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ABSTRACT

In this report the discrete-time identification methods of
linear dynamic systems are considered. The report is formu-
lated on the basis ot the authors’ candidate dissertations.
This work gives a survey on the related topics, on the one
hand, and contains the own results of the authors, on the
other. The report is recommended for experts dealing with
algorithmical problems of computer aided process identifica-
tion.

The purpose of the work, the applied different models and
estimation methods are formulated in the Introduction. Sec-
tion 2 deals with the off-line identification methods for
SISO and MISO systems. Off-line identification methods for
MIMO systems are considered in Section 3. On-line identifi-
cation algorithms of MISO or MIMO systems are discussed in
Section 4 or Section 5, respectively. Section 6 is devoted
to the appendices. Section 7 gives a very detailed bibliog-
raphy of the related topic.






SYMBOLS
equals; is equivalent to
# does not equal
= identically equals to
greater than
< less than
2 greater than or equal to
< less than or equal to
~
p 4 estimated value of variable y
- T operator stands for the mathematical
expectation
A. B, C matrices
él, ET, gT transposed matrices
éA, éA, éA adjoint matrices
X, U, Vv column vectors
§T, ET, XT row vectors
C zero matrix
0 zero vector
1 unit matrix
diag <ees” diagonal matrix
4] determinant of matrix A
tr(4) trace of matrix A
inverse of matrix A
5% ordinary derivative column operator
af( x)
—— derivate or gradient of function f(x)
df( x) Jacobian matrix, vector derivative
. of function £(x)
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LS
GLS

SEXM
TEXM
SISO
MISO
MIMO
MLG

SGLS

0TI

MA
ARMA

Hessian matrix of the second
derivatives of function f(z)

supremum over all u
(Least upper bound)
infinum over all u
(greatest lower bound)

limit of series

probability limits of series
symbol of the KRONECKER matrix
product

Least Squares Method

Generalized Least Squares Method
Maximum Likelihood Method
Instrumental Variable Method
Priori Knowledge Fitting Method
KOOPMANS~LEVIN Method

STochastic Approximation

EXtended Matrix Method

First EXtended Matrix Method
Second EXtended Matrix Method
Third EXtended Matrix Method
Single Input Single OQutput
Multiple Input Single Qutput
Multiple Input Multiple Qutput
Maximum Likelihood Method with
noise model of Generalized structure
STEIGLITZ’ Generalized Least Squares
Method

Observability Index
Auto-Regressive

Moving-Average

Auto-Regressive and Moving Average



I. INTRODUCTION

1.1 Formulation of the problem

This report - according to its title - is devoted to the iden-
tification of linear dynamic processes using sampled data.

The process identification beginning with the classical
grapho-analytical methods up to the modern, computer-aided
procedures, has been very popular among the researchers. Now
the issues of identification terminology, the classification
of the methods are not dealt with. These questions have been
discussed on a very high level by famous authors on several
IFAC Symposia and Congresses on Identification DZ, 15, u@
and many books have been published in this field [}7, 110,
llﬂ . In this report the terminology of the international lit-
erature dealing with identification is used, the notations
are the same as in the papers of EsTrROM’ school and for the
teaching of control theory at the Technical University, Buda-
pest. Since the terminology of the international literature
is widely used, definitions are elaborated on only in the
most important cases.

The object of the identification is assumed to be a linear,
dynamic system with lumped parameters, or this latter re-
striction is eased sometimes by allowing serial dead-time
(transportation delay). It is also assumed that the input and
output signals of the process can be recorded in every sam-
pling time AT. (The measurements are supposed to be coherent.)
The above measuring situation is shown on Fig. 1l.1-1 for a
single input, single output system where u(t) and y(t) mean
the sampled values of the input and output signals, respec-
tively. The argument t means (in the whole report) the dis-
crete-time and taking the sampling time AT for a unit, the
values of t can only be integers. The situation is the same
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for multiple input multiple output systems, too, but every-
thing is valid only for vector-variables.

The measuring situation is suitable for both passive and ac-
tive identification. So it includes e.g. the identification
based on the classical step responses and contains at the
same time the application possibilities of other, more up-to-
date methods. This approach is called "discrete identifica-
tion" in the literature, and the term refers to the dis-
creteness of the measuring circumstances and also to the
character of the applicable models.

At the beginning of the 60s, the attention has been directed
towards the discrete system description and discrete process
models. Its reason is partly the availability of data in dis-
crete forms and, perhaps mainly, the possibility of (often
on-line) data processing and evaluating by digital computers.
In consequence of this, there was a quick upsurge in the de-
velopment of the theory and techniques of the discrete iden-
tification. Perhaps KALMAN [77] was the first to publish in
this field, but the basically pilot activity was due to the
group at IBM led by XSTROM.[BJ. Even up to now, it is their
off-line method that gives the best result and affords the
basis for comparison with other methods. Since then, several
other approaches have been suggested which might have been
advantageous under their special conditions, but they actu-
ally correspond to the special cases of the original idea
[}2, Ai]. The aim of our report is - among others - to clar-
ify the relations between the several types of approaches and
also to show the restrictions of the applications.

Thus numerous methods have been worked out for the off-line
identification of single input single output systems, al-
though the comprehensive analysis of their interconnections
has figured until now either not at all or only with regard
to very few methods in the literature. On-line versions of
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methods have been elaborated, their comparative analysis has
been carried out until now only within the frame of simu-
lation tests [72]. The situation is not so clear in the field
of identification methods of multiple input - multiple output
systems. Though the generalization of several methods elabo-
rated for a single output system has already been completed
[57, 91, 108, 109, 101, 136] but easy to use methods can not
be mentioned neither in off-line, nor in on-line relation.
Neither has any author made the comparison.

Considering the practical application, we can state without
fear that the off-line discrete identification methods of
single input single output systems already mean in many
places of research, in many countries the everyday identifi-
cation technique and the literature reported already of the
accomplishment of a great number of industrial modelling
tasks. The demand for on-line application is considerably
less which accounts for the rather scarce references to prac-
tical results. There are likewise very few reports on prac-
tical application in the international literature for the
case of multiple-—output systems whether we consider off-line
or on-line approach.

According to the above survey, this report has set the fol=-

lowing objectives:

1. Comparison of off-line identification algorithms of
single output systems and consideration - where it is
possible - of new ideas and perspectives.

2. Comparison of the on-line algorithms of the single input
single output systems on the basis of the canonic
algorithm of the stochastic approximation.

3. Generalization of the methods worked out for single
output systems to multiple output systems and comparison
of algorithms.
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rational spectrum can be generated by a linear filter C/D).
Let the variance of e(t) be A~ and to ensure unambiguousness,
the zero-order term of the polynomial C(Z—B be a unit. We
can follow the connection of the particular signals in Fig.
1.2-1, Quantities a9 bi’ Cyio di are the system parameters,

d is the deadtime (integer) measured in the unit of the
sampling interval, so that its magnitude is dAt. Applying
the various parameter estimation procedures it is usually
required that u(t) be measured without error and its value

be uncorrelated with the source noise. Maximum likelihood
(hereinafter ML) type estimation can be used if the condition
of normal distribution of e(t) holds.

In control theory the direct use of the formal description in
Figc 1-2_1, ioec

- -1
y(t)= z-d %{?:%r u(t )+ %{?:ﬁ- e(t)=v(t )+w(t) (1.2-3)
z zZ

is more useful. Although B(z-l)/A(z-l) and C(z—l)/D(z-l)
correspond here formally to the pulse transfer functions, in
the reality, however, we can restore the original input and
output signal only with the help of appropriate holding el-
ements so that we never have to imagine a pulse on the input
of the discrete model. Therefore, in many cases one speaks in
the literature simply of a discrete transfer function.

In the expression (1.2-3) A(z "), B(z-l), C(z—l), D(z_l) are
the polynomials of z71 and 27! means the backward shift op-
erator which practically coincides with the inverse of the
variable of the Z-transformation. So that for a signal

x(t)=z"1x(t)=x(t-1), which facilitates very much the handling
of difference equations of the type (1.2-1). Let the struc-
ture of the polynomials have the following form:
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1.2 Structure of the applied models

Let us consider first Single Input Single Output systems
(called hereinafter by their abbreviation used in the inter-
national literature SISO systems).

As already mentioned in the preceding section, we are engaged
in linear dynamic systems where the system is assumed to be
as a series connection of at most one member with concen-
trated parameter and one with dead-time. On the basis of the
sampled values of the input and output signal the discrete-
~time model equivalent to the original system has to be de-
termined in the sampling instants. The task is therefore to
perform the experimental identification with the knowledge

of the primary structure in order to establish the secondary
structure, resp. the estimation of parameters [4-7] .

£STROM and his research colleagues have recommended in their
paper listed as sources, the application of the model in
Pig. 1l.2<1l, [?, 9, 12, lﬂ. This model describes the process
with the following linear stochastic difference equation

n n n
y(t)= ¢ bu(t-d-i) - & a y(-i)+ I a, w(t-i)+w(t),
j=0 1 i=1 1 i=1 1
(1.2-2)
where
n n
w(t)s e(t+ = c.elt-i)- 5 4 w(t-i). {1 .23)
i=1 i=1

Here u(t) is the input signal, v(t) the output signal of the
process. y(t) denotes the measured output signal, corrupted
by the measurement and environmental noise w(t) reduced to
the output. e(t) is the source of the output noise,

the so-called source noise assumed practically as a zero-
-mean white noise (from which arbitrary output noise with
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-1

A(z-1)=1+alz + e +anz'n = 1+ﬁ(z-1)

1 n

B(z-l) .b0+blz- 4+ 200 +bnz-

(1.2-4)

-1 -1 -n
c(z )-1+c1z + ... tC 2

n

=1+d z-1

1 "
) 12 T+ ... +d 2

D(z~

where the n order is common in the equations, allowing for
the particular coefficients being zeros within the frame of
physical realizability. This latter condition means that the
order of denominators must be greater than or equal to those
of the numerators. (Hereinafter reference 8 ¢, means ac-
cording to (1l.2-4) a = ¢ = 1 Y

£STROM and his co-workers have afterwards pointed out that
because of practical considerations it is not desirable to
distinguish the polynomials A(z_l) and D(z71) for the reduc-—
tion to a common denominator can always be achieved and the
shape of our model takes the simplest form as shown in Fig.
1.2-2. On the other hand, redundant poles and zeros intro-
duced by reduction to a common denominator can be eliminated
by relatively simple procedure. Thus in this case D(z_l) =
A(z-l) and the system equation will take the form

-1 -1
y(t)=z"2 fﬁ(—:q)? u(t)+ EJ(-Z—_{)— e(t)=v(t)+w(t) (1.2-5)

It is easy to see on the right side of the relations (1.2-3)
and (1.2-5) the separation of the process model and the so-
—~called noise model. '

It is to be noted that the forms of models presented until
now are partly or totally linear in parameters. The rela-
tions (1.2-1) and (1.2-2) can be written e.g. in the form
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y(8)= £7(0y¥,Wyt) Bygg tW(8) =2 (u,5,%) Ry *A(2 7 ) w(t),  (1.2-6)
or .
w(t)= 27 (e,w,t)p g+e(t) (1.2-7)
where
i?(u,y,w,t)=[u(t-d),...,u(t-d-n);-y(t-l),...,-y(t—n);

w(t-1), ... ,w(t-n)], (1.2-8)
i?(u,y,t)=[u(t—d),...,u(t—d-n);-y(t-l),...,-y(t-n)], (1.2-9)
and

iT(e,w,t)=[§(t-l),...,e(t-n);—w(t-l),...,-w(t;n)]. , (1.2-10)

Further

Ebaa=[bo’bl’""bn;al’""an;al""’anJT’ (1.2-11)
Byg =[bo,b1,...,bn;al,...,an]T {1,203
and

Bog =[pl,...,cn;dl,...,dn]T. (1.2-13)

Likewise the noiseless output v(t) of the system can be
expressed in the form linear in parameters (apply the sub-
stitution w(t) = 0):

T z
v(t)=£" (u,v,t)p,, (1.2-14)

where

z?(u,v,t)=[u(t-d),...,u(t-d-n);-v(t—l),...,-th-n)]. (1.2-15)

Similarly to what has gone before the form linear in
parameters of (1.2-5) is e.g.
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y(8)=2" (u,y,%) Bpg+C(z™) e(t). (1.2-16)
Here the so-called equation error C(z_l)e(t) is now a
stochastic process with a moving average.

The discrete-time systems can also be given by state equa-
tions. The state equations of system described by the Egs.

(1.2-1), (1.2-2) are [6, 7, 8]:

x(t+1)=Fx(t)+gu(t)+ge(t)

y(+)=h"x(t)+b_u(t)+e 1)

(1.2-17)

(1.2-18)

where F. 8 4 and h can be constructed in infinite many ways
according to the various resolution of the pulse transfer

functions. We present now for the system equation (1.2-5) a
possible mode of resolution

r = = "
-3 1 0 s 0 bl--albO cl—al
x(t+1)=| - . . x(t)+ . w(t)+| -
-an-l O O e o0 1 bn—l-an—l o cn—l-an—l
-2 O 0 o060 © b_-a_ b c_-a
L n J | n n o i i n n J
(1 02-19)
and
y(t)=[1,05...,0] x(t }+o _u( t)+e(t), (1.2-20)

e(t)

which practically corresponds to the cross-resolution [8, 42,

60].

The
fit
too
mum

(1.2-20) ycan be well used, also suitable models can be ob-

system equations given by state equations usually do not
directly for identification purposes for they contain
many parameters. However, special forms containing mini-
number of parameters, so e.g. equations (1.2-19) and
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tained by other methods of resolution too [az], (phase vari-
able form, ete.) .

We have presented above the model types used for discrete
identification methods. The methods recommended by various
authors can be considered actually as sub-cases’ of (1.2-3).
Out of these, we give now only the most important ones in
the following table:

Table 1.2-I.

Symbol C(z-l)/D(z-l) Author Ogt?ut RstLan
olse s 'EXTOT

NLG ¢ (z™5) /p(z™) RSTROM ARNA ARNA

ML ¢(z"1)/a(z"Y RSTROM ARMA MA

Ls . |1/a(z7Y) KALMAN AR white

seLs |1 STEIGLITZ | white MA

GLS 1/a(z" 1y (z'l) CLARKE AR AR

IV c(z YAz r(z™1)| TALMON ARMA ARMA

Notations in the Symbol column of the Table can be found in
the list of abbreviations at the beginning of the report on
the one hand, and will be explained in detail in the course
of the discussion of the corresponding methods on the other.

One of the most important considerations in constructing the
discrete~-time identification models of the multiple input
multiple output systems is to obtain the identification meth-
ods of the MIMO systems by the formal extension of the meth-
ods worked out for SISO systems and already generally used,
to multiple output models. (Hereinafter we are going to de-
note by the abbreviation MIMO the multiple input multiple
output systems.) We would like to emphasize that in the case
of the MIMO systems the multiple output is stressed, since
the discrete model of the multiple input single output
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systems does not differ with regard to parameter estimation
from the SISO models (multiple input single output systems
are denoted by the abbreviation MISO) . The MISO version of
the system model (1.2-5) can be constructed in a simple way.

5 (g1
y(t)= ? -Jiji——z u (t-dj)+

c(z=1)
jm1  A(z™1) Srlabd

1.2-2
A(z ) ; 1)

Here u.(t) is the j-th input signal from the m inputs and

5

-1 -1 -n z
Bj(z )sbjo+bjlz + eee ¥bg a7 §=1,2,.0.0,0, (1.2-22)
The block diagram of the process model is shown in Fig.l.2-3.
The quantities d'j denote the dead-time by input variables

(channels). This system is also linear in parameters, i.e.

T "
y(t)=2£ (ul,...,um,y,t)nbl...b o+ C(z7h)e(t), (1.2=23)
m

where

i
z (ul,...,um,y,t)s{Pl(t-dl),...,ul(t—dl—n);...;um(t—dm),

...,um(t-dm-n);—y(t—l),...,—y(t-n)] (1.2-24)

and

. . ° T
Bb ..Ibma S[blO’...’bln’...’bmo’..‘,bmn’al’...’an] . (1.2—25)

1

If the system has several outputs, then the system model
needs essential change. Let u(t) be the m dimensional vector
of the input signals, y(t) and e(t) the q dimensional vectors
of the output signal and source noise, respectively. The dis-
crete time MIMO process model has to construct relation be-
tween these vector variables so that the "basic philosophy"
of the SISO models remains unchanged resp. we can use the
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corresponding multivariate generalizations (e.g. parameter
matrix ) of the various notions (e.g. parameter vector).
Without going into details regarding the analysis of the
inner structure, we simply consider the system model as ac-
cording to Fig. 1.2-4.

We obtain the MIMO extension of the SISO process model (1.2-5),
i.e. & linear stochastic vector difference equation if the
coefficient matrices A. 59 Bis 9 are used instead of coeffi-
cients a, bi’ c, and the already defined vectors u(t),
)y & t) 1nstead of u(t), y(t), e(t).

Thus the MIMO system model:

2(8)=A™ (27 Bz D u(t-a)+a™ (270 (z7) e ) (1.2-26)
where

é(z-1)=;+élz-1+...+énz-n = T # é(z_l) (1.2-27)
g(z-1)=§o+glz-l +teoot gnz-n , (1.2-28)
g(z"1)=;+glz'1 Yooot gnz-n (1.2-29)

are matrix polynomials [108, 109, 145]. Here I denotes the
unit matrix (therefore A, and C_ denote hereinafter unit
matrices if they are to be distinguished), further it is
assumed that e(t) is an element of the independent stochastic
vector series with zero mean and covariance matrix £~ Fig.
1.2-5 shows the block diagram of the model. By multiplying
both sides of (1.2-26) by A(zfl) and considering the meaning
of the shift operator z ~, we obtain the vector difference
equation of the MIMC system:

HmB

y(t)=

n
QiE(t“d‘l)‘ i A

n
y(t=-i)+ = gig(t-i)+g(t).
i=0 i i=1 =

(1.2-30)
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This form is like (1.2-16) linear in the parameter matrices
of the process, i.e. can be written also in the form [108]

x(t)=Pp, 2(u,y,t)+0( 27} e(t) (1.2-31)
where

-P-;BA =[209§1,0°°9§n’é19°~-1én] (1.2=32)
and

2T,y t) =[u (£-0)yeeepur (t=d=n);=g (t=1)yu0., =y (t-n)k

(1.2<33)

In equation (1.2—30) we are bound to have same dead-time for
every input variable because of the demand of formal descrip-
tion. We can approximate better the real cases by choosing
the minimum dead-time value for d and so certain elements of
the matrices Ei become zeros at small i values. This can re-
sult from estimation too, but can be considered in advance

by prohibition, masking of the corresponding coefficients
(cf. section 1.3).

The MIMO version of the state equations (1.2-17), (1.2-18)
is obtained simply by increasing the dimension of g, g, h:

x (t+1)=Fx(t )}+Gu(t)+Qe(t) (1.2-34)
y(t)= Hx(t)+B u(t)+e(t). (1.2-35)

It holds also for MIMO systems that there exist many types
of state-space description forms. A form which can simply be
constructed is the following:



5 - - " ., »
-4, I Q... 0 B,-4,8, €144
-4, 9 L...0 Ez‘ﬁego Co=2s

x(t+1)=| . o x(e)+| . u(t)+ . e(t)
A Q Y % En-l_gn—lgo gn—l—én-l
—én 9: Q 9 gn—éngo gn-=n J

(1.2-36)
and
x(t)=[1,Qy.+.,0]x(t)+B u(t)+e(t), (1.2-37)

which can be constructed in a quite similar way to the cross-
-resolution. The problem of the determination of the minimum
dimension of the state vector is a very essential problem
from both identification and other considerations, these
questions, however, will not be considered in this report.

In App.l., on the other hand, we will point to some very im-
portant relationships which will promote the analysis of the
structural problems of the MIMO systems.

All noise models used for SISO systems can formally be gen-
eralized for MIMO systems. The most important of these are
summed up in Table 1.2-II. The notions here, of course, have
to be related to vector variables.
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Table 1.2-=11.

-1, -1 -1 Output - Equation

Symbol D “(z 7)C(z ) Author ol s e
o P | -1

LG D (z7)g(z) EATON ARMA ARMA

EL é—l(z-l)g(z-l) ROWE ARMA MA

LS 272 ROWE AR white
wlp w=dy o=lyp 1

GLS AT (27)H (277) | BANYASZ AR AR

The use of a system model describing the behaviour of the
process simultaneously in all N time instants has a partic-
ular importance for off-line identification methods when N
related input - output signal data pairs are processed at
the same time. Such system description forms can be obtained
by the so-called TOEPLITZ metrices [6, 7, 145]. Assume at a
SISO system that the related data pairs of the input and
output signals { u(t), y(t); t=1,2,...,N } are available in
vectors u and y. On the basis of the system equation (1.2-3)
we can write the eauation of the process for the vectors
containing N measurements, too:

r=58"2"Bu+ 0t ce+at Bz . (1.2-38)

— —_=— =0

Here e is, alike u and y, vector with N elements, containing
the values of the source noise. E is a (N x n) matrix in
whose upper part there is an n x n unit matrix, its other
parts contain zeros:

=

(1.2-39)

=
1}
no
.
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Z, is an (n x 1) vector containing the initial conditions
(the system’s past preceding the observations). As the
parameter estimations become asymptotically independent from
the initial conditions [6, 8], we can use hereinafter the
assumption z, = O without loss of generality. The rest of
the matrices in (1.2-38) have a (N x N) size, whose struc-
tures are:

é=;+al§+o-.+an§n=;+é,
n
B = bo£ + b1§ ¥ oo + bn§ ’ : )
1.2.40
C=I+CS+...+CSn
= = 1= n= ?
n
2=;+d1§+ooc+d§,

where gg is an (N x N) TOEPLITZ matrix (a special lower
triangle matrix), where 1l-s are only in the g-th row under
the main diagonal, the rest of its elements are zeros [6,
145]. I.e. for the ij-th element of §g the equality

S, . holds, where & is the KRONECKER symbol.
(i-g),d PyQ

Some essentigl features of the so-called shift matrices §g

& =
Sij
are analyzed in detial in Appendix 2.

(As can be seen from the foregoing, it is often necessary to
use the same letter for the notation of different notions as
the alphabet proves to be insufficient. Therefore, we do

draw your attention to the meaning of indices and argumentsﬂ

The joint equation of the MIMO systems related to N measure-
ments can be written is a concise form with the help of the
so-called KRONECKER matrix products [97]. The operational
identities referring to the KRONECKER matrix product are
summed up in Appendix 3. Assume that with a MIMO system the
related data pairs of input and output vectors

{u(t), y(ty t=1,2,...,8 } are available in the form of a
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gy Lu’(1)y..., nT(m)]" (1.2-41)
and

210 sz (H) 1% (1.2-42)
Let the vector

ey L1)yenns (M (1.2-43)

be also of the same construction. The analogue form of the
NINO system (1.2-26) with (1.2-38) for N observations is

=[iio S(l)@A:] [z Sy 1)®B]u +

i, g (S ‘
+fz sp(V)ea]™ [z sp1)ec]e,. (1.2-44)
i=0 i=0

Here @ denotes the KRONECKER matrix product and C must be
taken, obviously, for I . SN(l) is an (N x N) shlft matrix.
For the simplicity in (1.--4a) we have disregerded the
initial conditions.
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1.3 Parameter estimation methods

We shall use the system equation of the form
y(t)= £(u,y,p,t) + e(t) (1.3-1)

in general for the parametric identification of the SISC
models, where p denotes the parameter vector. Assume that the
estimation of the structure was exact and the expected value
of e(t) is zero so that in the difference y(t)-f(u,y,p,t) on-
ly random (and not systematic) error components can arise.
The classical parameter estimation problem is the determina-
tion of the estimated value p of the parameter vector p so
that f(u,y,p,t) fits best the observed y(t) values according
to certain optimality criterion. The various statistical es-
timation methods are usually classified on the basis of the
nature of this quality criterion on the one hand, and on that
of the previous knowledge of the residusl error (measurement
noise) on the other [12, 15, 47].

The system equation (1.3-1) enables us to calculate the
residual errors e(l),...,e(N) for every p parameter vector

on basis of the samples containing the value of number N of
the input and output signal. Let us arrange these in a vector
gz[e(l),...,e(N)]T. According to the maximum likelihood (here-
inafter ML) method, realizing the principle of maximum proba-
‘bility, the estimation of the parameter vector p is determined
so that it maximizes the joint probability density of N ele-
ments of the error vector € that is the probability of coin-
cidence of the real random error and e calculated from the
related u(t) and y(t) values, as well as p. Thus in the ML
method the conditional probability density function d(e|p)
has to be meximized. Instead of the conditional probability
density function dN(glgl in most cases its natural logarithm,
the so-called likelihood funciton L(p)=1n dN(glg) is maxi-
mized. In the ML method, consequently, the likelihood function
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can be constructed only on basis of the apriori knowledge
(or assumption) of the density function. In the discrete i-
dentification methods e(t) is assumed to be of normal dis-
tribution in applying the ML method and this assumption is
valid for the majority of practical cases. (Otherwise the
normality examination of the residuals, - that is the e(t)-s
calculated after the parameter estimation - is a routine
statistical investigation [8, 47, 57, 80].)

Assuming e to be a vector variable of normal distribution,
the its probability density function is [80]

Ny 4
-3 2
ay(e[)=(21) 2 |z| © exp (-3¢ 7 e, (1.3-2)
where
T
Z=Elee ) (1.3-3)

i.e. the covariance matrix of the noise. Here |...I denotes
the determinant. Therefore the likelihococd function for normal
distribution is

N 1 I T . =1
L(p) = -3 1n 21 - 5 1n|g|- > I e (1.3-4)
In case of given Z we can get the maximum of L(p) from the
equvalent condition [57]:
a(3)= min a(p)= min b & 7 e
D ok

(1.3=5)

nex

The solution obviously requires the knowledge of the
covariance matrix é of the noise. By assuming furthermore
also the elements of 5 to be unknown, the minimization has
to be extended for these variables, too.
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For a stationary white noise e(t) having standard deviation )

z =1° 1. (1.3-6)

In this case the ML estimation is obtained by solving the

extremum problem

Q(p) = min %‘gT €. (1.3-7)
R

Both tasks (1.3-5) and (1.3-7) are nonlinear extremum prob-
lems often to be solved in a general case by taking into
account, in addition, some restrictions related to the
parameters. Assume now that the system equation (1.3-1)can
be written in the form linear in parameters '

y(t): iT(u,y,t)E+e(t)- (1-3-8)

( Thus f(u,yyt) does not depend on p, it contains only the
function components characterizing the structure). If N

related values of the u(t) and y(t) signals are available
in vectors u and y, then the minimum of the cost or loss

function (1.3-7) is supplied by the estimated parameter

vector.
N T -1 T _
B =[F (ux)E(wx)] E (ux)x =
= T _1 T
By Bl Euy L+ (1.3-9)
(cf. Appendix 5.)
Here -
I T
i (u,y,l)
E(usx 3R, = . (1.3-10)
T
i (u’y,N)_J
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Note that the loss function of form (1.3-7) can be minimized
not only in case of normal distribution error, so that the
expression (1.3-9) has a general validity and is called the
least squares method, hereinafter denoted by LS [77]. In
case of normal distribution error, the LS estimation yields
simultaneously ML estimation, too. The most important state-
ments related to the LS estimation are summed up in Appendix

5.

Let us consider matrix é to be given at the minimization of
the loss function (1.3-5). By proper choice of Z, we can in-
fluence objectively or subjectively the form of the fitting.
By choosing e.g. for Z & diagonal matrix, where the elements
are large in the point where the uncertainty of the measure-
ment is great ard small there, where the accuracy is great,
the loss function (1.3-5) mekes, in a fairly apparent way,
measurement points with small meesurement error dominant.
The estimated parameter vector assuring the minimum in case

of system equation (1.3-8) is (cf. Appendix 5.):

A T -1 =1 .0 =1
p=[ B (2x)Zz " Ku,y)]™ E(w,x)Z x=
= i\T -1 A -1 X -1
B £ fyyl B i = (1.3-11)

This method is called Generalized Least Squares and denoted
by GLS. The method GLS yields at the same time, by the choice
of é according to (1.3-3), an ML estimation. The method is
dealt with more in detail in Appendix 5.

It can be realized (App.S.) that the parameter estimation

o T -1 .7
D =[G (v,v) Flu,g)]™ ¢ (u,v)y =
= i -1 T
- (guv Euy) guv y (1.3-12)
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has also satisfactory statistical properties. Here v denotes
the vector of N elements constructed from the noiseless out-
put v(t) of the system, furthermore g(g,!)f G, g+ As this
cannot be measured in reality, it is usually estimated by
the assumed parameter values. The construction of g(g,z)iguv
can otherwise correspond with (1.3-1Q) but now v is used

instead of y. This procedure is called method of Instrumental

Variables and denoted by IV [57, 143].

All of the above surveyed methods are applied for the deter-
mination of parameter estimation among the discrete time
identification methods. These estimation methods yield, in
case of the fulfilment of the necessary conditions, an
asymptotically unbiased, consistent estimation. In case of
a finite number of samples, the bias is much smaller than
the deviation of the parameters which makes the methods
completely suitable for practical purposes.

For the general SISO system equations (1.2-1) and (1.2-2)

we have assumed that the source noise e(t) is a white noise
with zero mean and has, in stationary case, a time-independ-
ent ) deviation and a covariance matrix according to (1.3-6).
In an analogue way in the MIMO system equation (1.2-26) the
source noise vector g(t) with zero mean is uncorrelated, and
has constant covariance matrix A. (Note that A actually cor-
responds to the generalization of Az). If there are N num-
bers of measurement vector values available, then the joint
density function of the N numbers of e(t) values calculated
from the measured ones is [4, 57 108]:
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where

— Y

a(e(t)|p)=(21)° |2 2 exp(-3 e (t) & "l e(t))  (1.3-14)

is the conditional probability density function of e(t). Here
P is the parameter matrix of the MIMO system and q is the
aimension of g(t), i.e. the number of outputs. On the basis
of (1.3-13) the likelihood function for the MIMO systems is:

p=-mon- 1 1n| 4|~ - o) a ™t e(t).  (1.3-15)

e
|o

t=1

According to the deduction presented in App.5. the maxi-
mization of the likelihood function (1.3-15) is an equivalent
task with the minimization of the loss function (i.e. deter—
minant of a matrix) [108]

lavlbg

Q(P) = min Q(P)= mi

3
E 3

s(t)sT(t)L (1.3-16)

™=

o |5

t=1



o R -

l.4 On the continuous-time correspondence of discrete-time

system models

In the sub-section 1.1 it was already mentioned that the lin-
ear, dynamic, discrete-time process models investigated in
this report are - according to the sampling principle -~ e-
quivalent with the original continuous system in respect of
the sampling times.

The discrete-time models obtained by identification methods
can be directly utilized in the design of DDC circuits and in
general in computer process control systems. In practice,
however, it occurs more frequently that the identification is
used as a preparatory step of the optimal design of classical
control circuits and in this case even today the continuous-
time system model resp. the transfer function description
mode connected therewith is the most widespread. It is there-
fore necessary to transform the discrete transfer function
obtained by parametric identification (we shall revert to
this terminology) to the conventional Laplace transfer func-
tion. In this subsection we would like to draw attention in
short to that the discrete-continuous transformation can be
considered unambiguous for the approximation of a given type
of the input signal.

Consider now the description of a continuous SISO system by
state equations in the form

X(t)= G x(7)+k u(r) | (1.4-1)
y(t)= b" x(t}+b, u(r) (1.4-2)

The solution of continuous state equations is [42]:
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GT T G(T-v)
x(t)=e" x(0)+ s € bu(v) dv , (1.4-3)
0

where T is the continuous time of the system. Let T= AT,
then

GAT AT G(AT-V)
x (AT)= @ x(0)+ J € u(v) dvb =
0
GAT
=e  x(0)al[u(0),G,b, AT]. (1.4-4)

By comparing this latter result with equation (1.2-17),
taking the noiseless case g = 0 and evaluating the so-called
input integral for the approximation of a given type of the
input signal u(v) between T =0 and T = AT, i.e. determining
g[u(o),g,g,At], we obtain unambiguous relations between the
continuous and discrete state equations, by the compariscn
of the coefficient matrices. On the basis of the equation
(1.a-a), by taking advantage of the time-independence of the
system, we can write for any two states following each other
by AT that

x(t+1)= egAT x(t)+alu(t),g,b, ar]. (1.4-6)

If suitable canonical equations are chosen for comparison,
then the utilization of common notations applied in (1.4-2),
resp. (1.2-18) is justified. Otherwise, the change-over to
such a form can be carried out by simple transformations

[s2].

By assuming u(v )= u(0) = const. in the whole sampling period,
it can be deduced that the coefficient matrices of the con-
tinuous state equation equivalent for the given approximation
can be obtained from the F and g in the following way: ‘
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g =%‘i‘-1n(£) (1.4—7)
and
b = %T 1n(£).(£-;)-l &- (1.4-8)

If we need the transfer function of the SISO system, then we
transform the state equations on the basis of the obtained

G and b to a canonical form where the coefficients of the
numerator and denominator can be directly read out EAZJ.

Note that some authors prefer to carry out the retrans-
formation by decomposition to subsystems (separately for
every eigenvalue of the system), however the numerical tech-
nique required by the relations (1.4=7) and (1.4-8) - loga-
rithm and inversion of the matrix, etc. - can be considered
nowadays as elaborated.

In case of another type of approximation of the input signal
the formula (l.4-7) remains unchanged, on the other hand
(1.4-8) changes. We wish to emphasize again that in case of
a given approximation the discrete-continuous change-over,

often called "z - s" transformation is unambiguous.

These considerations make understandable why we prefer to
speak, maybe with more exactness, of discrete transfer func-
tions. The pulse transfer function assumes namely an approxi-
mation u(v)=zu(0)s(0) i.e. a pulse of magnitude u(0) occur-
ring in the moment Vv =0, but this approximation is only a
subcase of the possible approximation of the input signal.
The higher-order quadrature is used for the approximation

of the input signal, the more exact transformation will be
obtained for the coefficients in the numerator, the conver-
sion of the denominator is performed in an exact way. In
practice, due to the appropriate choice of the sampling
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period it is usually sufficient to consider the input signal
to be constant for every sampling (i.e. to imagine a zero-
—order hold element at the transformation).
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II. OFF-LINE IDENTIFICATION METHODS FOR SINGLE OUTPUT
SYSTEMS

In the introduction we have indicated that in the description
forms the basic differences are caused by the number of out-
puts. Therefore, we classify also the off-line identification
methods according to the number of the outputs of the process
or the model. This section deals with the identification meth-
ods of single output systems. The methods will be discussed
mainly for SISO systems but the way of direct generalization
for multiple input case will be given, too. Similarly the is-
sue of deadtime will also be dealt with. Detailed investiga-
tions will be made with respect to the case d=0 and the pos-
sibility of generalization will also be pointed out. Issues
related to deadtime will be discussed in the greatest detail
with the LS method which is otherwise the simplest with re-
gard to identification.

At the discussion of off-line methods, simultaneous presence
of the related values of N number of the input signals and
the output signal is assumed. The task is to minimize a
criterion constructed from these signals and corresponding to
a loss function of subsection 1.3 in the space of parameters.
For this reason the off-line identification methods mean de-
terministic extremum seeking problems which can be solved by
one of the methods of mathematical programming. They are
called deterministic because the loss function yields always
the same value for a given measurement situation at a given

parameter vector.

The most of the off-line identification methods require mat-
rix inversion, furthermore the intermediate iteration steps
or the explicit solution have usually the form

D = -1! (2.1)

=
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where il is a square matrix, v a vector of appropriate dimen-
sion. if we now do not wish to estimate the i-th Py element
of parameter vector p or in another formulation we wish to
estimate under restriction 1 = 0, then it can be achieved
the following way. The i-th column and row of matrix M will
be made equal to zero and e.g. 1l. is chosen for the eiement
Mii at their intersection. Thereafter the i~th element of vec-
tor v is made equal to zero. So we obtain definitely zero for

Py

- — — —1_ - - - o -
. s eis e O eiweee l * oooooo se e
- 0 . 0 . .
E = pi = O.--O 1 O...O O =O...O 1 O...O O = O
. 0 . 0 “ .
. . . . . e |
. . . . . ¢ |
B L.....O cesess | L.- _....-O ooooo—’ I i
(2.2)

This technique is called masking. In practical applications
we used to give a mask vector whose elements have value 1 if
we wish to estimate the coefficient concerned and value zero
if we wish to exclude it from the estimation.



- 40 -

2.1 Least squares method

General information about the least square method for SISO
systems is given in App.5. The condition of the asymtotically
unbiased parameter estimation (App.5-6) is fulfilled by the
assumption ¢(z™1)=1 ana D(z-l)zA(z-l) from the general sys-
tem equation (1;2-3), in addition it should be required from
the input signal that it should be uncorrelated with the
source noise and fulfils the CESARO condition of persistently
exciting (cf.App.6) [12, 88].

The system equation can now be written in the form of the
following difference equation:

A(z-l)y(t)= z=% B(z™Y ult)+ alt s (2.1-1)

By assuming d=0 and utilizing the meaning of A(z—l) and
-1
B (z ):

n n
z r a,y(t-i)+e(t)= 2?(u.y,t)2ba+e(t),

v(t )= biu ('t—i)-

i=0 i=1

(2.1-2)

where
T

;(u,y,t): [u(t), u(t—l),...,u(t-n); -y(t-l),...,-y(t—n)]

(2:1=3)
and
P-ba 3[ bo,bl,ooo,bn; al’ooo,an]T, (2.1"!4)

as it follows also from (1.2—16).

In case of zero initial condition (which does not reduce
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substantially the generality) [7, 8], the vector equation
simultaneously valid for N samples can be obatined from re-
lations (1.2-38) and (1.2-40):

= B(2sX)Rpg * & Sy By * & (2.1-5)
where
= n
=uy = g( u,1)= [2’22’ ""g E; -gxg eee ,—an]=
- . _1
1 (uyy’l)
- . (2.1-6)
D
£ (u7Y9N)
L _

We have deduced in App. 5 that the LS estimation of the pa-
rameters of the above system equation is given by
A T -1 _T i i w]l
Po = (B5e Bugd Bug L= [F (2yx)F(usx)] ™ B (usxs) X -

{2.1=7)

This relation is also called - after the classical regression
analysis - the solution of the GAUSSIAN normal equation sys-—
tem, and in case of the discrete-time identification the

KALMAN estimation. [ 57, 77, 80].

By taking into account the relations

N

T e L
guy Euy = til Huyy,t)E (u,y,t) y (2.2-8)
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£ (u,¥t)y(t) (2.1=5)

the solution (2.1-7) can be made easier with respect to the
computations.

Estimation properties are discussed in App.5. more in detail,
here only some remarks are made on the conditions (App. 5-6)
of asymptotic unbiasedness. Of the two conditions the second
is more important. This means in case of an estimation line-
ar in parameters that in the expression on the right side of
(2.1—2) the vector of the function components in the scalar
product (now f£(u,y,t)) and the additive disturbing term, the
so—called equation error (now e(t)) can not be in correlation.
This uncorrelatedness can be easily understood in our case.
The input signal has been assumed to be uncorrelated with
e(t); on the other hand, f(u,y,t) contains only the values

of the output signal of a preceeding time- and through them -
source noise values of a preceding time. Hence the uncorre-
latedness of f(u,y,t) and e(t) already follows. The more ex-
act proof is given in App. 7.

With respect to egquation (2.1-6) we note that although the
description mode applied there with the shift matrices re-
quires the zero initial conditions (that is the start with
the zero £ vector in the sums (2.1-8) and(2.1-9)), we have
no problem in changing over to the non-zero initial condi-
tions on the basis of the right side of the equation. Here
it is easy to be seen that this change-over means only that
at t=1 (at the beginning of the investigations) the measure-
ments u(o)y ¥(0)yees, ul-n+l), y(-n+1) have also to be avail-
able in order to construct i(u,y,l) which needs N+n samples
altogether. This problem can be of interest for small N, as
the effect of the initial conditions on the estimation dis-
appears asymptotically [6, 7].
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Our further statements refer to the coefficient bo and dead-
time d. In case d=0 the ccefficient bo has an increased role.
Then the non-zero value of bO means that either a proportion-
al "channel" without dynamics is also represented in the
process or the process has a differentiating character. Those
systems have bO in whose transient function there is a jump
at zero moment. In the identification programs written by

the various research workshops, two kinds of conceptions can
be discovered [8, 60, 117]. According to one, the estimation
procedure is suitable fitted, as a matter of course, also

for the estimation of bO and if one does not wish to esti-
mate it then it is excluded from the approximation model by
the masking technique described above. According to the ot-
her, the estimation of b  1s not built in the program (the
parameter vector begins by bl) and the effect corresponding
to bo is obtained by the choice d=-=1. Then b1 will be bO and
SO on bn will be bn-l' If the program has been originally
written for the estimation of polynomials of the order n,
then in this case B(z-l) will always be of one degree less
than A(z-l). (By special masking it can be achieved to make
the order of B(z-lL A(z-l) equal.)

The consideration of the given deadtime d can be attained on
the one hand by the adequate contruction of the function com-
ponent vectors (special programming demand), on the other by
the suitable shift of the input and output signals with re-
spect to each other. The latter possibility covers a far
more general possibility than the former. For it is not dif-
ficult to write a computer program which performs the shifts
corresponding to the deadtimes by inputs even for a multiple
input system so that it determines at the same time the num-
ber of sampling elements available for identification, tco. .
(The shifts caused by the deadtimes reduce namely the number
of the usable related values). On the basis of the shifted
samples we can already perform the identification with a
program written for the case d=0 and after all, in the final
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result we take the deadtime again into account according to
the operation zd applied.

In connection with the special issues, also not that opin-
ions differ also with regard to the order of the polynomials
B(z_l) and A(z71). According to one approach, both orders
can be considered identical (programming is simpler because
of cycles of same effect) and use, if necessary, masking.
With the second approach different orders are also allowed
(more complicated cycles). The first solution proved more
reasonable in the practice.

We would like also to advert to the extension of the LS meth-
od to multiple input, i.e. MISO systems. For these systems
the LS method can be formally used according to the same
equations (2.1-6) and (2.1-7), only £(u,y,t) will be modi-
fied according to (1.2-24) and obviously Rpa to (1.2—25).

The system equation will now have the form:

m B.(z-l) ) 1 .
t) = (t=d. )+ =————— =
¥y ( ) jil IJ(_Z:IT uJ( j A(z_l) e )
- ;?(ul,...,um,y,t)gbl...bma+ e(t) (2.1-10)
where
T

£ (ugseeesu s¥st)= [ul(t-dl),...,ul(t-dl—n);...;um(t—dm),...,
,um(t-dm-n);-y(t-l),...,-y(t-n)] (2.1-11)

and

T
2 =[blo’-o-,b1n;.oo;bmo’ooo,bmn; al,...,an] ™ (2.1—12)
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2.2 Maximum likelihood method

RSTROM and his co-workers worked out the method of maximum
likelihood first for the general SISO system equation (1.2—3)
and prepared programs for this task for the firm IBM[jBJ.
Later, in the course of practical applications, it became
completely clear that the use of the model (1.2-5) is suffi-
cient for identification tasks [9]. Meanwhile the KSTROM or
£STROM-BOHLIN and the maximum likelihood method resp. ML
structure have practically merged.

The ML method is discussed by assuming d = 0 and bo = 0 as
already mentioned in the introduction of this chapter and
their estimation is going to be performed via shifting of
the input and output signals with respect to each other.

In case of zero initial conditions the system equation for N
samples is now

-1 -1
u + =) {2

e
lles}
e
ne

x:

can be obtained from (1.2-38)by the assumption 2z, =0 and
D=A. As e(t) is uncorrelated and

Ef{e et § m 45 Iy (2.2-2)

we obtain the maximum likelihood estimation on basis of
(1.3-5) TeSpe. (1,37} by solving the extremum problem

Q(p) = min -%-ET e . (2.2-3)
R

The parameters of the SISO system are contained now by the
parameter vector

T
Bbac =[ bl""’bn; al’OOO’an, cl,ooo,cn] (2.2_4)
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as we can write on basis of (1.2—16) that

i -1 T
y(t)= 4 (u’Y9t)Bba + C(z )e(t)= i (u’y’e’t)ﬂbac + e(t),
{2.5-5)
where ;(u,y,e,t) is according to (2.2-14). Here e(t) is not

measurable but can be calculated at a given Piac® Both the
equation

=1 ]
e(t)= ale )M(g)(;_%(fz Ju(t), y(t)- iT(u,y,e.t)nbac (2.2-6)

or the vector equation

e = ¢ (Ay - Bu) (2.2-7)
are equally suitable for its calculation. From the scalar
equation (2.2-6) by the cross-resolution we can get a state
equation much simpler from the point of view of computational

aspect for the calculation of e(t) which is the following:

s ) ] E -b. |

Tcl 1 Dppdd 1 a by ] )

-, 0 1...0 0 a, -b, y(t)
x(t)=| . . . Lx(-1)+. . .| |y t-1)|(2.2-8)

-c,_1 0 0O...l 0 a _, =b . |u(t-1)

-c 0 0ees0 0 a -b - -

n n n

g(t)=[1,0,...,0,0]£(t); t=1,2’ooo,N (2.2"9)

(These equations do not mean that the coefficient matrices
have to be constructed in the computer, they only refer to
a simple computational algorithm.)
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As neither the parameters are known, it would be more exact
to use the symbol * to denote the estimated value both for
e(t) and the coefficients, for the sake of simplicity, how-
ever disregard from this.

The ML estimation requires essentially the solution of a
nonlinear extremum problem. The nonlinearity is caused by
the fact that in £(u,y,e,t) in (2.2-5) e(t) can be generated
as a function of the parameters.

For the minimum seeking of Q(p) one can choose between many
methods of mathematical programming. Pure seeking procedures
are generally nct applied as the first and second derivatives
of Q are relatively easy to be calculated. This latter fact
encourages us to have recourse to methods using derivatives.
Although already several authors have reported the use of a
first-order method or of what asymptotically converges to
the second order ones (POWELL, FLETSCHER-POWELL, gradient,
etc.) but in the practice mostly the NEWTON~RAPHSON second-
order seeking method is used, with certain modifications [8,
15, 60, 14 ]. The canonical form of this latter algorithm:

-abac['j*'l:| = ﬁbac[j]—“[—‘j]g[ﬂ dS(BQ%EJ[j]) et

d':E-bac

Here j refers to the iteration cycle and ” denotes the esti-
mated value. The optimum choice of g[j]

B[1)= UEpaol3D ™ (2.2-11)

where‘g(ﬁbac[j]) is the Hessian matrix of the second deriva-
tives of Q calculated by D, ,[J]. Modifications differing
from the original algorithm are implied in factor u[ﬂ]- The
computer realization of the method is somewhat different ‘
[60, 145]. After the presentation of the computational pos-
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sibility of the derivatives, we are going to describe the
applied seeking strategy.

Consider the following for the construction of the gradient:

T
dQ(p,..) de - o
(Bogo) £ e=- (T e=-1 2",y",e",t) elt),
dp. 3] it L
bac bac
(2.2-12)
where
= n 0 e
Fuye = B(woksg) {800 0s8%5 ~gu,.- 05580, 00087 ] -
p— T o) |
b (u,y,e,l)
. . (2.,2-13)
7
£ (u,y,e,N)
further

i(u,y,e,t):[u(t-l),...,u(t-n);—y(t-l),...,-y(t-n);

e (t-1) y... e(t-n)]" (2.2-14)
and
i(uF,yF, eF, t)=[uF(t-1),...,uF(t-n);-yF(t—l),...,—yF(t-n);
eF(t-l),...,eF(t-n)]T. (2.2-15)
Here
uf (4 )u —L u(t), (2.5-16)
c(z™ )



y (%)= E?;%TY— y (%), (2.2-17)
ef(t)= E?;%T; e(t) {2,2-18)

i,e. auxiliary parameters obtained by autoregressive fil-
tering (indicated by the upper script F: "filtered"). S
denotes the shift matrix.

To justify (2.2-12) we show the calculation of the deriva-
tives of e by coefficients bi’ a. and ci. By utilizing the
equation (2.2=7), as well as (1.2-40),

ve ) 2B .
= c™H(Ay - Bu)= - ¢7F —Eu= g7t st oy,
b, 3b, = % = = b, -
i 3 2 =
{2.,2-19)
Je 9 " ] 3A " ;
= c M ay - Bu)= ¢t ——y=¢" 5" g,
Ja. oa . J4a.
il i 1
(2.2-20)
de d v _ 3C 0 " .
= - ¢~ (ay - Bu)= -7 —= ¢7M(ay - Bu)= ¢~ gle.
30l dcy ac
In the last equation the identity BC / Bc —Q—l ac/ac C

is used. These equations enable us to construct the complete
gradient vector according to (2.2-12).

The partial derivatives constructed for one element e(t) of
e, are in complete analogy with Egs. (2.2-19) - (2.2-21):
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selt) i ult) _ u(t—i) s
9by oY) T T o et
se(t) _ -1 _y() _ yle-1) 4
day ) C(Z;I) C(z-l) 2223

selt) | -1 els) ﬂﬁ_:.}_). : (2.2-21)

de4 C(z-l) c(z™)

At the end of the ’60s, the calculations were still based on
these relations, considering that (2.2—12) can be written
also in the form of

daQ N .
_(wa_)_= 5 delt) e(t). (2.2-25)
d‘:Qbac Lt aBbac

The programming of these calculations required, however, a
large-size memory, while i(uF,yF,eF,t) = ii(t) in (2.2-12)
can be got by a very simple calculation. This can be achieved
by the following state equation:

F

27(t)= 2; 2, (£=1)+ (%)=
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(2.2-26)
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The Hessian matrix consists of two parts:

2
d"Q(p. ) de de

bac _ _ s s
Bhac “Bpac Lhac E bac

f—— (——) ] e. (2.2-27)

F P F F
i(u ' Y ,eF,t)i(u ' Yy 9eF9 t) ’

(2.,2-28)

i.e. can be formed from quantities already known as we have
already given the recursive calculation of ;f(t).

The construction of T, deserves more attention

=2
g g =bc
0 0 Lo (2.2-29)
gcb gca gcc
In this matrix T . = TX @and T _ = TT , further T _ is
=cb =bec =ca =ac’ =cc

symmetric (I itself is also symmetric!). Only the first row
and last column of the matrices I, ., I_, and gcc contain in-
formative new element. For the other elements it is valid

that tij=t(i-1),(j+l)' Thus a (3-2n-1) dimensional vector

is sufficient to construct T,. The construction of this
vector



- 53 -

FF PR FF FrE FF
E’ (t)= [u (t-l)’ooo,u (t—2n+1) ;—y (t—l),oco’-y (t—2n+l);

268 T () 4 os 026 T Lt=2mai)] 7, (2.2-30)
where
el € §§l§%; (2.2-31)

) le) | (2.2-32)

c(z~
oFF( 4. elt)

i (2.2-33)

c(z)
In order to form recursively gFF(t) we could also now con-
struct a state equation similar to (2.2-26), but as it would
differ only in size, we do not go now into details of its
construction. 22 can be formed from the vector

FF

N
9 = 12
t=

FF S S Q. .
& (B)e(w)=[ gy0s 800 8o ] (2.2-34)

since this contains the elements of T, different from O.

Zbc

can be constructed from Qpo? containing the first 2n-1
elements of QFF, in the following way:

(2.2-35)
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where the repetition of identical elements was denoted by
arrows. A similar regularity is valid also for the other
submatrices.

The above special structural relations follow from the
scalar form

N .2
t,. = 3 2-—$5L21 e(t) (2.2~36)
Ly

deduced from the elements of matrix I where the value of
the second derivatives of e(t):

82 egt) = i

2 2
3
3 e(t)_ 03 e(t) = 0; :

)
abi bj BbiBaj aaiaa'j

© elt) _ ,~(i+3)__uls) _ uF(s-i-)

XD @) o)

P (2.2=57)
0% els) _ _—(i+d) _y() _ _ yile-i—g) .
v 3¢ ¢<(z™") c(z ) ’

2% els) _ , —(i+3)__elt) _ eF(t—i—i)
aciac'j =° C (z"l) ° c(z™)

/

Note that in case of N -»= 22 becomes a zero matrix. This is
a simple consequence of the fact that of T is formed from
vector g according to (2.2-34), which is, however, asymptoti-
cally equal with the zero vector, as it contains the corre-
lations of e(t) formed by quantities uncorrelated with it.
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Alike the gradient, we use today already for the calculation
of the Hessian matrix, too, the recursive relations presented
above, and not the difference equations represented by the
scalar equations according to (2.2-37) . We acknowledge, how-
ever, that without these we would be unable to perform the
detailed analysis for the deduction of the simpler algorithms.
As in the Newton-Raphson technique, the calculation of in-
verse matrix, the gradient and the second derivatives require
the greater part of the calculation time by so the described
relations can form a basis for fast computer programs.

The algorithm (2.2-10) ensures, of course, only local ex-
tremum values.The result of the LS estimation is considered
- in the absence of other information - as the starting point
0of the seeking under condition c; = O. The computer programs
can usually start also from other starting points given in
advance. By this operation mode we can check also the glo-
bality of the local minimum obtained. The extremum seeking

is further complicated by the fact that the roots of the

B ale™) nass Farl dustis of Whe amld efvdls

polynomial z
(the noise model is now of "minimum phase") because of the
autoregressive filtering by l/C(z_l) required for the calcu-

lation of the auxiliary quantities.

Our seeking strategy is as follows. The search can start
from the LS estimation or external starting point. We use
the T = 21 approximation in some of the first steps. The
calculation of 21 is much more simple and the speed of the
search fairly great. But in the vicinity of the optimum 22
has already to be taken into consideration. During the
search, the positive definiteness of 2—1 has to be checked.
If this is not fulfilled, then the convergence of the search
is no more ensured (in this case the step would have been
made in the direction of the gradient, although the right
direction in searching for the minimum is the other way

round). Therefore, in every step of the search we investi-
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gate the non-negativeness of the main diagonal elements of

T and 2-1. If any of them is negative, then we use the I = T,
approximation, as 21 is by definition a positive definite
matrix. (The investigation of the main diagonal yields a not
sufficient only necessary condition, but as computation this
is the simplest and in practice completely satisfactory so-
lution). The stability of C(z-l) is ensured by a simple
strategy.In every iteration step we check for z" C(z_l)giv-
en by the new parameter estimation by a numerical method
whether the roots fall into the permitted domain. If yes,
then we accept the new point, if not, then we consider the
arithmetic mean of the old and new points as a new point.
The halving was, of course, meant only for the part of the
parameter vector containing the c, -s. (With this method we
get again in a permissibly domain, if the old point was also
there). In consequence of the numerical errors of inversion,
on the one hand, and complexity of the surface, on the other
hand, a situation can arise in which the value of the loss
function Q is greater in the new point than in the old one.
In this case we change over to the suboptimal minimum search
in an opposite direction to the gradient. This can be ensured
by the choice of

aQ(pya [3])  a@lpy,Ld])

dﬁgac [Jj Rpac [4]
T8l = I
[a]&[5] 39(2eao 1)) 4. delpy L8] B
—=2 I(Bpgo ) ==
Appecld]l T S-NNE) (2.2-38)

(See rf. [81] .)

If here, too, the value of the loss function appears to be
greater, then we can again pass over to the halving strat-
egy (now for the complete Rpac vector ) for it is sure that
after some steps Q will again be'smaller than its value in
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the preceding step. According to our experiences this is the
combined strategy which has proved the best with both our
simulation and industrial identification tasks. We always
had various problems with other solutions suggested in the
literature.

The extension of the algorithm discussed just now to the
MISO system (1.2-21) is very simple as the role of the
polynomials Bi(z_l) regarding the particular input signals
ui(t) completely coincides. So the consideration of m inputs
can be simply realized for the calculation of e(t), the gra-
dient and the Hessian matrix. Thanks to this the computer
program working according to the ML method can at present
consider simultaneously several inputs, too.

For the calculation of both the gradient vector and the
llessian matrix the output signal of the autoregressive fil-
ter l/C(z-l) has to be calculated for various input signals.
On the other hand, the "memory" of these filters has to be
known at the start of the calculations. As we, in general,
do not know this, we assume the output signal of the filter
to be zero for the moments before the beginning of the cal-
culations. Experience shows that this approximation has no
relevant influence on the exactness of the calculation and
its effect can be neglected asymptotically.
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2.3 The generalized least squares method

For the case of the system equation containing C( 1) 1l and
D(z-l)E l)x H(z™ l), CLARKE suggested an estimation tech-
nique [33]. This structure is called the generalized least
squares structure (GLS) because the estimation method ob-
tained this way agrees asymptotically with the GLS method of

AITKEN [57].

So the equation of the SISO system is now (by assuming d=0):

o(t) = BlzT) u(e) . 1 olt) (2.3-1)
A(z™) A(z-l)H(z_l)
where
-1 -1 -S
H(z™ )= 1+hy2 "+ ... + h oz . (2.3=2)
By multiplying the Eq. (2.3-1) by H(z_l), we obtain the
form
<7 '
yF(t)= Ei&jg uF(t) + ———%T—.e(t) (2,3=3)

A(z™) A(z™)

which exactly corresponds to the LS structure. Here
Ft)= H(z (z7Yy(t) ana uf(t)= H(z"Hu(t). (2.3-4)

The analogous version of the eq. (2.1-2) is now

n n

F Fr, . B

y (t)= ¢ byu (t-i)- 5 a;¥ (t-i)+ e(t)=
i=1 i=1

£,y ,t) Bpg * €(t ) (2.3-5)
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where

i(uF,yF,t)=[uF(t-1), eeestl (8-n); =" (£=1)y.0y=y" (t-n )]T-

(2.3-6)

The vector equation corresponding to (2.1-5) is now

1]
=
—~
I=
k<
~—
(o}
o
)
+
o
|
nm
=
—
1=
k<
~——
I
o’
m
+
|o
|

=H Euy Do * &9 (2 ,3=7)

where the commutativity of the TOEPLITZ matrices have been
utilized. Here in consequence of (2.3-4)

¥ =Hy and u =Hu (2.3-8)
where
H=1+ hlg + «eo + h §s =1+ g . (2.3-9)
Further
P(a”y" )5 15y 87 075 B ¥ e 8" X' -
?£T< ,yF,l)
= (2.3-10)

iT(uF’yF’N)

As the equation error in Iq. (2.3—7) is also now white noise,
by minimizing the loss function :

Qy( 2y, o2 L E "y py 1" -E (e, x )py ) (2.3-11)
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an asymptotically unbiased parameter estimation can be ob-
tained.

In accordance with (2.1-7) this will now be
A P B F Fq-1 T/ F F F
Bpg =[E (u'yy By )] E(u'hy )y =

T T
=[E,, B

e

-] T T A
uy] S EX—Eba(p_h). (2.3-12)

But here we have to consider that the solution is obtained
as a function of

gh=|:hl,h2,...,hs]T. (2,3-1% )
As we do not know p , this also has to be estimated.

We obtain from Eq. (2.3-1) after some arrangement that
Cy(t)- iT(u,y,t)nba] = r(t)= —gT(r,t)gh + e(t), (2.3-14)
where

E(Tyt)=[T (5-1), ... 7 (t-5)] . (2.3-15)
Here r(t) is the so-called residual

r(t)= y(t)=£" (u,y,t)p,, - (2.3-16)
As (2.3-14) is linear in the parameters hi and the equation

error is white noise, we can use again the LS method. The
vector equation for N samples is now

= -G(z)p, + £ =-G. B, *+ & (2.3-17)
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Here r contains the N values of r(t) in a form similar to u,
y and e. The loss function to be minimized is

Qp(RyrByg) =(Z *+ GBy) (2 + Gy By) (2.3-18)

and the parameter estimation ensuring the minimum will be

2y = _(gr gr)—l gf- = = ih(-nba) . (2-3‘19)

Thus the parameter estimation ﬁh is the function of Dpg So
in order to carry out a complete parameter estimation, we
can use a successive approximation method, recommended in
the literature first by CLARKE [33]. This estimation tech-
nique consists of the following steps:

1. By assuming Dy = 0 a simple LS estimation is carried out
according to (2.1-7) for Bpg '

2. Thereafter on the basis of (2.3-16) the residuals r(t),
i.e. r is calculated.

3. In the next step an estimation for 2y, is made according
to (2.3-19).

4. With the help of the obtained ﬁh,xF and g?,i.e. the val-
ues of the input and output signal filtered by H(z_l) are
calculated.

5. The procedure is continued by an estimation according to
(2.3-12), thereafter the particular steps of the itera-
tion will be repeated beginning with point 2. until the
achievement of the required accuracy.

The CLARKE’s iteration method means essentially the mini-
mization of the loss function Ql according to the relaxa-
tion (or GAUSS-SEIDELL) method to be used in the space of

> 3 P TAT <
the joint parameter vector Boan ™ [pba’ Eh] « I.e. the m1—‘
nimization proceeds in the subspace corresponding to para-
meters Dy resp. 2y step by step.
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There is a nonlinear estimation with respect to the parameter
vector p, ., of the process model (2.3-1) and the CLARKE meth-
od decomposes this task to two estimation problems linear in
parameters by iteration steps. It is also possible, of course,
to minimize Ql(Bba’Rh)= Ql(Bbah) directly according to p, .
with the NEWTON-RAPHSON technique (2.2—10). Alike to those
discussed with the ML structure, here the relations to be
used for the calculation of the gradient vector and the
Hessian matrix for the system equation (2.3-1) are also giv-

en.

From the vector equation (2.3-7)

r-Bu) =4y -Bu' =H>: (2.3-20)

(

-e_=

[ }as)
W

hence the derivatives of e by parameters are

d€ 3B .
-— = F X F
BN R (2.3-21)

e 4 p i F

rai- = E‘; = § 1 ’ (2-3—22)

8e o8 i

h- " o (AL -Be) =8z (2.3-23)
: 4 i

On basis of the above equations as well as (2.2-12) now

T
dQ(p de
(Boan) - & 4 _Eige LIT e =
dRpan 4Ppan
N
= 3 f2@f,yT,r,t)e(t), (2.3-24)

t=1
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where
R Frals 5" S SH™ sPE e ]
=uye = (E,x,g )"[:E""’: 2,-#,-00’— X’ -== PREEE b ol _]—

further

.f.(uFQS’FQI',t)=[uF (t‘l) yeo .,u_F(t—n);-yF(t-l), oo -"yF(t‘n )3

w2 [5=1) 5 0 4.0 =B (b8} T, (2.3-26)

where uF(t) and yF(t) are according to (2.3-4), and r(t) can
be calculated from (2.3-16). e(t) is still necessary to
(2.3-24) which can be obtained from (2.3-5). (It is impor-
tant to note that r(t) = y(t) - £ (u,y,t)p, and e(t) = y (t)-
= iT<uF’YF’t)Bba') The ﬁ(uF,yF,r,t)= ig(t) required for the
gradient vector can, of course, be formed even now in a

simple recursive way, as with the ML structure:

25(t)= 9, £5(t=1)+ S(t-1)p, + w,(t)=
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Alike (2.2-27) the Hessian matrix consists here, too, of two
parts. Now

N
*T iy ¥ F _F 2, F P
Iy = Zuye H™ H Euye = tzl £(u’,y ,r,t)i (u'yy 5 Tyt),
(2.3-28)
the construction of 22 is the following:
0 9 Ion
T, = |Q 0 1 (2.3-29)
R
Here T.. = TX and T . = T . Only the first row and last
zbh - =hb Zah ~ =ha® y
column of the matrices gbh and gab contain informative new

elements. For the other elements it is valid that
t. . = B, : « So a 2(2n-1)dimensional vector is suffi-
1.3 (i-1), (3+1) ( ) ¢

cient for storing the elements of I,. The construction of T,

can be understood on the basis of the second derivatives of
e by parameters, as

2 2 2 2
5 & 0. 3% 0. 3% 0. 2% "
— = _; = _; — = _; = pb)
bj abiaa. aaiaa. Bhiah.
2 ¢ o wh
- gt —=u--5ty (2.3-30)
E)h.'ab:.L - ahj '
2
3”& ; oH s
S T alty
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and t,, is calculated according to (2.2-36). On the basis of
the latter equations the construction of the 2(2n-l) dimen-
sional vector facilitating the calculation of I, 1is:

T
and the filling of 22 is carried out on basis of the vector

a=- t_ glt)e(t)=lar,, a5, ]" (2.3-32)

o~ =

t=1

according to the procedure presented with (2.2-35). With the
help of the above relations also in case of the GLS structure
the NEWTON-RAPHSON extremum seeking method can be realized.
This yields faster convergence than the original CLARKE pro-
cedure, but at the price of much more work of computation.

It may be reasonable to reduce the calculations by the ap-
proximation T = 21 as 22 disappears asymptotically, thus in
case of sufficiently large number of samples our approxima-
tion will already be justified.

If we do not need separately the parameters 2y and our aim
is only the determination of an equivalent model, then we
can proceeed in a much simpler way. The system equation
(2.3—1) can be reduced by simple transformation to the form

_ B(z )H( l) o " 4 B
_ Rlz) u(t) + —— e(t) (2.3-33)
) alz"T) '

i.e. to a system equation corresponding to the LS structure.
Therefore, in case of increased order, also the simple LS
estimation yields an equivalent system model with the GLS
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structure. The P(z_l)/Q(z-l) - which contains now common fac-
tors in the numerator and denominator - can be reduced by ap-
propriate numerical methods to the minimum number of para-

meters.

Thus the GLS structure uses instead of the autoregressive
noise model 1/A(z1)of the LS structure a more complex, but
likewise autoregressive noise model l/A(z_l).H(z-l). The only
advantage of this expansion can be to achieve with this lat-
ter noise model, by choosing the order of H(z-l)for suffi-
ciently large, a good approximation of the general noise
model C(z-l)/D(z_l).

We have to mention the second CLARKE’s method by which he
recommends in the particular iteration steps not the fil-
tering of the original data according to (2.3-4), but always
the renewed filtering of the previously already filtered val-
ues. This method corresponds to the autoregressive noise mod-
el of the type

C(z-l)_ 1

p(z71)  a(z7h) K H, (™)

(2.3-34)

In many cases this model approximates better the general
noise model and its application is more practical.

The conditions of the convergence of the GLS method were
dealt in detail by SODERSTROM [123].
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2.4 The extended matrix methods. Quasilinearization

In subsection 1.2 the linearity of the models in parameter
was underlined several times. SMETS [120] and later TALNON
[130, lBl] have utilized this advantage in developing the
extended matrix methods.

SMETS elaborated the so-called "First Extended Matrix Method"
(hereinafter FEXM) for the system equation (2.3-1) of the

GLS structure. On the basis of the vector equation (2.3-7)

it can be written that

L=HE B, -Hy+e=F Dy - BXE,y Byl *e=

= Euy 2pa ~ g rre= Euy’ gr]Bbah T E

= Euyr Boan * & = B(BsXsZ) Bpoy * & (2.4-1)
where
Ebﬂyl,E)EEEuyr = [guy’-=rJ' (2.4-2)

The definition of g, gr’ as well as r and Ry C81 be found
in subsection 2.3, the other notations have occurred already
several times.

The system equation linear in parameters (2.4<1) formally
exactly corresponds to the form applicable for LS estimation,
so that p, . is the LS estimation of the joint parameter vec-
tor.

2 -1 _T
Epah Euyr ) Euyr Lo (2 04_3)
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In Euyr the value r is required which, of course, is not
known in advance, therefore r can only be calculated, i.e.
estimated. This leads necessarily to an iterative solution.
A possible construction of the iterative solution is the
following:

1. For vector Rpg @ LS estimation is performed on the basis
of the relation (2.1—7)

2. On the basis of (2.3-14) by taking the obtained ﬁba, the
values r(t) and thus ﬁ, too are calculated. By using ﬁ
the auxiliary quantities necessary for (2.4-3) are also
computed.

3. On the basis of (2.4-3) the estimation ﬁbah is deter-
mined thereafter by utilizing the subvectorﬁba of ﬁbah’
the iteration is continued from 2. until the achievement

of the required accuracy.

SMETS has compared in details the methods of CLARKE’s GLS
and his FEXM. The basic difference between the two methods
is that CLARKE’s method asymptotically converges to the
classical GLS method of AITKEN, while SMETS’ method tends
towards a non optimal instrumental variables method here-
inafter (IV).

The principle of the FEXM method was used by TALMON for the
system equation (1.2—5) applied with the ML method. He called
this method "Second EXtended Matrix" method (hereinafter

SEXL ).

The system equation (2.2-1) can be arranged into the follow-

ing form:
Y =Bu-Ay +Ce+ g = Euyegbac + e =

]
[Lco]

(25X:8)Rpgo * £5Fyye Rogo * £ (2.4-4)
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As this system equation is also linear in parameters with a
white noise equation error, we can again use the LS estima-
tion according to which

& (FT F )—l FT

Bpac =uye =uye =uye A (2.4-5)

Alike FEXlM, here also an iterative solution is only possible,
as e had to be known to form E(g,x,g). A possible iteration
scheme is the following.

l. LS estimation is made for the vector ﬁba according to

(2. 17} ﬁba is put in the corresponding part of the

pac?
values of the c;-s are still zeros.

2. The e(t) i.e. € values belonging to the given ibac’ are
calculated by Eq. (2.2-6). Let us form the auxiliary
quantities required for (2.4-5).

3. The estimation ﬁbac is calculated according to (2.4-5),
thereafter the iteration is continued from point 2. until
the attainment of a given accuracy.

The detailed analysis of the method can be found in [ 131].

TALMON has applied the principle of matrix extension, i.e.
the consideration of linearity in parameters also for the
general SISO system equations (1.2-1) - (1.2-2). This method
is called "Third EXtended Matrix" method (hereinafter TEXl).
This report will not advert to it, as the ML estimation of
the general form (1.2-1) has not been discussed either.

In the following we intend to represent another method con-
nected with those discussed in this subsection in the sense
that it takes advantage of the linearity in parameters, resp.
carries out in a certain sense quasilinearization. Already
fsTROM [12, 13] pointed at the possibility of quasilinear-—
ization, but the following method was suggested by FURHT

[49].
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It is well known that while we perform the ML identification
of the system (1.2—5), we minimize a prediction error rela-
ting to a fictitious output signal

B(Z-l)u(t)—[A(Z-l)—QLQ:IXLM(t) (2.4-6)
C(z-l)

vf<t)=

(see rt. [49].)

Although FURHT carried out the deduction of his method, in

another way, we are applying now a train of thoughts enab-

ling us to further generalizations. Let us write the system
equation (2.2-1) in the form

e=C 4y -Bu)=a¢ Tl y-BC u=4r -Bu  (2.4-7)

where the fact has been considered that the multiplication
by g—l consisting of the sum of shift matrices is inter-
changeable (cf. App. 2-2C), further that now

-1

y and = u. (2.4-8)

nao

The scalar autoregressive filtering corresponding to these
latter equations means the signal formation according to

y(t)= -E-(i—_r)ﬂy(t) and u'(t) = —C(—i_-q u(t).  (2.4-9)

By an additional formation of (2.4-7), we obtain

e= éxF - QBF + Y -Y - gg'l(er)=

oy -mf vy -v-of ey

=(y -x+v)-[Bu -Aay +Cy -x)) (2.4-10)
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where v is an arbitrary (Nx1) vector.

From (2.4-10) we obtain the equation

xf=1-x+1F=§_u.F—§F+é(xF-xF)+g=
»r o R
= 2(2 X X =X )Ebac + 8 (2.4-11)

where X, is a (le) vector containing values of not a real-
ly measured output signal. The construction of the matrix

PR R _Fy .
F(w,¥ »x -X¥ ) is

F F F _F F F F n P P _F
F(u'yy oy =¥ ) =[ Su",e.ey8'05 -8y s-ee0-8'x ; S(x ¥ ),
F _F

coey Sn(l —x )]:
B =
T, F F _F _F
i_ (u”,y 4y —v ’1)
£ (uf, v,y T ,N) (2.4-12)
where

i(uF,yF,yF-VF,t)= [uF(t—l),...,uF(t-n);-yF(t-l),...,—yF(t-n);

yF(t-l)-vF(t-l),...,yF(t-n)-vF(t-n)]T.

(2.4=13)

As in (2.4-11) the equation error is white noise, we can
again apply the LS estimation, whose result is

ﬁbac =[£T(2F,x?,foxF)g(2F, E ™)™ =

o FT( ) O N

Fu',y »X =¥ )xe- (2.4-14)
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In (2.4-14) FURHT has chosern for v the fictive model output

ve = ¢ [Bu - (A-¢)y] (2.4-15)

which can be calsulated on the basis of (2.4-6). Starting
from the LS estimation, we can - alike the extended matrix
methods - construct here also an iterative estimation scheme,
where the calculated values of v have to be updated step by
step.

We have chosen an arbitrary v in the deduction in order to
indicate that the solution proposed by FURHT is not the only
one, but a lot of other approaches can also be formed. An-
other possible approach is e.g. to take the noiseless output
of the process for v, for it can be obtained in a simpler
form than yv,, in the form of

=1 (2.4-16)

<
]

e
oy
o

) u(t) (2.4-17)

We obtain an even more simple possibility of quasilineari-
zation on the basis of Eq. (2.4=7):

+ 8 - E(BF,xF)nba + 8 (2.4-18)

where now lF and gF are according to (2.4-8). As the equation
error is also here white noise, the LS estimation can be
applied:

~ T F P -
2, = [E (a",x")E (uF,y™)]™ 2%(uf, 5P )F. (2.4-19)
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On the other hand, the calculation of the gF and x? con-
taining the filtered values, requires also the cy parameters.
We are presenting now a simple method for the estimation of
the coefficients of the polynomial g(z_1>. We can write the
equation (2.4=7) also in the form of

(Ay - Bu) = £ = Ce = (e + e= §(e)p, + £5C0D, * &
(2.4-20)

where
B, = [ agrewsye, ] (2.4-21)
and

Fg?(e,l)—
6(e)=[ges.-»8"] =] -

é?(e,N) (2.4-22)
Here d
gle,t) e(t=1),..., e(t-n)]", (2.4-23)

The calculation of the signals r(t) and e(t) with a given
Bba’ resp. ﬁbac (known from a previous iterative step) is
performed on the basis of Eqs. (2.3-14) and (2.2-6). The
iterative procedure agrees, according to the meaning, with
what was discussed in respect of the extended matrix methods.
(In the practice the values ai.provedto be fairly good initial
values for the coefficients c, as in this case clz™)=a(z" )
which corresponds to a white noise output error. The C(z-l)
corresponding to the real noise transfer function can be
easier derived, hence than from the much more gross c(z~1)=1
approximation, since this latter supposes a special noise
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spectrum as a start).

Among the methods of quasilinearization have to be mentioned
those of STIEGLITZ and NcBRIDE [129] which also take advan-
tage of the linearity in parameters of the system equation
and perform LS estimation by iterations. Their method was
elaborated for the white noise output error, i.e. when the
system equation has the form

_ B(z™1)
]

For N samples

u(t) + o(t). (2.4-24)

L= é"l Bu + e = Bu

2
|
IE:
+
I‘g
]

= F(W,y) By, + A2 =E, By, + (2.4-25)

II:>
o

This latter equation is linear in parameters, with a moving
average equation error. By a simple transformationwe get the
equation

-1 F 1

Y=Y =BATu - =k g

I+e=Bu -Ay +e-=

i

1

]
1Les]

(EF,xF)gba + e (2.4-26)

where the equation error is already white noise. Here the
equations

(2.4=27)

1=

mean the filtering, and the corresponding scalar equations

y(t+) ana uf(t) = ——l:—— u(t)e (2.4-28)

F( woah .
Alz™1) A(z™h)

t) =
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On the basis of (2.4-26) the LS equation can be got in the
form

Py B By B

F(u ,xy )x (2.4-29)
for the parameters of the system. It is now very simple to
obtain an iterative scheme:

l. An LS estimation is made for Rya with the assumption

xF=x and u’=u, i.e. A(Z'1)=1 in the filtering equations.

2. The filtered values or other auxiliary quantities are
calculated.

3. The estimation according to (2.4-29) is performed, there-
after from point 2. the procedure is ccntained until the
attainment of the given accuracy.

The authors proposed two more procedures which accelerate
the convergence near the minimum point. The necessity of
such a correction can be understood in the following way.
Let us write the derivatives of

e=y-A" Bu (2.4-30)

by the particular parameters:

e _ BB X : . o s

- = -A 1 5%_ o =k 31 §12 _ _§1 A l o -§lul (2.4-31)
;! i = = -7 &

28 347 -1 3% -1 i i P

By = A oA T Bi= L IR X

1 5 = m § = = = =
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contains the values of the noiseless output signal and

F -1
l =

(2 o4=34)

e

The derivative of the loss function of the ML method is

therefore
aQ(p,,) de’ . O 5
az—@——‘ i

=-§T(BF,1F)[XF Fu )p_ba] (2.4-35)

where we have considered the equation (2.4-26) further

F(u’,y)=s u¥,...,5%"; -su’,...,-5""] (2.4-36)
and

P F P F
E(EF’X.F)r'[_.S;B. ’00-9§n2; —-2¥ ,---,-gnx ]. (2.4—37)

(This latter has already been mentioned several times above.)
By making the gradient (2.h-35) equal to zero vector, we get

By, =[PP, dN)e@® 1 2, (2.4-38)

which corresponds formally to an IV estimation, as it is
easy to see. The estimation (2.&-38) makes the gradient
(under given A(z_l)) equal to zero in every step, but it
can be applied only if we have got a fairly good estimation
for v,i.e. in the vicinity of the optimum.

As we can express g on the basis of (2.4-25) sy also in the
following way:



= e

e=y-41Bu=y-y=3y-(Bu-4y)=
= -y - Mu,v) Rpg? (2. 4=~39)

so substituting this into (2.4—35), we get the LS estimation

Dy = F(uf,v") 2(3,1)]'1 F(u',y' )y - (2.4-40)

While the solution (2.4—29) is an asymptotically GLS estima-
tion, the relations (2.4=-38) and (2—&.&0) mean an IV estima-
tion each.

Experiences shows that these procedures are preferably to be
applied sequentially, in order to achieve more an more exact
results. For changes in order heuristic strategies can be
designed.
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2.5 The method of instrumental variables

According to the method of "Instrumental Variables" (herein-
after IV) in case of a system equation linear in parameters
the equation

B =[6"(wy) Fla,x) ] ¢ (uwy =

(2.5-1)

I
~
|[fp}

yields an asymptotically unbiased parameter estimation if
the conditions

<o and plim (% §§ r.)= 0 (2.5=2)

T
G
E 3 P N

=N

nwm

N)

=

plim (

N »o

are fulfilled where N subscript indicates the number of the
samples. In (2.5-2) the notation r, whose value is

N
Iy =¥y - B2 = X - B(u,y)p, (2.5-3)

emphasizes still more that the asymptotic unbiasedness de-
pends on the fact whether the elements of G are uncorrelated
with the equation error or not.

The IV method was dealt with in detail by POLLAK and WONG,
who deduced a great number of theorems on estimation pro-
perties. Equations for the identification of discrete-time
SISO systems were transformed by YOUNG [143] to a form easy
to be used.

The general SISO system equation (1.2-1) can be also written
in the following form linear in parameters

y(t)= £ (u,y,t)p,, + Alz7Hw(t) (2.5-4)
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or for N samples

¥ =Fwy) o, + A~ w. (2.5-5)

The IV estimation of Dyg is yielded by

B, = [& (wx) Fu,x)]™ g™ (wy) x (2.5-6)
where
G (w,x)=[Su, ... 8"%; ~8¥,...,-8" x]. (2.5-7)

(cf. Appendix F.5.)

Here

1<
1]

e
o
=
1]
o

4 - AY = G(2,¥)D, s (2.5-8)

\
|

i.e. contains the values of the noiseless output signal of
the system. As the equation error A(z—l)w(t) depends only

on the uncorrelated e(t) source noise, the elements of
g(g,x,)= g(g,é"lgg) will be uncorrelated with the equation
error because they are only the functions or u(t) uncorre-
lated with e(t). Note that the described IV estimation
yields the asymptotically unbiased estimation of the process

parameters for every noise model of Table 1.2-I.

The quasilinearization of the equation (1.2-2) of the ge-
neral noise model enables an iterative scheme to be designed
also for the estimation of the noise parameters. This noise
model type, however, - alike the third extended matrix meth-
od - will not be discussed in this paper.

The IV estimation (2.5—6) can, of course, be realized only
by an iteration technique as ¥ can not be produced without

knowing the parameters. A possible iterative solution is the
following:
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1. Simple LS estimation for p, .

2. Calculate v with the help of Rpg and for the auxiliary
quantities required for (2.5-6)

3. Perform the IV estimation aécording to (2.5-6), thereupon
return to 2 and continue the iteration until the achieve-
ment of the given accuracy.

Note that also with the IV algorithm such a convergence ac-
celerating process can be designed, as with the STIEGLITZ -
McBRIDE method, when we make the gradient zero in every step.
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2.6 The priori knowledge fitting method

Apart from the LS method, all other ones until now contained
iterative procedures. By using only those assumptions had

been applied heretofore, PETERKA and his co-workers elabo-
rated an explicit method [ 102, 103, 104] which yields the es-
timation of the process parameters in a single step. The proc-
ess model applied is

y(t)= 2(—2:;-2 u(t )+ w(t) (2.6-1)

A(z)

so that it formally agrees with the previous models. But it
is sufficient to assume that w(t) is a stationary random sig-
nal series, having zero mean and uncorrelated with the input
signal. On the other hand, it yields a substantial ease 1in
the assumptions regarding the noise that the type of the dis-
tribution is indifferent and there is no need to assume a giv-—
en structure for the noise model.

The method elaborated by PETERKA uses the uncorrelatedness

of the input signal and the output noise. The name of the
method comes from the fact that the fitting of the model
strongly depends upon the prior knowledge. ("Priori Knowledge
Fitting", hereinafter PKF ). Thus we used to speak of a method
using prior knowledge, after its English abbreviation PKF
method, or a method based on the principle of tallying the
uncorrelatedness of the input signal and output noise.
("rally Principle" = TP) [103].

The vector form of Eq. (2.6—1) for N samples:

—1§E+E=§l—l"

e
¢

X = Y+ Aw®=E(aylp, +r (2.6-2)

when the notations used heretofore were applied and r, the
vector of the residuals
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p=fE=2=Hagn, =158, By ¢ (2.6-3)

As w(t) and u(t) are assumed to be uncorrelated, it follows
from (2.6-3) that r(t) and u(t) are uncorrelated, too. Assume
the opposite i.e. that in the difference X-guygba yielding
the residuals terms dependent on u or yielding correlation
with u occur. This dependence is assumed to be linear, then
according to our latter statement the relations

=z + M(u)k

1§

I-FyByg =2 vl k (2.6-4)

should have to be fulfilled. Let here be

E = : st k, (2.6-5)
=" 40 s
e A (2.6=6)
and -
]
ET(_Ll,l)
g(g)zgu = : =[:=g,...,§Vu 5 (2.6=7)
E‘T(BsN)
where
g(g,t):Lu(t—l),...,u(t-v)JT. (2.6-8)

If, on the cther hand, the uncorrelatedness exists in fact,
then we must get such a ﬁba estimation, for which k = 0 or
at least

lpy,)= 5 K k (2.6-9)

is minimum,
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On the basis of (2.6—4) we can write formally in a simple
way the LS estimation of k

T
u

-1

I= >

T
By substituting the obtained k into (2.6-9) and minimizing
it according to p (cf. Appendix 8) we get

T M )—1( T )—1

~ b T X T -1
Bba =[ By ¥, (M o, b N Euy-J >

=uy =u =1 =u

=1 (L -1
Euy gu =u Mu) (Mu gu) Mu Le (2’6_11)

The obtained solution gives an explicit expression for the
estimation of ﬁba without any iterative process. The asymp-
totic properties of the estimation were studied in detail in
[iOBJ (otherwise the estimation is asymptotically unbiased
which is not proved here because of lack of space.)

The formula (2.6-11) can be considered as a least squares
estimation weighted by the weighting matrix

r

-1 T

T _ \=1
WM )T (M M )T M

but also as an IV estimation where the auxiliary matrix is

2

1 -1 1 -1
Eu (Eu Eu) (gu Mu) o

guy
Many authors are keen on using the PKF method although its
accuracy is somewhat behind that of the ML method [62].
However, the method is credited with the extraordinary ad-
vantage of yielding an explicit solution. As one of its
heaviset drawbacks has been considered, its failure to give
an estimation for the parameters of the noise model. Here-
below an iteration methcd enabling alsoc an £STROM noise
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model to be determined on the basis of the ﬁba parameter es-
timation obtained by the explicit PKI' method will be pres-—
ented. Accordingly assume for w(t) the existence of the re-

lation
w(t) = ﬁiz—j%.e(t) (2.6-12)

where the notations on the right side of the equation are
already known. This means that on the basis of (2.6-2) the
equation error will be according to

r(t) = C(z™ )e(t) = clz™H)e(t)+ e(t) (2.6=13)
where
C(z-l) =1+ clz_1 +ooet cnz_n =1+ 6(z71). (2.6-14)

On the basis of u and y containing the measurements, as well
as on the basis of the ﬁba estimation according to (2.6-11)
the estimation of r can be determined from (2.6-3):

By taking the values r(t) on the basis of the equation
(2.6-13) an iteration procedure consisting of repeated LS

estimations can be formed for the estimation of the noise
parameters

Rc = [01’02"..’01’]]’1\ (2.6-16)
in the form

fzc[J'J =L ST(EJ_I)SCEJ_I)]'I _G_T(éj_l).f: ; (2.6-17)
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J
and
ag(l)
g(éj) v
5?(1\7)
where

(2.6-18)

(2.6-19)

. [2,6-901)



- 87 -

2.7 The KOCPMANS-LEVIN method

With the methods discussed heretofore, the condition of
getting asymptotically unbiased estimation was to assume the
input signal to be measured without error. There are fairly
divergent opinions in the literature, as to the identifi-
ability in the case of input noise. Several authors assert
that the elimination of input noises by measurement tech -
niques is much more efficient than the construction of such
a statistical (sometimes very artificial) estimation which
is usually inefficient because of the "a priori" information
required for its proper application.

The methods applied in the regression analysis for the elim-
ination of the input noise are essentially various trends of
the FRISCH confluent analysis. From the identification meth-
ods of linear dynamic systems applicable in case of noisy
inputs, the methcd of KOOPMANS and LEVIN can be considered
as best founded in theory. In the following this method is
presented and its modified version developed by us is also
given [26].

For the study of this method consider Fig. 2.7-1. Denote

here uo(t) and yo(t) the noiseless input and output of the
process, wu(t) and wy(t) the measurement noises at the input,
and the output, respectively. (As this method has a logic to-
tally different from those mentioned heretofore, the noise-
less output w1ll be denoted here by y_ instead of v). Let
further be B(z™1) and A( ) accordlng to the relation (2.1-4).
Considering that the differece equation of the noiseless
system is determined by the polynomials B(z-l) and A(z-l)the
system equation can also be written in a form linear in pa-
rameters (arranged for O) not discussed until now, viz.

m

& (U ¥ st) Bypg = O (2.7-1)
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where
&o(uo,yo,t)=[uo(t),uét-l),...,uo(t-n);—yo(t),-yo(t-l),
T
e e ,_yo(t-n)] (2.7_2)
and
T
Bbla =[bo’bl’...’bn’l’al,a2’.'.,an] . (2.7-3)

By writing (2.7-1)in detail:

(o i <

bou (t-1)-y_(t)-

i=0 i

a;y (t-1)= 0. (2.7-4)
0

| L o

If we introduce the vectcr
J;
. {8.7-5)
representing the input and output noises, then for the vec-

tor containing measurements corresponding to the noisy meas-
urement situation

E(u)y’t)=[u(t)9 u(t—l),...,u(t-n);—y(t%—y(t-l),

veey=y (t=n)]T : | (2.7-6)
the equation
w(t)= glu,y,t)=g (4 9y 0t) (2.7-7)

holds.



(t) wy (t)
Wy
) y(t)
u(t
5 Yo(t)
t) B(z™") |
- AzT)

Pig. 2.7-1

Fig.2.7=2
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It is assumed that the disturbances in w(t ) have normal dis-
tribution, zero mean and their covariance matrix

E{w(t)w (t))=2 (2.7-8)

is known. Here the stationarity of the disturbances has also
been assumed as Z is a time-independent constant. The
covariance matrix Z can be logically decomposed to the fol-

lowing four submatrices:

- -
éuu éuy
Z = - (2.7-9)
Z Z
=yu  =yy
- -

Here éuu contains the values of the autocorrelation series
of the input noise wu(t), Z_ . those of the output noise, in
a way shown in Fig. 2.7-2. Likewise guy and é = contain the
values of the cross-correlation products. From the special
cases the assumptions

52;, Z =2

1. Zoy = Zoy

e
[}
1}
no
-
ne
1}
>
=

uu
2

-

e

2. w §

-
|
1}

no

=uy =yu

hold several times in the practice and make the calculations
as well as the preliminary determination (estimation) of Z

easier,

Generally the probability density function of the vector
w(t) of dimension q=2(n+1)

-a _41
stafe)=0) E1g) % exp (- L

as we have seen e.g. in (1.3=2).
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The joint density function for N independent samplings

!?(t)g‘l w(t )1 (2.7-11)
Let us write the likelihood function for the application of
the ML estimation method, i.e. the natural logarithm of
(2.7-11)

w ()70 w(t)

ol

'—J

=
e

|
o
I~ =

(2.7-12)

The ML estimation of the Biia parameter vector is obtained
by the maximization of this term in according to 2y1a° The
task is further complicated. by the fact that the maximiza-
tion has to be performed under constraint (2.7-1), so that

m

E;(uo’yogt)nbla = O, fOI‘ t=l,2,o'o,N (2.7—13)

should be fulfilled. This constraint means that simultaneous-
ly with the estimation of the parameters Ry, the noiseless
inputs and outputs go(uo,yo,t) have also to be estimated

from the noisy measurement data.

The maximization task with this constraint can be solved in
a well-known Way with the method of lLagrange multipliers [4@
tracing back it to the minimization of the following term:

4

N
Q(P-bla)= 2 E

[ (£)z7h w(t)+ 2v (t)gg (u5s¥69¥) R3]

t=1

(2.7-14)

In point A.9 of the Appendix it is deduced that the minimum
according to go(uo,yo,t) of the term (2.7-14) can be achieved
by the minimization of the quantity
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T
Rpig 3P
F(p,,,) =5 —pla==tle (2.7-15)

T gl
Lp1a 2Bpla

DY Byig? where

N ,

t=1

It is known from linear algebra that the greatest lower
bound of the generalized quadratic form (2.7—15) is yielded
by the smallest eigenvalue of the generalized eigenvalue
problem

G Dy1g = MZ Ryjg (2.7=17)
and the Rpia yielding the minimum is the eigenvector belong-
ing to the smallest eigenvalue.

Although there are known numerical methods [9& to solve
the generalized eigenvalue problems, because of their com-
plexity we reduce the problem (2.7-17) 4n Appendix 10 to
a simple eigenvalue problem, viz. to a solution requiring
only the determination of the eigenvalue of the symmetric
matrix. The finding of the real eigenvalues of a symmetric
matrix is already considered nowadays a routine task in nu-
merical analysis.

Assume that 2? is obtained for the eigenvalue belonging to
the least eigenvalue of the eigenvalue problem (2,7=17).
Since py,, is of a special construction in the sense that
the value of its (n+2)nd component has to be 1 under any
circumstances. This can be simple ensured by dividing the

elements of vector p* by the (n+2)nd element of the vector,
x
Pn+2
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e =" £ ¢ (2,9<18)

Pne2

It can be demonstrated [107J that the estimation (2.7-18) is
consistent and generally biased for finite N, If the standard
deviation of the input noises are substantially less than
that of the input signals, this bias is less than the stand-
ard derivation of the parameters.

The basic principle of the method can be demonstrated as the
deduction of the covariance matrix representing the statisti-
cal property of the noises from the covariance matrix formed
from observations. This latter one is approximately the sum
of the covariance matrices of the useful signals and the per-
turbing noises, the deduction will therefore be in case of
infinitely large samples asymptotically perfect. If our know-
ledges about the covariance matrix of the noises are not sure,
the estimation is generally biased, because the deduction of
the covariance matrix of the noises does not occur even
asymptotically. (The above explanation means, of course,

only a very rough demonstration of the correct statistical

investigations).

From the point of view of computational techniques the
KOOPMANS-LEVIN method is a relatively simple procedure, on

the other hand, the demand of priori information, the require-
ment of the knowledge of Z seems to be quite considerable.

In practical cases the submatrix Z . of Z is estimated but

for the other part of Z only assumptions can be taken. Be-
cause of these difficulties, we have elaborated a method for
the case Z = 0, Z O in order to update Zyy and got the

uu
iterative version of the KOOPMANS-LEVIN method.
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In accordance with our previous assumptions now

w(t) =[0,0,40.,0; -wy(t),—wy(t—D,...,—wy(t—n)]T (2. 7-19)
and also further on

wy(t): y(t) - y (t). (2.9-20)

Here y(t) is the measured value, and yo(t)can be calculated
by the given p,, ~ (previously estimated) i.e.

Bi u (t-i) -

yo(t)= i=0 i

; a;y (t-1). (2.7-21)

1

W ™M
N s

By calculating the values of yo(t), wy(t) for t=l 4244009
and constructing w(t), an estimation of Z can be obtained
by the expression

N

zl w(t)w? (t). (2.7-22)

e s
1l
=|

t

0f course, it is enough to estimate only the part éyy of Z,

for the rest is zero.

On the basis of the above, we can from an iterative process

for the estimation of the process parameters by using the

modified KOCPMANS-LEVIN method. The iterative method can be

constructed in the following way:

1. Determine the preliminary estimation of the process para-
meters p, . by the simple LS estimation.

2, Calculate wy(t), thereafter 2 through w(t).

3. Determine the parameter estimation ﬁbla yielding the mi-
nimum of (2.7-15).

4. Return to point 2. and continue the iteration until the
attainment of a given accuracy.
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The application cf the iterative method is made easier by D
being independent from Byi1g with the deccmposition of G, s%
that it has to be calculated only once. Compared with the
iteration methods published in other chapters of this report,
here therefore not inversion, but eigenvalue search has to

be performed by iterations.
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2.8 Identification in closed loop

As already indicated in the Introduction, this report deals
with the identification methods applicable in open loop,

when the input signal of the process is independent from the
output signal and the ocutput noise. The discussion of identi-
fication methods applicable in closed loop, would demand an
another way of approach, on the one hand, the estimation tech-
niques applicable there are also very different from those
applied in this report on the other hand. Methecds, computer
procedures elaborated for open loop can be applied, however,
directly or only with slight modification for some particu-
lar cases of the identification in closed loops. These pos-
sibilities will be illustrated in this subsection [65, 73y
145 J.

Let us investigate the identification in the closed loop
system shown in Fig. 2.8-1. Beside the notations used here-
tofore, here ua(t) is the reference value and uz(t) the ar-
tifical disturbance independent from e(t ), further the
P(z_l)/Q(z-l) is the transfer function, where

-1 -k

P(z-l)= Py + P12+ ees *+ D3 (2.8-1)

o}

Q(z‘l)= 1 + qlz-1 + e F qkz (2.8-2)

By taking advantage of the rules of determination of the
resultant transfer functions for the closed loop, we obtain
that

- -1
P(z 1)B(z ) 5 (t) %

t )=
y(%) A(z—l)Q(z-1)+ B(z_llP(z_l) o

Q‘z_l).B(z—l) o

A(z-l)Q(z-l)+B(Z-1)P(Z-1) z
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Agg(z‘l)c@gjl)
.A(z—l)Q(z_1)+P(Z—l)B(Z_l)

+

< wl ) (2.8-3)

If any of ua(t) or uz(t) is stationary, then by considering
either the

—EB_y (£) + —8C o(t) (2.8-4)
AQ+B.P & AQ+PB

or

8B ur(t)+ -, e(t) (2.8-5)
AQ+B.P % AQ+PB

error terms as "output" noise, we can apply one of the meth-
ods worked out for the SISO systems, by taking the uz(t) or
ua(t) variables as input signals. Regarding the structure,
the ML method seems to be here the best fitting for the pa-
rameter estimation. The estimation of the parameters of the
denominator AQ+BP can be an intermediary objective, hence in
the knowledge of P and QyA and B can already be determined
(see below).

Assume that during the investigations the reference value
ua(t) is zero (or it is constant and then we work with a
model valid for changes). In this case the closed system is
described by the following two equations:

Z-l (z-l
r(e) < B uge) o S o) (2.5-6)
and
u(t) -Pujn'y&). (2.8-7)
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For this latter equation, we have assumed that the artifical
distrubance uZ(t) was also zerc. By a simple substitution the
two equations can be reduced to a single one

_B(z-l)P(z7¥)

y(oy B elam) (g, clem) (s (2.8-8)
A(z7)Q (z ) A(z7)
i.e.

[az ez +p ) B ]v(t)= alz ez e(t).  (2.8-9)

This latter equation corresponds to a mixed autoregressive -
moving average (ARMA) stochastic process, i.e.

R(z7H) y(t)= s(z1)e(t), (2.8-10)

where by assuming bOEO the equations have the form

-] - -1 F(k‘f'l’])
and
s(z7)= 1es ad woiur s, 2o KD, (2.8-12)
- i 2 tag k+n ¢

Assume that the coefficients R{z™1) could have been deter—
mined by a certain identification method. If the parameters
of the regulator are known, i.e. P(z-l)and Q(z-l), then from
the equation

A(z-l)Q(z-l)+B(z_1)P(z‘1)= R(Z—l) (2.8-13)

A(é-l) and B(z-l) car be obtained. By performing the po-
lynomial multiplications in (2.8-13), by comparing the
cofficients we obtain that
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B | e ¢
pO O LR O :1 O -o.O bl rl_ql
Py P, sisw O :ql 1 wse 0 b2 r'5=q,
P S SRR
|
Pg-1 Px2 *** Pol %1 k-2 "t 1 11°y
MDpe *| P Prg ** Pyl Seg =+ )87 | 5% % M2
|
O pk e e p2! eee qk s e e q2 8,2 I'k+1
L ] - - l . L] Ll L ]
. - - l . ° - .
. L] - I : - - L]
0 0 eee Dy : 0 eee Qpf (B, rk+n
i | JL7 L !
(2.8-14)

The condltlon of the determination of Rpg is that either
Q(z ) or P(z ) is of the n-th degree as we have 2n unknown
parameters and thus R( )has to be of 2n-th degree which is
fulfilled only under condition k=n. In this case we obtain
the estimation of the process parameters in the form

Bpg = 4 "3 - (2.8-15)

(Note that similar considerations can be made for the esti-
mation of C(z—l), t00.)

Several methods have already been elaborated for the esti-
mation of the parameters of the ARMA stochastic process
(2.8—10)[2, 5 Y 33]. Here we would like to point out that by
prohibiting the estimation of the coefficients relating to
the input signals u(t), i.e. by masking, the estimation of
the coefficients of R(z'l) can be obtained either by the NL,
or the SEXK method.

If ua(t) is zero but uz(t) nct, then the equation (2.8-7)
will have the form



u(t) = - Eiiiiﬂl gk Y+ u [+ ) (2.8-16)

Qz™h) z

By substituting this into ( 2-8—6), we obtain the system
equation

[A(Z_1>Q(z_1)+B(z-l)P(zth]y(t) =
= alzhalzDB(zDu () e(zDezelt). (2.8-17)

It is obvious that the ML structure according to (1.2-5)
was formally achieved, so that either the ML, or the SEXM
or any other identification method valid for similar models
can be applied. Now, of course, here is no need of masking
and uz(t) has to be considered as input signal. The decom-
position of the obtained dercminator can be performed also
according to (2.8-15).

If the ua(t) and uz(t) signals are neither of zero value,
nor are they stationary, then the closed loop or the denomi-
nator AQ+BP can be identified on the basis of the system
equation (2.8-31) as a two-input (ua, u,) and single output
(y ) system.Thus, e.g. the application of the ML procedure
worked out for the MISO systems can be thought of.

It is not our intention to examine now thoroughly the vari-
ous possible cases (which transfer is known, which signal

can be measured, which preliminary ccnditions are true, etc.),
we have pointed out that the identification methods elabo-
rated for open loops can be applied to closed loops, too, if
the system is analyzed in detail and certain supplementary
calculations are made in a given case.
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I1I. OFF-LINE IDENTIFICATION METHODS FOR MULTIPLE OUTPUT
SYSTELS

As seen in the preceding chapter, the number of the inputs
of a system does not influence substantially the identifica-
tion technique. Despite the multiple inputs a MISO system e-
quation does not require, compared with the SISO system e-
quation, any form of description different in kind, only the
sizes of the featuring memory resp. the parameter vectors,
increase. Likewise the loss functions to be minimized retain
their character unchanged.

On the other hand, turning to the examination of the MIMO
systems by the increase of the number of outputs there is a
change in dimension: the memory vector becomes memory matrix,
the parameter vector parameter matrix, etc. This could be
recognized in subsection l.2, where also the MIMO system e~
quations were discussed. Accordingly, the loss functions al-
so depend in a substantially more complex way from the para-
meters.

lMethods used for single output systems were discussed for
the case of d=0 as a given d value can always be set by
shifting the series of input and output values with respect
to each other. This can be achieved, of course, also in the
case of a MISO system by considering the deadtimes by inputs
in their mutual dependence, only the algorithm will be some-
what more sophisticated. With MINO systems we are unable to
forfn a deadtime given for all inputs by shifting input and
outiput signals with regard to each other. Therefore, it will
now be required to denote the deadtimes by zero symbols of
1). (For
that matter this is possible also with single output systems

certain coefficients of the matrix polynomial B(z~

but there the shifting technique has proved to be more sim-
ple.)
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Here, among the introductory remarks referring to the MIMOC
systems, we will present the technique for the masking (pro-
hibition) of the parameters not included in the estimation
and not wanted. (The same was shown for the SISO systems at
the beginning of Chapter 2.) Most of the off-line identifi-
cation methods of the multiple output systems require matrix
inversion. The place of the inversion, either an explicit
solution or an iterative method is consideredycan be demon-
strated as follows:

P=y (3-1)

where M is a symmetric square matrix, V a matrix of suitable
dimension. With MIMO systems only one column of the parame-
ter matrix P can be prohibited at a time, the single elements
not. This, however, is completely suitable from the theoret-
ical point of view, since the conditions of uniqueness[leB]
refer to the columns of P. 1f we now do not wish to estimate
the i-th column of the parameter matrix or, with other words,
we wish to prescribe a zero constraint for the coefficients
in the i-th column, then we can achieve this in the follow-
ing way. We make the i-th row and column of matrix W equal

to zero, thereafter we choose e.g. 1 for the Mii element at
their intersection. Thereupon we make the i-th column of ma-
trix V equal to zero. Thus we obtain absolutely zero for the
i-th ;olumn of P:

o - = = -
& 0| 0 = 0
E= s o e : P O PP OlO PR O = leee : PP (3—2)
0 0 0
L . = = -

For the practical use (programming) a mask matrix used to be
given whose dimensions are identical with P, and it contains
value 1 where we wish to estimate the element and O where we
do not. The expounding of simple examples can convince us

that this technique can in fact be applied only to the pro-
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hibition of columns and not to elements occurring in any

places.

Also for the off-line identification methods of the LILC sys-—
tem is valid the statement that if the parameter matrix P

has to be estimated on the basis of N conjugate u(t) and-x(t)
vectors by simultaneous processing, then we face even now
deterministic extremum seeking problem where the correspond-
ing loss function has to be minimized as a criterion in the
space of the numerous parameters of the MIMO system.

Hereinafter we will give a survey of the parametric identifi-
cation methods of the MIMO systems, all those which can be
considered as direct generalizations of procedures well-known
for SISO systems.
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3.1 Least sguares method

We get an uncorrelated equation error vector term [from the
general equation (1.2-26) of the discrete-time WILIO system
models under the condition g(z-l)il, i.e. possibility to use
the simple LS method. In this case—the system equation is

(-1)— 1
u (t=i) =
s B i

o=

y(t) = A, x(-1)+e(t) (Haded)

i

I ™

1

where the deadtime was not stated separately, but implied in
the parameter matrices gi’ This form is linear in the para-
meter matrices, i.e. it can be written also in the form

x(t) = Ppy £(uyx,t)+ e(t) (3.1-2)
where

Poy =B, ,Bl,...,B shiseaesd | (9,23
and

u,2,8) =1l (£ )y 0en,ul (5on )=y  (5=1),uu,=y (t=n)]= £7(t ).

1f we wish to estimate the parameters on the basis of N con-
jugate u(t), y(t) values, then it is reasonable to use also
here the system equation relating to N samples, similarly

to the SISC systems.

Let us introduce the notations

L =[l(1)7--°91(N)J’ (3.1-5)
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F =[2(1)yee0,2(N)] (3:1-6)
and
E =[e(1)ye.0, e(N)]. (3.1-7)

The joint system matrix equation

=
+
=

(3.1-8)

With the help of the operation vec (...) (see Appendix 3),
we obtain from (3.1-8) that

]
<
)
e}
—~
Hd
=

vec(Y ) P +E)= vec(gBA P) + vec(E) =

) vec(gBA)+vec(§), (3.1-9)

where we have used the advantage of the identity (A.4-3)
and I is a (gxq) unit matrix, where q is the number of
outputs. By applying the notations of (1.2-42) and (1.2—43),
according to which

x, = vee(Y) {3.1-10)
and
ey = vec(E) (3.1-11)

further w,, too, has a similar meaning, the equation (3.1-9)
will take the form

I, = & Pgy * gy (3.1-12)

I\

Here we have used the notations

= G(uyx,) (3.0-13)
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By, = vee (P,,) - £3.0=05)

Note that the detailed analysis of (1.2-44) leads to the sys-—
tem equation (3.1-12) also under the assumption of g(z-l)= 15
i.e. in consequence of the above

n . n "
% i _ g _
xy =[ H Sy(1)eByJay -[ = Sy(1)ea;uy + g

= Glwody)Rpy * &- (3.1-15)

It is deduced in Appendix 11 that even starting from vari-
ous modes of approaches the LS estimation of the system para-
meters can be obtained in the forms

(3.1<15)

: Ty =1
g, =[(E £°) Eegq]xm . (3.1-17)
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3.2 Maximum likelihood method

Alike the SISO systems the L parameter estimation of the

MIMO systems has conceptually been incorporated to a certain
structufe and this corresponds to the generalization of the
single output RSTROM model, thus according to (1.2-30)[108]

n n n
x(t)= ¢ B, ult-i)- x A, x(-1)+ 3z C, e(t- elt).
. T - l £ 2

i=0 i=l :

(3.2+1)
This system equation can be written also in the form
x(t) = Bgpo £(u,yae,t)+ e(t) (3.2-2)
where
Panc =[ BorByoweesByibyseeoshyilyoeeesGy]= [BgiByskc]

(3.2-3)

and

£(uyysest)=[ul(£)yeeepu’ (b=n )=y (t=1),...,=y" (t-n);
gT(t-l),...,gT(t—n)JT. (3.2=4)

It is deduced in App.5 that for MINMO systems the maximiza-

tion of the likelihood function is equivalent with the solu-
tion of the minimization problem

Q(Bgye)= o W(Bgy) = min '§(§BAC>|=

£BAC Ppac

. elt)el (1) (3.2~5)

Il 1 =

; ll
= miln N

Prac b
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Here A is the ML estimation of the A covarience matrix of
the source noise vector g(t). The calculation of A is given

n=>
0
=21~

z e(6)el(%). (3.2-6)

Herebelow we shall use the forms ordered in vectors of P

=BA
and its submatrices:
vec (Bpac) = Bpac, {3.2-7)
vec(gB)= Ry > (3.2-8)
vec(R,)= p, » (3.2-9)
vec(gc)= B - (3.2-10)

The minimization of the loss function (3.2-5) is a compli-
cated nonlinear extremum seeking task. As the cost function
is a more complex formation than a quadratic one in the pa-
rameters, so explicit solution can not be given for the mi-
nimum,only iterative processes can be chosen. As it yields
the fastest convergence speed in the quadratic sense, being
at the same time the most widespread method for the ML es-
timation of the SISO systems, we suggest now again the ap-
plication of the NEWION-RAPHSON procedure for the extremum
seeking. The canonical form of the algorithm is:

B (J+1)= p(J )—2_1[2(3 ')]dd[ﬁ(( J _)] ’ (5.2«11)

i.e. the gradient of Q and the Hessian matrix T are required
in every iterative step. Although the loss function (3.2-5).
has a physical meaning which can be well interpreted, it is
more practical to consider for minimization the cost function



- 110 -

~

Q( gBAc) =

o=

lnl /Z(EBAC)I (3.2-12)

whose handling for numerical calculations and deductions is
more convenient, at the same time, its extremum is equal to
the minimum of Q(EBAC) as the logarithm function is a mono-
tonous function. Thus our iterative algorithm will finally

take the form

aQ[ p( 3
p(3+1) = p(3)- 27 2(3)] ——[—B-(—J_)—] . (3.2-13)
d p(J)

(Here, of course, D = Dp,n = vec(gBACl)

Let us examine the generation of the first and second deriv-
atives. The deduction is given in App.l2 that the gradient
of the loss function can be calculated according to the fol-
lowing relation:

~ T

dQ(Pppg) N de () & _

—=BA _ ; ——— 1l es). (3.2-14)
dpgac t=1 = 9Rpyq

By introducing the notations

igxt %[QT(t),‘gl(t-l),..., gi(t-n)]r, (3.2-18)
2 () (8-0) ,5" (8-2) o0 0y ()T, (3.2-16)
£ (t)=[e"(t-1) seT (62}, 000 sg’ (-n) ° (3.8-17)

the system equation can be written also in the form of

e

(z7Helt)= y(t )+ B, £(t)- By 2, (t). (3.2-18)
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Hence a formal derivation yields that

<z‘1)§é1 = - £:(t)eI, (3.2-19)
RB -

{{]

g(z‘l)——‘T—— = ;i(t)co;qs | (3.2-20)

—r = - _i_‘z(t)@b;q. (3.2-21)

These moving-average filter equations already yield the mode
of calculation of the partial derivatives of the g(t). By tak=-
ing into account the relation (3.2-4), the three equations
can be reduced 1o solve one equation:

G + re(t) fT( t)el (3.2-22 )
z = - u e ® : c=
4 ” T = (BeXrE =q

Bpac

In order to interprete the filter equations, further to fa-
cilitate computer programming, it is worth expanding the
relations by the particular elements of parameter matrices.
By expanding the particular components we get that

2£(t) :
et | g u.(t) <« i-th row , (3.2-23)

J
By 3

ne
—
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~ m
0
_1y 2&(%) ‘
¢ (z71) = | z7®¥ y.(t) | <« i-th row, (3.2-24)
& 0A, . . J
kij .
0
r—o .
de(t .
g(z‘lyf;———l | wg® ej(t) « i-th row. (3.2-25)
Cxi; )
0 =
Here Bkij’ Akij’ Ckij are the i, j-th elements of the corres-
ponding B, A, C matrices. It is obvious from the relations

that

de(t) ose (t-k+1)
= (3.2-26)
"By

OBy 5

which saves substantial calculation. The same holds also for
the derivatives acccerding to Akij and Ckij' This means that
alike with the single output systems, it is also here pos-
sible to form recursively partial derivatives. The relations

in this respect are also presented in App. 12.

As the calculation of both Q and the gradient requires the
error vector e(t), it is reasonable to calculate it by a

recursive model with state vectors:
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_ - o i}
TR n 1-B 5| [x6-D
=S5 9 1 ... 0 4, 0-8 0 x(t)
x(t) = . s | ox (6-) 4] .. a(t-1)
. L4 . . . . e . E(.t )
-=n—1 (=J 2 e e ..l. én—l 9 - 21’]—1 9 | ]
L. 9 9 9 A, 9-8, ¢
— — - _J
(9.2-27)
and
g(t )= [L,05s0e5040]2(%) (3.2-28)

This latter equation pair can be considered as the generali-
zation of the equations (2.2-8) and (2.2-9).

An i, j-th element of the matrix of the second order deriva-
tives is obtained by the derivation of the i-th element of
the gradient vector according to the j-th coefficient

2 ‘P
p) Q(EBAC) N ZN 0 £ (t) ;\‘_l 32.(1:) &
on 9 = =
I ¥ t=1  ap, O
2
N t
vooazy o elt)
£ g e Eia (3.2-29)
t=1 - 8pi8pj

Here the first term makes the always positive 21 part of the
Hessian matrix, while the second one, the 22 part which some-
times changes even its definiteness. (Here the assumption
L=1I + 1
in a ccncise forms

was used.) The T, matrix can be expressed also .
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N e (t) a_y de(t)
Ty ® I e A —gp— (3.2-30)
t=l dppsg dRpac

As the construction of T, is very complicated with the MINMO
systems, it is reasonable to use the approximation T = T
which yields in the majority of the cases a satisfactory
result. Although the relations of the calculation of 22, are
given in App.l2., we did not use them in the practice because
of their complexity. This means that our minimization process
is an approximative NEWTON-RAPHSON technique. This version
ensures, far from the minimum, practically the same conver-
gence speed slows down with small samples, on the other hand
the requirement of the investigation of the definiteness does
not arise. For a large number of samples, the two versions of
the method are practically equivalent with each other, be-
cause by increasing N, 22 becomes asymptotically zero. (This
has been already pointed out with the SISO systems.) Note
furthermore that with the computer program written for the
method, the NEWTON-RAPHSON searching technique is also com-
bined with the determination of a suboptimal step as with
the ML method of the SISO systems but, this part of the al-
gorithm, will not be discussed here in detail.
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3.3 The generalized least squares method

The GLS method of CLARKE worked out for the SISO systems [ 33]
can be generalized also for NIMO systems, although this can-
not be performed by simple formal tricks, e.g. by the appro-
priate extensions of the dimensions. The main reason for
this is that the "whitening" filtration for the MIMO systems
is more complicated than for the SISO systems.

In the system equation (1.2-26) we obtain the GLS structure
of the MIMO system by introducing the matrix polynomial
g(z‘l) which formally satisfies the equality g(z‘1)= g‘l(z‘l)

2(t)= A7 (D B Nu(t) e (aTHET (2T e(t). (34341

>

The system equation can be written also in the rearranged

form

As the multiplication by E(z_l) cannot be transposed in a
general case either by g(z-l), or by ﬂ(z—l), thus we camnot
construct the filtered values of u(t) and y(t) in the way
usual and permissible with the SISO systems.

Let us write the equation (3.3-2) more in detail:

H(z™0) y(t )= g(?'l)g u(t-n)-

a E(z_l)él g(t=1)=eeo= I;I(z-l)_j_\_n y(t=n)+ g(t).

(3.3-3)

By utilizing vec(a B C) = (C'eA)vec(B), the terms in
,(3.3—3) can be written also in the following way:
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i=ml 325 eee (3.3-/4)
namely
vec[g(z_l)A x(t-1)] H(z-l)éi y(t=i), (3.3-5)

as the vec(...) of a vector is itself.

In a similar way we obtain that

H(z_l)B ult-i)=[ u (t—l yoH(z ]vec(B ) (3.3-6)
and

g(z'l)l(t) =[x T(t) e H( vec ; R (3.3=7)
Let H(A-l) be of the following structure:

E(z_l)= iq + Elz_l ¥ oe ot sz—k, (3.3-8)
then, e.g.

¥ (4-1)eB(z™) =[yg (6-1) I +eeor vy (S=1-)H,,

...,yq(t-i);q  gcu wb yq(t-i-k)gk]. (3.3-9)

It is easy to see that the matrix elements can be calculated
without difficulty. Let us apply the following notations for
the matrices of the filtered values
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XF(t—i)= ;LT (t—i)@_l___](z-l)a (3.3-10)
I, (t-i)= _gT(t-l) o (4 ‘l)a (3.3-11)
yp -1 =[x (t)ed @] vee(L ) - (3.3-12)

The system equation can be reduced by these notationsto the
form

XF(t) = QF(t) vec(go) +eoot Um(t-n)vec(gn) -

-1

_F(t—l)vgc(él)—...—ZF(t-n) vec(én)+g(t) (3.3-13)

or still more briefly
yalt) = Xp(t)pg, + &(t) (3.3-14)

g &

Here pgp, = Vec(gBA) holds also hereinafter, as well as

Zp ([ Up(t)yeeesUp(t-n)s ~Yp(t-1),..0,=Yu(t-n)] . (3.3-15)

1f N measurements are available, then by using the notations
T i T i

Wo =[ Xp(1)xp(2 )y eee,xp{i)] (3.3-16)

¥ iy

1y = Bl 1058008 Yyewng (B T (3317

d =[§T(l )y €7(2)yuuy e (m)] (3.3-18)

the joint system equation will be

EF = zl“ RBA o ,C_l, & (3-3-19)
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As in (3.3-14) — in consequence of the filtering - the equa-
tion error is white noise, we can use the LS method which
leads on the basis of the equation (3.3-19) to the well-known
explicit solution

FLow_ - ( 4.3-20)

The filtering equations (3.3-10) - (3.3-12) require by all
means the knowledge of g(z—l), therefore let us examine the
estimation possibility of the parameter matrices gi' Assume
the knowledge of EBA'

Rewrite the system equation (3.3-1) into the form

H (2 l)|_'A(z g(t)-B(z Hau(t)]= d(z")x(t) = e(t)  (3.3-21)

where

£(t) = A(z7D)x( t)-B(z"

u(t) = y(t)- Bgy Z(u,y,t)  (3.3-22)

denotes the equation error vector (cf. also the notations in
(3.1—2)!)- Considering the construction of g(z-l), the auto-
regressive r(t) will be as follows:

(t) = -H; z(t-1)-...-H, z(t-k)+e(t). (3.3-23)

This is a system equation linear in parameter matrices with
white noise equation error, thus the LS estimation of the
form (3.1-16) can be employed here too, i.e.:

(¢ G7) (3.3-24)
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EH =[§l’¥2,ooo,§k] Y (3.3_25)
B =[2(1),2(2)5.0,2(N)], (3.3-26)
G =[&(1),2(2)y.00,&(N)], (3.3-27)
and

. T T
&(t) =[-r (t-1),..., -z (t=k)] - (3.3-28)
As according to (3.3-22) r(t) depends directly only on EBA

and not on EH’ we can also now develop the well-known
iteration (successive approximation) technique of the GLS
method elaborated for the SISO systems. This means that
first the equality H(z _1)- Iq is assumed and thus ﬁBA (resp.
BA) is estimated. That is a simple LS estimation. Thereupon
the r(t) vectors are calculated, the matrices R and G are
constructed, thereafter the estimation Pd is dgtermi;ed
With the obtained E( l) the filtering is carried out and

the estimation Py, is updated.

It should now be stressed again that the basic difference
from the GLS method worked out for SISO systems consisted
now in that the multiplication by g(z-l), that is the fil-
tering, could not be replaced by other matrix polynomials.
This accounted for the need of the introduction of the spe-
cial filter equations (3.3-10) - (3.3-12 ).



3.4 Extended matrix methods

The extended matrix methods are virtually based on LS tech-
nique, so that their generalization for MIMO systems can be
simply achieved. As the method to be presented now can be
employed for every extended matrix method elaborated for the
SISO systems, therefore the generalization for MIMC systems
of only the SEXM method, as entitled to the most widespread
application, will be shown in detail.

The equation (1.2-30) of the MIMO system can be written also
in the form of

X(t)= ]__?BAC £(u,y,e,t)+ e(t) (3.4-1)
where

EBAC =[}=30’ 217---9}31,]’ él""’én’ glvoooygn] (3-1“‘2)
and

f.(.‘blaﬁyt) =[E,T( L) PR 92,1‘ (t—n); "Ir-r (t=1)qevos

—H

—y" (t-n)3et (6-1)y.eepel (t-0)]T = £(%). (3.4-3)

The joint matrix equation relating to the N samples is

Y= Ipac fyys * E- (3.4-4)
Here
EUYE = [2(1)9-°-9£(N)] (3.&—5)

furthermore ‘the definitions of Y and E are according to
subsection 3.1.
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Formally (3.4-4) is equivalent with (3.1-8), so that we can
employ also now the LS estimation of the form (3.1-16) ac-
cording to which

r'\T

s A |
Epac = ¥ Zyys Cuys Zuyz !

(3.4-6)

As £(u,y,e,t) and so Py also contain the values e(t),
which we do not know in advance, only an iterative solution
can be applied. In order to use (3.4-6) an e(t) series (e.g.
zeros corresponding to the LS estimate) have to be assumed
at the start, thereafter with the help of the estimated pa-
rameter matrix P g» @ new estimation can be made for the

=BA
e(t)-s in the form of

{Lswhs

e(t) = y(t)= Ppac L(wyx,e,t). (3.4-7)

The iterative process will be carried until the attainment
of a given accuracy as with the SISO systems.



3.5 The priori knowledge fitting method

As the PKF method worked out for SISO systems actually uses
the LS technique with certain constraints, it is much
easier to be extended to MIMO systems than the GLS or L
methods, where the generalization of the autoregressive or
moving average filtering caused difficulties [136].

The MINO generalization of the SIS0 system equation (2.6-1)

x(t) = A7 (2 Bz Hu(t )+ w(t) (3.5-1)

i.e. coincides with the MIMO models presented until now,
only it does not assume a separate noise model for the out-
put noise g(t). This system equation can be written also in
the form

y(t) = 2 B. u{t=1) - ; éi y(t=-i)+z(t) =
i=0 1=
= Bpy £(,¥,t) + r(t) (3.5-2)
where
n
(t) = ®(t) + 4 w(t-i). (3.5-3)

According to the PKF method, the parameters of the model
have to be fitted to the measured values, so as to fulfil

at the same time (as a constraint) the uncorrelatedness of
the output noise vector (as a calculated value) and the in-
put signal vector. Assume of the w(t) output noise, simi-
larly to the SISO systems, that it is ergodic, has =zero

mean and is a random stochastic vector variable uncorrelated
with the input vector [103, 136].
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It is easy to see that the uncorrelatedness of r(t) and u(t)
follows from the uncorrelatedness of w(t) and u(t) as r(t)
is the linear combination of the values E(t) of preceding
instants. Assume the contrary, i.e. the occurrence of terms
dependent from or correlated with u in the difference y(t)-
- Bpy £(u,y,t) yielding the residuals. Assume this depen-
dence to be linear, then according to our latter statement

the relation

x(t )—;)BA _f.(E.’.‘L’t) = r(t)+ Ek g(u,t)=

z(t)+ .EO K; u(t-1) (3.5-4)

had to be fulfilled. Here

P, =[ Eys Eyseeesk ] (3.5-5)
and
g(m,t) Luf(t),u’ (t-1) ,...,u’ (t-5)]". (3.5-6)

As a result of the identification we have to get a EBA es-
timation for which Ek = 0 or at least

Q(Bgy) = %[Vec(zk)JT[VeC(gk)]= % tr(Ei E) (3.5-7)

is minimal.

On the basis of (3.5-4), the joint matrix equation for N
samples

I - Epp £=

Lige]
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where

Yy =[x@).ee,x(V)], (3.5=9)
Balr(l)yesesz(®)]s (3.5-10)
F=[£(1),.00,2(0)] (3.5-11)
and

G = [ BL0YswanaBl )] 5 (3.5-12)

By formal comparison of the equations (3.1-8) and (3.5-8),

we can simply set the LS estimation according to (3.1-16)for

the auxiliary parameter matrix E

T T,-1
(

B = (L -2 B)G

|[ep)

G (3.5-13)

ga E)

Substitute now P, into (3.5-7) and perform the minimization
according to EBA' We get according to App. 13. that

T, ATy=1
)

=32
0}

Y6

(

ne2
| [ep]

(

ne2
na2

BA

2[F G

[fep]

no

which is an explicit expression for the estimeted parameter
matrix [136 .
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IV. ON-LINE IDENTIFICATION METHODS FOR SINGLE OUTPUT SYSTEMS

As already mentioned above, cff-line and on-line identifica-
tions have to be distinguishedé with respect to data proces-—
sing. We speak of off-line identification if the method is
based on the simultaneous presence of data. Frcem the point
of view of loss function minimization this is a determinis-
tic problem (for the same parameter vector the loss function
has always the same value for a given measurement data set).
On the other hand, the on-line method, by means of direct
contact with the process, updates the previous results of
the estimation according to the new measurements. With the
on-line strategies beside the estimeted parameters belonging
to the preceding samples, there are also required such aux-
iliary quantities, concentrating in themselves the informa-
tion of the preceding measurements and renewable by new meaS-
urements, by means of which the parameter estimates can be
corrected. From the point of view of the loss function mini-
mization the on-line methods are stochastic processes as in
the case of the same parameter vector the loss function can
have different values depending on the new data. The on-line
methed is called recursive if a procedure is obtained which
yields, after processing N related input-output data pairs,
the same result as the off-line evaluation of N samples.

As the on-line methods minimize loss functions, where the
value of the function is disturbed by stochastic disturb-
ances, these procedures can be discussed uniformly by the
stochastic approximation. From the various approaches [12,
37, 38, 47, 113, 119, 126 | the TZYPKIN approach will be used
as being the best applicable for identification tasks and
nearest to the engineering concept [37, 38]. One of the
possible general forms of the step-by-step solulion-formula’
of the stochastic approximation is the following:
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p(t) = p(t-1)+ k. [x(t),p(t-1)]- (4-1)

Here t, the subscript of the steps of stochastic approxima-
tion continues to derote discrete time with the on-line meth-
ods. p denotes the parameters to be determined, x the vector
of the stochastic observations. k, means the correction func-

—t
tion.

According to TZYPKIN [37], if the general step-by-step for-
mula (4-1) can be transformed to the canonical relation

p(t) = p(t-1) - R(t)&[x(t ),p(t-1)], =)

this latter can be attributed with an expressive meaning.
If namely we are facing the task

J(p*)= min E_ (Q[x(t )yp(t )]} (4-3)

p =
then the algorithm (4=2) ensures to find the minimumw if Q
is unimodal [90] and the convergence or weighting matrix
g(t) meets certain conditions. This requires the coincidence
gf g with the gradient of Q, as a realization, by p. Here
Ex{...} denotes the expectation according to x. The train
of thought can be followed also if it is converted the so-
lution of the stochastic extremum seeking problem (4-3) can
be obtained by iteration algorithms of form (4-2).

In this report the analysis of the necessary ancd sufficient
conditions of the convergence is not discussed, we refer
only to [37, 38, 90], according to which the maximum eigen-
value of g(t) has to tend to zero in a prescribed extent.
Although the stochastic approximation and its mathematical
background are covered by an extensive literature, only very
few authors deal withits identification applications, with
special regard to the convergence behaviours [90, 102, 113].
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In this subsection the applicability of the canonical algo-
rithm (4-2) for identification methods will be presented on
the one hand, and in some cases new algorithms also elabora-
ted by the use of formal analogies, on the other.

With the methods of the stochastic approximation (hereinaft-
er STA) the loss function to be minimized has the form

le(t)]= Efafx(t)n() ]y (4-1)

i.e. it is the expected value of the stochastic function
Q[g(t).g(t)]. In the majority of the practical cases, by as-
suming the stationary g(t) random process rather the loss
function

I[p(t)]= i Q[x(t )y (s )]} (4-5)

is applied. Here Mx{...} denotes the average value in time,

according to X.

The canonical form of the algorithm yielding the solution

[37]

dq[x(t), p(t-1)]

p(t)= p(t-1) -(t) 5 lo1] (4-6)
or in another way
b6t} (% )op(4ed) mei() aqQ[x(t ),p (t-1)] g

dp (t-1)

It is easy to see that the preceding equations are formally
completely identical with those of the methods employing the
gradient applicable for deterministic minimization tasks. As
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to their content, the meaning of the equations is, on the
other hand, of much greater importance. The equation (4-6)
means that although the loss function to be minimized is
stochastic and Q is now a stochastic variable, it is suffi-
cient, to utilize the gradient of a realization of Q (with
a given x(t)) for the minimum seeking. The conditions of
convergence have already been mentioned [37, 90].

In App.l4 it is deduced that the seeking method optimal in
quadratic sense can be ensured by the ccnvergence matrix

i =1
R(t)=[ 5 HIQ[x(3)p(t-1)]3]7" . (4-8)

j=1

Here H means the Hessian matrix formed from the second de-
rivatives of Q by p(t-1) so that

2 :
HIQ[x(3),p(t-1)]1 = i D (4-9)

ap (t-1)d p* (t-1)

Note that in R(t) the argument of p does not depend on the
running subscript j. '

In the following the on-line algorithms relating to the vari-
ous models and basic identification methods will be discus-
sed on the basis of the algorithm (4-6). This approach can,
in our opinion, be considered more general than the trans-
formation of the off-line methods into recursive form by
using various identities. If namely there exists a recursive
solution, then STA with the optimal g(t) yields likewise the
recursive on-line algorithm (cf.e.g.—the recursive on-line
LS method).
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It is important to remark that for the purpose of identifica-
tion not only the optimal STA algorithm, but also a conver-
gence matrix or scalar convergence coefficient of another
construction can be used. ln these cases the convergence can
also be assured but with different convergence speed. [37, 9Q]

Note further that a procedure completely identical with the
STA algorithm can be used also for solving off-line identi-
fication probtlems, but the task is here basically determi-
nistic and therefore the method, too, can be considered as a
version of the gradient methods.
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4.1 The on-line least squares method

We have seen in subsection 2.1 that the system equation for
the LS method has the form

y(t)= £ (u,y,t) py, + ()= £7(t)p,, + e(t). (4.1-1)

Thus choose for Q the quantity

Q@ = Q[xz(t),0(t)]= 2 e® (%)= 3[y(t)- £7(t)p,]° (4.1-2)

which corresponds to the least squares principle. Now
T
x(t)=[u(t),y(t)], (4.1-3)

which is of common construction for the SISO system with
the on-line algorithms [77}.

Determine the quantities required for the algorithm (4-6).
Form first the gradient vector:

dQ[x(t )ypy, (t-1) ]
dﬂba(t‘l)

= —£(8)[¥(t)- £ (t)p, (t-1)] . (4.1-8)

By deriving again the expression (4.1-&), we obtain that

a°Q[x(J) 1Dy (t-1)]

= 'T.= Uy ¥yd Tu,,’. i Lo
dﬂba(t-l)dng(t-l) L027(3)= 2wy, )2 (0y,9)- (4.1-5)

Thus on the basis of (4—8) the optimal convergence matrix
is

2(t) o ; ()] (4.1-6)
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We deduce in App.l5 that R(t) can in this case be recur-
sively formed

R (6-1) £(t )£ ( +)g (£-1) :
Leg (4R(E-DE(E)

R(t) = R(t-1)- (4.1-7)

where it must not be forgotten that g(t) is,on the basis of
(4.1-6), a symmetric matrix.

The on-line least squares method requires therefore the
step-by-step updating of g(t) according to (4.1—7), further-
more the form of the relation (4—6) is now by considering
(4.1-4)

Bpalt) = Bpg (8-1)+ B(£)ECE )y (s - (t)p, (t-1)] .  (4.1-8)

The off-line LS estimation for N data pairs is yielded by
the relation (2.1-7) in the form

Rpa(¥)= [ E5, (ME, (W)™ B (W), - (4.1-9)

The number of the processed samples was denoted here by N.
Assume now that the solution according to (4.1-9) is avail-
able. The equation yielding the LS estimation for the (N+1) -
th measurements u(N+1l), y(N+1) can be given by using £ (N+1)
formed according to (2.1-3),

_ T -1 .‘,T =)
By (N+1)=[ guy(N+1)guy(N+l)] By (M Dy, =

+£ (N+1) y (N+1)].

(a.1-io)
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On the basis of the Egs. (2.1-8), (4.1-6), (A.15-1) and
(A.15-6) we can write that

[gﬁy (W1) B, (¥+1)] .

(N)F (N)_-]_l _ EEEV(N)Euv( N)J"l _f_(N+l) f_T(N+1)[£‘T4 (N )EuX(N)]—.'

y'=uy
Lozt (D[ E5 (W)E, ()] 2(me1)

E:

(4.1-11)

Hence we obtain by the notation
R(N) =[EL (W)F_ (N)]™ (4.1-12)

the direct relation between the recursive least squares
method and the stochastic approximation.

It is deduced in App.l6 that the recursive form of (e d=100)

| -
Bba(N+l By (N +[F (N+1) y (N+1) ] 70 £ (1) [y ( (N+1) =27 (N 1) py, (N

(4.1-13)

formally exactly corresponds to the Eq. (4.1-8) obtained by
STA using the notation (4.1-12) if the g(t) convergence
matrix is optimized.

The following should be noted of the choice of the initial
values R(0) and Do (0). The numerical examination of many
authors [37 81] has found that the convergence of the on-
-line LS estimation is practically independent from the
starting point Rba(O)' On the one hand we can choose a ma-
trix calculated from a preliminary off-line estimate or
stored data according to the relation (4.1-12), on the other
hand, we achieve a satisfactory result also with a suffi-



ciently large matrix R(0) = const.].

The above presented equivalence of the recursive LS method
and the optimal STA algorithm means that by starting from
identical initial conditions p, (0) and R(0) the two methods
yield the same result.

In discussing the on-line LS estimation algorithm, we have
to mention the application of the forgetting factor, resp.
the various forgetting strategies [15, 47]. If, namely in-
stead of the matrix

[Les]
o

y(N+1)= (4.1-14)
£7 (1)

the expansion of the matrix guy(t) is formed according to the
relation

o pm+l)£uy(N)
guy(N+1)= (4.1-15)

£ (N+1)

then it will be possible to take the previous measurement
results into account with a weight less than 1 by applying
the forgetting factor 0 < p(t)< 1. If p(t) is independent of
time (o = const), then we have the so-called exponential for-
getting [130]. The appropriate choice of the time function
0(t) can yield, of course, manifold forgetting strategies.
The application of a constant p corresponds to a weighted

LS estimation achieved by the weight matrix i

ézl - diag<'ot_1, pt-g,...,p, 1>, 3 (4.1-16)

(Here subscript t refers to the size of Z.)
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In case of p = const it is easy to see [130] that in on-line
LS algorithms only the relation with the purpose to update
R(t) is modified

R(t)= = R(t-1)-

E 02

R(t-1) £(+ )27 ()R (t-1)
= = (4.1-17)
¢}

+ £7(t)R(-1) 2(t)

The application of the forgetting factor - by forgetting the
previous measurements - makes the on-line LS method in fact
adaptive, i.e. enables the changes having occurred in the
process parameters to be followed up.
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4.2 The on-line maximum likelihood method

On the basis of the loss function (2.2-3) of the off-line ML
method the momentary loss function to be applied for the on-
-line STA algorithms is .

1 2
o(t)= 5 e(t). (4.2-1)
The STA algorithm optimal in gquadratic sense requires the
gradient of Q(t) and the Hessian matrix. On the basis of the
relation (2.2-12) and the respective equations

de(t F R
= —£(u’,y (4.2-2)
dﬂbac
where
¢ P F

=[uF(t-l),...,uF(t—n);—yF(t~l),...,—y?(t—n);
eF(t-l),...,eF(tfn)]T. - (4,2-3)

Here

Bl )m = ul£)350L & Yo e T | .

u (t)= C(z-l) (t),y (t) C(z_l) y(t), (‘t) ———C(z_.l) .e(t)
(4.2-4)

Thus

galed gl (o) o 2P yn e ere),  (es)

-
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where

L
e(t) = y(t)- il (u,y9e,t)2bac (Q.Z-—ﬁ)
and the structure of f£(u,y,e,t) is according to (2.2-14).

According to the canonical algorithm (4-6) of the STA the
quantities according to the relations (4.2-5) and (4.2-6) are
to be computed on the basis of the newest (at the moment t)
observations and the preceding (i.e. known heretofore as
best) parameter estimates Ebac(t—l). The on-line verison of
the above discussed off-line methods of the discrete-time
models can - apart from the LS method - be elaborated only

by certain approximations just by reason of this prior fact.
The problem is caused by the occurrence of the parameter-de-
pendent time function in the momentary gradient (and the same
way, of course, with the Hessian matrix). Then namely beside
the current parameter vector, the complete realization of

the given variable had to be calculated by starting from the
initial conditions of the system in order to obtain the theo-
retically exact values. In 1lhe present case the values
uF(t),yF(t),eF(t) and e(t) had also tc be calculated by the
parameter vector gbac(t-l). This, on the other hand, would
require the storing of all previous measurements which is
obviously impossible in the on-line procedure, As an approxi-
mete sclution a method can be chosen according to which the
above-mentioned auxiliary quantities are generated recursi-
vely (this can always be done, for they can be written with
linear difference equations) and in every step the parzmeter
values Rbac(t_l) will be considered only in such parts of

the recursive equations which relates to the updating. 1f

the on-line procedure is really convergent, then this type

of approach will be asymptotically perfect and the algorithm
tends toward the canonical algorithm of STA.
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The algorithm of the on-line ML method takes the following
form according to our assumptions up till now

Roaol ¥ Rpeo (v-1)+B()E(T 5" e, ) w()-2 (w,y,e,)p,, (-],
(4.2=7)

Here the updating of the auxiliary quantities is made as fol-
lows (cf. the equations in subsection 2.2):

n "3 I 1 l.\ F
i(ur9yFyebvt)= 21[Ebac(t—l)]:iur,y ’ € 9t‘1)+ ﬁl(t) (4.2-8)

which can be detailed alfter (2.2-26). The e(t) can be cal-
culated recursively or the basis of (2.2-8) and (2.2-9).
Also in these relations Ebac(t_l) has to be used.

Thereafter let us investigate the formation of the matrix of
the second derivatives. It can be established from (2.2-27)
that here the generation of the parameter-dependent auxili-
ary quantities is also needed. Therefore we have to use the
same approximations discussed with the formation of the
gradient, i.e. only the updating of the auxiliary quantities
is made by the last estimated parameter values.

New difficulties are met when forming g(t) on the basis of
the second derivatives. The Hessian matrix according to
(2.2-27) cannot be formed recursively, only its first part,
the T, determined by a diadic sum. When calculating the mo-
mentary second derivatives, it is therefore reasonable to
take advantage of the approximetion

2
giat))= & o(t) . de(t) .de&t)
dPpac IBpac ias Prac
= £lu ’yr’eb’t)ig(uF’yF’eF’t)' (4.2-9)
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Thus

F _F F F F )J-l,

s F « YL :
g(t)=[:_z 2(u¥yy s 1) (u ,y se ,1 (4-2-10)

i=1

which can already be formed recursively if the vector gbac(t-l)
is considered only for the updating of the recursive equation.
Thus, on the basis of the formal analogy with (4.1-7)

B (5-1) £(u®,y7,e",8) 27 (0¥ 5", e" 1) R (8-1)
t

R(t)= R(t-1) -
N & 1+£?(quyFyert)g(t-l)f(uFoyF;eEv )

(4.2-11)
; : : F _F F
As in this relation only the dependence of f(u ,y ,e ,t) on
Ebac(t-l) is assumed, here also the equation (4.2-8) is used.

Our approximate assumption relating to the Hessian matrix
holds also asymptotically as for infinitely large samples

T tends with the real parameters toward zero, as it was
already mentioned. In spite of this it is possible, to form
the convergence matrix (4.2-11) according to the principle
described in 4.3 in connection with on-line GLS method in
order to approximate better the exact Hessian matrix (cf.
equation (4.3—20)), the required calculations are, however,
much more complex here. The main difference comes, of course,
from the calculation of W(t). With the on-line GLS method
only e(t) is needed to form W(t), since u(t) and y(t) are
available. On the other hand, with the ML method in conse-
quence of the construction of I,, values uFF(t),yFF(t) and
eFF(t) according to (2.2-31) -(2.2-33) have also to be gener-—
ated.

To our best knowledge, we have been the first to publish the
detailed discussion of the approximations needed for the re-
alization of the on-line ML method in [17] in Hungarian.

.
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4.3 The on-line version of the generalized least squares
method

The GLS structure assuming the special autoregressive noise
model and the related CLARKE’ off-line estimation method
were discussed in subsection 2.3. The on-line identification
algorithm for the GLS structure was elaborated by HASTINGS-
-JAMES and SAGE[:68, 123]. The system equation (2,3-1)can be
written in twoequations linear in parameters:

yi(t)= £7(uF,y%,t)p,, + e(t) (4.3-1)
and
r(t)= —g%(r,t)p, + o(t) O (4.3-2)

(cf. the relations (2.3-5) and (2.3714) with the related
notations and definitions.)
Here

r(t)= y(t)-iT(u,y,t)nba- C (443-3)

The equations (4.3-1) and (4.3-2) are linear in parameters
and correspond formally to the system equation (4.1-1) ap-
plied with the LS method. Thus, considering the loss func-

tions

Qy ()= [ (5)- 27 (uF, 7, 8)py,1° (4.3-4)
and

Q,(t)= 2[x(t)+ g"(r,t)p, ] (4.3-5)

which can be formed now also according to the LS principle,
the optimal canonical algorithm of the STA can be applied,
namely
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p(t)=p, (t-1)+ gl(t)i(uF,yF,t)[yF(t)—iT(uF,y?t)gba(t—D],

gl(?‘lli(ub,yF,t)ir(uﬁ,yI,t)gl(t-l)
gl(t)= Rl(t-l)- m P \ — )
1+£l(uF,yF,t)gl(t—1);(u.,y“,t)
(4.3=7)

Eh( t)= Q_h(t-l) - Lig( t)g(r,t)[l"(t )+gT(r,t)_p_h(t—1)]) . (4.3-8)

P (e T g i y
(t)= 8,(t-1) - (Ve te () ()

1+5T(r,t)52(t—l)g(r,t)

(4.3-9)

These equations are to be used together with the relatiouns
(2.3-4) resp. (4.3-3) applied for the formation of yF(t),

uF(t) and r(t). The sequence of the application of the e-

quations follows accordingly.

The on-line GLS method uses the outputs of a moving-average
filter which is more advantageous than the autoregressive
filter of the L structure in the sense that after the col-
lection of data in a required quantity these filter equations
can be started without the uncertainty of the initial state
as the memories of the filtlers can be filled up. On the oth-
er hand, with the autoregressive filter the initial state is
usually not known. The moving-average filter is more advan-
tageous also from the consideration that in case ol missing,
data the on-line parameter estimation can be continued by

the filling up of memory vectors and restarting the filtering.
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For the on-line GLS method - as in general for methods where
additional auxiliary quantities have to be calculated - it 1is
especially important by which time the estimated parameters
get in an acceptably close neighbourhood of their real values.
In itself the on-line LS algorithm is practically convergent
independently from the initial value. On the other hand, the
on-line GLS method given by the equations (4.3-6) - (u:3-9)

is very sensitive for the start of the algorifhms, viz. in

the following sense. The relation between the on-line updéting
of the estimation 2pa and 2y is actually given by the filter
equations (2.3-4) and the relation (2.3=14). Hence it follows
that if the estimated values of 2pg and D, are not sufficient-
ly exact then the error can accumulate easily through r(t),
the filtered y'(t) and uF(t), i.e. we get a divergent proce-
dure. In the practice this problem can usually be eliminated
only by using - after the start of the algorithms for a given
time - the simple on-line LS method instead of (3.4-6), i.e.
the values y(t) and u(t) instead of yF(t) and uF(t). During
this, of course, r(t) and the estimation of 2y is calculated.
At a given moment, on the other hand, the LS method is al-
ready replaced by the GLS method, by taking advantage of the
values of the filtered variables. In the majority of cases a
convergent algorithm is obtained this way, but for the time

of the LS-GLS replacement any statement can be made only on
the basis of experience. Another useful advice is to delay

the start of the estimation of 2y with respect to the LS es-
timation of p,.  in order to obtain r(t)-s with sufficient
exactness. Therefore the on-line estimation of p, is practi-
cally situated between the LS start and the GLS start.

In particular very noisy systems it can be useful if for the
calculation of r(t) at any time not directly p, (t) but its
averaged value, i.e. filtered by a first-class filter is used.
By this, the disturbing fluctuations in the parameter estima-
tion can be reduced to a great extent. The equation of such

a rilter for the input p, _ and output Dy, of the filter is
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pr ()= (1-0)p, _(t )} ap_ (t-1). (4.3-10)

(0 <o >1)
Here the "time constant" of the smoothing can be set by a.

The Eqs. (4.3-6) - (4.3-9) minimizing the average value of
the two functionals in the separated subspaces of Ryg and Ry
could have been set on the basis of the properties of Ql(t)
and Qz(t) that for a fixed Bh?Ql(t) is linear in parameters
D, and Q,(t) in p, for a fixed p, . Otherwise, Ql(t) and
Q2(t) represent actually the same loss, only with respect to
the two subspaces.

It has to be mentioned that there is possibility for mini-
mizing the loss function Ql(t) in the space of the joint pa-

rameter vector, too:
iy 24T
Bpan ~© [Eba’gh] . (4,3—11)

Since the on-line solution of HASTINGS-JAMES performed the
minimization with optimal steps realized by subspaces [123],
it is obvious that the optimal steps feasible in the whole
parameter space yield greater convergence speed.

In discussing the on-line ML method, it was already explained
that because of practical considerations it is impossible to
update the auxiliary quantities in the gradient and Hessian
matrices beginning from the starting point of the observa-
tions, accordingly both now and later on the parameters es-—
timated at last will be taken into account for the updating
of the recursive relations. This circumstance makes no great
problem with the GLS structure as for the values uF(t), yF(t)
formed by moving-average filtering, there is no need of re-—
calculation, the above bound has to be observed only with

the calculation of r(t), resp. e(t).
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On the basis of the Egs. (2.3-21) - (2.3-23), resp. (2.3-24)

= -~ £(uf,yT,r,t)elt ), (4.3-12)
4Rpan

where the construction of ;(u?,yF,r,t) is according to
(2,3-26) and e(t) can be obtained by the following equivalent
calculation methods:

e(t )= yF(t)fiT(u?va’t)Eba -

= r(t)+ g?(r,t)gh = y(t)-‘iT(u,y,r)gbah (4.3-13)

(ef. relations (2.3-5), (2.3-14) and (2.4-1)). The on-line
estimation of Dpan ©8n therefore be carried out on the basis
of (4-6) according to the equation:

Ebah(t)= Ebah( -1 + R(t )f(u 9y 3Ty t (t (4.3—1&)

In connection with the Egs. (2.3—28), (2.3-29) ana (2.3—30),
on the basis of which the second order derivatives can be
calculated, we get the following result (by using the no-
tation (4=1)), i.e. the Hessian matrix bclonging to the t-th
sample can be formed according to [53]

Fort) e (uh vy, ) W(t). (4.3-15)

H{Q, (%)} = £(u’,y
Here !(t) is of structure of I, in (2.3-30) and consists of
elements of types -u(t_i-j)e({) and y(t-i-j)e(t ) in the non-
zero submatrix places according to the Egs. (2.3-30) - (2.3-32)
The construction of W(t) or I, means that the seeking in the

subspaces B and Eh independently from each other is per-

formed optimally according to the Egs. (4.3-6) - (4.3-9),

while in the joint Prah parameter space the steps done in

the two subspacesare already in interaction.
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Unfortunately, the formula (4.3-15) of the instantaneous
Hessian matrix has the consequence that the convergence ma-
trix g(t) can no more be formed recursively. Following (4-8)
let us think of that now

P _F

R t)= B7L (-1)+£(aT, 5%, ry 0) 2T (uF 5T, r, 0)+

U 4y 4T,t W(t)) (4-3-16)

which is already not the custcmeary diadic sum.

The problem is caused by the presence of g(t) and the recur-
sivity can be achieved only by certain approximation. (Al-
though it must not be forgotten that ihe particular construc-
tion of'g(t) reduces the calculations through its diadic re-
solution compared with a matrix of general construction.)

Let

R (t)= R_l(t)+ w(t), (4.3-17)

then g*(t)can be updated according to the relation already
known:

gx(t-l)ﬁ(urayb,rit)iT(uF9yF9r,t)g (t-1)

R (t)= B (t-1)- =
- . T ®* T
1+ (u,y ,r,t) B, (t-1) £(u™,y",r,4)
(4.3-18)
Then we obtain from (4.3-17) that
-1 -1 : ; & -1
B(t)LagH ) w(e)] ™ = B ()L ¢ we)R, (£)]h, (4.3-19)

Approximate now the second term of the right side by its
first order matrix serie:

R(t )= 5x(t)[; - W(e)B,(t) ]= By (t)-rbt)u(t)u (t). (4.3-20)
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The applied approximation enatlecd us to cttain not very com-

plicated relations, while the recursivity still holds.

Nith respect to the applicatiorn of the equation (4.3-23) it
has to be remarked that this relation - because of its
strongly approximeting cheracter - can change the positive
definiteness of R(t) which cn its turn entails the loss of
ceorvergence. The;erore the relevant investigations (e.g. thre
signs of the elements in the main diagonal) have to be made
in every step and if a negative definiteness arises, then
only g{(t) hes to be used as R(t). This is feasible also be-
cause - as already pciuted out in the preceding chapters,
while discussing the off-line methcds - as the rumber of the
processed samples grows the effect of 22 on the identifica-
tion diminishes. This follows also from (4.3-20), since si-
multaneously with the transition & (t)-0, g (t)~&(t) also
comes about. This is the fact why the approximete first part
0of the Hessian matrix is used - in particular with the ex-
tended matrix methods - for the formation of the convergence
matrix, the error due tc the approximation is decreasing
asymptotically, on the other hand the part correspording to
21 car always be constructed recursively, being a diadic sum.,
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4.4 On-line extended metrix methods

The extended metrix methods discussed in subsection 2.4 are
based on the observation that the system egquations assuming
various noise models can be written in a form linear in pa-
rameters. This fact enabled the off-line LS method to be
used almost exclusively although because of the application
of variables which cannot be directly measured (only estima-
ted or calculated ) only iterative solutions could be chosen.
Over and above the preceding remarks the on-line versions of
the extended matrix methods also utilize the fact that the
Hessian matrix of the loss function asymptotically agrees
with its first part, the matrix T

=1°
other hand, a diadic sum making the recursivity, discussed

This matrix is, on the
with the LS methocd, possible. This, of course, does not ex-
clude that we count also here, alike the solution investiga-
ted at the on-line GLS method, with the exact second deriva-
tives, but in this case we will lose the advantages of the

recursivity.

The first extended matrix method (FEXM) related to the GLS
structure was elaborated for the system equation

y(t)= £ (u,5,7,8) pygy, + e(t) (4.4-1)

obtainable from the Egs. (2.3-1), (2.3-3), (2.3-5) and
(2.3-14) [120]. Here

f(u,y’r’t)=[u(t_l) ’-°',u(t_n);-y(t—l) goeeg=y (t—n);
1) 5 s ex=r f=n] ], Ty

where r(t) is accordiﬁg to (2,3—14). The algorithm of the
on-line FEXM method (following the on-line LS method) is
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Ebah(t )= P.ba‘n(t—l)"' E(t).f_(u’b’,fyt)[ y(t)— iT(u,y,I‘,t)Ebah(t—l)J.
(4.4-3)

R(t) is updated by £(u,yyT,t) using the relation (4.1-7). By
comparing (4.3-14) and (4.4-3), it is easy to see that the
two methods lead to not identical results. The difference
comes from the fact that there is i(uF,yF,...)instead of

£(u,yyees) in the real gradient of the loss function

¢ = %[y(t)- ET(u,y,r,t)p_bah:F (4.4-2)

as we have already seen with (4.3-12). Beside the approxima-
tion of the second derivatives the FEXM method applies also

an approximation of the firet derivative making the calculation
eacier as we can get the Eq. (4.4-3) only by neglecting the:
dependence of r on p,_, in Q according to (4.4-2) .

The above idea has to be followed essentially also in pre-
senting the on-line version of the SEXW method [130, 131].

The SEXM method refers to the Eq. (2.2-5) which gives the ML

structure in a form linear in parameters:

y(t)= i?(u,y,e,t)nbac + e(t). (4.4=5)

Thus the equation of the on-line algorithm is now:

Rbac(t)= Diac (t-1) +g(t Y (u,y,e,t)[ y(t )—ﬁT(u,y,e,‘t)‘p_baC(t-l)],
(4.4-6)

where R(t)isupdated by £(u,y,e,t) according to the relation

(4.1-7). e(t) is, of course, not measured but it is now only
an estimated resp. calculated value:

e(t)= y(t)-2 (u,y,6,t)p,, (1) (444=7)
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Here Bywo is taken at the t-ih moment because it is the new-
est estimate and gives also for e(t) the most accuratc result.
The same approximations are valid for the on-line version of
the SEXM method, as refer to the on-line FEXM method. Thus on
the one hand the relation (4.4-6) does not use the real gra-
dient because we disregard the dependence of e(t) on Dygg? OF
the other hand, only the 21 part of the Hessian matrix is
taken to form g(t).

On the basis of completely similar considerations, the on-
-line estimation algorithm can be given also Yor other, qua-
silinearized structures discussed in subsection 2.4, since
every method could be formally reducec to the LS estimation
by the linearization in parameters. The approximatlions hold,
of ccurse, also hereinafter.

Although this report does not deal with a more detailed ana-
lysis of the above methods, we note that the preceding app-
roximations relate to the algorithm of STA optimal in second
order sense as a successive approximative solution to the
gradient technique.
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4.5 The on-line version of the instrumental variable methcd

The on-line version of the instrumental variable (IV) method
can be practically derived from the off-line solution (2.5-€).
By following the deduction of the recursive ver51on of the
LS method [143] we get the algorithm:

p,, (%)=, (6=1)+ 2()2(u,v,8)[y(t)= £ (u,y,8)p,,(t-1)],
(4.5-1)

where

£(u,y,t) =l u(t=1) yeoe ut=n) =y (t=1),cuu,=y (t-0)]" (4.5-2)

has the usual form and

T (8.5-3)

Flusvyt) [ (t-l),...,u(t—m;—v(t—l),...,-v(t—n)]
Here v(t) is the calculated (estimated) value of the output
of the noiseless system:

m

v(t)= 2 (u,yv,1)Rpp( ) (4.5-4)

As following from (2.5-6) now:

L 5
t) [ . E(u,v,i)f (u’y’l)] (4.5-5)
i=1
therefore the recursive relation updating g(t) will have the
form:

2(t)= R(t-1) - B0e-1)2(u,v,0)2 (g 0D BAL) . (4.5-6)
- 1+£ (u,v,t)g(t-l)i(u,y,t)

In consequence, R(t) here is not symmetric!



= 150 -

V. ON-LINE IDENTIFICATION METHOLS FOR WMULTIPLE QUTPUT
SYSTEMS

The proportions of the preceding sections indicate our stand
point already mentioned according to which in the Introduc-
tion under the present technical conditions, we attribute a
much greater practical importance to the off-line identifi-
cation methods than to the on-line ones. All this holds in
particular for the multiple output systems.

As also with the estimation methods of multiple output sys-
tems, a scalar loss function has to be minimized, in dis-
cussing their on-line versions we could apply also now the
canonical algorithm of the STA, but as the well applicable
on-line identification algorithms of the MIMLO systems cor-
respond to the recursive solutions of the LS-type methods,
hereinafter we, too, will follow this approach.
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5.1 The on=line least squares method

The generalization of the LS method valid for the MINO sys-
tems has been discussed in detail in subsection 3.1. The ex-
plicit estimation obtained for the parameter matrix PBA of
the system equation (3-2) is according to (3.1-16)

Ba=XE (22) 7, (5.1-1)
where

Y =[y(1)yeee,x(N)] (5.1-2)
and

Boal2(1); 000 2(N)] . (5.1-3)

The definition of f£(t) corresponds to (3.1-4).

By analyzing the relation(S.l—l) in detail, we can obtain a
recursive solution. Let us write the off-line LS estimation
for the case of containing N and N+1 samples:

~ ! “ll\ _l

Ppa( )= Iy Iy (fi: :(-'.N) (5.1-4)
P (N+1) = ¥ Pl (g rr ) (5.1-5)
=BA =N+1 =N+1 ‘=N+1 ~N+1 i
Consider further that

Byep =L Eyps 2e1)], (5.1-6)

as well as

I,y =|:ZN’ I(N"'l)]) (5.1-7)
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thus
T B T fl n .
Pues Byey = By By + 2lma)z (mal, (5.1-8)
and
T T T,
Inel Ener = Iy Ey x(N+1) £7(N+1) . . {541-~9)

Under the diadic extension according to (5.1-8) the recursive
equation is

F (p. ¥)-1 _&n ) T 20D £ () (gy By)

(Eyer Ined) ™ =y In) - = i
Le£™(Ned) (By By)™ £(w+1)

as it was deduced in App. 15.
On the basis of all these, the recursive form of éBA N+1) is
A T K |
Ppa (%D = Yy1 Bypy B Ened) ™ =

T 1 L o -1
=[ZN EN + .‘L( N+1)£ (I\"",l)][(ﬁ_l —IJ .]

qT -l o ’\T —l
By B 2(w+1)2" (ve2) (2 Ey)

142" (8+1) By I 2(841) (5.1-11)

Hence with the notation

= T y-1 ,
Bue1 = (Eper Enen) (5.1-12)
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we obtain

>

BA(N )+ ‘y:(N+l) i‘l‘(l‘Hl (N).‘Q(N’*l) ET (N"‘l)g

(1) BA EN+1”

o>
I
b

| Eg)

BA ) Bye1 -

I
i+d >

pa (1) = B (W) 2 (0e1) ] £ (§+1')§N+1-

(5.1-13)

The great formal similarity with the algorithm of the on-line
LS method applied for the single output systems can be recog-
nized easily. The updating of the convergence matrix §N+l =
= it(N+1) can be performed by the recursive relation (5.1-10)

in the same way as for the on-line methods of the single out-

put systems. [109].

The above presented on-line LS algorithm of the multiple out-
put systems can be applied without any particular change to
the realization of the on-line version of the GLS or extended
matrix methods. As also these methods refer to the system
equations linear in parameter matrices, the formal general-
ization is very simple to be achieved, so that we will not
deal with their detailed discussion.
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APPENDIX



Appendix 1.

in this section our statements concerning the structural
problems of the MIMOC system equations are summarized from
identification point of views.

The inner construction and structural problems of the state-
-space description cf multiple input multiple cutput dis-
crete-time, linear dynamic systems have already been dealt
whith a great number of authors who achieved valuable, basic
theoretical results [ug]. Thus the most important canonical
forms of the state equations of the liC systems, the condi-
tions of description in state-space of minimal dimension,
the requirements of controllability and observability are
already well-known.

While with the methods of control or state estimation (fore-
casting and filtering) the authors usually prefer the state
space description form, with the identification methods, the
models given by ordinary or vector difference equations are
much more frequent. This certainly can te explained by the
simpler form of the dependence of the output signals Irom
the parameter vector ( T matrix). The procedures which
transform a state space description to a vector difference

ejuation and vice versae are well-known in the literature.
[s2, 10€].

Prom the aspect of identification, the rules of observabi-
lity and identifiability of the WINC systems are the most
important regarding the theory. From the point of view of
the practical identification technique, however, the con-
struction of the 0l observability index and the theorems
relating to them, are considered as most essential. lere
we refer to the theorem - most clearly presented by Rowe -
according to which necessary and sufficient condition of
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the unambiguous identification of the coefficient matrices
of a vector difference equation is to have at least 01 num-
ber of nonzero columns among (in the) metrices é4 [}08].
This involves from the poini of view of the identification
technique that in the case of matrix elements estimated as
non-significant, the omission of the whole columns is prac-
tically or theoretically justified.

As the above can be considered known from the literature,
hereinafter we make such independently formed statements
about MIMO systems? structures suitable for identification
which have 2 direct relevance to the computer processing of

measurements.

Consider in Fig. A.l-1] the discrete-time, linear, dynamic,
MIMO system with an m-dimensional input vector u and a q
dimensional output vecter v. Disregard first the interaction
of the outputs, i.e. every input signal should have an ef-
fect upon every output, but the latter ones not upon each
other. In this case the dynamic property of the process can
be described by a discrete transfer function matrix ﬂ(z‘%)
whose Wij(z-l)—th element represents the effect of the j=th
input signal upon the i-th output signal. In a general case
also the numerators and denominators of the Wij-s ere dif-

ferent:
= ¢
| ”. . el
£1,(277) Prple™)
6,270 T Gy (o]
11 Gy (27)
!V_:(Z—l)= - .
s I |
}.‘ 1(4 ) L m(". )
= T = T
qu(z ) qu(z, ) (A.1-1)
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By allowing certain redundancy in the particular elements,

after reduction to a common denominator, we obtain that

E(z-l) -

-1
Bll(z.) oo B

_—
A(ZTB .

Bq(z‘l) .e. B

—

-1
lm(Z )
: = rl_l)— Q(Z-.l))
G
q ] (A.1-2)

where Bij(z_;)-s are polynomials (without denominator). On

the basis of this latter expression the vector difference

equation of the system can be written as:

(t)

Z

u(t-1)-

[l

1+ a z-l+ +a_2
1 LR I ] n

v(t-i) =

(a.1-3)
LI AT, (a.1-k)
S (A.1-5)
(A.1-6)
(A.1=7)
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The above train of thought serves to demonstrate that if we
can neglect in advance the interaction of the outputs, the
vector difference equation of the system can always be sought
in the form of (A.1-3) by assuming special diagonal A, co-
efficient matrices. In this case the transfer functions re-
ferring to the dependence result directly in the form
Bij(zfl)/A(z-¥). As this structure allows certain redundancy
in the elements of the transition matrix, their further exam-
ination for possible reducibility is advisable. This form is
particularly advantageous for the estimation of structure
(order of the system) because practically only n has to be
changed. Under the preceding assumption, these same assump-
tions refer to the noise model too, of which we can easily be
convinced, for also there A( ) is the denominator. This is
similarly true for the whole noisy system, as according to
the Eq. (1.2-26) the measured noisy output signal vector re-
sults from the superposition of the process and the noise mod-
el.

Consider now Fig. A.l1-2, where the interactlon of the output
signals is taken into consideration by a 9 ) transfer func-
tion matrix. On the basis of the Figure

v(t)= B(z7Hu(t)+ glz7Hx(t), (A.1-8)
whence
w(t)=[ 1 -9(z"H] ™" plzHult), (4.1-9)

i.e. by comparing with Fig. A.l1l-1 the system can be substi-
tuted by the equivalent function matrix

w(z™) =[1 - g(z"H]™* p(z™) (A.1-10)
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u(t) v(t)
— B ) EE——

Fig. A.l1l-1

Figo Anl-2
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Let be

1 -g(z7h) = —2— g(271) (A.1-11)
F(z™1)

and

p(z7t) = —2—k (z71)- (A.1-12)

H(z-l)

The transformations according to these two assumpitons, can
always be carried out. By these notations we obtain from the
Eq. (A.1-9) that

Fﬁ'-‘lT g(z ) y(t) = Jl-:y)- k(z™")u(t) - (A.1-13)

By introducing the notations

H(z—l)g(z-l)=

g(Z‘l) = ;O+£1z‘1 * eee = L[I+ L(z™)]
(A.1-14)
and
F(z_l)g(z-l)= ¥(2_1)= N+ glz-l Py (A.1-15)

and assuming that éo is regular, we get the form

¥

ct

w(t)= L7t w(z™h)

) 0 3D 0)h (o

)x(t)
(A.1-16)

for the system equation. It is easy to see that this equa-
tion shows a complete formal identity with the Eq. (4.1-3).
The deduction shows that in this case the matrices éi have
no special construction (no form aig), further that the
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g(z_l) and g(z_l)matrices can not be reset from the vector
difference equation (A.1-16) and the equivalent (A.1-10) cor-

responds formally to the general equation

w(z'1)= é"l(z‘l)g’ (z‘l) (A.1-17)

and not to (A.1-2).

The reduction to a common denominator can be, of course,
achieved also with the (A.1-16), resp. (A.1-17) transfer
function matrices and then again we get éi matrices of spe-—
cial construction, but the memory represented by g’(z_l)
increases. Our statements can be extended to the noise mod-
el, too, and as a result of similar considerations we get
there a general form é’—l(z—l)g’(z—l).
The above can be summarized as follows. Either, the outputs
have an interaction or not,a MIMO system in a general case
can be written by a vector difference equation of general
construction from whose coetfficient matrices the original
(real)structure cannot be unambiguously reset. (Let us think
of that in the i-th output signal a given dynamic change can
be ensured in a direct channel from the j-th input signal,
moreover via the interaction of the output signals there are
a lot of other ways, too. This questionis closely related to
the fact that the state space description of a system and
thus its inner construction also is determined only to the
extent of a linear transformation). In both cases there ex-—
ists also a vector difference equation with special con-
struction (with diagonal éi matrices), (perhaps with a great-
er memory, i.e. model order), which, on the other hand, does
not contain the interaction of the oatputs.

The identification therefore ensures essentially an input- .
—output equivalent model without clearing the relations of
the outputs. On the other hand, we can mention as its advan-
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tage that tﬁe prescription concerning the observability in-
dex can be simply respected by special éi matrices. This in-
volves that the search of structure in n contains the search
in observability index, too.
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Appendix 2. [6, 7, 145]

Definition:

The following matrix operator is called a generalized
TOEPLITZ matrix:

0
0
nl A 0
Sy(4) =|= =, (A.2-1)

0 A

0 0 evo0 A Oaao.D

= = = = = ik
—
i blocks

R N e
N blocks

i . .
and Sy(4) = 0, if i 2 N.
If the size of matrix A is mxn, then the size of §§(A) is
N.mxN.n. The generalized TOEPLITZ matrix is easy to de defined
also by the KRONECKER matrix product (cf. A.3).

(A.2—l) can be rewritten in the form és:

sn(a) = sy(1) o4 . (.2-2)
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Here g;(l) has a size of NxN and is defined also by (A.2-1),
so that units are only in its i-th row under the main diago-
nal, its othér elements are zeros. §E(l) is called on the
basis of the fo}lowing simple example a shift matrix and de-
noted only by §1. Let namely be

0O 0 O
§§(1)= §1 =85 = 1 0 0 (A.2-3)
0O 1 O
and
e T
Y1
‘B
x=[y ¥, 93] = |v]. (A.2-4)
¥
3
L~
Then
1 0
§3(1)l =5y = vi | s (A.2-5)
g

so that the meaning of "shifting" is easy to be followed.

The most important identities valid for the generalized
TOEPLITZ matrices will be presented in brief. Let

n
L4
Iy = * Sy(Ly) (&.2-6)
i=0
and
n
ey
gmﬂ:i Sy (M) (A.2-7)



e

—
N

—
1]

o~ =

[\

i

1=
—~
N
p—
n
W=
[N
W=

1.
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L
) kg
Lz)x W(z)= K(z)= 1 2 K »
i=0
where
- = }
K; =L, £ M, and n = max {nL,nM )
then the relation
nK .
Iyp £ Iy = 2 Sy (Ky)
i=0
holds.
If
n
K .
a1
Kz)u(z)= 5 2z K,
1i=0 *
where
1l
gi = iio ;J EI_J and ny=n; + Ny

(X.2-8)

(r.2-9)

(A.2-10)

(K.2-11)

(A.2-12)

(4.2-13)

(A.2-14)
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then
nK " .
INg © v = iio Sy (E;) (a.2-15)
holds.
Let
DL "
L(z) =1L, + 121 z° Ly - (A.2-16)

=1 N-1 i
Ton = & Sy(E;) » (A.2-17)
i=0
where
=1 Y
K(z)= L™ (z)= 1 2z K, (A.2-18)
i=0 =
and
o= I
=0 =0
I |
£ ==L, L1 &
K, = —L'l(L K, + L, K ) (A.2-19)
=2 =0 ‘=1 =1 =2 =0 *
B ' sb Ty B ® Ly Ko g tunet L K )J
=N—-1 - =0 ‘=1 =N-2 =2 =N-3 °*°°*°" =N-1 =0

= 0,0f course, if i > D
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A very important property of the shift matrices §ir(1) = gl
is the interchangeability which means the following:
& =g a8 =gl © (A.2-20)

f
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Appendix 3. [97]

Definition:

Let A be an (mxn) matrix and B an (rxs) matrix. The
KRONECKER product of the A an B matrices means the following
expression:

818 8B ... &) B
ale a22§ s oa aan

AeB = : (A.3-1)
f‘mll=3 am2]-=3 & ' & amn%

where the size of matrix AeB is (m.r)x(n.s)

The following operational identities are the most important
for the KRONECKER matrix product:

1. If A and g, as well as B and D matrices are multipliable,
then
(4°B) (gD)=(AgeBD)- (£,3-2)

2. If the inverses of the matrices A and B exist, then

(aeB)~t = a~lop"L. (4.3-3)
3. The transposition rule of the KRONECKER products can be
formulated as follows:

)T

(4°B)" = &7¢F - had=l)
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If the condition of the addition of matrices
then:
@

(4+B) = (¢+D) = #

>

Z‘g-f-

e
=
nd

®(=)+

llog)
Q
Ul e}

The order of operations can be prescribed:

e

e(Bsg) = (

=

@Q)@

no

is fulfilled,

(A.3-5)

(A.3-6)

The trace of the KRONECKER products can be calculated as

follows:

tr(AeB)= tr(A). tr(B).

(Be 3<7)

The identities can be understcod in the simplest way by the

expansion of simple examples.
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Appendix 4. [97]

The generation rules of vectors from matrices can be defined
by KRONECKER products.

Definition:
Let é be (mxn) matrix, then denote by vec(é) the following

arrangement (arrangement into vectors) of the elements of
the matrix:

2
25
af T T 4L il
Vec(é) = ° = [21’ 22, ceo 9 g_n:] 3 (A.ll»—l)
==n
L

where 2,y 859¢+.,8 are the column vectors of the matrix A.

The most important identities related to the arrangement into
vectors are the following:

l, If y is a column vector, then

vec(y) = vec(y )=y . (A.4-2)

2. The arrangement into vectors of the product matrices can
be defined by KRONECKER products as:

vec(s B g) =(C’sA)vec(B)- (A.4=3)

3. If A is a (mxn) and B a (nxr) matrix, then from (A.4-3)
it is obvious that



vec(é E);(g’rsl vec éh) B' <A Vec(;n)=(;r®é)v,ec(§)s
(A 4-8)

where the index of the unit matrices refers to their size.
Here we have taken advantage of the trivial identities

vec(A B)= vec(I A B) = vec(A I B) = vec(A B

[

n r)'

(A.4=5)

The following identities refer to the calculation of the
trace of the produét matrices:

tr(4 B ¢)=[vec(a)]T(1eB)vec(C) (A.4-6)
r(A B)= [vec(A ] vec(B) (A.4-7)

tr(4 27 B 2 C)=[vec(z)] (aT ¢TeB)vec(z) =
=[vee(z)] (¢ aeBT )vez(z). (A.4-8)

The identities can be understood in the most simple way
by expanding simple examples.
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Appendix 5.

In this section the estimation methods summarized in sub-
section 1.3 and to be applied in this report are discussed in
detail.

Consider first the least squares method. With the LS method
the loss function of the form (1.3-7) has to be minimized,
i.e. the extreme value problem

N
Q)= min Q) = min 3 3 [y(t)- £'(u,y,%)p]" =
B t=1

| T
= min 3 (X - E,y, ) (¥ - B,y B) (A.5-1)

)]

has to be solved. Here Q(p) is

Ap)= % (f' x -2y B,,R+D R)s (4.5-2)

where the notations according to subsections 1.3 and 2.1
have been used and the joint vector equation valid for N
samples of the equation (1.3-8) is applied in the form

r=Fuwyp+e=F_ R+ E&- (A.5-3)

The loss function Q(p) is therefore quadratic in p with the
LS method for the (1.3-8) system equation linear in para-
meters. This means at the same time that by making the gra-
dient

4 = ~PI T
G SR E B By B (A.5-4)
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of the loss function by p equal to zero vector an explicit
solution is obtained for the parameter estimation p [46, 5?].

R = (Eﬁy Euy)"l ggy 2 =[P n)P@x)]™ BN (u,y)y. (4.5-5)

The Hessian matrix of the second derivatives Egy Euy is a
Grammian matrix that is non-negative definite. Thus the so-
lution (A.5-5) (the solution of the Gauss normal equation
system) gives a minimum point if Eg E,, 1S not singular
(i.e. has a full rank). The necesgai; gondition of the regu-
larity is that the number of the rows of zuy (i.e. the meas-
urement points) be greater than or equal with the number of
the columns (i.e. parameters), further that the elements of
the vector of the function components f£(u,y,t) have a linear

independence.

guy contains also a stochastic variable with the models gen-
erally dynamic used for discrete identification. In these
cases only asymptotically unbiased estimation can be ob-
tained for p but it has to be assumed that [15, 46, 57]

T P T
(By By) = 8;<= and plim % (Fy ep) = O, (A,5-6)

S |
plim
1 N->o

N> N

where the N subscript denotes now the number of the proc-
essed samples. 'hennamely on the basis of (A.5-5) and
(A.5-3)

5 -~ - - T —1 I A
phim By - giie (00 B0 o 2y By o
+ plim (% £§ EN)—I plim(% E§ gN) =D. (A.5-7)
N >0 = N > ik

Here the identity has been used according to which the prob-
ability limit of the product agrees with the product of the
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probability limits of the factors. Note that just now because
of the statistical dependence of the two factors the formation
of the expected value cannot be applied (with a given finite
N), only the probability limit can. This accounts for the es-
timation being only asymptotically unbiased.

Under the conditions of (A.5-6) the LS estimation is asymp-
totically unbiased and, as proven by several authors [80,125],
of all linear estimates it has the least standard deviation,
is consistent and asymptotically efficient one. May we also
remark at this point that the LS estimation can be applied

not only in case of an error with normal distribution but
agrees with the ML estimation in case of normal distribution.

With the generalized least squares method the detailed form
of the loss function (1.3-5) to be minimized is by consider-
ing (A.S-B) and an arbitrary symmetrical W weight matrix:

T

Q(z.)=%(x-§ Wy - E,,B) =

uy

T T T
By B2 E

]
o
K<
=
[
I
no
<

WEyp).  (a.5)

By forming the gradient and making it equal to zero vector
for the necessary condition required by the minimum, we ob-
tain that [15, 57]

i = [ET(E’X)E £u’x)]-l ET( B.’Y.)ﬂ L =
T -1 T |
“ BBl Egfx- (4.5-9)

This equation is the general solution of the GLS method and
with the choice of W = g-l it agrees with the ML estimate in

case of normal distribution. For the asymptotically unbiased
estimate now the conditions
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Ll w e )=0 (4.5-10)

plim % ) (F Wy EN)- S,< » and plim £(Ey Wy ey

N > N —oo

have to be fulfilled [57]. The subsequent train of thought
agrees already with that applied in the equation (A.5-7).
The properties of the GLS estimate agree with those of the
LS estimate but the estimate with the minimum standard de-
viation requires the condition W = gt

On the basis of the conditions (A.5-7) and (A.5-10) we can
attain the instrumental variables method. If, namely such

instrumental variables can be constructed which participate
in a gN instrumental matrix, where the conditions [57, 143]

N _ . W R, _
ﬁ{i? & (Gy EN) = §5¢ and ﬁii? 5 (Gy N) Q (A.5=11)
are fulfilled, then also the estimate
A T -1 T :

B=(gy By)™ &y xy (4.5-12)

will be asymptotically unbiased. In order to construct

G
usually the noiseless output v(t), resp. in the practice

its estimate is employed, therefore the notation G(u v)— G

uv
is justified. Thus (A. 5-12) will have the form
~ AL -1 T
2 - [g (E,X)E(Eyl)_-l G (2»1)& =
& Pl -1 .7
) (guv guy) Guv & (4.5-13)

By substituting y by (A.5-3) into (A.5-12) and considering
(A.5-11), we obtain that

™ ) -1 T
plim py = pllm(g§ EN) Gy Ly = R +
N > N>
T =1 .1 T _
i (¥ & E) B (§ Gy ey)= 2 (A.5-14)
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The asymptotic properties of the IV method agree with those
of the methods LS and GLS discussed above and it is easy to
see [57, 1a3] that the optimal instrumental matrix G is

G = EET g-%]T that is it agrees with the ML estimate of ge-
neral covariance matrix.

In what has gone before, the LS, GLS and IV methods were
dealt with in detail in the case of a system model linear in
parameters. The LS, GLS methods can, of course, be applied
also in a case nonlinear in parameters, but the solution is
much more complicated and usually obtained in a non-explicit
form, but by some iterative minimization tehcnique. Actually,
the same holds for the ML estimation nonlinear in parameters,
too, since the relation to the methods LS, GLS have already
been made clear. Let us now make some supplementary remarks
on the maximum likelihood method.

In case of Z = 22 I, i.e. an uncorrelated error, the detailed
form of the likelihood function (1.3-4) is [8]:

L(py))=- g ln 27 - % 1n22 - —E%g— QT e (A.5-15)

where we have indicated that L is the function of both p and
A. We obtain the loss function (1.3-7) simply by assuming A
known. It is shown now that (1.3-7) remains valid also in the
case of an unknown 4 and we are enable to estimate X, too.
Let us form the partial derivative of (A.5-15) by ) and make
it equal to zero.

T
3L(Rs)) N £ £
= A 0, (A.5-16)
whence the estimate of A2
~o 2(A 1 P 2 A
AT = A (R) =g e el =5 Qp) (A.5-17)

2



Here it is denoted by 5 that the calculations have to be
carried out with that p which ensures the maximum of L, i.e.
with the estimated ML parameter vector. As now A is a func-
tion of p, let substitute it back into (A.5-15):

1

N N, £ & 1 N T
L(ps?)| =1Lr)=-31n27-5 1n = -5 —5 e e =
>:(E) e £

T
- N I _X s £
= -3 (1n 27 +1)= 3 1n -l (4.5-18)

Hence it is already easy to see that the maximum of L(p) can
be achieved by minimizing the loss function

sT € (A.5-19)

S] 12

Q(p) = min Q(p) = min
2 2

as we have stated it on the basis of simpler considerations.

In case of the likelihood function (1.3-15) set for the MIMO
systems, the solution is nc more so self- evident. By simply
considering only that in case of a given g the maximum of L
is obtained by minimizing the expression

N
5 gF(t) g -1 g(t), then we would get quite another result,

t=1

than by analyzing L in detail. Here the main problem is caus-
ed by A being now a matrix. The likelihood function is now
the function of P and A [108], i.e.

(A.5-20)

In order to determine the extremum value of L according to A,
for the simplicity let us make the matrix derivated by A~
equal to zero matrix:



aL(P, A N

—Eﬁ- = g /; - -21- z g(t)gT(t)z 0s (A.S-Zl)
3 {\--l t=1

whence the estimate of‘é i8S

A P 1 N 0

A= AR » elt)e(t)]| . (A.5-22)

il - N t=1

2

Here i denotes that the calculations have to be carried out
with that P which ensures the maximum of L, i.e. estimated
ML parameter matrix. As now ! is the function of P, let it
be substituted back into (A.5-20).

L(E,0)| = L(B) = - %% (n 21 +1) - 3 1o[L(R). (A.5-23)

This relation is obtained by the following way. Let be

E=[ell),...,e(N)]. (A.5-24)

By this notation

A=FEE (4.5-25)

as we can find out by a simple expansion. By taking advantage
of the identities related to the trace of the matrix, the
(A.5-20) can be written also in the following form by con-
sidering the notation (A.5-24):

N
L(E,4) = - P 1n 2t - % 1n|n|-3 : s[4 (t)eT(t)]=

t=1

0\ _X i 4
5 1n 29 - 3 lnlél > tr(E A

-1 g). (A.5-26)
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Considering here A according to (A.5-25):

LE,A)| = LE) = --‘235 1n 27 - 3~ 1n |§(£)| -
A(R)
-z wefENE 7 E] -
= -2 anoar - g 1n i(g)'- g—“{(ET. £)-! ¥ 5] -
=-Fapor -3 1nl§(£),— - tr(l) =
= -2l (nev ) -3 1n|§(g)l, (A.5-27)

the unit matrix ;q is now an (gxq) matrix.

With the MIMO systems therefore the loss function to be mi-
nimized ensuring the maximum of the likelihood function [108]
is

(A.5-28)

i.e. the determinant of a matrix (the covariance matrix of
the source noise).



- 180 =~

Appendix 6.

Definition:

The bounded u(t) signal is called persistently exciting with
order q (CESARO condition) if

u = lim § g u( t) (A.6-1)
N> t=1
and
y O - =
r(k) = limg 5 [u(s)-W][u(t+k) -] (A.6-2)
N-—+o t=1

aquantities exist and the (qxq) covariance matrix

r(0) r(l) ... r(q-1)
r(l) r(C) ... r(g-2)

|}=¢]
1]

r(g-1) r(q-2) ... r(0) (A.6-3)

is posivite definite [12, 88].
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Appendix 7.

According to Appendix 5, the LS estimation of the parameters
is given by the solution

(57 il

5 -1 o
Bog =(Eyy Euy) ™ Iy X 2ox)E(w,x)] ™ B (whx)x.

(A.7-1)

I
[
[ Les]

As the system equation has the form for N measurements

¥=E(u3)p, + 838, Dy v &, (a.7-2)

substituting it into (A.7-1) we get

A _ il -1 _T T -1 _T _
Lpa -(guy Euy) Euyguy L2pa +(Euy =uy) zuy £ 7
T -1 T
= s * (Euy Euy) F,y & (A.7-3)

Form now the probability boundary value of both sides

T

N
uy =uy

o, oe) . (A.7-4)

=] =

o = .
plim Dy = By, + pllm(N F pLLs

N N e
In case of the fulfilment of the conditions (A.5-6), the
second term of the right side would be a zero vector and
thus the estimation asymptotically unbiased. The condition
related to the matrix §; in (A.5-6) is fulfilled if the in-
put signal is persistently exciting with order 2n [12, 88J.

Therefore the question is whether the condition

plim( e)=0 (A.7-5)

N -

=1 =]

. pl
=u

y

is fulfilled? Let us use the definition of guy according to
(2.1-6). On this basis we can write that



F(w,x)e = F (wx)e + £

E., & 0,7 ele (A.7-6)

y

Here the equations (1.2-38),(2.1-5) and (2.1-6) have been
considered and

-1

¥y=A"Bu, (A.7-7)

i.e. ¥ is an N dimensional vector containing the values of
the noiseless output of the process. Expand in detail the

matrices Fr(u,y) and F (0,4 e)e
e . r 7]
a5y u'(g")°
at(gh” ut(gh)"
F(u,v) = - )
g 2 QT(A';)T(QT)
—Y_T(ET)n _1 "ET ET(é-l)T(gT)n
(A.7-8)
similarly
e OT _‘
g
FT(0,47%e) =
" gh)
. (A.7-9)
& iyt igh»
L =




- 183 -

On the basis of the above equations the probability limits of
the quadratic forms

plim [z u’ (g7)? ¢] ~ (A.7-10)
N->oo ==

and

plim [ ' (g7)9 e] (A.7-11)
N> &

have to be formed in (A.7-5). The B, resp. é_l TOEPLITZ
matrices in (A.7-8) and (A.7-9) can always be written as the
sums (linear combinations) of the § shift matrices, as it

can be followed in App.2. In the formulas (A.7-10) and (A.7-11)
the products of values of two signals shifted by j samples
have to be added and averaged. This means therefore that

ﬁllm [ﬁ (s )' gj = rue(j) (A;?éla)
and
ﬁllm[ e’ (sT)9 e] = r  (4) (A.7-13)

where rue(j) is the value belonging to j shifts of the cross-—
-correlation series of the signals u(t) and e(t), as well as
ree(j) is the value belonging to j shifts of the autocorre-
lation series of e(t). According to our assumption for the
uncorrelatedness of the input signal and the source noise,
rue(j) is zero for all j-s. Likewise ree(j) is also zero for
the values j# O as e(t) is assumed to be a white noise. As j
is never zero with the quadratic form (A.7-13), the condition
(A.7-5) of the asymptotic unbiasedness is fulfilled.
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It is easy to see that if the equation error contains, in-
stead of g, components of any other form (generally e.g. Ce )y
s Y §lg too, ther because of the occurrence of the quad-

ratic forms 2?(§T)j gig the (A.7-5) is nc more fulfilled.
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Appendix 8.

According to (2.6-10)

i “T -1 T
ko= (M) M)™ B (Y - By Byp)- (A.8-1)
Substitute this into the term of the loss function
Q)= 3 K k (a.8-2)
then

- T T -1
Q('P-ba) T2 (x Euy Rba) Eu(gu Eu -u -u)

x W (z-F, D) (A.8-3)

=y‘'s =uy *ba’’ 3

where it is used that ME M and thus its inverse, too, are

symmetric matrices. The gradient of the loss function

dQ - =
__ighél = -F u (MF M) Tl mw )™t &
dpy o =uy =u =u =u =u =u
T
= M (Y- E,, By, (A.8-4)

and by making it equal to zero vector we get

_ T & -1, T —1 T -1
Bpa © [guy Mu(gu W, (Eu ¥ M, £y ] %
i di i -1 T
o guy B—.Qu(yslu Eu)— (Mu Elu) y—.lu Lo (A°8.-5)
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Appendix 9.

The maximization of the likelihood function according to
(2.7-12) - as referred to above several times - is a task
equivalent with the minimization of the loss function

X

e PR |
Apy) =35 2. 2 (t)z7 w(t). (A.9-1)

t=1

The minimization has to be performed in such a way, that

JH
Eg(uo’yo’t)nbla = &o(t)nbla =0 (4.9-2)

should be fulfilled for t=1,2,...,N. The extremum value
problem under this constraint can be solved in the simplest
way by the introduction of LAGRANGE multiplicators Lﬂl, lhl].
Let 2¥(t) be the multiplicator, then the original task can
be reduced to the minimization of the modified loss func-
tion

N
z

Qg (t),¥(t)]= 5 = [w(%)z™ m{t)+2v( )&l (u_,y ,t)0y;, ]

t=1
according to go(uo,yo,t) and v(t) [106]. Derive Q?

aQ’ [ &g, (t), ¥(t)] o
e = =z w(t ) v (B, s (2.9-4)

where the relation (2.7-7) is also taken into consideration,
i.e. the dependence of !(t) from‘go.-By making the gradient
(A.9-4) equal to zero vector, we obtain that

®(t) = glu,y,t)-g (v ¥ st) = ¥(£)Z By, (4.9-5)
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Hence multiplying by Bgla

T T T
2p1a &(u,3,%) = Byyg Eo(uo’yo’t)=w(t)2bla Z Bylg - (4.9-6)

If we consider that

T T
Bpla Eo(uo’yo’t) = Eo(uo’yo’t)n-bla =0, t=1,2,...,N,
(A.9-7)
then
T T
Dypig B(wsyet)= ¥(t)p . Z o, (A.9-8)

and finally Y(t) ensuring the minimum according to go(t):

T
l{J(t )_ p—bla E(U,th)
= -
Ep1a é Bpi1a

t-1,2,o¢.,N S (AO9-9)

e

On the other hand by expressing go(uo,yo,t) from (A.9-5)
go(uo’yo’t)= g(u,y,ty- W(t)é Riia (A.9—1Q)

and substituting it into (A.9-3), after the arrangement we
obtain the expression

Q’ = % W(t)E?(u’yat)EblaJ (A.Q-ll)

L —

t=1

where the relation (A.9-8) is also taken account.As neither
(A.9-9) nor (A.9-11) depend upon go(t), thus by substituting
the ¥(t) value belonging to the minimum according to (A.9-9)
into (A.9-11), we obtain the minimum value Q* according to
go(t> of Q’ (and thus of Q, too, for we have considered the
constraint). Therefore '
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Q" = min Q? =
&, (%)

[\S] [2

T T
Euia [ tz=l E(u9y’t)5 (uvy’t)]ﬂbla

T
Bpia é Bpia

na2

i\
2bla Bp1a

el (o

n = Q¥ (Dy1,) 1 (A.9-12)
Bpia £ Bpia
where

N
G i Z g(u,y,t)gT(u,y,t)- (A.9-13)

t=1
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Appendix 10.

The KOOPMANS-LEVIN method leads to the minimization according
to pyq, ©OFf the form

T

x _ 1 Epia 2 Bpia

lBpy) =3 - (A.10-1)
Bp1a £ Bpia

as written in (2.7-15).

It is well-known [105] that the solution of the extremum
value problem

T
R G2 _
—p—— = min (A.10-2)
R Z 2 ‘

is given by the eigenvector belonging to the least eigenvalue
of the generalized eigenvalue problem

(gp-uZp)=20- (A.10-3)

G resolution:

Let the diagonal matrix formed from the eigenvalues of the
symmetric matrix G be L, the matrix of its orthonormed eigen-—
vectors be A. On the basis of the well-known theorems of the
main diagonal transformation of the quadratic forms [105] it
can be written that

d i

e

GA=1L), (A.10-4)

where because of orthonormality
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TS
i.e.
TRy

By expressing G from (A.10-4)

g= NP rat -t -

. i é1/2 £‘1/2 gT - D Qm‘

where

o ow ik TS

0
>

(4.10-5)

(A.10-6)

(A.10=7)

(A.10-8)

The calculation of the square root matrix Ll/z is now very

simple because of the diagonality. By taking the resolution
(A.10-7) in the original equation (A.10-3) into account, we

obtain

T

(22" -wuz)p=20

With a rearrangement:
or-wz@h i e=20,
whence with the substitution
a=-0p

we obtain that

(o7 zHT - ¢

[l

=]

lo
[}

-
.

o

(A.10-9)

(A.10-10)

(A.10-11)

(A.10-12)
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Here already P = ET so that the original general eigenvalue

problem was reduced to the seeking of the eigenvalue of a

symmetric matrix. The course of the solution is therefore

the following:

1. Determine the eigenvalues and eigenvectors of the sym-
metric G matrix, thereupon form the L and A matrices,

2 Generat; matrix D resulting from the resolution of g and
determine the symmetric matrix P = Q-l ;(Q-l)T.

3. As there is a reciprocal relation between 1 and v, we de-
termine the eigenvector g? belonging to the greatest eigen-
value v,

4. On the basis of (A.10-11) we retransform g?
2= -oHt & (A.10-13)

5. As 2? yields only an optimal direction in the parameter
space, we have to ensure also that the (n+2)-nd component
of py,, Should be made equal to 1 according to the defi-
nition (2.7-3) to obtain the appropriate normalization of
the vector. Therefore the final parameter estimation will
have the form

5 b A *
2p1a = xR (A.10-14)

Pni2
where p:+2 denotes the (n+2)nd component of p>. The a-—
bove described scheme therefore requires the determina-
tion of the eigenvalues, eigenvectors of only a symmetric
matrix.

Z resolution:

Similarly to the G resolution according to (A.10-7), the Z
resolution can also be carried out. Also in this case we

would get to the preceding five points, resp. their appli;
cation according to sense. Now, of course, the eigenvalues
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and eigenvectors of Z have to be determined in the first step.
The p~nblem of the Z resolution arises just with the above
initi. . step. In the practice it is a natural requirement to
allow for certain "degeneration" of Z when in (2.7—9) guu or
gyy is a zero matrix, or at least partially is. If the input
signal is measured without error, the guu = 0. The applica-
tion of the Z resolution would cause a great problem for the
performance of the main diagonal transformtion. The choice

of the G resolution seems to be more reasonable because of

such and similar problems.

Note that Eq. (A.10-3) multiplied by the inverse of the in-
vertible matrix can be reduced to a simple eigenvalue prob-
lem but, of course, the eigenvalue of a non-symmetric matrix
has to be found.
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Appendix 11.

Examine now the estimation of the parameter matrix gBA of
the system equation (3.1-8) according to the least squares
method. The direct generalization of the IS estimation dis-
cussed with the SISO systems would be obtained by the mini-
mization of the loss function

N
(A.11-1)

n=
i
W~
io
~
o+
S
I}
-3
P
o
~
Nl
ned
=

where

(A.11-2)

[}
]
i<
I
i—d
=

BA

Thus W is really proportional to the matrix of the moments
of the calculated residuals e(t). As W is a matrix, several
kinds of scalar measures can really be used for minimization
and this set of problems makes the essential difference com-
pared to the SISO systems. After the choice of the appropri-
ate scalar measure, it is usually intended with the MIMO
systems that only the derivation of the scalar according to
a vector should have to be used for minimization and the ap-
plication of the derivative according to the matrix possibly
avoided. Now the explicit solution of the LS parametric iden-
tification of the MIMO systems is given also via various ap-
proaches.

Choose as a scalar measure (loss function) the logarithm of
the determinant of W [57]. Then the condition

a 1njﬂ|
1=l B =0 (2.11-3)

& Bos
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has to be ensured for minimization. By exXpressing EBA from
the matrix equation, we obtain the LS estimate of the para-
meters of the MIMO systems

_1 '
BA © Z E ) (Arll‘h)

| Lav 2

(In the relation(A.11-3)the rules of the derivation of the
determinant according to the matrix have been used.)

We have shown in Appendix 5 that IA Idetermlnant is to be
minimized with the ML parameter estlmatlon of the MIMO sys-—
tems. It is easy to see from the comparison of (A.5-28) and
(As11-1) that with the condition (A.11-3) we essentially
solve the minimization of (A.5-28), too. This means that -
alike the SISO systems - in case of g(t) source noise of
normal distribution the LS and ML estimations coincide also
with the MIMO systems and lead to the explicit solution ac-
cording +to (A.ll-a)

Examine also another possible mode of approach. According to

Eq. (3.1—12), the joint (matrix) system equation (3.1-18) can be
arranged also in a vectorial <form:

xu = gp_m + Qm : (A.11—5)
As the measuring error appears now in the form of the vector
&y the ML estimation technique discussed with the SISO sys-

tems can be applied also now. The loss function formed in
analogous way with the expression (1.3-5):

Q(nm) (IN® g-l)_m ) (K.11-6)

Here we have considered that the covariance matrix of an
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e(t) is A, thus for the all set is L, A. The N subscript indi-

cates the size of the unit matrix. By further rewriting of
(A.11-6), we obtain that

Qlegy)= 3 Lay (Iyed™) gy-2xy

+ p.%A gT (Iy® L\,'l)g Bpals {K.12=7)

Let us form the gradient of Q according to Rppt

3Q(pgy) = ¥

—Bh- - gMrpen My, + 6 (Ig©ATN)G g, 5 (A.11-8)
agBA

and making it equal to zero, we obtain:

oy =L (yea™El™ ¢ (et by - (A.11-9)

By teking the definition of G in (3.1-13) into account:

" o AL i - |
Epa =[(£®£q) (;NG)[; E ¥ %-.q/_] (gg';q)(;N Q’"Q )1M .

(A.11-10)
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Appendix 12.

Consider the loss function
< N g
Qg =7 10 |A Byl (a.12-1)

to be minimized. Form the scalar derivative according to the

pk-th component:
3Q (Pryp) 5 2
3pk Bpk
-3 N ainjg| - (a.12-2)
i=1 j=1 Bxij apk

where the rule of differentiation of the indirect function
is applied, namely first the derivatives according to the e-

lements );; of the matrix I have been farmed. By utilizing
that
9ln X -1
— = X (A.12-3)
35X =
A s o= A 1
and denoting by 'Y the i,j-th element of matrix M™%, we
obtain the expression
3Q( Py ) I N
—:—B—A-C— = z %, )\lJ —'5_ %’ % el(t)e( t):' =
3D, i=1 j=1 Py t=1 J-
N A_ Bg(t)
= 1 eft)aTt = (A.12-4)
t=1 . Py

which is only one element of the gradient.
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On this basis the complete gradient vector [108] is:

e(t). _ (A.12-5)

Examine now the various expanded forms of the filter equa-
tion (3.2-22) in order to comstruct a recursive formula for
their easy computation.

Arrange the partial derivatives the following way into a
vector (i,j=l,eeeyq)

T T
2e"(t) 58 (% )=
a?j(t)=[-a——— R 8——] ) (A,12-6)
Boij Bpij
A 3eT(¢) e’ () g -
g;;(t)=[ oo —— 17, (4.12-7)
9hy43 Anij
T T
se(t) 2e (t)
E'(i:J(t)::[;—— 9ecey r]T - (Aol2—8)
C11j nij

By considering the reiations (3.2-23) - (3.2-26), the fol-
lowing recursive equations can be written:

gfj(t)= s g?j (t-1) + gfj(t) ; (4.12-9)

()= 5 &}, (=1)+ ni,(t), (A.12-10)
c

ggj(t)= S gy (t-1)+ ggj(t) ; (A.12-11)
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i ]
—gl = «w s =0y g -Cn
i Q Q 0
§ = L] L] L Ll
0 0 I 0
| - . -
furthermore

L
g?j(t)=[0 ...-uJ.('t)...O, _O_ ’...’OT]T ]

1
i-th
A T . i
Qij(t)g'[o ...yj('t.)... O’g , e e 0 ,OJ ,

iith

iTen

S (4)a[ 0 weumey(t)eee 0,07, cun (0T

(A.12-12)

(A.12-13)

(A.12-14)

(A.12-15)

Here it has to be noted that § in the equation (4,12-9)
contains really by one more hypermatrices consisting of ze-

ros under the fictive coefficient matrix gn+15 9. This has

to be taken into account because of the coeffient B . This

slight inaccuracy in the notation does not cause any partic-—

ular problem because we never perform in reality the multi-
plication by S in its totality (let us think of the many ze-
ro elements ) but we multiply only according to the first

hyper row and set.the other elements by shift. The relations

presented now correspond to the generalization of the equa-

tion (2.2-26) for MIMO systems.
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In order to facilite computer storage, for the storage of the
elements of gfj(t) we suggest to use the matrix

B 2e(t) re(t) ' R PRy
gij(t)”EBB ’...’BB J (%_0*12—16)

oij nij

resp. the matrix constructed from these:

[ 6B (t)

G- (%) (A.12-17)

- =

The same can be carried out for the matrices gA(t) and gc(t)
and all partial derivatives are contained in the matrix

1
to

[ 1 [}

G(t)=

[
—

ct ct ct

N i "Nsw

|

e
Q

(A.12-18)

s

L

By following the equations (A.12-16) - (4.12-18) , it can
be found that by the recursive formation of the elements it

A\

is also very easy to calculate the gradient vector and the
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21 since in the summation according to t the partial deriva-
tions are available in an easily accessible form, only the
programming solution of the arrangement into vector and ar-

rangement back has to be skilfully achieved.
The calculation of the second order partial derivatives

'azg(‘t'.)/z)pin._j is fairly complicated so their computer prog-
ramming can seldom occur. In spite of this, we give the re-
lations. It is easy to see from the relations (3.2-23) -
(3.2-25) that the second derivatives according to the ele-
ments of the coefficient matrices B and A have zero values,
in consequence there is no interaction, while the second or-
der derivatives formed by the elements of C are not zeroes.
Thus, the construction of I, similar to what was used with
the SISO systems. The formation of the second order deriva-
tives will be shown for the elements Cki' and Cf ne Derive
first both sides of the system equation (3.2-18) according

to Ckij
-l
ac(z™") se(t
Crij Crij
le.€o
. _1.08&(t)
2% 5. e(t)+ c(zt) =0, (A.12-20)
=14 = 0. 4
kij
whence
r—o -
~1.%&(t) - )
C(z 1) =-zk§i.g(t)= gk e.(t)|« i=th .
3C, . . =1J J
ki}j .
0 J (A.12-21)
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The Eqs. (3.2-22) - (3.2-25) can be directly obtained by a
deduction of such type. Here gij is the so-called KRONECKER
matrix whose ij-th element has the value 1, all others have
the value of zero. Derive now (A.12-21) according to cfgh:

ac(z™)  oe(t) -1 > e(t) X 2e(t)
= + g(z = =Z gij )
Cpgn  3Ciij 3Cpqp, Cyes 3 3Cpen
(A.12-22)
resp.
() 2¢ () e(t)
-f 0E = 0 £ -k &
zZ ggh - g(z ) = =z gij . .
By 3 Coen Crij Cegh
(A.12-23)

Hence the moving average filter equation serving for the ge-
neration of the second order derivative can be simply obtained:

. 3° alt) x 2e(t) 2e(t)

c(z™) = =z §,, =— oy ——

- 90, . 3C, . . *1¢ g ot BR ..

fgh “kij fgh xid
(A.12-24)

Here it is very difficult to find a solution as simple as
for the SISO systems where the formation of the second or-
der derivative coincided - regarding the technique - with
that of the first order ones. Otherwise (A.12-24) can be
written also in the form



e(t)

Je 3
glz )Bc

£gh’ “kij

ae.(t-k-f+l)
Nt ol 0

9C) 2n

O ¢ o o o o

i=-th row

e o o o o o O

se, (t-k—£+1)

g-th row

-

(A.12-25)

by taking into account the identities (3.2-26). On the basis
of this latter equation, the rules of recursive formation

similar to the equations
given for the generation
results can be extended,

other non-zero second order partial derivatives.

(A.12-9) - (A.12-11) can also be
of second order derivatives. The
of course, to the formation of the
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Appendix 13.

The loss function to be minimized is
p i 1 T
Q(Bgy) = 5 [veo(By ) [vee (B)]= 3 +r(Bg By) (A.13-1)

where gk is considered which ensures the LS fit and whose
formula is

Tig g, (A.13-2)

A

B = (¥ - Bpy E)G

Form the arrangement of both sides of (A.13-2) into vector
< T, -1

vee(B) =[(¢ ") geoL]vec(Y - Bpy)F (4.13-3)

consequently

gel]vec(Y - By EN - (A.13-4)

By performing th transposition and multiplication, we obtain

T)-l( GT)—l

Q(pgy)=(vee(Bgy) (D[ & (g ¢

- veo()'[g"(g &) Mg &)™ gep](E"

—

el)vec (B, )-
- vec(Bp,)  (EeL )" (@ ¢7)7H (g 7)™ gep]veo(g )+

+ veel )T e (e ¢")7 (g &)™ ger]vee(y)1 3
(A.13-5)
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where the identity vec(P F):= (£T®£)vec(£) is used. Derive
the expression (A.13-5) according to vec (EBA)

Do) | o epleie ¢ g N gL en) vee (B -
' 3:\

- (Eel (e e Mg &) gep] @ ep)vee(y) -

- (EeL)E'(

(o]

Ty e

By making the gradient equal to zero vector, we obtain

vee(Bgy) = ((EeD[ & (¢ &)7(g &)™ geLl(ETep) ™ =
= (FeD[ (g ") (g g T goLlvec(X)  (4.13-7)

By the simplification of this latter equation:

veo(Bgy)=[E g (g g)7 (g ¢) ™ g Fo1]™ =

ne

T)-l T)-l( T)-l

I
=
|[p]
=]
~~
ne2
ne2
~
|
[a]
/'\
ne2
[[ep]
| [ep]
=
=
[ |
[{Les]
ne2
|[*p]
|[ep}
G2
|[ep}

G g?]'l®;} x vec(Y) . (A4.13-8)

On the basis of (A.u-h) this expression can already be writ-

ten back into the form of a matrix relation



T)-l(

Bl
=3
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(A.13-9)
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Appendix 14.

The second order TAYLOR series of the loss function (4=5) at
p(t) for the reference point p(t-1)is [1?]:

aJ[p(t=1)] "

J[a(t)] & o[p(t-2)]+ ap’ (£-1)

+ 2 ap"(¢-1) H{d[pt-1)]} ap(t-1), C(A.14-1)
where
sp(t-1)= p(t)- p(t-1) . - (A.14-2)

During the seeking optimal in the second order sense we are
looking for the minimum of (A.14-1) in every step, that is
such a Ap(t-1) step for which the necessary condition of the
minimum

dJ[p(t )]___ aJ[p (t-1) ]

+ B(I[p(t-1)] } sp(t-1)=0  (A.14-3)
dp(t) dp (t-1)

will be fulfilled.

Determine the terms in (A.14-3). As the distribution or time
function of Q is not known, (4=5) will be approximated in the
following form:

Q[z(3), n(t)]- (A.1l4=4)

I &7t

1
Jgp(t)] = ¥
j=1
Consider that although in (4-6) the argument is p(t-1l) but
x(t) has already arrived and x(j)=x(t) is in Q. On the basis

of these and taking (A.l4-4) into account:
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t
HI[p(t-1)]) = ¢ I, Bala(s) 206-0] (A.14-5)

It is easy to see that we still do not know the new p (on the
other hand we already know x(t)), therefore exists p (t-1).

Likewise we obtain that

wlet-D] 5 ¥ d9x(d),e(t-1)]
dp (t=1) ¥oye1 ap(t-1)

.  (A.14=6)

If we have performed the steps until now in the on-line STA
algorithm optimally, then the condition

L t;l aQ[x(J )sp (t-1)] . (A.14=7)
sal dp (t=1)

must hold. Therefore

aJ[p (t-1)] . aQ[x(t hp (4-1)] (A.14-8)

dp (t-1) dp (t=1)

In connection with the summations in the relations (A.14-5)
and (A.14-6), not the following: Here the running index j

in the argument of X and p is always the last known value.
This circumstance makes the calculations very difficult,
since the summation had to be repeated after the determina-
tion of every p value from the beginning of the data collec-
tion. In connection with (A.14-6) this problem will be solved
due to the assumption (A.14=7), but we can obtain the better
computational form (A.14-5) if H is only the function of the
series x(j) and does not depend upon p. (This is only a nec-
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essary condition!)

According to the above,Eq. (A.14-3) becomes

1 dQ[z.(: ;;i’i)‘m J[E 3%;.1 B(Q[x(J),n(t-1)] ] an(t-1)= 0 .
(A.14=9)
Hence

L aqfx(+),p(6-1)]

:
ap(t-1)=[z HQ[x(j)pp®-1)]3] ~

j=1 dp.(‘t—l)
(A.14-10)
As the on-line algorithm has the form
dQ[x(t ),p (t-1)
Ap (t-1)= - R(t) L ‘ ] 3 (A.14-11)

dp (t-1)

thus the optimal value of R(t) from the comparison of the
two equatiors is

B(t) = [j;l H{Q[x(J )op (6-1)]1] = (A.14-12)
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Appendix 15.

On the basis of (4.1-6) we can write that

)[R (t-1)+ £(t)e" (£)]7 . (A.15-1)

Apply now the general identity relating to the partitioned
matrices (proved among others also in [BOJ ):

(A+BDE) =4 a7 B@T B AT T B AT
Let be
& ol
AT BT (¢-1) (A.15-3)
4
B~ £(t) (A.15-4)
and
i
D 1. (A.15-5)
Thus

B(t)= R(t-1)- R(t-1)£(t )=

x[1+f (t)R(t-1)£(¢t )]‘1 ;T(t)g (t=1) =

R (t-1) £(¢ )£ (£ )R (6-1)
= R(t-1) - =

1+27 (4 )R (t-1) 2( t) (4.15-6)
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Appendix 16.

Substitute the relation (4.1-11) into the formula (4.1-10)
of the parameter estimation:

R(N )2 (N+1) £7 (N+1) B(N
Eba(N+l)= E(N)Eﬁy(N)XN = v ) ggy(N)XN T
1+£7 (N+1)R(N)E (N+1)

R(N)E (N+1) £7 (N+1) B(N)

+ BR(N)Z (W+1) y (N+1) - £(Nv+1) y(N+1)
1+£7(N+1)R(N) 2 (N+1)

(A.16-1)

where the notation (4.1-12) is taken into account. By using
the relations (4.1-9) and (4.1-12)

5(N);(N+1)

Rba(N+l)= Bba(N)+ = [y(N+l)fi?(N+1)Bba(N)]_
1+£" (N+1) R(N )£ (W+1)

(A.16=2)

By multiplying both sides of the relation (4.1-7) by £(t) it
is easy to see that in the latter equation

B(N)£ (N+1)

= R(N+1) £(N+1) (A.16-3)
l+§¢(N+l)§(N)ng+l)

therefore

Dpg (M+1) = Dy (N)+ R(N+1) £(N+1)[ y(Ne1) =" (Nel)p, (N)].
(A.16-4)
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