form. Call this the PSL structure map.
Such a structure map contains all specified entities and their
relationships. See Figure 1 as an example. Using PSA one can
then perform a number of analyses on the structure map. When a
change is necessary, the PSL description is modified and
automatic re-analysis via PSA is possible. However, once the
coding begins there is a gap between what is described by PSL and
what is implemented.

It is possible to extend the general philosophy of PSL/PSA
to the last three phases of the life cycle (coding, testing, and
maintenance). To do this we have designed a modification
information gathering (MIG) tool, analogous to PSL, that extracts
pertinent information (e.g., control and data flow) from the
actual code and stores it in computer processible form. We call
this a MIG structure map. A modification information analysis
(MIA) reports tool, similar to PSA, has also been designed and
operates on the MIG structure map. Both the MIG structure map
and the output of MIA can be displayed on a graphics device. The
tool that provides the display capability is called the
modification information display (MID) tool. The display uses a
sophisticated computer graphics terminal. Finally, anoth er

230
Page 3

program called MAP, is then needed to provide a two-way mapping
between the specification (the PSL structure map) and the code
(the MIG structure map). This mapping closes the gap between
design descriptions and actual code and is an invaluable aid to
the modification process as this paper describes. Figure 2 shows
the relationships between the PSL, MIG, MIA, MID and MAP tools.
In the remainder of this section we provide more detail on the
proposed MIG, MIA and MID tools. The MAP tool is treated in
section 3.

2.1 MIG

The MIG tool runs on actual code (one module at a time) and
produces a MIG structure map that is used by the MID and MAP
tools. All information about the actual code is contained in the
MIG structure map. To provide the flavor of this structure map
this section gives a brief description of some of the information
in the MIG structure map (Figure 3). Other information that is
kept in the structure map is not shown either because it is
irrelevant to the subsequent discussions or because it cannot be
drawn conveniently in the Figure.

For each program unit (an ADA procedure, function, package
or task) four segments are generated. In addition, a global
symbol table is maintained for the entire system and it appears
only with the main procedure. An expanded main procedure is
shown in Figure 3. This information along with information from
other units may be built up over multiple compilation units. The
four segments are:

231 Page 4

1. program unit information segment,

2. formal parameters segment,

3. declarations segment, and

k. statement structure segment.

The program unit information segment contains the program
unit name, type (procedure, function, package, or task), the
nested level, all references to this unit, al1 external
refer.efl£es f r a m this unit including those references back into

t >c-the specifications, whether it is recursive, and pointers to any
lower level procedures (not shown in the Figure), etc.

The formal parameters segment contains a complete
description of the formal parameters including their name, data
type and whether the parameters are in, out, or inout parameters.

The declaration segment contains all variable names declared
or used in this unit, the scope of those variables not declared
locally, all references to a given variable (local or non-local),
the type of reference (read-write), pointers to nested
definitions of which this variable is a part, nested program unit
declarations which can in turn have further program unit
declarations, etc.

The statement structure segment contains the statement type
(if, case, assignment, etc.), any nested statements, the
statement's position in the control flow (via pointers), a copy
of the statement itself, etc.

232 Page 5

In summary, the MIG structure map contains all the
information about the actual code as well as pointers back to the
specifications. These pointers are inserted by the MAP program
(see section 3).

2.2 MIA

The MIA reports are very similar to PSA reports except they
use the MIG structure map to obtain their information rather than
the PSL structure map. We envision a number of MIA reports
including listing the overall system module flow, identifying a
program that generates a particular output, listing all programs
that update a particular file, show all programs called by or
calling a particular program, printing all data items that a
program uses, print all tasks that can potentially be running in
parallel, given an ADA entity then print all PSL entities related
to it, etc. Obviously there is a very large set of possible MIA
reports that can operate at various levels of detail.

2.3 MID

The purpose of MID is to graphically display program and
specification information so as to enhance the modification of
code. The display consists of multiple windows, multiple levels
of detail, and multiple colors. Each window might contain menus,
specification information, control flow information, data flow
information, and, in general, output from any of the modification
tools . It is also possible to display performance and testing
information [14,17] but this is not treated at this time.

233 Page 6

Mapping information between specification and code and vice versa
is also part of the display and is used when actually performing
modifications.

Figure 4 shows an example of the control flow display and
Figures 5 and 6 are examples of the data flow display. Using
displays such as these a user finds the code to be modified and
then is automatically directed to all explicitly related entities
(that is, those entities in the modified code's control and data
flow), as well as to all related specifications including
implicit specifications. It is the user's responsibility to
determine how the modified code affects each related entity. The
important thing though is that all related entities are
identified.

In the remainder of this paper we briefly describe the
results of our study on the the two-way mapping between PSL and
ADA. The first part of our study is presented in Section 3 and
sets the stage for the specific discussion of the implicit
information problem and its solution. This latter description is
also related to the mapping and is itself divided into two parts.
Section 4.1 identifies the implicit information that can be found
in PSL objects, and Section 4.2 does the same for PSL
relationships. Specific examples are given.

234

3.0 THE PSL/ADA STUDY: THE MAP

A PSL/ADA mapping is a two-way mapping between
specifications and code and is a central entity in the
modification process. The PSL specification language was chosen
for our study because it is in wide use and the information in
which it deals is typical of most specification languages.
Mapping the specifications to code is language dependent. ADA
was chosen for the language because of its potential wide use and
because of its facilities for use on large complex systems.

The PSL -> ADA mapping is accomplished by the MAP program
partly automatically and partly with human interaction. The
function of the MAP program is to determine all the 1-1, 1-many,
many-1 and many-many mappings between specifications and code.
The automatic part of the MAP works by requiring two naming
conventions: (1) any PSL entity (any legal construct)
implemented in some way in ADA should use the same name, and (2)
if a PSL entity is implemented by 'n' ADA entities one of the 'n*
ADA entities should bear the same name as the PSL entity and this
name should be treated as generic with the 'n-1* entity names
composed of the generic part and a specific part. For those code
entities in which these rules were followed, it is possible to
automatically determine 1-1 and 1-many mappings.

After all automatically identifiable mappings are made then
the MAP program presents specification and code entities (one by
one) that have not yet been mapped. The programmer (using MID)
manually identifies the mappings for these entities. After this

2 35 -

step al1 remaining 1-1, 1-many and many-1 mappings will be
identified because every specification and code entity is
treated.

The many-many mappings are more difficult to identify, but
they can be identified. Consider the following cases.

CASE 1: Common Subroutines

The picture below shows two specif!
•2' in which '1' is implemented by code
•2’ is implemented by *b' and 'c'. This
many-many mapping. The most common cas
subroutine. In this case 'b' is linked
code. When the programmer is prese
entity, even if he assigns it just spéci
link to the other specification is d
time through the explicit link between '

cation entities * 1 * and
entities 'a* and 'b* and
is a general form of a

e is when entity • b' is a
to 'a' and * c' in th e
nted • b' as an unmapped
fication 11 ' (or ’ 2 ») the
etermined at modific ation
b’ and * c» in the code

itself

236 Page 9

SPECIFICATIONS

I I

CODE

CASE 2: GENERIC NAMING

Consider the same case as above except that *b' is named
using 'a* as the generic part. In this case it will
automatically be linked to *1’ and the link to ’2’ will go
undetected. However, if 'b' is a subroutine as above then the
relationship to '2' will be detected at modification time.

CASE 3: 'a', ’b', ’c’ DISJOINT.

Consider that there are absolutely no links between 'a', ’b’
and 'c*. Hence when T b * is presented to the programmer he may
assign either M* or ’2’ without knowing of the other’s
existence. Furthermore, since 'b' is disjoint from 'a' and ’c’
no explicit links in the code can identify the missing
specification. However, in this case there will be a link

237

between 11 * and *2' in the specifications and this will be found
at modification time. Specifications M' and *2' must be linked
because they need the same entity which is being implemented by
' b' .

Of course, it would be desirable to remove the need for
human interaction. This might be accomplished by redesigning
both the specification language and the programming language to
be a better match. Such a discussion is not the subject of this
paper. See [3,7,8,11].

As the mapping between PSL -> ADA occurs MAP also inserts
backward pointers, automatically providing the ADA -> PSL mapping
to be used by the MID tool when actually making code
modifications. Using the two-way mapping as part of the tool set
MIG/MIA/MID/MAP eliminates discrepencies between the
specifications and the code [13]. We now briefly discuss the
mapping itself in terms of PSL objects and relationships.

3.1 PSL Objects And ADA

Objects and relationships are the primitives used in PSL to
write specifications. There are 28 types of objects and 75 types
of relationships. A PSL object is anything given a PSL name.
Each object is given a unique name so that it can be identified
each time it occurs in the system description. Consequently, all
occurrences can be collected and analyzed. We extend this by
saying that any PSL object implemented in some way in ADA should
use the same name or generic variation, if possible. This

2 3 8

extends the recognition capability to the actual code as
described above. Some specification entities (objects or
relationships) map nicely to code, e.g., a PSL PROCESS obj ect is
either a Procedure, Task, Function or Package in ADA.

Other PSL objects have a wide range of options of how they
might be implemented, e.g., a PSL ENTITY object may appear in the
code as a constant, an element of an array or record, or part of
an enumerated type, etc.

On the other hand, not all PSL objects will be found in ADA
code, e.g., the Project Management objects (MAILBOX and
PROBLEM DEFINER), the Organization object (INTERFACE) and the
System Architecture objects (PR
RESOURCE USAGE PARAMETER). This i
implemented in the code. Stil
implicit information about the sy
presented in section 4. Hence,
and ADA code is certainly not
summarizes the allowable PSL objec

OCESSOR, RESOURCE, UNIT, and
s because such objects are not
1 other PSL objects provide
stem. Examples of this are
the mapping between PSL objects
a clean mapping. Table 1

ts -> ADA mappings.

3.2 PSL Relationships And ADA

In mapping PSL relationships to ADA code one finds the same
general issues as discussed above. First, some PSL relationships
map nicely to ADA code. For example, a PSL UPDATES relationship
between a PROCESS and a SET is any write reference to the ADA
entity representing that set. Second, some PSL relationships are
not found in the code. For example, any PSL relationship that

239

refers to objects not found in the code is also not found in the
code (e.g., GENERATES/GENERATED BY relationships when applied tc
INTERFACE objects, and all CONSUMES/CONSUMED BY,
PERFORM/PERFORMED BY, MEASURES/MEASURED BY relationships applied
to any objects because these relationships only apply to objects
not found in the code). In yet other cases, some PSL
relationships have a wide range of options of how they might be
implemented, e.g., the USES relationship can be implemented as
any reference to an object, the CAUSES relationship might be
implemented as an interrupt, task initiation or termination, or
the ADA RAISE statement, etc., and the CONSISTS OF relationship
might be implemented as almost any structured data declaration.
Finally, as for PSL objects, other PSL relationships often impart
implicit information about the system (see section 4.2). The
complete description of the mapping of PSL relationships to ADA
code can be found in [13]. A sample is presented in Table 2.
The entire mapping is too large and complex for inclusion in this
paper.

In summary, the MAP program has knowledge of the PSL and MIG
structure maps. Using common and generic names for entities many
links are determined automatically by MAP. Each specification
not linked to code is presented to the user for manual linking or
an assessment that it is not intended to be in the code. Hence
every specification is treated and therefore discrepencies can be
identified. After modifications, only modified specifications
and code need be (re)-linked. Certain types of legality checks
on the mappings can be performed by MAP using tables such as

240

Tables 1 and 2.

4.0 IMPLICIT INFORMATION TECHNIQUE

A major problem with the modification process occurs when
one attempts to actually modify the code. Often the changed or
added code itself can be tested and all local bugs removed.
However, there is always a potential for introducing errors
beyond those that exist in the new code itself. What is needed
is some mechanism for determining the effect of this modified
code on the rest of the system. Exacerbating the problem is the
fact that the effect may be felt in both explicit and implicit
ways. Explicit interactions between the modified code and the
rest of the system occur via calls and direct or indirect data
references. Explicit interactions in the code can be traced in a
systematic and recursive (although possibly tedious) fashion
using a tool such as MID, STRUCT [14], or ESTRUCT [12]. A
programmer or designer can then determine if any of these
explicit interacting entities are affected by the modification.

How does a programmer find problems caused by modified code
when the problems are due to implicit relationships that exist in
the system? By implicit relationship is meant any relationship
which is not directly implemented by code or data itself.
Examples are provided later in this section. It is our
hypothesis that a significant number of implicit relationships
can be identified by using MID and MAP. Remember, specifications
often contain descriptions of objects and relationships that are
only implicitly found in the code. Using the technique and tools

241 Page 14

presented here, it is possible to automatically detect any such
implicit relationship. That is, whenever modifying code, the
backward mapping to the specifications is used to identify both
explicit and implicit specification information associated with
the code entities being modified. Note, any missing implicit
relationships in the specifications are an oversight and are
themselves errors.

The technique to identify implicit information associated
with modified code begins with the programmer scanning
(scrolling) through the system code using HID. The code is
displayed in flowchart form. Modifications to the cpde are then
made through MID. All explicit code entities potentially
affected by this change can then be automatically and
systematically identified using the MIG database. For each of
these potentially affected code entities, the MAP program also
identifies all specification entities related to that particular
code entity, including those specification entities not directly
implemented in the code. That is, some specification entities
may contain implicit information about the system. It is the
programmer's responsiblity to determine if any of the related
entities must change. If there is a subsequent programming
change required, then this secondary change is treated in the
same manner as the first modification, and so on in a recursive
fashion. The process completes when all interactions (explicit
and implicit) are identified, studied and modified, if necessary.
In subsections 4.1 and 4.2 some examples of implicit information
contained in specifications are provided. Then in subsection 4.3

2 4 2 Page 15

some additional remarks about implicit information in large
systems are made.

4.1 Examples From PSL Objects

RELATIONS, ATTRIBUTES, and CLASSIFICATION are the only three
PSL objects that are potential sources of implicit information
that affect the code itself.

RELATIONS describe the logical connections between entities.
RELATIONS may map to specific ADA code, e.g., an access type, or
actual code that performs some type of consistency check. In
other cases, the RELATION may not be explicitly implemented in
the code. In this case modifying any of the entities to which
this RELATION refers may invalidate the RELATION unbeknownst to
the programmer. Our technique maps back to the specification,
automatically identifying all associated RELATIONS of a modified
entity. In fact, all associated PSL objects and relationships
are found, not Just RELATIONS. The programmer can then check
that this implicit RELATION requirement, as well as any other
requirements, still holds.

More specific examples are now given. Object A (copy 1 of
some data structure) must always be consistent with Object B
(copy 2 of the same data structure). Assume that this is a
requirement defined as a RELATION object in PSL. Also assume
that the original code meets this requirement by having the two
data structures updated together or not at all. A subsequent
modification to the code may erroneously permit the two updates

243 Page 16

to occur at different times. However, with our scheme, changing
either Object A or B, or code that references A or B, will
automatically identify the RELATION object which states that both
objects must be updated together. The programmer seeing the
requirement, notices (possibly with the use of additional tools)
that the modification fails to uphold the requirement, sc it i?

in error.

The same process of checking all related information about
modified entities through the MID graphics tool applies to all of
the following examples and therefore we do not repeat this fact.

As another example, suppose PROCESS A has ATTRIBUTE

terminal, i.e., it cannot call any other PROCESS. Assume that

originally this was satisfied by programming PROCESS A as a

procedure that contained no call statements. At some later time
it is easy to violate this requirement (by adding code that has a
call statement) because it is only implicitly satisfied in the
code. Again, our mapping would detect such an error. Of course,
in some cases it may be decided that changing the requirement is
needed.

Object A (data structure A) can be legally accessed by
PROCESS B and C only. This requirement can be stated by a PSL
CLASSIFICATION object. Any modified code, other than in PROCESS
B and C, now accessing Object A is wrong. When checking the
correctness of the modified code its data reference to Object A
is explicit and the associated implicit CLASSIFICATION
information is also found.

2 4 4 Page 17

4.2 Examples From PSL Relationships

Over half of the PSL relationships can impart implicit
information about the system. Five examples are presented in
this section.

The relationship ASSERT may require that a particular input
buffer hold enough characters to allow double buffering and
prevent a loss of characters at all costs. A code modification
may be made to reduce the size of the buffer for memory
efficiency reasons. However, this reduction may cause instances
where characters are lost. Identification of this requirement
(which is implicitly implemented by choosing the correct buffer
size based on device speeds) at the time of code modification
should result in another calculation of minimum buffer size.
This would avoid the error.

A PSL FOREACH relationship might specify that the salary
field in a file of employee records be encrypted. Code adding
new records may erroneously omit the encryption of the salary
field. The associated FOREACH relationship would enable the
programmer to detect the error.

In PSL the relationship SUBPARTS implies that the entities
connected by this relationship are completely homogeneous.
Assume a file of employee records called workers. A modification
to the code might permit manager records to be part of the file.
While conceptually this is fine, it is a violation to the
implicit homogeneous requirement.

245
Page 18

Another PSL relationship is CARDINALITY. A requirement for
a particular system might be that the maximum CARDINALITY of the
instantiations of PROCESS A is four. There may be no explicit
code in the system guaranteeing this requirement. Yet, because
of the system configuration the original designers were sure that
no more that four would ever exist. Subsequent modifications
could easily lose track of this requirement and allow this limit
to be exceeded. In this case any new code allowing a new
instantiation of PROCESS A will identify the CARDINALITY
requirement. Determining if the requirement is met may still be
quite a difficult task.

DERIVATION and PROCEDURE relationships are comment entries
about RELATIONS or SETS, and PROCESSES, respectively. Whenever
code entities corresponding to RELATIONS, SETS, or PROCESSES are
modified the programmer will automatically be given the
DERIVATION or PROCEDURE comments for determination of possible
implicit information contained therein. A PROCEDURE comment
about PROCESS A might state "it was decided to use QUICKSORT as
the sorting algorithm because we expect very large lists of
highly unsorted elements." A programmer could easily decide to
change the system by substituting another sort algorithm from a
library not knowing the implicitly stated assumptions about the
inputs to the sorting algorithm.

2 4 6 Page 19

4.3 Remarks On Implicit Information

We believe that the technique of identifying implicit
information presented in this paper can have a substantial impact
on improving the modification process. The technique helps the
programmer or designer avoid many difficult XJi detect errors. To
date, there are no techniques to help detect some of these
errors. However, the technique is not a panacea. At times,
implicit relationships exist in the system without anyone's
knowledge. It seems impossible to automatically identify these
relationships. Only through a laborious debugging process are
these implicit relationships found, if ever. Once identified,
though, they can be added to the specifications and, thereafter,
always identified at the proper time during subsequent
modifications.

In practice, the most difficult implicit relationships to
identify are often related to timing and other real-time issues.
This implies that more effort at understanding these issues while
writing the specifications, as well as better facilities in
specification languages for describing real-time requirements are
required. If these two things are done then, in theory, implicit
information in real-time issues can also be handled by our
technique.

Note that the MAP is the tool which integrates the
specification tools with the programming language tools. Such a
MAP tool is of utmost importance in developing an integrated
software engineering environment. Another approach, currently

2 4 7 Page 20

being actively researched, is to automatically generate correct
code directly from specs (either in one step or incrementally).
This would eliminate the need for a MAP program. However, this
research has not yet progressed enough to be useful for large
complex systems. Until such an occurrence, a MAP program is
invaluable. Furthermore, a MAP tool can be implemented with
today's technology.

5.0 SUMMARY

Modifying the code of large complex systems is extremely
difficult and costly. This is often due to the large number o?
complex interactions in such systems. Good design methodologies
attempt to limit the interactions. Invariably, however, the
programmers are unaware of some of the explicit and implicit
relationships and requirements that exist, giving rise to errors,
This paper reports on a technique to systematically identify
related entities in the system, assuming that specifications are
written in PSL and that the code is written in ADA. This is
accomplished by a set of proposed tools, MIG/MIA/MID/MAP. Ac
important result is that even implicit relationships which are
often the cause of the most difficult to detect errors, can be
identified by this technique. Of course, all that is needed to
extend this technique to other specification and/or programming
languages is different MIG/MIA/MID/MAP programs. The tools could
also be extended to include code performance evaluation
[14][15][16] and testing information.

248 Page 21

Note also, that the mapping between complex languages such
as PSL and ADA requires some human interaction. Since
elimination of the need for human interaction is desirable, this
is where continued research is required. Possible solutions
include the use of more formal specification and programming
languages, and automatically generating code from specifications.

The tools proposed here have not been implemented due to
lack of resources. However, we believe that the merit of the
main ideas presented here is shown both by a description of how
to implement the tools and by specific examples of their use.

6.0 REFERENCES

[1] Adam A., P. Gloess, and J. P. Laurent, "An Interactive
Tool For Program Manipulation," Fifth International
Conference on Software Engineering, San Diego, California,
March 9-12, 1981.

[2] Azuma, M., M. Takahashi, S. Kamuja, and K. Minomura,
"Interactive Software Development Tool: ISDT," Fifth
International Conference on Software Engineering, San Diego,
California, March 9-12, 1981.

[3] Cheheyl, Maureen Harris, Morrie Gasser, George A. Huff, and
Jonathan Millen, "Verifying Security," Computing Surveys.
Vol. 13, No. 3, Sept. 1981, pp. 279-339.

[4] Felty, James L., and Mark Davis, "SPAR (Source Program
Analyzer and Reporter)," IR-215-1, Intermetrics, Inc.,
January, 1978.

[5] Ichbiah, Jean, et al, Reference Manual For the ADA
Programming Language, Proposed Standard Document, United
States Department of Defense, July, 1980.

[6] Landwehr, Carl E., "Formal Models for Computer Security,"
Computing Sur.Y.sy.J5, Vol. 13, No. 3, Sept. 1981, pp.
247-278.

[7] Levene, A. A. and G. P. Mullery, "An Investigation of
RequirementSpecification Languages: Theory and Practice,"
IEEE Computer. Vol. 15, No. 5, May 1982.

2 4 9
Page 22

[8] Ludewig, Jochen, "Computer-Aided Specification of Process
Control Systems," IEEE Computer r Vol. 15. No. 5, May 1 982.

[9] Medina-Mora, R. , and P. H. Feiler, "An Incremental
Programming Environment," IEEE Transactions on S_of tware
Engineering T Vol. SE-7, No. 5, September 1981.

[10] Miller, Ed, Tutorial; Automated g £s.r &a£.t.Mftr§
Engineering. IEEE Computer Society, November 1979.

[11] Popek, Gerald J., and David Färber, "A Model for Verification
of Data Security in Operating Systems," CACM. Vol. 21, No.
9, Sept. 1978, pp. 737-749.

[12] Stankovic, John A., Structured Systems M Th e i r P e r f 9rmanc.fi
Improvement Through Vertical Migration. UMI Research Press,
Ann Arbor, Michigan, 1982.

[13] Stankovic, John A., Software Tools For the Support of System
Modification, Final Report, Naval Underwater Systems Center,
Newport, Rhode Island, January 1982.

[14] Stankovic, John A., "Good System Structure Features: Their
Complexity and Execution Time Cost," IEEE Ir.ahfiAgJLL.QJIg. Hu
Software Engineering. Vol. SE-8, No.- 4, pp. 306-318, July
1 9 8 2 .

[15] Stankovic, John A., "Improving System Structure and Its
Affect on Vertical Migration," Microprocessing and
Microprogramming. Vol. 8, No. 3,4,5, pp. 203-218, December
1981 .

[16] Stankovic, John A., "The Types and Interactions of Vertical
Migrations of Functions in a Multi-Level Interpretive
System," IEEE Transactions gji Computers. Vol. C30, NO. 7,
PP. 505-513, July 1981.

[17] Stockenberg, John E. and Andries van Dam, "STRUCT
Programming Analysis System," IEEE Transactions gji S_ajT.tMar.fi
Engineering. Vol. SE-1, No. 4, December 1975.

[18] Teichrow, D., and E. A. Hershey III, "PSL/PSA: A Computer
Aided Technique for Structured Documentation and Analysis of
Information Processing Systems," X£££ Transactions ün
Software Engineering. SE-3(1) pp. 41-48, 1977.

[19] AN/UYK-7/SHARE-7/ÜRL User's Manual, Part 1, Electronic
Systems Division, Department of the Air Force, June 1978.

250
Page 23

Figure 1: Hypothesized PSL Structure Map

Process B Process D

Legend
Box: Representes PSL objects containing their name and type
Arcs: Represents PSL relationships

Note: By following links all related entities can be determined.

FIGURE 2 : MIG/MIA/MID/MAP Tools 2 5 1

(a) MIG

MIA ___ —— R̂EPORTSMIG
STRUCTURE MAP REPORTS TOOL ^ GRAPHICS DISPLAY

'h) MIA

\

Note: This can be built up over multiple separate compilations. Procedure

FIGURE 3 MIG: Structure Map

Page
25

253 FIGURE 4: Control Flow Display Page 26

Color-6

Further Hidden Detai

1END-PACKAGE _L Abort Statement
S Specifications
S3 Hidden Detail

2 5 4
Page 27

FIGURE 5: Data Flow Display, Part 1

PROC
EXAMPLE T

some declarations

John:Man;
Ed:Boy;

MARK renames TOM;

other declarations

} Control Flow

User lightpens name JOHN
and asks for all users

John

Example
Example-2
Other-module
Many-more

Fixed size
But you
can scroll through
all names

Note: Only users of this particularentity "John" are listed.
Note: This is the first level of detail.By now lightpenning the subprogram name in the above box one gets the actual location(s) doing the referencing. (See F i g u r e 6).

*For this figure we use size of 4 but on the.actual display it would be set to a larger number.

FIGURE 6: Data Flow Display, Part 2 2 5 5 '

Ntfte: Seeing Figure 5 on the screen, suppose a user lightpens the word
"Example" in the box below the identifier JOHN. He may get the following
display.

TPROC
EXAMPLE 1 JOHN[5]

John Man;

★Note: Three references in this module are visible on the display, but
the J0HN[5] display indicates a total of 5 are made. Scrolling the control flow is necessary to view the other 2 references.

TABLE 1

PSL OBJECT TYPE ALLOWABLE ADA CONSTRUCTS

Attribute All Ada constructs are allowable
Ex. - characteristics of types and
subtypes. BASE, RANGE. FIRST, LAST.
POS, SUCC, PRED. VAL. DIGITS.
ARRAY. MANTISSA. EMAX. SMALL.
LARGE. EPSILON, LENGTH, etc.

Attribute- Specific values of ADA constructs
Value corresponding to Attributes listed

above
Classification PRIVATE and to some extent

visibility rules.
Condition Boolean data type, exceptions
Element Fields of a record, elements in

an array, constants, variables
Ent ity Any ADA data representation, e.g.,

ARRAYS. CONSTANTS, RECORDS, etc.
Event TASK, RENDEZVOUS, SELECT. WHEN.

DELAY. ENTRY. INTERRUPTSCALL
Group TYPES. ARRAYS, RECORDS
Input s FILE
Interface NA
Interval DELAY or via human interaction
leyeord NA
Mailbox NA
Men o Human interaction and comments
Output s FILE
Problem- NA

De f iner

257 Page 30

TABLE 1 Coat.

PSL OBJECT TYPE ALLOWABLE ADA CONSTRUCT

Proce s s PROCEDURE, TASI, FUNCTION,
PACKAGE

Processor NA
Relation Acess types and human interaction
Resource NA
Re s euree-

Usage-
Parajae ter

NA

Se cur ity PRIVATE and to some extent
visibility rules*

Source NA
SET Any coapound data structure
Synonym RENAME
Systea-
Paraaeter

Constants, representation specs,
human interaction

Trace-ley NA
Unit NA

Page 31

- 2 5 8 -

TABLE 2: PSL RELATIONSHIPS ADA CODE
PSL SYSTEM STRUCTURE RELATIONSHIP

Object
PSLRelationship Object ADA Construct

Set Subset of/subsets Set Implicit in Compound
Structure Declarations

Process Uti 1 i ze/Uti1i zed by Process Call statements

Interfaces Subparts are/part of Interfaces NA

Inputs Subparts are/part of Inputs In Declaration for Records of a File

Outputs Subparts are/part of Outputs In Declaration for
Records of a File

Processes Subparts are/part of Processes Nested Declarations
of Procedures, Func
tions, Tasks and Packages

Processors Subparts are/part of Processors NA

4,57-

MICRO-PSL and the
Teaching of Systems Analysis and Design

R J Thomas

J A Kirkham

University of Bradford, U.K.

Working Conference

on

Systems Description Methodologies

May 23-27, 1983

Kecskemet, Hungary

IFIP TC2 Programming

260

MICRO-PSL and the Teaching of Systems Analysis & Design

1. Introduction

Systems Analysis and Design has been taught as an academic discipline at
Bradford for the past ten years to both Postgraduate and Undergraduate
students. In that time our teaching method has slowly evolved from the
traditional approach to Systems Analysis with its well known phases of
investigation, analysis, design and implementation. In this approach the
analysis co n sisted of the d istilla tion of the results of the in itia l
investigation into a suitable documented form. This was followed by a
design stage which considered each of the required outputs and then derived
the inputs, files and processes needed to produce them.

No formal step by step methodology was used in this procedure. The students
were expected to acquire the "principles" of analysis and design by applying
the various tools that they had been given to a large and diverse set of
Case Studies, each of which attempted to simulate a real life situation.
The outcome was inevitable. Good students were able to improvise on the
outline instructions they had been given and were able to synthesise them
into a workable methodology. Poor students were lost. What was needed was
a more rigorous approach - a formal step by step methodology which would
take them from the initial problem definition to the final physical system
specification. (Similar problems of a lack of a formal design methodology
were encountered by teachers of computer programming before the advent of
Structured Programming).

2. Current Teaching Methodology

Our current teaching is based upon Gane and Sarson's and Page-Jones's
Structured Systems Analysis and Design Methodologies (1),(2). Gane and
Sarson begin the IPS development cycle by describing the flow of information
through an existing system using a logical Data Flow Diagram (DFD). Systems
are modelled using only three basic symbols (Figure 1) which represent an
EXTERNAL ENTITY (a source or destination of data), a DATA STORE and a
PROCESS. Information travels between these three types of object via Data
Flow lines, each such line representing a pipe-line along which the data
named on the line will flow.

Atypical example is shown in Figure 2 where a CUSTOMER sends ORDERS which
may be physically contained in a letter, a telephone call or a satellite
link to the process PROCESS-ORDERS. The process is something which we are
interested in analysing and which will subsequently become the subject of a
more detailed DFD. It may be a room full of clerks, a computer program or a
combination of both. It uses data from the data stores PRODUCT-DATA and
CUSTOMER-DATA to check the validity of the ORDERS and if all is well
INVOICES (together with the goods ordered) are sent to the CUSTOMER. At
this point in the definition of the data flow within the system, there is no
mention of how the various activities are carried out. This clearly
differentiates between the logical analysis phase of IPS development and the
subsequent physical design and implementation.

continued

261

MICRO-PSL, Kecskemet, May 1983 (2)

The analysis continues as PROCESS-ORDERS is expanded to show the main data
flows within the process, without showing any error or exception handling.
This is called a first level diagram and is designed to show the overall
flow or "big picture" of the system . Figure 3 shows PROCESS-ORDERS
expanded into a typical level 1 DFD. The processes defined at this level
are expanded at the second or lower levels to include the detail of error
and exception handling.

Once the DFD's have been constructed in sufficient detail, the data elements
used in the system are identified, named and placed in a data dictionary.
Figure 4 contains illustrative examples of the five types of forms used to
describe each Data Element, Data Structure, Data Flow, Data Store and
Process within the system .

Gane and Sarson suggest that the data dictionary could be maintained as a
set of index cards with the cards grouped alphabetically within type for
ease of access. However it should be clear that maintaining such a
dictionary would be a much simpler task if the records were held on a
computer. Furthermore the ability to sort, sift and select the data would
then be considerably enhanced.

At the end of this analysis the DFD's and data dictionary make up a
comprehensive description of the system called the iogical functional
specification which describes what the system does (or is to do) without any
reference to its physical implementation. This clear separation of the
specification and analysis of IPS requirements from the subsequent design
and physical implementation of a system is a valuable feature of the Gane
and Sarson approach.

Furthermore, the hierarchical nature of the DFD's imposes a top down
approach to the analysis of information flows, providing a more rigorous
methodology in the analysis phase.

At this point, however, the formal methodology disappears. We revert to our
earlier approach to designing systems. Using our ingenuity and our
experience (where do students get their experience from?) we eventually
arrive at a complete specification of the physical system required to solve
our problems. This specification consists of the traditional documentation
of inputs, outputs, files and processing which we were producing ten years
ago.

Clearly our attempt at devising a complete formal methodology for systems
analysis and design has not made much progress beyond the specification of
requirements and analysis stages of systems development.

continued

262

MICRO-PSL, Kecskemet, May 1983 (3)

3. Problems with Current Teaching Methodology

3.1 Our current methodology is a mixture of new ideas (Structured Systems
Analysis) and traditional techniques (Input, Output, Database design).
It lacks a clearly defined step by step methodology which will take us
from the initial problem definition to the final systems specification.

3.2 Gane and Sarson's and Page-Jones' methodologies require the drawing of
a large number of DFD's of varying complexity. Drawing and modifying
the diagrams is a difficult and time consuming task. With the
subsequent computer run diagrams of the physical system to be drawn as
well, it is clear that drawing and maintaining the diagrams is a major
problem.

The Data Dictionary supporting the DFD's is also produced manually.
This is a laborious, error prone procedure and a source of some
frustration among the students. Changes to the DFD's mean
corresponding changes to the Data Dictionary with the consequent
problems of maintaining consistency between the diagrams and the
dictionary.

3.3 Student solutions to Case Studies consist of a set of DFD's, a data
dictionary and a specification of all inputs, outputs, files and
processing required. C hecking a single solution manually for
completeness and consistency as well as the "quality" of the proposed
design is a very difficult task. With groups of 25 students or more it
becomes virtually impossible. Something must be done to alleviate this
problem.

4. Computer-Aided Systems Analysis - MICRO/PSL

We have been aware for some time that a computer could be used to provide
assistance in systems development. In fact in 1977-79 we were using our own
systems documentation software package at Bradford on Systems Analysis
courses (3).

During 1979 we investigated the possibility of using the ISDOS PSL/PSA
system (4) at Bradford but at that time our central computing facilities
proved to be insufficient to handle the package. Consequently, we decided
to try to develop a much smaller package based upon both the language PSL
and the reporting facilities of PSL/PSA.

MICRO-PSL is a software system which has been developed at the University of
Bradford with SERC support. The system is modelled on the PSL/PSA mainframe
package developed by the ISDOS group at the University of Michigan, USA(4).
It consists of a language PSL which is used to describe functional
specifications of information system s, together with a program suite which
analyses the PSL statements and stores the specification on a database. A
Report Package is provided which enables the analyst to check on the
consistency and completeness of the specification.

continued

2 6 3

MICRO-PSL, Kecskemet, May 1983 (4)

4.1 Problem Description in P5L

Functional models are described by a series of English like PSL
statements which are checked for correct syntax and then stored in a
data base. For example the DFD shown in Figure 2 is written in PSL
as:-

DEFINE INTERFACE CUSTOMER;
GENERATES ORDERS;
RECEIVES INVOICES;

DEFINE PROCESS PROCESS-ORDERS;
RECEIVES ORDERS;
DERIVES INVOICES;
USES PRODUCT-DATA,

CUSTOMER-DATA;
DEFINE SET CUSTOMER-DATA;

CONSISTS OF CREDIT-STATUS;
USED BY PROCESS-ORDERS;

DEFINE SET PRODUCT-DATA;
CONSISTS OF PRODUCT-DETAILS;
USED BY PROCESS-ORDERS;

DEFINE INPUT ORDERS;
GENERATED BY CUSTOMER;
USED BY PROCESS-ORDERS;

DEFINE ELEMENT CREDIT-STATUS;
CONTAINED IN CUSTOMER-DATA;

DEFINE OUTPUT INVOICES;
RECEIVED BY CUSTOMER;
DERIVED BY PROCESS-ORDERS;

These PSL statements are input to MICRO-PSL which checks and stores
them in a data base. The first and subsequent levels of the model are
developed in a similar manner and stored in the data base.

4.2 Entry of PSL Description

PSL statements are entered into MICRO-PSL by the user of the system via
a VDU. The accuracy of each statement is initially checked for correct
syntax and then for consistency against any PSL statem ents already
entered into the MICRO-PSL database. The parsed form of the statement
is then displayed on the screen to allow for immediate correction,
should this be necessary.

As an illustration when the statement:-

USES ORDER TO UPDATE PRODUCT-DATA;

has been entered, this would be analysed and displayed on the screen
as:-

USES
ORDER UNDEFINED
TO
UPDATE
PRODUCT-DATA SET
5
Accept, Reject, Edit ?

continued

264

MICRO-PSL, Kecskemet, May 1983 (5)

The statement has been analysed into its constituent parts and the
object ORDER is reported to be UNDEFINED. Although the statement is
syntactically correct and would be stored on the database if Accepted,
it may be logically incorrect.

The UNDEFINED message could have arisen from missing the S at the end
of ORDER in which case the user can add the S to the original statement
immediately using the inbuilt editor.

Similarly, the statement:-

USES ORDERS TO DERIVE;

would be analysed and displayed as:-

USES
ORDERS INPUT
TO
DERIVE

Reject, Edit ? OBJECT MISSING

A fatal error has occurred which is reported at the point of failure.
The user can only Edit or Reject the statem ent at this point, since
Acceptance of the statement is out of the question.

4.3 Generating Reports from the MICRO-PSL Database

A sample of the reports currently available with MICRO-PSL are:-

4.3.1 Data-Process-Interaction Report (Figure 5)

This report shows the ways in which the objects in the system
are either received or generated or used by the processes
defined in the target system .

It is used to check on the completeness of the system definition
e .g . Are there any processes which do not generate any outputs
or receive any inputs?

4.3.2 Dictionary Report (Figure 6)

This report presents the definitions associated with each name
used in the description of the target system . It is used by
analysts to maintain the definitions of names in the database
and as a tool for communication with the users of the target
system.

Clearly this report serves the same function as the Data
Dictionary developed using Gane & Sarson's Methodology.

continued....

265

MICRO-PSL, Kecskemet, May 1983 (6)

4 .3 .3 Formatted Problem Statement (Figure 7)

This report provides a complete description in PSL of one or
more names in the Analyser database. Since the FPS presents the
complete information held for any name in the database, it is
usually recommended that an FPS for all names be maintained as a
reference and updated when changes are made to the database.

4 .3 .4 Structure Report (Figure 8) •
This report presents the hierarchical relationships between
objects in the database. It is used by analysts to maintain the
consistency of any structures defined for the target system.

Using such reports individually or in combination, the analyst is able to
check on the accuracy and completeness of the functional specification.
Changes to the data dictionary to correct any omissions or inconsistencies
are then easily accomplished on the computer.

The language used with MICRO-PSL is a subset of PSL. The subset has been
chosen to cater for a teaching environment, e .g . aspects related to the
management of large projects have been omitted.

Similarly the reporting facilities on Version 1 of MICRO-PSL have been
restricted to the Michigan PSA reports which would be of most immediate
value to trainee systems analysts. (FPS, DICT, DPI, NL, STRUCT).

Although MICRO-PSL was originally developed on an FIP1000 computer, it has
since been transferred to our mainframe CYBER computer to provide
simultaneous on-line access to the package for a large number of users. It
will be used for the first time on Systems Analysis courses by our
Postgraduate students this year where we intend to use it as a Data
Dictionary facility in conjunction with Gane & Sarson's DFD's.

Although we are pleased with the progress on MICRO-PSL and value the
assistance it provides, it is still a long way short of the facilities which
a computer could provide in the systems development process. The following
section deals with the features we would like to see in an improved package.

3. Reguirements for a Computer Aided Systems Analysis Teaching Package

5.1 A Consistent, Complete Teaching Methodology

Our experience of teaching of Systems Analysis during the past ten
years has impressed upon us the need for a formal methodology. This
should provide us with a step by step procedure to follow; which starts
with the specification of systems requirements and ends with the
physical systems design. Two such methodologies have recently been
brought to our notice, one by Winchester (5) and the other by the ISDOS
group (6).

continued

MICRO-PSL, Kecskemet, May 1983

3.2 Computer Assistance

266

(7)

When an acceptable methodology has been defined, it would be valuable
in a teaching environment if any computer assistance could be
'methodology driven'. This would mean that a student would be required
to follow a predetermined set of procedures (some or all of which might
be computerised) with the computer package leading the student from
stage to stage of the systems development, as each is satisfactorily
completed.

In terms of individual elements of such a computer package, the advent
of sophisticated graphics terminals makes it even more likely that the
way forward will be through a 'picture' based methodology, rather than
the current text oriented ones.

We are currently investigating the problems of developing a graphics
interface to MICRO-PSL which will remove the need for students to draw
the Gane & Sarson DFD's by hand.

6. Conclusion

As teachers of Systems Analysis and Design, we feel that a satisfactory
teaching methodology for the systems design process has yet to be defined.
We would like to see such a formalism defined as a completely separate
exercise from possible computer assistance to allow us to teach the
principles involved, before applying them to practical applications. Qur
particular interest would then be in the development of computer aids to
support the proposed methodology with emphasis being placed on providing a
useful set of teaching tools.

Bibliography

1. Structured Systems Analysis - C.Gane & T.Sarson, Prentice-Hall 1979.

2. The Practical Guide to Structured Systems Design, M.Page-Jones, Yourdon
Press 1980.

3. Computerised Documentation in the Teaching of Systems Analysis and Design.
R.J.Thomas, Computer Bulletin, June 1979.

4. ISDOS Project, University of Michigan, Ann Arbor, USA.

3. Requirement Definition and its Interface to the SARA Design Methodology for
Computer-based Systems. J.W.Winchester, J.R.Hughes Aircraft Corporation
1980.

6. The use of PSL/PSA with Structured System Development Methodologies. ISDOS
Project, August 1982.

February 1983

46f-

A Hierarchical System Model for Vertical Migration*
by

Gabor David
Computer and Automation Institute BudapestHungary

and
Wolfgang Graetsch

University of Dortmund
West Germany

Abstract
In the following paper a new system model for vertical migration
purposes is presented. The model is based upon an architecture
description language. It allows especially the modelling of
hierarchical structures which are not only oriented to tradi
tional software/firmware/hardware borders.

Keywords
vertical migration, system model, hierarchical structures, mi
gration of functions and data structures

* This work has been partially supported by Deutsche
Forschungsgemeinschaft (DFG) under contract Ri 367/1
and by the Hungarian Academy of Sciences.

268

1 Introduction
Vertical migration is a well known technique to improve the per
formance of a computing system. In its original form functions
are moved from software to firmware. Generally vertical migra
tion is applied to existing systems. The rearrangement of func
tions leads to a partial redesign of a system which may affect large parts of it. Thus system design and models for this purpose play an important role for vertical migration, too. Another
goal of vertical migration is an improvement of the system
structure.
There are two approaches for migration either instruction-
sequence oriented or function oriented. The first one is especially tailored to the architecture interface of a computer
(machine language) . For the more general function oriented ap
proach Stockenberg [Sto 78] developed a hierarchical system
model which is oriented to the multi-level interpreter hierarchy
(software/firmware/hardware) of a von Neumann computing system. Up to now this model is the only one for function oriented mi
gration. For each level mapping and execution actions are dis
tinguished. Mapping actions map flow of control and data parame
ters from the caller to the level of the called function and back. Execution actions refer to those steps that perform the
semantic operations for the invoked function.
If we look at the design of-a classical von Neumann computer
there is a strong separation into control and data. We can find
examples for this principle either in the CPU, separated in con
trol unit and arithmetic unit, or even in application programs
which are separated into data parts (declarations) and func
tions .
Function oriented migration and underlying system models only
deal with the flow of control in a computer. As new VLSI tech
nology offers possibilities for high speed memories accessible
only by microprograms data migration leads to performance im
provement as well as structural improvements. One major problem in VLSI technology is the data access through inter-chip connec
tions. Thus data and functions should not be separated on dif
ferent storage types but migrated together.
In this paper we first state requirements for a system model
which should be a base for vertical migration. Then we discuss
why the model of Stockenberg and even the improved one by Stan-
kovic [Sta 81] is insufficient to fulfill the requirements. Then
we proceed with our system model for migration.
In the fourth chapter the system model is applied to parts of the UNIX operating system [Rit 74]. Finally we discuss the qual
ity of the model compared to the requirements.

2 Requirements
In general there is a need to have a vertical migration oriented
system model for the following purposes:

269

better understanding of the system architecture which is de
fined by functions, data, and their structure on different levels (software/firmware/hardware). Note that this defini
tion covers disciplines like computer architecture or operat
ing system architecture.
identify the functions and their relations to the whole sys
tem .
a system model should supply tools for vertical migration in
the general sense where the system is multi-layered in its
firmware and even hardware structure

The requirements derived from these purposes stated above are:
A system model should
1. provide a multi-level system description which is not only

oriented to traditional software/firmware/hardware borders.
For instance large software systems may be hierarchically
structured with several levels, too,

2. offer level-independent language and language primitives, the
same formal language should be used for description (specifi
cation) of any system level,

3. be realization independent,
4. support a method to identify and isolate the functions to be

migrated taking control flow and data accesses into account,
5. support verification methods in order to verify functions

which had been migrated and to verify that part of the system
in which migration had been performed,

6. be computer aided because of the growing complexity of sys
tems ,

7. contain interfaces to monitoring tools. Performance monitors
are used in order to get information about the dynamic
behaviour of a system. Then migration candidates are select
ed .

In the following subsection we discuss why the
Stockenberg/Stankovic approach only partly fulfills the requirements. The approach serves as a global system model. A detailed
analysis of UNIX [Bio 82a] however showed that we can find many
smaller levels inbetween not covered by their model. Thus (1) is
partially fulfilled. Further their approach does not fit the
criterias of level independent language primitives (2) and part
ly only (4). Concerning the fourth point Stankovic [Sta 81] im
proved their original model treating functions and data struc
tures together. Components (modules) in his system model are in
terconnected according to coupling and cohesion parameters of
the Structured Design methodology [Mye 76]. This heuristic
methodology had been originally developed in software engineer
ing research but poorly supports the vertical migration process of functions and data.

270

Requirement (3) is fulfilled as well as the the last one (7). This means that an interactive evaluation system [Sto 75] had
been developed which graphically represents the system structure in connection with monitoring results. So computer aided model
ling (6) is partly achieved. Finally it should be noted that no
verification methods (5) are provided.

3 A New System Model based on Architecture Language

3.1 Definitions
Modern programming languages offer a module concept which can be
classified as a software counterpart of a frame, the basic entity in Architecture Language (AL).
The basic ideas of AL are

the arcitecture (including data and functions in every system
level) can be described componentwise independent of the
realization
every component can be represented as a frame
a frame can be manipulated independently from others (change,
test , verify)

In our terminology a model of a system is a triplet (PDS,PF,SF)
- PDS : primary data structures used by the primary functions
- PF : set of primary functions
- SF : set of system functions
This definition is very general and covers the interfaces which
enclose the analysed system. By vertical migration the set of
primary functions will not be affected, migration is performed
only inside.
A model of a level of a system is also a triplet (DS,EF,DF).
- DS : is the set of data structures involved in this system

level
- EF : is the set of elementary functions provided by lower

levels. At least EF is contained in or equal with the
lowest level (PF)

- DF : is the set of defined functions for higher levelsOn the highest level DF contains or equals with SF
As an example we consider a model for the migration of operating
system functions to the firmware level. In this case
PF : are functions defining the microarphitecture (for example ALU functions or functions of the memory management

unit). They are used by microprogrammers and provided
by the hardware

271
SF : system calls defining the operating system interface.These functions are either used by system and applica

tion programmers
PDS: provided by the hardware like internal and general pur

pose registers, main memory, processor status word.
A detailed analysis of UNIX results in a 25 level hierarchical
structure [Bio 82a]. For instance an I/O system provides a set
of access functions for the attached I/O devices as defined
functions. Elementary functions which are needed are process
synchronization, timing functions, and buffer manipulation
routines. Higher levels like parts of the file system make use
of the functions DF defined by the I/O system.
Let us assume two level models which are illustrated in fig. 3.1:
System:

SF (System Functions)

Level A
Level B

PF (Primary Functions)

(DS [A] , EF [A], DF[A])
(DS [B] , EF [B], DF [B])

We investigate three kinds of relations, either between
functions (see section 3.2)
data structures(DS[A] # DS[B], relations # will be discussed and explained
in section 3.3)
access relations of functions to data structures
For data migration it is important to classify data accesses.
For instance on a machine language level data accesses is
performed via several addressing modes. Concerning complete
functions data accesses to complex structures consists of
search or update operations. More details concerning this re
lation can be found in [Bio 82b].

3.2 Function Structure Relationships
Thene are following relations between elementary and defined
functions:
EF [A] => DF [A] Within a level A another s.et of defined func

tions can be derived. In other words defined
functions use (call, invoke, activate) elementa
ry functions provided for this level.

272

EF[A] <=> DF[B] Elementary functions of model A equal with thedefined functions of model B. This relation
expresses the connection between consecutive
levels.

The steps of system modelling for vertical migration include:
find pairs of consecutive level models A,B, for which elemen
tary functions EF[A] <=> DF[B] (defined functions)
perform inside the transformation EF[A] => DF[A]
repeat these steps such a way that the primary functions PF
<=> EF[L] equals the elementary functions of the lowest level
L and the defined functions DF[H] <=> SF for the highest lev
el H.

3.3 Data Structure Relationships
Vertical migration experiments of functions from software to
firmware demonstrated that the achieved performance improvement
was less than originally intended [01b 82]. One reason is due to
the fact that data which is accessed by microprogrammed func
tions resides in main memory. Thus read/write cycles during mi
croprogram processing increase the execution time.
Furthermore if virtual machines should be implemented by means
of vertical migration structural imbalances remains. Functions
and data are separated on different types of storage (writable
control store, main memory).
Our modelling approach provides a base not only for migration of
functions but for migration of data structures, too. Thus the
important role of data structures for system design and complex relationships between various types of data is investigated.
In the following section we will defines some data structure relations. Elementary data structures in Architecture Language
notation are described in [Dav 81]. They consist of data types
bit, byte, word, integer, real, character, and boolean. Struc
tured data types can be constructed by array or record declara
tions. We will refer to the following data type declaration in
the next sections:
structure rec <S[1]:T[1],S[2] :T[2],...,S[n]:T[n]>;

S[i]'s are selectors of record components and T[i]'s are basic
data types or have been already defined. The declaration of an actual instance (REC) of this type has the form

structure(rec) REC;
.Modern software development should be based upon a module con
cept . This means that functions and data are grouped into
modules. Data can only be accessed by functions in that particu
lar module. Modules can be grouped in hierarchical structures.
They are interconnected only by function calls. Concerning this
ideal structured system relations DS[A] # DS[B] defined below

273

would be empty. This ideal scheme is not always possible to im
plement because hardware related tasks (resource management) of
operating systems leads to relations defined below. There are
following possible relations and operations on data structures
crossing level boundaries:

*v
REFINEMENT
Formally the declaration
structure rec <S[1]:<s[11] :T[11], .. ,s[lm]:T[lm]>, . . . ,S[n]:T[n]>
is a refinement of the data type "rec" in its component of type T[1] selected by S[1]-
Another way is to redefine T[l] by
structure T [1] <s[11]:T[11],...,s[lm]:T[lm]>
in the same frame but in this case the data type "rec" would be refined by those T[i] (i=l,...,n) components, for which T[l] = T[i]. So these two ways to refine a data type are not
equivalent .
Refinement plays an important role during system design. In the
UNIX file system file names are specified by the user by path
names, each subcomponent specifies a directory. The task of the
logical file system is the conversion of a path name into a
unique file identifier.
Within the next lower level, the basic file system, files are
only identified by a unique number. Files are organized on a
disk in units of 512 byte data blocks. The conversion of path
names is supported by directory files containing one entry for
each file. The first part of an entry is a name field (part of the path name), the second part is a unique file identifier ei
ther to specify the file itself if the path name is completely
scanned or the next directory. So we can see that a directory file is a refinement of a normal file data block.

ALLOCATION
If a software function is migrated to the firmware implementa
tion level address calculation for arrays or records have to be
implemented explicitly. Normally this is done by a sequence of
compiler generated machine instructions.
Additionally if we consider data migration to a new high speed
memory which is only accessible by microprograms completely dif
ferent storage access functions have to be used.
Let us assume that x is an already defined data type and REC is
declared as above. Then

REC <Sj :x>
is an allocation statement. So REC[Sj] can be used on the
current level (and on higher levels) as an x-type and on lower
levels as the original Tj-type.

274

A realistic example in the UNIX system is the "user" data structure describing the state of a process in the system (open
files, user identification, I/O operation parameters). Let us
assume VM (virtual memory) as the data structure for main memory
which is addressed by virtual addresses. The actual "user"
structure which represents a running process is always located
to the same virtual address 0140000 (octal value). This relation
can be expressed as

VM <0140000 : user>
On a lower level however VM [0140000] specifies a single byte.
Internally a change from one active process to another ready one
can be performed changing the content of a dedicated memory
management unit register. This hardware unit performs the map
ping from physical to virtual addresses.

EXPANSION, REDUCTION
Again we try to motivate this relation by an example. The UNIX
operating system kernel contains large data structures
(records). An analysis [Hen 81] showed that many data structures
are overloaded: Too many functions access the same data struc
tures. No module concept is followed in the UNIX system. Simi
lar experiences have been reported for large IBM operating sys
tems. Vertical migration investigations [Bio 82b] also demon
strated this problem: If a data structure is migrated all theaccessing functions have to be migrated too. But as a fast local
store for microprograms is limited in size this is not possible in any case.
Originally these data structures had been designed step by step
according to the hierarchy imposed by the calling relationship
of functions. At a low level the structure name and a few com
ponents are fixed. Going to higher levels more components are
needed which results in the final data structure design. If we
want to migrate functions and data we have to investigate the
original design in order to isolate data and function parts of
the system.
Formally a sequence

structure r ;
structure r<S [1] :T[1] > ;
structure r<S [2] :T[2] > ;
structure r<S[n]:T[n]> ;

declares the same type as "rec" . The single declarations in each
line can be included at different levels of the hierarchy.
In the UNIX file system files can be grouped into directories.
Even directories can be comprised in new ones. This results in a
tree like structure of all directories and files in the system. In this scheme files and directories can be uniquely specified
by path names.

275
structure filesystem <P[1]:d i r e c t o r y P[n]:directory,P[n+1]:file,..., P[m]:file>

P[i] are appropriate path names. Data types directory and file may be already defined. For instance this file system can be expanded by
structure filesystem <P[k]:directory>
for a new path name P[k].
We say that B is a REDUCTION of A if A is an EXPANSION of B.

Formal ly

EXTENSION,RESTRICTION,EQUIVALENCE
These relations are meant as for sets. DS[A] is an extension of
DS[B] , if DS[A] contains DS[B]. In this case DS[B] is a res
triction of DS[A]. If both conditions are valid they are
equivalent sets of data structures.
Especially for protection in operating systems a reader can ima
gine the importance of relations like RESTRICTION and REDUCTION.

3.4 Frames Put Together to Make Models
A frame in AL consists of an interface, specification, and im
plementation part. In the interface part the data structures DS
are declared. In the specification part the set DF (defined functions) is specified. The set of elementary functions is im
plicitly declared by the undefined function symbols of the actu
al frame. Furthermore there are elementary functions of AL it
self (e.g. assignments, control structures) from which AL as
sumes a default interpretation. It is also possible to redefine
them during system design.
It should be noted that the specification part will never be ex
ecuted. The implementation part describes how the functions are
performed.
The typical steps in AL are to put frames together

merge two frames F[X] and F[Y] into one F[Z] = F[X] + F[Y]
Thereby the number of defined functions but also the number
of elementary functions is increased.
invoke a frame F[Y] from the implementation part of some oth
er frame F[X]
Thereby for the combined frame the number of elementary func
tions is reduced

A model M[X] = (DS[X],EF[X],DF[X]) of a system level X can be
described by means of a frame F[X].

276

FRAME F[X] (input parameters; output parameters)
INTERFACE

description of DS[X];SPECIFICATION
definition of DF[X];
description of processes activating these functions;
activation by guarded commands [Dij 75] IMPLEMENTATION
may be either software, firmware, or hardware
invocation of other frames;ENDFRAME

On this base vertical migration can be performed in two dif
ferent approaches:

do not change interface and specification, change only the
implementation part (for instance from software to firmware)

- restructure the system at least partly thereby changing interface, specification, and implementation parts of some frames .
Less attention has been paid in the literature to an activity
which consists of deciding on the hardware/software implementa
tion of functionality in any particular level. Once the func
tional design of a system is complete (interface and specifica
tion) the implementation activities should take place separately
but iteratively until the desired system attributes seem to be
best attained.
Chapter 4 contains an example of AL for a small part of the UNIX
system. Especially the invocation scheme between frames has to
be carefully investigated for vertical migration purposes:

todays computer architectures do not utilize a firmware to
software subroutine call.Generally in a multi-level interpreter hierarchy control flow
is limited such a way that functions can only activate other
ones on lower levels but not in the opposite direction. This
is the reason why the hierarchical calling rule have always
to be kept if functions move downwards by vertical migration.

if there are loops in the procedure calling graph on the
software level however we have to think about a redesign or a
combination of all the functions involved in this loop into a single level, described by a frame. Then we can decide for an appropriate implementation, in this case either software
or firmware.
in hardware there are no software concepts like a subroutine
call with a shared usage of functions. If the hardware level
is involved in vertical migration the structure of the system has to be restricted in this respect
firmware monitoring [Hoi 82,Gra 82] had been especially
tailored to the measurement of software functions as a base
for vertical migration decisions (and requirements for archi
tecture support).

277

4 Case Study of an Operating System Memory Management Function
The following small example has been taken from the UNIX operat
ing system running on a PDP-11 computer. Implementation details
have been omitted as far as possible in order to be understandable for a reader not familiar with details. The function
"memory-allocate" performs an algorithm for main memory manage
ment according to a first fit strategy. Although the example is very small it should be general enough. Furthermore it is a
well known algorithm known from operating systems. Two major
problems are discussed along with the presentation of this simple example
- function refinement problem

Up to what extend should a function be refined (decomposed)
into smaller ones before parts of it are migrated to a lower
level (which functional refinement is appropriate for a cer
tain implementation level).
the distinction between strategies and mechanisms A general accepted rule for migration states that only so
called mechanisms should be migrated [Bro 76]. Strategy
routines should be avoided for migration to lower implementa
tion levels because changes are more likely to occur.

If we consider the resource main memory it can be modelled as
structure M < [1:248K] : bit(8) >

For the declarations a shorter notation is used (IK equals
1024). Memory as seen from the machine architecture interface
is accessed usually via a memory management unit, thereby speci
fying virtual addresses instead of physical addresses.

structure VM < kernel-space : [1:56K] : bit(8)user-space : [1:192K] : bit(8)
i/o-page : [1:8K] : bit(8) >

The selection either of kernel space and i/o page or user space
depends on the actual mode of operation. One task of the
operating system is the management of the user-space among a varying set of processes. The frame "memory-allocate" manipu
lates a data structure "user-space-map" for this purpose:

structure user-space-map < [0:N]:
< size : bit(16), /* size of a free storage block */
< addr : bit(16) >> /* start address of a free block */

Continuous storage blocks are obtained from this pool.

2 7 3 "

FRAME memory-allocate(map,required-size ; map,return-address)
INTERFACE

struct(user-space-map) map;bit(16) required-size,return-address;
SPECIFICATION

bit(16) i;
if (required-size > 0)

then search-for-enough-space (map,required-size,i);
allocate-resource (map,required-size,return-address,i);
compress-resource-map (map,i);

if (required-size <= 0)
then return-address :=• 0;

IMPLEMENTATION
two-comp-table-search (map,required-size; i); allocate-table (map,required-size,i ; return-address , i);
compress-zeros (map,i; map);
test-zero (required-size; return-address);

ENDFRAME

In the first line input and output parameters separated by a
semicolon are specified and further precisely defined in the in
terface part. Data structure "map" is changed by the frame. So
it has to appear either as input and output parameter.
In the specification part two guarded commands controls the ac
tivation of the following processes. This implies that the sequences defined subsequently can be executed in parallel. AL specification offers on each level actually modelled the possi
bility for parallel processing. As vertical migration is a technique for monoprocessor systems parallelisms is a possiblity
only for lower levels. Firmware structures for instance offers
possibilities for parallel execution.
Mainly in the specification of this frame a functional decompo
sition is performed. The functions specified here must be exe
cuted by the invoked frames of the implementation part which is written in a data flow language. The invoked frames with actual
parameters are given in fig. 4.1.

279

map
required-
size

! V ! i
! ! TWO-COMP-TABLE- ! I V
1

I
! SEARCHi j ? ! TEST-ZEROI! 1 ; !

1 ! ! i ! !
j V V j !
J

! ! ALLOCATE-TABLE ! ! <--- !!
!!

! I
>

V V

! COMPRESS-ZEROS !! I !
!

v map v return-
address

Figure 4.1: Data flow diagram of memory-allocate
In the following we will describe the interface and specifica
tion parts of the invoked frames.

FRAME two-comp-table-search (map,required-size; i);
INTERFACE

struct (user-space-map) map;
bit(16) required-size,i,m;

SPECIFICATION
function search-for-enough-space (map,required-size, i);
beginm : = 0 ;

while(map[m][size] < required-size && map[m][size] > 0)
m : = m + 1;

if (map[m][size] = 0) i := -1;
if (map[mj[size] >= required-size) i := m;

end
search-for-enough-space (map,required-size ,i);

ENDFRAME
This frame implements a search algorithm looking for the first
free slot which fits the requirements. If the strategy has to be changed for instance to best fit only this frame is affected and
has to be modified.

280

For a software implementation the reader will easily verify that
this refinement is too detailed. For a firmware version however
this refinement is appropriate if it is compared with the com
plexity of a normal machine instruction.

FRAME allocate-table (map,required-size,i; return-address,i);
INTERFACE

struct (user-space-map) map;bit(16) required-size,i,m,return-address;
SPECIFICATION

function allocate-resource
begin

(map,required-size, return-address,i);

if (i = -1) return-address := 0;
if (i > 0) return-address := map[i][addr];

map[i][size] := map[i][size] - required-size;
map[i][addr] := map[i][addr] + required-size;

end
allocate-resource (map,required-size,return-address,i);

ENDFRAME

FRAME compress-zeros (map,i; map);
INTERFACE

struct (user-space-map) map; bit(16) i ,k;
SPECIFICATION

function compress-resource-map (map,i); begin
if (i > 0 && map[i][size] = 0)
then begink : = i + 1;

while (map[k][size] > 0)
beg inmap[k-l] := map[k]; k := k + 1;
end ;

end ;
end ;
compress-resource-map (map,i);

ENDFRAME
Frame "compress-zeros" shifts the memory map from the end of the
table to the empty slot (if any). Thereby the end of the user
space map must be indicated by a zero field. The implementation

281

parts are omitted in this example. In the specification parts
functions are activated without any guard. In this case a short
er notation is used which means that the guard is always true.
By now functional, structural or topological, and the modeling
completeness can be checked:

Functional completeness
In the frame memory-allocate the elementary functions are
search-for-enough-space, a 1locate-resource, and compress- resource-map. The implementation part invokes frames, in
which these functions are defined functions. The definition
there use only AL-defined functions which are elementary
ones. So there is not any function open in this context. The
functional completeness is checked using the SPECIFICATION parts only.

•

Data structure completenessIn our example we start from the IMPLEMENTATION part of the
frame memory-allocate (see fig. 4.1). For each invoked frame it is easy to verify that the parameters are matched. This type of completeness is frequently refered as the topological one .
Modeling completeness
From the SPECIFICATION parts of the frames two-comp-table-
search, allocate-table, compress-zeros, and test-zero and
from the IMPLEMENTATION part of the frame memory-allocate it
can be verified that the specification of memory-allocate
will be executed correctly by the implementation. The under
lying assumption is that the invoked frames will do what is
stated in their SPECIFICATION parts. This completeness is a
local one because this is applied to the frame memory-
allocate only.

5 Conclusion
We finish this paper comparing the requirements and explaining
how a system model based on Architecture Languages satisfies them :

multi-level system description (1), realization independency
(3)
Frames are connected only via implementation parts. They can
invoke each other. Actual parameters are specified by data
lines. Frames are the components realized either by software,
firmware, or hardware. Specification parts of diffent frames are invariant against changes of the implementation part. Thus multi-level system description is achieved which is also
realization independent in its interface and specification par t .
level independent language (2)
is a requirement which is achieved for the interface and
specification part. Data lines connecting frames are formal
ly defined by data structure declarations based upon the
smallest unit which is a bit. Specifications are defined in a
formal language independent of the realization.

282

identification and isolation of functions and data (4)
There are no global variables in the language concepts of AL.
Each data structure used by a function must appear in the in
terface part. Functions can invoke other functions with the
specified parameters of the interface. Data structure rela
tions have been defined precisely in section 3.3. In this form they can appear in different interface parts of frames.

verification (5)In AL the following verification methods are assumed: simula
tion and check for the functional and data structure com
pleteness. The check for completeness is a part of the syn
tactical analysis, so it can be automatically be performed.
Another method is the logical completeness based on guards.
computer aided methodology (6)
AL is not a manual method but a computer aided one because
the description of frames is based upon formal languages.
interfaces to monitors (7)Dynamic parameters of monitoring are assigned to functions in the specification parts. On this base vertical migration de
cisions can be made.

6 Literature

[Bio 82a] Block, H. , Graetsch, W., Kaestner, H.
Documentation of the UNIX SystemInternal Report 4, Project Vertical Migration, Univer
sity of Dortmund 1982

[Bio 82b] Block, H.Untersuchung zur Migration von Datenstrukturen Diplomarbeit, Universitaet Dortmund, Oktober 1982
[Bro 76] Brown, G.E., Eckhouse, J.R.Operating System Enhancement Through Microprogramming

Sigmicro, March 1976, Vol. 7, (29-33)
[Dav 80] Dav id , G.

Restructurability - A Tool for System Development,
Proc. IFIP Working Conf. on Firmware, Microprogram
ming and Restructurable Hardware, Linz, 1980 North-
Holland , 1980, (135-158)

[Dav 81] David, G. , Losonczy, I., Papp, S.D.Language Support for Designing Multilevel Computer,
Systems. Handler, W. ed. CONPAR'81, Springer Verlag
Lecture Notes on Computer Science, Vol 111, 1981,
(85-100)

[Dij 75] Dijkstra, E.W.
Guarded Commands, Nondeterminancy and Formal Deriva
tion of Programs
Comm. ACM, 18, 8(1975)

283

IGra 82] Graetsch, W., Kaestner, H.
Firmware Monitoring of the UNIX Operating System, Internal Report 5, Project Vertical Migration, Univer
sity of Dortmund 1982

[Hen 81] Henry, S. Kafura, D.
Software Structure Metrics Based on Information Flow IEEE Trans, on Software Engineering, Vol . SE-7, No. 5,
Sept. 1981

]Hol 82] Holtkamp, B., Kaestner, H.
A Firmware Monitor to Support Vertical Migration Deci
sions in the UNIX Operating System,15th Annual Workshop on Microprogramming, Oct. 1982
Palo Alto, California

[Mye 76] Myers, G.J.
Reliable Software Through Composite Design
Mason/Charter Publishers, London, 1975

[01b 82] Olbert , A.G .
Crossing the Machine Interface15th Annual Workshop on Microprogramming, Oct. 1982
Palo Alto, California

[Rit 74] Ritchie, D.M., Thompson, K.T.
The UNIX Time Sharing System
Comm. ACM, Vol. 17, No. 7, (365-375)

[Sta 81] Stankovic, J.A.Improving System Structure and its Affect on Vertical
Migration
Microprocessing and Microprogramming 8 (1981), 203-218
North-Hol1 and Publishing Company

[Sto 75] Stockenberg, J.E., v. Dam, A.
STRUCT Programming Analysis SystemIEEE Trans. Software Engineering, Vol. SE-1, No. 4,
Dec. 197 5

[Sto 78] Stockenberg, J.E. van Dam, A.Vertical Migration for Performance Enhancement in Lay
ered Hardware/Firmware/Software Systems,Computer, Vol. 11, No. 5, (39-50)

iU 5

METHODOLOGY -for SYSTEM DESCRIPTION
USING THE

SOFTWARE DESIGN éc DOCUMENTATION LANGUAGE
by

HENRY KLEINE

ABSTRACT
The S o f t wa r e De s i g n and Document at i on Language <SDDL> can be l o o s e l y
c h a r a c t e r i z e d as a t e x t p r o c e s s o r w i t h b u i l t - i n knowl edge o f , and
me t hods f o r h a n d l i n g the c o n c e p t s of s t r u c t u r e and a b s t r a c t i o n whi c h
are e s s e n t i a l f o r d e v e l o p i n g s o f t w a r e and o t h e r i n f o r m a t i o n i n t e n s i v e
s y s t e m s . S e v e r a l a s p e c t s o f s y s t e m d e s c r i p t i o n s t o whi ch 3DDL has-
been a p p l i e d are p r e s e n t e d and s p e c i f i c SDDL m e t h o d o l o g i e s a e v e l c p e d
f o r t h e s e a p p l i c a t i o n s are d i s c u s s e d .

INTRODUCTION!
The S o f t wa r e De s i g n and Doc ume nt a t i o n Language (SDDL) [1 7] ,
o r i g i n a l l y c o n c e i v e d as a s i m p l e , c o n v e n i e n t ps e udo code p r o c e s s o r f o r
d e v e l o p i n g program d e s i g n s has e v o l v e d i n t o a more s o p h i s t i c a t e d t o o l
whi ch can now be a p p l i e d t o a broader r a n g e o f s o f t w a r e d e v e l o p me n t
t a s k s . The e v o l u t i o n of SDDL i n c l u d e s many i mprovement s t o the
l a ng u a g e and the comput er p r o c e s s o r but t he pr i mary growth i s in t he
a r e a o f new d i s c o v e r i e s in m e t h o d o l o g y [1 8 , 1 9 3 . Thus , SDDL
c a p a b i l i t y has expanded upward in the h i e r a r c h y of s y s t e m d e s c r i p t i o n
a c t i o n s t o i n c l u d e a c t i v i t i e s such as t he s p e c i f i c a t i o n of g e n e r a l
s y s t e m r e q u i r e m e n t s and program f u n c t i o n a l r e q u i r e m e n t s . I t ha s
expanded downward t o i n c l u d e d o c u me n t a t i o n and p r e t t y - p r i n t i n g o f
s t r u c t u r e d programmi ng l a n g u a g e s , and i t has e xpanded l a t e r a l l y t o
i n c l u d e me t hods f o r d e s c r i b i n g r u l e s and f o r m a t s f o r s p e c i f y i n g
program i nput d a t a . I t has even d e v e l o p e d t a n g e n t i a l l y to i n c l u d e
me t h o d o l o g y f o r h a n d l i n g g e n e a l o g i c a l f a m i l y t r e e s . In g e n e r a l , the
s c o p e of SDDL ha s grown in the d i r e c t i o n o f h a n d l i n g i n f o r m a t i o n t h a t
i s b e s t c o n c e i v e d and r e p r e s e n t e d in a s t r u c t u r e d f o r ma t .

T h i s paper p r e s e n t s the r e s u l t s of one pha s e of r e s e a r c h c a r r i e d out
at the J e t P r o p u l s i o n L a b o r a t o r y , C a l i f o r n i a i n s t i t u t e o f T e c h n o l o g y ,
under Co n t r a c t NAS?- 108, s p o n s o r e d by t he N a t i o n a l A e r o n a u t i c s and
Space A d m i n i s t r a t i o n .

286

As the aut hor of SDDL I am p l e a s e d to a c k no wl e dg e my c o n t r i b u t i o n to
t h i s t e c h n o l o g y but the g r e a t e r c r e d i t t o r i t s c u r r e n t u t i l i t y as a
s o f t w a r e d e v e l o p me n t tool b e l o n g s t o the many u s e r s who have c o n t r i
but e d i m a g i n a t i v e me t h o d o l o g y and s u g g e s t i o n s t o r i mprovement s in the
c a p a b i l i t i e s of t he p r o c e s s o r i t s e l f .

SDDL OVERVIEW DESCRIPTION
SDDL can be d e s c r i b e d s i mp 1 i s t i c a l 1y as a l anguage p r o c e s s o r w i t h
b u i l t - i n knowl edge of and me t h o d s f o r h a n d l i n g t he c o n c e p t s of
s t r u c t u r e and a b s t r a c t i o n whi c h are f undament a l t o s o f t w a r e
de v e l opme nt s p e c i f i c a l l y and t o the d e s c r i p t i o n o f i n f o r ma t i o n
i n t e n s i v e s y s t e ms in g e n e r a l . SDDL i s c o mp r i s e d o f a l a n g u a g e , a
p r o c e s s o r , and me t h o d o l o g y f o r t h e i r u s e . The SDDL s y n t a x c o n s i s t s of
a smal l s e t of ke ywo r ds which ar e us e d to c r e a t e d e s i g n s t r u c t u r e s in
the manner of S t r u c t u r e d Programming C l , 3 , 9 , 1 1 1 and a s e t o f
d i r e c t i v e s whi ch p r o v i d e the u s e r wi t h c o n t r o l of the SDDL p r o c e s s o r
f o r m a t t i n g f u n c t i o n s .

S i n c e SDDL o n l y f o r ma t s the i np ut and d o e s not pr o du c e e x e c u t a b l e
c o d e , o n l y two s t r u c t u r e s , t he Module and the B l o c k , are nee de d to
s p e c i f y a d e s i g n . Modul es ar e us e d t o r e p r e s e n t a b s t r a c t i o n s whi ch
are c o mp l e t e and i nde pe nde nt enough (a s u b j e c t i v e u s e r o p i n i o n) t o be
t r e a t e d a s s e p a r a t e e n t i t i e s . Modul e s are g i v e n d e s c r i p t i v e names and
t h e i r i n t e r r e 1 a t i o n s h i p s are s t a t e d e x p l i c i t l y by means of a modul e
i n v o c a t i o n s t a t e m e n t r e f e r e n c e (a n a l o g o u s t o a programmi ng l anguage
CALL s t a t e m e n t) w i t h i n the mo d u l e . B l o c k s are t he lower l e v e l
c o n s t r u c t s , such a s i t e r a t i o n s , c o n d i t i o n a l s and s e q u e n c e s whi ch are
us ed t o r e p r e s e n t c o n c e p t s or a l g o r i t h m s i n t e r n a l t o a mo dul e . Both
k i n d s o f s t r u c t u r e s r e q u i r e an i n i t i a t o r keyword s t a t e m e n t and
o p t i o n a l l y may have a t e r m i n a t o r , a s u b s t r u c t u r e , a n d / o r an e s c a p e
keyword s t a t e m e n t . A keyword s t a t e m e n t i s a s t a t e m e n t whi ch b e g i n s
wi t h a p r e d e f i n e d keyword such a s CALL, IF, ELSE, e t c . The us e r can
use p r e - e s t a b l i s h e d s e t s o f keywords or may d e f i n e keywords
s p e c i f i c a l l y t a i l o r e d f or the t a s k at hand.

The a c t i o n s t aken by the p r o c e s s o r in r e s p o n s e to keyword s t a t e m e n t s
are q u i t e s i m p l e but e f f e c t i v e f o r c o mmu n i c a t i n g s t r u c t u r e d
i n f o r m a t i o n . I n d e n t a t i o n o f s t a t e m e n t s w i t h i n s t r u c t u r e s and f l o w
l i n e s whi ch h i g h l i g h t both s t r u c t u r e e s c a p e s and modu1e i n v o c a t i o n s
p r o v i d e a v i s u a l , t w o - d i me n s i o n a l i n f o r m a t i o n d i s p l a y t hat i s
t o p o l o g i c a l l y e q u i v a l e n t to a c o n v e n t i o n a l f l o w c h a r t . T h i s t e c h n i q u e
c a p t u r e s most o f t he a d v a n t a g e s o f f e r e d by f l o w c h a r t s w i t h o u t t h e i r
a t t e n d a n t d i s a d v a n t a g e s . T h i s f o r m a t t i n g c a p a b i l i t y i s i l l u s t r a t e d
t h r o ughout the e xampl e in Appendi x A.

SDDL D i r e c t i v e s t a t e m e n t s p r o v i d e the u s e r w i t h the means to c o n t r o l
document f o r m a t t i n g and t o d i r e c t the p r o d u c t i o n of c r o s s r e f e r e n c e
t a b l e s and o t h e r document summary i n f o r m a t i o n . The f u n c t i o n s
pe r f or med by the SDDL p r o c e s s o r are summari zed in the f o l l o w i n g l i s t :

2 8 7

Document Formatting:
Line numbering -for input file editing.
Indentation to display structure logic.
Structure logic error detection.
Flow line arrows to accentuate structure escape statements.
Flow line arrows with page references to module invocations.
Special handling for title pages and commentary text segments.
Input and output line continuation.
Line Splitting (partial right justification of output lines)

Document Summary Information:
Table of contents.
Module invocation hierarchy (tier chart).
Module cross reference table.
User selected cross reference tables.
General cross reference table (includes all identifiers).

Processor Control Capabilities:
Page margins, length, numbering, heading and ejection.
Structure indentation amount.
Deletion of leading blank characters on input lines.
Input line numbering sequence.
Keyword definition.
User cross reference table definition.
Specification of a label field on the input file.
Specification of a sequence number field on the input file.
Options for suppressing selected processor features.
Selection of comment delimiter characters.

The basic formatting functions of SDDL, which are easily mastered, are
all that the user needs to begin laying out the specification of a
design. With SDDL directives the user can define new structures,
control the capture of identifiers for cross referencing, control
document formatting, and selectively suppress the generation of
summary reports. These capabilities in themselves have value only as
computer automated documentation conveniences, but "convenience" can
have a much greater meaning when it has the effect of freeing the
document creator from the many tedious, repetitious tasks not related,
but unfortunately necessary for document preparation. Furthermore,
when these conveniences are augmented by methodology that facilitates
the conveyance and understanding of the elements of a system's
description they also assist the document reader in the same way.
Elimination of these tedious, repetitious tasks by means of computer
automation is like oiling the interacting parts of a mechanical device
to reduce friction. Just as mechanical drag expends energy for work
which does not contribute to the direct purpose of the machine, so
"Cerebral Drag" drains energy from both the writer and the reader for
work which is not directly related to creating or understand a
document. Thus, these simple capabilities, when applied with
imagination and insight in the development of the documentation can be
utilitarian and functional.

2 8 8

EXAMPLE APPLICATION OF SDDL
The system selected to illustrate the use of SDDL is the SDDL program
itself. Because of obvious space limitations the example document
(Appendix A) has been greatly shortened by 1) omitting some of the
system description capabilities to which SDDL has been successfully
applied, and 2) by carrying the level of the documentation deep
enough to convey just the essence of meaning and style.
The system description areas exemplified below include:

1. Statement of the overall objective of the system
2. Hierarchical Input-Process-Output development (HIPO)
3. SDDL detailed design
4. Pascal source code
5. SDDL program invocation command
ó. Formal syntax definitions

Some system description capabilities which have been omitted are:
* Function requirements specification
* Genealogical family tree
* Documentation of program source code for SIMSCRIPT I 1.5 and

FORTRAN 77.

GENERAL COMMENTARY:
In the following discussion of the example problem some SDDL
capabilities which apply in general to all usage (e.g., title pages,
table of contents > are mentioned where they first occur in the
document. The page and line numbers noted in the discussion refer to
page and line numbers of the example document in Appendix A. Page
references are given at the top of each subsection and the 1 ine
references appear within the text enclosed in angle brackets, < >.

Unnumbered Title Page:
SDDL provides processor directive statements that allow the user to
delimit a group of input lines which will be the content for a title
page. The processor enters the title page heading into the document
Table of Contents and boxes and centers the contents of the title on a
new output page. The choice of the character- to be used to form the
box is a user option.

2 8 9

Page I: Table of Contents:
The Table o-f Contents is produced au t oma t i c a 1 1 y by SDDL. Note that
there are three levels o-f indentation: The top level is -for titles,
the second level -for modules, and the bottom level tor module
substructures.

Page 1: Statement ot the Overall Objective ot the System:
The purpose ot this module is to introduce the objective ot the system
in a general way as an explanation tor the new reader. It can also
serve a stronger role as an intormai contract between customer and
implementer stating the agreement regarding the overall purpose ot the
ettor t .
The text ot the statement ot objectives is automatically boxed as was
the title. Text boxed in with asterisks (reterred to as a TEXT BOX)
within a module as shown <29-42> ditters from a TITLE BOX in that it
is printed in the exact context in which it was tound and is not
centered on the page or entered into the Table ot Contents.
Note that
printed on
the input
tac i 1 i tates

on this and on all other output pages, the line numbers
the lett margin correspond exactly to the line numbers ot
source tile. This precise correspondence greatly
the source tile editting process.

HIERARCHICAL-INPUT-PROCESS-OUTPUT DEVELOPMENT
Pages 2 - 4: Hierarchical Input-Process-Output (HIPO) C 33 J :

Throughout this document, heading lines unique to each section are
printed at the top ot all pages. This was accomplished by inserting a
SDDL heading directive at the beginning ot each section spéci tying the
heading text desired.

Page 2: Title Page Introduction to the HIPO Section.
(Omitted to conserve space)

Page 3: Top Level ot the HIPO Development:
A TEXT BOX is used to provide a general description ot the modu1e
content. The contents ot this module are structured to represent the
three parts ot the HIPO concept. INPUT, PROCESS, and OUTPUT have been
previously detined as SDDL keywords so that the processor can
au tómatical 1y provide indentation to display the HIPO structure.
Input and output data elements are numbered sequentially and the
numbers are enclosed in square brackets tor automatic entry into the
"HIPO DATA SETS" cross reference table. The square brackets and a
corresponding title for the cross reference table have been previously
defined by a SDDL directive statement. The word EXECUTE has also been
defined previously as a module invocation keyword. This causes the
processor to add the right hand arrow to the statement and enter the

2 9 0

paoe number of the module that was referenced < 68 & 6 9 > . The short
right hand arrows < 6 7 , 7 0 > are not produced automatically but are part
o-f the source input line. Their purpose is to point to the output
data element which is produced by the stated action. To increase the
visibility o-f the data element number it is automatically justified at
the right hand margin. The right justification function was triggered
by a user defined special character placed in the input statement.

Page 4 Top half: HIPO Description of the SDDL First Pass
This module is called from the HIPO—DEYELOPMENT module <68>. It is
developed in the same manner as above to describe the data processing
steps of the first pass operation.

Page 4 Bottom half: HIPO Description of the SDDL Second Pass
This module is also referenced by the top level module < 6 9 > . It
describes the actions of the second pass operation.
Since this module and the preceding one are small they were both
printed on a single page to conserve space. This was done with the
SDDL page compression directive. This directive does not appear in
the document but the reader may note that the input 1 ine number of
this directive < 101 > does not appear in the printout.

Page 21: Module Invocation Tree, Summary Report
The Module invocation tree <tier chart) provides a summary report
which displays the module invocation hierarchy. The HIPO elements <2-
4> are segregated from the other elements because they are not linked
by module invocation statements. In this example the tree is quite
shallow because the lower levels of the example have been omitted.

Page 23: Module Cross Reference Table, Summary Report
The modules used for the HIPO description also appear in the
alphabetically ordered Module Cross Reference Table. Note that the
HIPO modules have all been prefixed with "HIP0_" so that they all
appear together in the alphabetical listing.

Page 25: Cross Reference Listing for HIPO DATA SETS
The data elements of the HIPO description which were prefixed by a
number enclosed in square brackets are all included in this cross
reference table. An SDDL directive was used to designate the
underscore and both square brackets to be used to form identifiers.
This was done as a matter of style.

291

SDDL DETAILED DESIGN

Pages 5 - 9 : Pseudo Code Development of the SDDL Detailed Design

Page 5: Title Page Introduction to the Detailed Design Section.
(Omitted to conserve space)

Page é: Description of the Data Structures of the Design
As in the previous modules a TEXT BOX <131-135) is used to provide a
brief description of the purpose of the module. Such descriptive
commentary, now widely recognized as good programming practice, is
well set off by the enclosing TEXT BOX.
The data structure for the SDDL processor includes hierarchies of
scalars, arrays, and linked lists of records. The hierarchical nature
of the data is captured by means of indentation. To produce the
indentation automatically, an SDDL directive statement was used to
define keywords LIST and MEMBER as block initiators. For reasons of
style, a special non-printing directive statement <155) was used to
close the block structures rather than use a block terminator keyword.
Thus, the indentation for the structure <143-154) specifies a linked
list comprised of entities, dx.ENTRY <145), each of which
individually "owns" another linked list comprised of entities,
dx.REFERENCE <152).
The data element names are all prefixed with a two character notation
to identify each datum with the specific area to which it belongs. For
a complex design document this prefix is very helpful because it makes
the context and relationship of the datum immediately clear. Although
this prefix notation may initially be bothersome to the reader it
quickly becomes natural to ignore it while reading the document and
yet the important information is always present when, as is often the
case, it is needed.
Data definitions further augment the document and, where the
information is available, data types, ranges, default values, etc. can
be added.

Page 7: Top Level of the Detailed Design Development:
This module describes the top level of the design as a number of steps
to be performed in sequence. To emphasize the sequential nature of
the design a block structure comprised of initiator keyword FIRST and
substructure keyword NEXT has been defined. This construct is defined
as a "Comment Structure". The individual FIRST-NEXT lines are
obviously comments and the entire construct is a structure in the
sense that the statements following each comment pertain to and are
within the scope of the preceding comment. The reader may note that a
clear overview of a module is easily gained by examining the TEXT BOX
and the sequence of FIRST - NEXT statements. Furthermore , by
including these same constructs as comments in the final program code

2 9 2

a well documented link is established between the design and the code
documents. Examples of this method can be found on line pairs <173 :
293>, <178 : 296> and <229 : 391>.
This module provides another illustration o-f the modu le invocation
statement <179,188>, in this case using CALL as the invocation
keyword. It also illustrates the SDDL actions taken when an output
line exceeds the defined page width <138>. Note that the continued
part of the line does not have a line number since it is part of the
preceding input line <188>.

Page 8: Detailed Design for the First Pass Program
This module illustrates the action the SDDL processor takes when
modules referenced in invocation statements do not exist in the
document <201,203,200, 213>. The blank appearing in the page number
field give a clear reminder that the module was omitted. This module
also illustrates the use of conditional and iteration constructs. The
ELSE keyword <203>, has been defined as a substructure of the IF block
construct. This causes the processor to un-indent to the level of the
corresponding initiator statement <205>, print the line, and then re
in dent to continue the structure. The keyword ENDIF is used to
terminate this structure <214>. The same structure <209 - 211>
illustrates structure nesting.

Page 9 Top half: Design for the Second Pass Program
This module references data elements defined in the HIPÜ section
<230,231 , 233,239,242>. These references have also been automatically
captured in the cross reference tables.

Page 9 Bottom half: Detailed Design of the Statement Input Module
This module illustrates the effect of the block escape statement. The
keyword EXITLOOP <267> has been defined as an escape for the LOOP
REPEAT block construct. This causes the processor to produce a left
arrow to the level of the parent construct calling attention to the
escape from the construct.

SDDL PASCAL CODE
Pages 10 - 14: Pascal Source Code Processed Through SDDL

SDDL is well suited for process ing valid program code wr itten in a
Structured Programming Language [21,313 since the user, by means of
the keyword definition directives, can easily define structures to
match the syntax of the target language. This keyword definition step
usually requires no more than ten directive statements and in the case
of Pascal the structures are predefined. The SDDL processor itself
was originally written in the SIMSCRIPT II.5 Programming Language C153
and later improved and written in Pascal [12,26,29,323.

2 9 3

The code modules shown below are excerpts from the Pascal version. The
Pascal language did present some problems that required the creation
of a few new SDDL techniques and some Pascal coding style conventions.
The primary change was due to the Pascal block structure which permits
procedure nesting. Since this is not possible with SDDL it was
necessary to use the Pascal forward reference capability to predefine
the procedures in order to avoid having to nest them. One could argue
that the resulting document is easier to read and understand because
the declarations and the programming in an outer block are not
separated by the insertion of nested inner blocks. Yet the
relationships between the modules is clearly shown by means of the
module invocation references generated by SDDL. The use of the
forward references also allowied the code modules to be presented in
the document in a top-down order that otherwise would not have been
p oss i b1e .
The data declaration section of the program has been omitted from the
example below since its representation in SDDL did not use any special
features.

Page 10: Title Page Introduction to the Pascal Code Section
(Omitted to conserve space)

Page 11: Pascal Code for the Top Level Driver
As shown in the previous sections, each module begins with a brief
description enclosed in a TEXT BOX. In this case, since the source
lines are valid Pascal code it was necessary to enclose the entire box
in Pascal comment delimiters <285,291). Note also, that since Pascal
makes no provision for the declaration of a Main Program, a comment
statement has been added for this purpose <284) and for a terminator
statemen t <313).
Structures BEGIN-END <292,312), and IF-ELSE <297,299) used in this
module are automatically predefined and available to the user. Note
that the IF construct requires a terminator, <ENDIF>, which has been
entered with a Pascal comment <311).
Pascal and SDDL syntax differ in that the latter requires a specific
keyword to call a module and Pascal does not. Thus the keyword,
<CALL>, which is a Pascal comment, has been used for this purpose
<301,303,304,305,308,309).
The (FIRST - {NEXT comment structure discussed earlier is included
here to maintain the correspondence between detailed pseudo-code
design and implementation code.
This procedure also demonstrates the use of revision notation
<297,300). The processor automatically right justified the revision
notes against the right margin and captured them for entry into the
cross reference table on page 27 under the title "REVISIONS".

2 9 4

Page 12: Pascal Code -for the First Pass Operation
This procedure demonstrates the capability to define specific
indentation for certain structures. In this case, to avoid excessive
indentation, the PROCEDURE structure was defined with zero
indentation. Furthermore, there is no terminator keyword defined for
the PROCEDURE structure. This was done because Pascal uses the word
END for many terminators and it was elected to use END to match with
BEGIN since this structure receives the greatest use and benefits most
from having a terminator keyword. The BEGIN-END construct was used
here to form an iteration structure <325,32ó,339> .

Page 13: Pascal Code for the Statement Reader Module
This procedure demonstrates the use of program variable names that
match corresponding names in the design document <370>.

Page 14: Pascal Code for the Second Pass Operation
As on the previous page, most of the body of this procedure has been
omitted to conserve space. An example of how the Pascal scope
statement is structured usinq the BEGIN-END construct is shown
<392,393,481 > .

SDDL PROGRAM INVOCATION COMMAND

This section provides a description of the sequence of input that the
user must provide to command the execution of the SDDL processor. As
is often the case, the explanation of the input to the command is much
more complex than the command itself. This is especially so when the
input instructions are very short, as in this case, where only the
execution command word and the names of the input and the output files
are required. Nontheless, the full explanation is necessary in order
to cover non-obvious aspects of the command such as allowable inputs,
defaults, and error situations.
Although the instructions presented in this example are few and
simple, they perform the same function as wouiu any large, complicated
user's guide which describes the input sequence and allowable data
values for the specific input data required to run the program.
Another example of an input specification document can be found in the
Formal SDDL Syntax Definitions in the next section. There the
specifications are different only in that they are given as general
rules rather than detailed instructions. It can be seen that in each
of these cases the input specification document is a data preparation
"program" which must be executed by the user rather than a computer.
This program differs from other computer prograrris only in its
programming language, natural English, and the processor, a human
being. Since the design and structure of this program can be
developed with the same concepts as a computer program it follows that
SDDL can be used advantageously in this task as well. It is this
rationale that led to the use of SDDL to develop the "Input Format

2SS

Specification Document" methodology which, in a greatly simplified
version, is discussed below.

Page 15: Title Page Introduction to the SDDL Execution Command
(Omitted to conserve space)

Page 16 - 17: Input Procedure for the 3DDL Execution Command
Since it is necessary to define the input procedure as a sequence of
operations, the FIRST-NEXT comment structure <422,425,432,450,457,472)
was used to create an outline of the steps. The first step directs
the user to enter the processor invocation command. The word ENTER
<423,426,433,451,458) was used to tell the user what must be typed.
To emphasize the fact that a user input is required an SDDL directive
was used to define ENTER as a module escape keyword. This causes the
processor to produce the arrow to the left hand margin as shown.
Notice that this use of the escape statement is different than
previously where it was used to indicate an escape from a functional
control construct. Here it is used simply to call the user's attention
to the fact that input is required at this point. In another
important way, however, both examples are the same in that their
purpose is to call the reader's attention to an important bit of
information. Since the sole function of documentation is to provide
information, it is wise to use every technique available to enhance
document readability and reduce cerebral drag.
Because of the nature of the input, the next step <425-430) happens to
be a user option. The information for this step belongs at the same
level as the rest of the FIRST-NEXT structure so the keyword OPTIONAL
<425,450) was added to the structure definition as a synonym to NEXT
to maintain this consistency.
In the event that the user exercises this option the processor must
provide a response as indicated <429). Note that for emphasis the
computer's response was enclosed in a TEXT BOX but in this case an
angle bracket,), was selected for the boxing character. This was
easily accomplished with the boxing character option available with
the SDDL Text directive.
The next step, which calls for the entry of the name of the user's
input file <432,433), presents some complications since certain
defaults are permitted and error conditions could occur as a result of
faulty input. These exceptions are explained by NOTE statements <435-
448). To call attention to this important information the word NOTE
was added to the FIRST-NEXT structure definition as another synonym to
the NEXT keyword. This causes the processor to bring the statement
out to the same level of indentation as the other elements of this
structure. The selection of this or another technique to emphasize a
line is strictly a matter of user's imagination and style.
With the instructions for entering the name of the user's input file
completed, the next input required is the name of the output file.
Here the user has the option <450-455) of starting a new input 1 ine
before entering the output file name.

2 9 6

The next step directs the user to supply a file name <457-458) or use
the defaults supplied by the command and explains the default
mechanism employed <459-470>.
Finally, the last
user's document and
483> .

step describes the actions taken to process the
signal the completion of the processing step <472-

FORMAL SYNTAX DEFINITION

Pages 18-20: Top Down Definition of the SDDL Syntax
This final section of the example document presents the top levels of
a top-down structured formal definition of the SDDL syntax. Formal
language descriptions are highly structured documents and it is
therefore not the least surprising to find that SDDL can be used
effectively to describe its own syntax. The document here, as in the
previous section, makes important use of the FIRST - NEXT construct
including the added keyword, OPTIONAL, to specify the order in which
the parts of the language must be used. Another construct added is
the SELECTION - OR - END_SELECTI0N_0PTIONS for situations where the
user is required to select one item from a list of alternatives.
These and other techniques are discussed below in the context of the
ex amp 1e .

Page 18: Title Page Introduction to the Syntax Definition
(Omitted to conserve space)

Page 1? Top half: Top Level Syntax Definition
As noted previously, the FIRST - NEXT construct <511,514) gives the
reader a quick preview of the contents of a module. In this case it
shows that at the top level there are only two steps. The first is a
special case of an optional output suppression directive which, if
used, must be the first line of input. The word SEE was defined as a
module invocation keyword to use for referencing this and other
directive definitions <512>. The second step of this module defines
the entire syntax in three high level parts. The ITERATION
END_ITERATI ON <515,523) structure specifies that they may be used as
often as desired, and the SELECTION - OR - END-SELECTION-OPTIONS
structure <516,513,520,522) shows that they may be used in any order .
The three lower level parts, which are fully defined on later pages,
are pointed to by module invocation statements <517,519,521) which use
an asterisk, *, for the invocation keyword. Here again, the choice of
the asterisk for this purpose is strictly a matter of user preference.
This section of the document also uses the underscore, period, and
dash characters as concatenation marks to form single identifiers out
of two or more words <509,512,517).

2 9 7

Pacié 1? Bottom half: Syntax Definition for a Title Page
This module, which was referenced from the preceding module <517>,
defines the syntax for specifying a title page. Here again the FIRST -
NEXT structure, with a slight variation for a special effect,
provides a crisp overview of the three parts of the title page
construct. The variation was the definition of keywords »FIRST
»NEXT (note the asterisk as part of the word) as substructures for the
module initiator keyword instead of an independent structure. This
was done so that the sections named in this way <530,543,548) would
also appear in the Table of Contents. The FIRST - NEXT comment
structure is used in the usual way <531—541) to define the subparts of
the directive statement. In this case a terminator keyword,
END-STATEMENT, was added to the FIRST - NEXT structure to terminate
the definition of the title initiator directive statement <541).

Page 20: Syntax Definition for a Module
The specification of a module construct is similar to a title page.
As can be seen from the high level »FIRST - »NEXT statements, it is
comprised of three parts (initiator<559) - body<576)
terminator<595)) but the subparts in this case are more complex. The
first part of the initiator statement definition requires an initiator
keyword <5S0> but since the choice of the keyword is a user option, no
specific word can be shown in this context. Therefore, the syntax
description document supplies a reference to a submodule which
provides a display of the available built-in keywords and structures.
The next part of the module initiator statement shows that an optional
"noise word" to enhance the appearance of the statement, may be
entered next on the line. Of the three available choices, F0R<564),
T0<5óó), and any punctuation character<568), the first two are
obvious but the third requires additional clarification so a reference
is made to a lower level module for a full explanation.
The first and third parts of. the module structure definition consist
of definitions of single SDDL statements. The middle part, which is
the body <578 - 593) of the module construct, gives the reader a 1 ist
of the essential elements of SDDL and provides page references to
lower level modules where complete detailed definition of the syntax
can be found.

SDDL SUMMARY TABLES
Page 21: Module Invocation Tree (Tier Charb)

The Module Invocation Tree, or tier chart, uses indentation to show
the "caller --> called" relationships among the modules. The tree is
formed by listing all called modules under its caller at the next
lower level of indentation. Line numbers shown at the left of the
page are used for referencing back to previously completed branches.

Page 22: Module Invocation Tree Continued (Omitted)

2 9 8

Page 23: Module - Cross Reference Listing
This summary is an alphabetical, "called — > caller" report of all of
the modules identified in the document by either a module initiator
or a modu1e i nvocat ion st a temen t. For each entry in the t able a list
of line numbers, module names and page numbers of the modules where
the entry appeared is given.

Page 24: Module - Cross Reference Listing Continued (Omitted)

Page 25: Data Items - Cross Reference Listing
This table shows how the prefix used to identify a particular class of
data causes all the elements of that class to be grouped together
because of the alphabetical ordering.

Page 26 i HIPO Data Elements - Cross Reference Listing
This cross reference table was set up to capture the data elements of
the SDDL HIPO development. The punctuation characters defined to be
used to form identifiers for this table are the left and right square
brackets. The underscore was defined as a concatenation character
which does not produce an entry into the cross reference table.
This, and the other cross reference tables are structured exactly as
the module cross reference table discussed above.

Page 27: Revisions - Cross Reference Listing
The last table contains only two entries corresponding to program
revisions. Some examples of other uses for cross reference tables
like these are to capture references to notes for program rehosting,
technical memoranda, technical liens, and requirements items.

CONCLUSION
Throughout the development of a system description, the SDDL design
document should always represent the definitive word on the current
status of the ongoing, dynamic development process. It is essential
that this document be easily updated and readily accessible in a
familiar, informative, readable form to all members of the development
team. This design document is the medium of communication between
designer's creative thinking and the receiver of this information. In
creating such a document there is a trade-off between applying minimal
effort, which increases the reader's burden, and applying a great
amount of effort which minimizes the reader's task. For any serious
task the efficient choice is to minimize the reader's effort since
this is the task repeated most often. Even the writer must also read
the document many times over. By automating many of the tedious
repetitious chores which get in the way of productive effort, SDDL
helps the writer produce a document that is structured and formatted
in a way that also reduces the effort required by the reader. Thus,

2 9 9

the purpose o-f SDDL is to provide a bridge between the software
developer and the reader which will reduce effort and enhance
effectiveness for both.
The importance of readable documentation cannot be overemphasized.
Reducing the cerebral drag in the reading of a complex, information
intensive document greatly enhances its effectiveness as an instrument
for reconciling misunderstandings and disagreements in the
evolutionary development of all aspects of the system description.
The structure formats, page references, and cross reference tables
produced by SDDL make the structured walk-through technique [30] for
joint verification of the design concepts a practical reality. The
design document also supports project management by providing current
documentation of progress and recording task responsibilities.

REFERENCES and BIBLIOGRAPHY

1. Baker, F.T., "Structured Programming in a Production Programming
Environment," IEEE leans.* 2 0 Sciilŵ iije £ngc_*, Vol . SE-1 , No. 2,
pp. 241-252. June 1975.

2. -----, "Chief Programmer Teams: Principles and Procedures," IBM
Report FSC71-5108, Fed. Sys. Div., Gaithersburg, Md., june 1971.

3. -----, and Mills, H.D., "Chief Programmer Teams," Daiamaiioa,
Vol. 19, No. 12, pp. 58-61, Dec. 1973

4. Brooks, F.P., "The Mythical Man-Month," Da t ama t i nn, Uol . 20, No.
12, pp. 45-52, Dec. 1974.

5. Caine, S.H., and Gordon, E.K., "PDL--A Tool for Software Design",
Ec.ogc.am Design Language Befecence Guide, Caine, Färber and
Gordon, Inc., Pasadena, Ca., Sept. 18, 1974.

6. Constantine, L.L., Eundamenlals nl Ecogcam Design, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 197Ó.

7. Dahl, O.J., and Hoare, C.A.R., "Hierarchical Program Structures,"
Slruclured Bcpgcammlng, Academic Press, New York, 1972.

8. Dijkstra, E.W., "Notes on Structured Programming", Slrucluced
Ecogcammlng, Academic Press, New York, 1972.

9. -----, "Structured Programming," Soilwane Engineering Ien.hnS.ques,
NATO Science Committee, Edited by J. Burton, and B. Randall, pp.
88-93, 1969

10. Gray, M., Landen , K., Dooumenlallon SI an da r-ds, Brandon Systems
Press, Inc., NY, 1969.

11. Hoare, C.A.R., “Notes on Data Structuring",
Ecogcammlng, Academic Press, New York, 1972.

Slcuoluced

3 0 0

12. Jensen, K., and Wirth, N., Easnal Lisen Manual and Reqanl 2nd ed.,
Springer-Verlag, NY, 1974.

13. Katzan, H . , Jr., Adu armed Enngr amm Lug , D. VanNostrand Re inhold
Co., NJ, 1970, pp. 152-163.

14. Kernighan, B.W., and PI auger, P.J., Ihe Elamaais o± Enngnammlng
Slxle, McGraw-Hill Book Co., New York, 1974, pp.36-39.

15. Kivi at, P.J., Villanueva, R., and Markowitz, H., Xhe 31MSEE1EI 11
Programming Language, Pr e n t i c e-Ha 1 1 , Englewood Cliffs, NJ , 1969.

16. Kleine, H., and Morris, R.V., "Modern Programming: A Definition",
S1GELAN hinlxnas, Vol . 9, No. 9, Sept. 1974, pp. 14-17.

17. --- , Snilwane De =■ i gn .and Dnnumenla-tlnin 1 annuage , JPL Publ i cat ion
77-24, National Aeronautics and Space Administration, Jet
Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena Ca.,
91103, Aug. 1977.

18. -----, Automating the Software Design Process by Means of the
SDDL" , Ennneedlngs of Ihe Nô . 15 Design Aulntrial-i-nn Cnnlenenne,
IEEE Catalog 378, Ch. 1363-1C, Las Vegas, Nev., June 1973, 371-
379.

19. -----, "A Vehicle for Developing Standards for Simulation Program
ming", Ennneedlngs of Ulnlen^. ZZ Slmulallnn Cnnlenenne, Highland,
Sargent, and Schmidt, eds., pp. 731-741.

20. Liskov, B., and Z i1 les, S., "Programming With Abstract Data
Types', S1ŰELÁL1 blnllnes, March 1974, pp . 50-59.

21. Miller, E.F., Jr., A Cnrngendlum n£ Language Exlenslnns in Snggnnl
Slnuniuned Programm ing, RN-42, General Research Corp., Santa
Barbara, Ca., Jan. 1973.

22. Mills, H .D .,"Top-Down Programming in Large Systems", in Debugging
Ianh.nlq.ues In Lange Sxslems, edited by R. Rustin, Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1971, pp.43-45.

23. Myers, G.J., Enmpnslle Deslgnu Ihe Design n£ MnnLulan Bnngnams,
Technical Report TR00.2406, IBM, PoughKeepsie, NY, Jan. 29, 1973.

24. Ogdin, C.A., Snlluiane Design inn Mlnnnnnmqulens, Prentice-Hall ,
Inc., Englewood Cliffs, N J , 1973.

25. Peters, L.J., Sollwane Designs. blelhmd and Ienhnlques, Your don
Press, NY, 1981.

26. Schneider, G.M., We ingart, S.W., and Perlman, D.M., An Inlnndun-
llon In Ennnnaromxng and Ennhlem Snlulng Ullh Easnal, John Wiley,
NY, 1978.

27. Tausworthe, R.C., Sian dandl-zed Denelngmenl ni Encopnlen Snilwane^
Eanl 1 Melhnds, Jet Propulsion Laboratory, Pasadena, Ca. , 1976.

301

28. -----, Slaadaadlaad Qaualopinanl o£ Compulaa Solluiaaa^ Eaa± 11
Slandaads, Jet Propulsion Laboratory, Pasadena, Ca., Aug. 1978.

29. Wirth, N., Sxslamalla Ea-ogr amm i mg , Prent i ce-Hal 1 , Inc., Englewood
Cliffs, NJ, 1973.

30. Yourdon, E., .Sla.ua-t.uaad UalUhagnoilia , Pr en t i c e-Ha 1 1 , Inc., Engle
wood Cl iffs, NJ, 1973.

31. -----, Iaah.nlq.uas o£ Eaogaam Slauciuaa aad Qaslqn, Prentice-Hal1,
Inc., Englewood Cliffs, NJ, 1975.

32. Zaks, R., InlanaLunllam la E&S£ói_, P310, SYBEX, Berkeley, Ca.,
1 930 .

33. HIPO - A Design Aid and Documentation Technique, IBM Corp . , Manual
No. GC'20-1851, White Plains, NY, IBM Data Processing Diu., 1974.

3 0 2

**
* *
* SOFTWARE DESIGN AND DOCUMENTATION LANGUAGE (SDDL) *
* *
* An illustration of the application of SDDL using the *
* SDDL processor itself as the object of the example *
* ***

303

PAGE LINE

0 20
1 28
2 45
3 52
4 78
4 102
5 125
6 130
7 166
8 192
9 220
9 249
10 275
11 284
12 314
13 342
14 377
15 406
16 414
18 498
19 509
19 528
19 530
19 543
19 548
20 557
20 559
20 576
20 595
21
23
25
26
27

TABLE OF CONTENTS

TITLE SDDL EXAMPLE
PROGRAM OBJECTIVES

TITLE HIPO DEVELOPMENT OF SDDL
PROGRAM HIPO_DEVELOPMENT FOR THE SDDL PROCESSOR
PROGRAM HIPO_SDDL_FIRST_PASS
PROGRAM HIPO_SDDL_SECOND_PASS

TITLE SDDL DESIGN DEVELOPMENT
PROGRAM DESIGN_DATA_STRUCTURE AND GLOSSARY
PROGRAM DESIGN_MAIN_DRIVER
PROCEDURE DESIGN_FIRST_PASS
PROCEDURE DESIGN_SECOND_PASS
PROCEDURE DESIGN_GET_NEXT_STATEMENT

TITLE PASCAL DEVELOPMENT OF SDDL
{PROGRAM CODE_MAIN>
PROCEDURE CODE_FirstPass;
PROCEDURE CODE_GetNextStatementJ
PROCEDURE CODE_SecondPass;

TITLE SDDL INVOCATION COMMAND
SDDL PROGRAM_INVOCATION_FORMAT_SPECIFICATION

TITLE TOP LEVEL SDDL SYNTAX DEFINITIONS
SDDL_CONSTRUCT: SDDL-PROGRAM
SDDL_CONSTRUCT: TITLE-PAGE

»FIRST TITLE.INITIATOR.DIRECTIVE
»NEXT: TITLE-PAGE-BODY
»LAST: TITLE.BOX.TERMINATOR.DIRECTIVE

SDDL_CONSTRUCT: MODULE-GROUP
»FIRST MODULE.INITIATOR.STATEMENT
»NEXT: MODULE-GROUP-BODY
»NEXT: MODULE.TERMINATOR.STATEMENT

MODULE INVOCATION TREE

PAGE I

CROSS REFERENCE -
CROSS REFERENCE -
CROSS REFERENCE -
CROSS REFERENCE -

- MODULE
- HIPO DATA SETS
- DATA ITEMS

I
REVISIONS

28
29
30
31
32
33
34
35
3637
38
39
40
41
42
43

304

PAGE 1
PROGRAM OBJECTIVES***

* THE OBJECTIVE OE SDDL IS TO PROVIDE AN EFFECTIVE COMMUNICATIONS MEDIUM*
* TO SUPPORT THE DESCRIPTION AND DOCUMENTATION OF COMPLEX SOFTWARE *
* SYSTEMS. THIS OBJECTIVE IS MET BY PROVIDING: *
* *
* 1. A DESCRIPTION LANGUAGE WITH FORMS AND SYNTAX THAT ARE SIMPLE, *
* UNRESTRICTIVE AND COMMUNICATIVE, *
* ** 2. A PROCESSOR WHICH CAN CONVERT DESIGN SPECIFICATIONS INTO AN *
* INTELLIGIBLE AND INFORMATIVE MACHINE REPRODUCIBLE DOCUMENT, *
* *
* 3. METHODOLOGY FOR EFFECTIVE USE OF THE LANGUAGE AND THE PROCESSOR.*
* *

ENDPROGRAM

305

P A G E

OtC***#**#*********#************StC******#*****!*#**>|t!*CSÍOfc;S#
* *
* This section exemplifies the use of SDDL to present a *
* "HIERARCHICAL INPUT - PROCESS - OUTPUT" CHIPO) *
* description of the SDDL system *
* *

52
53
54
55
56
57
58
5968
61
62
63
64
65
66
67
68
6970
71
72
73
74
75
76
77

306

PROGRAM HIPO_DEVELOPMENT FOR THE SDDL PROCESSOR** X* ******** * * * 4c ******* * ***** ** ** * *** * * * **** * * *** ** * ********* * ** * * ****** *
* *
* THE SDDL PROGRAM IS IMPLEMENTED IN TWO PASSES. THIS MODULE DESCRIBES *
* THE TOP LEVEL OF THE PROGRAM WHICH DOES THE INITIAL SET UP AND INVOKES#
* THE TWO PASSES TO COMPLETE THE PROCESSING. ** * I***
i n p u t:

C13_SDDL_INVOCATION_COMMAND
C 21 SDDL OUTPUT FILE

SDDL HIPO DEVELOPMENT PAGE 3

PROCESS:
INITIALIZE THE SDDL PROCESSOR

Cl]--- >OPEN I/O AND SCRATCH FILES
EXECUTE HIPO_SDDL_FIRST PASS----------------------------- X 4)
EXECUTE HIPO_SDDL_SECOND_PASS---------------------------- >(4)
APPEND EXECUTION SUMMARY DATA TO SDDL OUTPUT FILE -- > C23
DELETE SCRATCH FILES
TERMINATE THE PROCESSOR

OUTPUT:
C23_SDDL_OUTPUT_FILE

ENDPROGRAM

SDDL HIPO DEVELOPMENT PAGE 4

78 PROGRAM HIPO_SDDL_FIRST_PASS79 **********mm***
80 * *
81 * THE SDDL INPUT FILE IS READ. THE INPUT IS FORMATTED AND WRITTEN TO THE*
82 * SCRATCH FILE» AND CROSS REFERENCE AND SUMMARY DATA ARE COLLECTED. *
83 * *94 ***
85
86 INPUT:
87 C 33_SOURCE_DATA_FILE
88
89 PROCESS:
90 C 31----»CONVERT SOURCE DATA TO STRUCTURED FORMAT > C43
91 DEVELOP TABLE OF CONTENTS DATA -- > C53
92 CAPTURE FORWARD REFERENCES DATA -- > C63
93 CAPTURE CROSS REFERENCE TABLE DATA -- > C43
94
95 o u t p u t:
96 [43_DOCUMENT_SCRATCH_FILE
97 C53_TABLE_OF_CONTENTS_FILE
98 C63_FORWARD_REFERENCE_SCRATCH_FILE
99
.00 ENDPROGRAM

02 PROGRAM HIPO_SDDL_SECOND_PASS03 **********************************«WWW«********************** **********
04 * *
05 * THE TABLE OF CONTENTS IS WRITTEN» FORWARD REFERENCES ARE MERGED WITH *
06 * THE BODY OF THE DOCUMENT AND THE CROSS REFERENCE TABLES ARE WRITTEN *
07 * *08 ***
09
10 INPUT:
11 C43_DOCUMENT_SCRATCH_FILE
12 C53_TABLE_OF_CONTENTS_FILE
13 C 63_FORWARD_REFERENCE_SCRATCH_FILE
14
15 PROCESS:
16 C 53--- »WRITE TABLE OF CONTENTS---> C23
17 C 6 3 » C43 — »ADD MISSING PAGE REFS TO MODULE CALL STATEMENTS----> C23
18 C 43--- »WRITE SDDL OUTPUT F I L E ----> C23
19
20 OUTPUT:
21 C 23_SDDL__OUTPUT_FILE
22
23 ENDPROGRAM

308
PAGE

Ke ***
* *
* This section exemplifies the use of SDDL for software design development *
* * **

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153154
156
157
158
159
160
161
162
163
164
165

309

PROGRAM DESIGN_DATA_STRUCTURE AND GLOSSARY* * * ** * * * * * * * *** * * * * * * * * # * * * * * * * * * * * * #* * * * * * * * * * * * * # * * * * # * dc * * * * * * * * * * * * * * *
* *
* DATA STRUCTURES USED BY THE SDDL PROCESSOR ARE DEFINED AND EXPLAINED *
* *
* # * * * * * * * * * * * * * * * * * > * * * > « . * * ’« * ; , (

SDDL DESIGN DEVELOPMENT PAGE 6

tb.INPUT.TEXT.BUFFER GLOBAL CHARACTER ARRAY CONTAINING A
SINGLE'STATEMENT FORMED BY CONCATEN
ATION OF CONTINUED INPUT LINES

tb.TEXT.LENGTH LENGTH OF THE CURRENT INPUT STMT
LINKED LIST OF DICTIONARY ENTRIESLIST: dx.TOKEN.DICTIONARY

MEMBER ENTITY! dx.ENTRY
dx.CHARACTER.COUNT
dx.TEXT.POINTER
dx.PROGRAM.NAME

LIST: dx.REFERENCES.TO.TOKEN
MEMBER ENTITY: dx.REFERENCE

dx.PAGE.NUMBER
dx.LINE.NUMBER

SINGLE DICTIONARY ENTRY
TEXT LENGTH
POINTER TO ACTUAL TEXT FOR THIS ENTRY
IF ENTRY IS A KEYWORD THEN PROGRAM NAME
/ELSE NULL
LIST OF ALL REFERENCES TO THE TOKEN

SPECIFIC REFERENCE TO THE TOKEN
REFERENCE PAGE NUMBER
REFERENCE LINE NUMBER

LIST: ms.MODULE.STACK PUSH-DOWN STACK OF NODES REPRESENTING
NESTED, CURRENTLY OPEN STRUCTURES

MEMBER ENTITY: mx.NODE
ms . INDENTATION.COLUMN
ms.STRUCTURE.ID

ENDPROGRAM DATA STRUCTURE

OPEN STRUCTURE NODE
STARTING PRINT COLUMN FOR THIS NODE
IDENTITY OF ASSOCIATED STRUCTURE PARTS

310

166
167
168
169
170
171
172
173
174
175
176
177 170
179
180
101
182
183
184
185
186
187
188

&
189
190
191

PROGRAM DESIGN_MAIN_DRIVER»»Hí*»**»*************»#*»#***)«*»**»**#*»**)*!*»:**»)*!*»**)*!*»)*«*»»***»*********
* *
» THE TOP LEUEL OF THE SDDL PROCESSOR IS SPECIFIED IN PSEUDO CODE ** *at**

SDDL DESIGN DEVELOPMENT PAGE 7

FIRST: INITIALIZE THE PROGRAM
ESTABLISH INITIAL VALUES FOR ALL PROGRAM VARIABLES
SET UP DEFAULT STRUCTURES
OPEN I/O AND SCRATCH FILES

NEXT: PROCESS THE USER'S SOURCE STATEMENTS
CALL DESIGN_FIRST_PASS-- >(8)

NEXT: PRODUCE THE DOCUMENT SUMMARIES
PREPARE THE MODULE REFERENCE TREE
PREPARE THE MODULE CROSS REFERENCE TABLE
PREPARE THE USER DEFINED CROSS REFERENCE TABLES
PRINT THE TABLE OF CONTENTS

NEXT: PERFORM THE SECOND PASS OPERATIONS
CALL DESIGN_SECOND_PASS TO MERGE TEXT BODY WITH THE FORWARD REFERENCE
PAGE NUMBERS-->(9)

PRINT THE SDDL EXECUTION STATISTICS
ENDPROGRAM

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

311

PROCEDURE DESIGN_FIRST_PASS***
* *
* SOURCE DATA IS READ AND FORMATTED ONTO A SCRATCH FILE *
* * ***

SDDL DESIGN DEVELOPMENT PAGE 8

LOOP UNTIL ALL STATEMENTS IN C33_SOURCE_DATA_FILE HAVE BEEN PROCESSED
CALL DESIGN_GET_NEXT_STATEMENT------------------------------------>(9)
CALL DESIGN_TOKEN.FINDER (FINDS THE FIRST TOKEN IN THE STATEMENT)>()
IF dx.TOKEN.TYPE IS AN "IDENTIFIER"
CALL DESIGN_T0KEN . DICTIONARY. SEARCH---------------------------- >()

ENDIF
IF THE TOKEN WAS FOUND AND IT IS A KEYWORD
CALL DESIGN_KEYWORD . STATEMENT . PROCESSOR------------------------ >()

ELSE THE STATEMENT DOES NOT BEGIN WITH A KEYWORD
IF THE ms.MODULE.STACK IS EMPTY
PUSH A DUMMY MODULE ONTO THE ms.MODULE.STACK

ENDIF
CALL DES I GN_SOURCE. LISTER TO WRITE STMT------------------------ >()

ENDIF
FLUSH ANY "ERROR MESSAGES" -TRIGGERED BY THE STATEMENT

REPEAT
ENDPROCEDURE

220221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

312

PROCEDURE DESIGN_SECOND_PASS
*

* *
* AFTER THE USER'S INPUT TEXT HAS BEEN PROCESSED THIS MODULE MERGES *
* THE FORWARD REFERENCES INTO THE BODY OF THE TEXT AND WRITES IT TO *
* THE FINAL OUTPUT FILE *
* * * *** *** ****** **** ** ******************************** **** *************** ***
FIRST: MERGE THE FORWARD REFERENCES INTO THE BODY OF THE TEXT

REWIND [4I_D0CUMENT_SCRATCH_FILE AND OPEN IT FOR INPUT
REWIND C6]_F0RWARD_REFERENCE_SCRATCH_FILE AND OPEN FOR INPUT
READ THE DATA FOR THE FIRST FORWARD REFERENCE
LOOP UNTIL ALL LINES IN C43_DOCUMENT_SCRATCH_FILE HAUE BEEN PROCESSED

READ NEXT INPUT LINE
IF THE LINE REQUIRES A FORWARD REFERENCE LINE NUMBER
ADD THE REQUIRED INFORMATION TO THE INPUT LINE
READ THE DATA FOR THE NEXT FORWARD REFERENCE

ENDIF
PRINT THE LINE TO C23_SDDL_OUTPUT_FILE

REPEAT
NEXT! PRINT THE REMAINING DOCUMENT SUMMMARIES TO C21_SDDL_0UTPUT_FILE

PRINT THE MODULE REFERENCE TREE
PRINT THE MODULE CROSS REFERENCE TABLE
PRINT THE USER SPECIFIED CROSS REFERENCE TABLES

ENDPROCEDURE

SDDL DESIGN DEVELOPMENT PAGE 9

PROCEDURE DESIGN_GET_NEXT_STATEMENT
* *
* INPUT LINES ARE READ AND IF LINE CONTINUATION IS INDICATED THE LINES *
* ARE CONCATENATED INTO A SINGLE STATEMENT. STATEMENT PARAMETERS ARE *
* ESTABLISHED *
4C 4c
4C4<4C4C4C4C

FIRST: GET THE FIRST INPUT LINE
READ THE INPUT LINE INTO THE tb.INPUT.TEXT.BUFFER

NEXT: CHECK FOR INPUT LINE CONTINUATION
LOOP UNTIL THE STATEMENT IS COMPLETE

FIND THE LAST NON BLANK CHARACTER OF THE LINE
IF THE CHARACTER IS THE CONTINUATION MARK

READ THE NEXT INPUT LINE AND ADD IT TO THE tb.INPUT.TEXT.BUFFER
ELSE

<-- EXITLOOP
ENDIF

REPEAT
NEXT: SET tb . TEXT.LENGTH

ENDPROCEDURE

313 PAGE 10

*
* This section exemplifies the use of
* the pascal implementation
*

*
SDDL to process *

Of SDDL **

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

314

PASCAL CODE FOR SDDL PAGE 11
{PROGRAM CODE_MAIN!

C
*

* *
* THE TOP LEUEL DRIVER OF THE SDDL PROCESSOR IS SPECIFIED IN PSEUDO CODE*
* * ***
>
BEGIN{FIRST: INITIALIZE THE PROGRAM>

{CALL! Initialization;-- X)
{NEXT: PROCESS THE USER'S SOURCE STATEMENTS!!

IF NOT MoreData THEN Í REU X16 !
WRITELN (Output/ 'NO INPUT FOR THIS RUN')

ELSE
BEGIN Í REU X17 !

{CALL! CODE_FirstPass;-------------------------------------->< 12)
{FIRST: DEVELOP DOCUMENT SUMMARIES!

{CALL! ProduceInvocat ionTree ;---------------------------- >()
{CALL! ProduceXre-fTab 1 es;-------------------------------- >()
{CALL! ProduceTab leOf Contents;--------------------------- >()

{NEXT: PERFORM THE SECOND PASS OPERATIONS!
{CALL! CODE_SecondPass;---------------------------------- >(14)
{CALL! EndSummary ;-- X)

END
{ENDIF!

END
ÍENDPROGRAM!

•

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

315

PASCAL CODE FOR SDDL PAGE 12
PROCEDURE CODE_FirstPass;

* *
* SOURCE DATA IS READ AND FORMATTED ONTO A SCRATCH FILE *
* * ***
>
UAR Keyword: KeywordSe1ector;
BEGIN

WHILE StmtFound DO
BEGIN

IF TokenType >= IdentifierToken THEN
BEGIN

■C CALL> LookupKey word (FALSE; Keyword);------------------------ >()
IF Keyword <> NIL THEN
■CCALL) ProcessKeywordStatement (Keyword)---------------------->()

ELSE
•C CALL> ProcessPass i restatement-------------------------------><)

■CEND IF>
END

ELSE
■C C ALL} CODE_Ge tNextSt atement------------------------------------ >(13)

■CENDIF}
e n d ;
•CCALL> ReduceStack (0)-- ><)

e n d ;

342
343
344
345
346
347
34B
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

316

PASCAL CODE FOR SDDL PAGE 13
PROCEDURE CODE_GetNextSt atement; •

* *
* INPUT LINES ARE READ AND IF LINE CONTINUATION IS INDICATED THE LINES *
* ARE CONCATENATED INTO A SINGLE STATEMENT. STATEMENT PARAMETERS ARE *
* ESTABLISHED ** *
* * * HC ** * * * * * * * * * * Kt* * * * * * * * * * ** * * * * * * * * * * * * ** # * * * * * * * * * * * * * * * * * * Ht * * * * * * * ** * * *
>
UAR i: i nt eg e r;

c m c h a r;
BEGIN

{FIRST: GET THE NEXT LINE OF INPUT>Í
* CODE BODY OMITTED *
>

{NEXT: CHECK FOR INPUT LINE CONTINUATION>
■Ci«*»:************)*)***!***********)*!***********************************«)****
* CODE BODY OMITTED * ***
>

{NEXT: SET tb.TEXT.LENGTH AND RETRIEUE FIRST TOKEN OF THE STMT>
{
* CODE BODY OMITTED **
>

END

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

317

PROCEDURE CODE_SecondPass;
Í***

PASCAL CODE FOR SDDL PAGE 14

* *
* AFTER THE USER'S INPUT TEXT HAS BEEN PROCESSED THIS MODULE MERGES *
* THE FORWARD REFERENCES INTO THE BODY OF THE TEXT AND WRITES IT TO *
* THE FINAL OUTPUT FILE *
* **
>
UAR Reference: ForwrdRefEntry;

I» Length» LineCount: INTEGER;
BEGIN

ÍFIRST: MERGE THE FORWARD REFERENCES INTO THE BODY OF THE TEXT>
WITH Reference DO
BEGIN

RESET (Scratch)»
RESET (ForuiardRef erences);C***
* CODE BODY OMITTED **
>

END
e n d;

318
PAGE 15

* * * * * * * * ** * #* * * *# ** * * * * * * * He * * * *** ** * * * * * * * * * * * * * * * * * * *** 4c * * * *
* *
* This section exemplifies the use of SDDL to describe the *
* command for invoking the SDDL processor on the UAX 11/7B& *
* *

414
415
416
417
4 IB
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
43B
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

319

SDDL PROGRAM_INUOCATION_FORMAT_SPECIFICATION***:«*:
* *
* THE STEPS FOR INVOCATION OF THE SDDL PROCESSOR AND FOR *
* NAMING THE INPUT AND OUTPUT FILES ARE PRESENTED BELOW *
* *

SDDL INVOCATION COMMAND PAGE 16

******#**********>********************:****************************:********
FIRST: Enter the SDDL invocation command

< -ENTER LITERAL: 0SDDL
OPTIONAL NEXT: Start a new input line

< -ENTER: CARRIAGE RETURN
VAX RESPONSE:>>>
> ENTER THE INPUT FILE NAME>>>

NEXT: Specify the input file name
< -ENTER THE NAME OF THE INPUT FILE

NOTE:
IF THE FILE NAME EXTENSION IS OMITTED
DEFAULT EXTENSION "SDD" WILL BE APPLIED ENDIF

NOTE:
IF THE INPUT FILE SPECIFIED DOES NOT EXIST

VAX RESPONSE:>>>
> FILE NAMED DOES NOT EXIST, TRY AGAIN >
> ENTER THE INPUT FILE NAME >>
COMMAND MACRO RETURNS TO PREVIOUS STEP

ENDIF
OPTIONAL NEXT: Start a neuu input line

< -ENTER: CARRIAGE RETURN
VAX r e s p o n s e:>>>
> ENTER THE OUTPUT FILE NAME >>

NEXT: Specify the name of the output file
< -ENTER THE NAME OF THE OUTPUT FILE OR CARRIAGE RETURN

IF A CARRIAGE RETURN IS ENTERED
"LIS" WILL BE APPENDED TO THE INPUT FILE NAME TO FORM THE
NAME OF THE OUTPUT FILE

ELSE IF THE EXTENSION NAME IS OMITTED
"LIS" WILL BE APPENDED TO THE OUTPUT NAME SUPPLIED

>>>

ELSE
THE OUTPUT FILE NAME WILL BE USED AS SPECIFIED

ENDIF

472
473
474
475
476
477
47B
479
480
481
482
483
484
485

320

NEXT: SDDL processor is executed
VAX RESPONSE:>>>
> >
> INPUT/OUTPUT FILES ARE ■'INPUT" & "OUTPUT" >
> > >>>
THE SDDL PROGRAM IS EXECUTED
THE CONSOLE BELL IS RUNG TO NOTIFY USER

END

SDDL INVOCATION COMMAND PAGE 17

321
PAGE 18

* * * *********************** He *** * **** ## ***** * ** «
* TOP LEUEL *
* *
* SYNTAX SPECIFICATION *
* *
* FOR THE ** *
* SOFTWARE DESIGN & DOCUMENTATION LANGUAGE *
* *
**

509
510
511
512
513
514
515
516
517
51S
519
520
521
522
523
524
526

528
529
530
531
532533
534
535
536
537
538
533
540
541
542543
544
345
546
547
548
549
550
551
552
553
554
556

322

SDDL_CONSTRUCT: SDDL-PROGRAM
FIRST: The optional output suppression control

SEE SUPPRESS. OUTPUT. DIRECTIVE-------------------------------------- ><)
NEXT: The document

ITERATION:
SELECTION:

* TITLE-PAGE--- X 19)
OR

* MODULE-GROUP--- >(20)
OR* FORMAT-CONTROL-DIRECTIUE------------------------------------- >C)
END_SELECTION_OPTIONS

END ITERATION

SDDL - SYNTAX DEFINITION PAGE 19

END CONSTRUCT

SDDL_CONSTRUCT: TITLE-PAGE
«FIRST TITLE.INITIATOR.DIRECTIVE

FIRST: The DIRECTIUE keyword
LITERAL: »TITLE

OPTIONAL NEXT: The character to be used to enclose the text body
SELECTION:

Any PUNCTUATION» MARK» STRING» or COMMENT character
OR:

NULL (Default = LITERAL: *)
END_SELECTION_OPTIONS

NEXT: The title of the Title Page for entry into the Table of Contents
Any text

END_ST ATEMENT
«NEXT: TITLE-PAGE-BODY

Up to a full page of statements» none of uihich may begin with »END
(Note that these are lines» not statements)
(This therefore precludes the use of line continuation)

«LAST: TITLE.BOX.TERMINATOR.DIRECTIUE
FIRST:

LITERAL: «END
OPTIONAL NEXT:Any additional notation (ignored)
END STATEMENT

END CONSTRUCT

323

557 SDDL_CONSTRUCT: MODULE-GROUP
558
559 »FIRST MODULE.INITIATOR.STATEMENT
560 FIRST: The keyword for a MODULE INITIATOR
561 SEE BUILT. IN. KEYWORDS--- >()
562 OPTIONAL NEXT: Noise word
563 SELECTION:

SDDL - SYNTAX DEFINITION PAGE 20

564 LITERAL: FOR
565 OR
566 LITERAL: TO
567 OR
568 » PUNCTUATION
569 END_SELECTION_OPTIONS
570 NEXT: The name of the MODULE
571 * IDENTIFIER--- >()
572 OPTIONAL NEXT:
573 Any text may be added to complete the statement
574 END_STATEMENT
575
576 »NEXT: MODULE-GROUP-BODY
577 ITERATION:
578 SELECTION:
579 * PASSIUE. STATEMENT-------------------------- ------------- ----->()
500 OR
581 * MODULE. INUOCATION. STATEMENT------------------------------------ >()
582 OR
583 » ESCAPE. STATEMENT for the extant MODULE---------------------- ----M)
584 OR
585 * MODULE. SUBSTRUCTURE. STATEMENT for the extant MODULE------------ X)
586 OR
587 * TEXT-BOX-GROUP------------- >()
588 OR
589 * FORMAT-CONTROL-DIRECTIUE--------------------------------------- >()
590 OR
591 * BLOCK-GROUP--- >()
592 END_SELECTION_OPTIONS
593 END_ITERATION
594
595 »NEXT: MODULE.TERMINATOR.STATEMENT
596 FIRST: The TERMINATOR keyword corresponding to the INITIATOR keyword
597 SEE BUILT. IN. KEYWORDS---------------------------------- -------— --><)
598 n e x t:
599 Any text may be added to complete the statement
600 END_STATEMENT
601
603
604 END CONSTRUCT

324

LINE PAGE ****** MODULE INVOCATION TREE ******
1 1 OBJECTIVES
2 3 HIPO_DEVELOPMENT
3 4 HIPO_SDDL_FIRST_PASS
4 4 HIPO_SDDL_SECOND_PASS
5 6 DESIGN_DATA_STRUCTURE
G 7 DESIGN MAIN DRIVER
7 8 DESIGN_FIRST_PASS
8 9 DESIGN_GET_NEXT_ST ATEMENT
9 * DESIGN_TOKEN.FINDER
10 * DESIGN_TOKEN.DICTIONARY.SEARCH
11 * DESIGN_KEYWORD.STATEMENT.PROCESSOR
12 * DESIGN SOURCE.LISTER
13 9 DESIGN_SECOND_PASS
14 11 CODE_MAIN
15 * . Initialization
16 12 . CODE_F irstPass
17 * LookupKeyuiord
18 * • ProcessKeyuiordSt ate ment
19 * • ProcessPassirestatement
20 13 • CODE_GetNextSt atement
21 * ReduceSt ack
22 * . ProducelnvocationTree
23 * . ProduceXrefTab 1 es
24 * . ProduceTableOfContents
25 14 . CODE_SecondPass
26 * . EndSummary
27 16 PROGRAM_INVOCATION_FORMAT_SPECIFICATION
28 19 SDDL-PROGRAM
29 * SUPPRESS.OUTPUT.DIRECTIVE
30 19 . TITLE-PAGE
31 20 MODULE-GROUP
32 * . FORMAT-CONTROL-DIRECTIVE
33 19 TITLE.INITIATOR.DIRECTIVE
34 19 TITLE-PAGE-BODY
35 19 TITLE.BOX.TERMINATOR.DIRECTIVE
36 20 MODULE.INITIATOR.STATEMENT
37 * BUILT.IN.KEYWORDS
38 * PUNCTUATION
39 * . IDENTIFIER
40 20 MODULE-GROUP-BODY
41 * . PASSIVE.STATEMENT
42 » . MODULE.INVOCATION.STATEMENT
43 * . ESCAPE.STATEMENT
44 * . MODULE.SUBSTRUCTURE.STATEMENT
45 * TEXT-BOX-GROUP
46 * . FORMAT-CONTROL-DIRECTIVE
47 * . BLOCK-GROUP

PAGE 21

325

MODULE
CROSS REFERENCE LISTING PAGE 23+ +++- -++ + + - -++ + -

BLOCK-GROUP
PAGE 20 »NEXT: MODULE-GROUP-BODY 591

BUILT.IN.KEYWORDS
PAGE 20 »FIRST MODULE.INITIATOR.STATEMENT 561
PAGE 20 »NEXT: MODULE.TERMINATOR.STATEMENT 597

CODE_FirstPass
PAGE 11 -C PROGRAM CODE_MAIN 301
PAGE 12 PROCEDURE CODE_FirstPass 314

CODE_GetNextSt atement
PAGE 12 PROCEDURE CODE_FirstPass 337
PAGE 13 PROCEDURE CODE_GetNextStatement 342

CODE_MAIN
PAGE 11 CPROGRAM CODE_MAIN 284

CODE_SecondPass
PAGE 11 -CPROGRAM CODE_MAIN 308
PAGE 14 PROCEDURE CODE_SecondPass 377

DESIGN_DAT A_STRUCTURE
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE 130

DESIGN_FIRST_PASS
PAGE 7 PROGRAM DESIGN_MAIN_DRIUER 179
PAGE 8 PROCEDURE DESIGN_FIRST_PASS 192

DESIGN_GET_NEXT_STATEMENT
PAGE B PROCEDURE DESIGN_FIRST_PASS 200
PAGE 9 PROCEDURE DESIGN_GET_NEXT_STATEMENT 249

DESIGN_KEYWORD.STATEMENT.PROCESSOR
PAGE 8 PROCEDURE DESIGN_FIRST_PASS 206

DESIGN_MAIN_DRIUER
PAGE 7 PROGRAM DESIGN_MAIN_DRIVER 166

DESIGN_SECOND_PASS
PAGE 7 PROGRAM DESIGN_MAIN_DRIVER 188
PAGE 9 PROCEDURE DESIGN_SECOND_PASS 220

DESIGN_SOURCE.LISTER
PAGE 8 PROCEDURE DESIGN_FIRST_PASS 213

DESIGN_TOKEN.DICTIONARY.SEARCH
PAGE 8 PROCEDURE DESIGN_FIRST_PASS 203

DESIGN_TOKEN.FINDER
PAGE 8 PROCEDURE DESIGN_FIRST_PASS 201

EndSummary
PAGE 11 -CPROGRAM CODE_MAIN 309

ESCAPE.STATEMENT
PAGE 20 »NEXT: MODULE-GROUP-BODY 583

FORMAT-CONTROL-DIRECTIUE
PAGE 19 SDDL_CONSTRUCT: SDDL-PROGRAM 521
PAGE 20 »NEXT: MODULE-GROUP-BODY 589

HIPO_DEVELOPMENT
PAGE 3 PROGRAM HIPO_DEVELOPMENT 52

HIPO_SDDL_FIRST_PASS
PAGE 3 PROGRAM HIPO_DEVELOPMENT 68
PAGE 4 PROGRAM HIPO_SDDL_FIRST_PASS 78

HIPO_SDDL_SECOND_PASS
PAGE 3 PROGRAM HIPO_DEVELOPMENT 69
PAGE 4 PROGRAM HIPO_SDDL_SECOND_PASS 102

IDENTIFIER
PAGE 8 PROCEDURE DESIGN_FIRST_PASS 202
PAGE 20 »FIRST MODULE.INITIATOR.STATEMENT 571

326

HIPO DATA SETS
CROSS REFERENCE LISTING -++++++++++- PAGE 25

PAGE 3 PROGRAM HIPO_DEUELOPMENT
SDDL INUOCATION COMMAND
PAGE 3 PROGRAM HIPO._DEUELOPMENT 62
PAGE 3 PROGRAM HIPO._DEUELOPMENT 70
PAGE 4 PROGRAM HIPO SDDL SECOND PASS 116 117 118
PAGE 3 PROGRAM HIPO._DEUELOPMENT 63 75
PAGE 4 PROGRAM HIPO SDDL SECOND PASS 121
PAGE 9 PROCEDURE DESIGN_SECOND_PASS 239 242
PAGE 4 PROGRAM HIPO SDDL FIRST PASS 90

C 13
£13.
C 23

C 23 SDDL OUTPUT FILE

£33
£33.

fc 43

£ 43.

£53

£53.

£63

£ 6 3

_SOURCE_DATA_FILE
"PAGE 4 PROGRAM HIPO_SDDL_FIRST_PASS
PAGE 8 PROCEDURE DESIGN_FIRST_PASS
PAGE 4 PROGRAM HIPO_SDDL_FIRST_PASS
PAGE 4 PROGRAM HIPO_SDDL_SECOND_PASS
_DOCUMENT_SCRATCH_FILE
"PAGE 4 PROGRAM HIPO_SDDL_FIRST_PASS
PAGE 4 PROGRAM HIPO_SDDL_SECOND_PASS
PAGE 9 PROCEDURE DESIGN_SECOND_PASS
PAGE 4 PROGRAM HIPO_SDDL_FIRST_PASS
F̂ AGE 4 PROGRAM HIPO_SDDL_SECOND_PASS
_Th8LE_0F_C0NTENTS_FILE
“page 4 program h ip o_sddl_first_pass
PAGE 4 PROGRAM HIPO_SDDL_SECOND_PASS
PAGE 4 PROGRAM HIPO_SDDL_FIRST_PASS
PAGE 4 PROGRAM HIPO_SDDL_SECOND_PASS
_FORWARD_REFERENCE_SCRATCH_FILE
"PAGE 4 PROGRAM HIPO_SDDL_FIRST_PASS
PAGE 4 PROGRAM HIPO_SDDL_SECOND_PASS
PAGE 9 PROCEDURE DESIGN SECOND PASS

67

87
199
90 93
117 118
96
111
230 233
91
116
97

112

92
117
98
113
231

327

DATA ITEMS
CROSS REFERENCE LISTING PAGE 26

-++++++++H

dx.CHARACTER.COUNT
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

dx.ENTRY
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

dx.LINE.NUMBER
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

dx.PAGE.NUMBER
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

dx.PROGRAM.NAME
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

dx.REFERENCE
PAGE 6 PROGRAM DESIGN_DAT A_STRUCTURE

dx.REFERENCES.TO.TOKEN
PAGE 6 PROGRAM DES IGN_DATA_STRUCTURE

dx . TEXT.POINTER
PAGE 6 PROGRAM DES IGN_DATA_STRUCTUREdx.TOKEN.DICTIONARY
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

dx.TOKEN.TYPE
PAGE 0 PROCEDURE DESIGN_FIRST_PASS

ERROR MESSAGES
PAGE 0 PROCEDURE DESIGN_FIRST_PASSms.INDENTATION.COLUMN
PAGE 6 PROGRAM DE5IGN_DATA_STRUCTURE

ms.MODULE.STACK
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
PAGE 0 PROCEDURE DESIGN_FIRST_PASS

ns.STRUCTURE.ID
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

nx.NODE
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE

tb .INPUT.TEXT.BUFFER
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
PAGE 9 PROCEDURE DESIGN_GET_NEXT_STATEMENT

'.b. TEXT. LENGTH
PAGE 6 PROGRAM DESIGN_DATA_STRUCTURE
PAGE 9 PROCEDURE DESIGN_GET_NEXT_STATEMENT
PAGE 13 PROCEDURE CODE GetNextStatement

146
145
154
153
140
152
151
147
143
202

216
162
158
209 210
163
161
137
259 265
141 271
370

3 2 8

REVISIONS
CROSS REFERENCE LISTING PAGE 27

-++++++++++H

*16
PAGE 11 {PROGRAM CODE_MAIN 297

*17
PAGE 11 {PROGRAM CODE MAIN 300

Modular Design of Real-Time Systems

V . H . Haa se , TU Gra z

1. Distributed Systems

This paper deals with the construction of software for
distributed real-time systems. Both distribution and real-time
are necessary elements of our consideration: neither
"distr 'bution-only" - systems as ;.g. packet-switching networks
nor "real-time-only" problems like interrupt-handlers or
schedulers have the complexity of multi-micro-processor based
process-control systems we are regarding.
Computing systems which are no more von-Neumann machines are
used more and more frequently especially in process-control
and automation systems. Academic computer science seems to
ignore the fact that microprocessors applied in large control
systems constitute a distributed multiprocessor machine which
is no more sequential in behavior, and does not have a global
system state. One field of application are SIMD (single -
instruction-multiple data) machines like array-processors; we
concentrate on MIMD (mu 11ip1e-instruetion-mu 11ipie data) systems
with a large number of loosely-coupled processors working in
parallel, each of them resembling a sequential (finite-state)
machine. Typical application fields are the control of large
machinery as e.g. in steel or chemical industry, of airplanes,
trains, power plants etc. (Fig.1).

330

2. Software Construction

High level programming languages have been the most important
tool for the construction of programs. They have been designed
for the description of algorithms which are executed on single
sequentially working (von-Neumann) processors. That means that
actions have to be strictly ordered in time, concurrency is not
provided.
While these features map sufficiently good onto the architecture
of singleprocessor-machines this is no more valid for multipro
cessors. We have to decide whether we add features (like syn
ch ronization, tasking) to sequential programming languages or
if we decide to choose new structured methods for program
construction.Doing this it is extremely important to find a good
mapping of problem-structure onto software-structure , and of
software-strue tu re onto hardware structure. Real-time requirements
can only be met efficiently if the structures are very similar
(-> Fig.2).

3. Parallelism vs. Sequentia 1ism

Many "modern"programming languages like ADA, CHILL, MODULA or
PEARL contain elements for tasking and synchronization. Neverthe
less they are in principle algorithmic languages for sequential
machines. Parallelism is an "add upon" - feature, and in most
cases also implementation is like that: by a sophisticated
organization of the operating system parallelism is simulated
on sequentially working processors.

331

This type of multiprogramming operating systems becomes very
complex and unreliable if distribution and real-time requirements
are present. As software costs surpass hardware costs it seems
reasonable to map tasks 1:1 on microprocessors, and to have a
similar correspondence between hardware-connections of various
processors ,and software synchronization.
Following this scheme each processor in the system ideally
executes one sequential algorithm (in most cases a cyclic program);
these programs are coordinated by features which constitute a
global synchronization scheme. Not parallel features are incorporated
in sequential programs, but rather sequential programs are building
bricks in a parallel distributed construction process (Fig. 3).

4. How to use modules as "programmer's atoms11

We start from the following assumptions:

a) It is easy and well understood to write efficient and
reliable sequential programs in high level languages.

b) Distributed systems use software which consists of sequential
modules which are executed (partly) in parallel, and which have to
be synchronized.

c) If we define a module as (the part of) a sequential program
between two points of synchronization, modules can be used as
bricks to build parallel programming systems, where software
structure is homomorphic to hardware structure, and software
synchronization is supported by hardware communication equipment.

332

In the PARC-method to be discussed here sequential and parallel
program construc.tion are strictly separated, only a small set of
control statements is sufficient to describe the synchronization
of sequential program modules, and semantics of parallel programs
can be defined by predicate transformers. The method has been
derived from Dijstras guarded commands [1] , has been developped
by Hailing and Haase [2, 3, 4] , and is related toHoare's approach
[̂5~̂ and the OCCAM-Language [6] .
The concept of guards (conditions) and actions is similar as in
Petri Nets [7] .

A distributed programming system is composed out of a sequence
of PARCS (parallel constructs). Each PARC describes a set of
processes being executable on different (virtual) processors
(Fig. 4) in a phase of the operation of the system.
A PARC is a collection of conditional actions

(condition — > action)*
which can be executed in parallel. Actions are sequential programs
(modules) which are started when the condition becomes true.
Condition is a predicate on (a subset of) the state of the system.
Actions may be marked as being executable only once (para11e1 - IF-
style) or repeated (para11e1 - DO-sty 1e).

Syntax
program :: = pare*
pare :: = module [

PARC parc-name
conditional-action
ENDPARC parc-name

□ conditional actionf*

333

conditional-action :: = condition -V program
condition :: = Boolean expression
module :: = £globa1-synĉ module-name £g 1oba1 - sync] REPEAT

Comments: "Boo 1 ean-expression 11 is defined over the state of the
environment which consists of the values of global variables and
of the occurence of communication signals. Global variables can
only be altered, and communication signals issued in the optional
"global-sync" parts of the actions. "Modules", which may or may
not be REPEATed write only local variables, and are not allowed
to address communication signals.

Example
PARC IN IT
STARTBUTTON — » STARTTRANSPORT

□ STARTBUTTON ANJD TRANSPORT-ON — ►
□ STARTBUTTON AND TRANSPORT-ON —>
□ STARTBUTTON AND TRANSPORT-ON -*
□ STARTBUTTON AND TRANSPORT-ON — >

ENDPARC INIT

(TRANSPORT-ON)
RESETPRESS 1
RESETPRESS 2
RESETCUTTER
RESETSPOOLER

PARC OPERATION

□ TEMPERATURE > 1 200 ANJ) BI0CKENTERS_1
AND TRANSPORT-ON — * OPERATEPRESS_1 REPEAT

□ BLOCKENTERS 2 ANJD TRANSPORT-ON —» OPERATEPRESS-2 REPEAT
□ BLOCKENTERS 3 AND TRANSPORT-ON — > START_SP00LER
□ SPOOLER FULL — ► (SETSTOP) OPERATE-CUTTER
□ SETSTOP — > STOP-TRANSPORT (TRANSPORT-OFF)
ENDPARC OPERATION

334

Semantics: Semantics of PARC is related to semantics of
guarded commands as shown in £3̂ and [[4̂j. As the syntax
used in this paper does not distinguish between IF-PARCs
and DO-PARCs - this is more useful for programming in
the large - the semantic has to be derived from putting
together IF and DO-rules.
If a PARC consists of a set of n repeated conditiona1-action
and a set of m not repeated conditional actions:

PARC name
cond ̂ modul ê

PI cond — * module1 n n
O cond^ — * module^ REPEAT

0 condmR — > modulemR REPEAT

ENDPARC name

this is equivalent to:

PARC outer
true —» PARC inner-if

n true —*■ PARC inner-do
ENDPARC outer

with:
PARC inner-if
cond i —* module ̂

n cond — modu 1 e — n n
ENDPARC inner-if (this is a conventional IF-PARC)

335

and:
PARC inner-do
cond,jR —> module ̂R REPEAT

QcondmR —> modulemR REPEAT

ENDPARC inner-do (this is a conventional DO-PARC)

Predicate transformers for IF- and DO-parcs are equivalent to
predicate-transformers for guarded command sets ([i]. D])■
So the behavior of the whole system can be derived from the
effects of the va ious-modules taking into account the guarding
conditions. Correctness can strictly be derived in two steps:
first the individual modules, afterwards the whole compound.
This is the same sequence as in the construction process.

5. An Example

The PARC-method has been applied in a number of software-
development projects mainly in research environments. The con
struction of a distributed operating system for a PDP-11 [8]
will be discussed in some detail; the control program for
a robot was implemented using PARCs on 8080 microprocessors;
recently we use it as a paper and pencil method for program
ming in the large of telecommunication systems, e.g. multi
microcomputer-gateways for network interconnection.

336

The PDP-11 project consisted of the implementation of an opera
ting system able to interpret PARCs, and of the use of this
system in applications. The implementation is based on a virtual
machine model using Concurrent Pascal with the SOLO Operating
System on a PDP 11/45.
Our aim was the simulation of a distributed architecture by
means of a high-level language with pararllel programming fea
tures. Pascal i,s used to describe one way in which PARCs can be
interpreted in a system with any kind of supervisory processor.
Hence some experimental experience can be gained with the concept
on a high level of descrption. A second aim is the definition of
a simulation model which allows the test of dedicated process
control applications including the development of a special pur
pose operating system.
As a guideline we may quote Brinch Hansen
"Eventually industry will be using complicated specialized
networks of microprocessors. These dedicated computer systems
may not be programmable in the sense that they can execute arbi
trary programs. They may indeed owe their efficiency to fixed
algorithms built into the hardware. But somebody must still
write and verify these concurrent algorithms. It seems very
attractive to write a concurrent program in an abstract language,
test it on a minicomputer, and then derive the most straight
forward multiprocessor architecture from the program itself."

The specification language structures are translated by a pre
compiler written in Pascal into a Concurrent Pascal target
sytem. Starting with the specification given by the PARC control
program we generate a dedicated system which consists of three
parts (fig.5) :

3 3 7

- the Concurrent Pascal kernel, responsible for processor
multiplexing, handling of monitor calls and i/o;

- a skeleton of system components, responsible for the
execution of PARC-structures. This run-time system simulates
a distributed architecture, and all synchronization and
communication mechanism required by a control program;

- problem-dependent sections; e.g. guard functions, condition
statement lists, and sequential modules.

The virtual machine built out of these parts simulates the
distributed microcomputer architecture specified in the control
program.

Although the monitor-concept of Concurrent Pascal is not ideal
for a microcomputer network [10], the access graph of the virtual
machine (Fig.6) reflects the main components of a distributed
system interpreting the PARC-structures. A group of components
working as the control unit of the system is responsible for the
execution of PARCs, implying evaluation of guards, execution of
entry and exit actions, and access to conditions, which are used
by more than one control module ("links").

The group of guarded processes, each running as a Concurrent
Pascal process, communicates via a shared data monitor. The two
subsystems exchange start- and termination-signals via a monitor
master.

This Concurrent Pascal system has been tested using various
classical examples including the producer-consumer problem, and
a process control application (mixing of chemicals according to
given recipes).

338

The description of the implementation model by means of a high-
level language turned out to be a clear, wel1-structured, easy-to-
modify, and easy-to-test approach. On the other hand restrictions
which the monitor concept imposes on the program design, the
language overhead of Concurrent Pascal, and the poor program de
velopment tools of the SOLO operating system reduce the applicability
of this implementation when solving "real" process control problems.
It is therefore concluded that steps towards a more application
oriented implementation should be made.

6. Conclusion

An application oriented design concept for parallel programs as well
as a tentative implementation model was shown. It can be regarded as
the prototype of a kind of automation systems where not only the
application program but also the architecture of the system (both
software, and - in future - also hardware) can be defined by the
user. This could be done using a single application oriented
description method. The key issue is the separation of sequential
programs from synchronization mechanisms. This structure can easily
be mapped on to a hardware architecture based on multiple micro
processors and a bus system. There is no necessity for complex
real-time-operating-systems in the individual processors.

The Concurrent Pascal implementation described is an experimental
system; it should be a model for a set of tools for the development
of control systems. These tools will consist of precompilers which
translate PARC-specifications into appropriate programming languages
(not necessarily PASCAL, also FORTRAN and BASIC are feasible), of

3 3 9

"system-bui1der"-programs which analyse requirements and resources
and suggest suitable configurations, and of operating-system
skeletons (including device handlers, message protocols etc.).
All tools may be implemented in software and/or firmware (ROMs).

We think that the approach to use sequential program-modules as
they are, as building bricks for parallel and distributed systems
is both a proper engineering as well as an economic solution.

Acknowledgement

I want to thank Horst Halling (Jülich) and Wolf-Michael Dehnert
(München) for several ideas which have been included in this
paper.

References

(1 1 E.W.Dijkstra: A Discipline of programming,
Englewood Cliffs (1976)

(21 H.Halling, K.Bürger, H.Heer: Implementation and Application
of PARCs. S0C0C0 79, Prague (1979)

[3] V.Haase: Specification and Construction of Rea 1-Time - Pro grams
with PARCs. Angewandte Informatik 5/80 (1980)

[4] V.Haase: Real-Time Behaviour of Programs: IEEE TSE 7,
p. 494 (1 981)

[5] C.A.R.Hoare: Communication Sequential Processes, CACM 21,
p. 666 (1978)

[6] R.Taylor, P.Wilson: Process-oriented language meets demands
of distributed processing, Electronis, Nov.30, 1982

[7] J.L.Petersen : Petri Nets, ACM Comp.Surveys 9 (1 977)
[8] W.M.Dehnert, V.Haase: High level language structures for

distributed real-time programs. S0C0C0 79,
Prague (1979)

340

f 9] P.Brinch Hansen: The Architecture of Concurrrent Programs.
Englewood Cliffs (1977)

[10] P.Brinch Hansen: Distributed Process - a Concurrent Programming
Concept. CACM 21/11, p . 934-941 (1 978)

3 4 2

as'

(a

t
A

1
<i

p d -ess

p£ess 2

_ 3 4 3 -

~c5 *-*-r I

05

3s

i

ti*sf
JSío
á
tq-í
Q)

4
>* ro

I

Ü

r í
0

£V *0*íT
P

c
O

jr
ti

**
.

C
a

t^
/i

^
c
A«
#«
,

&
U

.4
-

U
ti

a
o

ft
i(

*
S>

(VI
,

I
rrrr
no
I

o
4 ct i<4 S i <ko '■ A i om Ire Jr* e * la-dL (_ IF ^

com dLi' 4»»s-m (u£

VS' S. ioto ; rĉ aokUaL (̂ bo"^
Co u oU‘ K ’o u au? ö C /fi'ki-u £

p4 rti UU£_ Coh^'^f'tiC^S

£PeM KJa4 eajM.ii/a lêij

3 4 5

control
program

PARC -

execution

problem -
dependent
parts

Concurrent Pascal kernel

virtual

machine

Fig. 5
TRANSLATION OF THE LANGUAGE STRUCTURES

3 4 6
master

KEY : cm
EP
P , M, C

control module
guarded process
system components of
type process, monitor and class

F ig . 6

ACCESS GRAPH

3 4 7 -

DESCRIPTION OF DECI SI ON TABLES BY PSL/ PSA

Sv a t a v a Machová - Bohumi l M i n i b e r g e r

C h a r l e s U n i v e r s i t y Comput i ng C e n t r e

M a l o s t r a n s k é nám. 25

118 00 Pr ague

C z e c h o s l o v a k i a

1

I t i s w e l l known t h a t d e c i s i o n t a b l e s can be u s e f u l l y

empl oyed t o show t h e s o l u t i o n t o any l o g i c a l p r o b l e m where

d e c i s i o n maki ng i s i n v o l v e d . Each d e c i s i o n t a b l e s i mp l y

l i s t s i n t a b u l a r f o r m a t a l l t h e r e l e v a n t c o n d i t i o n s o f t h e

pr obl em t o g e t h e r w i t h a l l t h e p o s s i b l e a c t i o n s , and

i n d i c a t e s t h e a c t i o n s t o be c a r r i e d o u t when c e r t a i n

c o n d i t i o n s a r e t r u e o r f a l s e / o r i m m a t e r i a l / / I C L G e n e r a l

M a n u a l , 1 9 7 2 / .

A d e c i s i o n t a b l e i s an i m p o r t a n t s t r u c t u r e d t o o l o f

a n a l y s i s . "When a p p l i e d - and a p p l i e d p r o p e r l y - a d e c i s i o n

t a b l e can be unmat ched f o r c l a r i t y and p r e c i s i o n . I n

a d d i t i o n t o b e i n g a d e s c r i p t i v e t o o l , a d e c i s i o n t a b l e can

h e l p you t o t h i n k out p o l i c y i n t h e m a k i n g , t o e v a l u a t e i t

f o r c o mp l e t e n e s s and c o n s i s t e n c y " / D e M a r c o , 1 9 7 9 / .

At f i r s t s i g h t , t h e P S L / P S A u s e r m i g h t f e e l t h a t t h e r e

348

i s no need h a v i n g any f u r t h é r t o o l s t o e x p r e s s pr ob l em

s p e c i f i c a t i o n s . B u t , how shou l d we f i l l t h e gap bet ween t h e

use r and t h e a n a l y s t and d e t e c t t h e i n a c c u r a c i e s i n
A

t h e word s p e c i f i c a t i o n o f t h e pr ob l em? Let us c o n t i n u e t h e

q u o t a t i o n f rom T . DeMarco so as t o show when a d e c i s i o n t a b l e

shoul d be u s e d . "Suppose you q ue r y y o u r u s e r a b o u t h i s p o l i c y

f o r c h a r g i n g c h a r t e r f l i g h t c u s t o me r s f o r c e r t a i n i n f l i g h t

s e r v i c e s , and he t e l l s you some t h i ng l i k e t h i s : I f t h e f l i g h t

i s more t h a n h a l f - f u l l and c o s t s more t h a n t 3 50 pe r s e a t ,

we s e r v e f r e e c o c t a i l s u n l e s s i t i s a d o m e s t i c f l i g h t . We

c ha r ge f o r c o c k t a i l s on a l l d o m e s t i c f l i g h t s . . . t u t i s ,

f o r a l l t h e ones where we s e r v e c o c k t a i l s " . E x p r e s s i n g t h e

p o l i c y i n t h e form of a d e c i s i o n t a b l e s o l v e s a l l o f t h e s e

pr ob l e ms .

R U L E S

1 2 3 4 5 6 7 8
~ur~
zo 1. Domest i c Y . N Y N Y N Y N

h-HH 2. Over h a l f - f u l l Y Y N N Y Y N N
o
zo 3 . Over t 350 Y Y Y Y N N N N
o
(/>
zo 1. C o c t a i l s e r v e d X X - 7 X 7 - 7
►H
O 2. Fr ee - X —
<

The c o n d i t i o n e n t r i e s a r e f o r YES, *N* f o r NO. The

a c t i o n e n t r i e s a r e *X* f o r e x e c u t e a c t i o n , * - * f o r do not

e x e c u t e a c t i o n

349

I n t e r r o g a t i o n marks and gaps must not o c c u r i n t h e d e c i s i o n

t a b l e . T h i s i s because t h e y i n d i c a t e t h a t t h e d e c i s i o n

p r o c e s s i s d e s c r i b e d i n an i n c o m p l e t e way and a l l t h a t a

system a n a l y s t can do i s t o make t h e u s e r i n c r e a s e t h e

p r e c i s i o n o f t he d e s c r i p t i o n o f h i s d e c i s i o n system u s i n g

f u r t h e r q u e r i e s . He n c e , t h e use o f d e c i s i o n t a b l e s i s

e s p e c i a l l y c o n v e n i e n t f o r t h e d e s c r i p t i o n o f d e c i s i o n p r o c e s s

i n a l l ca s e s i n whi ch t h e s u b p o l i c y s e l e c t i o n depends upon

c o m b i n a t i o n s and c o n d i t i o n s . T h i s i s an a p p r o p r i a t e t o o l

f o r an i n t e r v i e w c a r r i e d out by t h e a n a l y s t , who i s a l mo s t

i g n o r a n t about t he r e a l system i n q u e s t i o n (h e i s an a n a l y s t

by p r o f e s s i o n) .

The d e c i s i o n t a b l e s can a l s o be used i n d e s c r i b i n g p r o

gramme s p e c i f i c a t i o n - a n o t h e r f or m o f f l o w c h a r t r e c o r d .

2

Because t h e PSL/ PSA makes i t p o s s i b l e t o d e s c r i b e on

d i f f e r e n t l e v e l s o f a n a l y s i s v e r y a d e q u a t e l y bot h t h e

i n f o r m a t i o n s t r u c t u r e s and t he d a t a s t r u c t u r e s , i t a p p e a r s

c o n v e n i e n t t o use i t f o r r e c o r d i n g t h e p r o c e d u r a l a s p e c t

of t h e d e s c r i p t i o n phenomenon by means o f d e c i s i o n t a b l e s

on t h e two L e v e l s .

T h e r e a r e d i f f e r e n t p r o c e s s o r s , w h i c h , on t h e b a s i s

of d e c i s i o n t a b l e s , d e s i g n programmes f o r d e c i s i o n

3 5 0

p r o c e s s e s / P o l l a c k , 1 9 6 5 / . To o u r k n o w l e d g e , i t was U. L i e b e

/ L i e b e , 1981 / t h a t pr oposed t h e o u t p u t s o f a c e r t a i n p r o c e s s o r

p r o c e s s i n g d e c i s i o n t a b l e s and d e s i g n i n g a c e r t a i n programme

based on them t o be s t o r e d as a comment PROCEDURE i n PSL/ PSA.

C o n t r a r y t o t h i s , i t i s o u r c o n c e r n t o make i t p o s s i b l e f o r

t h e u s e r t o d e s c r i b e t he d e c i s i o n t a b l e s by means o f PSL/PSA

even b e f o r e t h e d e c i s i o n t a b l e i s p r o c e s s e d by a s p e c i a l

p r o c e s s o r as a programme i n some p r ogr ammi ng l a n g u a g e . To

e n a b l e e f f i c i e n t o p e r a t i o n w i t h d e c i s i o n t a b l e s i n t h e f rame

of PSL/ PSA, i t i s n e c e s s a r y t o d e s c r i b e them not by comments,

but t h r ough PSL s t a t e m e n t s .

3

I t i s e v i d e n t t h a t o u t o f t h e t y p e s o f o b j e c t s e x i s t i n g

i n t h e PSL/PSA A 5 . 1 v e r s i o n / L a n g u a g e R e f e r e n c e M a n u a l ,

1 9 8 1 / t h e o b j e c t s o f t he t y p e CONDI TI ON, EVENT and PROCESS

a p p e a r t o be s e m a n t i c a l l y s u i t a b l e f o r a d e s c r i p t i o n of

d e c i s i o n t a b l e s . The c o n d i t i o n s o f t h e d e c i s i o n t a b l e can

be d e s c r i b e d as a PSL o b j e c t o f t h e t y p e CONDI TI ON. The sum

of a l l t he s t a t e s o f c o n d i t i o n s f rom t h e d e c i s i o n t a b l e

i m p o r t a n t f o r e v o k i n g c e r t a i n a c t i v i t i e s can be d e s c r i b e d

as a PSL o b j e c t o f t he t y p e EVENT. The a c t i v i t i e s can be

d e s c r i b e d as PSL o b j e c t s o f t h e t y p e PROCESS.

351

I n t h e A 5 . 1 v e r s i o n , t h e f o l l o w i n g r e l a t i o n s h i p s

bet ween t h e o b j e c t o f t h e t y p e CONDITION and t h a t o f EVENT

a r e a d m i s s i b l e :

CONDITION u s e r - name,

3EC0MING j ^ t r u e j ! [cALLsj

Í i | J E V E N T - n a m e / s / ,

]*f a l s eJ | c a u s e s]

I f a name o f a new r e l a t i o n s h i p , e . g . ' CO-CAUSES*

i n s e r t e d i n t o t h e empty b r a c e s b e t we e n CALLS and CAUSES,

t he o n l y PSL m o d i f i c a t i o n / t o g e t h e r w i t h t h e c o mp l e me n t a r y

'CO-CAUSED BY* r e l a t i o n s h i p / w i l l be m a t e r i a l i z e d t h a t i s ,

t o our o p i n i o n , n e c e s s a r y f o r t h e u s e r t o d e s c r i b e t h e

d e c i s i o n t a b l e s . To f a c i l i t a t e t h e c r e a t i o n o f a new ou t p u t

r e p o r t s r e p r e s e n t i n g d e c i s i o n t a b l e s we c o n s i d e r i t

c o n v e n i e n t t o ask t h e u s e r t o have a l l t h e EVENT*s o f one

d e c i s i o n t a b l e n e c e s s a r i l y c o n n e c t e d by t h e KEYWORD o f t he

same name,

S h o u l d t h e u s e r have t h e chance t o o p e r a t e w i t h I SL&S,

/ T e i c h r o e w - M a c a s o v i c - H e r s h e y - Y a m a m o t o , 1 9 7 9 / , and s h o u l d he

be i n t e r e s t e d i n a d e c i s i o n t a b l e d e s c r i p t i o n , he can use

t h i s p r o p o s a l f o r h i s i n s p i r a t i o n .

Based on t h e d e s c r i p t i o n o f d e c i s i o n t a b l e p r o p o s e d by

means of PSL/ PSA, A 5. 1 v e r s i o n , o u t p u t r e p o r t s o f v a r i o u s

k i n d s can be e f f e c t e d a p p r o a c h i n g a t maximum t o t h e u s u a l

system of d e c i s i o n t a b l e r e p r e s e n t a t i o n . An o u t p u t r e p o r t

o f t h i s k i nd c o u l d be of t h e f o l l o w i n g f o r m:

352

DECI SI ON TABLES

K E Y W O R D D T - 1
E V E N T s

E -1 E - 2 E - 3 E - 4 E — 5

C O N D I T I O N - 1 Y Y Y N N
C O N D I T I O N - 2 Y Y N Y N
C O N D I T I O N - 3 Y N - - -

P R O C E S S - 1 X - X - -
P R O C E S S - 2 - X X - X
P R O C E S S - 3 - - - X -
P R O C E S S - 4 - X - X -

C O N D I T I O N - 1
C O N D I T I O N - 2
C O N D I T I O N - 3

- condi t i o n - n a me

- condi t i on- name

- c o n d i t i o n - n a m e

P R O C E S S - 1
P R O C E S S - 2
P R O C E S S - 3
P R O C E S S - 4

- p r o c e s s - n a m e

- p r o c e s s - n a m e

- p r o c e s s - n a m e

- p r o c e s s - n a m e

At t h e C h a r l e s U n i v e r s i t y Co mp u t i n g C e n t r e P r a g u e , t h e

PSL/PSA A 5 . 1 v e r s i o n has not been a v a i l a b l e up t o now,

t h e r e f o r e t h e a b o v e - m e n t i o n e d p r o p o s a l has not been

3 5 3

i mp l e me n t e d as y e t . The d e c i s i o n t a b l e s had t o be d e s c r i b e d

i n t h e A 2 . 1 v e r s i o n , whi ch i s much l e s s e l e g a n t . A d e t a i l e d

d e s c r i p t i o n o f t h e s o l u t i o n i s n o f i n t e r e s t i n g f o r an a c t u a l

use r o f h i g h e r PSL/ PSA v e r s i o n s . I t shoul d o n l y be added

t h a t t h e set o f a l l t h e s t a t e s o f c o n d i t i o n s o f t h e d e c i s i o n

t a b l e r e l e v a n t f o r e v o k i n g c e r t a i n a c t i v i t i e s have been

d e s c r i b e d by us as o b j e c t s o f t h e t y p e EVENT, but i n d i v i d u a l

c o n d i t i o n s have been d e s c r i b e d as ATTRI BUTES o f t h a t EVENT.

ATTRIBUTES a c q u i e r e v a l u e s i d e n t i c a l w i t h t h e s t a t e s o f

conditions.

4

I f i t i s p o s s i b l e t o g e n e r a t e , i n an a u t o m a t i z e d way ,

t h e DATA D I V I S I ON r e p o r t f o r a pr ogr amme w r i t t e n i n t h e

l anguage Cobol f rom t h e d e s c r i p t i o n o f da t a s t r u c t u r e s

/ C h i k o f s k y - S o - G u n n a r s o n , 1 9 8 0 / , and i f i t i s known t h a t t h e

Cobol p r e p r o c e s s o r s c o n v e r t d e c i s i o n t a b l e s d i r e c t l y t o t h e

Cobol sour ce pr ogr ammes , t h e n i t i s j u s t i f i e d t o assume t h a t

i t would be p o s s i b l e by means o f t h e d e c i s i o n t a b l e

r e p r e s e n t a t i o n i n PSL/PSA t o r a t i o n a l i z e a p p r e c i a b l y t h e

w r i t i n g o f Cobol pr ogr ammes. I n t h e Ap pend i x t o t h i s p a p e r

/ 1 / , t h e DT-1 g i v e n above i s d e s c r i b e d by means

o f PSL s t a t e m e n t s / a n d t h e r e l a t i o n ^CO-CAUSES* betw-een

t h e o b j e c t s CONDITION and EVENT p r o p o s e d above i s used i n

i t / , 111 t h e c o r r e s p o n d i n g DT i s g i v e n i n i t s c l a s s i c f o r m ,

3 5 4

/ 3 / a p a r t o f t h e programme i n Language L i k e CoboL

shoul d be g e n e r a t e d on t h e b a s i s o f t h e DT-1

gi ven .

which.

des r i pt i on i s

3 5 5

2 DECISION TABLE DT-1

R U L E s

1 2 3 4 5

1. PODMINKA-1 Y Y Y N N

2. PODMINKA-2 Y Y N Y N

3. PODMINKA-3 Y N - - -

1 . P-1 X - X - -

2. P-2 - X X - X
3 . P-3 - - - X -

4. P- 4 - X - X -

3 THE t o p i c s of t h e p rogr a mme IN LANGUAGE LI KE COBOL

WHICH SHOULD BE G EN E R AT_E_D_ _F ROM THE DESCRI PTI ON OF THE

DT-1 IN PSL/PSA

DECI SI ON- TABLE- DT- 1 *

I F PODMINKA-1

I F PODMINKA-2

I F PODMINKA-3

sequence o f s t a t e m e n t s f o r P-1

ELSE sequence o f s t a t e m e n t f o r P- 2 ar.d P - 4

ELSE sequence o f s t a t e m e n t f o r P-1 and P- 2

ELSE I F PODMINKA-2

sequence o f s t a t e m e n t s P- 3 and P- 4

ELSE sequence o f s t a t e m e n t s P - 2 *

3 5 6

DEF EVENT m 1 r\>

TRIGGERS P - 2 ,

p - 4 ;

KEY DT - 1 ;

DEF EVENT E - 3 ;

TRIGGERS p - 1 /

p - 2;

KEY DT- 1 , ‘

DEF EVENT m 1 ■T
-

\
•

TRIGGERS P - 3 ,

P - 4 /

KEY DT- 1 ;

DEF EVENT E - 5 ;

TRIGGERS P- 3 ,*

KEY DT-1, '

DEF PROCESS P - 1 , P-

DT-1;KEY

3 5 7

APPENDIX

1 DESCRIPTION OF THE DT-1 BY MEANS OF PSL

DEF CONDITION PODMI NKA- 1;

BECOMING TRUE CO-CAUSES E - 1 ,

E - 2 ,

E-3;
BECOMING FALSE CO-CAUSES E - 4 ,

E - 5 /

KEY D T - 1 /

DEF CONDITION PODMI NKA- 2 /

BECOMING TRUE CO-CAUSES E - 1 ,

E - 2 ,

E -4 ,*

BECOMING FALSE CO-CAUSES E - 3 ,

E - 5 /

KEY D T - 1 /

DEF CONDITION PODMI NKA- 3;

BECOMING TRUE CO-CAUSES E - 1 /

BECOMING FALSE CO-CAUSES E -2 , '

KEY D T - 1 /

DEF EVENT E-1

TRIGGERS P - 1 /

STATEMENTS

KEY DT-1

358

LITERATURE:

CHIKOFSKY E. - SO L . K. - GUNNARSON K . , Data D i v i s i o n / D D I V /

r e p o r t i n PSA V e r s i o n A 5 . 2 . ISDOS T e c h n i c a l

Memorandum 3 2 6 , Sept ember 2 3 , 1 9 8 0 .

DeMARCO T . , S t r u c t u r e d a n a l y s i s and system s p e c i f i c a t i o n . New

J e r se y , 197 9 .

FULTON J. , Some p r e l i m i n a r y s u g g e s t i o n s f o r enhancement s t o

PSA c a p a b i l i t i e s . ISDOS N e w s l e t t e r 1 3 , 1 9 8 1 ,

No. 4 , E n c l o s u r e B . 3 .

I CL GENERAL MANUAL 4 1 3 9 . Ap pe nd i x H. ICL Be aumont , Old W i n d s o r ,

B e r k s . , 1 9 7 2 .

LIEBE U . , PSL/ PSA s u p p o r t e d m i c r o c o d e d e v e l o p m e n t . ISDOS

N e w s l e t t e r 1 3 , 1 9 8 1 , No. 4 , E n c l o s u r e A . 3 .

LANGUAGE REFERENCE MANUAL, Pr ob l em S t a t e m e n t L a n gua ge , I SDOS,

R e f . 8 1 2 5 2 - 0 3 5 1 , Ann A r b o r , 1 9 8 1 .

TEICH ROEW D . - MACASOVIC P. - HERSHEY I I I . E . A . - YAMAMOTO Y . ,

A p p l i c a t i o n o f t h e e n t i t y - r e l a t i o n s h i p app r o ach t o

i n f o r m a t i o n p r o c e s s i n g sys t ems m o d e l i n g . / I n /

I n t e r n a t i o n a l C o n f e r e n c e or E n t i t y - R e l a t i o n s h i p

Appr oach t o Syst ems A n a l y s i s and D e s i g n .

Los A n g e l e s , 1 9 7 9 , 2 3 - 5 1 .

PSL/ PSA - A METHODOLOGICAL TOOL FOR THESAURUS CREATION.

S v a t a v a Machová

C h a r l e s U n i v e r s i t y Comput i ng C e n t r e

M a l o s t r a n s k é nám. 25

118 00 P r a g u e , C z e c h o s l o v a k i a

1

I n g e n e r a l , t h e PSL/ PSA A5. 1 v e r s i o n may be r e g a r d e d

as a t o o l f o r d e s c r i b i n g a r e a l s y s t e m , whi ch makes i t

p o s s i b l e t o d i s t i n g u i s h a c e r t a i n number o f t y p e s o f o b j e c t s

w i t h i n t h i s r e a l s y s t e m. Each o b j e c t may a c q u i r e c e r t a i n

p r o p e r t i e s / d e t e r m i n e d by t h e PSL/ PSA d e s i g n e r s / and can

e n t e r i n t o c e r t a i n i n t e r r e l a t i o n s h i p s / a l s o d e t e r m i n e d by

t h e PSL/ PSA d e s i g n e r s / . The PSL/ PSA d e s i g n e r s gave names t o

t h e a d m i s s i b l e t y p e s o f o b j e c t s , p r o p e r t i e s and r e l a t i o n s h i p

/ e . g . SET, ATTRI BUTE, DERI VES/ . By t h e c h o i c e o f names,

h o w e v e r , t h e y l a r g e l y d e t e r m i n e d t h e meani ngs t h a t t h e u se r s

may a s s i g n t o t h e t y p e s o f o b j e c t s , p r o p e r t i e s and

r e l a t i o n s h i p s . A l t h o u g h t h e l i n g u i s t s gave e v i d e n c e about

t h e f a c t t h a t t h e words o c c u r r i n g o u t s i d e any c o n t e x t a r e

o f no meani ng / H j e l m s l e v , 1 9 5 3 / and t h a t t h e y a c q u i r e a

meani ng o n l y w i t h i n a c o n c r e t e t e x t , a c u r r e n t u s e r i s not

awar e o f t h i s f a c t and e x p e c t s each s e p a r a t e word o u t s i d e

t h e c o n t e x t t o be o f some meani ng o f i t s own. He assumes

360

wr o n g l y t h a t i t i s t h e meani ng t h a t he a s s i g n s t o t h e

p a r t i c u l a r word most f r e q u e n t l y w i t h i n h i s own g i v e n s p h e r e .

We f e e l t h a t •* t i s b e c a us e t h e i n d i v i d u a l u s e r s a s s i g n e d

one s i n g l e me a n i ng t o each o f t h e wor ds used i n PSL/PSA t h a t

some k i nds o f PSL/ PSA m o d i f i c a t i o n s l e a d i n g e v e n t u a l l y t o t h e

c r e a t i o n of t h e I SLDS / B o d a r t - T e i c h r o e w , 1 9 8 1 / wer e r e q u i r e d .

We w i l l d e m o n s t r a t e i n one i n s t a n c e t h a t even PSL/PSA

A5. 1 v e r s i o n can be o p e r a t e d as a me t a s y s t e m p r o v i d e d t h a t

t h e r e i s a g e n e r a l u n d e r l y i n g l i n g u i s t i c h y p o t h e s i s s a y i n g

t h a t i s o l a t e d wor ds a r e s e m a n t i c a l l y empty and t h a t an

a r b i t r a r y mean i ng based on c o n v e n t i o n bet ween t h e u s e r s can

hence be a s s i g n e d t o t hem.

2

For i n f o r m a t i o n s t o r a g e and r e t r i e v a l syst ems t h e s a u r i

have t o be d e s i g n e d . Roughl y speak i n g , t h e s a u r u s i s a

semant i c d i c t i o n a r y c o n s i s t i n g o f d e s c r i p t o r s and s t r u c t u r a l

i n t e r r e l a t i o n s be t ween t h e m. U s u a l l y t h e f o l l o w i n g r e l a t i o n s

a r e d i s t i n g u i s h e d bet ween d e s c r i p t o r s : e q u i v a l e n c e , g e n e r i c

h i e r a r c h y , p a r t i v i t y , a s s o c i a t i o n and an t o ny my . T h e s a u r i a r e

u s u a l l y l a r g e and i n t h e c o u r s e o f t h e i r c r e a t i o n i t i s

c o n v e n i e n t t o be a s s i s t e d by a c o m p u t e r .

The f a c t t h a t t h e s a u r i a r e u s u a l l y not c r e a t e d w i t h

t h e a s s i s t a n c e o f a compu t e r i s due t o t he c i r c u m s t a n c e s

361

t h a t Ci) d e s i g n i n g a s o f t w a r e f o r t h e s a u r u s c r e a t i o n i s

demandi ng and c o s t l y and (i i) a d e s i g n e r o f t h e s a u r u s

w i t h l i t t l e e x p e r i e n c e does not know how t o s p e c i f y t h e

r e q u i r e m e n t s f o r t h e s o f t w a r e n e e d e d .

A l t hough i t i s o b v i o u s t h a t a s o f t w a r e d e s i g n e d

e x c l u s i v e l y f o r t h e s a u r u s c r e a t i o n o f f e r s an i d e a l s o l u t i o n ,

t h e r e e x i s t o t h e r p o s s i b i l i t i e s f o r c o m p u t e r - a s s i s t e d

t i i e s a u r u s c r e a t i o n . I t i s p o s i i b l e , i n d e e d , t o make use o f

a s o f t w a r e r e a d i l y d e s i g n e d f o r o t h e r p u r p o s e s . B e f o r e

s t a r l i n g t h e s ea r ch f o r i t , i t i s n e c e s s a r y t o g i v e an

a n s v e r t o t h e q u e s t i o n as t o what a r e t h e p r o p e r t i e s t h a t

a s o f t w a r e f o r t h e s a u r u s c r e a t i o n i s supposed t o p o s s e s s .

I b e l i e v e t h a t t he f o l l o w i n g p r o p e r t i e s a r e e s s e n t i a l :

- a b i l i t y t o r e c o r d d i f f e r e n t t y p e s o f r e l a t i o n s be t ween

d e s c r i p t o r s ,

- a b i l i t y t o c r e a t e a u t o m a t i c a l l y a c o mp l e m e n t a r y r e l a t i o n

t o each r e l a t i o n d e s c r i b e d ,

- easy u p d a t i n g o f i n f o r m a t i o n s t o r e d ,

- p o s s i b i l i t y o f p r e s e n t a t i o n o f t h e s t o r e d da t a by means

o f o u t p u t r e p o r t s e n a b l i n g a d i f f e r e n t i a l v i ew of t h e

same d a t a ,

- i n t e r a c t i v e p r o c e s s i n g ,

- easy i m p l e m e n t a t i o n on t h e c o mp u t e r a v a i l a b l e .

Wi t h v i ew o f t h e above p r o p e r t i e s I c o n s i d e r most

s u i t a b l e g e n e r a l l y f o r t h e c r e a t i o n o f t h e s a u r i t h e da t a

d i c t i o n a r i e s and t h a t p a r t o f t h e s o f t w a r e f o r a u t o ma t e d

362

system m o d e l i n g which f u l f i l l s t h e f u n c t i o n o f d a t a

d i c t i o n a r i e s w i t h o u t b e i n g so l a b e l l e d .

3

The C h a r l e s U n i v e r s i t y Comput i ng C e n t r e Pr ague began

t o work i n d e s i g n i n) s o f t w a r e f o r a t h e s a u r u s o f t e r ms f o r

ba n k i n g r e g u l a t i o n ; c r e a t e d by t h e C z e c h o s l o v a k S t a t e Bank

/ H u d e c - M a c h o v á , 1 9 1 ; : / . PSL/ PSA p r o v e d t o be a v e r y

a p p r o p r i a t e m e t h o d i c a l t o o l o f t h e s a u r u s c r e a t i o n , p r o v i d e d

we a cc ep t t h e c o n v e n t i o n t h a t some PSL r e s e r v e d words w i l l

be a s s i g n e d s p e c i f i c m e a n i n g s . The f o l l o w i n g s p e c i f i c meani ngs

o f PSL r e s e r v e d words we r e a d o p t e d f o r t h e t h e s a u r u s of

t e r ms f o r b a n k i n g r e g u l a t i o n s :

P S L R e s e r v e d W o r d s M e a n i n g A s s i g n e d
S E T t h e s a u r u s ,
E N T I T Y d e s c r i p t o r / o n e - w o r d o r m u l t i - w o r d / ,
D E S C R I P T I O N d e f i n i t o n / s / o f t h e d e s c r i p t o r ,
S O U R C E p u b l i c a t i o n / s/ w h e r e t h e d e s c r i p t o r h a s

b e e n d e f i n e d a n d / o r o c c u r e d ,
S Y N O N Y M / S /

R E L A T I O N

d e s c r i p t o r s i n e q u i v a l e n c e r e l a t i o n

/ s o - c a l l e d ‘ a l i a s * r e l a t i o n / ,

r e l a t i o n s o f g e n e r i c h i e r a r c h y ,

p a r t i t i v i t y , a s s o c i a t i o n a n d a n t o n y m y
b e t w e e n t h e d e s c r i p t o r s .

R E L A T I O N

3 6 3

ATTRIBUTTES The c l a s s o f o b j e c t s o f t h i s t y p e a p p e a r s

t o be i d e a l f o r t h i s p a r t i c u l a r a p p l i c a t i o n .

I t makes i t p o s s i b l e t o a s s i g n a r b i t r a r y

p r o p e r t i e s t o an o b j e c t , t o name them and

t o a s s e s s t h e v a l u e t h a t t h e p r o p e r t y

a c q u i r e s i n c o n n e c t i o n w i t h t h e o b j e c t i n

q u e s t i o n . For t h e d e s c r i p t o r s / i . e . f o r t h e

o b j e c t s o f t h e t y p e E N T I T Y / t h e f o l l o w i n g

p r o p e r t i e s have been chosen: t h e d a t e o f

i n : e ' : i o n i n t o t h e d a t a b a s e , t h e o c c u r r e n c e

o f tin? d e s c r i p t o r i n some p u b l i c a t i o n / u p

t o 10 p o t e n t i a l o c c u r r e n c e s / , f o r e i g n -

l a i g u a g e e q u i v a l e n t s / E n g l i s h , F r e n c h ,

German, R u s s i a n / ,

KEYWORDS c o n n e c t i n g l i n k o f o b j e c t s o f d i f f e r e n t

t y p e s h a v i n g r e l a t i o n t o one SOURCE, o r

d e s c r i p t o r s r e l a t e d t o o t h e r d e s c r i p t o r s

by t h e same t y p e o f r e l a t i o n ,

P R O B L E M D E F I N E R t h e s a m e a s i n c u r r e n t u s e ,
M A I L B O X t h e s a m e a s i n c u r r e n t u s e ,
C O N S I ST S O F t h e s a m e a s i n c u r r e n t u s e ,
C O N T A I N E D I N t h e s a m e a s i n c u r r e n t u s e .

O n t h e a d o p t i o n o f t h i s c o n v e n t i o n , a s f a r a s t h e m e a n i n g

o f t h e P S L r e s e r v e d w o r d s i s c o n c e r n e d , t h e t h e s a u r u s w a s

m a t e r i a l i z e d i n t h e f o r m o f a s e m a n t i c n e t w o r k . T h e n o d e s o f
t h e n e t w o r k a r e c o n s t i t u t e d b y o b j e c t s o f s e v e r a l k i n d s :

364

(i) d e s c r i p t o r s , (i i) p r o p e r t i e s o f d e s c r i p t o r s (c r e a t i n g

t e r m i n a l n o d e s) , (i i i) s o u r c e s i n whi ch t h e d e s c r i p t o r s

o c c u r , (i v) r e l a t i o n s s t a t e d b e t we e n t h e d e s c r i p t o r s . The

edges bet ween t h e o b j e c t s r ema i n l a b e l l e d as p r o v e d e d f o r

by PSL.

At p r e s e n t , works h a v e been f i n i s h e d on t h e e x p e r i m e n t a l

sampl e o f t h e s a u r u s c o n t a i n i n g 110 d e s c r i p t o r s . The t h e s a u r u s

i s assumed t o c o n t a i n 3 , 0 0 0 d e s c r i p t o r s t h e m a t e r i a l s f o r

book e d i t i o n o f t h e t h e s a u r u s b e i n g made up by t h e PSL/PSA

r e p o r t s .

Even i n t h i s r e l a t i v e l y s ma l l e x t e n t o f t i e s a u r u s t h e

m u l t i p l e a d v a n t a g e o f t h e s o f t w a r e chosen bee ane m a n i f e s t :

- easy m o d i f i c a t i o n of t h e s t o r e d d a t a / m o c i f i c a t i o n s a r e

r a t h e r f r e q u e n t at t h e e a r l y s t a g e s o f t h e s a u r u s c r e a t i o n / ,

- easy d e s c r i p t i o n of s e m a n t i c r e l a t i o n s b e t we e n d e s c r i p t o r s

/ a s can be seen f rom t h e A p p e n d i x , t h e s e r e l a t i o n s a r e

f a i r l y r i c h / ,

- easy d e s c r i p t i o n o f t h e p l a c e o f o c c u r r e n c e o f t h e d e s c r i p t o r

i n t he p u b l i c a t i o n s c o n c e r n e d and o f t h e d e g r e e o f

i m p o r t a n c e o f t h e o c c u r r e n c e ,

- easy d e s c r i p t i o n of p u b l i c a t i o n s ,

- easy r e g i s t r a t i o n o f w o r k e r s r e s p o n s i b l e f o r t h e r e t r i e v a l

i n t he p u b l i c a t i o n s ,

- easy s u p p l y o f i n f o r m a t i o n bot h t o t h e d e s i g n e r s and t h e

u s e r s of t h e t h e s a u r i . The f o l l o w i n g PSL/ PSA o u t p u t r e p o r t s

a r e c o n v e n i e n t : NG w i t h v a r i o u s p a r a m e t e r s , FPS wi t h

3 6 5

v a r i o u s p a r a m e t e r s , DI CTIONARY w i t h v a r i o u s p a r a m e t e r s ,

KWIC,

- p o s s i b i l i t y t o suppl y i n f o r m a t i o n as r e p l y / i n t h e form

o f a r e p o r t / t o q ue r y / i n t h e f or m o f PSA commands w i t h

p a r a m e t e r s / i n such a way t h a t t h e r e p l y s t r u c t u r e shoul d

be i n k e e p i n g w i t h t h e f u n c t i o n a l p e r s p e c t i v e o f t h e q u e r y .

The s o f t w a r e chosen f a i l s t o e n a b l e t o m a t e r i l i z e a

f a c e t a p p r o a c h t o t he d e s c r i p t i o n o f g e n e r i c r e l a t i o n s

bet ween d e s c r i p t o r s , but i n t h e s u b j e c t a r e a i n q u e s t i o n i t

i s p o s s i b l e t o do w i t h o u t f a c e t s .

The way o f o p e r a t i o n w i t h a t h e s a u r u s c r e a t e d by means

o f PSL/PSA s o f t w a r e i s c o m f o r t a b l e and a g r e e a b l e . I t can

be assumed t h a t i t w i l l c o n t r i b u t e t o f r e q u e n t u t i l i z a t i o n

o f t h e s a u r u s by managi ng w o r k e r s and t hus become one of t he

b a s i c r e s o u r c e s o f manag i ng i n f o r m a t i o n .

LI TERATURE:

AITCHINSON J» - GI LCHRIST A . , T h e s a u r u s c o n s t r u c t i o n .

L o n d o n , 1 9 7 2 .
BODART P. - TEICHROEW D . , Les o u t i l s d * a i d e a l a c o n c e p t i o n

d * u n Systeme d ’ i n f o r m a t i o n . I n f o r m a t i q u e et

G e s t i o n , 1 9 8 1 , No. 1 2 5 , 4 7 - 5 5 .
H J E L M S L E V L . , P r o l e g o m e n a t o t h e t h e o r y o f l a n g u a g e .

L o n d o n , 1 9 5 3 .
H U D E C C. - M A C H 0 V Ä S . , A u t o m a t i o n o f c o n t r o l i n f o r m a t i o n i n

a b a n k . P a p e r t o b e r e a d a t t h e I N F O S E W ' 8 3 ,
Pi e st a ny, S l o v a k i a , M a y 1 9 8 3 .

•

•

	Tartalom
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������
	149����������
	150����������
	151����������
	152����������
	153����������
	154����������
	155����������
	156����������
	157����������
	158����������
	159����������
	160����������
	161����������
	162����������
	163����������
	164����������
	165����������
	166����������
	167����������
	168����������
	169����������
	170����������
	171����������
	172����������
	173����������
	174����������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������
	185����������
	186����������
	187����������
	188����������
	189����������
	190����������
	191����������
	192����������
	193����������
	194����������
	195����������
	196����������
	197����������
	198����������
	199����������
	200����������
	201����������
	202����������
	203����������
	204����������
	205����������
	206����������
	207����������
	208����������
	209����������
	210����������
	211����������
	212����������
	213����������
	214����������
	215����������
	216����������
	217����������
	218����������
	219����������
	220����������
	221����������
	222����������
	223����������
	224����������
	225����������
	226����������
	227����������
	228����������
	229����������
	230����������
	231����������
	232����������
	233����������
	234����������
	235����������
	236����������
	237����������
	238����������
	239����������
	240����������
	241����������
	242����������
	243����������
	244����������
	245����������
	246����������
	247����������
	248����������
	249����������
	250����������
	251����������
	252����������
	253����������
	254����������
	255����������
	256����������
	257����������
	258����������
	259����������
	260����������
	261����������
	262����������
	263����������
	264����������
	265����������
	266����������
	267����������
	268����������
	269����������
	270����������
	271����������
	272����������
	273����������
	274����������
	275����������
	276����������
	277����������
	278����������
	279����������
	280����������
	281����������
	282����������
	283����������
	284����������
	285����������
	286����������
	287����������
	288����������
	289����������
	290����������
	291����������
	292����������
	293����������
	294����������
	295����������
	296����������
	297����������
	298����������
	299����������
	300����������
	301����������
	302����������
	303����������
	304����������
	305����������
	306����������
	307����������
	308����������
	309����������
	310����������
	311����������
	312����������
	313����������
	314����������
	315����������
	316����������
	317����������
	318����������
	319����������
	320����������
	321����������
	322����������
	323����������
	324����������
	325����������
	326����������
	327����������
	328����������
	329����������
	330����������
	331����������
	332����������
	333����������
	334����������
	335����������
	336����������
	337����������
	338����������
	339����������
	340����������
	341����������
	342����������
	343����������
	344����������
	345����������
	346����������
	347����������
	348����������
	349����������
	350����������
	351����������
	352����������
	353����������
	354����������
	355����������
	356����������
	357����������
	358����������
	359����������
	360����������
	361����������
	362����������
	363����������
	364����������
	365����������
	366����������
	367����������
	368����������
	369����������
	370����������

