anulmanyok

MTA Szamitastechnikai és Automatizalasi Kutato Intézet Budapest

————— —— — = CAEEE

oD
930
o

MAGYAR TUDOMANYOS AKADEMIA
SZAMITASTECHNIKAI ES AUTOMATIZALASI KUTATO INTEZETE

PI-II / IIIBT
"CUCTENH YIIPABIGEIAA DACALT JAIMGE I IR120PLiAL, TOEEET

i L a1]
CHCT &

CBOPHIUIK

HAVIHO-~: ICCIL0LATRIBCITED PALOT

TO.I ILI

Tanulmédnyok 133/1982

A kiadasért felels:

DR VAMOS TIBOR

ISBN 963 311 138 2

ISSN 0324 2951

Féprint nyomda 82029

COEEPLAHIAE
COOpHIIK HAYYHO-IICCAETOBATCHBCKIX padoT
padoueil rpymnnu PI-IT,IHBBT

BHIyck I3[= mom I,

IIpemicaoBie
Anexcaurnpoz, A.ll
IIpoGirerl CO3NAHIA BHYMCJIUTEIBHHX IEHTDPOB
KOJLTeXTUBHOIO IOJH30BaHiA B KoraireTe Io
DmHoil clcTerMe COLNIAABHON MHO)OPLAITII
Bapues, II., Lp.illapxos
[lpoCmermi yupasieHia B CUCTEMAX IHOODMAITIOH-
HOT'O OOCCIIy:IIBAHIA KOJIEKTIBOB
Barypuna,l.d., H.AJlemenmHexuii
InmTamms paCoTH ceTeill 9Bid
beapre,3., Ll.=1. ZaprTMand, B.JoixT
ABTOMATIBIPOBaHHAA CHCTEMA KJIACCHIKAITIT
CHUCTeM yIpaBiIeHusa 6azavm mauusx (CYLI)
Boanos,Kell., B.Cel'eT0B, X.A.Typraxos
BHCOKOIPOU3BOITEIBHEE TTADPAJUISTIBHEE IIPOTIEeC—
COpPH C CEeTEeBHM IpOIDalliIpoBaHIIeM
Ileues,.l. M., E.l. usxora, P.l.Jecesa
CpexncTna GOPMATIPOBAHHIA
Iodpes,L.ii., P.K.IKupxosa, II.A.llappanos
Cicreila IWISHIPOBAIIIA X y4YeTa BHWICIUTEIBHLIX
PECYPCOB
lio6peB, T.il., :ioB.lBepTHep
Jocryn 1 samica B CYBI BACEC
LEeYKOBCKII, B,
SIBHK MaHMITyJIIPOBaHMA IAHHMMI CIICTEMH YIIpaB—
JeHsga 6az3oil maHHEX LINDA
3aues, B,
KoHmlemmin u 1MONeJsb pacipeleleHHOil CHCTEeMH
HH)OPMAIFIOHHOTO OCCIY IMBaHIL KOJLIEKTIBOB

LI

I5

29

67

= 4w

VIATaPOBA, Ve
SJKBIBAJEHTIOCTE MOZeJell TaHHHX B paccrpelre—
JIEHHHEX 0a3ax IaHHBX

Ipzosa, P. K, '
llpicieHeH e MHIOOPMAITIOHHNX CHCTEM IIPH opra—
HI3QINI HAyYHHX 11ePOIPUATHI

Kuprona, P, if.
COIPAT -~ Cucrera WA ONEPATUBHOTO KOTPOJIA
HAL peasrizaifieil I OTUETON! 3arpPAaHiYHHX CIy-—
ZeOHEX KOLIRHIIIDOBOK

HOHIDATHED, <1e 1o
1lofzor 1 JIOCTHOEHIN NAaTeNMATIYeCKoil Teoni
I MISCCOB IIHODIIQINIOHHHX CHCTEM

Cmmick mepompuarTuii PI=II "CucTenH ympampiemis
6asarml NaHHHEX U IHOOPLAITIOHHHE CHCTelmH"

mena 1 anpeca ydacTHHUROB PI'-II

BHIyCK 132 — Tom II

Ky3Henos, B. !,
HexoTopile BOIPOCH OCGPACOTKH MHOOPMAINNI B yC-—
Jopirx BIKIT CO AH CCCP
JaciuiH,l.2., B.d.5e3paxoB
00 ucmosp3osamiy LmHN~IBi] B cucTeme BIIITI
Jii6a, i1,
DasH ODaHHHX I IX Ha3HA4YeHIe B Mpoiecce cdopa
II 00palOTRI MHOOPIMAILII
lapuyx,T.il., O.3..0cranes
I[poGuer®l U BBOJDITIL BHWICANTEJIBHHY LEHTDOB
KOJUIEKTIIBHOI'O IIOJIb20BaHIA
LieTaden, .3
Texmuecxie cpemcTsa BUIUIL CO AH CCCP

89

99

I05

III

I23

125

<1

31

39

49

o 1. e

PaIlya0B, [ePe . ledle DAAMIIFOB, -iele 2JTICBA

00 omIionl MOTXONEe IpIl BRIANYEHITI ITKIDOBOTO

revrmHana (10T 8500 B cmcTeMH I(OJLTIELTHB=

HOTO ITOJIH30BAINIA 59
CaBIIIOB, Deine s Qo.le3CIHEDOB, Ll C.la3ap0B, AdA, IEeLCAHIPOB

OCoOLIeHHEEe MPOLELYPH JOIMYECKOI'0 IPOEKTII~

poBamiigd 6a3 JaHHHX 1 YTOYHEHIA IHOOJOTH—

YeCcKoi Momesml: CGOPMAJIBHELI IMOIXOXN 67
Crormiii, A /le, AJllOHIDATHEB

0 mocTpoeHdn MaTeMaTHYecKOT'o amnapara ILIgd

OIMIC&HUA MPOIECCOB ITPOEKTHPOBAHIA 1 OYHK—

LIMOHITPOBAHNUA MHOOPMAINIOHHHX CIICTeM 83
Tepsues, A. 1,

JupasieHlle (JopMaTa OTUEeTOB M IIONCKa MHOOD—

Mam B 0azax MSHHUX BHUUCJIITEJBHHX CHCTEM

C IMHO:ECTBEHHEM IOCTYIIOM Q7
liBepTHED, :isB.
SaupITa KOPEeKTHOCTH IAHHHX Ipu BBome B CYBI
BYCEC I05
llBepTHED,..eB., J.llaHacues
Cucrenmuil xypHas B CYSLI DHCEC LT

dcxenasiu,A.0l. , HJll.lManesa, B.T.lleTpona
ITocK IIpH HOMOUPI MHBEPTIIPOBSHHHX (AilIoB B
cuctenre DHCEC 117

BHIycK 133 - Tom III

Barnev,P., At.Radensky, P.Azalov, Kr.Markov,Z.Vassilev
A local information station - Version one iy
Benczur,A.
Problems in modelling of data base per=-
formance on
Bittner, J.
DBS/R - A system of practice 43

- b =

Demetrovics,J., Gy.Gyepesi
Logical dependencies in Relational
Datea Base
Kerékfy,P.
Some remarks on statistical data
processing
Havel,Il., P.Liebl
A relational DBMS in Concurrent PASCAL
Riha,A.
Modifiable query system for casual Data
base user
Werner,W., D.Koch
Natural language interfaces to Data
bases: a day-dream or a realistic goal?

09

(40)]
{8

TIT

H
3%
S9)

MTA Szémitistechnikai és Automatizaldsi Kutaté Intézete, Tanulminyok 133/1982 Proc.of RG—11, KNVVT

A LOCAL INFORMATION STATION -
VERSION ONE
P.Barnev,At .Radensky,P.Azalov,Kr.Markov,Z.Vassilev

Institute of Mathematics with Computer Center
Bulgaria 1090-Sofia, PQBox 373

ABSTRACT

The paper is an introduction to the command language
of the Local Information Station - 1 database system. An
extensive set of examples is used to describe the action
of each command. Appendix 1 contains a list of all system
commands .

O+ Introduction

The family of local information stations (LIST) is
based on the concept of information servising, developed
by P. Barnev and collaborators at the Institute of llathe-
matics of the Bulgarian Academy of Sciences /1-9/.

LIST-1 is the smallest and simplest for use system
of the LIST family. It is designed to manage a tabular
set of data for a single user.

LIST-1 features simple use and a powerful set of da-

tabase operations.

LIST-1:

- runs on a Sli-4 minicomputer;

- creates, accesses and maintains the user's database;

- interacts with the user via a terminal using a sim-

ple command language;

- allows the advanced user to define new commands as

- -

sequences of commands as a tool for system adaptation to the
specific user requirements.

1. Primaries
1.1+« An exemplary database

Throughout the command descriptions we are going to
use an example of a simple database consisting of 2 tables,
or relations:

- a relation named 'theaters' with attributes (columns)
'name', 'head' and 'year of foundation',

- a relation named 'actors' with attributes 'actor na-
me' and 'theater'.

NAME HEAD YEAR OF FOUNDATION
National theater Dimov 1890
Drama theater Raev 1902
Comedy theater Michailov 1960
Theater of the smile Ivanov 1927
Puppet show theater Tassev 1934
Ballet and show theater Malchev 1893
Army Theater Penchev 1948

Zxample 1.1.1 Relation 'theaters'.

ACTOR NAME THEATER

lidcheaeilov Comedy theater
Kolev Army theater

Markov Theater of the Army
Panova Theater of the smile
Dimov National theater
Goranova Drama theater
Jekova Show theater

Example 1.1.2 Relation 'actors'.

O
—) ==

1.2. The database structure

The user views the datebase as a collection of rela-
tions (tables with fixed number of columns and variable
number of rows). Zach individual fact is represented in the
database as a row (tuple) in a relation, consisting of as
many elementary data items as are the attributes (columns)
of the relation. A relation may have zero or more tuples
end at least one attribute. llames are used to refer to both
relations and attributes.

All elementary date items are character strings of any
length. In case a string has several leading digits it is
considered a numeric data item which evaluates to the decimal
number,representz2d by the leading digits of the string.

$28.5 -13.988 5T 98% 147CR @456 .70
Zxample 1.2.1 Numeric date items.
All other elementary data items will be called non-
numeric or text ones.

a=10 London W1 TiXTtext POB 373 S0fia1000

Example 1.2.2 Text data items.

1.3+ Comparing elementary data items

Numeric data items can be tested for conditions such
as equality (=), not-equality (/=), less then (£), less
or equal (<€ =), greater than (>) and greater or equal

(>=)o
98% » 9Ttons, 147 parts = 147 cows, $9.00 = £9.

-
—

sxample 1.3.1 All tests evaluate to 'true'.,

Non-numeric data items can be tested for the same con-
ditions. In the lexicographic order of characters the let-

- 10 -

ters follow the blank character, the digits and the special
characters.

Dimov < Roev, Mark < Markov, LIST-1 = list-1

Example 1.32.2 All tests evaluate to 'true'.

When comparing two data items, LIST-1 attempts to
treat them as numeric and compare their values. In case of
failure character string comparison is performed.

1.4. Pattern matching

LIST-1 provides for the matching of a data item, trea+
ted as a character string, against a pattern. The operation
is denoted '?'.

The pattern is composed of character string and seve-
ral special characters - "*','&','"|','/'. A data item mat-
ches a character string pattern iff they are equal. A data
item matches the concatenation of two patterns iff it can
be subdivided into two strings which match the first and Se-
cond pattern strings respectively. Any data item matches the
special pattern '*!'.

Theater of the army 7 T*y
Theater 2 *t*ex
Army Theater 7 *T*g*tw

Sxample 1.4.1 All the above matches evaluate to 'true',

Composite patterns may be constructed using pattern
concatenation and the logical connectors and (&), or (l) and
not (/). Formally, a string matches the pattern P1 & P2 iff
it matches both P1 and P2. A string matches P1 | P2 iff it
matches either P1 or P2. A string matches / P1 iff it does
not match P1.

-] =

Army theater ? Army* & *theater
Army theater ? *theater* | *army
Comedy theater ? *theater* & C*

Example 1.4.2 All tests evaluate to 'true'.

D&YV
*D & *V
D & / *D*

Example 1.4.3 The above patterns will not match any
string.

1.5. Querying the datebase

To access the elementary data items stored in a LIST-1
database the user has to identify the relation, tuple and
attribute of the specific data item. Relations and attribu-
tes are referred to by their names. The specific tuple is
identified by specifying a condition on the values of its
attributes. The condition may be a simple comparison or pat-
tern match between attribute values or an attribute value
and an elementary data item (constant). In the former case,
when attributes of different relations are involved, the
only comparison allowable is equality and the operation is
denotes ':=:'. Composite conditions may be constructed by
using the logical connectors &, | , and /. Parentheses are
also allowed.

A condition identifies all tuples of the cartesian
product of the relations ccacerned, for whose data items
the condition test evaluates to 'true'.

(head = Penchev) & (name ? *Army*)

(name (A*t* | T*army))

(year of foundation>= 1900 & year of foundation«1940)

(head :=: actor name)

(V]

- 2 -
1¢5e1 All conditions are valid for LIST-1. All but
the last are over the 'theaters! relation and

the last one concerns both relations of the
exemplary database.,

1.6 Communicating with LIST-1.

The interaction between a user and LIST-1 is done via
a terminal. The user sgspecifies his intentions by issuing
LIST-1 commands. The system can help the user by promging
for additional information it needs and by sending warning
and error messages. A 'help' facility is also available to
give the user all necessary information on system commands.

The inexperienced user may leave the initiative comple-
te1§£ZIST-1 by specifying only the command codes. LIST-1 will
question him for all additional information it needs in an
easy to understand manner.

1e7« LIST-1 commands
The commands of LIST-1 comprise three principal groups:
basic commands, macro facility commands and service commands.

2. Basic commands of LIST-1.
21+ Creation of tables and insertion of tuples. Here
are some examples of these commands:

ENTER COLIMAND:

121

SNTER TABLE NAMS:

theaters

ENTER COLUMN NAMES:

name ,head,year of foundation
ENTER COLIMAND:

Oxample 2.7.1 Creation of table 'theaters'.

- 15 -

ENTER COMIMAND:

121

ENTER TABLE NAME:
actors

ENTER COLUMN NAIES:
actor name, theater
ENTER COLRMAND:

Example 2.1+.2 Creation of table 'actors'.

ENTER COMIIAND:

130

ENTER TABLE NAME:

theaters

FAL'E

National theater

HEAD:

Dimov

YEAR OF FOUNDATION:

1890

TUPLE ENTERED:

130

NAME :

Drama theater

HEAD:

Raev

YEAR OF FOUNDATION:

1902

TUPLE ENTERED:

013

ENTER COMIMAND:
Example 2.1.3 Entering 2 tuples in the

'theaters' relation.

o T4 =

In order to create a table, the user has to specify
its name and the names of all attributes as parameters of
command 121. Command 130 is used to enter (insert) tuples
in an existing relation.

The experienced user can follow the 'fast path' by
issuing a 230 command instead of a 130.

230 - table (theaters)
~ columns (name, year of foundation, head)
- tuples (National theater, 1890, Dimov;
Drama theater, 1902, Raev;
Comedy theater, 1960, Michailov)

Example 2.1.4 Using command 230 to enter tuples
in the 'theaters' relation.

In case the database contains two relations with si-
nilar attributes, the relations may be linked together by
inserting the tuples of one of them into the other (commeand
231).

2e2+ Deletion from the database

Here is the next example:

ENTER COIMMAND:
160

ENTER TABLE NAME:
actors

ACTOR NAMNE:
Jekova
THEATER:
show

TUPLE DELETED:
013

ENTER COMMAND:

Example 2.2.1 Deleting tuples from a relation.

- T5 e

ENTER COMMAND:
160

ENTER TABLE NAME:
theaters

NAME :

YEAR OF FOUNDATION:

TUPLES DELETED:
013
ENTER COMIAND:
Example 2.2.2 Deleting all tuples of a relation.

ENTER COMVAND:
151
ENTER TABLE NAME:
theaters
TABLE DELETED:
ENTER COMMAND:
Example 2.243 Deleting a table from the dataggt

The above examples illustrate the use of commands 160
and 151 - tuple and table deletion. When promted with a co-
lumn name in the 160-command intercourse the user is expec-
ted to specify a simple condition on the value of the co -
lumn. The default condition is ' ? * ' (see Example 2.2.2).

2.3 Update commands

The LIST-1 tuple update commands will be illustrated
by the following examples:

ENTER COMMAND:

170

ENTER TABLE NAME:

theaters

NAME ¢

- T8 =

Ballet and show theater

HEAD:

YEAR OF FOUNDATION:

UPDATES :
NANE: BALLET AN'D SHOW THEATER

HEAD:

MALCHEV

Kalchev
YZAR OF FOUNDATION: 1893

/0
TUPLE
ANTER

ENTER
270 -

UPDATED:
COLIMAND:

Zxample 2.3.1 Updating a tuple.

COLLIAND:

table (theaters)

condition (name = Ballet and show theater)
columns (head, year of foundation)

tuples (Kalchev,/0)

TUPLES UPDATED:

ENTER

CONMMAND:

Example 2.3.2 Update a tuple - the fast path.

To update the elementary data items in a relation one
uses the 170 LIST command (see Sxample 2.3.1) or the 270
command (see Example 2.3.2). The data item value '/0' is

a notation for the 'unde-fined!' value.

2.4 Information retrieval
We begin with examples again:

- I7 =

ENTER COMIJAND:
144

ENTER TABLE NAME:
theaters

NAME :

HEAD:

YEAR OF FOUNDATION:

< = 1900
THEATERS .
NAME HEAD YEAR OF FOUNDATION
NATIONAL THEATER DIMOV 1890
BALLET AND SHOW THEATER MALCHEV 1893

ENTER COMMAND:

Example 2.4.1 Retrieving tuples from a LIST-1
relation.

ENTER COMMAND:
244 - table (theaters)

~ columns (actor name)

- condition (theater ? (A * r | * army *))
ACTORS.
ACTOR NAME
KOLEV
MARKOV
ENTER COMMAND:

Example 2.4.2 Retrieving specified columns of
a relation - the fast path.

All query commands require the specification of the
relation (table) name, the requested attributes' (columns)
names and a condition identifying the tuples to be retrievéd.
If the condition test evaluates 'true' for all tuples of the

— TE -

relation, all tuples will be displayed. Two-table queries are
also possible.
ENTER COMMAND:
243 - tables (theaters, actors)
- columns (head)
- condition (head :=: actor name)
HEAD
IIICHAILOV
DIMOV
ENTER COMMAND:
Example 2.4.3 Retrieving the names of all actors
that are theater heads.

Such queries may be viewed as ranging over the carte-
sian product of the relations involved.

3. Macro facility commands

LIST-1 allows for the definition of new commands as
sequences of system commands. The user-defined commands will
be called 'procedures'.

ENTER COMMAND:
200 - mame (create)
- parameters (tab,col)
- body (121 - table (tab) - columns (col))

ENTER COMMAND:
create - tab(actors) - col(actor name, theater)
Example 3.1 Definition and usage of a 'create!
command .

The parameter passing is done by direct replacement of
character strings in the procedure body.

The command 201 is used to delete a user defined pro-
cedure.

= T9 =

ENTER COMMAND:

201 - name (create)
PROCEDURE DELETED:
ENTER COMMAND:

Example 3.2 Procedure deletion.

Default parameter vealues may also be defined in a pro-
cedure definition. A procedure may invoke other command pro-
cedures, but no recursion is allowed.

4. Service commands

4.1. Indexing

To decrease search time LIST-1 provides for a special
mechanism, called 'index', on columns of tables that parti-
cipate in the search argument. The index, if present, will
automatically be used to speed up all searches involving the
indexed column (attribute). When created or destroyed indi-
ces are identified by names. The user can define indices
where the values of the column are ordered either up or
down,thus defining the order of tuples in all retrieve or
update operations.

ENTER COMMAND:

125

ENTER INDEX NAME:

years

ENTER TABLE NAME:

theaters

ENTER COLUMN NAME:

year of foundation

INDEX CREATED:

ENTER COMMAND:
Zxample 4.1.1 Index creatione.

s
ENTER COMMAND:
155
ENTER INDEX NAME:
years
INDEX DESTROYED:
ENTER COMLIAND:

Example 4.1.2 Index destroyal.
4.,2. Getting general information about the database

The user may request information about the tables in
the database (command 141) and their columns (command 142).
The number of tuples in a relation whose attribute wvalues
fulfill a given condition may also be displayed (246 and
247 commands) .

ENTER COMMAND:

142

ENTER TABLE NAME:

theaters

COLUMNS OF TABLE THEATERS:

HEAD,NAME ,YEAR OF FOUNDATION

INDICES OVER COLUMNS OF TABLE THEATERS:
YEARS OVER YEAR OF FOUNDATION
ENTER COMMAND:

Example 4.,2.1 Displaying information about a tab-
le in the database.

4.3 lessages

The advanced user may want to change the LIST-1 sys-
tem messages. LIST-1 provides 2 commands - 280 and 281 for
sending user messages to the terminal and changing system
messages respectively.

= O -

ENTER COMLIAND:
200 - name (pycCKMit)
- body (281 - oldmsg (ENTER COMMAND:)
- newmsg (SAJAl KOWAHIY:)
280 - msg (JAJBIE JIMAJIOT BYLET HA
PYCCKOM FASUKL;))

ENTER COLMLIAND:

PyCCKUiA

TAJBUE TUAJOT BYLET HA PYCCHOM ASHKL;
SAIAd KOMAELY :

Example 4.3.1 System message change.

444+ Interfacing to the operating system

LIST-1 allows for directly sending commands to the
operating system (command 222). A LIST-1 command file execu-
tion is also possible by using command 221. Command 220 is
used to redirect the LIST-1 output to a file, instead of the
user's terminal.

Activation and deactivation of LIST-1 depend on the
specific operating system. Command execution may be termina-
ted by responding '013' to any LIST-1 question.

5 Concluding remarks

The main requirements to the implementation of LIST-1
are:

- portability;

- small main memory requirements;

- reliebility and simple use.

Portability is achieved by using FORTRAN as the imple-
mentation language and by programming LIST-1 as a complex of
small modules. System modularity also keeps the main stora-
ge requirements relatively small. Reliability is achieved

- 95 o

by using proper protection machanisms.

The LIST-1 database is implemented as a complex lin-
ke@iist structure - a decision imposed by the requirement
that an elementary data item may be a string of any length.

Appendix 1

LIST-1 command syntax

1. Basic commands
1.1. Table creation commands
1¢e1e1le Including a table in the database
121 - table (table name)
- columns (column name [,... column name n |)
1.1.2. Inserting tuples in a relation
230 - table (table name)
- columns (column neme 1 [,... column name nf)
- tuples (column item 1[,ee..column item n]

[4ees colum item 1m [,+.. column item nm]])
130

1¢1.3. Combining two tables
231 - object (table name)

- gsouzce (table name)
1¢2¢ Deletion commands

1e2.1+ Table deletion
151 - table (table name)

1262+ Deletion of tuples from a table
260 - table (table name)

- condition (condition expression)
160

1.3+ Update commands

1341+ Updating tuples in a table
170

270 - table (table name)

- condition (condition expression)

- 23 -

columns (column name 1[,e..column name n|)
tuples (data item [,...data item n|[;...
data item 1m [,...data item nm7)\)

1¢4. Information retrieval commands
1¢4¢1. Tuple retrieval from a single table
244 - table (table name)

144

columns (column name 1 { ,e..column name n |)
condition (condition expression)

1e4e2. Tuple retrieval from 2 tgbles

243 -

tables (table name 1,table name 2)
columns (column name 1 [,e.. column name n])
condition (condition expression)

2+ Macro facility commands

2ele Definition of a command procedure

200 -

name (procedure name)
parameters (paraml [,... param n))
body (commandl [,ee. command m])

2.2+ Deleting a command procedure
201 - name (procedure name)

3. Service

commands

3e1+ Indices
3¢elelo Index creation

126 -

127 -

index (index name)
table (table name)
colum (column name)
index (index name)
table (table name)
column (column name)

3¢1+2. Index destroyal

1535 =

index (index name)

3.2, Getting statistical information
3¢2¢1. Database tables list

s DN

141
3.2+2. Table description
142 - table (table name)
3+.2.3. Number of tuples in a table (or cartesian product
of tables)
246 - tables (table name 1, table name 2)
- condition (condition expression)
247 - table (table name)
- condition (condition expression)
3.3. lessages
3¢3¢1. Sending a message to the user's terminal
280 -msg (message text)
3¢3+2. Change of a system messege
281 - oldmsg (message text 1)
- newnsg (message text 2)
3+4+ Interfaee to the operating systen
3¢4e1+. Redirecting the system output to a file
220 - command (command text)
- file (output file name)
3¢4e2. Command file execution
221 - file (command file name)

References

1. P. Barnev, Systéme abstract de service informatique
des collectivites, Congres de mathematique appli-~
quees, Thessalonique, 1976.

2. P. Barnev, Systems for information servicing of
collectivities, Serdica, vol. 4, fasc 2-3, 1978.

3. P. Barnev, At. Radenski, Structure of the informa-
tion and operations on the entities in a system
for information servicing of collectivities, Ser-
dica, vol. 4, fasc 2-3, 1978.

- 95

4. K. Ivanov, Concretization of the collectivity and
individualizing the communication language in a
system for information servicing of collectivities,
Serdica, vol. 4, fasc 2-3, 1978.

5.lI.BvpHeB, K. IBanoB, BxomHo-u3xomHa cucTeMa 3a MHOOD-
MaIIMOHHO OOCJyXBaHe Ha KojexTuB:, IV lexmynapomukii
CUMIIO3UYM IIO Ileperaull NaHHHX ¥ o0paloTKe MHOpMaluu,
26-31 masa 1977, Bapna.

6.l1.brpueB, Bi. 3aueB, AT. PameHcku. basu OoT mauHHU.
Cucrema 3a MHMOPMAIIMOHHO OOCJIy¥BaHe Ha KOJEKTUBH.
VIII IlposnerHa xoupepennusa Ha CMb, Cia., Opsar, ampul
1979.

7.11.brpueB,Ar, Pameucku, Bi. 3aueB, CTPYKTYPH IaHHHX
B apxuBe CHCTEeMH MHPOPMAIIMOHHOI'O OOCJYXUBaAHUA KOJ-
JEeKTUBOB, COODHUE IOKJISLOB KOHOEPEHIMU II0 ITPUIOKEe—
HUY BHYUCJUTEJNBHOU TEXHUKHA M 0a3 IaHHHX B HAyYHHX
UccaenoBaHuax, Bapua, mait 1978.

8.Bi. SaneB, KoHmemua X MOIeJb PACCIPENeJeHHOR CHC—
TEMH MHPOPMAIIMOHHOT'O OCCIYRUBAHUSA KOJIEKTUBOB,
COoopHUK IorIanoB KoH(epeuuum o BIKI, Biaroesrpa,
1979,

9.ll.bapues, Kp. Maprom, IIpoGieMH yupapBjieHUsd B CHUCTe-
Max MHOOPMAIIMOHHOT'O OCCJYXMBAHUA KOJIEKTHBOB, COop-
HUK IOKJanoB KoH@epeuuuu rno BIKII, Bararoesrparn,1979.

MTA Szamitdstechnikai és Automatizildsi Kutaté Intézete, Tanulmidnyok 133/1982 Proc.of RG—11, KNVVT

Problems in modelling of data base performance

Andras Benczur

Data base systems have some special properties which make
the modelling of their performance more difficult than that
of computer systems. First we analyze these properties as
differences from the models used in the theory of operating
systems and from the mathematical model developed for
information transmission. Then a new model - something like
a conceptual data model - is proposed to describe the back-
ground of a data base; and, on the basis of this model, the

main problems of data base performance are stated.

1. Special properties of data base systems

As it is shown in Fig.l, a Data Base System /DBS/ is inside
a Computer System /CS/ which serves the information needs of
an Information System /[IS/.

A given realization of this information service uses certain
parts of different CS resources. The theory of operating
systems deals with the problem of the efficient use of these
resources as a problem inside the CS. How we can decrease

the amount of the used CS resources by better organization -
this is the problem of CS performance. But the performance
measures used in the evaluation of CS performance give no
answer to the question how efficient our solution, i.e. our
DBS, is from the aspect of the IS. It may happen that our
solution requires a lot of data preparation work from the IS,
e g. high redundancy in input, as it is typical in the case
of independent batch subsystems using own files. This means
that the IS must invest information work into the DBS, and

I name this information investment. Having the "most efficient"
solution of our DBS problem from the aspect of the CS, the
decrease in information investment will result in a new DBS
using more recources than the former one. This situation is

illustrated in Figure 1.

- B8

So, the performance of a DBS is not only the problem of the
efficient use of CS resources but that of an efficient
information service as well. We cannot investigate this problem
without a measure of information. This measure has to be defined
on the information /or data/ model of the real world represented
by the DBS. Data models developed in the last two decades are
not capable of measuring information, they are oriented either
to data manipulation purposes [e.g. file-systems, relational,
hierarchical, and network data models/ or to knowledge repre-

sentation /e.g. the proposals for conceptual data model/.

It is quite obvious to ask whether the measures and techniques
developed on the basis of Shannon’s entropy concept can be used
or not. We have two problems when we try to describe the
functioning of a DBS on the analogy of the information trans-
mission model. The first one is that we have no background
probability space where the information comes from. Our back-
ground space is not a mathematically well-defined one, the
source information comes from a real "living" organization, so
the background space is a continually developing, open system.
The second problem is that the coding in the information theory
is just the opposite of the coding in data bases. The classical
coding theorems are concerned with coding and decoding signals
/[or finite series of signals/ coming in a sequence according

to some probabilistic rule,/e.g. independent series, Markovian

series etc./.

In a data base there is a very large code,the stored data. We
have to change this code according to relatively small pieces

of information /coding input data/ and we have to decode

some part of this code according to planned or ad-hoc information
request /coding output data/. This situation is shown in

Figure 2. On this simple sketch, the source information is added
to the stored data through an input coding system, and the
answers to information requests are derived from the stored

data by an output coding system. But we cannot say a DBS works

like a data transmission channel with very large but finite

- 29 -
memory, because the output code is not the simple transmission
of the source information, it is stimulated rather by the

questions than by the source.

In order to clarify the role of the DBS further, we have to
explain the role of the IS from a new point of view. As it

is shown in Figure 3, an IS has two interfaces to the real
world of the organization it is serving.One of them collects
and makes managable facts about the objects constituting the
organization. The set of these facts is the knowledge of the
organization about itself. I call the corresponding interface
the Information Elaboration System of the IS.The second inter-
face understands the requests for information, and makes under-
standable the requested information for the requester, that
is, it gives back an answer. I call this interface the Question
and Answer Formulation System. The part of the organization
where the requests arise I simply call the Information Using
System. It covers, among other things, the decision system,

or the operational systems of the organization.

The possible set of requests is denoted by Questions. Each
question is connected to some part of the Knowledge, and the
IS can determine the answer to the question from this infor-

mation. The flow of information is the following:

the Q-A Formulation interface receives and understands the
request, and through the IS, the question is connected to a
part of the Knowledge. This part is not only accessible through
the Information Elaboration iInterface, but the answer can be
determined from it as well. The answer is made understandable
for the receiver by the Q-A Formulation interface. Naturally,
some actions of this flow can be done in advance, and this is
always true when the IS uses a CS.

One possible model for the information flow through the CS is

also given in Figure 3.

2. Proposal for the background space of the IS:
the Knowledge Space

The basic problem we have is to find a model which can satis-
factorily play a similar role as the probability space does

in Shannon’s information theory. Since the probability space
gives a total model of the information source, our model has
to be a total model. Totality means that the model has to
reflect the continually developing and growing self-knowledge
of the organization. Before building up the model, that is

the K-Space, we have to recall Fig.3. We only deal with items
of knowledge which are accessible by the IS, that is, which
are identified by means of formulizing a question. So a
guestion is nothing else than the identification of a piece of
knowledge, /or in other words, it is an entry point into the
K-Space/, and the answer is the information contained in this
information relevant for the receiver. While the K-Space
contains total information, an answer is always limited: it
gives only the relevant information. The three components
mentioned below: a question, an answer and a piece of knowledge

/or information/ make up a unit in the K-Space.

From another aspect, we can also say that a piece of knowledge
corresponds to certain facts about an identifiable object in
the real world. /This object can also be an abstract one, or

a possible one and so on/. A question identifies both an object
and the relevant facts about it. But the IS does not know the
objects, it knows only the items of knowledge, and there is a
one-to-one mapping from the set of objects to the set of
accessible items of knowledge. So the structure of objects is
reflected by the structure of accessible parts of knowledge.
This structure contains not only natural but artifical aspects
as well. The IS can identify the elements of this structure,
that is,the parts of knowledge corresponding to the objects
identified by the questions. From these parts of knowledge,
the IS gives the answers like a filter. Figure 4 gives an
illustration of this.

= 3T =

Let us turn to the definition of the K-Space.

Def.l. A threefold, /Q,A,I/ is called a K-element, where Q is
a question, A is an answer and I is some information. The
answer A is derived from I according to the question Q, so
the pair Q and I completely determines A.
n nw

Def.2. A K-State X is given by the sets OI{OLI S ,ﬂ‘{Ai}‘._
and Y= {I;H:, as the set of K—element;‘l{:{(Q.’,A‘-,j‘.")}
The set (-:) is the set of different questions, that is

Q; # ()i i # ¥

is the set- of answers, and Y is the system of K-parts,
which are the identified parts of the knowledge. For the sake
of simplicity, we suppose, that both Q¢and A; are contained
in Ii' and Ai’ being the actual relevant information, is
accessible by Qi' A K~part may contain another K-part, but the
IS does only know it if it is embedded as a K-element.

/|See operation 2./

Def.3. A sequence of K-States is a K-Space, if each state is
generated from the previous one by one of the two operations
given below. This means a K-Space is a monotonous increasing
sequence of K-States.

w
="

Operation 1l.The addition of new information:the growing operation

| G-operation/.

Let Ine

or form a K-part identified by Q. This means, some new infor-

o be a piece of information which is going to belong to

mation is added to the K-state through the entry point Q.The
result is a new K-part with a new answer and its K-element
contains the previous K-element.

We use the following notation

/l/ (Q,A,l) +(Q:ln¢w) :(QI Ah‘wl I41n¢w)

in the case when the K-element /Q,A,I/is growing.

- 32 =

Remark 1 The notation JL'F Ih,“/ means that the new
K-part contains both the old and the new information, but

they are not accessible separately.

Operation 2 The embedding of a K-element into a K-part: the

embedding operation /E-operation/. When a new piece of infor-
mation means that a part of knowledge is a subpart of another
one and both of them are identified by a question, than the

former one is embedded into the latter.

We use the following notation similar to /1/

o (0,A,1) @(8. 16, 1Y) = (Q, Anw, 16L&, L1)=
= (Q vﬂnuv, I+Ic_® Q‘I)

Where Q‘ is the identifier of the embedded K-part and Ie is

the embedding information that shows the role of the K-part

identified by Q and determines the way of giving the new

answer.
We use the notation (Q1 ! A‘H I*)EI , Or simply Q1 EI
if Q) is embedded into (Q, A1))

The structure of the K-space is developed by E-operations. The

following rules show the main features of the embedding:

Rule 1 Let(Q‘I_I_ A«_ qu) be embedded into (Q, A,I) ’

y L) 1is added to
new
Q,, it affects the K-element (Q AL T) , too. In

notational form supposing
/31 I:I'@Q1=I'®(Q1.A4'I1)

we have

W (A AT @0, AL L))+ (0, L,,)=
= (QI Avuw. I'@(Q" ! A1uw' I-l +In¢w))

This means that an embedded K-element remains embedded in its

that is Q€ I. If some new information

actual state automatically, and its changes consequently change

its host K—-element.

Rule 2 It is similar to Rule 1, but changing the (; -operator
in/ 4 / into an E-operator.

Remark 3 Since there are no restrictions given for E-operations,
a K-state may have a very complicated structure full of deep
recursion. Rule 1 and Rule 2 do not determine the sequence of
changing the host K-elements, so it is supposed that the
corresponding changes are made simultaneously. From this reason-
ing it follows that the G - and E-operations rather affect the

whole K-state than one of its K-elements.

Remark 4 I only want to mention here I have tried out how

the K-space can reflect different data models.

3. The measure defined on the K-space

There are two aspects that mainly determine the construction
of our measure. The first one is that questions, answers and
information parts are understandable for the organization and
each of them has an information quantity, which is necessary
for understanding. This means, these quantities are different

from the code lengths of an "optimal" coding.

The second aspect is that during the development of the K-space,
the quantity of each K-part gets larger by the new facts added
to it by a G- or E-operator according to Rule 1 and Rule 2.

Def.3 The K-measure ¥ is defined on each component of the
K-space, that is on each question, answer, K-part and K-element.

The measure MW satisfies the following conditions:
Cond. 1l Within a K-state given by the K-elements
(Q;,A:’I") ‘(..:1,1,...,"\-,
A ZM(Q;) 1

~
n
—

The meaning of this condition is, that questions are different,

and we also need the possibility to add new questions to a

state.

Cond.2 Within a K-element /Q,A,I/ the K-part I contains both
Q and A, so

2 (I)2 % (Q) ana
% (I)= % (A).

Cond.:3 The measure of a piece of information to be added to
the K-state expresses its independent content, so the measure
of each K-element that contains the K-element to which the new
information is added by a G-operation is increased by the

measure of the new information. According to /1/ and /3/ this

means

w{(0,4,1) + (L1} =% (I) +% (L)
if @ C Il
% (0, A L)+ (@, L)} = e (L) + % (L)

Cond. 4 The embedding of a K-element into another one increases

and

the measure of the host only by the measure of the part of the
graft that is not known by the host. So, according to /2/

if Q1 ¢ Qz, and Q;¢ Q1 hold,
s {(Q“ AHIq) @ (Q'l ' [-Ql.) Ie])} :)C(I,)-}-)C(I‘)‘!-)('(Ql)*‘x (Iz) .

And in the case when Q, C Q OV‘A Qz <—: Q

w {(q,A 1) @ (@, [T, a])}=x@)+rx(L)+x(q).

- 35 -

After building up our measure, we can measure the work of the
IS necessary to execute (;- or E-operations. We can
determine this work by adding all the values that express the
growths of all K-elements affected by the operation.

For example, if Q 1is embedded in Ql, oo ey Qk and we add

(Q, Inew) to the K-state, the volume of the execution work is
equal to

(k"1))£'(lncw)

The derivation work of an answer in the K-element (Q,A,I) is

the difference 7"(1)" »n (A)

Note The investigation of the properties of the K-measure
has not been finished yet. It may have some weaknesses and the
complexities of the structure developed by E-operations may
need some measure, too,

4, Formulation of the DBS effectivity

In this last paragraph, we describe the problem of the DBS
effectivity in terms of the K-space.

First we characterize the DBS as it reflects some subparts of
the K-space.

The most important subpart of the K-space, which determines

the DBS, consists of the set of possible questions coming from

the Information Using System; CL C () ./This type of short
notation means, that, when the K-space grows, both EL and
© grow./ Oo determines the set of answers ‘ﬂo that

corresponds to the output of the DBS.

Since the answers in.}\.O are changed in consequence of G

and E-operations, it is not suitable that the DBS should
contain only answers. So we can say that the DBS contains
mappings of special K-parts that are sufficient for deriving
the answers.

= 36 =

The set of these K-parts is given by the set of questions
eb c 0 . The stored data do not cover the total
information contained in the K-elements /Qi’ Ai, Ii /4 0;66,,
Instead of Ii the DB contains some data Di mapped from Ii’
so that it is sufficient to derive all the answers belonging
to Q4 0y € B, . We can say that the system /Q., D;/,

Q; € eb gives the logical model of the stored data.

The third important part of the DBS is the system of special
K-elements that are embedded in K-elements belonging to ep .
The special property of these elements is that new information
are added to them by G-operations, and they are most frequently
embedded by E—-operations. The system of these elements is
given by the set of questions @I , and the new pieces

of information added to them are the input of the DBS.

Now we can express the efficiency of the DBS in the following
way:

The information source is given by a stochastic point process,
the events of which mean the growth of the information space
restricted to OI . We can associate with the events the
measure of the information growth in GD and @o caused
by the corresponding G- or E-operation. The expected average
value of this information growth can be treated as the source
capacity.

The stored information /the content of the DB/ can be measured
as a part of the information space. An upper bound can be
given by adding the values (I;) when Q; € 90 . This
upper bound corresponds to the solution of highest redundancy.

This upper bound karacterizes the necessary storage capacity.

The third capacity corresponds to the stream of questions

coming from the Information Using System.

This capacity can be given similarly to the input capacity: a

stochastic point process describes the occurrance of questions,

-3 -

and the value of %(Qt) + % (Ai) is associated to the
events of the process. Maybe it is useful to separate the
measure of questions and that of the answers, because question

coding and answer derivation may use different processes.

These capacities require different computer system resources,
/extended sometimes by human power of different computer -
specialists/. Efficiency is: to use fewer and cheaper resources
to assure the same capacities. The most interesting point in
this problem is the complicated conflicts among the capacity
demands in using computer-system resources. For example, the
more recources are used to update the data base code by the
input, the fewer recources are needed to meet the output

demands.

= 88 -

zO—-——>» I OQTMmZT—
~HNzzmao—"rm< Z—

INFORMATION SYSTEM

CONPUTER SYSTEM
/{/////// FN’ ¢
S A/ E
& 7 ¢ R
/r nov

rad A |
A T
[X E

v

used resources of CS

decrease in Information Investment

extra resources corresponding to decreased
Information Investment

Figure 1

-39 =

—2L0IC - —-—O2 SN-2G Vi>wnpuT

g

-
N
D
>
3
)
o

[Avsy
fans

f'*\

Wey

‘ !

OnﬁLnLUT.rL&
)]

-2J

i\ i

SYSTEM
SYSTEM

STORED DATA/

" 1 13

INEOR MAT(ON
COMPUTER

|

N
P
u
7
C
0
D

|
N
G

NQODX UMW O

A

T2 4 0x I < —-O2

NODXouw

Figure 2

mr\pgom

- 40 =

INFORMATION SYSTEM

-—|>3on i~

z%—-\)-wcc::»rm/ze

—

COCMPUTER SYSTEM
SEARCL HING...
l. ’ GI:&\REC CG -
¢ ik i MITIow
% 1 n ASEJ,
[~ —— outpPur |,.0°]
y L] | | coomu o
AN SWER DERIVATION

TO~—Z\ /T P™O™M
nhnZZTQ —

~h R <~

Figure 3

sir (T

OBIYECTS

Figure 4

B

L

AN SWERS

MTA Szémitdstechnikai és Automatizdldsi Kutat6 Intézete, Tanulmanyok 133/1982 Proc. of RG—11, KNVVT

DBS/R = A SYSTEM OF PRACTICE
JURGEN BITTNER

VEB ROBOTRON ZENTRUM
FUR FORSCHUNG UND TECHNIK
8012 DRESDEN
PSF 330

1, Introduction

In the GDR since 1979 the efficient Data Base Management
System/Robotron (DBS/R) has been available., It has been
developed in VEB Robotron Zentrum fiir Forschung und Technik
(Centre for Research and Technology) and tested together
with enterprises and institutions of different branches of
economy, Until April 1981, 136 buyers have purchased this
system; some of these sales will include the manifold reuse
in companies of whole industrial branches. Averagely at
present two to three projects per user are prepared or used,
Both databases for support of projects of the single tradi-
tional fields and also highly integrated systems up to
management information systems are represented in the large
number of applications, In addition to the advantages of
database organization, these applications utilize the
specific advantages of DBS/R for a rational projecting
which permits a short-term achievement of the objects in
viewes

2¢ Short Characteristic of DBS[B
Data and storing structure

DBS/R permits both on the level of record types and also of

- 44 -

record instances the representation of optionally extensive
network structures. The main components of the structure -
master and chain data = have a very high flexibility and
can be adapted well to the specific logic data structure

of the usere. DBS/R provides this basic structure on an
essentially higher convenience level than it is know, for
example, by TOTAL of Cincom Systems or DBOMP of IBM. For
implementation, DBS/R uses address reference, address
chains, primary index, and secondary indexe. As to the
efficiency these techniques may be used very differentially,.
DBS/R supports traditional file organizations, too, to

make possible a uniform methodology for different data
sets.

Data Description

A special subsystem, the Data Description Catalog (DATKAT),
serves for creating and updating the data descriptionse. It
permits the development of a concrete data structure by
steps and provides simultaneously the possibility for docu=-
mentation, In addition to the description of the database
(files, records, segments, fields, relations between records,
integrity conditions etc.), this subsystem performs the
definition of all inputs for the database as well as their
allocation to the elements of the database,

Data manipulation

DBS/R has a very efficient data manipulation language. It
can be used in connection with the basic languages Assembler,
PL/1, COBOL (host language) and also independently on other
languages (self=contained), and is easy to learn, This
language comprises both statements with elementary services
and also very complex statements, The self=-contained appli=-
cation of the DBS/R language permits in addition to the

fast formulation of inquiries and reports the design of
routine programs for frequent use, too,

- 45 =

The system has statements for the access to single records
and record sets of the database, for input and output of
sequential data sets, the layout of lists, for comparing,
for arithmetic operations as well as for the representation
of favourable program structures.

The statements for creating and updating the database offer
a high performance., One single statement can control here
the processing of an input file which releases updatings

in the total database including extensive defined checkse

Additional functions

Essential additional functions are

- data privacy
= securing the physical integrity
- restructuring

By means of data privacy the user organizes the protection
against unauthorized use of the database systeme This is
performed variously according to data units of different
level, copies of data units as well as to functions and
function groupse. The components for securing the physical
integrity preserve the user from the loss of the database
or of intermediate results of programs in consequence of
machine, program, or operating errorse. Furthermore, they
make possible the recovery of older database states.

Restructuring serves for changing the structure of the data—
base, which may become necessary in the interest of an
increase of effeciency or of modifications of the real
problem definition, For this purpose, a special status of
data description is provided for transferring the database
to the new structure.

Modes of operation

DBS/R can be used both in batch processing and also in real=-

Wl

time mode with teleprocessinge

Purposeful procedures support singly or together the genera-—
tion of programs, their storing and execution for the batch
processinge For real=time operation the Exekutivsystem is

to be generated. This system controls processing of trans-
actions, commands, and messages for up to 250 terminals,
Figure 1 shows the essential components of the Data Base
Management System,

General prerequisites

The system operates on all ESER systems using the 0S/ES
Operating Systems from VEB Kombinat Robotron, e. ge, EC 1022,
EC 1035, EC 1040, EC 1055« Furthermore, DBS/R is able to
work on systems as IBM/360 and IBM/370 with the appropriate
operating systems, The Exekutivsystem requires generation

of the TCAM access method.

3, Application of DBS/R

3e1e Fields of application

In the GDR, DBS/R is used in almost all branches of economy
and institutions of public life, Nearly all industrial
branches work with data bases on the basis of DBS/Re The
most representatives come from the enterprises and companies
of the following ministries (table 1):

Table 1: Application of DBS/R in the industrial branches

of GDR
number of companies
electrical engineering/electronics 41
heavy machine and plant construction 14
chemical industry 11

general mechanical engineering, agricultural
machine and vehicle construction 9

e A =

number of companies
machine tool and processing machines construction 27

building industry 4
ore mining/metallurgy 15
light industry 8

Furthermore, branches such as agriculture, forestry, food=
stuffs economy, posts and telegraphs, traffic, public health,
higher education, geology, culture, local authorities, etce
are represented, Nearly all users of the branches mentioned
have own computing centrese. They prepare the use of DBS/R
independently by means of the normative support services of
VEB Robotron ZFT.

A large number of smaller enterprises use DBS/R by means of
the regional service computer centres of the GDR who have
acquired the system for extensive reusees A further increase
of DBS/R aepplication in the GDR is to be taken into account.
Also the export to the countries Hungary, Iraq, India, China,
Cuba, Corea, Angola has begune. Realized projects exist in
Hungary, China, and India.

The most extensive field of application at present is the
technical preparation of production with about 40 to 45 %
of the projectse. The share of other applications such as
material economy, manpower, sales, production planning,
balancing, investment planning as well as of applications
in non-producing spheres increases very much, The share of
DBS/R applications in technical preparation of production
will not exceed, however, 25 % of the total number of
applications also in the next years. First management
information systems based on DBS/R are already in use, t00,

3e2¢ Characteristic examples

3s2e1s DBS/R in technical preparation of production

A large number of application have a database the core of

- 48 =

which contains the constructive and technological master
data of products and subassemblies to be produced (figure 2).
It offers excellent prerequisites for their updatinge. With

a high quality, from this database bills of materials, using
lists, routing sheets etce. can be demanded both in batch

and also in real-~time mode.

This part of database has been supplemented at many users

by files for item designations, operation texts, routing
header data, variant structures. In some cases, constructive
and technological bills of materials are stored in particular
filese Frequently these data have been integrated with
further complexes which are still organized in different
enterprises as isolated databases. Such a complex is
material economy, It comprises material stock keeping and
checking, material statistics, orders and supplier master
dataes For purposes of planning and control of production,

the database contains an order file which corresponds with

a structure specification in many cases. Thus, a rational
producing of the production order documents will be possibles

The performance of these databases at several users will be
extended by the following data complexes:

- capacity data for workplaces or workplace groups

- integration with data of sale consisting of customer
master data, contract data, deliveries, invoices

- integration with costs data such as material costs and
wage cost as well as payroll accounting data

The DBS/R applications in these fields have resulted in very
good effectse An examination of benefits achieved by means
of DBS/R in technical preparation of the enterprises in the
sector of the Ministry of Electrical Engineering and Elec—
tronics showed the achievement of an essential reduction

of the time required for providing the constructive and
technological documents. Averagely 12,000 labour hours of

technologists were saved annually per enterprises

The high convenience of the system, especially of the
efficient DBS/R language, has made possible furthermore

an 80 % saving of designing capacitye. Many problems such

as amendment service and bill of materials explosion have
been solved exclusively by DBS/R language statements.
Especially for ascertaining the total demand for one or
several products, services of DBS/R are used permitting the
development of very fast programs. Operative inquiries which
cannot be foreseen will be programmed and executed in a

few minutes,

An example for a simple program for creating a bill of
materials is shown in figure 3.

39220 DBS/R as_a basis for a personnel database

Large=size industrial enterprises of the GDR use personnel
databases consisting of the following four complexes:

- personnel data
- planned Jjob data
- gstructure data
- designation data

Their logical structure is shown in figure 4.

Databases with this or a similar structure have proved good
already in many casese. The event—-referred amendment service
(salary change, change of job, qualification etce.) utilizes
particularly the variable input formats of DBS/R by which a
great number of different acquisition vouchers are repre-
sented, The great number of logical checks formulated in
the data description is very advantageous in the interest
of correctness of datae. Periodical routine tasks such as
wages and salaries accounting, services for the working
people, es Ze, rent remittance, insurances etc., are per-
formed with a high efficiency. Special inquiries and

= B0 =

evalvations support very efficiently the daily work of the
clerks in the personnel department. Payroll accounting and
similar complicated routine programm have been programmed
to great extent in PL/1 and embeddeu DBS/R statements. Also
controlling DBS/R programs with calls for PL/1 or Assembler
modules are used. A great number of search inquiries and
total evaluations of the database have been performed as
pure DBS/R programs. Especlally it has been succeeded to
introduce the use of DBS/R language statements or of a
suitable subset, respectively, for formulating ad-hoc evalua-
tions and inguiries by clerks of the personnel department,.

Je2e3¢ DBS/R application in the management information systen

lianagement information systems on the base of DBS/R have
been developed in the GDR for enterprises, combines, and
nministries and have been already used in some casese. The
database supports there problems of planning, balancing,
accounting, reporting as well as The check of time scheduling
and regulations. Figure 5 shows a section from such a data-
bases These applications have special requirements for the
real-time behaviour of the total system, The DBS/R kxeku=-
tivsystem has stood the test there. For securing a fast
access (leee5 sec) to especially important information the
database structure contains special image memories.

A high application convenience for final users is offered

by parameter=controlled evaluation program systems developed
by means of the DBS/R language. Operation is supported by
additional communication componentse They make easy the
contact of the final users to DBS/Re. It is typical for such
databases, that a great part of data is supplied by other -
partially non-uniform - EDP projects. Here, DBS/R offers
very good prerequisites for transferring the most different
input datae.

- 5] =

Solutions for the entire problem circle of management infor-
mation systems are offered by Kombinat Robotron in the scope
of the MIS/R system,

4, Conclusions

The widespread use of DBS/R in the GDR is also a result of
the service offered by Kombinat Robotron to thelr userse. The
training program of the Training Centre Leipzig has contained
DBS/R courses for the basic and the Exekutivsystem for several
years. Furthermore, the designer performs user=-specific
training and will be always at the users's disposal for
consultationse, First good results have been achieved also

in the PR Hungary with DBS/Re It is to be emphasized that
there in a very short time a database has been installed

at CSEPELAUTO which is the result of an intensive work of

the CSEPELAUTO team and a good cooperation with the DBS/R
designers,

- Z

data { input ; language —J o
description data statements @
ﬁoms [r____-—-'"" E/- g
5
DATEI- $DEE
Ao | copILING fe——— e
T 1
i [B o
DEFINING STORING = RETRIEVING |, | EXEKUTIV=- & %’
SYSTEM o

()

B

| ’ l *
DDT ACCESS ! "|FILE ACCESS [~ — J

. ol
(oor) V DBS/R files 5
o
&
(0]

Figure 1: Components and modes of operation of DBS/R

- B .,

GEGDAT
ARBPLZ
VWLDAT
ARBGNG

VWLVER

STUELIL

MATDAT
LAGORT
STATIS
BESTND

LIEFER
BESTLL

AUFTRG

Figure

w[rierEr] [n]sraris] [uaurcre
|__~ constructive and technological
‘ master data '
c[Besrir}le—|ufuarpar)e {1 [GEGDAT}{C TaRBGNG }=—{L[ARBELZ }
! 1
c[BEsIND] | ¢ [VWLVER |
})
u[tacore] | [ofsmsry] [u]vianaz I

N

Master file for items (products, subassemblies, parts
laster file for workplaces

Master file for fixtures, tools, gauges

Chain file for operations chained per item (operation
sequence) and per workplace (workplace using list)
Chain file for fixtures, tools, gauges, chained per
operation (demand for fixtures, tools, gauges) and
per FIG (FTG use)

Chain file of the item structure (bill of materials
items) chained per product (subassembly bill of
materials) and per component (parts using list)
Master file for material master data coupled with GEGDAT
Master file for storage places

lMaster file for material statistics coupled with MATDAT
Chain file for material stocks chained per article
(stocks of one article in different storage places)

and per storage places (stocks of different articles

of one storage place)

Master file suppliers

Chain file for orders chained per supplier and

per article

llaster file for orders coupled with GEGDAT

2: Structure of a database for technical preparation
of production and material economy

a) DBS/R program
JCB: KOCH10 STEP:

=== DBS/R 3¢1 ===

OUTPUT

DBS PROGRAM: DBS#R 10406481

SYSPROT1 LOG

RETRIEVE EXECUTE;

DECLARE RLEVEL 83

DECLARE IAREA RECORD 13;

DECLARE KEY 13;

INPUT TO IAREA;

READ FROM MMPART BY A KEY;

MOVE FROM MMPART PARTNO 'RPARTNO*
FROM PARTNAME 'RPARTNAM' §

OUTPUT;

HEADING 'IMPIODING LIST' RPARTNO RPARTNAM;

FEED;

HEADING 'RES.LEV, PART NUMBER NAME OF PART i

UM' 53
FEED;
HEADING;
STRUCTURE VIA MMPART IN MCSTRU WITH STRUCLEVEL
EXTERNATL, TO RLEVEL ON STRUCEX2=0UTPUT;
OUTPUT;
LINE RLEVEL 5 MMPART PARTNO 15 PARTNAME 30 UM 65;

Figure 3: Creation of a bill of materials

10637

L, .
N = O0OWwW o~ o0 F w2

X W WX AN SN SN N
O ® 0 0o\ F W

PAGE

1

b) structure bill of materials

IMPLODING LIST 11 AMPLIFIER
RES.LEV, PART NUMBER NAME OF PART
o 12
o’ 14 TRANSISTOR
o1 15 circuit board, fitted
0ol 16 WIRE BUNDLE
...3 17
0003 18
Y= 12
ee? 13 TRANSISTOR, BALANCED

eee3

14

TRANSISTOR

BBERBREBB8A

ST

STREIN

STRUKT

BESCHZ

PERSON

LOREVA

KADERF

KADERV

PLANST
PLANVA

| | |

! c| STRUKT J=—{m] STRETN ! | {
I

| |

[]
C|BESCHZ

C| PLANVA

llaster file for basic units of all levels of the
company

Chain f£ile for representation of the hierarchical
relations between the basic units

Chain file for membership of persons to basic units
Master f£ile for general person=referred master data
Chain file for variable data for payroll accounting
and payroll accounting result data chained per person
Master file for staff-specific master data coupled
with PERSON

Chain file for variable staff data

Chain file for planned Jjobs chained per basic unit
Chain file for variable data per planned Jjob

Figure 4: Structure of a database for personnel system

- 57 -

M |ERZEUG

ERZEUG Master file for master data of products

BETRZN liaster file for enterprises and companies

TERRIT Master file for territorial units

ERZWRT Chain file for monthly quantities of products
chained per enterprise, product and territory

KENN ZIV lMaster file for types of characteristics

KZWMON Chain file for monthly characteristic values

of enterprises, chained per enterprise, type
of characteristic or territory

AGGKZW Chain file for characteristic values aggregated
per branches of industry, territories, periods

Iigure 5: Section of a database structure of a management
information system for a ministry

MTA Szdmitistechnikai és Automatizdldsi Kutaté Intézete, Tanulmdnyok 133/1982 Proc. of RG—11, KNVVT

LOGICAL DEPENDENCIES IN RELATIONAL DATA BASE

J.Demetrovics - Gy.Gyepesi

§0. INTRODUCTION

According to E.F.Codd [6] a relation is a matrix without
two identical rows. Rows correspond to data records and col-
umns to the attributes that are to be stored of a data item.

He also introduced [7] the concept of functional dependency:

a set of columns depends on another if fixing the values in a
row taken on the first determine those on the second.

Other concepts of his are the key (a set of attributes on
which all depend) and the candidate key (a minimal key).

Candidate keys clearly do not contain each other [12].

The possible mathematical structure of functional depen-
dencies was first investigated by W.W.Armstrong [1]. Among
others he found that this structure is detemined by the maxi-

mal dependencies (those which have maximal attribute subsets

depending on minimal ones) and even by the dependent sides of
the maximal dependencies. We also heavily use these "maximal
dependent subsets of attributes" as technical tools.

Different kinds of functional dependency have also been
introduced (3], [9], [13], [15] and axiomatized, usually in
similar systems to Armstrong’s [8], [10] discusses an interes-
ting connection between the decomposition of relational data
bases and the boolean switching functions.

The harder problems of the topic are usually of combinato-
rial nature (see [4], [5], [11], [16]).

In this paper in §l1 we give the formal definition of the
functional, dual, strong and weak dependencies and give new
axioms for full f-d- and s-families.

In §2 develop the analogy and differences among the de-
pendencies of different types and give an axiom for full w-

families.

In §3 we deal with a question stated in [11].
Certain dependencies of a relational data base are known

by its designer. We call these initial dependencies. In gene-

ral initial dependencies imply new dependencies. W.W.Armstrong
[2] has developed a method to find the dependencies implied by
a given set of initial functional dependencies. He alsa gave a
characterization of the sets of initial dependencies that imply
all the depen.encies of a given full f-family and are of mini-
mal cardinality. This characterization has a logical nature;
we give a combinatorial equivalent of it.

We use the following notational conventions:

Q@ denotes the set of attributes, P(Q) denotes his power
set. If g is a function with X as its domain and 7Z € X then
ng denotes the function which has domain 7 and for any z € Z

g(z) = gpz(z)-c means strict inclusion.
§1. OLD AND NEW AXIOMS

We start with the definitions of functional, dual, strong

and weak dependencies based on [1] and [8].

Definition 1.1 Let A,B be subsets of Q and let R be a relation

over Q. Then we say that B
(1) functionally;
(ii) dually;
(iii) strongly;
(iv) weakly
depends on A in R if

(i) (vg,h€R) (ghA = hhA = ng = th);

(ii) (vg,h€R) ((3a€A)(g(a)=h(a))—=(3beB)(g(b)=h(b)));
(iii) (vg,h€R) ((3a€A)(g(a)=h(a))—ghg = hN);
(iv) (vg,h€R) (gP, = hM, — (3b€B)(g(b)=h(b))).

holds respectively and denote these by

- O] =
f S

A B B, A % B A B B, A % B corresponding to the type of the

denoted dependency.
The following example [8] illustrates the effect of the
dual dependency.

Example: Let Q = {author, title, hall, shelf}. Let we have a
library with eighteen books, three halls and three
shelves in every hall; one shelf holds two books. Let
the relation R containing the datas of the library
given by the following table:

author title hall shelf
£ < 1 1 2
2 2 1 3
3 3 1 i
4 4 1 2
5 5 2 3
6 6 2 1
7 7 2 2
8 8 2 3
9 9 3 i §
10 10 3 2
1l 11 3 3
12 12 3 i |
1 4 1 i
5 8 3 3
4 1 b § 3
i 10 3 2
6 10 2 2
6 9 2 1

Thus {author, title) % (hall, shelf} holds, and for
i=1l,...12 the book by authori and entitled i is on

the (1+43+(3}) -th shelf of the [32]-th hall ([x] de-

notes the whole part and {x} the fraction part of x).
The reader, knowing the author or the title of the

- A2 -
required book, may find it without examining the whole
library: for example if i is the author of the book,

then it is enough to look the [*'23]-th hall, and the

(1+3-{%})-th shelves of the other two halls.

In R {author, title} % {hall, shelf} holds too,
but to store this functional dependency is equivalent
to store the table of R; the {author, title} —

% {hall, shelf} dependency is more effective.

For proving the effectiveness of these dependencies we
elaborated in the Automation Institute of the Hungarian Aca-
demy of Sciences a large-sized practical application of the
relational data model.

We have planned an inventory-recording system for an ag-
ricultural corporation. The task of the system is to organize
the component-traffic of about 350 agricultural estates. More
exactly the task is: to record the inventory-stores, the or-
ders of customers, to help the decisions making in this field
and to help services.

First we used a traditional system concept for this pur-
pose. Later this concept was transformed into the relational
data model based on recent investigations. We saved about 40
percent of the memory capacity in this way. With using the re-
sults of Aho, Sagiv and Ullmann about relational expressions,
we proved that the response time remained in the same order.

If R is a relation over @, and Ye{F,D,S,W} and
ye{f,d,s,w} corresponds to Y then we use the notation

Yo = {(A;B): A % B}.

We call full y-families the sets having this form.

In order to investigate the various dependencies the
first step is the axiomatization of full y-families for
ye{f,d,s,w}. In [1] there is a system of axioms for full
f-family and in [8] there are for full d- and s-families. For
the sake of completeness we reproduce them here.

Let Y € P(Q) x P(Q). Then we say that Y satisfies the f-
axioms, if for all A,B,C,D C Q

= B3 -

(F1) (A,A)EY:
(F2) (A,B)eY, (B,C)eY - (A,C)EY;
(F3) (A,B)eYy, A¢g C, Dc B — (C,D)eY;
(F4) (A,B)ey, (C,D)eY — (AUC, BUD)E€Y.
Y satisfies the %-axioms if for all A,B,C,DC_Q
(D1) (A,A)EY;
(p2) (A,B)eY, (B,C)ey — (A,C)EY;
(D3) (a,B)EY, C C A, B €D = (C,D)eY;
(pD4) (A,B)ey, (C,D)eYy — (AUC, BUD)E€Y;
(D5) (A,D)EY - A = 0.

Y satisfies the y-axioms if for all A,B,C,DC @

(s1) ({a},{a})ey;

(s2) (A,B)eYy, (B,C)eY, B # 0 — (A,C)eY;

(s3) (A,B)eY, C €A, DS B — (C,D)EY;

(s4) (A,B)eYy, (C,D)eY — (ANC, BUD)EY;

(s5) (A,B)eY, (C,D)eY — (AUC, BnND)EeY.

We need the following technical lemma.

Lemma 1l.l. Let F € P(Q) x P(Q) be such that (X,Y)EF and Y # 0
imply X # f#. Then F satisfies the f—-axioms iff
D = {(A,B):(B,A)EF} satisfies the 9-axioms.

Proof: Trivial by the f-and $-axioms. (D5) makes necessary
the assumption that (X,Y)EF and Y # § imply X # f. 0O

Remark: The assumption ((X,Y)EF and Y # § imply X # §) in lem-
ma l.1 is not an important restriction:
if F satisfies the f-axioms let F'=F\{(9,X):X#¢).
Then F' obviously satisfies the f-axioms and the cri-
tical assumption as well and we have: X # § implies
that (X,Y)EF & (X,Y)EF"'.

In the following we give new axioms instead of the f- %- and

y-axioms and give an axiom that characterizes the weak full w-

families which is such a full w-family that whenever (X,Y) is
an element of the family then X is not void.

F-axiom:

D-axiom:

S—-axiom:

W-axiom:

Theorem 1.1. (1) Let FSP(Q)xP(Q). Then F satisfies the f-axioms

- 64 =
Let F € P(Q) x P(Q). Then we say that F satisfies the
F-axiom if for any (X,Y)EP(Q)xP(Q)\F there is an ECQ
such that
(1) X_C_EandeE;
(11) 4if (X',Y')eF and X' CE then Y' € E,

Let D € P(Q) x P(Q). Then we say that D satisfies the
D-axiom if for any (X,Y)eEP(Q)xP(Q)\ D there is an EC @
such that
(1) X NE#P and YNE = O;
(ii) 4if (X',Y')ED and X'NE # O
then Y'NE # 9.

Let S € P(Q) x P(Q). Then we say that S_satisfies the
S-axiom if for any (X,Y)E P(Q)xP(Q)\S there is an
E ¢ @ such that
(1) XnE # 9 and Y f E;
(ii) 4if (X',Y')eS and X'NE # P then Y' C E,

Let W € P(Q) x P(Q). Then we say that W satisfies the
W-axiom if for any (X,Y)eEP(Q)xP(Q)\W there is an.ESQ
such that

(1) XcE and YnE = B}

(ii) 4if (X',Y')eWw and X' CE then Y'nE # 0.

iff F satisfies the F-axiom.
(4141} Tet DSP(Q)XP(Q). Then D satisfies the 9%-axioms
iff D satisfies the D-axiom,

(iii) Let SCP(Q)xP(Q). Then S satisfies the y-axioms

iff S satisfies the S-axiom.

Proof: (i) Suppose that F satisfies the F-axiom. Then
(F1) If (A,A)¢F then there is an ECQ such that ACE and AzE

which is a contradiction

- 65 =
(F2) 1I1f (A,B)eF, (B,C)eF and (A,C)¢F then there is an ECQ such
that ACE and C¢E. Furthermore (A,B)€EF, ACE imply BCE and

using (B,C)€EF, CCE which is a contradiction.

The proof of (F3) and (F4) is analogous.

Suppose now that F satisfies the f-axioms. Let (A,B)EP(Q)xP(Q)\ F

Claim: There is an EDA such that (E,B)eP(Q)xP(Q)\ F and E'DE
implies (E',B)€F.

(@,2)€eF by (F1). Thus, by (F3) (2,B)EF holds. ACQ and
(A,B)EP(Q)xP(Q)\F, consequently there is an EcCQ which is maxi-
mal w.r. to the properties (E,B)EF and EDA.

This E clearly satisfies the restrictions of the Claim.
Let E2A which is guaranteed by the Claim. We state that E sa-
tisfies (i) and (ii) of the F-axiom. Namely by the choice of
E, ACE holds. By (Fl1) and (F3) BCE implies (E,B)EF. Thus we
have B(E.

Let (C,D)EF and CCE. D$E implies E'=DUEDE and by the maxi-
mality of E (E',B)EF holds.

(E,E)EF by (Fl), hence (F4) implies that (E,E')EF. Now
(E,E')EF and (E',B)EF and (F2) imply that (E,B)eF which is a

contradiction.

{ii) Let F={(A,B):(B,A)€D}. Then by lemma 1.1 F satisfies the
f-axioms iff D satisfies the 9-axioms. Hence, by (i), it
is enough to show that F satisfies the F-axiom iff D sa-
tisfies the D-axiom.

Suppose that F satisfies the F-axiom. For
(A,B)EP(Q)xP(Q)\ F let E(A,B) be such a subset of Q that
ACE (A,B), B}q_’E (A,B) and if both (A',B')ef and A CE (A,B),
then B'<E (A,B). By the F-axiom such an E (A,B) exists. By
the definition of F whenever (p B)ep(q)xP(Q) then
(A,B)eP(Q)xP(QN F iff (B,A)eP(Q)xP(QN\ D.

Now it is easy to chechk that for (B,A)EP(Q)xP(Q)\D
Q\E(A,B) satisfies the D-axiom.

If D satisfies the D-axiom, then F satisfies the F-

axiom; this can be shown by the same argument.

(iii) Suppose that S satisfies the S—-axiom. Then the proof of
the fact that S satisfies the y-axioms is an easy modi-
fication of the proof of (i).

Suppose now that S satisfies the y-axioms.
Let (A,B)eEP(Q)xP(Q)\S

Claim: There is an a€A and an EGQ
such that (a) a€E;
(b) ({a},E)eES and
(c¢) E'E implies that ({a},E')¢S.

If for any a€A we have ({a},B)€eS then (A,B)€ES by the repeated
application of (S5). Hence there is an a€A such that ({a},B)¢S.
Now if for every beB ({a},{b})ES holds then by the repeated
application of (S4) we have ({a},B)ES. Thus there is a b€eB such
that ({a},{b})é&sS.

By (S1) and (S3) there is an ECQ such that a€E, ({a},E)ES
and E is maximal w.r. to this property. This E is appropriate
for the Claim.

Let ECQ and a€A guaranteed by the Claim. Then by (S3) we
have b¢E. Hence ANE # $ and BN(ONE) # ©. Now let (C,D)€S such
that CnE # @; let ¢eCnNE., Suppose that DN(Q\E) # 0; let
debN(Q\E). By (S3) we have ({c},{d})eS and by (Sl1l) we have
({c},{c})ES -({a},E)ES implies that ({a,c},{c})éS, by (S5).
Hence (S3) implies that ({a},{c})€eS. Now ({a},{c})ES,
({c},{d})€ES and (S2) imply that ({a},{d})€eS. Thus by (S4) we
have ({a},EU{d})ES which is a contradiction as E' = EU{d}DE.

Consequently the E guaranteed by the Claim demonstrates
that S satisfies the S-axiom. ©

It is worth to remark how can be find the full y-family -
for ye{f,d,s} - generated by a given subset of P(Q)xP(Q) based
on the Y-axiom. Let e.g. y=f and let be given an F'EP(Q)xP(Q).
Then the least full f-family containing F' is the followihg:

F

- 67 -
{(A,B):A,Bc&(VECR) ((ACESBZE) —
- (B(A',B')EF')(A'_C_E&B'iE)}.

§2. THE EQUALITY-SET

Definition 2.1. Let R be a relation over Q. We define the

equality set of R, as follows.

&
R
For h,g€R let E(h,g)= {a€Q:h(a) = g(a)} and

let &R = {E(h,g):h,g€ER and h # g}.

Definition 2.2. Let A be a set system. Then A is a A-system if

for any A,B,C,DE A A # B and C # D implies
that ANB = CnD.

Remark: It is easy to see that A is a A-system iff for any
A,BE A A£B implies that ANB =nA.

Theorem 2.1.

(i) Let R be a relation over Q and let h,f,g be

Proof:

(1)

(ii)

different elements of R. Then E(h,g), E(h,f),
E(g,f) form a A-system.

(ii) Let § = {Ei J:l£i<j_§k} such that for each
1<i<j<lLk {Ei,J' EI,K' Ej,l} is a A-system.

Then there is a relation R over Q withésRﬂ .

by symmetry it is enough to prove that
a€E(h,g)nE(h,f) implies a€E(g,f). But this is
trivial as a€E(h,g)NE(h,f) means both h(a)=g(a)

and h(a)=f(a). Hence g(a)= f(a) i.e. a€E(g,f).

We construct the rows of R by induction. Suppose
that n<k, and the rows hl””hn have been construc-
ted so that for each 1<i<j<n E(hi’hj) % £y i holds.

’

We construct hn+] as follows:

h,(a), if a€E, for some 1<i<n;
i i,n+1 o

hn*rl(a)=

max (hi(b):bEQ&lgign)+1 else.

= B8 =

Then

(a) ho1 is well-defined.
To prove this we have to show that aeEi,n+1ﬂEJ,n+l
implies hi(a) = hj(a)' But this is obvious beca-
use Ei,J’ Ei,n+1’ Ej,n+1 from a A-system and the
induction hypothesis hold for i, j<n.

(b) if 1<i<n and aﬁEi’n+1

then hi(a) # hn+l(a)'
Suppose first that aEEJ . for some 1<j<n+1.
?

Then, by (a) and by the definition of hn+l’

h (a) = h.(a) holds. Furthermore a¢E. . because
n+l1 J i 5.0

{Ei,J,

duction hypothesis implies hi(a) # hj(a)' that is
hi(a) £ h (a) s

n+1

E } is a A-system. Thus the in-

B 2 I Ei,n+1

TE aéulgiﬁn Ej,n+1 then we have h__ (a)#h.(a)

by the definition of hn . This completes the

+
proof of (b).
Now by (a) and (b) it is clear that for

1<i<n E(hi' h) = E and hence the induction

n+1 i yini 1
step works. Let R = {hl,...hk}. Then &R* & obvi-
ously holds. O

After Tehorem 2.1 there is a natural way to axiomatize

full families of dependencies of any type. This follows next:

F'-axiom: Let FP(Q)xP(Q). Then F _satisfies the F’-axiom if

there is a natural number k and an indexed set of
subsets of @, {Ei J.:1_<_i<J'5k} such that
(i) If (X,Y)eP(Q)xP(Q)\ F then there are 1<i<j<k
h that XcE. . IR
suc at XcE, ; and Yg'EI’J

(11) TE (X,Y)EF, 1<i<j<k and XCE, . then YCE. ..

’

j? Ei,l’ EJ,Z} is a

’

(iii) For any 1<i<j<<k {Ei
b

A-system.

D’-axiom: Let DC

there

P(Q)xP(Q). Then D satisfies the D’-axiom if

is a natural number k and an indexed set of

subsets of @, {Ei J.:l_<_i<\j_<_k} such that

(i)

(44

(1131.)

’
If (X,Y)eP(Q)xP(Q)\D then there are 1<i<j<k
such that XnEi # © and YNE, i s 0,

’ ’

If (X,Y)€D, 1<i<j<k and XNE,] # 0 then
’
YnEi’J.f 0.

The same as (iii) of the F’-axiom.

S’'-axiom: Let SEP(Q)xP(Q). Then S satisfies the S’-axiom if

there

is a natural number k and an indexed set of

subsets of @, {Ei J.:15i<\j§k} such that
’

(1)

(ii)

(iii)

If (X,Y)EP(Q)xP(Q)\ S then there are 1<i<j<k

such that XnEi] # 0 and Y Ei IE
’ ’

If (X,Y)ES, 1<i<j<k and Xr‘Ei .# § then YE_Ei

b ’

The same as (iii) of the F’-axiom.

W'-axiom: Let WCP(Q)xP(Q). Then W satisfies the W'-axiom if

there

is a natural number k and an indexed set of

subsets of Q, {Ei J:15i<j5k} such that
’

(i)

(ii)

(iii)

Remark: Observe

’
dependent sets i.e. if (X,Y)eF and X“E

If (X,Y)eEP(Q)xP(Q)\W then there are 1<i<j<k
such that XCE and YNE, . 0.

? ¢

If (X,Y)ew, 1<i<j<k and XCE. then YNE. £

’ ’

The same as (iii) of the F’-axiom.

that the Ei J-s in the F'-axiom are maximal

. then YCE.
Iy J -1

»

0.

..

Theorem 2.2. (i) Let YCP(Q)xP(Q) and Y€{F,D,S}. Then Y satis-

fies the Y-axiom iff Y satisfies Y’-axiom.

Proof:

- 70 =
(ii) Let Q be a finite set, 1Q1>3.
Then there is a WCP(Q)xP(Q) such that
W satisfies the W-axiom and W doesn’t
satisfy the W’-axiom.

(1) Let first Y=F and suppose that Y satisfies the

F-axiom. Write Y=F,.

For any (X,Y)EP(Q)xP(Q)\F take an E(X,Y)CQ guaran-
teed by the F-axiom. List these E(X,Y)-s as

E E the indexes begin with(2!). For 1<j<k let

2,... k

E. : = E. and for 1<15]j<k det E; 2E.NE ..
15 J J — L I

We claim that {Ei’J:1§i<j§k} demonstrates that F
satisfies the F'-axiom.

The requirement (i) of the F'—-axiom holds by
N AS AR R AL P

We left to the reader to check that (ii) holds too.
To prove (iii) of the F'-axiom let 1<i<j<f<k. We
distinguish two cases:

(a) 4i=1, Then E. .=E,
bed J

the intersection of any two members of
{E,

5 Ei,£=E£ and EJ’£=EJDE£. Thus

j;Ei,ﬂ;Eji} is EJOEE’ This means that

’

{éi,j;Ei,t;EyL} is a A-system.

(b) 1l<i. Then Ei .=EiﬂEJ;E’£=EinE£ and EJ’£=EJDE£.

5 i
Thus the intersection of any two members of

{Ei ;EI,Z;EJ,E} is EinEanE' This means that

»J
{Ei,j;Ei,l;Ej,ﬂ} is a A-system.
If Y satisfies the F'-axiom then Y obviously satis-
fies the F-axiom.
Now let Y=D and suppose that Y satisfies the
D-axiom. Write Y=D.
For any (X,Y)eP(Q)xP(Q)D take an E(X,Y)“Q guaranteed
by the D-axiom. List these E(X,Y)-s as El""Ek‘

For 1<i<k let E .=E. and if 1<i<j<2k and E, .
bk 21+1,.2i i —_ - [

is still undefined then let Ei] = 0.

’

(ii)

-7 =
It is easy to see that {E J:15i<j_<_2k} shows the
D'~axiom to hold for D.
If D satisfies the D' -axiom then it trivially satis-
fies the D-axiom.

The case Y=S is an easy modification of the
proof worked in the case Y=F,.

For the sake of simplicity suppose that Q={a,b,c}.
(In the general case pick two different elements of
Q, a,b. The role of {c} will be played by Q\{a,b}.)
Let W={(A,B)€EP(Q)xP(Q): AS{a} - a€B and

AC{b} - beB
Then W satisfies the W-axiom while if
(A,B)EP(Q)xP(Q)\W then either (AC{a} and a¢B) or
(AC{b} and b¢B. For (A,B) E={a}taken in the first
case and E={b} in the second shows the W-axiom to
hold.

We claim that W doesn’t satisfy the W'-axiom.
Suppose indirectly that m={E g :1<i<J<k} 18 a
system that shows theVV'ax1om to hold for W,

Then
(1) {a} €& and (b} €&
while ({a},2\{a})e P(Q)xP(Q)\W and
({b},@\{b})€ P(Q)xP(Q)\W hold.
(2) DE W and {c}¢ W
while (9,Q)eW and ({c},Q {c})€ W hold.

By the "allocation" of {a} and (b}, we
distinguish two cases:

(a) (a} = Ei] and (b} = Ei,t

’

Then {Ei,j; EI,Z;E

is EJ - or {c} which contradicts (2).
(b) {a}=Ei] and {b}=Ez i where [1{i,j,Z,m} =4,
» ?
Now we are interested but in E. .; E =E 8
k. s 2 7 1 sm

’

EJ,K;Ej,m and Eﬂ,m’ thus we may suppose that

2} is a A-system, that
?

i=1, j=2, £=3 and m=4.
Investigate what may be E, 3-

’

- 72 .

The cases E = {a} or {b} arise to (a).

1,5
E # {c} and E 3 £ 0 by (2).

1,3 1,

E]'3 # {b,c} while {EI,Z;EI,B;EZ,S} is a

A-system hence E, 5 = {b,c} implies E, 5 =)
) » ’
contradicting (2). Now it is clear that

aEEl,B' Thus aEEZ,B’ while {E

a A-system.

1,288,357 Ep 3t 18

{EZ,B; E2’4;E3’4} is a A-system, hence a E2,4,

that is E2’4E{b,c}.

E, ,# ® and E # {c} by (2) and E £ {b}

2,4 2,4

by (a). Hence E2 i ® {b,c}s

2,4

E } is a A-system, hence

{Ey 35 By 43E5 4

beE .
2,3
Finally E1 B {a,c} while E
b
form a A-system.
Now {E E

E

5,555,888y 3

1 ’3;]’4;E3’4} is a A-system and

E1,30E3,4= ¢ and E]’BUE

which contradicts (2).0O

=@, hence E; =0

3,4 ,4

Remark: Theorem 2.2 demonstrates the difference between the

weak dependency and the rest.

Theorem 2.3. Let YCP(Q)xP(Q) satisfy the Y'-axiom for some
Yye{F,D,S,W}. Then there is a relation R over Q

with Y='%€ Conversely if R is a relation over Q

thenﬁYR satisfies the Y'-axiom.

-3 -
Proof: Let &={Ei,J:lgi<j5k} show that Y satisfies the Y’-axiom.
Then the requirement (iii) of the Y’-axiom and Theorem
2.1 (ii) imply that there is a relation R over Q such
that &R
Conversely, if R is a relation over @, then writing
R = {h],...hk}, Ei j = E(hi’hj); {Ei’J:lii<j§k} shows

’

= &. By the Y’'-axiom it is obvious that Y = YR.

that Y'R satisfies the Y’'-axiom. O

§3. COMBINATORIAL RESULTS

Definition 3.1. Let F be a full f-family and let ACQ. Then A is

a candidate key for F if (A,Q)€Ef and for any
A'CA (A',Q)¢ F holds. Let R be a relation over
Q, then the set of candidate keys of R is the

set of candidate keys of FR'

Let C denote the set of candidate keys of F. Then C is a

Sperner system i.e. (VA,BEC)(ACB — A=B).

We deal with the following question of [11]:

(#) What is the largest number r(n) of rows that is needed for
some C S P(Q) being the set of candidate keys of a relation
over Q@ with r(n) rows, where |QI=n and C is a Sperner Sys-
tem?

In [11] it is shown that for any Sperner system there is a

relation with this system as its set of candidate keys and that
n n
Polrogey &2 T 8 Bpppey)e

We give sharper estimations for r(n).

Theorem 3.1. 1 n n
7 ([n/2) < r(n) < (pp/2*!>

Proof: First we prove the upper bound.
Let C CP(Q) be a Sperner system. Let B consist of the
maximal sets that do not contain members of C. Let the
members of B be B B, - For I<j<k let E, I ® Bj and

’

2,-09 ko

-4 -

for 1<igj<k let E; = B NB;. Then {E, ,:1<i<j<k)
satisfies the requirements of the Theorem 2.1 (ii),
hence there is a relation R over Q with k rows such
thata%R B {Ei'j:1§i<j5k}. Then obviously C is the set
of candidate keys of R. It is trivial that B is a

Sperner system, and thus IBIS([n?Z]) that is

k< Cpprpy) *1e

Now let we seen the lower bound. We start with two

trivial observations.

1. Let R be a relation over @ with r rows. Then there
is a relation R' over Q such that R' uses no more
than r symbols and &R = &R"

2. Let R be a relation over Q@ with r rows and let r'>r,.
Then there is a relation R'over Q with r' rows such

that & _ = &R" (Now we allow identical rows.)

By 1. and 2. the number of Sperner systems which may be repre-
sented as sets of candidate keys of a relation with r rows is
no more then r'*". Hence

BCag&

n
r(myT () en o SUIn/2D i h implies

r(n)>-L— n .
n2([n/2]) a

IfB is a Sperner system and R is a relation such that

n ¢ {nBt: B' C g} then we can define two graphs on the

set of rows of R as follows:

1. the B -graph of R is G, where the vertices of GR are

the rows of R and two Sows are connected by an edge

if and only if their equality-set is an element of B
2. the colored graph of R is the complet graph on the

set of rows of R with the colour E(f,g) on the edge

{fsg} 9

The B -graph of R has the following property: if GR is dis-

connected, then there is a relation R' such that the number of

= U5 -

rows of R' is less than that of R andB c &R' c {nB': B' cB}.
The colored graph of R contains no circuit the edges of which
have the same colour except exactly one.

These two observations may be useful to make an algorithm
to find the minimal relation for Sperner systems.

The estimation for r(n) in Theorem is not sharp. If

B = {XSQ:IXI=[%]}, then there is a relation R such that

BES‘R
natural number greater than

c {nB': B'e¢B} and the number of rows of R is the least

1 n n

7 (In/21) * \2(n/2])"

It is natural to ask the following analogon of (#*):
What is the largest number R(n) of rows that is needed to rep-
resent a relation with F as the set of functional dependencies
of it for an F © P(Q)xP(R) where IQl=n and F is a full f-family.

By the proof of Theorem 2.2 (i) it is obvious that R(n)<
(the maximal number of subsets of @ such that the intersection
of any two of them is not a third). Thus, by a theorem of
D.Kleitman [13], R(n) < C'([n?Z]) where c=3/2., Z.Fiiredi and

J.Pach have shown, that this number is less then
(1+(c.logn)/n) &n?z])' It is trivial that r(n) < R(n).

Lastly we give the combinatorial characterization - ac-
cording to §0 - of the sets which are of minimal cardinality
with respect to the property that they imply all the dependen-
cies of a given full f-family.

We need some definitions and a lemma.

Definition 3.2. Let MCP(q).

(i) Wwe say that M has the intersection property
if for any M!Cc M MeM holds.
(ii) An MEM is irreducible if
M £ N{M'EM :MCM"'}
(recall that € means strict inclusion)

(111) An NgMjenerates M if
M. {nN‘A:N’ CNy,

-8 =

Lemma 3.1 Let M have the intersection property and let
N = {MeE M: M is irreducible}. Then an NC M gene-
rates M iff N ¢ N',

Proof: The following proof is standard in lattice theory. 1f N
generates M |, then Nc N‘is obvious. For the converse
we have to prove that N generates M. Suppose indirectly
that there is an XeM\N such that X#n{Y:Ye Ngx& Y}. Let
X be of minimal cardinality with respect to this proper-
ty. X¢N means that X = n{Y:Yye Mg X €Y}, hence XCY im-
plies that there is an NY € N such that Y=n NY‘ Let
N o = 0 BoaXCTy and Yem)d.

X
Then N % c Nand X =N NX which is a contradiction.C

Remark: Observe that the proofs of Theorems in [2] are essen-

tially our proof of Lemma 3.1.

Corollary: If M has the intersection property then there is

exactly one N C Mwhich generates M and has minimal

cardinality.

Theorem 3.2. Let F be a full f-family, let B be the set of
maximal dependent set for F and let C be the set

which generates B and has minimal cardinality
(in [1] there is shown that B has the intersec-
tion property).

Then for any FI € F we have the following:

F' implies all the dependencies of F and F' has
minimal cardinality with respect to this pro-
perty

if and only if
for any CeC there is an Ao & @ such that
Fl - {(AgsC) : Ce€y,

We left the easy proof of the Theorem to the reader. We think
that it is interesting to compare Theorem 3.2 with the Theorem

on pp. 16 of [2].

(1]

(2]

(3]

(4]

[5]

(6]

[7]

(8]

(9]

(10]

(11]

REFERENCES

ARMSTRONG,W.W., Dependency structures of data base
relationships, Information Processing 74, North-
Holland Publ. Co., (1974) 580-583.

ARMSTRONG,W.W., On the generation of dependency struéﬁ

a3

tures of relational data bases, Publication # 272,
Universite de Montréal. (1977).

BEERI,C. - FAGIN,R. - HOWARD,J.H., A complete aximati-
zation for functional and multivalued depencies in
database relations, Proc. ACM SIGMOND Int.Conf. an
Management of Data, Toronto(1977) 47-61.

BEKESSY,A. - DEMETROVICS,J., Contribution to the theory
of data base relations, Discrete Math., 27 (1979) 1-10.

BEKESSY,A. - DEMETROVICS,J. - HANNAK,L. - FRANKL,P. -

KATONA,G., On the number of maximal dependencies in a
data base relation of fixed order. Discrete Math. 30
(1980) 83-88.

CODD,E.F., A relational model of data for large shared
data banks, Comm. ACM. 13 (1970} 377-387

CODD,E.F., Further normalization of the data base rela-
tional model, Courant Computer Science Symposia 6
Data Base System, Prentice Hall, Englewood Cliffs,
N.J., 1971) 33-64. ‘

CZEDLI, G.: Fligghségek relacidés adatbazis modellben
Alk.Mat.Lapok (1980)

DELOBEL,C., Normalization and hierarchical Dependencies
in the Relational Data Model. ACM Trans. an Database
Sys. 3 (1978) 201-222

DELOBEL,C. - CASEY,R.G., Decomposition of a Data Base and
the Theory of Boolean Switching Functions, IBM J.
Res.Develop. September (1973) 374-386.

DEMETROVICS,J., Candidate keys and antichains, SIAM J. on
Algebraic and Discrete Methods 1(1980) 92.

- 8 =
[12] DEMETROVICS,J., On the equivalence of candidate keys
with Sperner systems, Acta Cybernetica 4 (1979)
2472524
[13] FAGIN,R., Multivalued dependencies and a new normal form

for relational data-bases, ACM Trans. Database Sys.

2(1977) 262-278
[14] KLEITMAN,D., On a problem of Erdds, Proc. of the Am.
Match. Soc. 18(1966) 139-141

[15] MENDELZON,A.O., On axiomatizing multivalued dependencies
in relational databases, J. Ass. for Comp. Sci. 26

(1979) 37-44,

[16] RISSANEN,J., Independent components of relations,
ACM Trans. Database Sys., 2(1977) 317-325

[17] SPERNER,E., Eine Satz iiber Untermengen einer endlichen
Menge, Math.Z. 27 1928 544-548.

[18] YU,C.T. = JOHNSON,D.T., On the complexity of finding the
set of candidate keys for a given set of functional
dependencies, Information Processing Letters 5(1976)
100-101

Author'’s address:

J.Demetrovics, Gy.Gyepesi: Computer and Automation Institute
of Hungarian Academy of Sciences
H 1502 Budapest, XI. Kende u. 13-17.

MTA Szimitéstechnikai és Automatizdldsi Kutat6 Intézete, Tanulmanyok 133/1982 Proc. of RG—11, KNVVT

Some Remarks on Statistical Data Processing
P4l Kerékfy

Computer and Automation Institute
Hungarian Academy of Sciences
Budapest P. O. Box 63, H=1502

1. INTRODUCTION

The so=-called "software problem" or "software crisis™
is the most important matter at issue in computer science.
Several papers are devoted to discuss different aspects of
the crisis /see e.g. (8] or [16]/.

The author’s contribution to the solution of the
problem is a knowledge-~based program generator system. We
were inspired by the experiences showing that software
demands of certain typical statistical procedures are not
satisfied. The most important examples are processing /data
checking, transformation/, input-output, data storage and
collecting informations on the data /evaluation of
frequencies, cumulation/. These tasks give rise to
difficulties mainly in large and complicated statistical
investigations. With our work started in the T70’s we wished
to obtain results just in this field.

Our first attempts were concluded from the Hungarian
Hospital Morbidity Study [3] producing a simple statistical
inquiry system. The method of program generating was
applied in this system, and it proved to be useful. Based
on our experiences, we constructed the program generator
system GENERA.

System GENERA [12] was developed for the extension of a
simple program generating method used in an earlier system,
i.e. SIS77. It gives assistance to a program generator
technique that makes the programming and usage of
optimal=-performance procedures possible. After generating
the program, GENERA provides meand for compiling and
executing it. The source program can contain parametrized
macros, moreover the whole program /or job/ can be
considered as a parametrized unit that can be run with

« B0 «

different parameters depending on the present usage
requirements. An improved version of system SIST7, system
SIST9/GENERA utilizes program GENERA |13].

While processing large and complicated data sets,
beyond the problem of selecting proper software tools
interesting mathematical /optimization/ problems arise.
They can emerge while designing the codes used, sampling,
designing the processes and structure of data storage.

Data checking, transformation and, in general, analysis
of functions providing control, transformation or selection
of the sample are questions of great importance. These
tasks require /in the case of large and complicated
system/ modelling of strange functions and convenient
description of large code tables.

FORTRAN is a language that is widely used in writing
programs for statistical data processing, some well-known
systems /such as BMDP or SPSS/ utilize it. Present
implementations of GENERA have FORTRAN as an optional host
language /beside PL/1l/. Data description and I/0O operations
of FORTRAN are sometimes inconvenient and slow, This fact
inspired us to work out some procedures for input-output,
data description and storage in systems SIS77 and SIS79.

In the following, systems SIS77 and SIST79 will be
described using the Hungarian Hospital Morbidity Study as an
example, The possibilities of solving the problems raised
in the introduction of the paper will be discussed. Matters
in computer science and mathematical statistics connected
with the topic will be dealt as well,

2. HUNGARIAN HOSPITAL MORBIDITY STUDY AND SYSTEM SIS79/GENERA

In Hungary, representative hospital morbidity studies
have been in progress /including each hospital and
department/ since 1972, Data of the inpatients are
collected yearly with a sampling rate ranging from lo to 50
percent. It amounts to information on 200 to 600 thousand
patients per year.

- 8 -

The problem was interesting for us as processing of a
rather large sample /600 thousand records, 60 to 80 million
bytes/ was to be accomplished on a comparatively small
machine. The requirements were rather complicated and
subject to modifications from time to time. At first, the
machine used was a CDC-3300 having 64 Kwords of memory with
two 8 Mbyte disc units and two or three tape units
available. The machine was overloaded so we could run small
jobs /some minutes of CPU time/ only. Consequently, jobs
utilizing the total sample were to be run rarely. It became
necessary to examine questions concerning the strategy of
data processing. On the other hand, the data set was to be
divided and compressed. The running time /and other
resources as well: memory, disc, tape/ of the job was to be
minimized.

Later we got access to higher-capacity machines [14] /a
HwB 66/60 or two HwB 66/20’s with 100 Mbyte discs and 256
Kwords of memory/. The problem of capacity became less
important. But taking into account the requirements of
conversational processing and the aspiration to faster
turn-around in batch processing /and the expenses as well/
optimization of storage and time was expedient.

One method to achieve shorter run-time was used while
creating statistical tables. They were created from
frequencies and cumulated values instead of the original
data. In this way statistical tables are obtained in some
seconds, practically independently of the sample size [14].
Let us note here that the Hospital Morbidity Study required
descriptive statistics mainly: tables to be produced
contained frequencies, cumulated values and some simple
rates /e.g. morbidity rate, etc./ and fundamental
characteristics of the distribution /as mean, standard
deviation, range/. The solution of problems of mathematical
statistics needs frequencies and cumulated values /sums,
quadratic sums, sums of products/ /see the statistical

= B9 =

literature [ll]/. Then these values can be processed e.g.
by SPSS programs.

The program generating technique /based on earlier
experiences/ was consistently applied in system SIST7
developed on HwB 66°s [21]. In its improved version /in
SIST9/GENERA / this technique was developed further [13].
The task of generating was placed under control of & general
purpose system /GENERA/. It improved the integrity and
efficiency of the system. System GENERA and the
possibilities provided by statistical system SIST79 will be
dealt with in later sections.,

Coming back to the Hungarian Hospital Morbidity Study
we can state that our statistical system /SIS77, SIS79/ is
able to provide quick access to data and detailed analysis
even for individual researchers. It is made possible by the
fact that even in the case of large mass of data and
complicated conditions the system needs modest resources
only. We can mention as an example the COMECON-project on
juvenile hypertension coordinated by the National Cardiology
Institute that was successfully accomplished by systems SIST7
and 1879 [13), [14].

Among the above discussions on strategy we emphasize
the following. In statistical tasks /especially in large
and complicated systems/ the method of sequential processing
is suitable. Sequential processing is similar to sequential
sampling [23] known from mathematical statistics. It
produces a more and more widening sphere of information
depending on the information obtained before. But compared
to sequential sampling it does not mean an increasing amount
of information of the same kind; in this case the kind of
information is subject to change as well., Users /doctors,
economists, etc./ first receive simple, easy-to=-survey data
/tables, graphs, descriptive statistics/. The more and more
detailed questions are based on the information obtained

- 83 =

earlier and can optionally be answered on the base of a
widening population. /That is a wider subset of the data
set./ In this way needless information is not to be
gathered, simple relations are enlightened immediately and
the user gets an overall picture of the sample investigated.
This method provides means for obtaining more valuable
information from the data available.

Determination of code values for data is another
interesting and important problem in datea oricessing. It
may require mathematical statistical investigations as well
as representative sampling. One of the problems in the
hospital morbidity studies was producing a reliable
identifier for patients. A comparatively short,
easy~to=code identifier was required with negligible
probability of accidental coincidence /wrong
identification/. The task of selecting the representative
sample was a problem of similar complexity. Our experiences
showed that a sampling based on the birthday of inpatients
is quite uniform [3}. Rate of multiple hospitalized persons
showed little deviations only. Usually, representative
sampling from individuals of multiple occurences is a
complex matter requiring complicated mathematical
investigations [9].

Besides, multiple hospitalized persons and inpatients
having multiple diagnoses require a file organization
different from usual statistical data bases. The elements
to be examined are not the original records /hospitalized
cases/. New basic elements /one multiple hospitalized
person or one diagnosis/ are to be constructed. Problems of
this kind are directly connected to data bases /to the
relational data models ﬁJ, [4] especially/.

3. PROGRAM GENERATING

3.1 Introduction

The pressing matter of "software crisis" has not gone
unrecognized in the recent years and a large number of
automated methods and design principles has been developed.

- 84 -

The two bhasic approaches are the very high level languages
and the knowledge-based systems, and they are well-known in
the literature, see e.g. the bibliography of [ld].

The software development technique to be introduced
here is especially useful in large and complicated tasks
that are to be solved by little efforts. Concerning its
aims and methods it is close to the knowledge-based-system
approach.

3.2 General description

System GENERA is a system to build generator programs
having subsystems. Subsystems can have a set of parameters,
they are given value by unified and flexible methods. A
generator system based on GENERA has a predefined host
language /or a set of host languages such as FORTRAN or
PL/l /. Text to be processed consists of host language
statements and GENERA directives. The former ones become
statements of the generated program whithout any modification.
On the other hand, the appropriate text generated by the
designated subsystem replaces the directive.

The term "host language" does not imply that the object
to be generated has to be a program. It can be a text of
any kind. Obviously, this freedom concerns requirements of
GENERA itself. Host language is defined before a generator
program is established., Then the language is fixed, and
the system generates statements of that language.

The utilization of & high-lewvel computer language for
the purpose of macro description can widen the sphere of the
tasks that can be solved by the macro expansion routines.

33 Structure of a system built up on GENERA

A system based on GENERA integrates any number of
generator procedures to make a precompiler. These
procedures from subsystems of the generator program and are

- 85 =

called into execution by entering a directive onto the

gourec file., Detecting a directive, control is passed to the
main entry point of the subsystem to read in the parameters.
Then the subsystem is executed. Having completed its
function, the subsystem returnes control to the main program
to continue processing of the source file.

Generator subsystems are not part of system GENERA
itself, They form the specific generator system constructed
on the base of GENERA, However, there are some predefined
GENERA directives calling certain procedures that are
integrate part of any GENERA installation. They perform a
number of prgram control functions.

OPTION is a subsystem of program control. It can be
executed as the first step of a GENERA run and initializes
gsome global variables of system to achieve a non-standard
handling of source lines. By & proper choice of parameter
values the user gains control over the structure and
contents of output information.

A preprocessor subsystem /PREP/ is contained in batch
oriented versions of GENERA., This is a subsystem that
cannot be called in by the user directly, and is always
executed prior to any other functions of GENERA, Each line
of input is examined, 1lines containing directives or
parameters are checked. Statistics of the recognized
directives are collected, and the unrecognized ones are
reported. Then the parameters are tested if they meet the
rules defined for the subsystem. Having found an error, the
run is terminated abnormally at the end of preprocessor
phase. The preprocessor can detect some kinds of syntax
errors before generating, thus needless execution of
generator functions can be avoided. The preprocessor
performs some transformations on parameter descriptions to
provide an interface between user-oriented description

and the program requirements. There is a genrator

procedure to generate the input phase of the subsystems,
The input phase is activated by the preprocessor and it
reads in the parameters specified in a very convenient
method that is an extension of the PL/1l GET DATA and the
FORTRAN NAMELIST input format. The parameters are checked
and converted to the form of internal storage and stored in
memory. At the time of execution of the subsystem it receives
a pointer to the memory block containing its parameters.
This method makes both the programming of subsystems and
definition of parameters very convenient.

A simple macro generator is implemented in GENERA to
provide means for definition and usage of macros. It has a
library containing system macros defined by the system
programmers and processes temporary macros defined by the
user during the GENERA run. The macros can contain host
language statements and generator directives as well.

As GENERA processes a number of input files /primary
input containing host language program, directives and
parameters; secondary input file containing any structured
data for subsystems; job generator /JOBGEN/ input file
describing non-standard job setup/ an Initial File
Conversion subsystem /IFCS/ accompanies the system. IFCS
builds up the input files from a single input file /MIXEDIN/
and it can include some additional features /such as
gselecting given disc files or tapes as parts of input file/
depending on the possibilities provided by the operating
system.

4., STATISTICAL INFORMATION SYSTEM SIS79/GENERA

Systems SIS77 and SIST7T9/GENERA have been mentioned
before. The most important procedures of SIS79 will be

presented here.

4,1 Data Transmission and Conversion

In a system to handle a great mass of data, efficiency
of input=-output operations is important. We developed a
pair of I/0 statements / LECTOR, SCRIPTOR/ to perform these
operations. They are given the record structure /name,
length and type of each field/, and a program-fragment is
generated to read or write the annotated variables.

The example in the figure shows an input directive
LECTOR. The meaning of the set PARAM goes without saying.
The set DESCR gives format for reading record named PATIENT
/COBO=-style level numbers and FORTRAN format items are
used/.

Procedures to generate 1/0 operations are needed in
some systems because high-~level languages analyse format
specifications in run time. Formats are usually not changed
while running the program, so run-time evaluation is not
needed. However, compilers do not translate the format items
to machine code.

Our input procedure generates a set of host=language
statements to read the record "as-is" /without any
conversion/ and to select and convert values of variables
using efficient character-handling routines. Hence, format
items are evaluated in compile~time instead of run-time.

A large amount of processor time can be saved if there

are 1/0 statements frequently used in the program. The
method is especially useful in FORTRAN programs. The

HwB version of GENERA was written in FORTRAN and the
experiences showed that the processor time used for
reading the same type of records for some hundred thousand

*OFTION
$FARAM LIST='ERROR',6 SYSTEM="'FORTRAN'%
INTEGER AGE,HYEAR,RYEAR, SEX,FROFS,
#¥CODE,MAINCD, SURCD,ERROR (1)
1 CONTINUE
*LECTOR
$FARAM FC=5,END=500, ERR=600%
$DESCR FATIENT
NAME 30X
EYEAR I4
SEX It
COUNTY 2X
FROFS I4
HDATE
2 HYEAR I4
2 HMONTH 2X
2 HDAY 2X
i CODE I4
2 MAINCD I3
2 SURCD If

e

$

AGE = HYEAR - RYEAR
*GRAFH
$FARKAM GRAFH='AGE CODING',DATANA='AGE',
NEWDAT="'CDAGE"', SACKNO=1, LEVELS=1,
UFFEROU=100%

IF (NUMERR.NE.©O) GOTO 100
¥GRAFH
$FARAM GRAFH='CONTROL',DATANA='CDAGE",
'SEX', "MAINCD', 'SUERCD', SACKNO=34, LEVELS=
1,10,15,8,UFFROU=10, 10%10,8%96, 788,
10%999,618,528,496, 2%7,6%9,
LOWEROUC2)=10%1 , LOWROU({5)=125%

IF (NUMERR.NE.Q) GOTO {01

GOTO 1

{00 WRITE (6,10) ERRORC({)

10 FORMAT (' ERROR IN AGE:',I4)
GOTO 1

101 WRITE (6,141) ERROR({)

i1 FORMAT (' ERROR:',I4)
GOTO 1

600 WRITE (6,12)

i2 FORMAT (' READ ERROR')
GOTO 1

500 STOF
END

Figure 1. Sample input of SIS79

- 89 -

times is reduced to ten percent of the original value.,

4.2 Compressed Binary Storage

Data storage can be a problem of great importance in
some statistical systems. Let us see the following example.
A large amount of data is to be stored on mass storage
devices. It is known that data set contains numbers of small
values. These numbers can be described by one or two
decimal digits but they are used frequently and character
form requires a conversion to be performed each time the
data are read or written. On the other hand, data stored in
binary form can be read or written without conversion but
in this case each number requires a full word of storage.
/It is right for word oriented machines only./ We should
find a method that is efficient in both means. That is,
it should provide a fast conversion and the data should not
occupy superflouos staorage space.

The compressed binary representation used in our system
reduces the storage space required while processor time used
is not increased significantly. It is achieved by
compressing length of binary form to the number of bytes
required to contain the greatest allowable value of the
variable. The compressed binary read and write procedures
generate a program fragment performing I/0 operation and
compression or decompression.

4,3 Data Transformation and Graph Representation of
Functions

Data preparation tasks involving transformations
/coding, analysis of functions/ are included in this group.
To perform these tasks we have to descibe the
transformation procedure itself. It does not cause any
difficulty in the case of functional dependencies defined
by simple formulaes, On the other hand, code~tables can be

- 90 =

extremely large, larger than the total amount of core memory
available on the machine used. Description, control and
storage of these tables can cause hardly resolvable
problems. One of the installed generator system based on
GENERA, system SIS79, involves a certain storage method
especially designed to be used in generated programs.

Using this method, functions or transformations defined
by code-~tables are described in the form of a hierarchical
graph [13], [14]. This graph is divided into levels
corresponding to the arguments of the function. A level
contains one or more subtable controlling values of the
variable belonging to the level. The subtables are subscipted
by the value of the argument to get the value of the
function or the next subtable pointer. Being empty parts or
identical segments included in the original code-~table, this
method can provide a significant reduction of storage
required for the table., Moreover, an efficient program can
be generated to read and analyse the graph. While the
necessary storage capacity is radically reduced /e.g. in
a system used by the Health Service, tables based on the
international code system of disease /WHO-codes/ were
reduced to five percent of the original size/, compute
time did not increase essentially compared to the time
required by the method using a unique large table of
values. In this case the method of program generating
proved to be very useful as the structure of a general
program to analyse a graph of any kind is extremely
complicated. On the contrary, the generated program is
of clear structure and the generator program is rather
simple,

Reduction of storage and run-time contains several
interesting problems of graph theory and finite projective
geometry, see e.g. flS].

= 9T =

The previous figure contains two consequtive GRAPH
directives., The first, "AGE CODING", codes variable AGE to
variable CDAGE using one code-table /SACKNO=l, LEVELS=1/.
Maximal value allowed for AGE is 100 /UPPBOU=100/. Variable
NUMERR is used for signaling errors. The second procedure
"CONTROL", checks variables CDAGE, SEX, MAINCD and SUBCD
using..a graph of 4 levels and 34 elementary tables.

The tables are filled up by a general procedure
contained in systems SIS77 and SIS79. Several advantages
are obtained using this routine: the method applied to
fill up the tables is the most compavt and comfortable one,
appropriate security is provided by the syntax analysis of
table descriptions and detailed error messages. This
subroutine provides means for a quick and easy calculation
of some multivariate functions as well. We demonstrate the
method of constructing a graph in figures 2 to 4 using
a very simple function. Table generating statements in
figure 4 contains /from the left to the right/ command
codes, table identifier or table values, subscript values
and optional comments. The negative values are pointers.

4.4 Evaluation of Logical Expressions

Performing a statistical analysis, sometimes, data base
should be divided into parts meeting requirements of the
subsystem to be used. Decision rules dividing the data base
are usually described by logical expressions of high
complexity. In system SIS79 a generator procedure is
applied to provide a simple method for defining these rules
and to generate a program fragment performing the selection.
/On mathematical logical investigations concerning this
topic a lecture was given by I. Ratké in Salgdétarjén,
Hungary at the Conference on Mathematical Logics in Theory
of Programming./

31
3|
21

31
31
il

31
2]
1l

il
2]

3|

i1
il

31

2]
31
21

il
21

2|

3|
21

il
|

il

21

31
il

=1 1
2]
2]

21
il

il

i
1
2]
Tt L B o e e e et St St

- G2
I 11

il

1

A
i e B B et e e St S|

R
e S Bt S s e o e Tt S B

Foo " e o Ol ool ek Tl e e e = s e T el el)
c

11 21 21 31 41 51 21 11 41 .11 61 61 4| 6|

f(A,R,C)
e Iy OO (S] Moty (O DR S I, 1y o SO (ST RO PGP

D=

Code table

Figure2

o

i g

| R R FEE

III

3

5
Lol il B

II

L e L

o

| Bl o e |

[Gapimiad Halohe gy |

v

é
Gl el asuad
k|

2

4
N RE—

$FARAM GRAFPH='EXAMFLE',DATANA='C','A','BR','R",

il
el

Iv

*GRAFH

.S=1,1,1,1,1,UFFROUC

-5, LEVEI

4%3%

NEWDAT='D"' , SACKNO

UFPROUC2)

3 Graph representation of function

Figure

EXAMPLE

FIRST TAERLE

=3

SECOND TAELE

M

-4

THIRD TAELE

()

]

-
2453%341
1

FOURTH TABLE

(]

FIFTH TAEBLE

NN <0

Figure 4 Commands to fill in tables

- 08 -

We performed interesting investigations in probability
theory concerning the problem of selection [14] to find
optimal strategies of file dividing.

4,5 Table-files, Output Tables

Results obtained by statistical data processing do not
contain the data of individual items but those of typifying
ones, Thus the files consisting of these raw data must be
transformed into that of statistical data /frequency
characteristics, code values’ totals, quadratics sums,
product sums, etc. /. Consequently, in statistical
information systems it is not advisable to apply the
languages developed particularly for handling and querying
processes of raw data items. We achieved that after a
suitable preprocessing /creating "table-files"/ a lot of
different output tables can be obtained using a few seconds
of CPU time /on HwB 66/60/ independently of the size of the
sample [21]. It makes possible to perform statistical study
of large samples in conversational processing.

De

Lse

2

Te

REFERENCES

E. G. Codd, "A Relational Model of Data for Large
Shared Data Banks", Comm. ACM, Vol. 13, 1970,
pp. 377=387.

Es Ge Coffman, P. J. Denning, Operating Systems

Theory, Prentice-~Hall, 1973.

M, Csukés, L. Greff, A, Krémli, M. Ruda, "An
Approach to the Hospital lMorbidity Date System
Development in Hungary", Colloques IRIA, Tome 1,

Informatique Médicale, IRIA, 1975, pp. 38l=390.,

/paper presented at the Symposium on liedical Data
Processing, Toulouse, 1975/

J. Demetrovics, "On the Equivalence of Candidate
Keys with Sperner Systems", Acta Cybernetica, Vol. 4,
:NO. 3,]-979, ppo 247"‘252-

D, E. Denning, P. J. Denning, M. D. Schwartz,
"Tne Tracker: A Threat to Statistical Database
security", ACM Transactions on Database Systems,
Vol. 4, Wo. 1, 1979, pp. 76=96.

We J. Dixon, M. B. Brown /editors/, BMDP Biomedical
Computer Programs /P-series/, University of
California Press, Berkeley, Los Angeles, London, 1979.

Ile Finkelstein, "A Compiler Optimization Technique",
Computer Journal, Vol. 1ll, Wo. 1, 1968, pp. 22=25,

J. Foigseau, R. Jacquart, M., Lemaitre, M. Lemoine,
Je Co Vignat, G. Zanon, "Program Development With
or Without Coding'", Software World, Vol. 12, No. 1,
1981, pp. 9-12,

9.

1oe

11,

12,

13.

14.

L. Greff, A, Krémli, J. Soltész, "The Modeling of
the Sampling Procedure for the Hungarian Hospital
Morbidity Studies", lModeling IHealth Care Systems
/editors E., Shingan, P. Aspden, P, Kitsul/, ITASA,
Laxenburg, Austria, 1979, ppe L72=177e.

M., Hammer, G. Ruth, "Automating the Software
Development Process",
pp. 767=790.

Me Go Kendall, A. Stuart, The Advanced ‘Theory of
Statigtics, Vol. I-III, Griffin, London, 195&,

P. Kerékfy, "GENERA - A Prosram Generator System",
Progress in Cyberneiics and Systems Research,

Vol. 11, Hemisphere, ‘/ashin:ton, L9¢{o. /paper
presented at the Fifth Luropean lleeting oun
Cybernetics and Systems Researcih, LLICSR’Co, Vienna,
1980/

P. Kerékfy, A. Krémli, L. Ruda, "SIST9/GLiisRA
Statistical Information System", Iroiress in

Cybernetics and Systems itesearch, Vol, 11,

Hemisphere, Washington, l9¢o. /paper presented
at the Fifth European lleeting on Cybernetics and
Systems Research, ENCSR’:0, Vienna, 19%o/

A. Krémli, M, Ruda, . Csukis, M. Gelambos,

"Large Sample Size Statistical Information System
for Honeywell Bull", Data Analysis and Informatics,
/editor E., Diday/, North-Holland, 19€o, pp. 457=462,
/paper presented at the Second International
Symposium on Data Analysis and Informatics,
Versailles, 1979/

15,

16.

17.

18,

19

20,

21,

225

- 96 =

A. Krdmli, P. Lukdcs, M, Ruda, "Probabilistic
Approach to the Performance Evaluation of Computer
Systems", Proceedings of the Third Hungarian

Computer Science Conference, Vol. I, Invited papers,
Budapest, 198l, pp. 5l=64.

M, M. Lehman, "Programs, Life Cycles, and Laws of

Software Evolution", Proceedings of the IEEE, Vol. 68,

No. 9, 1980, pp. lo6o=loT76.

N, H, Nie et al., SPSS Statistical Package for the
Social Sciences /2nd edition/, Mc Graw-Hill, 1975.

J. Nievergelt, "On the Automatic Simplification of
Computer Programs'", Communications of ACM, Vol. 8,
No. 6, 1965, pp. 366=3T0.

B. Perron /editor/ et al., IDMS Concepts and
Facilities, Cullinane Corporation, 1977.

M. Ruda, "Some Estimates in Connection with the
Critical Path Method", Project Planning by Network
Analysis, Proceedings of the Second International
Congress /editor H. J. M. Lombaers/, North-Holland,
Amsterdam, 1969, pp. 207=215.

M. Ruda, "Statistical Information System with Health
Service Application", MTA SZTAKI Tanulmdnyok,
87/1978, pp. 167=172. /paper presented at the Fourth
Winterschool of Visegrdd on the Theory of Operating
Systems, Szentendre, Hungary, 1978/

M. D. Schwartz, D, E., Denning, P. J. Denning,
"Linear Queries in Statistical Datahbases",

ACM Transactions on Database Systems, Vol. 4, No. 2
1979, ppe 156=16T,

]

o

23. A. Wald, Sequential Analysis, Wiley, New York, 1947.

MTA Szémitdstechnikai és Automatizdldsi Kutaté Intézete, Tanulmdnyok 133/1982 Proc. of RG—11, KNVVT

A RELATIONAL DBMS IN CONCURRENT PASCAL

I.Havel and P.Liebl
Matematicky ustav CSAV, II5 67 Praha I

Introduction

The aim of this paper is to show a possible connection be=
tween the fundamental ideas of parallel programming and those
of the relational data base model. In particular, in the paper
we describe how it is possible to implement, using the constructs
and structures of the programming language Concurrent Pascal /CP/,
a simple relational data base management system that functions
in a multi=-program environment.

The exposition is based on the assumption that the reader
is acquainted with the basic notions of CP, as there are process
type and monitor type, process variable and monitor variable /ca=-
lled here for short sometimes process and monitor respectively/.
Our understanding of these notions differs from that of BH only
in minor details,

The solutions presented here for the problem stated above
was from the outset determined by certain facts and principles:

- the program is to run on a particular computer /the EC 8540/
which is characterized by a rather small fast memory /I28kbyte/,
several disc units & 0,5MByte, varios I/0 devices, and 4 inter=-
rupt levels

- the object program is to arise from the source program by
cross-compilation on a standard EC I025 computer and should then
be in use without alterations for a comparatively long time of
several months or so

- no part of the source program, whatever small, should be
written in an other language than CP; particulary not in assem=-
bler

~ the program must contain as parts all problem oriented app=-
lication procedures solving particular user requirements and
written by user programmers as well as all system oriented pro=-
cedures for the management of the data base and of all periphe-
rals written by the system programmer of the user and by the

- 100 -

authors of the system.

Statement of the problem

Let us first briefly describe the requirements the project
has to meet, partly given from the outset, partly derived by the
authors from the expected mode of operation.

The task was to supply the EC 8540 computer with a software
that supports the basic destination of that computer, which is
to collect »nrimary data at their source and to give them on in
h08s8ibly modified, condensed or systemized form. Contacts with
prospective users showed that a feedback relation to the source
of the data is inevitable, 3and the situation is better described
as data files operatively approached by queries and by update
requirements. It appeared as natural to consider the data as a
data base. The characteristics of the data given by this situation
further suggested to apply to the data oase the ideas of the rela-
tional model. This statement requires some clarification as to
which characteristics we mean here and how they point towards the
relational model. We shall touch some of these arguments when
describing the declaration of the data base.

The special destination of the system made it possible to
describe rather strictly the character of permitted queries and
update onerations: they will be routine operations whose exact
structure, together with the solution of any possible result of
the operation, will have been planned, approved, written down in
Pascal, and processed by a compiler, long oefore the start of
actuil operation. There will be no eviluation of expressions in
a query language, no unexpected demands.

Further consequences were derived for the utilization of
storage, We decided that the datg base should be stored on the
disk units. On the other hand, 311 program parts, proolem oriented
28 well as system routines, will perminently reside in the fast

- I0I -

core storage.

On the other hand, rather severe requirements are put to
the system as to the parallel action of several programs, their
mutual independence, servicing of queries and update requirements
without undue delay, and security of the data from improper action,
errors of the parametric user or his possible ill will. The hard-
ware with its system of 4 interrupt levels has the potential to
meet such needs adeguately, and our task is to devise a software
tnat exploits the capacities of the hardware. The proper answer
appeared to oe consequent programming in a high-levsl programming
language. To express the mutual relationship of the individual
program sections, the means of the language cConcurrent Pascal
appeared adequate. So, 2ll the software descrioing the activities
of the computer is considered as certain structures in one pro-
gram. This program is written in CP (various parts of the source
program come from different origins, some e.g. are copied from
the manual), cross-compiled on 3 EC-computer and fed into the
5C 8540C.

Structure of the data base

Let us now describe the general structure cf the DB, as it
appears to the program parts thit ccntain actions with the DB.
The form of the declarations and statements defining the structure
of the DB and the actions with it will be descrioed in detail
in further parts of this paper.

The DB consists of several relations in 1laF. Eacn relation
has 3 name. An element of the relation can be considered 3is a2
line in the table that represents the relation. All lines of one
relation have the same structure (1lNF) described in the résgective
declaration., There is no limitation as to the numoer of attributes
(except that it should be smaller than the number of bytes in the
storage - limitations of this kind will not be mentioned furt%er)

- 102 -

or to their type. Each attribute has a name and may be of any

type permitted by Pascal - with the exclusion of the constructs
file, pointer, and real, out with the additional possibility of
subrange types with decimal limits (e.g. 1.01..2.00) which seemed
to us particularly suitable with respect to the expected character
of the data. One line in a particular relation is of the type
record, where the field selectors are the names of the attributes
of the relation. The number of elements of each relation (the
number of lines in the table) is from the outset bounded from
above by a number which is part of the declaration of the relation.
Again, in the particular environment, the necessity to state be-
forehand a realistic upper bound to the expected number of elements
of each relation should be felt as natural and will be satisfied
easily.

The main simplification as compared with the standard theory
of the relational model is that the unit of processing is one
element of the relation, one line of the table, rather than the
whole relation. This will be sufficient for the expected mode of
operation, where the data come in, or are required in queries,
one by one. Later we shall mention now the standard projection
and join of relations can be programmed using the means at
disposal.

Structure of the program

Let us now briefly describe the structure of the program, to
be able to understand the position of the data base oriented sta-
tements within the program. As already said, all software descri-
bing the operation of the computer is one program in CP. The basic
parts of thit program are processes. A process is defined by a
process type definition and becomes part of the program by the
declaration of a process variaole. Each process deals with one
particular activity - an operation. An operation will typically

- 103 =

be the reaction of the computer to an event in the surrounding
world as registered by one of the peripherals. It will consist

of identification of the event, input of data (e.g. through action
of a pammetric user), verification of the data as to their formal,
logical and as far as possible material correctness, one or several
operations with the D3 (a corresponding update, say), and possibly
an output of 3 message. A quite similar formal structure is found
in the reaction to a parametric query, as well as in other ope-
rations of this kind. The operation is represented oy a program
segment that has to start operation at a moment determined by
outside events and ends after completing the above mentioned acti-
vities. Formally, the corresponding process has the program pattern
of an endless loop that is halted at one or possibly several points
by means of parallel programing (delay/continue in a monitor).

The whole system of monitors and queues that governs the operations
of I/0 devices and connects them with the processes lies outside
the scope of this paper and will not be mentioned further.

The overwhelming majority of the actions in an operation can
be described by standard means of an ordiniary programming language,
particularly in Pascal. Outside this scope are matters concerning
(23) peripherals and (b) the data base. We decided to treat these
two groups as far as possiole uniformly. The second idea was to
treat them as procedure calls. All statements having parallel
programming character (i.e. the call of procedure entries in moni-
tors) together with certain management are written out in proce-
dures we call I/0 procedures and DB procedures respectively. The
DB procedures have a semi-standard form; principially they are
written by the authors of the project but the user systems pro-
grammer has to fill in certain identifiers and constants.

The data sublanguage

Let us describe the DB procedures in some detail. They re-

= T0A4 =

present, from the user programmers view, the data sublanguage.
As already mentioned, one unit of processing is always one line
of 2 narticular relation, In the relation, each line is characte-
rized by its number. In general, the numoer of the line has no
connection with its contents, the values of attributes of the
element represented by that line. For each xind of action -
search, read, write, add, delete - , for each relation it refers
to, and for each process that is intended to perform that action,
an individual procedure must be declared and incorporated into
the process, The identifiers of these procedures are a local
matter and are to oe chosen 2oy the system programmer; it is reco-
mmended however to construct them in such a way as to refer to
the kind of action and to the name of the addressed relation.
For the sake of exposition, assume for a while that the procedures
shall work with the relation called employees. Quite generally,
the passage of values between the process and the D3 is exclusively
effected through parameters (and not through e.g. global variables).
Take first the read procedure. Let it be called reademp. It
has two narameters. The first parameter is of integer type and
denotes the number of the line that has to be read. The second
one is of record type, the type one line of the relation has, and
denotes the variadble into which the addressed line has to be trans-
ferred. So, the pair of statements 1:=37; reademp(i,x) , where
both i and x are variables declared in the process, has the effect
of putting the variable x equal to the whole line no. 37 in the
relaticn employees. To ve 3aole to workK with the values of the in-
dividual attrioutes, it is sufficieant to address now the fields
like x.name (supposing "name" is one of the field selectors in
the definition of the type of x, and 3at the same time the name of
one of the attributes in employees)
A similar structure is found in the write procedure. The
pair of statements 1i:=35; writeemp(i,x) replaces the values in

- I05 -

line 35 of the relation employees by the values that had at that
moment oeen in the variaole x. To perform an update that has to
change only one field, to increase in line 12 the number of chil-
dren by 1, say, the group of statements 1i:=12; reademp(i,x);
x.children:=x.children + 1; writeemp(i,x) can be used: line 12
is placed into the variable x, one field is changed, and the
undated line is stored back into the relation,

It is obvious that as long 2as the programmer has to work
with the line numbers, the main ideas of the relational model
cannot be utilized. In that sense 3 key role is played by the
search procedure. It allows to single out lines according to
their properties (in a quite general sense). The procedure
searchemp has two parameters. The first is primarily the output
parameter containing the numober of the found line, while the
second is the identifier of a so called condition procedure that
is written by the programmer according to his needs. Let us demon-
strate the situation by an example. Suppose we want to find in
the relation employees those who work in department 7 and moreover
are born oefore 1933. We have to declare a condition procedure
(its identifier is local; let us choose it to be "ourman") with
two parameters, the first of which is boolean. The declaration
could be procedure ourman(p,x); begin p:=(x.dpt=7 and x.born<1933)
endy; the parameter x is, as seen, of the type of a line. When
the statement searchemp(i,ourman) is executed in the program,
the variable i contains as its value the number of the first line
that contains data about 3an employee with the desired properties.
So, the group of statements 1i:=0; searchemp(i,ourman); reademp(i,y);
n:=y.name puts the variable n equal to the name of a suitable
employee. If the relation contains no element of the desired pro-
perties, the output value of i is @, so that 3 more correct way
of programming would be 1i:=0; searchemp(i,ourman); if i=¢@ then
actions to be taken in that case else reademp(i,y); n:=y.name .

- I06 -

The first parameter has also an input meaning: it denotes the
number of the line after which the search is to start. So, i:=¢
means the search should start from i=1, the first line. This pro-
perty of the first parameter can oe used for finding several, or
all, elements of the desired property. Suppose we have to fill
the array n{4..191 with the names of suitable employees (assume
for example that we know there are at least ten of them). We
write 1i:=@; for k:=1 to 19 do begin searchemp(i,ourman);
reademp(i,y); nlk]:=y.name end . This example shows how the output
value of i, denoting the number of the found line, can be used

as input value for the next search that has to start from the
next line.

The add and delete procedures require for their proper
functioning the existence of an additional attribute in the re-
lation that we shall call "valid" which is boolean and whose
value false denotes this line belongs to a deleted element (or
is empty from the beginning) and is prepared to be filled in by
new values belonging to a new element. The procedure deletveemp (i)
puts the value of "valid" in the i-th line equal to false. The
procedure addemp (i,x) finds an invalid (empty) line and stores
in it the value of variable x; the output value of i is the number
of the just occupied line (and zero if there was no empty line).
The value of "valid" in the newly occupied line is changed to true.

This sketchy description should show what kind of data sub-
language the user’s programmer can use. One sees that although
each statement works with one line (the search and add procedures
naturally look through many lines in a loop, obut they stop and
offer a2 value as soon as they find the first line that suits them)
and the line number appears explicitly, by properly choosing the
structure of the data base and programming intelligently, one
can actually work with 3 sequentially stored relation using the
relational ideas. So, joins over two and even more relations can

- I07 -

be programmed elegantly by suitably declaring the condition pro-
cedure (the condition for the search in one relation then depends
on values found in another relation).

In situations like that, the locking of relations is some-
times desirable. Otherwise, the element-wise mode of work would
allow simultaneous approach to a relation by several processes.
Declaring one queue and using delay/continue statements, the
locking m3y be accomplished. It is then up to the system programmer
to avoid deadlock.

The D3 procedures themselves are rather straightforward
procedures in Pascal including one or several calls of the write
and read procedure entries in the respective relational monitor.

Data security

Of the many aspects of this complex category, some have been
recognized as being important in the special conditions of the
project and at the same time easily implemented.

The problem-oriented main bodies of the processes will often
have to be written by non-professional programmers intimately
acquainted only with the particular proolem they deal with and
only with the part of the DB connected with it. So, there must
be some simple and safe way to shield the D3 as a whole from
mistakes in the processes. This safeguard is given by the necessity
to explicitly state, by declaring and incorporating special DB
procedures for each process separately, to which relations it has
access and what kind of actions it may perform with them: whether
only to read (one search and one read procedure), or also to
update (an additional write procedure) or even to delete, say.

We call this the principle of active security - not what is for-
bidden, but what is allowed, is to be stated.

Another powerful safeguard against local programming errors

- 108 =

that destroy non-locally data and program is given by the use of

a higher programming language alone. Pascal, in 3 sense even more
than Fortran, say, gives the possipility to detect bad programming
and mistakes already at compilation time, and a further possibi-
lity to include into the object program powerful run-time checks.
Although these slow down the execution of the program, they have
been 3ll included.

An important aspect of data security is the idea of the
view. According to that idea, the individual programmer does not
"see" the D3 as it exists, but only a part (described in relational
terminology by joins and projections). That prevents him and his
process from changing or reading information which is not essential
to the particular problem his process solves. The system we deal
with here is concerned with data thnat are updated roughly as often
as they are read. The general idea of the view however works
satisfactorily only for reading.

With that in mind, measures derived from the view idea were
reduced to two fields. One is the active security alreaay descibed,
which safeguards whole relations from write and/or read. The other
is a device that makes accessible to each process only a chosen
nrojection. This is accomplished by the way the individual DB
nrocedures are written. The DB procedure communicates, as already
stated, with the "deeper" structures of the parallel program by
means of procedure entry calls, Data are transmitted through
parameters of these calls. The unit of processing, namely the
value of the parameter, is one complete line of the respective
relation. The idea is now that the pafameter through which the
DB procedure communicates with the application program within the
process may not contain the whole line out only a part of it. So,
the program "sees" only certain attributes. That can be treated
even s8o that the programmer never learns what the actual type of

- 109 -

2 line of the particular relation is - he is informed only about
the projection the D3 procedures appeir to nim to work with,

Program parts defining the data base

Let us now say something aoout the program structures that
represent the data base, To eiach relation there corresponds one
monitor (one monitor type definition and one monitor variable
declaration). This monitor - we call it a relational monitor -
has two procedure entries, one for read and one for write. Each
procedure entry has two parameters, cne is the line numoer and
one the contents of the line. The DB procedures in the processes
work with these procedure entries in a rather oovious way. Sc,
the read nrocedure simply calls the read procedure entry (as long
28 the data security meisures are not applied; if they should
onerate, there are severil assignment statements between the
parameter coming from the relational monitor and the parameter
Zzoing to the application program,. The search procedure contains
a simple loop that repeatedly calls the read procedure entry, 2nd
similarly the other D3 procedures.

For reasons of time economy, each relational monitor contains
a buffer for one line of the relation. That means that a variable
of the type of 2 line of the respective relation is declared in
the monitor (outside obotn procedure entries). The whole relation
itself is not declared inside the relational monitor because that
would mean that it is stored in the core memory. As it is, on the
contrary, placed in the disk storige, the relational monitor, to
recover one line from the relation or to store it, has to call,
in his turn, on further structures in the program which might b5e
characterized as logical and physical IOCS.

They are represented oy one single monitor called D3, and
further monitors that are wholly concerned with the maniagement

- II0 -

of the disks. The D3 monitor concentrates in itself the information
about on which disk units and at which disk addresses the data
base is stored, while each relational monitor contains the infor-
mation where in the D3 the respective relation is placed. From
the view of the DB monitor, the data base is a one-dilmensional
array of characters (actually, for technical reasons, of integers),
and the individual relations represent segments of that array.

The transition from numbered lines which are of record type to

the single characters is programmed in the relational monitors.
The relational monitor calls the pro_cedure entries in the D3
monitor with parameters that describe the data to be transferred

in terms of first address and length (besides the parameter that
contains the transferred data themselves). There arise purely
formal difficulties as the Bnguige Pascil, ind its compiler as
well, requires identity of type in aissignment statements as well
28 in the varameters of procedure calls. They have been avoided
by exnliting the fact that the compiler does not check the iden-
tity of types of parameters in calls that go from one monitor to
another, as there is sepirate pre-compilation. With that reser-
vation, the whole management of the D3 (2nd similarly as far as
possible of the I/0 devices) is written out in consequent Con-
current Pascal.

The 3uthors wish to express their gratitude to the members of
Working Group 11 for valuable discussions on the subject.

[BH] 3rinch Hansen P.: The programming language Concurrent
Pascal., IZEE Transactions on Software Zngineering 1, 2
(June 1975)

MTA Szimitdstechnikai és Automatizaldsi Kutat6 Intézete, Tanulmanyok 133/1982 Proc. of RG—11, KNVVT

MODIFIABLE QUERY SYSTEM FOR CASUAL DATA BASE USEET
Antonfn RfHA
Computing Center of Charles University,
Malostranské n. 25, 118 00 Praha 1

This paper reviews the work done and scheduled by the
Computing Center of Charles University in Prague in the frame-
work of the research task "System of contact with database in
natural language". A auery system called DOSYS / DOtazovaci
SYStém / or QASCU / Question-Answering System of Charles
University / was developed by the team led by B. Miniberger in
three years /197€-19€0/. The description of DOSYS is adopted
/with some modifications only / from /6/. The system is being
further improved as a part of the research task "Mathematical
problems of dialogue systems and knowledge representetion" under
the guidance of v. Koubek. A survey of future research tasks is
adopted from /7/.

INTRODUCTION

For casual computer users, i.e. specialists in some non-
technical field, nonprogrammers, no fully convenient means of
communication with computer are available so far. Special artifi-
cial languages can serve this purpose to a certain extent only
/2/. The necessary prerequisite for realizability of the so-
called natural language communication with computer is to choose
an application area the language of which is a naturally

- II2 -

restricted narrow subset of a natural language /2/. As experien-
ce shows, such areas do exist /5/. By naturalness of the restrict-
ion we mean that no other restrictions are imposed on a user

than to keep within the problem domain. It is not, however, a
sufficient condition for the effectivity of such communication,
The best solution is to construct an information or query system
as a whole - conceptual and internal schema as well as an inter-
face.

SYSTTM OVIERVIIW

DOSYS / Fig. 1 / is capable of answering queries asked as
Czech sentences in written form. The first experimental problem
domain of DOSYS is the enrollment procedure at all the Colleges
of charles University, Prague. The system is also intended to
supply information concerning agricultural machine spare parts
depots of a production company, and to supply informestion on
parts of diagnoses of patients treated in one of the Prague
hospitsls. So far, DOSYS admits only complete mutually indepen-
dent oueries. It is not a dialogue system, in some cases, how-
ever, it informs the user that the query should be reworded or
that there are some parts of the query that the system has fail-
ed to understand.

The natural language front-end of DOSYS consists of s main
program QAS controlling all operations of the entire system and
three subprograms - SLOV / dictionary retrieval/, LIAN
/linguistic query analysis and the translation of the aquery into
a formalized shape/ and SYNOD / reply synthesis /. The user com-
municates with QAS only.

= 15 -

The database component of DOSYS consists of a system RING and s
program INTTRPRET. The system RIIC is based on some ideas of the
relational data model. The output of the LIAN progrem has a form
similer to 2 narrow subset of the GIT statements of ALPHA nuery
language /1/. The program INTERPRET translates this output to
the manipulation language of RING and performs some optimization,
as well. In the sctual version of DOSYS the feeding and updating
of its datubase and its dictionary is separsted from the svstem
itself and is performed without any connection to natural langu-
age front-end. The first veriant of DOSYS is working in the batch
mode.

The input text /nuery/ is counstituted by a seauence of word
forms sepsrated by spaces. llumbers and signs of punctuation Aare
equally considered word forms. The analysis of a cuery is materi-
alized in two steps. The first step consists in the dictionary
retrieval performed by the SLOV program rewriting the auery into
the form of a string of words relevant for the reply of the syst-
em, To each rclevant word a set of dictionary cheracteristics
required for further linguistic analysis is attributed. To each
word the following characteristics can be attributed: morpho-
logical characteristic / in most cases identical vith the part of

speech indicated in ordinary dictior.aries/, semantic characteri-
stic / the name of the semantic class to which the word belongs/,
date characteristic / one or more conditions indicating the
relationship of the word to the dasta stored in the database/ and
characteristic of the anticipsted context / the phenomena to be
identified in verifying the correct comprehension of the ouery/.
The dictionary implemented is of the form of an oriented tree
with labeled nodes and edges. In the first variant of DOSYS the

- 114 -

dictionary is stored in the RING database.

The main principle of the DOSYS linguistic analysis is that
of semantic condensation. 1t is based on the sssumption that the
factual piece of information in the text is borne by nouns. As
far as syntactic aspects are concerned, no classical syntactic
analysis is performed - only some structural relations between
semantic units are covered. Morphological analysis is not per-
formed at all. It is possible by means of semantic condensation
to convert each query into & generslized semantic representsation
having more or less unified form and to neglect some formslly
expressed syntactic relations. In each query presented to the
query system two parts can be distinguished - the object of the
user’s question and concrete dats provided by the user / condit-
ions /. The type of the query determines the operastion to be per-
formed / providing the list of items, the sum of items, calculat-
ing the percentage /. The linguistic analysis of the query con-

stitutes the second step of query processing and is performed
by the LIAN system of programs. The first program of the system
marks some important parts of the query and checks the presence
of some features, the second determines the type of the query and
the object of the query. The third - sixth programs solve some
ambiguities, the seventh processes the queries concerning per-
centage and the eigth processes the conditions /data/.

While the replies of DOSYS are elementary, they are suffi-

cient and well comprehensible. The printed reply consists of
three psrts: the query itself, the reply and the list of word
forms that the system failed to understand. The data retrieved
from the datsbase are fed into frames of answers prepared in

advance.

- II5 -

The data of DOSYS are maintained in the RING database. It
enables creating as many as 125 tables /relations/. The row
/tuple/ lengths of relations are 30-900 bytes, the lengths of
the keys being 20 bytes at most. The total volume of all dats
should not exceed 52 Mbytes. The dats are stored on magnetic disc
in 8 single physical file with a direct access method. The mani-
pulation language of the RING system is materialized by three
parameters of the CALL statement / type of the operation, relat-
ion and tuple specification, data/. It contains operators for
defining and deleting relations and for reading, inserting and
modifying individual tuples but, owing to its detailed nature, it
is not appropriate for immediate wording of the LIAN output.There-
fore, the program INTERPRET was designed to extend the functions
of RING. There are two types of relations in the database: basic
and derived. The basic relations contain new data, the function
of the derived relatioins being similar to that of inverted files.
The derived relations are updated automatically whenever some
modifications in the basic relations are performed. In the first
variant of DOSYS one basic and 38 derived relations are used, the
total amount of data being about 20 Mbytes.

FUTURE RESEARCH AREAS

The experiment with DOSYS has demonstrated the realizability
of natural language front-end for restricted problem area. At the
same time, it revealed the limitations of the first variant.
Therefore, we are now developing another query system KOMSYS /7/
/ Fig. 2/. Similerly to IDA /9/, a user of KOMSYS is supposed to
see the database in the form of s single relation with just the

- 118 -

attributes needed to satisfy his query. An internal partition of
attributes to stored relations is known only to the system itself
- each query is transformed automatically so that it accessed the
relevant relations. moreover, a user does not necessarily know
the attributes stored. 1n his query he uses the so-called pseudo-
attributes, corresponding to attributes in m:n way. krom that it
is clear that KOMSYS implements some ideas of 3-level database
architecture according to ANSI/X3/SPARC proposal. pesides the
queries, the system also performs some dictionary and/or database
updates according to natural language commsnds. The linguistic
query analysis is generalized and covers more types of queries.
In cases of ambiguity, the program DIACON either resolves the
ambiguity using the recorded information from the previous queri-
es and answers or asks the user to specify the aquery. When the
result of @analysis is unambiguous, the system submits its inter-
pretation of the auery to the user for approval / in the form of
natural lancuage sentence/. On approval, the auery is processed
by the databasc component. The program DIVIDE transforms the
~uery to the sequence of operations searching the corresponding
relations in the database. The program CONQULR translates this
sequence into the manipulation language of database system and
checks the consistency. If the requirements of the user are not
consistent with the coatents of the database, a message is produc-
ed. The data retrieved from the database u:re first recorded by the
DIACON for later use and then a natural language answer is con-
structed by CYNOD. The process of answer synthesis / or natural
language query interpretation/ makes use of a dictiounary, a frame
grammar and a simplified morphological synthesis. DOSYS used two
separate dictionaries for query analysis and synthesis,in KOMSYS

= I10 =

they will be united.

KOMSYS will be able to accept formalized queries as well.
Analyzed by an appropriate analyzer, they will be transformed
into the same intermediary language and processed in the same
way as natural language queries. Natural language interpretation
of the formalized query will be submitted to the user.

To create a query system is not an easy task. Moreover, the
necessary restriction of the problem domain implies, in generel,
that the system constructed for one domein will not work for
another / though also restricted / problem domain, and,to change
the problem domain can be, in general, as difficult as to cresate
a new system. Therefore, methods are studied how to perform at
least a part of the task automatically.

E.g. the system LIFER /3/ generating natural language inter-
faces to existing software systems consists of two parts - the
set of interactive language spcecification functions and a parser.
Language specification functions are used to define an applicat-
ion language / a subset of 8 nastural language/ that is appropri-
ate for interection with the existing software / DBMS /. LIFER
application languages are specified by augmented coantext-free
grammars. Lach rule in the grammar includes a context-free
production plus an arbitrarily complex response expression,
which is the augmentation. The use of augmentation gives the
LIFER parser the power of the Turing machine. The LIFER functions
read the specificaztions interactively from the input and store
them in the form of augmented transition trees / the simplificat-
ion of augmented transition networks defined by Woods/. Using the
specifications the LIFER parser interprets natural language
sentences /onueries/ and translates them into sppropriate inter-

- II8 -

actions with application software. The application language can
be extended by user by means of natural language commands.

We also intend to develop a metasystem that would generate
the individual versions of KOMSYS for different problem domains.
The description of a chosen problem domain written in a special
formelized language will be on the input of the metasystem,
giving it all the necessary information to create both natural
language front-end and conceptual schema of the database. The
creation of natural language front-end consists in the creation
of a dictionary and modification /by substituting parameters
mostly/ of all components / SLOV,LIAN etc./ so that they corresp-
ond to the problem domain. The final version of the metasystem
should also design the partition of the database into individual
relations and code data in the database and dictionary. It will
also perform the modification of DIVIDE sand COIQUER programs.

An spplic+ation of such metasystem will shorten substantially the
transduction of our query system to a new problem domain and
reduce the number of errors involved in that transduction. To
create the metasystem, a seauence of theoreticsl and algorithmi-
cal problems should be solved; therefore, it represents a long-

term task.

REFERENCES

1. CODD E.F., A data base sublangusge founded on the relational
calculus. Proc.ACM-SIGKFIDET Workshop, November 1971.

2. HARRIS L.R., Natural language and database query.
Artificial Intelligence Corporation, 1980, 101-111.

10,

- II9 -

HENDRIX G.G. et al., Developing a natural language interface
to complex data. SRI AI Center, Tech. Note 152, August 1977.
MACHOVA S., MINIBERGER B., QASCU - Question-answering system
for third-level computer users. Effective Computer Applicat-
ion, 1, 1981, 20-28,

MALHOTRA A., Knowledge hbased English language systems for
management support: an analysis of requirements.

Proc. 4th IJCAI, Tbilisi 1975.

BURANOVA E., ECKHARDT P., GORALCTKOVA A., CHALCUPEK P.,
KARNOLT J., KASPAR J., KOUBEK V., KREMAR M., MACHOVA S.,
MINIBERGER B., RfHA A., ZAMEK P., System of contact with
data base in natural language. Technical Report VC UK - 1,
computing Center of Charles University, Prague 1980.
BURANOVA E., ECKHARDT P., GORALEfKOVA G., KOUBEK V.,

MACHOVA S., MINIBERGER B., RfHA A., KomunikaZni systém
KOMSYS. Report VC UK, Computing Center of Charles University,
Prague 1981, / In Czech /.

RfHA A., Creating natural language interface to data base.
Proc. 4th Internationsl Seminar on Data Base Management
Systems, held in Schwerin, December 1981, VEB LfA, Berlin,
1981, 198-206.

SAGALOWICZ D., 1DA: An intelligent data access program.
Proc. 3rd International Conference on Very Large Data Bases,
Tokyo 1977, 293-302.

ECKHARDT P., Databankovy systém RINC. Studie VC UK-1I1I-2-2/
11-4, Prsha 19Y79. / In Czech /.

P
l QUERY REPLY
QAS
I !
S1OV LIAN l SYNOD
l INTERPRET
2 _V
{ PROCESSOR RING

Fig. 1. Flow chart

of DOSYS

- I2I -

USER

SLOV !
SYROD E

LIAK UPDIC

l
3 1
DIAlogue CONtrol
DIVIDE
.
CONQUER ‘/ DBA \

!

DBMS RING

DB
RIRKG

AN

Fig. 2. Flow chart of KOMSYS

MTA Szimitdstechnikai és Automatizdldsi Kutato Intézete, Tanulmdnyok 133/1982 Proc. of RG—11, KNVVT

NATURAL LANGUAGE INTERFACES TO DATA BASES:
A DAY-DREAM OR A REALISTIC GOAL?

by Willi Werner and Dietrich Koch

Zentralinstitut fiir Kybernetik und Informationsprozesse, Akademie
der Wissenschaften der DDR

Abstract

In this paper we give an analysis of opinions and approaches to
the topic mentioned above. The survey of existent systems and
their approaches shows that the state of the art in natural lan-
guage processing is capable of providing a sufficiently usable
interface for certain "micro-world" applications. Yet, there are
a lot of unsolved problems for further research. We recommend to
overcome these gaps by a method which allows to concentrate on
particular problems. Our proposal is to split the knowledge which
is nessessary for the translation process into 3 parts:

- "back-ground knowledge"
- "data model knowledge"
- "DBMS knowledge"

Finally, some criteria for evaluating natural language processing
systems are given.

- 124 -
I. QOpinions

Natural language data base query has long been recognized as a
useful application of artificial intelligence techniques. We
restrict here to typed text legible by a machine. The essential
difference between the "natural-language-like" query facilities
and the true language approach is that the latter allows many
valid phrasings of the same request, whereas the former only
allows a single canonical wording, or perhapsa a few very similar
wordings.
There are a lot of different opinions about nadural language
interfaces (NLI), but nevertheless the efforts for this goal are
ongoing. In the following we quote some of the remarks. It is
clear that among the list of voices in favour of NLI the designers
are included.
"We feel that the time is ripe for computers to be equipped for
natural language systems which can be used by persons who are not
trained in any special computer language." (WALTZ /1/)
"We have achieved a reasonably high degree of robustness, and this
is largely due to the heavy emphazis on feedback to the user."
(CODD about: experience with RENDEZVOUS Version 1 /2/)

The arguments against NLI can be summarized by:
"... it should be pointed out that no machine is currently as
capable of handling natural language as a child of ten (indeed,
there are some that claim (e. g. CHERNIAVSKY 1975) that there
never will be)."™ (BROWN /3/)
"The quasi-natural dialog types are especially suitable for
giving help to the user. Using it generally has the disadvantage
of a lot of input typing which needs good typing skills and much
time. Moreover the possibilities to understand natural language
input are very limited and the implementation effort is rather

- I25 -

high; last not least this kind of dialog needs much core time. So
very often the effort for quasi-natural language dialog is out of
all proportion to the given advantages of this method." (DEHNING
et al. /4/) '

There are claims and proposals to use the NLI for creating a
powerful conceptual schema of the data base. This enables the
data base administrator to establish all complex relations between
basic items in a given application-world.
"The role of natural language in such systems consists in the
following: The natural language serves as base for the creation of
the model of the outside world - the data base of the application
fields In the communication process natural language may disappear
- it is better to use a language which is near to the natural - a
restricted "subject" language or a language of tabular type."
(translation from VOSILJUS /5/)

II. The state

WALTZ called for papers to the topic NLI and received 52 articles
/3/. In his paper the most advanced systems are mentioned, but no
details about system features. We analysed a lot of these systems
with respect to their natural language processing approaches. It
is a difficult matter to compare and evaluate them, because the
environments and the focus of research very often differ in many
respects. It seems to be useful to distinguish between natural
language interfaces to a given data base (NLI) and natural language
understanding systems (NLU).
The focus of research for NLI is the question:

How is the mapping from the language-view to the external view
in a multi-level architecture of a DBMS?

- 126 -

System Type Related person(s) and institution

PLANES L WALTZ, University of Illinois

LUNAR-ROCKS) WOODS, Bolt Beranek and Newman

SHRUDLU U WINOGRAD, SRI AI Center

LADDER, LIFER I HENDRIX, ©SRI AI Center

ROBOT I HARRIS, Darthmouth College, USA

RENDEZVOUS I CODD, IBM

DILOS U BRIABRIN, Acad. of Sciences, Moscow, U.S.S.R.

REQUEST=TQA U PLATH, Mathematical Sciences Dept., Yorktown

TORUS I MYLOPOULOS, Dep. of Comp. Science, Toronto,
Canada

REL U THOMPSON, Univ. of California

PHLIQA1 8) SCHA, Philips, Netherlands

HAM~-RPM U WAHLSTER, Univ. Hamburg, FRG

HANSA U WITTIG, Univ. Hamburg, FRG

ol - BURGER, Syst. Devel. Corp., Colorado, USA

PLIDIS U WULZ, Inst. fiir deutsche Sprache, Mannheim,
FRG

USL I LEHMANN, IBM Heidelberg, FRG

w6 U RIHA, A./SGALL, Charles Univ., Praha

FAS-80 U KOCH/HELBIG, ZKI/ZFT-ROBOTRON, DDR

Table 1: DNatural language processing systems

Type = I corresponds to NLI,
Type U to NLU

- I27 -

NLU is more interested in recognizing, representing, and infering
the knowledge which is contained in texts. Therefore, data bases
in NLU need to be more complex. The used data model is more moti-
vated: from linguistic and logical points of view than from effi-
cient as in commercial DB. NLU is up to now in an experimental
state. Pilot systems for demonstration NLU-capabilities are

knowns as "Question-Answering systems". After a listing of advan-
ced language processing systems, known to us, we give some criter-
ia for evaluating their power.

III. Basic approaches

In the multi-level architecture of a DBMS we have different
levels for the view of the applied data model. For each level
exists a certain class of users who use this level as interface.
The related languages may be taken from the language categories
given in Table 2. This does not imply that the language level for

the conceptual schema is any kind of standard programming langua-

ges; it may be that the DBMS has the facility to manage the con-

ceptual schema by natural language or any kind of frame driven

language.

In Fig. 1 we have outlined a basic approach for language trans-

lation. On the left side we have the case that

either +the source expression and the goal expression can be
proved to be equivalent by simple searching; a trivial
case where nothing has to be translated

or the most complex case, where all steps necessary for the
translation, as can be seen on the right side, are incor-
porated in a single step. (nothing can be seen).

On the right side we have all steps, necessary for a powerful

- I28 =

translation, separated according to their task. It is easy to see
that this method allows better to concentrate on particular pro-

blems.
source language
a1l syntactic analysis
syntactic representation
a2l semantic analysis
semantic representation
a31 logical interpretation
logic representation

source

language e logical equivalence
goal

logic representation

s}l logical synthesis
semantic representation

82 semantic synthesis
syntactic representation
s syntactic synthesis

goal language

Figure 1: The basic scheme for translation one language
to another

- [29 =

Level Basic units/ Examples (incomplete)
(theoretical base)
text, sentence, phrase

NL (dependence)categorial Engl., Russ., Germ.
grammars)
frame, graph, network KRL, LIFER, ATN,
(graph theory) PLANNER, SDLA
predicate-calculus-expr. PROLOG, DEDUCE,
(predicate calculus) KS, PCP-2

High-level

eofimad relation, tuple e

Ishgiage (relational calculus)

(HCL) relation, tuple ,
(relational algebra) e
set
(set algebra) wBTL

High-level set, tuple,

programming | i..o 1igt, atom, Qa=is ALy S&lL,

language string, number LISP, PL/I

(HPL)

Standard tree, array, strings, PORTRAN, ALGOL,

Progralming | pumber, adress COBOL, ASSEMBLER

language

Machine
adress

language

Table 2: Language categories

- I30 -

In order to prove that two semantic structures are equivalent, we
need a logical interpretation for each of both what may result in
an explicit logical representation.

In Fig. 1 nothing is said about the effort for each single step
above and below the equivalence level. At first glance the pro-
cess seems to be symmetrical, but this is not the case. Generally,
we can say the translation effort increases with the distance be-
tween the language-levels of the source - and goal language, their
absolute distance from the machine language, and of course with
the complexity of language phenomens which can be handled. The
effort for synthesis is generally minor than for analysis. In
order to illustrate these (trivial) statements, we consider some
translation cases, where the ass €, and S; name the related steps.

paraphrasing

1. NL - NL

(a1, a2, a3, e) expensive
(s3, 82, 81) less expensive

This is why s3, s2, and s1 can operate on recognized struc-
tures, with few rules, and possibly canonical syntactic out-
put.

o, TL translation - NI,

a) Russian =——s English

(a1, a2, a3, e) expensive

(s1, s2, s3) less expensive
b) English —— Russian

(a2, a3, e, s1) expensive
(a1, 82, s3) less expensive

This is why syntax in Russian is more difficult and more

- I3 -

powerful than in English.

3. HCL translation - NI,

for example
ALPHA ——— German

(a1, a2, a3, s1, s2, s3) little expensive
e expensive,

because the production rules for syntax, semantic and logical
interpretation of ALPHA are small and the effort for synthesis
remains also small, after a equivalent "German view® is found.

Methods for transforming linguistic structures into a formal guery

We analysed a row of NLI's and found that their applied methods
can be subdivided into 5 classes:

I. pattern matching

II. direct translation

IITI. translation of syntactic constituent lists
IV. +translation of syntactic trees

V. translation of semantic structures

The difference between these classes consists in the degree of
their distinction between linguistic knowledge and "data model de-
pendent knowledge".

pattern matching

Every possible question form is associated with a corresponding

formal query pattern. The problem is solved after that pattern is
found and the variables of them are substituted by their natural
language constants. This method is for aims of translation out of

- 132 -

interest.

direct translation

After the paraphrasing the original question into a canonical
form "data model frames" are used for construction of the formal
query. The variables of the "data model frame" are complex and
can be fitted by the results of applied subnetworks. This method
is used in RENDEZVOUS, PLANES /1/ and LADDER /5/.

translation of syntactic constituent lists

Syntactic parsing the sentence yields a 1list of constituents. The
dependence tree for formal semantic representation results from
"data model" given dependencies. This method was applied in
PLIDIS /6/.

translation from syntactic trees

The dependencies of the constituents of a sentence are recognized
by linguistic motivated knowledge and a syntax tree is obtained.
This tree is by domain dependent rules associated with the cor-
responding formal language expression. This method was used in
LUNAR by WOo0DS /7/.

translation of semantic structures

After obtaining a semantic representation by appling linguistic
motivated case frames this structure will be transformed into its
"date model", "DBMS-dependent" and "back ground knowledge" equi-
valent. This method seems to be very expensive but it guarantees
a very high degree of knowledge separation. It is applied in
PHLIQA1 /9/ and proposed by us.

The process of the semantic translation from the linguistic

- 133 =

semantic representation to the semantic representation in a given
data model in a DBS is very difficult and the crucial point for
the NLI.

We proposed to split this process in some subtasks in order to
differentiate between "background knowledge", "data base know-
ledge", and "DBMS built-in knowledge" (WERNER, /8/). Similar
argumentation can be found in (SCHA, /9/):

He wrote:

"eee Prior to the design of the system, we made a careful analysis
of what is involved in the question answering process. This led to
the idea of multilevel semantics: the distinction of three differ-
ent levels of analysis which the question passes before it leads to
to an answer. At each of these levels, an expression of a formal
logical language is used to represent the meaning of the question.
At every level, a different level language is used. The three
languages have the same syntactic and semantic structures. They
differ in the constants they contain. These constants represent
different kinds of entities in each case:

- the constants of the English-oriented Formal Language (EFL)
represent the unanalyzed meanings of English words and
grammatical functions.

- the constants of the World Model Language (WML) represent
the concepts that constitute the subject domain of the system.

- the constants of the Data Base Language (DBL) represent the
"record-types", "data-items", and sets which constitute the
data base, and the available logical and arithmetical pro-
cedures."

In order to overcome the crucial gap between the linguistic and
data base model, the user and the system must cowork together in a

- 134 -

clarification dialog. The user has interactively to control and
to guide the system's way of interpretation. The system has to
provide a feedback to the user and to give him some "menu"'s for
help.

An experimental approach for this method is given in Figure 2
(CODD /10/, where you can find a good impression about RENDEZVOUS
capability).

—— = ANALYSER SUPERVISOR
HELPER
MENU DISPLAY
2 DRIVER SUPPORT
GENERATOR
no, in-
complete *
OK? 28
no, in-
v correct
EDITOR
RETRIEVER —=—
Knowledge Data Base
Base

Figure 2: RENDEZVOUS Version 1 system

The ANALYSER translates the original question into the formal

- I35 =

query language DEDUCE,

The MENU-DRIVER tests its logical completeness and poses only
questions to the user that will yield a logically complete formal
query.

The GENERATOR retranslates the formal query in English.

We can therefore summarize the entire process in the following

scheme.
paraphrasing
NL - - - 11,
HCL
English traHSlatlon:rDEDUCE translatlon._English

l translation

RETRIEVAL-programm

IV. Measurements of capability and progress

Before anybody judges about the quality of a given NLI he should
try to fill out the following checklist:

A. linguistic capability

ability to solve:

a) sentence references?
b) pronominal references?
¢) coordinations?

ability to use:

a) ellipsis?

E.

An

- 136 -

b) adverbial modification?
c) adjectival modification?
d) relative clause modification?

state:
a) which phenomena can be handled?

b) which phenomena can not be handled?

logical capability

which kind of inference rules are incorporated?
how quantification is solved?
how negation is solved?

convenience and perspicuity

interactive possibilities:

a) extendable?
b) model correction?
¢) spelling correction?

feed back:

a) self explainable?
b) menu support?

portability

to other machines?

to other subject domaines?
to other applications?

of single modules?

efficiency

overall measure for this is the time necessary for the correct

translation of NL into the used formal query language. But, you

must

V.

- I37 -

be careful. It depends on:

speed and resources of the used computers,
what they are:

the organization overhead,
what management system is used?

the chosen transforming language,
name it:

the mode of working,
interpretative?
compiling mode?

the level of the target language,
name the target language:
the quality of particular algorithms,
name them and give a measure for their quality:

the cleverness of their implementation,
give measures for such cleverness:

What about the users experience?

Consult them!

Conclusion

With good coordinated research and development the goal NLI can be
a realistic one, but today only for restricted languages and

restricted "subject domains". The users of a modern DBMS need it.

/1

/2/

/3/

/4/

/5/

/1/

/81

/9/

/10/

1114

- I38 =

Waltz, D. L., The PLANES System: Natural Language Access to
a Large Data Base. Report T-34, 1976, Univ. of Illinois

USA

Codd, E. F., RENDEZVOUS Version-1: An Experimental English~-
Language Query Formulation System for Casual Users of
Relational Data Bases. IBM, Research Report, 1978

Waltz, D. L., Natural Language Interfaces. Sigart Newsletter,
Nos 61, 1977

Dehning, W. et al., The Adaption of Virtual Man-Computer
Interfaces to User Requirements in Dialogs. Springer,
1981

Hendrix, G. G, et al., Developing a Natural Language Inter-
face to Complex Data.ACM Transact. on Database Systems,
vol. 3, No. 2, June 1978

Berry-Rogehe, G. L., Wulz, H., The Design of PLIDIS, A
Problem Solving Information System with German as Query
Language. Llannheim, 1976

Woods, We A. et al., The Lunar Sciences Natural Language
Information System. BBN Report No. 2378, 1972

Werner, W., Ein Ansatz fir ein NLI zu relationalen Daten-
banken, Schriftenreihe der TU Dresden, Heft 44/80

Scha, R J., Philips Question-Answering System PHLIQA1.
Eindhoven, Netherlands, see /3/

Schneiderman, B., Data Bases: Improving Usability and Respon-
sives. Academic Press, 1978, p. 3 = pe 27

Vosiljus, S. K. i drogich, Voprosy realizacii reljacionogo
interfejsa

PVK Banki dannych, Tbilisi 1980, Sekcija 2

A TANULMANYSOROZATBAN 1981 -BEN MEGJELENTEK:

116/1981 Siegler Andras: Egy 6 szabadsigfoka antropomort manipuldtor kinematikidja

szamitogépes vezérlése

117:1981 Knuth EI6d — Rudo Péter: Principles of Computer Arded System Description
11871981 Demetrovics Jinos — Gyepesi Gyorgy : Altalinos tligeéségek és lekérdezéssel

kapcsolatos algoritmusok relicios adatmodellekben

119/1981 Sztan6 Tamds: REAL -TIME programrendszerek eseményvezérelt szervezése
12071981 Szentgvorgyi Zsuzsa: A szamitdstechnika muszaki fejlédése és tarsadalmi hatdsai
121/1981 Vicsek Tamadsné (Streho Maria) : Vizsgalatok a kezdeti érték problémiik

numerikus megoldadsival kapesolatban

1221981 Ando Gyorgyi — Lipesey Zsolt: Sztochasztikus Ljapunov modszerek és
alkalmazisaik

123/1981 Markusz Zsuzsanna: Intelligens interaktiv rendszerek elvi problémai

124/1981 Mirkusz Zsuzsanna: Logikai alapt programozisi modszerek és alkalmazasaik

szamitogéppel segitett épitészeti tervezési feladatok megoldasihoz

125/1981 Fabok Julianna: Software implementacios nyelvek
126/1981 Virszegi Sindor: Multimikroszimitogépes-rendszerck
127/1981 Lipcsey Zsolt: N-személyes mindségi differencidljitékok késleltetéssel és

késleltetés nélkul
128/1981 Boszérményi Liszlo: Multa-task rendszerek fejlesztése magasszintii nyelven

129/1981 Toth Jinos: A formalis reakciokinetika globilis determinisztikus és sztochasztikus
modelljérsl és nhdany alkalmazdsarsl

-

	Soderzhaniye
	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������
	69���������
	70���������
	71���������
	72���������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������
	122����������
	123����������
	124����������
	125����������
	126����������
	127����������
	128����������
	129����������
	130����������
	131����������
	132����������
	133����������
	134����������
	135����������
	136����������
	137����������
	138����������
	139����������
	140����������
	141����������
	142����������

