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Preface
The Chair of Mechanics and Astronomy of the Babe§-Bolyai Uni- 
versity, Cluj-Napoca organized a series of three international work- 
shops on celestial mechanics and space dynamics between 1997—1999. 
Following this tradition, in 25-27 May 2006 an International Con- 
ference on Actual Problems in Celestial Mechanics and Dynamical 
Astronomy was organized at Cluj-Napoca. The Faculty of Mathemat- 
ics and Computer Science of the Babe§-Bolyai University, the hőst 
of this conference, organized this scientific meeting in collaboration 
with the Loránd Eötvös University (Budapest, Hungary), Sapientia 
University (Miercuria Ciuc, Románia), Astronomical Institute of the 
Románián Academy (Bucharest, Románia) and Institute fór Space 
Science (Bucharest, Románia).

The main topics covered by the meeting were:
- Solar-System dynamics, stability, resonances, chaos;
- Dynamics of populations in the Solar System: NEAs, MBAs, Cen- 

taurs, KBOs, TNOs: observations, orbits, theoretical models;
- Galactic and extragalactic dynamics;
- Problems, models, methods and techniques in contemporary celes­

tial mechanics and dynamical astronomy.
The conference was structured intő seven sessions of órai presenta- 

tions, a poster session and a round table discussion. Each of the seven 
main sessions began with an invited lecture. These lectures reviewed 
the following fields: the Sitnikov problem (R. Dvorak, Austria); the 
age of the asteroid families (Z. Knezevic, Serbia and Montenegró); 
stability of exoplanetary systems (B. Érdi, Hungary); Saari’s conjec- 
ture (Diacu, Canada); integrability from direct and inverse stand- 
points (G. Bozis, Greece); stability of exact Solutions in restricted 
many-body problems (E. Grebenicov, Russia); actual Románián re- 
search in post-Newtonian dynamics (V. Mioc, Románia).

Beside the invited lectures, the 21 órai presentations covered the 
most various domains of celestial mechanics and dynamical astron­
omy. Chaotic behaviour was a premier topic. It was approached and 
studied by analytical, geometrical and numerical methods in many as­
tronomical problems: the restricted three-body problem (with exam- 
ples in the Solar System), the Gylden’s model and its generalizations, 
capture domain, resonances, etc.

1



Stability and instability were alsó subjects of discussions. Almost 
all of the Communications held on this topic dealt with exoplanetary 
systems. Bút other specific astronomical fields, such as the Solar 
System or clusters of galaxies were presented too.

Special problems of celestial mechanics were alsó discussed. We 
can mention the elliptic restricted three-body problem, photogravi- 
tational models, the Hénon-Heiles’ model, Maxwell’s model fór plan­
etary rings, behaviour in the transitory régimé, etc. Space dynamics 
was represented by contributions concerning fly-by trajectories, or 
EPIRB distress signal via satellite. Finally, numerical techniques and 
simulations, useful fór the investigation of various abstract models 
and actual problems of celestial mechanics and dynamical astronomy, 
alsó occupied a piacé in the discussions.

In conclusion, the meeting tried to find a common way fór the 
classical mechanics (quantitative, and based on reál astronomical sit- 
uations and models) and the ’abstract’ one (qualitative, using geo- 
metric tools of the theory of dynamical systems, and often tackling 
less realistic models, however aimed at the global understanding of 
astronomical problems).

As to the international participation in this conference, we men­
tion that the contributions belong to authors from ten countries (Aus- 
tria, Canada, Greece, Hungary, Italy, Poland, Románia, Russia, Saudi 
Arabia, and Serbia and Montenegró).

The lectures, talks and (especially) the discussions established the 
bases fór an enlarged international cooperation within the framework 
of this branch of Astronomy.

This volume contains 24 contributions presented at the conference.

The editors:
Bálint Érdi and
Ferenc Szenkovits
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Using resonant Earth-flyby
TRAJECTORIES FÓR SPACE EXPLORATION

§tefan Berinde

Babe§-Bolyai University, Cluj-Napoca, Románia

E-mail: sberindeSmath.. ubbcluj . ro

Abstract
This paper explores the advantages of using gravity assisted trajectories fór flyby and 
rendezvous missions to near-Earth asteroids (NEAs) or other solar system bodies. A 
special case of such orbits is considered here: resonant Earth-flyby trajectories. On 
these trajectories the spacecraft acquires a large relative velocity in respect to the 
Earth by using one deep-space maneuver along the heliocentric orbit. A resonant 
condition between Earth and the spacecraft is required fór a subsequent flyby. This 
one can send the spacecraft on more inclined orbits, or on orbits with large aphelion 
distances. In this manner the accessibility region fór NEAs is substantially increased 
and distant bodies in the solar system are reachable with lower costs. The problem is 
formulated in the frame of Opik’s geometric formalism.
Keywords: Resonant orbits, Earth-flyby trajectories, space missions

1 IntroductionThis is a second paper of the author in a series exploring the advantages of using gravity assisted trajectories fór flyby and rendezvous missions to near- Earth asteroids (NEAs) or other solar system bodies. Low-cost transfer orbits from Earth to other celestial bodies are usually based on planetary gravity assistance (ex: Earth flyby), especially fór complex niissions (as rendezvous or sample return). A low-cost mission implies a low velocity budget, which is of the order of several km/s. This velocity budget is consumed during impulsive 
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transfers, in order to change the orbit of the spacecraft as needed. The side effect of such carefully designed orbits is the long travel time till completion (several years). Examples of such missions are: NEAR, rendezvous mission to asteroid Erős, or StarDust sample-return mission to comet Wild 2.Somé authors already explored direct flight opportunities to NEAs, bút the number of accessible objects is rather limited due to high velocity budgets in- volved (Christou, 2003; Perozzi et al., 2001). Various gravity assisted trajecto­ries can be imagined and explored, like VEGA or VEEGA (Berinde, 2005) or other more complicated ones. Bút these are target specific with a very limited applicability. In this paper we deal with resonant Earth-flyby trajectories, in- volving a deep-space maneuver along the transfer orbit. We will analyse the advantages of using such trajectories fór space exploration.
2 Opik’s geometric formalism

The whole theory is developed in the framework of Opik’s geometric formal­ism fór close encounters. This is basically a two “two-body” approximation, with many applications in the field of Celestial Mechanics and Astrodynamics. This approximation is entirely adequate fór our purpose and provides simple algebraié formulas fór all orbital quantities. We recall somé of the principles of this approximation: Earth’s orbit is considered circular around the Sun, the spacecraft has a geocentric hyperbolic orbit near the plánét and a keplerian heliocentric orbit in interplanetary space, and a planetary encounter is consid­ered an instantaneous event when compared with the interplanetary travel time (Carusi et al., 1990).Throughout the paper we adopt the following measuring units fór distance and time, such that the radius of the Earth’s orbit equals 1 and its heliocentric velocity is alsó 1. It means that the heliocentric gravitational paraméter is Mo = 1 and Earth’s orbital period is 7® = 2tt.If a,e,i are the heliocentric orbital elements of the spacecraft before the encounter, the (unperturbed) relative geocentric velocity
u2 = 3 — - — 2\/a(l - e2) cost (1)

is an invariant of the motion during the encounter. The orientation of this 



Resonant Earth-flyby trajectories 9
velocity vector is described by the angles (#, 0), given by

1 - u2 - 1/acos 0 =------- - ------— 
2u

, , cosO + 1 ucos<p = ±-----;——-— tani,sin# (2)
where # G [0, w] and 0 G [0, tt] fór pre-perihelion motion, respectively, G [?r, 2tt] fór post-perihelion motion. The sign of the right term in the second equation dependes on the type of the orbital node: ascending (+) or descending (—). Following we consider only the ascending node, since the descending one is just a mirror case with similar results.The encounter phase is described by two additional angles, gravitational deflection angle 7 G [0,7maa;] and the inclination of geocentric orbit G [0, 2tt] in respect to a given reference pláne. We do nőt enter here intő details regarding geometric interpretation of these angles (Carusi et ah, 1990), bút we give the expression of the maximum deflection angle

sin 'Imax2 (3)
This depends on the physical characteristics of the plánét, which are hidded in the value of the paraméter vLBO — 0.26 (7.8 km/s) - the velocity in low- Earth orbit (LEÓ). Fór our purpose, we consider LEÓ a circular orbit at 200 km above the surface of the Earth. This is alsó the minimum allowed distance fór the encounter, that’s why the paraméter vLEO appears in the formula of maximum deflection angle.The orientation of the relative geocentric velocity vector after the encounter is given by angles (#', 0'), computed from

cos 0' — cos 0 cos 7 + sin # sin 7 cos ip
< sin(</> - 0') = sin sin 7 sin#' (4)

cos((ó - </>') = sin # cos 7 — cos # sin 7 cos V' sin#'
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Finally, the post-encounter orbital elements are given by
— = 1 — 2u cos 0' — u2 
a' .. sin 0' cos ó'

< cosO' + l/u (5)
14a' cos i'In short, the orbit can be propagated analytically as follows(a, e,i) —> (u,0,<£) —> (u,0',</>') —> (a',e',i') (6)The design of our transfer orbits is performed in three stages: insertion on heliocentric orbit, changing encounter geometry with a deep-space maneuver and synchronizing orbital motions fór an Earth flyby.

3 Insertion on heliocentric orbitWe consider the initial State of the interplanetary spacecraft its parking LEÓ orbit around Earth. To escape Earth’s gravitational influence with a relative velocity u, it requires an additional velocity in LEÓ orbit E(u) given by
E(u) = \A2 + 2v2EO - vLEO (7)We notice that E(0) = 0.11 (3.3 km/s) and u > E(u) only if u > 0.13 (3.9 km/s), showing the efficiency of heliocentric insertion from LEÓ orbit.From now on we denote with ui this relative velocity in respect to Earth. In the case of direct transfer orbits, the maximum semimajor axis that can be reached is amax = [2 — (1 + ui)2]-1 fór zero inclined orbits, and the maximum orbital inclination is sinímai = ui fór almost circular orbits, with a = (1+u2)”1 and e = u2. We call direct transfer orbits as orbits of type 0-0.In the following section we consider an additional velocity impulse U2 to be applied in heliocentric orbit, in order to change the encounter geometry with the Earth. We will show how this maneuver significantly increases the relative geocentric velocity, which can be used further to obtain a large spectrum of heliocentric orbits. We should note that, without such a maneuver, the 
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spacecraft will return near the Earth’s orbit with the same relatíve velocity ui, with no practical benefits.Let introduce

Utót = E^Uí) 4- u2 (8)the sum of velocity impulses perfomed by the spacecraft. Fór low-cost missions we should consider utot < 0.35 (r*10 km/s).
4 Changing encounter geometry with a deep-

space maneuverFór reasons concerning optimál transfers, let the velocity impulse ui be ori- ented along the Earth’s velocity vector (at point A in figure 1). We obtain a heliocentric orbit with perihelion distance of 1 and aphelion distance
The velocity of the spacecraft at the aphelion point 5 is
Now, let the velocity u2 be applied at the aphelion (as deep-space maneuver) in order to decrease the heliocentric velocity of the spacecraft to vQ — u2- In this manner the perihelion distance is lowered, allowing two intersection points with the Earth’s orbit, C\ (first one) and C2 (second one). The new semimajor axis of the orbit is computed from1 2 , s2

á “ Q “ ' <U>and the new relative geocentric velocity at the intersection points is/ 2
u3 = dS-— - Q2 + (Q-vQ+U2)2. (12)V VThe orientation angles of this velocity in respect to the Earth’s velocity vector are given by cos# = ———0 = 7r/2. (13)U3 v '
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Figure 1: Geometry of resonant Earth-flyby trajectories

It can be shown that U3 > + u2, (14)with equality only fór singular cases ui = 0 or u2 = 0. Alsó, in most of the cases we have E^u^) > utót- That is, someone needs a higher velocity impulse in LEÓ orbit to get the relative velocity u3, when compared with the combined impulses previously described.In order to accomplish this scenario we must consider the Earth and the spacecraft arriving at the same time at one of their orbital intersection points. This flyby requirement is analyzed in the next section. Before that, let make the convention that a transfer orbit is of type m-n if the flyby occurs at the intersection point m (1 fór first one, 2 fór second one) and Earth makes n full revolutions around Sun before the event. Only the following types are of practical interest: 1-1, 2-1, 1-2, 2-2, 1-3 and 2-3. We call these orbits resonant 
Earth-flyby trajectories. They have an orbital period less than 4 years (until the flyby) and an aphelion distance less than 4 AU.
5 Synchronizing orbital motionsThe true anomaly / of the intesection points is given bycos f = Q2(v0 - u2)2 ~ 1i - q(vq - u2y'

(15)where we consider f G [0,7r] due to the symmetry of the problem. The travel time of the Earth on its orbit is simplyt©(ui,u2) — 2(n + 1)tt - f, if m — 1 2n?r + f, if m = 2, (16)
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where m decides what intersection point is choosen and n is the number of full revolutions.The spacecraft travels a time of

= TT
/q + i\3/2
\ 2 /

(17)until deep-space maneuver. From here it takes a time of
t2(«l,U2) = * a3/2 [(a — sin a) - (/? - sin /?)], if m = 1a3/2 [2% — (a — sin a) + (J3 — sin /?)], if m — 2 (18)

until Earth-flyby. The quantities a and /3 are specific to Lagrange’s form of transfer-time equation (Battin, 1987). Their values are, respectively sin2 . 2 I3 S~C sin — = ——, 2 2a (19)a _ s2 “ 2a’where,' for our problem, s = (l + Q + c)/2 and c2 = 1 + Q2 + 2Qcosf .In order to synchronize orbital motions of Earth and the spacecraft, we ask for t©(ui,u2) = ii(ui)+ t2(ui,u2). (20)For each pair of velocities (ui,u2) with ui + u2 = const, this transcedental equation has at most one solution. In the rangé 0 < ui+u2 < 0.3 we numerically obtained a family of Solutions for each type of transfer orbits (figure 2 - left panel). For u2 = 0 the orbits are in true resonance. On the right panel of figure 2 we plotted the new relative velocity u% versus combined velocity impulses~utot. We see that the gain in velocity is more effective for higher resonant orbits.With a higher relative velocity in respect to the Earth, the spacecraft can benefit from the flyby in several ways: it can maximize the orbital energy (semi- major axis) to reach large aphelion distances to outer planets, or it can maximize orbital inclination to rendezvous with near-Earth asteroids, or it can enter again on a resonant orbit with the Earth and repeat the steps to get even higher rel­ative velocities. In the next section we discuss the first two opportunities, and we leave the last on just as a remark.
6 Flyby outcomesThe angles (7, VO introduced in section 2 will determine the outcomes of the flyby. We are interested in the extreme values for semimajor axis a' and orbital
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Figure 2: Families of Solutions (ui,u?) for synchronization equation - left panel; 
relatíve velocity U3 function of combined velocity impulses utót - right panel

inclination i' after the encounter.
6.1 Maximum semimajor axisWe see from first equation in (5) that the semimajor axis a' increases when angle 
9' decreases towards zero. In our scenario, the minimum value for this angle is ^'min — niax{O,0 - 7max}- Here ymax is computed from (3) using u = u^. For large values of u3 we have 9'min > 0, since ymax is nőt sufficiently large to overcome 9.The maximum values of semimajor axis a'max are plotted on figure 3 (left panel). We surprisingly obtain very large values across the entire planetary system. The maximum aphelion distance is only slightly larger than the value 
2a'max “ 1- So, with a velocity budget of about utot = 0.17 (5.1 km/s) we can reach Jupiter’s orbit on 1-1 or 2-2 transfer orbits. Evén Plútó can be reached with utot = 0.22 (6.6 km/s) on a 1-3 transfer orbit.
6.2 Maximum orbital inclinationFinal orbital inclination is alsó a function of free parameters (7,^)- We search for its maximum value i'max by looking at the stationary points of the function. . sin7SÍnV’tani (7,^) =-----7---------------- --------------------------cos 9 cos 7 + sin 9 sin 7 cos 4-1 /u3 (21)
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Figure 3: Maximum values fór semimajor axis (left panel) and inclination (right 
panel) function of combined velocity impulses utót, fór different types of transfer orbits

computed from (5), using (4), and taking intő account that = tt/2. The domaih of this function is [0, ymax] x [0,2%]. The system of partial derivatives reduces to
' C0S7 = —«3 COS0,

< • a (22), sin 9 ' ’
COS W = -U3-—.sin 7It has always solution, since U3 < 1. Bút the solution is inside the domain (7 < Ima*) if and only if - > 3-u|-4sin2^^. (23)

a 2In this case (corresponding to small U3 values) the maximum inclination is shown to be sinz' „ = U3. These orbits are almost circular (like those studied in section 3). If U3 > 0.17 the inequality (23) is broken. In this case the maximum value is obtained on the boundary of the domain, fór 7 = 7m0I. From here we get sin 0sin7maircos =-------z— (24)
cos 9 cos ymax + I/U3and, finally tani' = - . —r------ -. (25)max sin 0 tan
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Figure 4: Values of aphelion distance corresponding to orbits of maximum inclination

Figure 3 (right panel) plots the curves of maximum values i'max. These values are slightly lower than those from direct orbits (type 0-0), bút the shape of the final orbits is quite different. Fór example, there are orbits with aphelion distances between 1 and 3 AU even at an inclination greater than 10° (figure 4). This technique of increasing orbital inclination using an Earth-flyby was actually used by the NEAR interplanetary mission (Cheng, 1997).We conclude that using resonant Earth-flyby trajectories the accessibility region fór NEAs substantially increases and outer planets are reachable with lower costs. A next step in this study is to review possible candidates fór such missions.
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Cristina Blaga1, Mira-Cristina Anisiu2, George Bozis3

Taculty of Mathematics and Computer Science, 
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Abstract
Given a pianar potential U, we look fór families of orbits f(x,y) = c (determined by 
their slope function 7 = fy/ fx), traced by a matéria! point of unit mass under the 
action of that potential. The second-order equation which relates 7 and V is nonlin- 
ear in 7; to find special Solutions, we consider in addition a linear first-order partial 
differential equation satisfied by 7. The problem does nőt admit always Solutions; bút 
when Solutions do exist, they can be found by algebraic manipulations. Examples are 
given fór homogeneous families 7, and fór somé special cases which arise in the course 
of reasoning.
Keywords: Direct and inverse problem of dynamics, partial differential equations

1 IntroductionThe pianar direct problem of Dynamics consists in finding families of orbits 
f(x,y) = c traced in the xy Cartesian pláne by a matéria! point of unit mass, under the action of a given potential V.Any family of orbits is determined by its ‘slope function’ 7 = fy /fx, the subscripts denoting partial derivatives. There are two equations relating the functions V, 7 (and their derivatives):
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(i) the first order equation in V, given by Szebehely (1974) (equation (8) below), which is associated with the energy dependence on the family f;(ii) the energy-free second order linear equation in V, given by Bozis (1984) and written below in the form (6)-(7).These equations, born in the framework of the inverse problem, are rearranged here in order to face the direct problem, as suggested by Bozis (1995). The difficulty with the second order equation arises from its nonlinearity in the un- known family 7. This is why in several papers additional Information on the families of orbits (sometimes on the given potentials alsó) was used in order to obtain Solutions of the direct problem. Homogeneous families produced by ho- mogeneous or inhomogeneous potentials were studied by Bozis and Grigoriadou (1993) and by Bozis et al (1997), as well as families of orbits with 7 = 7(1), corresponding to families f(x,y) = y + h(x) = c (Bozis et al, 2000). Later on (Anisiu et al, 2004), the Solutions of equation (6) were looked fór in a eláss of functions verifying a linear PDEr(x,y)7x+7y = 0; (1)this eláss contains the homogeneous functions f, fór which 7 is homogeneous of zero degree and r = x/y. In all these cases 7 was found as the common root of certain algebraié equations in 7, with coefficients depending on V and on derivatives of V.In what follows we consider a given potential V and study the existence and the construction of Solutions 7 of the direct problem of dynamics, under the hypothesis that 7 satisfies an equation of the form
<&, y, 7)7^ + b(x, y, 7)7^ = c(x, y, 7). (2)We may suppose b / 0 and denote by r = a/b and s = c/b.In the following we replace (2) by the equation

r(x, y, 7)7^ + 7y = s(x, y, 7) (3)with r and s known functions of x,y,y. We then develop the reasoning to check whether the given potential can be compatible with families 7 = 7(1, y) satisfying the condition (3).In section 2 we give the basic partial differential equations of the direct problem and add to them two (second order) differential relations derived from (3). Then, in section 3 we obtain the algebraié equations verified by yx. In section 4 we obtain three algebraié equations which the required family must 
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satisfy when 7 is a homogeneous function of degree m. The resultants of the two pairs of equations must vanish and this leads to two differential conditions which all adequate potentials must satisfy. In section 5 we present somé special cases and examples. A synthesis is presented in section 6.
2 Partial differential equations satisfied by 7We consider a planar potential V under the action of which a monoparametric family of orbits

f(x,y) = c (4)can be deseribed by a matéria! point of unit mass. This family can be repre- sented in a unique way by its slope function

y = (5)
JxTo each 7 there corresponds a unique family (4).The nonlinear second order differential equation relating potentials and or­bits in the form suitable fór the direct problem (Bozis, 1995) is7 ~ 277^ + 7yy = (6)where

h = + (277* - 37,) Vy + 7 (K* - M + (72 - 1)K,) • (7)
Vyy + VxSzebehely’s equation (1974) involving the totál energy Élj) is (Bozis, 1983)

2r
Vx + + r—2 W) - V) = 0, (8)1 + 7*where r = 77^-75,. (9)In order to solve (8) fór E^f), the condition T / 0 must be imposed, hence it follows alsó that Vx + 7^7, 0. The case r = 0 was studied in detail by Bozisand Anisiu (2001) and will be considered in section 5. If fór a given V we can find a solution 7 of (6), equation (8) will allow us to find the energy along each member of the family, namely

—. E^ = V - (10)



20 C. Blaga at al.

The reál parts of the orbits of the family are lying in the region defined by the inequality (Bozis and Ichtiaroglou, 1994)
As we have mentioned in the Introduction, the special families of orbits we are going to consider are those fór which equation (3) is alsó satisfied. We diíferentiate it with respect to x and obtain

r7xx + == ~^ooi7z2 — noo7x + $0017^ + $ioo- (12)Then we diíferentiate (3) with respect to y
nxy + lyy = -rOoi7»7y “ 7)io7* + $ooi7y + $oio- (13)Fór the functions r and s, which depend on the three variables x, y, y, we adopt the three-subscripts notation, e.g. d'^+k s / dx' dy^ d'yb = Sijk- The system of equations (6), (12) and (13) allows us to obtain the second order derivatives of 7 in terms of 7 and its first order derivatives.

3 Algebraié equations satisfied by yxWe solve the system of equations (6), (12) and (13) with respect to 7xa., 7xy and yvy. These second order derivatives depend on 7, yx, 7^, on r, s, and their first-order derivatives and, of course, on the first and second order derivatives of V. In fact, considering (3), we can express in terms of 7®. We introduce the notationsn = (7 + r)2 (^7 + K)
K = —2(rOor - l)Vy72 + [(5r - 2rrooi)V„ - (2r00i + 1) Vx] 7+

+ r [3rVv - (1 + 2r00i) Vx]

L — ^xyl T [I'xx Vyy + TVXy — 2 (r 100 — $001) Iji] 7"
+ [r (^xx — ^yy) — Vxy + 2 ($001 ~ í"ioo) V® ++ (—rrioo + ^oio + $7)01 — 5s + 2rs0Q1) Vy] 7
- rVxy + (—rrioo + Tno + $'7»i + $ + 2rs00i) Vx - 6rsVy,

M = (“ S^xy + ^SlQoVy^y2 + [s (Vyy ~ VXX) + 2Si0()Vx ++ (r$100 — $010 — $$001) ^y}'}
+ sVxy + (rsioo ~ $oio ~ $$ooi) ^rx + 3s2Vy.



New Solutions in the direct problem of dynamics 21
Then, the second-order derivatives of 7 can be expressed as7^ = (Kyx + Lyx + M)

yxy = {(rK + 7-00111)72 + [rL + (rWo - 8001) + rM - siooll} (15)
yyy = i {(r2K + 2rrooill) 72 + [r2L + (rr100 - rOio - sr00i - 2rsOoi) ü] yx

+ r2M — (rsioo + 8«ooi + soio) ü} • •
Remark 1 As we have already mentioned, we have Vyy + Vx 0. The case 7+r = 0 will be studied later. Fór the moment we suppose that the denominator II in (15) is different from zero.Working with (15) we find that the two compatibility conditions (7^)^ = (7xy)i and (yxy) = (yyy')x produce one single relation which, after substituting 

yxx, fxy and yyy given by (15) and yy from (3), reduces to a third-degree algebraié equation in yx r37’ + r27* + r17» + r0 = o. (16)The coefficient T3 of 7^ in (16) is given byr3 = (7 + r)2 (Vy7 + VJ [(V,7 + VJ (7 + J r002 - 2 iyyy + VJ r0201 (17)+ (2^7 + 3rVy - VJ rooi] •In the last factor of r3, all the terms contain the derivatives of r with respect to its third variable 7. It follows that, if r depends merely on x and y, equation (16) is in fact at most of second degree in yx. There are significant situations when this condition is fulfilled, as in the case of functions 7 homogeneous of order m / 0, which verify
xyx+yyy = my. (18)The coefficient To in (16) readsr0 = aiS3+a2S2+a3S-(Vyy + VJ (040200 + 058110 + 058020 + 078100 + a8sOio) •(19) It follows that the coefficient To = 0 if s(x,y,y) = 0. After a factorization by 

yx, equation (16) is again of second degree.
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Remark 2 When 7 satisfies the condition (1) (case studied by Anisiu et al, 2004), in equation (16) T3 = To = 0. Therefore 7X is the solution of an equation of first degree. This happens, fór example, fór 7 homogeneous of order 0.In what follows, to ease the algebra, we shall assume that the functions r and/or s are of a form that makes equation (16) of second degree, i.e.G27x + + Go = 0. (20)We differentiate (20) with respect to x and substitute the second-order derivatives of 7 from (15) and yy from (3); the result will be an equation of third order in yx
+ Ho = 0. (21)Our calculations have shown that equation (21) is of second degree if s = 0; bút it will be of third degree fór homogeneous functions of order m. In order that (20) and (21) have a common solution, the necessary and sufficient condition is that their resultant is null. This is a first condition that 7 has to fulfil.Let us suppose that the resultant of (20) and (21). is null. We express 7^ from (20) and substitute it in the first two terms of (21), then again in the result. It follows that 7X is given by(H3G? - W3G2Go - H2G2Gi + H1G2) 7x + H3GiG0 - H2G2G0 + H0G22 = 0.(22) If the coefficient of 7X is different from zero, we can express 7X as a function of 7 H3GrGo - H2G2Go + H0G2 , .

7l H^Gl -H3G2G3-H2G2G^HXG2, 1 ’and 7y from (3) as 7y = s~nx- ' (24)We write the compatibility condition (7^)^ = (7v)x > in which we replace 7® by (23) and 7V by (24); we obtain a second condition on 7.From (23) and (24) we can express, after differentiation, ^xx^xy^yy in terms of 7 and derivatives of V up to the fifth order. We insert these values in the basic equation (6), and then the values of 7X and 7y from (23) and (24). We obtain a third condition on 7. In order to obtain Solutions of the problem under consideration, these three necessary conditions must be satisfied.If the coefficient of 7X in (22) is zero and the other term is nőt zero, we have no solution fór our problem. If both coefficients in (22) are null, we are left with equation (20).
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As an application to the reasoning developed in this section, we shall study first the case of functions 7 which are homogeneous of order m.

4 Functions 7 homogeneous of order mLet us suppose that 7 satisfies (18), hence we have r = x/y and s = my/y. As stated above, the first equation in 7^ (20) is of second degree; its coeíficients are in this case polynomials in 7. This will happen fór the coeíficients of the third-degree equation (21) too.The three conditions on 7 are in this case polynomials in 7. Fór a common solution to exist, a necessary condition is that the resultants of the two pairs of polynomials vanish. The resultants are equal to their Sylvester determinants (Mishina and Proskuryakov, 1965, p. 164). Thus we obtain two necessary conditions to be satisfied by the potential V.When we start working with a given potential V and a fixed degree of ho- mogeneity fór 7, we do nőt expect the problem to have always a solution. It is advisable to try to factor the first polynomial in 7 (the resultant of (20) and (21)) and to check directly if the homogeneous functions 7 are compatible with the potential. Proceeding this way we avoid lengthy calculations.
Example 1 Let us consider V(x, y) = — x4 - y2 and look fór functions 7 homo­
geneous of first order. The polynomials (20) and (21) are of second, respectively 
third, degree and their resultant is

Rí = T5 (j/7 ~ z2) (í/7 + z2) (1/7 + x)3 (1/7 + 2a:3)4 pio- (25)
The index of P denotes in this example the degree of the respective polynomial 
in y. The second condition, which follows from the compatibility (yx)v — {Ty)x> 
reads

Rt = (z/7 - $2) (j/7 + z2) (1/7 + (3/7 + 2x3) Pa. (26)
Finally, the condition obtained from the basic equation (6) is

R3 = (yy - $2) (yy + x2) (yy + 2x3) p22- (27)
The three polynomials in 7 have in common two homogeneous Solutions of first 
order, namely 71 = x2/y and 72 = -x2/y, which correspond to the families 
fr = ye~1^x, and f2 = yel^x and are compatible with the given potential.
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5 Special cases and other examplesThe case r = —7, s = 0 (F = 0)From the equation (8) it follows that V,7 = "^ (28)
vyand only potentials V(x, y) satisfying the differential condition

VxVy(Vxx - Vyy) = (V2 - V2)Vxy (29)are generating families having r = 0 (Bozis and Anisiu, 2001). So then, fór our problem, we see immediately if the given potential satisfies or nőt the condition (29) and, if the potential is admissible, we readily check whether or nőt the pertinent 7, given by (28), satisfies the pre-assigned condition (3).As another viewpoint, let us discuss briefly the following two alternatives, possibly leading to an affirmative answer of our problem:(i) Let us fix the condition (3) bút allow the potential V(x,y) to be free. In this case we must inquire whether there exist common Solutions fór the PDE (29) and the PDE
r*VyVxx + (Vy - r*Vx)Vxy - VxVyy + s*V2 = 0, (30)wherer*(x,y) = r and s*(x,y) = s (31)

The compatibility of these two equations may be checked in a straightforward way.(ii) Let us consider a potential V{x,y) satisfying the condition (29), i.e. a potential which produces the family (28) of straight lines and let the functions r and s in (3) be at our disposal. In this case we are led to infinitely many choices fór r and s fór which the condition (30) is satisfied. Indeed, we can take
/ y \ / yx Xr(a:,y,7) = -7+ 7+ A(x,y,7) and s(x,y,7) = 7 + B(x,y,^,
X vy / X vy / (32) where A and B are arbitrary functions with the unique provision that the perti­nent functions A*(x, y) and B*(x, y) (defined as indicated in (31)) do nőt become
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infinite. By choosing the functions r and s as in (32), we have r*(x,y) = Vx/Vy and s*(x, y) = 0, hence condition (30) is identical to (29).

The case r = —7, s / 0In this case II = 0 in the first of the equations (14) and the formuláé (15) are meaningless. Let us suppose that r(x,y,y) = 7 identically. The condition (3) becomes 77* - 7y = -s, (33)where s may depend on all three variables x, y and 7. We suppose here that s is nőt identically null, to avoid that (33) coincides with T = 0 (treated above).From the derivatives of (33) with respect to x and y, we find727xx - 277xj/ + 7vv = $010 - 7«ioo + ®7x + s»ooi- (34)So, in view of (7) and (34), equation (6) may be written ass(K + 7^)3001 = (Vx + 7^)(7«ioo - 8010) m+8 [7(VW - Vxx) + (1 - 7^ + 3sVy] .The above equation (35) replaces the PDE (6) and its meaning is the follow­ing: In order that the given potential V(x,y) supports a family 7, the “given” function s{x,y,y) in (33) must satisfy the PDE (35). In other words, fór our problem to admit of an affirmative answer, the required function 7(1, y) and the “given” function s(x,y,7) must satisfy both equations (33) and (35). To check if these equations have common Solutions 7 we proceed as follows: From (35) we can express (by differentiation) yx and 7^ in terms of 7 and insert them intő (33), which then will become an equation of the formF(x,y,7)=0. (36)Finally we check whether equations (36) and (35) have or do nőt have common Solutions 7(x,y).
Example 2 Let us find Solutions of (33) with s^y,^ = -bx/y2 which repre- 
sent families compatible with the potential

V(x,y) = 4x2 + y2 + 8r4 - 2x2y2 - y4 + x3. (37)
Condition (35) is in this case a second-degree polynomial equation in 7, which
has the Solutions

2x , 2s (17x2 + 7y2)
7 _ an 7 - y ^2x2 _ 2y2 + x)• (38)

The first one is a solution of our problem.
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It may happen that II = 0 fór somé particular functions 7. In such a case, we have to check if this particular 7 satisfies equation (3). In the affirmative case, we pút the values of V and 7 in (6)-(7) and, if we obtain an identity, we have a solution of our problem.
Example 3 Let us look fór families 7 which are compatible with the Hénon- 
Heiles potential

V&,y) = ^(x2 + 16y2) +x2y + ^-y3 (39)
and which satisfy the equation (3) with r(^x,y,y) = x/y + 37 and s(x,y,'y) = -37/(4y). The equalityy+r = 0 holds if and only if^ = —z/(4y). This function 
verifies the equation (3) fór the specified values ofr and s, and, together with the 
potential (39), equation (6)-(7), hence it is a solution of our problem. The same 
family has been found by Bozis et al (1997) as a homogeneous family generated 
by the inhomogeneous potential (39).

Remark 3 If V(x, y) and s(x, y, 7) are left free (to be adequately determined) the possibly existing common Solutions 7(2:, y) of (35) and (36) will be expressed in terms of partial derivatives of the second order ín s(x,y,y) and of the third order in V(x,y).

6 General commentsIn the framework of the inverse problem of Dynamics, a monoparametric family of orbits is uniquely represented by its slope function 7 defined in (5). Fór a given potential V(x,y), the finding of somé or all families generated by V amounts to the solution of the nonlinear in 7 second order PDE (6). This is a task more or less impossible.In this paper, in order to ease and make possible the solution of the problem (even by finding a subset of Solutions), we add the restriction on 7 expressed by the differential condition (3). In so doing, we come to have to deal with two PDEs, one of the first and one of the second order in the unknown function 7(1, y). Therefore the very existence of a solution is nőt guaranteed. Yet, we showed that, if such a solution does exist, its finding may be accomplished by algebraié manipulation.We deal basically with the direct problem, i.e. the potential is given and the orbits are to be found. The functions r(x,y,7) and s(x,y,7) are alsó generally given. One then might suggest to face the problem by solving fór 7 the first order PDE (3) and then proceed to find, among its Solutions, those which are 
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compatible with the given potential. However, this last task (possible in somé of the examples presented in this paper) does nőt seem to be easier or performable by a straightforward way. Besides that, the finding of the generál solution of (3) is nőt always possible.The above strictly direct problem does nőt generally have a solution. For this reason, we may profitably deal with the two equations (3) and (6) in various ways. We can e.g. allow tentatively the potential V(x,y) to be free and find compatibility conditions on it so that a solution 7(x, y) can be found. Or, keeping V(x,y) fixed, we may allow the functions r and s in (3) to be free and then adjust them properly so that we obtain a solution.
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Abstract
The question of the integrability of two-dimensional potentials V = V(x,y) is consid­
ered in the light and treated with the tools of the inverse problem of Dynamics. A 
new equation is proposed to replace the requirement of the vanishing of the Poisson 
bracket. Both the direct and the inverse problem fór 2-D integrable potentials are 
studied on the basis of this equation. The cases of superintegrability and of condi- 
tional integrability are alsó discussed. Examples and applications are treated in somé 
detail.
Keywords: Integrability, inverse problem

1 IntroductionWe deal with autonomous two-dimensional potentials V = V(x,y) in Cartesian coordinates, giving rise to families of orbits traced by one matéria! point. Inte- grability of the potential is meant in the sense of Liouville, i.e. as the possibility of vanishing the pertinent Poisson bracket of the pair of the energy E and the “second integrál” of motion (or “invariant”) I(x,y,x,y) = const.The direct-problem viewpoint is: Fór a given potential, to check analytically its integrable character, i.e. to decide if a dynamical function I(x,y,i,y) does exist in the phase space so that the Poisson bracket [E, I] = 0. The great interest in this problem is revealed by the large rangé of the literature (Lieberman and 
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Lichtenberg, 1983; Tábor, 1989; Goriely, 2001). An account of relevant literature may be found in Hietarinta’s papers (1983, 1986).

The inverse-problem viewpoint is: We are given an expression I = I(x, y, x, y) of the position and the velocity coordinates and we want to know if an au- tonomous potential V(x,y) does exist so that the Poisson bracket [E,I] van- ishes. A first hint on this problem is credited to Bertrand (1852) and is re- ported by Whittaker (1961, section 151). Developing this idea, Bozis and Ichtiaroglou (1987) established necessary and sufficient conditions which the given expression must satisfy. In fact these conditions were generally given both fór velocity independent and velocity dependent force fields. In the present paper the integrability problem is studied in the light of Szebehely’s modified PDE (Bozis, 1995). This equation relates potentials V(x,y) and monoparamet- ric families of orbits f(x,y) = c, traced with an energy-dependence function 
E — É(f(x,y')), given in advance. The family is uniquely represented by its “slope function” i(x,y) = fy/fx (equation (2) below, in section 2). This allows us to express the (possibly existing) second integrals of the motion in the form $ = $(x,y,7, E) = const. and present our basic result (equation (15) in section 3). There follow certain comments on the equation (15) and alsó another deriva- tion of (15). In section 4 we look at the problem from the inverse viewpoint and we offer three necessary and sufficient conditions so that a function of the vari­ables x,y,y, E given in advance can stand fór a second invariant of a potential to be determined. Two examples are commented in somé detail. An application of the basic formula (15) is presented in section 5. The role of the other tool of the inverse problem, the pertinent second order PDE, is discussed in section 6, in particular as regards possible superintegrability. In sections 7 and 8, with the aid of formula (15), we discuss the question of conditional integrability from the direct and the inverse point of view. We study configurational invariants, i.e. dynamical quantities which remain constant on the three-dimensional manifold 
E = 0, in the 4-D phase space. Potentials which satisfy the Bateman’s second order PDE are studied in section 9 as candidate conditionally integrable or fully integrable, in connection with existing results in the literature. Somé remarks are made and somé questions fór further consideration are pút in section 10. The advantages of the new formula (15) and the labor involved in dealing with it compared to other approaches are alsó discussed in the same section 10.
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2 Basic formuláéWe consider motion of one massive partiele of unit mass in an inertial frame in the xy pláne under the action of an autonomous potential V = V(x, y). The energy integrál is

E =^(i2 +y2) + V(x,y) (1)and Szebehely’s first order PDE, written for direct problem considerations, reads 2(E- y)(77l -7v) = -(1 +72)(K + yVy\ (2)Dots denote derivatives in the time t and subseripts denote partial differentiation in the pertinent variable. The function7(^,2/) = 4 (3)
Jx stands for the “slope function” of any monoparametric family of orbits 

f{x,y) = c (4)supposedly supported by the potential V(x,y). There is an one-to-one corre- spondence of families of orbits (4) and slope functions (3). Due to this, we shall refer to each family by its pertinent function y(x,y). Expressed in terms of the velocity components, the slope function is7=4 (5)
(so that fxi + fyy = 0) and, along any member of any family (4), the velocity components are

- V) . I2(E-V) , , n” = -^-(17^. (« = ±D- (6)
The energy E in equations (2) and (6) generally differs from orbit to orbit, i.e.

E = É(J(x,yY) (7a)with f(x,y) = c given by (4). Because of (7a) and (3)', we have
Éy = yÉx (7b) 
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and this leads to the energy-free second order PDE (Bozis, 1995)727xx - 277x1/ + 7yy = (77x - (8a)whereH = (y^+K) [2V^7x - Vxyx - 3Vyyy + Viy72 + (VM - Vyy^ - .(8b)If a family 7(x,y) and a potential V(x,y) are compatible, in the sense that they satisfy (8), then equation (2), solved fór E = É, will reveal the energy dependence function (7). Whenever, dealing with a specific pair (V,7), we want to calculate the velocity components x, y of the orbit at a point (x, y) of the pláne, we must use the value E(c) from (7a) fór this particular orbit. As far as the variation in time is concerned, the energy E, as given by (1), is constant and is used, together with the function 7 given by (5), to replace the velocity components (i,y) at a point (x,y) in agreement with formuláé (6). Equation (8) will be used as a complement in our analysis, in somé detail in section 6, to detect possible superintegrability of the given potential, whereas equation (2) will be our main tool.
3 Basic equation fór integrable potentialsEquation (2) cannot be used to face the direct problem (i.e. given the potential to find the monoparametric family 7 = 7(x,y)) because the family (4) corre­sponding to the required 7 is nőt known and E = É cannot be given in advance. Yet, this equation (2) becomes meaningful if E is considered as a paraméter. Here we treat the constant E given by (1) as one of the generalized velocity components. So, if, fór a given potential V(x,y) and any paraméter E, we could obtain a solution of (2) of the form7 = 7(a:,y,E) (9)this would be one particular solution of (2) fór any E. Thus, the finding of (9) amounts to the finding of a set of 7’s depending on the paraméter E, i.e. to a two-parameter set of families f(x,y,E) = co. These families can actually be established if the generál solution of the ODE dy/dx = — l/7(x,y,E) can be found. It is noticeable that in verifying that the PDE (2) is indeed satisfied by (9), it makes no difference if we consider E to be a paraméter or to be taken equal to É from (7a) and this, of course, is due to (7b). On the other hand if, 
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fór the same potential, we manage to establish a richer solution of (2), of the form 7 = 7(z, y, E, #) (10)where $ is a new constant, then it is as if we have found what we call an orbital function fór this potential (Bozis, 2005). Having an orbital at our disposal, we can assert that the given potential is integrable. This is justified as follows: The equation (10) in principle implies that there exist functions $ expressed as£ = #(x,y,7,E).The fact that $ = const. is interpreted to mean that

~^E = ^tt2 + y2) + v^y} 
y

= const.

(11)
(12)

The above equation (12) actually stands fór the second integrál written in the usual form
„ I(x,y,i,y) = const. (13)From d^/dt = 0, in view of (11) and since E is constant in time and 7 = 7xi + ^yy, we obtain + +^(7x^ + 7^) = 0. (14)Then, in view of equations (2) and (6), equation (14) becomes

2{E - V)(7^ - *y) = (1 + 72)(Vx + ^Vy)^. (15)The above equation (15) is our basic finding. Fór a given potential V(x,y) and with the (additive to it) constant E treated as a paraméter, the finding of any nontrivial particular solution of (15), of the form (11), would prove the integrability of V(x,y) and would provide the pertinent second integrál. To establish integrability of the given potential, we need find a solution 7 of (2) of the form (10), i.e. a solution broader from the particular solution (9) in the sense that, besides the constant energy E, an additional constant $ must enter intő the scene. On the other hand, the finding of a particular solution $(x,y,7,E) of (15) fór any E suffices to imply the existence of the second integrál of the potential V(x,y) and actually establishes the invariant itself. Of course, the task is now heavier, in the sense that the required function $, now depends on three variables (nőt two, as the solution of (2) fór 7 does).The equation (15) substitutes the requirement of the vanishing of the Poisson bracket 
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[Z, E]. Indeed, the fact that [I,E] = 0, with I and E taken from (13) and (1) respectively, leads to
di. di„ di. diir n
^~x ~ ^Vx + *~y ~ = °-dx dx dy dyBecause I(x,y,x,y) = $(x,y,7,E) and in view of (5), it is

ff = + ^ = ^ + ^eVv,
= + % = ^ + y*E.

(16)
(17)Inserting (17) intő (16) and taking intő account the equations (7), we re-obtain the basic equation (15), which may alsó be written as

{E-V)R = Vx + yVy, (18)where (19)
Remarks:1. As expected and as seen from (15), if $(x,y,y,E) is a solution, then any arbitrary function of $ is alsó a solution of (15). Notice alsó that, on purpose of revealing integrability of a given potential and obtaining the pertinent second integrál, certain Solutions of the equation (15) are considered trivial. These are:(i) of the form $(x,y,E) or $(x,y,7). Indeed, in the first case, í7 = 0 would imply = 0 and, ultimately, $ = $(E). In the second case, Ein (15) would have no partner to balance. In other words, neither 7 nor E can be absent from the expression (11).The only exception to the above (apart from the arbitrary function) is the solution

$ = E (20)which, of course, is valid fór any potential V(x, y) bút which is nőt an indepen- dent invariant.(ii) of the form $(7, E), i.e. Solutions with both positional coordinates ab­sent. In this case (15) would imply í7 = 0 and this would lead again to (20).2. The denominator in (19) does nőt vanish unless the numerator alsó van- ishes. This corresponds again to the solution (20). The ratio (19) becomes indeterminate and no other independent integrál exists.3. The solution (9) of the equation (2) may be considered as the obvious zero-solution of (15): í = 7 - 7(x,y,E) = 0 (which, of course, does nőt suffice to ensure integrability). This remark interrelates the two equations (2) and (15). Indeed, fór í7 = 1, = -7^,, = -7^, the equation (15) reduces to (2).
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4 The potential expressed in terms of the second 

integrálWe now look at the problem from the inverse viewpoint: A candidate invari- ant is given and the corresponding potential, if it exists, is required. Specif- ically we suppose that, somehow, we are given an equation in the form (11) i.e. í(z,y,7, E) = const., together with the Information that E stands fór the energy and 7 fór the slope function at the point (x, y) of an orbit traced by a unit mass point (this last piece of Information is equivalent to the assertion that 
i,y in (13) stand fór velocity components). We are asked to find the conditions under which this equation $(r, y, y, E) = const., can stand fór a second integrál fór somé unknown potential V(x,y), to be determined.We shall see that these conditions are actually pút (nőt directly on the given function ^{x,y,y,E) bút) on the function R(x,y,'y, E), as this is defined by (19). We proceed as follows: We differentiate (18) with respect to the paraméter E and we obtain

R + (E - V)Re = 0.From (21), we obtain the potential
V(x,y) = E+~.

(21)
(22)Formula (22) has been derived under the tacit assumption that an appro- priate function R, as defined by (19), does exist (nőt only in the sense of being determined as a ratio bút alsó) in the sense that it comes from an “appropri- ate” ^{x,y,y, E). (Inappropriate would be functions ^{x,y,y, E) fór which (22) would nőt ultimately lead to an autonomous potential). In fact, the left side of (22) must be independent of 7 and E, meaning that

Re /
= 0 and

7
(23)

A final requirement is that the potential V(x,y), given explicitly by (22), does indeed satisfy the basic equation (15). In taking derivatives in x,y of the ratio 
R/Re in (22), we consider E as one of the four independent variables x,y,y,E. So, we take Ex = Ey = 0 and the above requirement leads to the condition

Rx + 'yRy p
—R------R = 0.

E
(24)
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In conclusion: The three conditions (23) and (24) are necessary and sufficient fór the function R, defined by (19), so that a given expression (11) stands fór a second integrál of an autonomous potential, which is then given by (22).
Examples1. Fór any function A = A(r), r = y/x^Ty2, we assert that the function

$ =
fE-Áy
ViT^j + (25)

is an admissible function ^{x,y,y, E). Indeed, from (25) and (19) we find 
R = (x + yy)Ar/(r(E — A)) and we check that the three conditions (23) and (24) are satisfied. The corresponding potential V(x,y) = A(r) is found from (22). With this function A back to (25) we find that $ = (xy — xy)n, i.e. the n-th power of the angular momentum integrál L = xy — xy is constant.2. It is known that all potentials producing the circles r = const. are of the form

V(r,0)=g(r) + ±h(e) (26)
r*and they are all integrable fór any arbitrary functions g(r) and h(0). We can verify that to the expression

^(x,y,y,E) =
(Exr2 - y)(x + yy)2 (1 + ^'jxr2

y. 
x

(27a)
there corresponds the function

fí(x,y,7,E) =
+ ?/2)}

xr2(Exr2 — y)
(27b)

This function R satisfies the integrability conditions (23) and (24) and, according to (22), leads to the potential V(x, y) = y/(xr2) (which is of the form (26)). Ac­cording to (12) and (13), the second integrál is I(x,y,i,y) = (xy—xyY/2+y/x. It is noticeable that all homogeneous potentials in x, y of degree of homogene- ity -2, can be brought to the form (26) and, as such, they are integrable (the function g(r) must be pút equal to zero and the function h(0) must be selected appropriately).
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5 An application - Integrals homogeneous in the 

velocity componentsLet us consider invariants (13) which are homogeneous in the components of the velocity of degree n, i.e. of the form
n

I(x, y,i,y) = Ap (z, y)xpyn~p. (28)
p=0In view of (6), the above equation becomes= (y^r) ‘ (29)

\ l "r 7 ) / p_0We pút the question: are there functions <b(x,y,y,E) of the form
*(x,y,^ = 2 M(x,y,^ (30)\ (1 + 7 ) /which satisfy the three conditions (23) and (24)? More specifically: can we find an appropriate function A(x,y) (to be identified with the potential V(x, y)) and a function M(x,y, 7)(to be identified with the series-factor in (29))?Fór the function (30), from (19) we find„ {2(B-A)(7M,-M,)-n(7AI-A,)M}=---------(B - A) {(1 + -------- ■ (31)

Inserting (31) intő the second of the two conditions (23) , we obtain
yMx -My = 0 (32)whose generál solution is

M = M(yf,w), w = x + yy. (33)Using (33) and its implications as regards higher derivatives of M (e. g. My^ = 
Mw + 7Af7W), we find that the first condition (23) is identically satisfied. We now come to the third condition (24). Keeping always in mind that M is given by (33), we come to the result(Ax + 7Ay)- n\yM = 0. (34)
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From (34) we obtain
= A(x,y)(Ax (35)where A(i,y) is arbitrary as far as (34) is concerned. However, the function 

M, as given by (35), must coincide with M as given by (33). To this end it is necessary that the arbitrary function A(x, y) is selected so that
Ax = xA~ ", Ay = yA~ " . (36)So, we have

M(x, y, y) = (x + yy)n (37)and the expression fór 4* in (30) coincides with that in (25). On the other hand, from (36) we obtain yAx = xAy, i.e. A = A(r) with r = y/x2 + y2 and the restriction Axy = Ayx leads to A = A(r) alsó. Clearly, the potential 
V (r) = A(r) must be Central and the corresponding homogeneous integrál must be the n-th power of the angular momentum.
6 Direct problem - The role of the second order 

PDE (8)- SuperintegrabilityLet us now suppose that, fór a given potential, somehow, we manage to obtain a solution 7 = 7(z,y,ci,c2) (38)of the second order PDE (8), depending on two constants ci,c2. As the energy is absent from (8), we do nőt know if and how these constants are related to the energy which, of course, we want to bring intő the scene, so that we finally obtain the orbital (10). To this end, we are aided by Szebehely’s modified equation (2). Inserting the solution (38) in (2), generally we expect to obtain a relation of the form
T(x,y,E,a,c2) = 0. (39)Two cases may arise:(A) It may be that the positional coordinates x, y do nőt appear explicitly in (39). This is interpreted to mean that the “three” constants E,c\,c2 are nőt independent. They are related by the relation (39) , so, besides the energy, one additional independent invariant is to be expected. The potential of course is integrable.
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Example 1. It can be checked that, fór the Newtonian potential

V = —r = \/a:2 + y2 
r(gravitational constant = 1), all slope functions

c^y — r^/ci(2r — C2t2 —
dx + y yci(2r - c2r2 - ej 

(40)
(41)7(x,y,ci,c2)

satisfy the equation (8), fór all values of the constants ci,C2- Bringing (41) intő (2), we find that
2E + C2 — 0. (42)Therefore, in (41), c2 must be expressed in terms of the energy E before the second integrál ci = #(z,y,7, E) is found from (41). There results

$(x,y,7,E) =
2(1 + Er)(x + yy)2 (1 4- 72)r (43)

which, according to (12), leads to I(x,y,x,y) = (xy - xy)2, the square of the expected angular momentum constant
L = xy - xy. (44)(B) It may be that the positional coordinates x,y do appear explicitly in (39). This means that there exist indeed three independent invariants Ci,C2 and 

E, in other words, the potential at hand is superintegrable.
Example 2. Fór the same potential (40), all slope functions

7(z, y, ci,c2) =
y + cir
x + c2r (45)satisfy the PDE (8). This pair {V, 7}, given by (40) and (45), pút back to Szebehely’s equation (2), gives2(c2x + dy + r)E + 1 — c2 — c2 — 0.This equation, which is of the form (39), with x,y present in it, actually informs us that the three invariants ci,c2 and E are independent. From equations (45) and (46) we solve fór ci,c2 and express them in terms of x,y,y,E. Renaming 

d,C2 to #i,#2 respectively, we obtainíj(a;,y,7,E) = 2(z + yy) {(x + 2/7) + 7(V ~ ^7)} (I + 72) r(l+72) (47)
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and 4- {7(I + ~ (" ~ IT». (48)(1 + 72) r(l + 72)According to (12) the equation (47) leads to the integrál
X 

h{x,y,x,y) = yL----- , (49)
rand the equation (48) to the integrál

I2(x,y,i,y) = AL+-, (50)
rwhere L is given by (44). It can be checked directly that (49) and (50) are indeed integrals of the motion as they are in involution with E, i.e. [íi,^] = 0 and — 0- However, A is nőt in involution with I2. Indeed, from I\ and 

I2, we find the integrál
[h,I2] = 2EL (51)i.e. we “rediscover” the angular momentum integrál L. In conclusion: the three independent (bút, of course, nőt all in involution) invariants are E,L and 1^.

7 Fixed energy configurational invariantsThe term “configurational invariant” is ascribed to dynamical variables of the form (13) which remain constant nőt in the entire phase space bút on a certain 3-D manifold of it (Hietarinta, 1986). Usually this manifold is taken to be a constant energy manifold, e. g. E = 0. Our basic equation (15) is of course valid fór E = 0 and it reads2V(7^ - ^) = -(1 + 72)(K + 7W7. ' (52)
We define the function

Z X 2(703, — </>y) . .
pfay,^) = , 2. (53)(1 +72)07(analogously to 7?(x,y,7, E) in (19)) and we rewrite the equation (52) as
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Differentiating (54) with respect to 7, we find

y = ~Py (55a)
and, from (55a) and (54), y = 7P7 “ P- (55b)Equations (55) serve to find (up to a multiplicative constant) the potential 
V(x,y) when the function p(x,y,y) is known, i.e. when the configurational invariant 0 = </)(x, y, 7) on E = 0 is known. The equations (55) are analogous to the formula (22). Obviously, the r.h.s. of (55a) and (55b) must be independent of 7. It immediately seen that this requirement leads to one condition (nőt two) which is

pyy = 0. (56a)On the other hand, the compatibility condition Vyx = Vxy leads to the second condition fór p(x,y,y), which ispI7 + 7Py7 = Pv- (56b)If, on the hypersurface E = 0 of the phase space, a configurational invariant 0(x,y,7) does exist, the corresponding function p^x^y,^ must satisfy the two equations (56). However, the existence of a function p(x, y,^) satisfying the conditions (56) does nőt suffice fór the actual finding of <p(x,y,y). This last step still depends on the possibility of solving the PDE (52) fór0 = ^(a;,y,7). (57)If the potential is at our disposal (direct problem), the solution (57) is to be found from (52). As an example, we propose to check that, fór the (non-central) potential
V(x,y) = -(x2 + y2 + x)2 - y2 (58)the equation (52) is satisfied by the following function

(a,2 _í/2 + x)_^/(1 + 2a:)7■ <59)
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8 An application - Configurational invariants of 
two variablesIn spite of its linearity and its homogeneity in (j>(x, y, 7), the above equation (52) is nőt generally solvable when the potential V(x,y) is given. It is of course much easier to have to deal with (52) rather than with (15). In a work under prepa- ration (Bozis and Meletlidou, 2006) we show that: for potentials V = V(x,y) whose logarithm satisfies Laplace’s two-dimensional equation, the equation (52) is solvable for </>(z,y,7). Actually, the pair (58,59) of potential and configura­tional invariant was found on this basis. (In section 7, it was presented to serve the inverse problem viewpoint).In this section, we shall seek Solutions of (52) of the more particular form= $(V(®,y),7)- (60)The positional coordinates x,y are carried exclusively through the potentialV = V(x,y). Calculating in view of (60) and inserting them intő(52), we obtain

Vx+-fVy = 2V
Vy-^Vx (I+72)*/ (61)If, indeed, such functions Í(V,7) do exist, the left-hand side of equation (61) (cannot be any function of x, y, 7 bút it) must be a function a of the two variables V and 7 , as the right-hand side is, i.e.

Vy-yVx
= ^,7). (62)

To this end, the necessary and sufficient condition for (62) to be possible is that
This condition (63), however, is only necessary for the equation (61) to be solvable. Working with (63), (62) and (61), we íind, for all 7’s, the condition

Vy2Vxx + V2Vyy = 2VxVyVxy. (64)The generál solution of the PDE (64) (Bateman’s equation) as can be verified directly, is
y = A(7)x + ^(V), (65)
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where X, n are arbitrary functions of V(x,y). The pertinent configurational invariant (if it exists) is of the form (60) and is given by the linear homogeneous PDE (61) in the unknown function 4' of the two variables V and 7. So, now we turn attention to the solution of (61). The subsidiary ODE isd7 (1 + 72) nz x
The potential V(x, y) to be used in (66) must be taken in agreement with (65).Calculating Vx, Vy from (65) and inserting intő (62), we find

^(V,?) = - A -7I + A7’ (67)
where A = A(V). A highly noticeable result is that, as far as the configura­tional invariant is concerned, the arbitrary function p(V) in (65) plays no role, whatsoever. Thus, (66) reads

dy _ (1 + 72)(A -7) 
dV 2V(1 + A7) ‘ (68)

Remark. Although of the first order, the ODE (68) is hard to solve even fór simple functions A(V). Fór the simplest case A = Aq = const. one can find the potential V(x,y) = /z(y — Aox), jj, = arbitrary, which is fully integrable bút trivial. The generál solution of (61) (which is good fór E = 0) is í = $ [(? ~ A0)2V(z,y)/(l + 72)] = const., so the square of the momentum I = 
(x + Aoy) is constant.
9 Bateman’s equation as connected to other re- 

sultsThe PDE (64) is known as Bateman’s equation and, as reported by Euler et al (1997), it appears (as it stands or, more generally, in higher dimensional form) in testing the Painleve property fór PDEs. The same equation (64) appeared alsó in the study by Bozis and Anisiu (2005) of compatible pairs {V(x, y),y(V(x, y))} of potentials and monoparametric families f(x,y) = c with slope function (5) of the specific form 7 = 7(V(x,y)). It was found that such pairs do exist e. g. if the family 7(2;, y) satisfies Bateman’s equation ( in which case it was shown that the corresponding potential V(x, y) alsó has to satisfy the same equation).
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In the previous section, Bateman’s equation appeared as a necessary condition on potentials V(x,y) which possess configurational invariants of the form (60) on the hypersurface E = 0 of the phase space. As mentioned already, the integrability of (61) is nőt ensured although the solution of (61) is reduced to the solution of an ordinary differential equation of the first order. In spite of the above we may conjecture that the Bateman’s potentials nőt only possess configurational invariants bút they are good candidate integrable potentials. This statement is alsó supported by the following facts:(i) A rich family of integrable two-dimensional potentials (including one arbitrary function of the potential) was established by Giacomini (1990). This family is defined implicitly by the relation (69)
One can show by direct calculations that all potentials defined implicitly by the equation (69) satisfy the PDE (64). Clearly this is nőt something which had to be so by necessity. In other words, the set of Giacomini’s potentials needed nőt belong entirely to the set defined by (64). Fór A(V) = -(«iV + c^)-1, m(V) = A(V), equation (65) reduces to Giacomini’s (1990) result (69). Giacomini established the second constant of the motion in terms of higher transcendental functions in the momenta.(ii) The integrable potential V = x/y, found earlier by Hietarinta (1984), alsó satisfies Bateman’s equation (64). It is obtainable from (69) fór A = 0, «i = -1, a2 = 0 and alsó from (65) fór A(V) = V-1, /z(V) = 0. In fact, Hietarinta found, besides the energy integrál, two independent integrals and expressed them in terms of parabolic cylinder functions. Of course, only two of the above three independent integrals commute. Finally Hietarinta (1986) comments that “although the potential V = x/y is integrable at any value of the energy, the invariants are best derived using a fixed energy constraint”.
10 General remarks and open questionsThe present study deals with the question of integrability of a potential V = y(z,y) under the simplest assumptions: one matéria! point is moving in the pláne under the action of an autonomous two-dimensional potential and the reference system is inertial. The question is essentially faced both from the direct and from the inverse-problem viewpoint bút with the equipment and the pertinent formuláé developed in the framework of the inverse problem of 
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Dynamics. We propose to keep the positional coordinates x, y bút express the velocity coordinates x,y in terms of the energy E, given by (1) and the slope function 7, given by (5). These two functions are present in Szebehely’s PDE (1974), as rewritten by Bozis (1995) in the form (2). This equation together with the second order PDE (8) are the basic tools of the inverse problem of Dynamics. In the present study they are completed by the equation (15) and allow us to treat the question of integrability.From the direct viewpoint we propose the formula (15) fór establishing pos- sibly existing second integrals fór a given potential V(x, y). We compare the use of (15) to the vanishing of the Poisson bracket [E(x,y,x,y),I(x,y,x,y)] given in (16) (with E and I taken from (1) and (13) respectively). The main advantage of the formula (15) is that there appear in it only the three partial derivatives of the unknown function ^{x,y,^,E) in x,y,y and this is in agreement with the fact that E is treated as a constant paraméter.Fór invariants, algebraié in the velocity components x, y, the number of the pertinent position-depending coefficients to be determined is reduced. This becomes evident in the case of the application of section 5. Instead of having to deal with the (n + 1) coefficients A"(x,y) of (28), we have essentially to do with the unique function M(x,y,,y) in (30). We have alsó used formula (15) to fourth degree invariants I(x,y,x,y) (Bozis, 2005).The formula (15) is alsó best suited fór the study of configurational invariants 
= </>(x,y,y) on the manifold E = 0 of the phase space xyyE (section 7). In fact, each solution of (52) leads to a set of functions 7 = 7(0:, y, </>), implying the existence of a two-parametric set of families of orbits (4). In particular in section 8, the possibility of finding potentials possessing configurational invariants of the form (60) is shifted to the possibility of solving a first order homogeneous PDE in an unknown function T of two variables. This, in turn, shifts to the possibility of solving one ordinary differential equation of the first order. We now come to compare each of these approaches to the use of the Hamilton-Jacobi PDE, which, fór the case at hand (one massive point of unit mass) reads:

S2+S2 = 2(E-V(x,y)). (70)The problem is to find a complete solution of (70) fór the characteristic function 
S, i.e. a solution S(x,y,E,01,02), which, in addition to the (already existing in (70) paraméter E), includes two constants, one of which must be additive. Disregarding this additive constant, S will include one non-additive constant, say o2, and alsó the paraméter E which we take as the first constant, i.e. cn = E. So, the task consists in solving the parameter-dependent PDE (70) 
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to the extent of bringing intő the solution one more non-additive constant 02- A similar job is to be done with equation (2). However, dealing with (2) is much more preferable because (2) is linear in the unknown function y(x,y,E), whereas (70) is nőt linear in S(x, y, E). As to the unknown function $(z, y,y, E) in (15), this depends on three variables bút (15) is linear and homogeneous.
In dealing with the inverse aspect of the problem, we proved that the tests to be performed on the function $(x, y, 7, E) may be replaced by testing the func­tion R(x, y, 7, E), as given by (19) through first order derivatives of $ in x, y, 7. We then wrote down the three criteria (23) and (24) to check the adequateness of the given function í(x,y,7, E) so that the formula (22) is applicable and we find explicitly the pertinent potential. Of a similar natúré is the work by Xan- thopoulos and Bozis (1983) where the criteria fór the adequateness are offered, nőt fór a candidate integrál $ = í (m, y, 7, E) bút, fór a candidate slope function 7 = y(x,y,Ci,c2) depending on two parameters.
The approach to the question of integrability from the inverse problem view- point (in particular the existence of formuláé like (22)) is alsó didactic in the following sense: glancing at the PDE (16), which is linear in I(x,y,x,y), one might wonder why it is so rare fór this equation (as very often is mentioned in the literature and as common experience is) to offer back to us a solution, once we insert to it a potential (even somé very simple potentials V(x, y)!). It is now clear that there is a set of “good functions (satisfying the conditions (23),(24)) and that to this set there corresponds a set of “good functions V” (integrable potentials). No wonder then if a potential, chosen at random, is nőt integrable and if chaoticity is so frequent even fór the motion of one massive par­tidé in the xy pláne. This question then deserves more attention.The procedure followed in section 5 is promising to face the study of expressions I(x,y,x, y) which are weighted homogeneous in i,y, e.g. of degrees n and n - 2. Instead of having to deal with one function M(x, y, 7), one would then have to do with two functions M^x,y,y) and M2(x,y,7). As the available literature in this version of the inverse problem is by now rich enough, the procedure followed in the present study may be extended to cover more generál aspects. We men­tion e.g. the three-dimensional case fór one matéria! point (Bozis and Kotoulas, 2005; Anisiu, 2005), the holonomic systems (Borghero, 1987) and the general­ized holonomic systems (Borghero and Melis, 1990).
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Abstract
Time-éxplicit Solutions fór relative Keplerian dynamics are presented fór the generál 
case in which the reference trajectory is elliptic, parabolic or hyperbolic. The non- 
linear differential equation modeling the motion is solved by means of tensorial and 
vectorial regularization methods. This regularizing procedure extends the approaches 
of Levi-Civita and Kustaanheimo-Stiefel in the case of Kepler problem in rotating 
reference frames. The solution generalizes the approximate results obtained from 
Hill-Clohessy-Wiltshire, Lawden and Tschauner-Hempel equations. The approximate 
Solutions derived from the liniarized models are in fact the first linear approximation 
of the exact solution the authors have found.

Keywords: Orbital relative motion, Kepler’s problem

1 IntroductionThe study of the relative orbital motion represents a subject of interest since the 1960’s, when Clohessy and Wiltshire published their famous work on satellite motion. The study of the satellite relative motion has applications in present and future space programmes. It is more reliable to launch a single spacecraft (named Chief) from Earth, pút it on its orbit and launch several other satellites 
(Deputies) from it. Satellite clusters are used improved Earth observations 
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or may collect more accurate athmospheric data, fór example. The satellite formation will alsó function in the event of a single spacecraft failure.The fundamental problem in orbital relative dynamics is to determine the motion of the Deputy satellite with respect to the Chief. Consider the Chief orbiting around a Keplerian attraction center (i.e. under the influence of a gravitational force). The inertial orbital elements of the Chief (specific angular momentum he, specific energy eccentricity vector ec and true anomaly 
fc = fc (0) are considered to be known. At the moment of time t = to, the Deputy satellite is launched with relative velocity Av from a position Ar with respect to the Chief. Let r denote the position vector of the Deputy with respect to the Chief.The vectorial initial value problem that models the relative motion of the Deputy with respect to a non-inertial reference frame originated in the Chief mass center is:r+ 2w x r+ w x (w x r) + ú x r d------ -—$ (r + re) - -^-rc = 0, (1)|r + rc| rc

( r (t0) = Ar, 
( r (t0) = Av,where w denotes the angular velocity of the rotating reference frame associated with the Chief,

i he _ (1 + eccos/c)2.
7-------------7c---------- C’ ( ’

re the position vector of the Chief with respect to the attraction center and the gravitational paraméter. The motion deseribed by eq (1) is studied with respect to a non-inertial reference frame LVLH (Local-Vertical-Local-Horizontal) that translates and rotates with respect to an Earth centered reference frame (ECI). The Cartesian axis of LVLH are chosen as it follows (see Figure 1):

• Cx axis in the direction of the position vector of the Chief rc;
• Cz axis in the direction of the specific angular momentum of the Chief he;
♦ Cy axis completes the positive oriented Cartesian frame Cxyz.Considering the Cartesian coordinates of the Deputy position vector with respect to LVLH r = [x y z]T, eq (1) becomes a system of three scalar dif­ferential equations.
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Figure 1: The relatíve satellite motion and the reference frames that are used

Generally, the trajectory of the Chief with respect to ECI reference frame is a conic (ellipse, parabola, hyperbola). The Chief motion in ECI is modeled by the initial value problem:
r+4r = 0, 

r(t0) = r0, 
HM = V0)

(3)
Let OPQR be an Earth centered rotating reference frame that has the axis parallel with LVLH. The Chief motion with respect to the OPQR reference frame is described by the initial value problem:

r 4- 2w x r + w x (w x r) + w x r + -^-r = 0, í r(t0) = r0, [ r(M =
(4)

The solution to eq (4) will be denoted One may remark that the motion described by is rectilinear:
(rőt) _  ______ PC______ £01 + ec cos fc r0 (5)
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With respect to OPQR reference frame, the motion of the Deputy is then described by:
r + 2w x r + w x (u x r) +ú x r + -^-r = 0, (6)

r (t0) = r0 + Ar, r(to) = ^r0 +Av.The solution to eq (6) will be denoted r^ot^. One may remark that the initial value problem (6) is obtained from eq (4) by perturbing its initial conditions with Ar and Av. The study of the initial value problem (1) reduces then to the study of Kepler’s problem in rotating reference frames (6).The solution to eq (1) that models the motion of the Deputy with respect to the non-inertial frame LVLH may be pút in the form:
(LVLH) (rőt) (rőt)

rP ~ rD ~ rC ' V /The first attempts to solve this problem were made by Clohessy and Wilt- shire in the early 1960 (see (1)). They offered an approximate solution when the reference trajectory (i.e. the Chief trajectory) is circular. The equations of motion that were deduced are known as the Hill-Clohessy-Wiltshire (HCW) equations because the solution is based on the work oh Hill (see (2)) at the end of the 19th century.Nőt very laté after the publication of the HCW equations, Lawden (see (3)) gave an approximate solution to the relatíve satellite motion almost simultane- ously with Tschauner and Hempel (see (4), (5)) in case the reference trajectory is elliptic. Their Solutions generalize the HCW equations and offer more accurate models fór the satellite relative motion.All these approaches presented above start from a linearization of eq (6). The Solutions offer a model with a limited degree of predictability.The orbital satellite relative motion problem is more intensely studied since the laté 1990’s, when the satellite flight formations became a quite attractive alternative fór space missions. The circular reference trajectory and the elliptic reference trajectory (see (6), (7)) were studied. Time explicit Solutions to the relative motion with elliptic reference trajectory were published more recently (see (8), (9)). The models involving different perturbations (like the J2 oblate- ness factor or the atmospheric drag) were alsó studied in recent papers (see (10) - (14)).The present paper offers an exact vectorial solution to the orbital relative motion problem when the reference trajectory is arbitrary Keplerian (elliptic, 
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parabolic or hyperbolic). The solution has an infinite degree of predictability and uses the initial conditions as the constants of the motion. The solution generalizes the Solutions of Clohessy and Wiltshire fór the circular reference trajectory and Lawden and Tschauner-Hempel fór the elliptic reference trajec­tory. The key of this approach is the vectorial closed form solution to Kepler’s problem in rotating reference frames (see (15)-(17)).
2 A Vectorial Closed Form Solution

to the Relative Satellite Motion Problem

By using the theoretical considerations made in the previous sections of this approach, we present the vectorial closed form solution to the relative satellite motion when the reference trajectory is arbitrary Keplerian (elliptic, parabolic or hyperbolic). The results are given including the case when the specific angular momentum of the Deputy satellite is zero (i.e. its trajectory is rectilinear with respect to the inertial reference frame).Consider the motion of the Chief satellite with respect to the ECI reference frame modeled by eq (3). Consider he its inertial specific angular momentum, 
Pc its semilatus rectum, ec the magnitude of its vectorial eccentricity and fc its true anomaly. Let OPQR be the rotating reference frame introduced in Section 
1. With respect to this reference frame, the motion of the Chief satellite is deseribed by eq (5) (see (17), (21)).The Deputy satellite orbits around the same attraction center. Its motion is deseribed with respect to OPQR reference frame by vector r^oí\ that is the solution to eq (6). The motion of the Deputy satellite with respect to the Chief satellite (i.e. the LVLH reference frame) is deseribed by eq (7).The key to the solution is a representation theorem, as well as a vectorial Sundman-like regularization of Kepler’s problem in a rotating reference frame (see (17)). We succinctly present the mentioned results.The initial value problem that models the motion of the Deputy with respect to the rotating reference frame OPQR is solved, then the result is transported intő the non-inertial frame LVLH. This is made by means of a symbolic proce- dure that uses the inertial reference frame ECI as a cathalyst. The next theorem is fundamental in studying the motion related to a rotating reference frame.
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Theorem 2.0.1 The solution to the initial value problem (6) is obtained by 
applying the proper orthogonal tensorial function R_w to the solution to the 
initial value problem: *+£r = °> (8)

í r (t0) = r0 + Ar
( r (t0) = v0 + Av + w0 x Ar,

where wo — Go) and R_w is the solution to the tensorial initial value problem:

Q+ÜQ = 03, (9)
QGo) = I3, 

with w the skew-symmetric tensor function associated to the continuous vector 
function u.The previous theorem shows that the vector that models the motion of the Deputy with respect to OPQR, is expressed as:

r™ = l< .r»>, (10)where is the solution to eq (8).
Re mark 2.0.2 The initial value problem (9) represents the tensorial form of 
the famous Darboux equation (see (19)): determining the rotation tensor (má­
trix) Q that models the rotation with a given instantaneous angular velocity —uj. 
This equation is fundamental in attitűdé kinematics.The regularization introduces a new time variable r = r (t) such as dt = rdr. By making the substitution: (11)with tp adequately chosen, the initial value problem eq (6) transforms intő:

- 2^r = h2 e r|r=o = < + e) e’
< R-w (ro + △r),

-l 
e

roR-w (vo + Av + w0 x Ar),

e / 0, 

e = 0,

x e, e 0, 
e = 0.

(12)
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(15)
„o _ [vo 
eD - ----

(16)

where h, e are the prime integrals of eq (6) (see (17)):
r x (r + w x r) = R_whp=h, (13)(analogous to the inertial specific angular momentum conservation)

j (r + w x r)2 - - 1 [v0 + Av + wox Ar]2 - —(14)

(analogous to the inertial energy conservation)
(r + w x r) x [r x (r + w x r)] r 0 △------------------------------------------------- — rc_wen=i /z r(analogous to the inertial vectorial eccentricity), where:

: + r0) x [vq + Av + wox Ar]
+ Av + wo x Ar] x hp Ar + r0

M |Ar + r0|The following algorithm is applied in order to obtain the closed form vectorial solution to the relative satellite motion in all possible situations that may occur:1. Eq (12) is solved. The explicit expression fór r^0^ is obtained with respect to the independent variable r.2. The magnitude of the position vector is computed.3. The velocity is computed by using:
d x . 1 ( d \ ...—r =r (r + w x r) => r =- —r - w x r. (17)

dr r \dr j4. The motion of the Deputy with respect to the LVLH frame is determined from eq (7) by taking intő account that since vector w has fixed direction, (1 + ec cos fc)\w _---------------------- hC) (18)
Pcthe tensorial orthogonal map R-u, has an explicit expression.5. The moment of periapsis passage tp is determined from the initial condi- tions.
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6. An implicit relation between r and t is given using t - tp = r (£) d^. When ( / 0, the map E (r (t)) = a/2 |£|r (t) is implicitly defined. It is analogous to the eccentric anomaly from the classic Keplerian motion.At step 4. in the algorithm above, the expression of R-^ is given by a Rodrigues-like formula:
■tR_w = exp

to
= I3

. 1-cos/g (t)~2
^5“ho+—tó—hc’ (19)with (t) = ffo w (V>) dtp = fc (t) - fc (to) (eq (18) is taken intő account).The approach is structured starting from the sign of the specific energy of the Deputy each case including the situation of zero specific angular momentum, ho = 0. In case 0, the results are expressed with respect to two new vectorial prime integrals and a scalar prime integrál, all based on h, 

^d, e:
a

np =

| 2^1foie’ e0° ;
„ R-u (r0 + Ar), e = 0

—7-^- h x e, e 065/21^1
—R-o, [v0 + Av + w0 X Ar], e = 0
Tljj

mi

(20)
(21)
(22)Vectors a and b satisfy: a — R_wao and b = R_u,bo, where:

a0 =

bo =
co< 2ep|£p| D, „ r0 + Ar, (23)

---- J. hr> x e?,,1 eD \/^ |Cd|
— [v0 + Av + w0 X Ar],

e£# 0 

e^O

eo/ 0 
e^=0

When / 0, vectors ao and b0 represent the vectorial semimajor and semimi- nor axis of the inertial trajectory (an ellipse or a hyperbola) of the Deputy and 
np is analogous to the mean motion from the classic Keplerian motion.
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2.1 Negative Specific Energy: < 0

2.1.1 Non-Zero Specific Angular Momentum: 0, Non-Zero Ec-
centricity: ep /0The solution to eq (6) is:

== [cosEz? (í) - e/j] R_w(f)a0 + sinEp (t) R-^bo, (24)= 7-------------- F [- sinEÖ (0 R-w(t)a01 - eD cos Ed (t)+ cos Ed {t) R-W(t) bo] (25)- [cosEp (t) - e] [w x R_w(t)ao]- sin Ez? (t) [w x R_ü/(f)b0] ,
where Ed (t) = ^2 |£d|t (t), t > t0 is deduced from the implicit functional equation:

Ed (t) - eD sin Ed (t) = tid (t - t0) + Ed ~ &d sin Ed, tG[ío,+oo), (26) 
and Ep G [0, 2zr) may be computed from:

Taking eqs (18) and (19) intő account, it follows that the motion of the Deputy with respect to the Chief is described by the vectorial expressions:
f.. r r a cos/°(t)~2r (t) = [cos Ed (t) - ep] { —he------- --------hcao---------------- hcao}

c c
. v sin/^(t)~ K cos/g(t)~2 Zoo^+ sinEp (t) {—^2—he-------—hcb0----------- --------hcb0} (28)

__________ Pc________ ro1 + ec cos fc ÍÜ ro ’
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v(t) -nD sin Ep (t) ap • hc ,1 - ep cos Ep (t) h2c C_ cos/g(t)~2 ,—- —í;r''M
np cos Ep (t) b0 • hc sin f^ (t) ~

+1-eD cos Ed h2c hc hc hc’b°cos/g(í)~2u , 
h^~ hcb°}, hc [1 + ec cos fc (t)]2 [cos Ep (t) - eD\

(29)

[sin/g(t)~2 cos/g(í)~
l -
he [1 + ep cosfc (t)]2 sinEp (í) 
(sin/^(t)~2 cosO)~

hcb0-—hcbo

echc sin/c (i) r0
Pc r0where

fc = fc W - fc (Ío) • (30)
2.1.2 Non-Zero Specific Angular Momentum: h / 0, Zero Eccentric­

ity: ep = 0The solution to eq (6) is: '
^Dt}^ = cos [np(t-to)] R-u>a0 + sin [nD (t - t0)] R_wb0, (31)VL )(*) — ~np sin[np {t - t0)]R_u,a0 + np cos[np (t - t0)] R_wb0 (32) - cos [nD (t - t0)] [w x R_wa0] - sin [nr> (t - t0)] [w x R_wb0],where t > t0-and:

ao = ro + Ar; b0 = — [v0 + Av + a;0 x Ar]. (33)



A Closed Form Vectorial Solution to the Relatíve Orbital Motion 59
Taking eqs (18) and (19) intő account, it follows that the motion of the Deputy with respect to the Chief is described by the vectorial expressions:r(0 = cos[np(í-ío)]{~^hc (34)

+ sin [ne (t - í„)] 
"C 

__________ PC________ ro 1 + ec cos fc (t) r0 ’ 
v (t) = -nD sin [nD (t - t0)] { hc

+np cos [nD (t - io)] 
cu cos/§(t)~2 ------- 7------ nebo-------- 7 2-----ncb0)

hc h^

hc [1 + ec cos fc (P]2 cos [kp (* - *o)]
Pc (sin/g(t)~2 cos/3(t)~ 1~ ~fc~hca,7 

hc [1 + ec cos fc (*)]2 sin [np {t - t0)]
(35)

íheb,

echc sin fc (t) r0
PC ro ’(notation (30) was used).
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Solutions fór the zero, respectively the positive specific energy may be de- duced exactly in the same way. Parametric equations of the relatíve motion with respect to LVLH may alsó be deduced in each particular case that may occur.
2.1.3 The Periodicity Problem (The Orbit Resonance)In case the Chief trajectory is elliptic and the Deputy trajectory is alsó elliptic, the motion of the Deputy with respect to the Chief might be periodic. This is accomplished when the ratio between the main periods (of Chief and Deputy) is a rational number, and in this case the trajectory of the Deputy with respect to LVLH is a closed curve. As it follows from the above computations, the two functions involved in the Deputy expressions of motion are fc (the Chief true anomaly) and Ed (the Deputy eccentric anomaly). Both are periodic functions in the particular situation when the trajectories are elliptic (fa < 0, ^d < 0). The main periods of fc and Ed are respectively:

ÍChief =
27T 27T/X (36)
ne (s^a

Tbeputy =
2tt _ 2n/i
nD (|r0+Ar| Iv° + △v + x Ar] )

The condition:
ÍChief (37)

(Q denotes the set of rational numbers) is necessaxy and sufficiént fór the relatíve motion to be periodic. It follows that the motion of the Deputy with respect to the Chief is periodic (orbit resonance case) iff there exists two relatíve prime natural numbers Ai and A2 such as:
ro 2/i - |r0 4- Ar| (v0 + Av + cu0 x Ár)2 _ / Ai A 2/3 

|r0 + Ar| 2/i - rov^ \ A2 /The periodicity condition (38) is given using only the initial conditions at 
t = to-
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2.2 Remarks on the Relatíve Motion EquationsThe non-linear initial value problem (1) that models the motion of the Deputy with respect to the LVLH reference frame has a solution that has the form:

r = r (t, Ar, Av). (39)When Ar — 0, Av = 0, then r — 0 is solution to eq (1) or r = re is solution to eq (6).In most papers, the solution to the relative orbital motion is obtained from the linearized equations of motion déri ved from eq (1).The procedure is like it follows: consider the motion of the Deputy deseribed by eq (1). Fór ~ 0, n > 2, the following approximations are made in eq (1):
h

|rc + r|3

_ 3
= /j, (re + 2rc • r + r') 2 =

z . _ 3
-3 A Á 2rC 2 _3

1 + -L2— - VrC
\ rc /

(40)
3rc • r 

rCThe vectorial linearized equation that deseribes the Deputy motion with respect to LVLH becomes:
r + 2cu x r 4- w x (w x r) + új x r + w.r = 3w^ 3rc • r-p—rcrc

(41)
r (t0) = Ar, 
r (t0) = Av,where . (42)

h^c (1 + ec cos/c)2Eq (42) represents the vectorial form of Lawden’s equations if the reference trajectory is elliptic (see (27)) (0 < ec < 1) or Hill-Clohessy-Wiltshire equations if the reference trajectory is circular (ec = 0) (see (1)). Consider (see (8)):Xo = Ar
Av (43)the State mátrix of the Deputy at t = t0 and its State mátrix at a moment oftime t:

X (t) =
T

= [zp VD ZD Xd yD Zd] ■ (44)r
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The solution of the linearized equation (41) is presented in the literature (see (8), (27)) via a transformation mátrix 4> named State transition mátrix that satisfies: X(t) = $(t,to)Xo. (45)Several forms of mátrix are used in literature. It is given with respect to the Chief true anomaly as independent variable (see (27)) or with time as independent variable (see (8)). The motion has a low level of predictability when using the model offered by the linearized equations. Somé Solutions work only fór small eccentricities.The solution presented in the form (45) represents the first linear approx­imation of the solution introduced in this paper. The State transition mátrix based solution offers a finite level of predictability. The solution offered in this papers has an infinite interval of predictability, due to its exact form.
3 ConclusionsA closed form vectorial solution fór the orbital relative motion problem was given. The solution has the time as independent variable and does nőt contain singularities. In the case when both satellites have elliptic orbits, a necessary and sufficient condition fór the motion to be periodic was offered. This condition depends only on the initial position and velocity vectors of both satellites. This solution extends the Solutions to the linearized equations of relative motion that are widely used in orbital mechanics. The expressions of the relative position vector and velocity are purely vectorial and does nőt depend on a particular coordinate system that might be used.Most Solutions presented in the literature are the first linear approximation of the solution presented in this paper.
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Abstract
By using a Sundman like regularization, we offer a unified solution to Kepler’s problem 
by using hypercomplex numbers. The fundamental role in this paper is played by 
the Laplace-Runge-Lenz prime integrál and by the hypercomplex numbers algebra. 
The procedure unifies and generalizes the regularizations offered by Levi-Civita and 
Kustaanheimo-Stiefel. Closed form hypercomplex expressions fór the law of motion 
and velocity are deduced, together with inedite hypercomplex prime integrals.
Keywords: Kepler’s problem, Sundman transformation, Hypercomplex numbers

1 IntroductionThe classic Kepler problem is described by the initial value problem:
r+^-r = 0, r (í0) = r0, r (í0) = v0. (1)where r = r (t) represents the position vector of the partiele with respect to the attraction center and n the gravitational paraméter. The most common regu­larization procedure used in the literature fór Kepler’s problem is represented by the introduction of an independent variable r — r (/) (called fictitious time) such as:

dt = rdr, (2) 

%25e2%2580%2598danielcondurache8rdslink.ro
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where r represents the magnitude of the solution to eq (1). This was done fór the first time by Sundman (see (1)) when studying the restricted three-body problem. Levi-Civita (see (2)) used the time-transformation (2) and complex numbers in order to regularize the planar Kepler’s problem. Kustaanheimo and Stieffel (see (3), (4)) used the same procedure and gave a spinor regularization of the spatial Kepler’s problem.The aim of this paper is to provide a closed form unified hypercomplex solution to the classic Kepler problem. By using a vectorial Sundman-like reg­ularization, Section 2 gives the hypercomplex solution to eq (1) and then particularizes it fór the different situations that may occur. The collision case is alsó studied.By making the change of variable:
t - t° = í r(a) da, (3)

Jothe vectorial Sundman like regularization transforms eq (1) intő a linear second order initial value problem with constant coefficients:
r" - 2fr = -L, r (0) = r°, r' (0) = r°v°, (4)where ( )' is defined as:

t° > 0 is a constant reál number that corresponds to r = 0, r (í°) = 0, r°, v° are the position respectively the velocity vectors at t = t°, £ is the specific energy and L is the Laplace-Runge-Lenz vector,
* f • 2 M 1 2 M€ = 2r 7 = 2V»’£ W
e _ r x (r x r) _ r _ v0 x (r0 x v0) _ ro .

M r /j, r0 ’
L = ne,where e represents the vectorial eccentricity of the conic when r0 x v0 / 0. The magnitude of the position vector is the solution to:

r" - 2£r = n, r (0) = r°, r' (0) = r°-v°. (6)We will alsó denote:
h = rxr = roxvothe specific angular momentum of the Keplerian motion.
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(7)
(8)

2 A Hypercomplex Solution 
to Kepler’s ProblemLet us consider a hypercomplex number s such as:s2 = 2$, with £ defined in eq (5). We denote:R = R + eR = {x + ey | x, y G R} ,

V3 = V3 +eV3 = {x+sy | x,y G V3},where R is the set of reál numbers and V3 is the set of three-dimmensional vectors. It is known that the set of hypercomplex numbers R is a ring and alsó a R— second order commutative algebra and V3 is a R— free modulé. If £ < 0, then the hypercomplex algebra R is isomorphic to the complex numbers algebra C, if £ = 0 it is isomorphic with the dual numbers algebra and if £ > 0 it is isomorphic to the hyperbolic numbers algebra. We introduce a hypercomplex 
state vector sG V3 like it follows:

s = r' + et, (9)where r is the solution to the regularized eq (4). From eq (4) and (7), it results:
s' = es — L; s (0) = r°v° + sr° = Sq. (10)We alsó introduce the hypercomplex number:

s^r'+er, (11)that is related to the radial motion of the partiele (it models its radial State). It follows that s satisfies:
s1 = es + p, s (0) = r°-v° + er° = s0 (12)We alsó define the hypercomplex eccentric anomaly and the exponential of a hypercomplex number:

E(r)=er, (13)exp (x) OO xK
ki ’ (14)
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Lemma 2.0.1 There exist two reál valued functions c, s : IR -> IR, indefinitely 
derivable, such as: exp (E) = c (t) + ss (t), (V) t G IR. (15)
Proof.that: We remark that e2k G IR fór any natural number k. Further, we see

exP (© = exP (et") = _°° )r2K_2K:1 00 „2K-.2K+1 (16)
The reál valued maps:

oo

fc=0

^■2k,j.2k

W’ fc=0

^.2k^-2k+1 

(2k + 1)! (17)
are the ones that satisfy eq (15). The proof is finalized. ■One may remark that the functions c(r) and s (t) may be expressed as:c (t) = cosh (et) ; es (t) = sinh (et) . (18)If we denote ^=^2^ G C (the set of complex numbers) then c and s may alsó be expressed as:

c (t) = cosh (wr); s (t) = Tsinch (w), (19)
where sinch(x) = < sinh (x) 

x1, i / 0
x = 0

Notation 2.0.2 We denote:

(20)
The next result offers closed form expressions fór the State vector s, the radial State s and gives a generalized hypercomplex Kepler equation. We denote the imaginary part of a hypercomplex number: lm (x + ey) = y.
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Theorem 2.0.3 The hypercomplex state vector s defined by eq (9) has the vec- 
torial closed form: s = Sq + [eső - L] $ (t). (21)
The hypercomplex number s has the closed form:

s = «o + + M] $ (r) • (22)
where $ (r) is defined by:

$ (t) = / exp(E(a))da (23)
Jo

and the time t may be deduced from the generalized hypercomplex Kepler equa- 
tion:

Proof. By differentiating with respect to r in eq (10), it follows that s" = es'. Then vector s' has the form:s' = exp (et) s' (0) = exp (et) [es (0) - L]. (25)By integrating in eq (25) with respect to t and taking intő consideration eq (23), eq (21) is deduced. Eq (22) is deduced similarly.In order to prove eq (24), consider the dual number:
t = r + Et, (26)where r is the magnitude of the position vector. By differentiating with respect to t in eq (26), it follows that t' = s. Therefore we may write:

t— s(a) da +1° => r — r° + e (t - t°) = / s(a)da, 
Jo Jo

(27)that ends the proof. ■
Remark 2.0.4 By taking intő consideration eqs (21), (22), and Lemma 2.0.1, 
it results that s , s and t — t° may be written as it follows:s = [ci (t) + esi (r)] [ssq - L] + Sq, (28)s = [ci (t) + esi (r)] [es0 + p] + s^. (29)

t - t° = r°T + c2 (t) (r° ■ v°) + s2 (r) (2^r° + p) . (30)
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We present now the main result of this paper. It gives the hypercomplex solution to Kepler’s problem.

Theorem 2.0.5 The following statements hold true:
The position vector is:r (r) = r° + ci (r) r°v° 4- sx (r) (2£r° - L) . (31)
The magnitude of the position vector is:

r (r) = r° 4- ci (r) (r° • v°) 4- «i (r) (2£r° + p). (32)
The velocity vector is:

V (r) = [r° 4- Cl (t) (r° • v°) + Sí (r) (2£r° 4- /z)]-1 • (33)[c (r) r°v° 4- s (r) (2£r° - L)] .
The link between t and r is given by the generalized Kepler equation:

t-t° = r°r 4- c2 (t) (r° • v°) 4- s2 (r) (2fr° 4- p) ■ (34)
Proof. From eq (21) it follows that:

r' 4- er = [ci (r) 4- esi (r)] (er°v° 4- 2£r° - L) 4- r°v° 4- er°. (35)By integrating with respect to r in eq (35), eq (31) is obtained.Eq (32) is proven similarly.Eq (33) results from eq (31) by derivating with respect to t and taking intő account that r' = rv.Eq (34) results from eq (32) by direct integration with respect to r. One may remark that eq (34) represent the generalized Kepler equation. ■<
Remark 2.0.6 The functions c and s defined in this section represent the fun- 
damental trigonometric functions in a space of —2£ constant curvature asso­
ciated to the Keplerian motion (see (9; 10; 16)). The following fundamental 
identities hold true (see (11)):c2 (r) 4-e2s2 (r) = 1; c(2r) — c2 (r) — e2s2 (r); s(2r) = 2s(r

C2 (|r) = £2S2 (lr) = 1^.

c(tí ± r2) = c(ri) c(r2) s (n) s (r2);s (ti ±T2) = s (ti) c (t2) ± c (n) s (r2). (36)
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The following approach is splited intő two: the situation when t° = to (the initial moment of time) and t° = tp (the moment of time the partiele is situated at the pericenter at the trajectory).

2.1 The Variable r = 0 at
the Initial Moment of Time t = t0The law of motion and the velocity have the form:r (r) = r0 + ci (r) rovo + Sí (t) (2£r0 - L). (37)v(r) = [r0+ ci (r) (r0 • v0) + sí (r) (2^r0+ ^)]-1 • (38)• • [c (r) rovo + s (t) (2£ro - L)]and the generalized Kepler’s equation (34) becomes:

t - t0 - ror + c2 (r) (r0 ■ v0) + s2 (r) (2fr0 + p). (39)
2.1.1 Negative speciflc energy £ < 0The functions c and s defined in eqs (17) have the particular form: 

c (r) = cos E (r), s(r) = —;----- sin E (r), x/aifi (40)

where E (r) = 5/2 |£|r represents the eccentric anomaly of the Keplerian motion in case h 0. It results:
r(r) = L / síel+ i (41)ro 2 |^| y COS^<2 Sin ’

r(r) = p (
m y') ^E(r) + ^^smE(T),zlsl/ V 2 KI (42)

v(r) = [r(r)]-1- r0v0 cos E (r) + —y—- sin E (r) l€ 1 (43)
The generalized Kepler’s equation (39) becomes:

pEM , r0 • v0 . nz m / P \ sinEM ‘ ~ío - m371 2jíi11 m£W|+(r° ( ’



72 D. Condurache and V. Martinuk

Eq. (44) gives the link between the functions t and E (t).One may remark that eq (41) represents the parametric equation of an ellipse (possibly degenerated). Its center has the position vector with respect to the attraction center. The ellipse conjugate diameters are: d — ro + d* =The ellipse is degenerated ifid x d* =0. This occurs when h = fq x vq = 0. The equation r (r) = 0 has a solution t > 0. From:
/"/ \ 2 2 2

with ip defined by:
I--------------- ----------- ,

2 |^| r0 - p sin ip = ---------—,

it follows that E (r) may be computed by solving the trigonometric equation:sin [E (r) + <p] =----------- ,...... M (47)
The value rc that satisfies eq (47) represents the collision with the attractioncenter ”moment”. The moment of the collision tc may be computed from eq (44) and it equals to:
tc — to +

pE (rc) (2|el)’/2 [1-cos E(rc)] + / A
k° 2ieM

sin E (48)+

2.1.2 Zero specific energy £ = 0Functions c and s defined in eqs (17) have the particular form: c(r) = l, s^-t. (49)
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The generalized Kepler’s equation (39) becomes:

It results:
r2

r (t) = r0 + rrovo - —L. z (50)
r2

r(r) = r0+ r(r0 ■ v0)+ (51)
v (t) = [r (r)]-1 [rovo - rL] (52)

T2

t-t0 = ror + — (r0 ■ v0) + p— (53)One may remark that eq (50) is the vectorial equation of a parabola (possibly degenerated). The parabola degenerates iff h = ro x v0 = 0. Eq (53) gives the implicit functional equation fór determining function r. In case ro x v0 = 0, equation r (t) = 0 has solution r > 0 iff ro • vq < 0, as it follows from eq (51) and from £ — 0 O 2p = roVg. The unique solution to eq (51) in case ro x vo = 0, r0 • v0 i= -rovo < 0 is:
Te = (54)voand it represents the collision with the attraction center ”moment”. The ”real” moment tc of collision is computed from eqs (53) and (54) and it equals to:

c ° + 3<

2.1.3 Positive specific energy £ > 0Functions c and s defined in eqs (17) have the particular fórra: 
c (r) = cosh E (r), s (r) = ~^= sinh E (t) .

It results:
r« = l+( L Xr0 ~ 1 C°Sh E M , rovo .+ /^nh^T), V "Sr(T) = -#+ sinh £(7-) +V (r° + ) coshE(r)X /v(t) = [r(r)]“ 1 r0 v0 cosh E (r) + smhE(r)

V

(55)

(56)
(57)
(58)
(59)
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The generalized Kepler’s equation (39) becomes:ro-voc , \ ,, ( u\ sinhE(r)= + —^[coshE(r)-l] + r<> + £ ----- (60)
zs \ ^s/ v^sOne may remark that eq (57) represents the vectorial equation of a hyperbola (possibly degenerated) with the center at the position described by vector The conjugate diameters of the hyperbola are: d — r0 — rk; d* = The hyperbola is degenerated iff d x d* = 0. This occurs when h = r0 x v0 = 0. The equation r (t) = 0 has a solution r > 0 iff ro ■ vo < 0, as it results from eq (58). The number rc that satisfi.es r (rc) = 0 represents the collision ”moment”. It may be determined by solving the equation:- ^^sinh E(r) + fr0 + cosh E(r) = 0. (61)

The collision moment tc is computed from eq (60) and it equals to:
Ptc r0 ■ v0 . _ ( n \ sinh E (rc)

tc = t0 - [coshE(rc) - 1] + r0 + —------ (62)
2.2 The Variable t = 0 at

the Periapsis Passage Moment t = tPThe notion of periapsis will be extended to ”the point on the trajectory that is nearest to the attraction center”. It means that in case of collison, the moment of time tp will denote the collision moment. In case of no collision, tp denotes the moment of time when the partiele is situated at the periapsis of its trajectory.One may remark that in this case rp ■ vp = 0 (at the periapsis the position vector and the velocity vector are orthogonal). The law of motion and the velocity have the form:r (r) = rp + ej (t) rPvP + S1 (r) (2£rp - L), (63)v(r) = [rp + sí (r) (2^rp + p)]1 [c(r) rpvp + s (r) (2^rp - L)], (64)and the generalized Kepler’s equation (34) becomes:
t - tp = rPT + s2 (r) (2£rp + m) • (65)

satisfi.es
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Note that if h 0, the following expressions hold true:

rP = -
r0, L = 0, (66)

rp = i r0, L = 0,
(67)

Vp = < ( L / 0,n riL ’ ' •
v0, L = 0, (68)The situation L = 0 leads to a circular trajectory. The motion is circular and uniform. When h = 0, then: rp = 0; rpvp = 0; vp = oo, and the motion is rectilinear.We remark that with the hypercomplex number e defined in eq (7) and the hypercomplex eccentric anomaly E(r) defined in eq (13), if £ / 0 it follows that: c(r)

s(r)
coshE(r) = <
- sinh E (t) =
E

coscoshsinsinh
if € < o, if e > o,if e < o, if £ > 0.

(69)

2.2.1 Negative Specific Energy £ < 0

Non-zero Angular Momentum h 0The law of motion, the position vector magnitude and the velocity are:~
r (t) = a [cos E (t) — ej + b sin E (r) ,
r (t) = a[l — ecosE(r)],,/2 Ifi
v (r) = —7—------ =7—r [—asinE(r) +bcos£(r)],' ' a[l - ecosE(r)] 1 v v

(70)
wherea=^f, b=-^hx e. Eq (70) represents the vectorial parametric equation of an ellipse with the vectorial semiaxis a and b. In case a = b (4> e = 0), the ellipse becomes a circle with radius r0.Eq (34) becomes Kepler’s classic equation fór the elliptic case:(E (t) — e sin E(t)) (71)
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Zero Angular Momentum h = 0The law of motion, the position vector magnitude and the velocity are deter- mined by making b = O,e = -^in eqs (70):
r(r) = ^[coshEM-l]^; (72)
r(r)
v(r) sinh E (r) r0 cosh E (r) - 1 r0 ’and Kepler’s equation is obtained from eq (84) by making e = 1:
t~tp = (^ (r) - sin E (r)). (73)Isi) 2^ (2The collision moment is tc = tp if r0 • v0 < 0 or tc = tp + — if/ir0 • v0 > 0.

2.2.2 Zero Specific Energy £ = 0
Non-zero Angular Momentum h / 0The position vector, its magnitude and the velocity vector are:

r(r) =

r(r) =
v(r) =

h2 Tv +r
h2 + t2^

hxL

2/z2/i 
h2 + T2/!2 h x L 

----------- rL

(74)
(75)
(76)
(77)

2

Kepler’s equation is:
, h2 t3
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The law of motion, the position vector magnitude and the velocity are:Zero Angular Momentum h = 0

r(r) = -^L,, X T2p= —,v(r) = ——L.
(78)(79)(80)

and Kepler’s equation is:
T3 

t~tp = p — 
o

(81)
The collision occurs iff r0 ■ v0 < 0, and the collision moment is computed from:1

_ 8p
tc~to+3^' (82)

2.2.3 Positive Specific Energy £ > 0

Non-zero Angular Momentum h / 0The law of motion, the position vector magnitude and the velocity areT
t(t) = a[e — coshE(r)] 4-bsinhE(r), (83)
r(r) = a (ecoshE (t) — 1),^2?V(T) = a(ecosh£(r) - 1) W + bcoshE (r)],

where b — x e. The first of eqs (83) represents the vectorialparametric equation of a hyperbola with the vectorial semiaxis a and b. Kepler’s cquation is:: [esinhE (r) - E (r)]. (84)
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Zero Angular Momentum h = 0The law of motion, the position vector magnitude and the velocity are:

the collision occurs iff ro ■ vq

r(r) = ^[coshE(r)-l]^, 
ro

= ^(coshE^-1),v = (2£)3^2 sinhE (r) r0
p (cosh E (r) — 1) ro ’

(85)

and Kepler’s equation is: (86)
< 0, and the collision moment is computed from:

, r0 • v0 m . -i , xtc =------------H--------- r sinh ----- (r0 • v0)M (2^ L M (87)
2.3 Hypercomplex Prime IntegralsWe introduce an inedite hypercomplex prime integrál with the help of the con- siderations made above in this Section.
Proposition 2.3.1 The hypercomplex vector:

S - 2£r ~ k+erv
“ 2^ + p +e (r • v) (88)

is constant.

Proof. It results by direct computations noticing that S' = 0. ■

Remark 2.3.2 If we split intő particular cases the expression of the constant 
hypercomplex vector S, inedite prime integrals ok Kepler’s problem may be found.

2.3.1 Zero Specific Energy £ = 0
Vector S becomes a dual vector, by noticing that e2 = 0. It follows that:—L+erv p + e (r • v) (89)
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and further:

prv+ (r • v) L = constant. (90)
2.3.2 Non-Zero Specific Energy £ / 0By denoting: a=—— 2£’and taking intő account that L =pe, eq (88) becomes:

a _ rv+E (r+ae)
O = 7---- r-----7----- 7.

(91)
(92)

From eq (92) it results:
rv (r • v) — 2£ (r — a) (r + ae) 

(r • v)2 — 2£ (r — a)2
। (r • v) (r+ae) — r (r — a) v

(r • v)2 — 2£ (r — a)2

constant,
constanl. (93)

3 ConclusionsBy using a Sundman-like vectorial regularization, the strong non-linear Kepler problem was transformed intő a linear differential equation with constant coef- ficients. Using the hypercomplex numbers algebra related to the specific energy of the Keplerian motion, together with hypercomplex vectors, a hypercomplex unified solution to Kepler’s problem was given. By introducing a hypercom- plex State vector and a hypercomplex radial State number, vectorial closed form expressions of the solution were obtained. The procedúra generalizes the regu­larization methods introduced by Levi-Civita and Kustaanheimo. The results are expressed depending on the fundamental functions of the trigonometry of a constant curvature space.
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Abstract
We tackle the Gyldén-type problem (a two-body problem with time-changing equiv- 
alent gravitational paraméter). Fór the most interesting case fór astronomy: small- 
amplitude periodic variation, we study the behavior of the system in the neighborhood 
of resonances. We adopt the most realistic astronomical situation: only one dominant 
term of the Hamiltonian. In this case we point out a fundamental model of resonance, 
common to every resonant situation, and, moreover, identical to the so-called first 
model of resonance (Breiter 2003). Considering the simplest case of the variation, we 
perform somé numerical experiments. Evén in this simplest case, the phase portraits 
are very complex: a mixture of oscillation zones, circulation zones and chaotic zones. 
Keywords: Gyldén-type problem, nonlinear partidé dynamics, resonances

1 The Gyldén-Type ProblemWe study an extension of the Kepler problem with time-dependent gravitational paraméter that bears the name of the Swedish astronomer Hugó Gyldén (Had- jidemetriou, 1963), (Deprit, 1983). The mathematical model can be described in its most generál form and in conveniently chosen units, by the Hamiltonian:
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= (1) z IMIHere q = (gi,g2) € R2\ {(0,0)} and p(= q) = (pi,p2) € R2 are the configu­ration (position) vector and the momentum vector, respectively, whereas e > 0 is a small paraméter. Observe that for e = 0 the Hamiltonian H (q, p) corre- sponds to the standard Kepler problem. We have to emphasize that the secular variation of p (via change of the gravitational constant or/and masses) mod- els concrete astronomical situations; we quote arbitrarily (Dirac, 1938), (Brans, 1961), (Brans & Dicke, 1961), (Hadjidemetriou, 1963) , (Hadjidemetriou, 1966), (Verhulst, 1975).Since the changes of p can alsó be due to nongravitational forces, §elaru et al. (Selaru et al., 1992) generalized the terminology by introducing the no- tion of changing equivalent gravitational paraméter, suggested by the Románián astronomer Árpád Pál. They extended Gyldén's model by including nongravi­tational, Central, inverse-square perturbing forces, absorbed in p(t). The source of such a generalization was Saslaw’s (Saslaw, 1978) cornerstone paper, which treated the photogravitational (gravitation+radiation) Gyldén's problem.In this paper we deal with the most interesting case of the equivalent grav­itational paraméter variation: the periodic one. Here we point out only somé astronomical situations approachable in this way: dynamics of particles (from dúst to satellites and planets) around pulsating stars, stars with spots, neutron stars, etc.; evolution of a protosolar or protostellar nebula and of planetesimals, planetary nebulae and accretion disks; planetary satellite (artificial or nőt) dy­namics under the influence of the re-emitted solar radiation pressure, and so forth.From the mathematical standpoint, the Gyldén-type problem with periodi- cally changing ^(t) was approached by us under many aspects: first-order ana­lytical Solutions for a periodic variations of p (t) (Selaru et al., 1992), (Selaru et al., 1993), refined analytical Solutions in the same case (Pál et al., 2006), slowly changing p(t) (Cucu & Selaru, 1997), KAM theory applied to this problem (Selaru & Mioc, 1997), chaotic behavior via the exact calculation of Melnikov's integrál (Diacu & Selaru, 1998), etc.In this paper we tackle the Gyldén-type problem with periodically changing 
p(t) from a single point of view: resonances.We shall consider the most interesting case from the standpoint of astron- omy: p W is a zero-average periodic function, Founer-expandable as
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oo

mW = Cn cos (nvt + <pn), (2)
n=lin which w > 0 and tpn E R stand fór frequency and phase, respectively. The fact that the average is zero does nőt entail loss of generality.Passing to the Delaunay-type variables (L, G, l, g) completed with the canon- ical pair (K, k = wt), which makes autonomous the corresponding vector field (see any classical treatise of celestial mechanics), we get the Harniltonian (Selaru et al., 1992):

H(L,G0,K,l,-,k) = + wK + ep(k/w) R(L,Go,l), (3)
Zil-Jin which

= - - 1 +(4)
rwhere Jm are Bessel functions of the first kind, while e = y 1 — (Go/L)2 is the osculating eccentricity. Here, as almost everywhere in this paper, we keep, by abuse, the same notation fór the functions of the new variables.

2 ResonancesLet us study the behavior of the system in the neighborhood of a resonance. If there exists a pair (r, s) € N2 such that the main frequencies of the system, say, fulfill the condition (Arnold, 1983):|< (wi,w2),(r,-s) >| < 7l(r,s)| P (5)fór any choice of the positive parameters 7 and p. In this case we say that the system is in the (r : s)- resonance.Fór the unperturbed system, (5) turns to |< (u>i, w2), (r, —s) >| = 0. Writing( 3) as H = Ho + Hí, we shall have in our case
W1w2 dL L3’

9H0 
dK
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3 The Fundamental ModelLet us consider a (r : s)-resonance. After one step of Hori-Deprit technique (Hori, 1967), (Deprit, 1969) and somé linear changes of variables we obtain the Hamiltonian function:
1 OO

Hrea(L,K,l, k,G0) = (AT - 52 ^nsr^ cos(ní -
n=l (6) where (now) e = ^/T^Gq/t^L2, and we denoted Ansr(e) := Cní Jnr(nre).Let us consider further that the partially averaged Hamiltonian benefits of a dominant term A^r Amsr(erej) / 0, where the resonant eccentricity reads 

eres := y/1 — Gj)/r2L2es and (Lres — 1 /r2sw). The fact that this term isdominant, mathematically means that there exists 6 G R+, 5 << 1, such that 
A™sr/A™ssr = ÖB™sr, (V) n / m, where B™sr is of the order unit or smaller.In this case we introduce a new couple of conjugate variables ($,99) via the relations L = y/\/r2s<jj + = Lres + (where $ measures the deviationfrom the exact resonance) and l = <p/m.Neglecting the constants that appear in the expansion of the Hamiltonian, and considering & = O(v/e), we get the new Hamiltonian877?2

Hres^,G0) = ~2^f + V

00+ 12/2” 52 COS ^/rn - + O(f3/2).res n=1Observe that the system ruled by (7) has only one degree of freedom, hence it is, in principle, integrable. <To obtain the main result fór this case, we shall estimate the terms that appear in (7). Let us introduce the conjugate variables (í,^) via$ = m$x/3/(eL2e,|A^r|),
= V - Vm + where c = 0 fór A™8sr < 0 and <7 = 1 fór A™r > 0. Let alsó introduce the timelike variable t via

t = -S1>(AX)^
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With these transformations, the new Hamiltonian reads

Hres^ ,ip,Go) ^2 + cosiJj- (8)
oo

-J COS ((n/m)^ + V’n) +O(e1/2),n=l,n0mwhere = (n/m) (<pm — cttt) - ipn.In this way we got a fundamental model of resonance of our problem, namely a formálisra common to every resonant situation, no matter which the index of the resonant term is. If 5 is of order or smaller, the contribution of the terms of the series is nőt significant within the limits of the magnitude order of the approximation. Moreover, in this case our model of resonance becomes identical to the first fundamental model of resonance (the perturbed pendulum) (Breiter, 2003). As in Breiter’s model, we shall estimate the maximum distance betweeq the (í = 0)-axis and the separatrix between oscillation and circulation zones in the phase pláne If we come back to our original variables T, the corresponding resonance width reads s) = y/2eL^es lA^srl /3m2.
4 Numerical InvestigationsTo have a deeper insight intő the complexity of the problem, we shall concretize the model resorting to the simplest situation: p (t) = cos wt (Selaru et ah, 1992). The Hamiltonian (3) becomes

OOcosfc+ 52 Jm (me) [cos (k + ml) + cos (k — m/)]H = __ + bjK + e-----------, (9)
as it is easy to check.To understand the behavior of the system in the neighborhood of resonances, we performed a series of numerical experiments. The numerical results con- firm and corroborate our analytical insights in a more accessible and intuitíve form. The departure point is the canonical system associated to the Hamilto­nian (9). Consider a (u : l)-resonance. Alsó consider the change of variables 
p (u/L3 -w) fy/é, 7 := ul - k, r := y/ét. The corresponding equations of motion will read
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(oo52 ^Jm (me) sin ml m=lr / °° \7' = p - cos k I 1 + 52 \?Jm (me) - L-^ (Jm (me))] cos ml 1 , (10)
Fór our numerical endeavors, we brought the second equation (10) to an explicit form via the well-known property of the Bessel functions of first kind: 

d(Jm (me)) /dL = [mG^/ (2eL3)] [Jm-i (me) - Jm+i (me)]. We alsó used the relation Gq = L2 (1 — e2).Taking intő account the above change of variables and the relation between the constant angular momentum Go and L, we get the maximai variation do­main of p: p € (—w/ye, (u/Gq — w) /VÉ]. Fór our numerical investigations we chose Gq-values that make possible the transit through resonance; it is easy to calculate that they correspond to Go < y/ujű.Let 0 : R x R x T2 —> R x T2 be the global flow of 10, where T2 stands fór the 2D torus. In other words, </>(r,po,7o,ko) is the solution of this system fór the initial data (po,7o,£o) (at r = 0). Consider the global transversal section in the phase space S := {(p,7, k) e R x T2| k = 0}. On this section we shall consider Poincaré’s classical map of the first return P : S —> S, 
p(pn) := 0(27rx/é/w,po,7o,O).It is obvious that, from the numerical standpoint, to get Poincaré’s map, it suffices to integrate the first two equations (10) fór r e [0,2ttx/e/w], considering 
k = TU}/y/é.Observe that (10) represents another form of the system ruled by (9), with- out simplifications or truncations. However, fór our numerical endeavors, we truncated the series that appear in the vector field expression, retaining 50 low-order terms. As regards the numerical integration technique, we used a multi-step algorithm of Adam-Bashforth-Moulton-type, of variable order.A few results of our numerical experiments are illustrated in the next fig- ures. We plotted 300 successive returns fór 98 distinct trajectories in Poincaré’s section S. We considered a 7x14 rectangular grid of initial data in the region (P>7) 1-5,1-5] x [0,2?r], and 50 terms of the series. The resonant situationtaken intő consideration are (1:1), (2:1), (3:1) and (4:1), while the value of the small paraméter was e = 0.035 or a double value (e = 0.07) in somé cases. In all the figures we plotted the lines p = puA — const., corresponding to the exact resonances in the zone.
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Figure 2: Resonance 2:1, epsilon = 0,07 (left) and epsilon = 0,035 (right)

5 ConclusionsWe tackled the most interesting case of the Gyldén-type problem from the standpoint of astronomy: a zero-average periodic perturbing function, Fourier- expandable.We got a fundamental model of resonance, which, if 5 is of order y/e or smaller, is identical to first fundamental model of resonance.We tackled the simplest situation // (t) = coswt. We showed that only partial averaging is efficient.The numerical experiments exhibit a very complex behavior of the system, even in the simplest case we considered. The only resonances we show here sufflce to show very intricate phase portraits: oscillation, circulation, and chaotic
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Figure 3: Resonance 3:1, epsilon = 0,07 (left) and epsilon = 0,035 (right)

Figure 4: Resonance 4'1, epsilon = 0,07 (left) and epsilon = 0,035 (right)

zones.According to the increase of Gq of and e, the portraits in the global transver- sal section (p,ry) of the phase space exhibit more and more extended chaotic regions; this is to be expected from the standpoint of celestial mechanics.
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Abstract
We sutvey the recent Románián results in the study of the two-body problem in 
post-Newtonian fields. Such a field is characterized, in generál, by a potential of 
the form U(q) = |q|~x+ something (small, bút nőt compulsorily). We distinguish 
somé classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein 
PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, 
Miieket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite 
problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type 
and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational prob­
lem), were alsó tackled. The methods used in such studies are various: analytical (us­
ing mainly the theory of perturbations, bút alsó other theories: functions of complex 
variable, variational calculus, etc.), geometric (qualitative approach of the theory of 
dynamical Systems), and numerical (especially using the Poincaré-section technique). 
The areas of interest and the generál results obtained focus on: exact or approximate 
analytical Solutions; characteristics of local flows (especially at limit situations: colli- 
sion and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; 
geometric deseription of the global flow (and physical interpretation of the phase-space 
structure). We emphasize somé special features, which cannot be met within the New­
tonian framework: black-hole effect, oscillatory collisions, radial librations, bounded 
orbits fór nonnegative energy, existence of unstable circular motion (or unstable rest), 
symmetric periodic orbits within anisotropic models, etc.
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1 IntroductionThe study of the two-body problem in other fields than the Newtonian one con- stitutes a temptation and a challenge at the same time. The goal is obvious: which properties of the Keplerian motion are preserved within a new frame- work? What non-Keplerian motions are characteristic to such models? Among many models, the post-Newtonian fields constitute a eláss of choice as regards modelling of concrete astronomical situations.From a mathematical standpoint, the problem is simple at a first sight. We call post-Newtonian a field characterized by a potential of the form A/ |q| + /(q, P,i), where q is the configuration vector, and p is the momentum vector. In generál, bút nőt always, the terms grouped under the generic name / are much smaller than the Newtonian-type term A/ |q|.From a physical standpoint, / is nőt necessarily of purely gravitational na­túré (as in the cases of Schwarzschild, Fock, Einstein PN, Schwarzschild - de Sitter, zonal satellite; see Section 2 below). It can represent supplementary influences as radiation, rotation, electrostatic charge, or combinations of these ones (and gravitation).In this paper we survey the recent results of thé Románián research in the two-body problem in post-Newtonian fields. Of course, there were many other results obtained in the (restricted and generál) three-body problem, five-body problem, n-body problem, bút they will be surveyed elsewhere.Section 2 presents the post-Newtonian fields (in the above acception) consid- ered as a framework fór the two-body problem. They are classified from various points of view: physical, mathematical, astronomical.In Section 3 we point out the goals of such a research and the methods used. The methods can be divided intő analytical (quantitative), geometrical (qualitative), and numerical, bút their use was in generál combined.Section 4 presents the most important results obtained by the Románián researchers in this investigation. To mention only few such issues, we quote: problems concerning integrability or nonintegrability (in fact, chaoticity), exact analytical Solutions, deseription of the local flow in the neighbourhood of sin- gularities, deseription of the global flow (if possible), existence of symmetries, etc.Section 5 points out somé phase curves in the post-Newtonian two-body problem, which cannot be met in the standard Kepler problem. All these phase trajectories are translated in terms of physical orbits.The final Section 6 puts intő evidence the actual usefulness of the study of the so old two-body problem in post-Newtonian fields. We bring arguments, 
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nőt only mathematical, bút especially from the standpoint of today’s astronomy (from ground or from space) and astrodynamics.
2 Post-Newtonian fieldsAs we have seen in the introductory section, we call post-Newtonian a field characterized by a potential of the form A/ jq| + /(q, p, t), or by a Hamiltonian of the form |p|2 /2 4- A/ |q| + /(q, p, t), or - in case - by a nonconservative force expressed as B/ |q|2 + ^(q, p, t). From the standpoint of their natúré, they can be divided intő several classes. We shall survey the fields tackled by the recent Románián research.
2.1 Empirical classical fieldsThe first creator of a post-Newtonian model was Isaac Newton himself. Unable to explain the observed secular motion of the Moon’s perigee, he proposed a potential A/r + Blr2 (with r = |q| and A, B > 0). His model was resumed later by Alexis Clairaut, who eventually abandoned it (e.g. [1]).Other models, all based on a slightly modified gravitational law, were pro­posed by Asaph Hall and Simon Newcomb. They considered potentials of the form A/r1+e, with very small e.Many decades later, Miieket and Treder started from a Hall-Newcomb model to propose a logarithmic gravitational potential able to explain quantitatively Mercury’s perihelion advance [2, 3]. _
2.2 Physics-based classical fieldsAt the end of the 19th century, Hugó von Seeliger proposed an exponential gravitational potential, based on physical principles. After relativity, his model felt intő oblivion. Bút it was reconsidered by many outstanding scientists; it is sufficient to quote Wolfgang Pauli and Edwin Hubble among them.Maybe the most discussed classical model during the last decade is the one proposed by the Bulgárián physicist Georgi Manev in the 1920s, as a classical alternative to relativity. He resumed Newton’s model A/r+B/r2, bút with phys­ical arguments. Many Románián mathematicians, physicists and astronomers tackled Manev’s model [1, 4-6]. Their efforts and results attracted many dozens of specialists from all over the world towards this promising domain of research.
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During the same 1920s, the Románián astronomer Constantin Popovici pro­posed a hybrid post-Newtonian model [7]. It consisted of a combination of a Newtonian gravitational force and a special radiative force (depending on both configuration and momentum).During the 1990s, Manev’s gravitational force and Popovici’s radiative force were combined intő the so-called Popovici-Manev model. Its study provided many interesting issues [8, 9].The launch of the artificial Earth satellites raised (even before) another post- Newtonian problem: evolution within the framework of the main problem of space dynamics. It means the evolution of an equatorial satellite in the grav­itational field of an oblate plánét (potential A/r + B/r3). The problem was generalized as the Jz problem (with A,B of any sign) [10]. It was further gen- eralized as the zonal-satellite problem (with potential ^n=i^n/rn')') [11].A model developed in the 19th century by Hugó Gyldén is characterized by a potential; of the form A[1 + f(t)]/r. Many concrete astronomical situations can be modelled in this way [12-15].
2.3 Purely relativistic fieldsRelativity answered many tremendous questions in physics and astronomy, even in celestial mechanics. However, no coherent results could be brought in the most celebrated problems of dynamics (the n-body problem) in terms of a clas- sical representation. There were many attempts, bút the only widespread ap- proach is the use of the classical formalism that brings the relativity geometry intő the realm of classical mechanics. This allows the use of notions as potential or force, and a classical treatment via powerful mathematical tools.The best known and the most used relativistic model is Schwarzschild’s one. Its classical expression reduces to a potential of the form A/r + B/r3 [16, 17]. It is, to somé extent, an equivalent to the J2 problem.Another well-known relativistic model is the exact solution provided by Fock to Einstein’s field equations [18]. Brought intő the classical realm, the corre­sponding potential reads £^=1(An/rn).Einstein himself created a classical ”mirror” to his model: the so-called Einstein’s PN field. The Hamiltonian that features this model exhibits a strange térni, which mixes configurations and momenta [19].The Dynamical Theory of Gravity developed - during the recent years - a complex model, whose gravitational potential (translated in classical terms) consists of a modification of Seeliger’s potential.
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To end this subsection, we mention that the Románián researchers alsó ap- proached (bút only sporadically) somé PPN (post-Newtonian parameterized) relativistic fields [20-22].

2.4 Combined relativistic fieldsMany models added different-nature effects to the relativistic gravitation. Two of them were approached by the recent Románián research:- the Kerr metric, which models the field generated by a black hole in rota­tion;- the Reissner-Nordström metric, which models the field generated by an electrostatically cha'rged black hole.Of course, mathematical combinations of these situations can alsó be taken intő account, because they are very likely from a physical and astronomical standpoint.Lqstly, we mention a model approached by us: the Schwarzschild - de Sit- ter model. This one combines the deformation of the spacetime continuum in the neighbourhood of a great mass with the influence of the cosmological back- ground. The equivalent classical potential has the form A/r + B/r2 + Cr2 [23, 24].
2.5 The gravito-elastic model: a mathematical toyThere is a well-known issue: Newton’s theorem about the equivalence of bodies (in certain conditions) with matéria! points with the whole mass concentrated in their centres is exact in only two reál situations: gravitational force and elastic force. To mathematically tackle such situations, we approached the so-called gravito-elastic model, associated to the potential A/r + Br2 [25]. It is obvious that it is a particular case of the Schwarzschild - de Sitter model (notice that the equivalence concerns only the mathematical formalism).
2.6 Special modelsOther effects were added to post-Newtonian models (especially relativistic), in order to create a more generál and realistic framework. One of these effects is anisotropy (with many physical and astronomical connotations), which provided a lót of surprising results as regards dynamics in post-Newtonian fields.
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The anisotropic Manev model yielded many new issues as compared to the corresponding isotropic model [26-28]. It is the same as to the anisotropic Schwarzschild model [29, 30].
2.7 General modelsA first generalization of the zonal-satellite problem is the two-body problem associated to the so-called quasihomogeneous field. The latter one is math- ematically equivalent to the first one, bút is much more rich as regards the concrete astronomical situations it models.A next and higher generalization consisted of a field featured by a potential of the form Y^n=i^n/ran), with an reál positive numbers, nőt necessarily integers.
3 Aims and methodsAs it is natural, the goal of all these researches was to unveil the properties of the motion in post-Newtonian fields. The investigations focused on somé generál subjects:- transposition of classical results (corresponding to the Newtonian field) intő the realm of post-Newtonian fields;- global properties of the motion;- local properties of the motion;- singularities (in our case, collisions): collisional and near-collisional dy- namics;- behaviour at infinity: escape and near-escape dynamics;- equilibria: natúré, stability;- special orbits: periodic, quasiperiodic, heteroclinic, homoclinic;- symmetries; ‘- resonances and chaoticity.Tackling all these topics, the Románián researchers obtained many remark- able results (see Section 4).The first methods used were quantitative (analytical). Series expansions (powers of one or two small parameters) were especially used, within the frame- work of the theory of perturbations. We obtained first-order, second-order, and even third-order approximate Solutions. In few cases the exact integration was possible. We resorted to: canonical transformations, averaging, successive approximations, and several other classical approaches.
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Bút the approximate or even exact analytical Solutions are written via lengthy formuláé, and never describe clearly the nice properties of the geometrical and physical orbits. That is why we resorted in most cases to qualitative analy- sis. The powerful tools of the theory of dynamical Systems allowed us (in most above mentioned topics) to write the motion equations in a simple and elegant manner. The results consisted of clear local or even global phase-portraits.Among the tools used within the geometrical tackling of the problems, the McGehee-type transformations (of first and, especially, second kind) have the Central piacé. Due to them we managed to describe many local phase-portraits, especially in the limit cases of collision and escape. Of much help were the fundamental theorems of the KAM theory (concerning the persistence of the invariant tori), or the Melnikov integrál.Of course, quantitative and qualitative methods cannot be clearly separated. They were combined to extract Information about the (local or global) flow from the motion equations and first integrals. In addition, ”non-orthodox” tools in celestial mechanics were alsó used. It is sufficient to mention the calculus of variations, the algebraié theory of groups, or the theory of functions of complex variable.Besides, a tool started half a century ago was used and proved to be efficient: the numerical experiment. Such an approach was very useful in investigating the special situations of resonance and chaoticity.Analytical, geometrical, and numerical methods - all were used (sometimes separated, bút combined in most cases) to provide new and significant results in the post-Newtonian dynamics.

4 General resultsWe shall present here the most important recent results obtained by the Romá­nián researchers in the investigation of post-Newtonian two-body problems.Resorting to quantitative methods, the exact analytic solution of the Manev- type problem was obtained. It was tackled in both classical coordinates (radius vector - polar angle; Keplerian orbital elements) [5] and Sundman-regularized coordinates [4]. We used both the theory of perturbations and the exact ana­lytical integration of an unperturbed problem.In the same manner, the exact Solutions of the Popovici and Popovici-Manev problems were provided [7-9].First-order (and - in somé cases - second-order or even third-order) Solu­tions were got fór the two-body problem in many fields. We quote arbitrarily: 
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Schwarzschild - de Sitter’s field, PPN fields, Fock’s field, Mücket-Treder’s field, etc [e.g., 18, 20-23].As we have already said, the analytic expressions of all these Solutions are very intricate and do nőt describe clearly the physical evolution of the system. That is why we resorted to qualitative analysis, obtaining in this way much more rich results.All tackled models present an isolated singularity at the origin, singular- ity that corresponds to a collision. Using the McGehee-type transformations, we managed to depict the so-called collision manifold for all problems. In all isotropic problems, the collision manifold is homeomorphic to a 2D cylinder or (equivalently) to a 2D torus. In the anisotropic problems studied (Manev and Schwarzschild), this manifold has the shape of a cylinder/torus with ”humps”, which provides surprising results (as regards collisional orbits).A first-choice result is the proof of the existence of spirál collisions (the black- hole effect). They are collisions with nonzero angular momentum constant. Surprisingly, they are much more probable (from the standpoint of the Lebesgue measure) than the classical rectilinear collisions [31].Another surprising result is the proof of the existence of oscillatory collisions (with nonconstant angular momentum, which alternates its sign). This issue was pointed out in the anisotropic Manev-type and Schwarzschild-type problems [26- 30].Evén if the escape does nőt constitute a singularity, this limit situation was alsó taken intő account. The results are the same as in the case of the collision manifold, as regards the look of the infinity manifold. Cylinders/tori without ”humps” (in isotropic cases) or with ”humps” (in anisotropic cases) are present.As a natural further step after the investigation of collision and escape, the equilibria were tackled. Interesting results were obtained in the J? problem as regards the nonlinear stability of equilibria.In almost all problems studied, the symmetries occupied a piacé of choice [32-35]. It was proved that these symmetries form an Abelian group with an idempotent structure. Such groups always own subgroups of order two, isomor- phic to Klein’s group. The symmetries pút intő evidence were of much help in proving the existence of families of periodic orbits in both Manev-type and Schwarzschild-type anisotropic two-body problems [26-30].A very ” astronomical” problem, Gyldén’s one, benefitted of a special atten- tion. Via the modern tools of the theory of dynamical Systems, chaos in this problem was discovered [36]. Moreover, such a kind of chaoticity was pointed out alsó by numerical experiments.
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5 Non-Keplerian orbitsIn this section we shall emphasize orbits specific to post-Newtonian problems, which cannot be met in the standard Kepler problem. Every phase curve will be translated in terms of physical trajectories, and conversely.

- Spirál orbital motion. This is the most common motion in the two-body problem in post-Newtonian fields. In other words, the motion is performed on precessional conic sections (the Laplace-Ruge-Lenz vector does nőt exist).
- Nonrectilinear collisional motion. Within isotropic models, such trajecto­ries are spirál. Within anisotropic models, besides spirál trajectories, there alsó are oscillatory orbits (fór which the angular momentum alternates its sign).
- Bounded orbits with nonnegative-energy level.
- Unbounded orbits with negative-energy level.
- Unstable relatíve equilibria. They are unstable rest positions fór zero an­gular momentum, and unstable circular orbits fór nonzero angular momentum.
- Phase curves that connect collision to saddles. In physical terms, they are orbits that eject asymptotically from collision and tend asymptotically to an unstable circular orbit, or conversely.
- Phase curves that connect infinity to saddles. In physical terms, they are orbits that come from infinity and tend asymptotically to an unstable circular orbit, or conversely.
- Heteroclinic orbits that connect saddle to saddle. They physically represent motion that starts asymptotically from and unstable circular orbit and tend asymptotically to another unstable circular orbit.
- Homoclinic orbits that surround a centre. They physically represent motion that starts asymptotically from and unstable circular orbit and tend asymptot­ically to the same orbit.
- Rectilinear librations. This is the case of heteroclinic saddle-saddle curves with zero angular momentum. The partiele goes back and forth between two limit distances it cannot go beyond.
- Quasiperiodic orbits. In all tackled cases, quasiperiodic orbits do exist. They are much more probable (from the point of view of the Lebesgue measure) than the periodic orbits.
- Bi-homoclinic curves. In the physical space they represent motions that start asymptotically (one inwards, the other outwards) from an unstable orbits, then tend asymptotically to the same orbit.Of course, more intricate phase-portraits are met, too. There are, fór in- stance, homoclinic or bi-homoclinic loops surrounded by periodic and quasiperi­odic orbits. The latter ones can be, in turn, surrounded by a larger homoclinic 
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orbit, and so forth.All these issues prove the complexity of the two-body problem associated to post-Newtonian models.
References

[1] F. Diacu, V. Mioc, C. Stoica: 2000, Nonlinear Analysis 41, 1029
[2] G. Ballinger, F. Diacu: 1993, Rom. Astron. J. 3, 51
[3] V. Mioc, P. Blaga: 1991, Rom. Astron. J. 1, 103
[4] V. Mioc, C. Stoica: 1995, C. R. Acad. Sci. Paris, sér.I, 320, 645; 321, 961
[5] J. Delgado, F. N. Diacu, E. A. Lacomba, A. Mingarelli, V. Mioc, E. Perez, C.

Stoica: 1996, J. Math. Phys. 37, 2748
[6] F. Szenkovits, C. Stoica, V. Mioc: 1999, Mathematica 41, 105
[7] M.-C. Anisiu: 1995, Rom. Astron. J. 5, 49
[8] M.-C. Anisiu: 2003, Rom. Astron. J. 13, 171
[9] M.-C. Anisiu, V. Mioc: 2004, Rom. Astron. J. 14, 71
[10] V. Mioc, M. Stavinschi: 2000, Serb. Astron. J. 161, 0
[11] V. Mioc, M. Stavinschi: 1998, Serb. Astron. J. 158, 31; 37
[12] D. §elaru, C. Cucu-Dumitrescu, V. Mioc: 1992, Astron. Nachr. 313, 257
[13] D. §elaru, C. Cucu-Dumitrescu, V. Mioc: 1993, Astrophys. Space Sci. 202, 11
[14] D. §elaru, V. Mioc: 1997, C. R. Acad. Sci. Paris 325, sér. Ilb, 487
[15] A. Pál, D. gelaru, V. Mioc, C. Cucu-Dumitrescu: 2006, Astron. Nachr. 327, 304
[16] C. Stoica, V. Mioc: 1997, Astrophys. Space Sci. 249, 161
[17] V. Mioc, M. Stavinschi: 1998, Bull. Astron. Belgrade 156, 21
[18] V. Mioc: 1994, Astron. Nachr. 315, 175.
[19] D. §elaru, D. Mihai, V. Mioc: 1998, Bull. Astron. Belgrade 156, 27
[20] V. Mioc, L. Mircea: 1994, Studia Univ. Babe§-Bolyai, ser. Mathematica, 39, No.4,

93
[21] V. Mioc, E. Radu: 1995, Rom. Astron. J. 5, 37
[22] V. Mioc, E. Radu: 1995, Studia Univ. Babes-Bolyai, ser. Mathematica, 40, No.2,

101
[23] P. Blaga, V. Mioc: 1992, Europhys. Lett. 17, 275
[24] V. Mioc, M. Stavinschi: 1998, Rom. Astron. J. 8, 125
[25] V. Mioc, M. Stavinschi: 1999, Rom. Astron. J. 9, 19; 29; 37
[26] F. Diacu: 2000, J. Phys. A 33, 6573
[27] F. Diacu, M. Santoprete: 2001, Phys. D 156, 39



Actual Románián research 101
[28] F. Diacu, M. Santoprete: 2004, Phys. D 194, 75
[29] V. Mioc, E. Pérez-Chavela, M. Stavinschi: 2003, Celest. Mech. Dyn. Astron. 86, 

81
[30] V. Mioc, M.-C. Anisiu, M. Barbosu: 2005, Celest. Mech. Dyn. Astron. 91, 269
[31] F. Diacu, A. Mingarelli, V. Mioc, C. Stoica: 1995, in R. P. Agarwal (ed.), World

Sci. Ser. Appl. Analysis, 4, World Scientific, Singapore, 213
[32] V. Mioc: 2002, Phys. Lett. A 301, 429
[33] V. Mioc: 2002, Baltic Astron. 11, 393
[34] V. Mioc: 2003, Astron. Nachr. 323, 271
[35] V. Mioc:2004, Hvar Obs. Bull. 28, 167
[36] F. Diacu, D. §elaru: 1998, J. Math. Phys. 39, 6537





PADEU 19 (2007), p. 103
ISBN 963 463 557
©Published by the Astron. Dept. of the Eötvös Univ.EB

Hénon-Heiles’ two-body problem. New
FEATURES OF THE GLOBAL FLOW

V. Mioc, D. Pricopi

Astronomical Institute of the Románián Academy, Str. Cutitul de Argint 5, RO- 
040558 Bucharest, Románia

E-mail: vmiocQaira.astro.ro, dpricopiQaira.astro.ro

I
Abstract
We tackle the two-body problem associated to Hénon-Heiles’ generalized potential. 
The equilibrium points are found and their natúré is discussed. We pointed out the 
main features of the global flow fór somé cases of interest.
Keywords: celestial mechanics, Hénon-Heiles ’ model, global flow

1 IntroductionHénon-Heiles’ potential reads W(qi,q2) = (Ag2 + q^)/^ + q[q2 — Cq^/S, where 
(qi ,q2) € R2 are the standard Cartesian coordinates and A and C are reál parameters (Hénon and Heiles, 1964). Many authors tackled this model, from the initial numerical experiment via Poincaré sections (Hénon and Heiles, 1964) to quantitative and qualitative approaches (e.g. van dér Merwe 1991; Antonov and Timoshkova 1993; Anisiu and Pál 1999; Mioc and Barbosu 2003a,b). Fór a much larger and deeper insight intő the model, see Boccaletti and Pucacco (1996).In Section 2, the basic equation are written down. In Section 3 we study the existence and the natúré of the equilibrium points of Hénon-Heiles’ potential. In Section 4, the main features of the global flow are pointed out.
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2 Basic equationsConsider the relatíve motion of a unit-mass partiele with respect to the field- generating source. Its dynamics is associated to the planar Hamiltonian#(q, P) = (P? + P2)/2 - + ql)/2 + 9^92 ~ Cq%/3] (1)in which q = (91,92) € K2, p(= q) = (pi,P2) € are the configuration vector and the momentum vector of the partiele, respectively, and A and C are reál parameters.The equations of motion generated by (1) explicitly read
91 = Pi, 92=P2, (2)Pl = A91 +29192, p2 = 9i - + 92-The Hamiltonian (1) is a constant of motion, i.e. Jf(q, p) = h, which pro- vides the first integrál of energy (h is the energy constant).The angular momentum L(q, p) is nőt a constant of motion (except certain cases that will pointed out in the next sections), hence we do nőt dispose of the corresponding first integrál. This was to be expected, given the anisotropic structure of the potential.

3 Equilibrium pointsWe find the equilibrium points by putting & = p< = 0, i = 1/2 in (2) and solving the resulting set of equations:
9i(A + 292) = 0 ( (3)9i + 92 - Cq^ = 0We find four equilibrium points:

(91,9®) e {(0,0), (0,1/C), (^(AC + 2)/2, -A/2), (-^A(AC + 2)/2, -A/2)}(4)The characteristic equation reads:
[a2 - 2(A/2 + 92°>2 - 2(1/2 - C92°)] - 4(9?)2 = 0 (5)
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Fór (gf,^) = (0,0) the eigenvalues are <71,2 — ±1, 03,4 = ±VX if A > 0 or <73,4 = if A < 0. This equilibrium point is a saddle (the motion in thevicinity of the collision manifold is unpredictable: the test partiele can collide or can escape to infinity). Fór (g°, q^) = (0,1/C), C 0, the eigenvalues are <74,2 = ±? and 73,4 = ±y(AC4-2)/C if (AC + 2)/C > 0 or 73,4 = ±iy/-{XC 4- 2)/C if (AC 4- 2)/C < 0. So, this is a saddle, too. The equilibrium points (g?,^) € {(i/A(AC 4- 2)/2, — A/2), (-^(AC + 2)/2, -A/2)}, exists if and only if A(AC4- 2) > 0. The characteristic equation reads a4 — (AC + 1)72 — A(AC + 2) = 0. It’s easy to show that the eigenvalues are 01,2 — ±í^/[—(AC 4-1) 4- \/A]/2 and 73,4 = ±^/[(AC + 1) + 7A]/2 where △ = (AC + l)2 4- 4A(AC + 2). These equilibrium points are saddle, too.

4 Main features of the global flowAs usual in anisotropic fields, we pass to standard polar coordinates via the reál analytic diffeomorphism
r = |q|, # = arctan^, gi), (6)
U = r = (gipi + g2p2)/|q|, V = rÓ = (gip2 + «2Pi)/|q|which represents a McGehee-type transformation of the second kind (McGe- hee 1974). In these coordinates the motion equations read

r = u, G — v/r, (7)ú = v2/r 4-(Acos2 # 4-2sin2 #)r 4-(3cos2 # - Csin2 #)r2 sin#, ú = — uv/r 4- 2(1 — A)r sin#cos# + [1 - (C + 3)sin2#]r2 cosG,whereas the energy integrál acquires the form
(u2 + u2)/2 - (A cos2 #4-2 sin2 #)r2/2 - [(3 cos2 # - C sin2 #)r3 sin#]/3 = hAll the orbits are situated on the Hill’s surface

f(r, 6) = C(#)r3 4- V(#)r2 4- h
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where /(r, 0) = (u2 + v2)/2 > 0 is the kinetic energy of the partiele and the functions U and V are defined by
17(0) = [1- (C/3 + 1) sin2 0] sin0,V(0) = A/2 + (l - A/2)sin20.From a detailed analyses of the Hill’s surface we obtained the next results:

5 Case C E (—oo,0) and A E (-oo,0]

5.1 Negative energy case (h < 0)On the directions of 0 € (0,7r),• The collisions are nőt possible;• There are no equilibrium points;• The motion is unbounded (the test partiele can be captured from infinity or can escape to infinity).On the directions of 0 e (tt + 0', 2% - 0') where 0' = arcsin \/A/(A - 2) we distinguish the next situations:1- If h < —4/3C2 the motion is nőt possible on these directions;2. If h = —4/3C2 we have an equilibrium point (a saddle, see Section 3) at the distance r = -2/C on the direction 0 = 3tt/2;3. If 0 > h > -4/3C2 the motion is bounded (oscillatory orbits).On the directions of 0 e [tt, 7r + 0'] U [2tt — 0', 2%], the motionás nőt possible.
5.2 Zero energy case (h = 0)On the directions of 0 € (0,0') U (tt - 0', ír),• The collisions are nőt possible;• There are no equilibrium points;• The motion is unbounded (the test partiele can be captured from infinity or can escape to infinity);
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Figure 1: An example of oscillatory orbit corresponding to case 3 before. The initial 
conditiops as chosen as follow: ro = 5, 9q — 3tt/2, uo = 0 and vo =0.1.

• The partiele cannot leave the collision manifold if, at the initial moment, is situated on it.On the directions of 9 € (tt + 0', 2?r - 0'),• The collisions are possible;• There are no equilibrium points;• The motion is bounded (oscillatory orbits).On the directions of 0 6 [0',7r + 0'],• The collisions are nőt possible with zero energy;• There are no equilibrium points;• The motion is unbounded (the test partiele can be captured from infinity or can escape to infinity).On the directions of 0 E [%, tt + 0'] U [2tt — 0', 2tt], only the motion on the collision manifold is possible.
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5.3 Positive energy case (h > 0)On the directions of 8 G (0,7r), there exists 8^ G (0,0') and 0'2 G (tf - 6', 7r), such that = 0, i = T^, where rcr(0) = -(2/3)V(0)/C7(0).If0G (0,01)0(0^),• The collisions are nőt possible;• There are no equilibrium points;• The motion is unbounded (the test partiele can be captured from infinity or can escape to infinity);• The orbits of the type collision - escape and capture - collision are nőt possible.If 0 G [01,0^],• the following type of orbits are possible: collision - escape, capture - col­lision, capture - escape, collision - collision;• There are no equilibrium points;On the directions of 3 G [tf, 2tt],• The collisions are possible;• There are no equilibrium points;• The motion is bounded (oscillatory orbits).
6 Case C e (-oo, 0) and A € (0, +oo)

6.1 Negative energy case (h < 0)On the directions of 0 G [0,7r],• The collisions are nőt possible;• There are no equilibrium points;• The motion is unbounded (the test partiele can be captured from infinity or can escape to infinity);
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Figure 2: The Hill surface of motion fór the case J.l. The second panel represents a 
top-down view of this surface. The gray disk represents the pláne f — 0.

On the directions of 0 e (tt, 2tt), we distinguish the next situations:1. If -4/A < C < 0,1.1. If h < —4/3C2 the motion is nőt possible on these directions;1.2. If h = —4/3C2 we have an equilibrium point (a saddle, see Section 3) at the distance r = -2/Con the direction 0 = 3tt/2;1.3. If — (A2/24)(AC + 6) > h > —4/3C2 the motion is bounded (oscillatory orbits) and there are no equilibrium points.1.4. If h = -(A2/24)(AC + 6), there exists two equilibrium points (that are saddle, see Section 3) at the radial distance r = ^/A(AC + A + 4), on the directions 9 6 {tt + 9,2tt — 0}, where 0 = arcsin ^/A(AC' + A + 4).1.5. If 0 > h > — (A2/24)(AC + 6),• The collisions are possible;• There are no equilibrium points;• The motion is bounded (oscillatory orbits).2. If C < -4/A,2.1. If h < -4/3C2 then exists 0i € (7t,37t/2) and ö2 € (3rr/2, 2tf), such that f(rcr(0i)) = 0, í = 172, where rcr(0) = -(2/3)V(0)/(7(ö).The motion is nőt possible on the directions of 9 € (^1^2) 5 the motion is bounded on 
9 € (iTjÖj) U (Ö2,2tf) the collisions are nőt possible and there is no equilibrium points.2.2. If h — -4/3C2 we have an equilibrium point (a saddle, see Section 3) at the distance r = -2/C on the direction 0 = 3?r/2;2.3. If 0 > h > -4/3C2 the motion is bounded (oscillatory orbits)
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Figure 3: An example of oscillatory orbit corresponding to case 1.3 before. The initial 
conditions as chosen as follow: ro = b, Oo = 3?r/2, uo = 2.83 and vo = 0.2.

6.2 Zero energy case (h = 0)On the directions of 9 e [0, tf],• the following type of orbits are possible: collision - escape, capture - col- lision, capture - escape, collision - collision;• there are no equilibrium points;On the directions of 9 € (%, 2tt),• The collisions are possible;• There are no equilibrium points;• The motion is bounded (oscillatory orbits).
6.3 Positive energy case (h > 0)On the directions of 9 e [0, tt],
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Figure 4: An example of oscillatory orbit corresponding to case 1.5 before.

• the following type of orbits are possible: collision - escape, capture - col- lision, capture - escape, collision - collision;• there are no equilibrium points;On the directions of 9 G (tt, 2tt),• The collisions are possible;• There are no equilibrium points;• The motion is bounded (oscillatory orbits).The remaining cases (C G [0,+00), A € (—oo,0] and C G [0,+oo), A £ (0, +oo)) can be treated in a similar manner.
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Chenciner, A., Montgomery, R., 2000, Ann. Math., 152, 881
Craig, S., Diacu, F.N., Lacomba, E.A., Perez, E. 1999, J. Math. Phys., 40, 1359
Delgado, J., Diacu, F.N., Lacomba, E.A., Mingarelli, E., Mioc, V., Perez, E., Stoica, 

C. 1996, J. Math. Phys., 37, 2748
Devaney, R.L. 1978, Invent. Math., 45, 221
Diacu, F.N., Mingarelli, A., Mioc, V., Stoica, C. 1995, in R.P. Agarwal (ed.) Dynamical 

Systems and Aplications, World Science Series in Applicable Analysis, Vol. 4, World 
Scientific, Singapore, p. 213

Diacu, F.N., Mioc, V., Stoica, C. 2000, Nonlinear Anal., 41, 1029
Gutzwiller, M.C. 1973, J. Math. Phys., 14, 139
Hnon, M., Heiles, C. 1999, ApJ, 69, 73
McGehee, R. 1973, J. Diff. Ec., 14, 70
McGehee, R. 1974, Invent. Math., 27, 191
Mioc, V. 2002, Rom. Astron. J., 12, 193
Mioc, V., Barbosu, M. 2003a, Serb. Astron. J., 167, 47
Mioc, V., Barbosu, M. 2003b, Spacetime Subst., 4, 164
Mioc, V., Pricopi, D. 2005, Rom. Astron. J., 15, 65
Mioc, V., Stavinschi, M. 2000, Rom. Astron. J., 10, 71
Mioc, V., Stavinschi, M. 2001, Phys. Lett. A., 279, 223
Mioc, V., Perez-Chavela, E., Stavinschi, M. 2003, Celest. Mech. Dyn. Astron., 86, 81



Hénon-heiles’ two-body problem. New features of the global flow 113

Figure 6: An example of oscillatory orbit situated on the directions of. The partiele 
will escape on the directions of 0 € [0, ?r].

Mioc, V., Anisiu, M.-C., Barbosu, M. 2005, Celest. Mech. Astron., (in press)
Saari, D.G. 1974, Celest. Mech., 9, 55
Santoprete, M. 2002, J. Math. Phys., 43, 2307
Stoica, C., Mioc, V., 1997, Astrophys. Space. Sci., 249, 161
Santoprete, M. 2002, J. Math. Phys., 43, 2307
Van dér Merwe, P. du T. 1991, Phys. Lett., 156, 216
Wintner, A. 1941, The Analytical Foundation of Celestial Mechanics, Princeton Uni- 

versity Press, Princeton, N.J.



114 V. Mioc and D. Pricopi

Figure 7. The Hill surface of motion fór the case J.2. The second panel represents a 
top-down view of this surface. The gray disk represents the pláne f = 0.

Figure 8. The Hill surface of motion fór the remaining cases C € [0,+oo), A G 
(—oo,0] and C 6 [0, +oo), A € (0, +oo), respectively.
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Abstract
The paper deals with the photogravitational model proposed in 1923 by the Románián 
astronomer Constantin Popovici fór the two-body problem. We show here the relation- 
ship between Popovici’s model and Poyting-Robertson’s effect. The variation of the 
orbital energy is given fór Poynting-Robertson’s effect. Popovici’s model is extended 
fór the restricted three-body problem. The equations of motion are written in a rotat- 
ing, barycentric, dimensionless coordinate system and comments on the equilibrium 
points and the Jacobi-energy are added to our study. Possibilities of applications to 
the solar system are alsó discussed.
Keywords: Photogravitational problem, orbital energy, restricted three-body problem

1 IntroductionIn the first quarter of the 20th century, the Románián astronomer Constantin Popovici (1878-1956) proposed a modification of the inverse-square law that results from the combination of the Newtonian attraction and the repelling force of radiation. He added a term depending on the radial velocity and on the speed of light (Popovici 1923), which made his law (as he mentioned) applicable 
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to radial attractive or repulsive forces. The photogravitational force proposed by Popovici has the following form:
A R R rF —------- 1----- ,---------r2 r2 r2 c (1)where — p- represents the Newtonian attraction force, A being the attraction of the luminous body (Sun) at the unit distance; represents the force due to the light pressure of the Central body, R being the light repulsion at unit distance; a corrective term, added by Popovici, representing the force due to the finite speed of light. Here, c denotes the light speed and r the component of the speed of the attracted body on the radius vector. Eq. (1) can be written alsó in the form:

Instead of Eq. (1) Popovici used the relation:
kF = -^(1 + ^)> (3)where k = A — B and e = R/(ck). This was given fór the first time in the paper: Popovici, C., 1923: Sur une modification de la lói de Newton-Coulomb, Bull. Astron., vol 3, pp. 257-261.This form has alsó been used by Giuseppe Armellini (1887-1958) in order to generalize Newton’s attraction law. Armellini proposed the expression:

„ Gmm!F =----- — + , (4)where m and m' are the masses of the interacting bodies, G is the universal attraction constant, r the distance between the bodies and e Armellini’s con- stant. The value of this constant was determined through a comparison between theory and observations. Fór the first time, Armellini’s law was published in: Armellini, G., 1937: I problemi fondamentali della Cosmogonia e la léggé di 
Newton, Rendiconti, Accad. Naz. Lincei, 26, 209.Popovici’s model has been reconsidered in the last decades by several Romá­nián researchers: Anisiu (1995a, 1995b, 2003), Anisiu and Mioc (2004), Mioc and Blaga (2001, 2002), Barbosu (2000), Barbosu and Oproiu (2004) etc.
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2 Popovici’s model and Poynting-Robertson’s ef­

fectIn 1903 Poynting stated that a partiele (small meteors, cosmic dúst) is strongly affected both by gravitation and light radiation forces, as it approaches a lumi- nous celestial body. He has alsó suggested that an infinitesimal body on a solar orbit suffers a gradual loss of the angular momentum and eventually spirals intő the Sun. In a System of coordinates where a luminous body (e.g. Sun) is at rest, the radiation scattered by an infinitesimal mass suffers a blue shift in the direc­tion of motion and a red shift in the opposite direction. This gives rise to a drag force, opposed to the direction of motion. The proper relativistic treatment of this problem was formulated by Robertson (1937). He showed that, to the first order in V/c, the radiation pressure force is given by (Rágós et all, 1995):
Frad = Fi + F2 + F2, (5)where A = (6)

(8)where Fp denotes the magnitude of the radiation force, r the position vector of the partiele with respect to the radiation source, V the corresponding velocity vector and c the speed of light. The first term (Fi), in Eq. (5) is the radiation 
pressure. The second term (Ff) represents the Doppler shift of the incident radiation and the third term (Ff) is due to the absorption and subsequent re- emission of part of the incident radiation. The last two terms taken together are the Poynting-Robertson effect.Let us use Popovici’s notation:

F,.^. . (9)
where R — Fp|r=i. If we take intő account that r = Vr/r, than Eq. (5) becomes:
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the Poynting-Robertson (PR) effect, and by

Rr Rrr RV __
Frád — ~ö ö ~X— (10)r‘ r c r r^ cR _ rf_ RV

r2 c r r2 cLet us denote by
ff Rrr RV , x
Fpfí = -x-- + , (11)

rz cr rz c

the Popovici’s correction term (CP). We observe that:
ff Rrr
Fcp = -2~-, (12)r2 c r

Fcp = Fpr\v=0- (13)
3 Energy relationsWe note that fór Popovici’s model the orbital energy is nőt conserved. According to Stiefel and Scheifele (1971), the ”Keplerian energy” (per mass unit), is given by:

Et = T - 7- <14>where p = G(M + m) « GM = A,Fór the perturbed two-body problem, we know the equation:
dEk -* -♦

= (15>where the parenthesis on the right-hand side denote the scalar product of the vectors V and P, and P represents forces (other than the Central attraction) that act on the partiele of mass m.In our case P = Frad, and taking intő account Eq. (5), we get:
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— = (V,Fra(í) = (V,F1) + (V,F2) + (V)F3) dt

d R R ,r 2 R V2 
dt r c r r2 cIf we denote by

„ „ R V2 A-R V2 k
E = Ek-\-----=--------------------=------------ ,k r 2 r 2 rthen, from Eq.(16), we get: 

dE R .r RV2
dt cr r2 cIf we consider V2/c = 0 in Eq. (18), we recover Popovici’s theorem:

"L’énergie ne se conserve plus. Cette quantité E = — k que Von appelle
dans la Mécanique newtonienne l’énergie, varié dans le mérne sens avec le temps.
La relation suivante, qui est en mérne temps l’équation du mouvement:

dE 
dt

= -akf-)2, 
r

r' =
dr 
dt’’

(16)

(17)
(18)

> 0 attraction; < 0 répulsion,
nous fait voir comment l’énergie est dépensée pár le mécanisme de la propaga- 
tion”.Eq. (16) fór the variation of keplerian energy is similar to that found by Robertson (Robertson, 1937, Eq (5.10) p.437).
4 Extension to the Circular Restricted Three- 

body ProblemThe repulsive and the gravitational force form the so-called photogravitational 
force field-, a few researches studied the motion of celestial bodies in such a field. V.V. Radziewsky formulated fór the first time ”the photogravitational three-body problem” (1950, 1953a,b, 1966).In what follows we consider Popovici’s model fór the restricted three-body problem.
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Let us consider the restricted circular three-body problem: Pi (having the mass Mi), P2 (having the mass M2) and a third body P, of mass m, negligible with respect to the mass of the first two. Pi and P2, called ”primaries”, are moving along circular orbits around their center of mass, in the gravitational tieid. The body with the negligible mass is submitted to the photogravitational force generated by Pi and the gravitational force generated by P2. The equations of motion of the third body can be written:
mf = Fi +F2, (19)where:

Fi — Fg + Frad — —G
mMi fi 

rf rí
L '1 \ * 12 1 )

47TCrf C Fiis the photogravitational force due to Px, where Li - the luminosity of the body 
Pl (fór example: the Sun), c - the speed of light and a - the area of the section on the PiP direction, and

F2 = -G
mM2 f2

r2 r2 (21)is the attraction force of the body P2 (Fig. 1).

Figure 1: The restricted three-body problemDividing by m in (19) we get:
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GMi . L\ 1 a. GM2 _ Li rí a

3 (^ j n jr 3 ^2 4 2 2 71
rf 4ttc GMi m AircPri rí mLet us introduce the notations:

A = GMt, R = ~, 91 = 1-^.-, a = - (23)
47TC A a a zThen, Eq (22) can be written under the form:

A _
..3W1

GM2 _ R fi U
—T-r2------0----- ri-r2 cr{ rí <t (24)where the last term was introduced by Constantin Popovici. This has a breaking effect, similar to the motion in a resisting médium (Antonacopoulos, 1970).The motion is studied in an inertial system O^C, . With respect to this coor- dinate system, the bodies have the following coordinates (fig. 2): Fi (fi, 771, £1), ^2 (£2, t?2, C2), F(f, 77,0. Let the origin of the inertial coordinate system be taken at the center of mass of the primaries, and let the direction of the axes be chosen such that the fr/-plane is the pláne of their motion; then 0 = C2 = 0. The scalar equations of the motion are:

Let us introduce a dimensionless, rotating, barycentric coordinate system 
Oxyz with the same origin, and where the axes Ox and Oy rotate around the 
Oz axis with an angular velocity equal to the unity. The Oz axis coincides with the OQ axis. The Ox axis will be chosen such that Fi and P2 will lie on it and the positive direction will be from Fi to P2. We will alsó choose the mass unit to be the sum of the masses of the finite bodies: Mi + M2 = 1. We denote u — rí- where q = we have 1 — u fór the mass of Fi and u fór the mass ' 1-f-g * Mi 1 .of F2. Let the unit distance be the distance between the two finite bodies (see Fig. 2). Their coordinates will be Fi(zi,0,0) and F2(x2,0,0), and x2 — Xi = 1.The coordinates in the new coordinate system are given by:
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and

Figure 2: Reference system

x = £ cos t + r] sin t, 
y = —£ sin t + ri cos t, 
z = (

(26)
£ = x cos t — y sin t, 
q = x sin t + y cos t, 

, C = z.
(27)

Computing the second order time derivatives of £,//,£ from equations (27) and replacing them in (25) we find (Moulton, 1923):
x-2y = x- l-^-qi(x - X!) - - x2) - - n),

< y + 2x = y-^-q1(y-y1)-^(y-y2)-^^.(y-y1)> (28)
z = ^qiz- ^z- £%z.

Remark: If the last terms of the above relations are zero, from (28), we get the Radziewsky case (Radziewsky 1950, 1953a, 1953b). If we denote: U = J then (28) can be written in the form:
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(29)
" _ 9U _ R r^z 

, dz cr^ a

5 Stationary Solutions of motionThe equilibrium points for the relatíve motion verifies the conditions: x = y = 
z = Q and x — y — i = 0. From (28), taking intő account that rí = 0, we have.

' x - ^qi(x - aq) - £(x - x2) = 0, rl *

< y - ^qi(y-yi)- ^y - (30)
"1 '2We notice that this system can alsó be obtained from Eqs. (5) - (7) (Radziewski, 1953, p. 66), where we take q2 = 1, mi = 1 — m2 = A4- Radziewski proved that this system had 7 libration points: three collinear (Li,L2,L3) situated on the Ox axis, two triangular and two in the same pláne (LgjTy).The equations that give the coordinates of these points can be found numer- ically. Their values for the L4 and L5 points are determined from:

' xLi,Ls = Hf/3 -M, (31)
As we know, the motion in the vicinity of these points is stable if (Zagouras, 1991): 36/x(l-M0 < 1 (32)where 5=1 — ^q^3-
Remark: If qi = 1, we get the classical, restricted three body problem. Denoting E = ^--U, in (Chiruta & Oproiu, 2005) is established the formula:
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R 1 >1
c a ríIf É = 0, we get the relation (2) (Radziewski, 1953, p.55):

v2 = x2 + y2 + + - C.
rí r2

(33)
(34)Fór v = 0 we get the surfaces of zero relative velocity, that separate the regions of reál motion (v2 > 0) from those of imaginary motions (v2 < 0).

6 Numerical examplesIn what follows, let us consider that the third body (of negligible mass - fór example a solar sail, heliocentric station, etc.) moves in the Sun-Jupiter system around the libration point L^. By means of numerical integration of (10) we got various trajectories. The initial conditions (Table I) were taken from the paper (Zagouras, 1991, p.337).
Table 1: p = 0.00095 gi = 0.1 go = 0.451486.

Zo Xo yo0.293469 0.080198 -0.1599200.377311 0.101299 -0.4187120.218806 0.057661 -0.022960
The left-hand trajectories in Figs. 3, 4, 5 have been obtained without Popovici’s term (the case considered by Zagouras), while the right-hand tra­jectories in Figs. 3, 4, 5 have been calculated with Popovici’s term. In this case we used the notation w = (w = 0 fór the Zagouras’s trajectories).In this particular case, we notice that the introduction of Popovici’s term preserves the shape of the trajectories determined by Zagouras, bút, generally, nőt the periodic character as well.
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Figure 3: Lejt: w = 0. Right: w = 0.001.

Figure 4: Left: w = 0. Right: w = 0.0001.
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Figure 5: Left: w - 0. Right: w - 0.00001.
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Abstract
We diácuss the results of an extensive nurnerical study of the Sitnikov Problem, where 
two equally massive primaries have Keplerian orbits while a third body moves per- 
pendicular to their pláne of motion through their common barycenter. The possible 
motions are discussed in the surfaces of section with respect to the eccentricity e of 
the primaries and the initial distance of the third mass. Besides the shrinking of the 
main land with increasing e of the primaries we can observe the dominance of the 2:1 
periodic orbit, which disappears (reappears) via pitchfork bifurcation (inverse pitch- 
fork bifurcation). On one hand the presence of sticky regions close to stable islands 
and sticky fingers far intő the chaotic sea is very well visible in the respective plots. 
On the other hand 'escape channels’ showing orbits with very small escape times are 
alsó present fór any value of the eccentricity.
Keywords: Sitnikov Problem, Phase Space

1 IntroductionThe Sitnikov Problem (=SP) can be regarded as a special case of the three dimensional restricted three-body problem (Sitnikov, 1960). It is defined in the following way: Two equally massive primary bodies orbit around their common barycenter and a third (massless) body moves perpendicular to the orbital pláne of the primaries through the center of mass (see Fig. 1). It is of special interest

mailto:dvorak@astro.univie.ac.at
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Figure 1: Schematic view of the Sitnikov Problem; mi = m?; the motion of mi is 
confined to the axis perpendicular to the pláne of motion of the two primary bodies 
through the barycenter.

fór nonlinear dynamics because it can be regarded as a perfect example fór chaotic motion (Moser, 1973).
2 Analytical Results

2.1 The Circular CaseIf the primaries move on circular orbits, the problem is integrable, bút if the orbits are eccentric, a generál solution cannot be obtained and the dynami- cal description becomes quite complicated because of the nonlinearity of the respective equations of motion.L. Euler solved the Sitnikov Problem as a special case of the two fixed center problem, when the two raasses involved are equal (mi = m2) and the third massless body moves perpendicular to the line of connection of the the two masses. He solved this problem generally fór any motion of a massless body moving in the same pláne as the primary bodies by means of quadratures. G. Pavanini (1907) expressed the Solutions of the circular Sitnikov by means of Weierstrass elliptic functions. MacMillan (1913) gave a solution in terms of elliptic integrals in Legendre’s normál form and was able to find a solution in form of a Fourier series expansion where the coefficients are power series depending on the perturbation paraméter.
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With mi = m? — m, r2 — a2 + z2 and a = constant the totál energy of the Systems reads

/i — ^z2 2m 
r (1)from which one finds the equation of motion by differentiating (1) with respect to the time

From the energy relátion it follows furthermore
at V r which can be separated and prepared fór integration

dz
dt = ±-7==. (4)

Setting m — and a = 1 leads to the equation of motion
Because of the constant distance between the primaries this case is inte- grable. The purely periodic motion can be represented via formai trigonometric series (e.g. Lhotka, 2004).

2.2 The Elliptic CaseFór treating the low energy case Wodnar (1992) introduced a transformation of the independent variable time t to the angle £ = which is the tangent of the angle between the barycenter and one primaries’ position seen from the mass m3. The equation of motion in the dependant £ variable is:
1 4- e cos <£ (6)where the ’ stands fór the derivation with respect to the true anomaly p.
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Following Hagel (1992) and Hagel and Trenkler (1993) the expression (0.25 + C2)-1'5 can be developed intő a polynomial differential equation of the fönn
M

r+m^x+Sc^o (n
k=2with an appropriately chosen M to ensure the sufficiently accurate results fór C- To achieve this goal one can expand the expression E(0 = (0.25 + C2)-1’6 intő a Taylor series or, which turns out to be more efficient, intő Chebycheff polynomials which yieldE = 8-46<2 + 203C4-616C6 + U68C8 (8)which is valid in the rangé -0.8 < ( < 0.8. Thus one is lead to the following equation which describes motions in the vicinity of the barycenter and can be used fór further investigations. Fór the linearized equationC"+^i(^)C = O (9)using Floquet theory one can dérivé exact analytical Solutions fór the frequencies and the amplitudes. This can be used fór a subsequent perturbation theory which gives quite good Solutions up to large eccentricities of the primaries. In an extension of this study Lhotka (2004) developed the perturbation theory up to very high orders and succeeded to find precise Solutions in a wide rangé of eccentricity and distance of the third body to the barycenter.

3 Numerical ResultsWhen the primaries have eccentric orbits the problem is non-integrable and all features connected with a chaotic System are present. One significant difference between regular orbits (on a torus) and a chaotic orbit is the sensitivity of an orbit with respect to the initial conditions. In Fig. 2 one can see that a slight difference in the initial condition (0.0001 in the position) can lead to completely different orbits. While one orbit escapes to the top, another one to the bottom, a third orbit seems to be stable. In fact alsó this orbit escapes after several revolutions of the primaries.To visualize the phase space structure an appropriate tool is the use of the Poincaré surface of section method (SOS) where the whole phase is replaced by a space of lower dimension; in the case of the SP this space is a pláne z (the distance to the barycenter) versus z (the velocity).
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Figure 2: The sensitivity with respect to the initial condition; three different orbits 
with slightly different initial positions (Az = ±0.00017 fór e = 0.3

The structure of the phase space fór different eccentricities is shown in Fig.3. Any of these orbits in the SOS starts with different initial conditions fór z with 
z — 0 and a = am;n (= periastron); one can imagine that we “drop” the third mass from this position. Points on this subspace of the three dimensional phase space are plotted fór the next Crossing of the orbit with the SOS when the primaries are again in their perihelion position.• e = 0: As stated above all initial conditions lead to closed curves, which we can understand as sections of KAM-tori with a pláne.• e = 0.1: We see two islands of invariant curves around a stable point, which correspond to the 2:1 resonance (where the primaries make two complete revolutions whereas the third mass finishes exactly one oscillation - two crossings of the barycentre). Inside the “main island” one can alsó see two other islands, which correspond to different resonant motions.

• e = 0.2: The “main island” shrinks towards the point of equilibrium in the center and the 2:1 island is more and more isolated and shrinks alsó in size.
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Figure 3: Surfaces of Sections (z,z fór 8 different eccentricities of the primaries: 
e=0, 0.1, 0.2, 0.3, 0-4, 0.5, 0.6, 0.8 (from left to right and top to bottom)
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The triangle-like structure has a vertex directly on the x-axis opposite to the main land and is caused by a 3:1 resonant orbit.• e = 0.3, e = 0.4 and e = 0.5: The size of the island starts to grow again after going through a minimum and changing of the orientation on the SOS: the triangle-like structure of the island now has a vertex on the abscissa on the side of the “main island” .1• e = 0.6 and e = 0.8: The size of the “main island” is shrinking more and more while from the point (z = 0, z = 0) new periodic orbits emerge when the eccentricities of the primaries become larger. These fixed points and the surrounding secondary islands are shifted outwards with larger and larger values of the eccentricity until they disappear in the large chaotic see.

1 this well known effect, the "squeeze effect” in non-integrable Hamiltonian systems is de- 
scribed in details in van dér Weele (1988).

Fór somé values of the eccentricities (0.58 < e < 0.84 the 2:1 island disap- pears because of pitchfork bifurcations. The point itself becomes unstable and two sta,ble islands appear on the axis z = 0. In Fig. 4 we show the respective SOS fór e = 0.6, where the 2:1 PO island is already unstable and computed the stable and unstable manifold through this homoclinic point, where the consec- utive crossings of stable and unstable manifolds are well visible.An interesting feature was unveiled by Alfaro and Chiralt: In their ar- ticle they established that the center is unstable fór specific intervals of e: 0.85586179 < e < 0.85586331, 0.97752150 < e < 0.97752189 and fór an infi- nite number of eccentricity intervals when it is more and more increased. Via a numerical integration we visualized this splitting of the Central island (which we call mainland) which happens now with respect to the the y-axis (the velocity 
z of the SOS) (Fig. 5).
4 The Phase Space StructureTo establish the complete phase phase structure of the SP we used extended numerical integration of the equations of motion fór a fine grid in the eccentricity and of the initial distance z of the third body to the barycenter; its initial velocity z was set to 0. Furthermore at the beginning of the integration the primaries were always in their pericenter. The Surface of Section was chosen as the pláne z versus z fór every instant when the primaries are in their pericenter.
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Figure 4: The stable and unstable manifold through the 2:1 Periodic Orbit.

Figure 5: The unstable center fór e=0.855963.
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Figure 6: Extension of the mainland in the Sitnikov Problem.

We show in Fig. 6 the extension of the mainland depending on the eccen- tricity of the primaries. Below the line all orbits stay in the vicinity of the barycenter without escaping fór the integration time 106 time units2. The ex­tension of the mainland suddenly drops which is due to the destruction of a KAM-torus which separated the outer chaotic see with an inner layer of chaotic motion. Then, with larger e, the appearance of a cantorus with large holes allows to connect these two chaotic regions.

2we counted in radians thus making the number of points in the SOS to 106/2tt fór every 
orbit

Using the results of a more detailed investigation covering the whole rangé of the eccentricity of the primaries we plot the escape time of an orbit on the grid eccentricity versus initial distance z of the ’planet’ from the barycenter. To show the details we splitted intő 3 different intervals of the eccentricity: 0 < e < 0.3, 0.33 < e < 0.66 and 0.66 < e < 0.99The following different types of orbits can be classified in the SOS:1. Periodic orbits (PO) which are fixed points in the SOS,2. Motion on a torus (quasi PO) which are invariant curves (IC) in the SOS,3. Sticky orbits close to an invariant torus visible trough a ’fuzzy IC’,
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4. Escape orbits which may stay fór at least somé returns close to the barycen- ter bút then escape,5. Escape channels where an orbit immediately escapes after very few cross- ings trough the barycenter.All these different types of orbits are marked by different colors (yellow fór stable, red fór sticky, blue fór escapes, black fór fást escapes).• Fig. 7a (0 < e < 0.31) : close to z=1.5 and small values of (e ~ 0.02) the 2:1 island at z = 1.8 splits from the main land. Then we can see several islands splitting from the large island around the 2:1 PO up to e=0.12, when a very large island separates from it. At e=0.22 the 2:1 PO is surrounded by 3:1 PO which suffers from the sqeezing effect mentioned above.• Fig. 7b (0.33 < e < 0.63): Then up to e=0.58 the 2:1 island steadily increases in size up to the moment when it becomes unstable and splits intő two stable islands (pitchfork bifurcation). These two symmetric islands are shifted more and more away from the center (respectively shifted towards the center). Smaller fingers show the splitting of other high order resonant POs which disappear fást and are surrounded by many sticky orbits. The whole domain from the bifurcation on between the two stable islands (1 < 
z < 2.5) is fiiled with sticky orbits! Fór small respectively large z distances one can see small escape channels where the orbit escapes very fást to infinity.• Fig- 7c (0.63 < e < 0.93): The continuation of the stable PO shows a crab-like symmetric structure with many splittings of high order POs. Between (0.75 < e < 0.85) the area seems to be totally depleted from stable orbits. Then the 2:1 PO island again starts to dominate the phase space structure up to values quite close to e = 1.

5 ConclusionsIn this article we briefly reported about somé of the analytical work fór the circular and alsó the elliptic Sitnikov problem. We emphasized the results of a somewhat time consuming nurnerical investigation of the whole phase space structure covering the rangé fór the distance from the barycenter of the third body from (0 < z < 2.5) and fór the eccentricity of the primaries (0 < e < 0.99).
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Escape times in the Sitnikov pröblem

eccertricity

. „rth? Sitnikov problem: eccentricity versus distance Figure 7: Phase space stru^ 1 < e <0.66 (mddle) and 0.66 < e < 0.99
of the third body; 0 < e < 0. ( PA _ es and black wry fast
(bottom). Yellow marks stable orbits, red sticky one , 
escapes.
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To be able to have a detailed picture of the phase space structure we have undertaken numerical integration for a fine grid in the paraméter e and the initial condition on the z-axis for 106 time steps. The complicated structure was shown in the respective plots and discussed shortly. A longer paper going intő the details of sticky orbits and escape channels, and the splitting of the 2:1 PO from the mainland using alsó analytical results is in work.
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Abstract
In the frame of the photogravitational restricted three-body problem, the binary sys­
tem RW Tauri and a spherical ice test partiele with the radius of 13.9 microns are 
considered. There are established the trajectory of the partiele intő an inertial frame 
and intő the co-moving frame; the variation of the velocity of the partiele (as a time 
function) is alsó plotted. The positions of the equilibrium points are calculated and 
the equipotential surface corresponding to the out-of-orbital-plane equilibrium points 
is plotted.
Keywords: Binary system: photogravitational problem

1 IntroductionFrom Radzievski (1953), to Simmons (1985) and Rágós and Zagouras (1994), many astronomers have studied the photogravitational restricted three-body problem. Bút in such a problem there are many parameters: the masses of the components of the binary system, the distance between components, their lumi- nosities, the radius and the density of the test partidé. The studies that have been done are referring to: the equilibrium points, the stability of the equilib­rium points, the movement of the test partiele in the vicinity of the equilibrium points, the existence of the out-of-the-orbital-plane equilibrium points.
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In order to be able to study the role of the test partiele in the photogravita- tional restricted three-body problem, in this paper is particularized: the binary system (RW Tauri) and the density of the test partiele, by assuming it is an ice partidé. So, a very concrete subject is pút in discussion.
2 The problemIn the binary system RW Tauri (which is considered having a circular relative orbit) a spherical, ice partiele is assumed. The radius of the partiele is 13.9 microns. Considering that the only existing forces are the gravitational forces and the radiation pressures which act onto partiele, we shall try to determine the following:• The trajectory of the partiele in the inertial reference frame.• The trajectory of the partiele in the co-moving reference frame.• The length of the trajectory arc of the partiele during an half of orbital period.• The variation of the velocity of the partiele in time, in the inertial frame.• The equilibrium points of the partidé.• The equipotential surfaces corresponding to the equilibrium points.In Figure 1 are represented the forces which act onto partiele S3; here Sí and S2 are the components of the binary system.This problem can be studied in the frame of the restricted three-body prob­lem, considering mi and ni2 the masses of the stellar components of the binary system and adopting an inertial reference frame, originated in thé common mass center of mi and m2.The equations of movement of the test partiele in the inertial frame are (Román, 2003):

(1)
= -c(1 iy - - g(1 (y - yí) (2) 71 r2
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Figure 1: The forces which ad in the problem

d2Z' ,
dt2 rf r2

(3)
where: X[ = —Rí cos v,

Y{ — -Rt sin v,
X2 = R2 cos v, 

Y2 = R? sin v,

and: v = w* í.Here G represents the Newtonian gravitational constant and w* is the angu- lar keplerian velocity. In Figure 2 are represented the inertial frame (MX'Y'Z') and the co-moving frame (MXYZ) which is assumed to rotate synchronous with the rotation of and S2, around the mass center M. The reference system 
(Mxyz) is the co-moving reference frame used to obtain the equilibrium points. 
Rí and R2 are the distances from Sí and S2 to M and S1S3 = rí and S2S2 = r2.In equations (1), (2), (3) fór the coefficients we have: Fri = PiFgi, with 
i e {1,2}. Here depends on the radius r3 of the test partiele and on its
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Figure 2: The forces which act in the problem

density p^ : 16 ír c G r3 p3 miwhere li, i G {1,2} are the luminosities of the two components of the binary system and c represents the speed of light. The value & = 0 corresponds to the case when the radiation pressure is neglected. Fór our problem, considering the radiation pressure, > 1 and ^2 < 1, because the luminosity of Sj is fi — 66.6 Isun a,nd l3 = 3 IswThe trajectory of the partiele is represented by using the inertial reference Iramé (Figure 3) and the co-moving reference frame (Figure 4).The initial position is taken intő the inner of the Roche lobé of the star Sí and the initial velocity is assumed to be zero.From equations (1), (2), (3), the length of the trajectory arc of the test partiele, during a half of orbital period, is:• without radiation pressure: L = 3.000071376* 1010 meters and if we con- sider the radiation pressure the length of the trajectory is: L = 5.78291769* 1010 meters.
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Figure 3: Trajectories of the test partiele intő an inertial frame, without radiation 
pressure (thin line), and with radiation pressure (thick line), during 0.3 POrbitai

In Figure 5 is represented the variation of the velocity of the partiele in time, in the inertial frame, during an orbital period. The curve with low amplitude correspond to the situation when the radiation pressure is considered.In Figure 6 one can see the variation of the velocity of the test partiele, con- sidering the radiation pressure, fór different initial positions, all these positions being considered intő the Roche lobé of the star Sí.As it is presented in Figure 7, the radius of the test partiele has a very important role if the existence or the non existence of the equilibrium points out- of-the-orbital-plane is discussed. In our problem the radius of the test partiele is 13.9 microns; so, in Figure 7 we can see that exists L2 (intő the orbital pláne) and exist alsó equilibrium points out of the orbital pláne. Simmons (1985)
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Figure 4: Trajectories of the test partiele intő the co-moving frame,without radiation 
pressure (thin line), and with radiation pressure (thick line), during 0.7 Porbitai

postulated that if out-of-the-orbital-plan equilibrium points exist, there are 1 or 2 couples. In our problem only one couple of such equilibrium points exist (Le and L7), situated in the vicinity of the Mz axe.The coordinates of the equilibrium points are:
L2(1.27014; 0; 0), L6(-0.1702; 0; -0.3229), L7(-0.1702 ; 0; +0.3229)
and the equilibrium surfaces corresponding to these equilibrium points are rep- resented in Figure 8.
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Figure 5: The velocity of the test partiele without radiation pressure and with radia- 
tion pressure (curve with low amplitude)

3 ConclusionIf the radiation pressure is greater than the gravitational pressure, the role of the test partiele in the photogravitational restricted three-body problem become very important. Taken a suitable value fór the radius of the test partiele, we can learn many things about the influence of the radiation pressure on the trajectory of the test partiele, on his velocity and on the shape of the equipotential surfaces corresponding to the equilibrium points.
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Figure 6: The variation of the velocity of the test partiele considering the radiation 
pressure, fór different initial positions; the closer is the partiele from the binary system, 
the higher is his velocity
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Figure 7: Discussion about the existence or the non existence ofthe equilibrium points 
out of the orbital plán, fór different radii of the test partiele

P

Figure 8: The equipotential surfaces which correspond to L?, Le and Ly and the 
coordinates axes ------------------_
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Abstract
In the three-dimensional elliptic restricted three-body problem the existence of out- 
of-plane critical points of the potential is proved. These critical points lie in the 
coordinate pláne containing the two primaries and perpendicular to the pláne of ro­
tation of the primaries. They are symmetrically positioned to the axis containing the 
two primar ies. The position of these out-of-plane critical points depends on the true 
anomaly, thus they do nőt determine new relative equilibrium Solutions. These points 
are important in the study of the shape of the variable zero velocity surfaces existing 
in the elliptic restricted three-body problem.
Keywords: Elliptic restricted three-body problem, critical points.

1 IntroductionThe elliptic restricted three-body problem (ERTBP) describes the three-dimen­sional motion of a small partiele under the gravitational attraction of two bodies (the primaries), which deseribe elliptic orbits in a pláne around the centre of mass. Szebehely and Giacaglia (1964) obtained in the planar ERTBP a simple 
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form of the equations of motion - similar to that in the case of the circular re­stricted three-body problem - by using the true anomaly of the primaries as the independent variable and by introducing a special set of dimensionless variables describing the position of the third body. They alsó deduced an invariant rela- tion, the generalization of the Jacobi integrál, known in the circular restricted three-body problem, and proved the pulsation of the zero velocity curves in the planar case.In the case of the planar ERTBP five critical points of the potential fi are known, corresponding to relative equilibrium Solutions. They are the same known in the circular restricted three-body problem, the so called Lagrangian points: Li, collinear with the two primaries, and L^, the triangular points, which form equilateral triangles with the primaries.Many authors studied the stability of these relative equilibria and different aspects regarding the motions around these points. The first results concerning this problem are presented in Danby (1964), who computed the linear stability of the orbits around L4. Györgyey (1984) made investigations regarding the nonlinear stability of motions around L^. Meire established results relating to the stability regions in the - e pláne of the triangular points in the elliptic restricted three-body problem (Meire, 1980, 1981, 1982). Simó (1992) studied stability zones around triangular libration points in the 3D elliptic restricted three-body problems. Evteev (1993) established bifurcation properties of the collinear libration points. In connection with the stability study of the triangu­lar Lagrngian points Lohinger and Dvorak (1993) analysed the extension of the stable regions around these equilibrium points. They determined the stable re­gions depending on two parameters, the mass ratio 41 and the orbital eccentricity e of the primaries.By using the model of the ERTBP, dynamics of different families of celes- tial bodies can be studied. Resonant families of periodic orbits were calcu- lated fór the Sun-Jupiter-asteroid system and different aspects of these orbits were studied by Dvorak (1992), Hadjidemetriou (1992), Liao and Saari (1998), and Sidorenko (2006). Kotoulas (2005) investigated the planar and the three- dimensional 1:2 resonant motion with Neptune in the framework of the ERTBP. Öllé and Pacha (1999) and Palacián et al. (2006) calculated families of periodic orbits of the spatial ERTBP.Sándor and Érdi (2003) developed a symplectic mapping fór Trojan-type motion in the secularly changing ERTBP. By using this mapping they studied the boundary of the stability region fór different values of the initial eccentricities of hypothetical Jupiter’s Trojans.Dvorak (1986), Benest (1988, 1989, 1996, 1998, 2003) and Pilat-Lohinger et
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al. (2003) treated the problem of the stability of planetary orbits in double stars with the aid of nurnerical studies in the model of the ERTBP. Érdi and Sándor (2005) investigated the stability of co-orbital motions in such exoplanetary sys­tems, where the only known giant plánét either moves fully in the habitable zone, or leaves it fór somé part of its orbit. Domingos et al. (2006) studied the stability of hypothetical satellites of extrasolar planets through nurnerical simulations of the ERTBP. Their results indicate that extrasolar planets in the habitable zone could harbour Earth-like satellites.Palacián and Yanguas (2006) studied the spatial restricted three-body prob­lem in the case where the small partiele is far from the primaries, that is, the so-called comet case.Many authors have performed qualitative studies in the ERTBP, mainly oriented to find new integrals of the equations of motion. Starting from the integrals of the generál three-body problem (expressed in non-uniformly rotating rectangular coordinates), Ovenden and Roy (1961) obtained formai expressions fór the Jacobi integrál and the angular momentum integrals of the ERTBP in terms of certain auxiliary functions. Using these expressions they concluded that “the Jacobi integrál of the CRTBP fór long-term predictions in any reál case where the two massive bodies’ relative orbit has a finite eccentricity (however small) is without justification even if the mass of the third body is infinitesimal”. Dvorak (1977) continued these studies considering the existence of the Jacobi integrál in the elliptic restricted three-body problem. Pál and Oproiu (1991) starting from Rein’s ’semiaveraging’ scheme of the elliptic restricted three-body problem (according to Mojseev’s classification), determined the slopes of the ’zero relative velocity’ curves in the libration point Li, fór different values of the eccentricity e and of the mass ratio p.Contopoulos (1967) deduced two integrals of motion in the pláne ERTBP fór orbits with small eccentricity near the primaries. These integrals, given in the form of formai series, depend periodically on the time, with frequency equal to that of the second body.Vrcelj et al. (1978) derived an invariant relation - containing alsó a noninte- grable term - generalizing the Jacobi integrál to the ERTBP on the basis of the classical perturbation theory and by making use of the energy and angular mo­mentum integrals. This invariant relation was reduced and applied to calculate the Jacobi constant fór asteroids (Vrcelj et al., 1978a; Vrcelj, 1979) .Makó and Szenkovits (2004) generalized Szebehely’s (Szebehely, 1967) re- sult concerning the pulsating Hill’s regions to the spatial ERTBP. By using the obtained invariant relation, they deduced necessary conditions of the gravita- tional capture of small bodies, in case of small eccentricities of the primaries 
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and bounded motion of the test partidé. Somé properties of these variable Hill-regions were studied in Szenkovits and Makó (2005).The problem of gravitational capture was studied by using the model of the ERTBP in case of irregular moons by Astakhov and Farrelly (2004),As we have seen, in the planar case of the ERTBP the Lagrangian equilibrium points play a Central role. The aim of this paper is to clarify the problem of existence of out-of-plane equilibrium points in the case of the spatial ERTBP. The existence of two new critical points of the potential fi is proved, when the true anomaly satisfies the condition f € (y,^). The position of these points depends on the value of the true anomaly f, so these points are no longer (relative) equilibrium points. These critical points play an important role in the study of the topological type of the variable zero velocity surfaces in the ERTBP.
2 The elliptic retricted problem

In the elliptic restricted three-body problem (ERTBP) two massive primaries (planetary objects) Pi and P2, with masses mi and m2 revolve on elliptical orbits under their mutual gravitational attraction and the motion of a third, massless body P3, (m3 = 0) is studied. The orbit of P2 around P^, in an inertial system is a(1 — e2) ~ 1 + ecos/’where p is the mutual distance, a and e are the semimajor axis and the eccen- tricity of the elliptical orbit (e < 1), and / is the true anomaly.In our study a nonuniformly rotating and pulsating coordinate system is used. In this system of reference the origin O is in the center of mass of the two massive primaries, and the £ axis is directed towards m2. The coordinate- plane rotates with variable angular velocity, in such a way that the two massive primaries are always on the £ axis, and the period of the rotation is 2?r. Besides the rotation, the system alsó pulsates, to keep the primaries in fixed positions:= Ci = 0,& = 1 - M2 = <2 = 0, where p = is the mass paraméter .In this system of coordinates the equations of motion of the third massless 
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partiele are (see e.g. Szebehely (1967), p. 594):í" - 2? =>í" + 2f'= W-

/-II _ dw
dC

(2)
where the derivatives are taken with respect to the true anomaly f, and w = (1 + ecos/)-1 Q,with

_■ i
~ 2

fi (3)
£^-l+^2+^+^ + ’Performing the same operations, which in the restricted three-body prob- lem leads to the Jacobi-integral, in the case of the spatial ERTBP Makó and Szenkovits (2004) derived the invariant relation:
df)

= 2“ ~ e f ££&dh -J 1-f-ecosn 
/o—2e / ^^dh - Co,

J (14-ecos/i)
/o

(4)
which is the generalization of Szebehely’s invariant relation (Szebehely (1967), p. 595) fór the spatial ERTBP. Unfortunately (4) is nőt an integrál of motion, because it contains nőt only functions of the coordinates and velocities (and the true anomaly /) at any point of the orbit, bút it depends alsó on the values of these quantities along the whole arc of the orbit from the initial position up to a given position. The value of the Jacobi constant Co can be calculated at the initial moment t — to, when f — fo and when the two integrál terms in (4) are vanishing:

In a recent paper Szenkovits and Makó (2005) studied the properties of the pulsating zero velocitysürfaces (ZVS) in the ERTBP, given by the equation:
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2 fi1 + e cos f C2 sin h 1 + e cos h dh — 2e
/o

fi sin h(1 + ecosh)2 dh = Co. (6)
These surfaces delimite the Hill’s regions, in which the motion of the third partiele is possible.The expression of fi in the pláne is

fio =
identical with the similar potential used in the case of the circular restricted three-body problem (CRTBP). The critical points of íl0 are the so called Lag- range-points, the collinear points:M >-^2 ,l3 (£3,0)
where

& < -M < €2 < 1 < 6,and the triangular points L4 (| - /z, \/3/2) and L5 (| - -\/3/2), with thesame critical values: C4 — C5 < C3 — 3 < Ci < C2. (8)These critical points of Qo are alsó the relative equilibrium points in the restricted three-body problem, and in the planar ERTBP too. The variation of the topological type of the ZVS in the ERTBP pointed aut in Szenkovits and Makó (2005) shows the exixtence of out-of-plane critical points of fi.
3 Out-of-plane critical points of QThe explicit form of the systemgQ dQ ÖQ = 0
which gives the critical points of fi in the c) space is:
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If £ = 0, the potential fi is reduced to ílo> given in (7) the potential used in the planar restricted three-body problem, which leads to the well known Lagrangian equilibrium points.If C 0, the system (9) giving the critical points is:£________(i-m)(<+m)______ p(é-i+p) _ q( (í+m)2+n2+C2^ ( )* Jl-7—(10) y ^(íM^^+í2) ^(c-í+m) +n2+<2j ye cos / + , ... (x \? ... „...-j + z = 0.v(?+m)-H2+Í2 J ^(^-i+áO+^+T2 JThe main result of our paper can be formulated in the next:
Theorem. The potential Q of the ERTBP admits two critical points

Lg (ásACe) and L7 ^.O,^), (?6 = ^7^7 = ~^g) in the Plane if and only

Proof. i) If < 0 0 and f] Q, the sysem (10) is equivalent with
' _____(1-/0(£+g)______ _ q(^c+m^+^+c2) (5/ (c -1+m)2+i?2+c2

I   (^~M)   M __ Q

e cos f + + 7-- . . = 0, 
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from where, by using the second and the third equations, condition e cos f = -1 results, which is impossible, because of e < 1. This means that fór £ / 0 and the potential Q does nőt admits critical points.ii) In the case of £ / 0 and fj = 0, the system (10) is equivalent with
e cos / + p ,=wr = 0(v^-m) +C2) ^(í-1+m) +C2) (12)

or £ (1 + e cos /) — , = 0,T +e cos f + 0. (13)
T =

We can observe that the second equation of (13) does nőt admits Solutions fór ecos/ > 0. This means that if / e f]> there are no critical points out of the coordinate pláneLet now f E and denote in this case ecos/ = —a € (—e,0),ct G (0,e) C (0,1). In this case the system (12) can be transformed equivalently to:_______1-m _
(y(^)2+C2)

(y(í+M-i)2+c2)

(1 -a)£ + a(l -m), 
y = (a - 1) + q/z. (14)

From the system (14) we can dérivé the next conditions fór the £ coordinate of the possible critical points: (1 - a) £ + a (1 - n) > 0, (a - 1) £ + a/z > 0, (15)or
afi — a1 - a a/j, 1 - a (16)With respect to the conditions (16), system (14) can be transformed equiv­alently intő:
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(17)
Eliminating £2 from this system, we obtain the equation

2£ + 2p — 1=3
N

(1 - y)2[(l-a)£ + a (1-m)]
(18)

which gives the £ coordinate of the possible out-of-^-plane critical points of fi.Introducing the notations
1^, »=/-, (19)

fór which
a + b —

11 — a’ a, b > 0,equation (18) is equivalent with
2£ + 2p - 1 = (20)

where £ satisfies the conditions — aa < £ < ab.Considering the function fi : (-aa, ab) -> R, fi = 2£ + 2p - 1, de- fined with the left hand side expression of equation (20), a function strictly incrasing and bounded, and at the other side the function /z : (~aa,ab) -> R, 
fa (£) = ? a\z - ?//- - vg, a strictly decreasing function, with infinite \ / y (í+«“) ylimits fz (—aa + 0) = +oo, fa (ab - 0) = -oo, we can conclude that equation (20) admits exactly one solution.This solution can be determinated by using numerical approximations.If £ is determined, the corresponding £ coordinates of the critical points
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resulting from (17) are given by:
(21)

We can conclude that out of the pláne there are exactly two critical points, fór every f € (f> ^) • These critical points lie in the ££ coordinate pláne, and they are sirnmetrically positioned to the £ axis: L6 ^6,0, and Ly ^7,0, ^7^, where = €7 is the unique solution of the equation (20), Ce > 0 and (7 — —Q can be calculated as function of = £7 by using (21).The £ and £ coordinates of the critical points and Lj are Solutions of the system (12). In consequence they depend on the true anomaly f, i.e. they are nőt (relative) equilibrium points. This is a consequence of the fact that the system (2) is nőt autonomous.The variation of £6 and Ce as funtion of / G (f, ^) is illustrated in Fig. 1. It is clear that because of the dependence of and Ce only on cos f (see system 12), these coordinates verify the symmetry properties:
& (7T - 97) = (7T + 92) , <6 (?T - ^) = <6 (jT + ip) , V92 G

where Cg (tt — p) denotes the value of £0 when f — tt — p.

Figure 1: Variation of & and <6 when f € (|, ^) ,e = 0.5, p = 0.5Ihe position of the critical point Lg in the ^-plane depending on f € (7, tt) is plotted in Fig. 2.
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Figure 2: Position of Le in the pláne, when f € (f,”-) , e = 0.5, p — 0.5
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ROTATION IN THE RESTRICTED THREE-BODY 
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Abstract
The rotation of a nonspherical small body is invetigated in the planar restricted three- 
body problem along periodic, quasi-periodic or chaotic orbits of the small body’s center 
of mass. A systematic overview of the chaotic rotation dynamics via stroboscopic 
mappings is possible only in the periodic case. We propose to explore the phase space 
patterns of nonperiodic cases by following a droplet in the phase space. The temporal 
evolution of the pattern can be characterized by a time-dependent fractal dimension. 
It is shown to converge exponentially to the dimension of the phase space fór long 
times.

1 IntroductionWe investigate (see alsó (1)) the rotation of a small body in the planar restricted three-body problem. We suppose that this third component is nonspherical and its rotation axis is perpendicular to the pláne of the components.In the Solar System, there are several bodies of irregular shape whose rota­tion can be observed. A well known example is Hyperion, a moon of Satum, whose irregular rotation discovered by Voyager 2 provided the first example of chaoticity within the Solar System. On the one hand, our problem is a gener- alization of the rotation of Hyperion (which is driven by the simple Keplerian orbit of the center of mass) studied by Wisdom (2), and, on the other hand it is a simplification of the rotation of planets in the Solar System (driven by 
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an 2V-body problem) investigated by Laskar (3). According to Laskar, chaotic rotation is typical in planetary systems.Another example is provided by asteroids. Nowadays, their rotation is rou- tinely monitored by radar, like e.g. the rotation of Kleopátra (4). In the case of another asteroid, Toutatis, really strange rotation States were detected (5). These results indicate the relevance of our investigation.While chaos arising in periodically driven nonlinear systems is fairly well understood (6), little attention has been paid to the study of temporally unpe- riodic, in particular, to chaotic driving.Our choice of the system is motivated by finding the simplest form of chaotic driving, and by the unique feature that all the basic types of driving: periodic, quasi-periodic and chaotic, can be found within the same problem fór different initial conditions.The paper is organized as follows. In Section II we dérivé the the rotation equation of the three-body problem, and identify the center of mass trajectories along which rotation is studied. Section III concentrates on quasi-periodic and chaotic driving, and presents the results of the droplet dynamics. The conver- gence of the time-dependent fractal dimension towards its asymptotic value of 2 is shown to be exponential in time. Section IV contains our conclusions.
2 Rotation dynamicsA rigid body, B^, of irregular shape is considered in the gravitational field of a single spherical body of mass m centered at point B. The reference frame 
(x',y',z') is fixed to B3, which has a final extension along the z' axis as well, and its axes coincide with the principal axes of Ő3 with its origin in the center of mass (see Fig. 1). The reference frame (x",y"yz") is chosen so that the x" axis goes through the gravitational center B, lying at a distance ro from the origin, and the z" axis coincides with the z' axis around which rotation can take piacé. The angle between the x' and x" axes is denoted by a.The gravitational force acting on a volume element of mass mi of B3 located at (x",y") has components (see Fig. 1)7*0 — x^1 yn

Fxn =ymim----- 3—Fyn = (1)
si siwhere s, = (ro — x")2 + y"2 denotes the distance between the volume element and the center B, and 7 is the gravitational constant. The gravitational torque
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Figure 1: Configuration of the rigid body B^ in the gravitational field of a center 
B at a distance ro- The frame (x',y' ,z') is a principal-axis system with its origin in 
the center of mass.' Frame (x",y", z") is chosen so that its x" axis goes through the 
gravitational center B. The angle from the x' axis towards the x" is denoted by a.

from the volume element around the z" axis is
I

Mi = -FX"y” 4- Fy„x” = -ymirr^-^. (2)
SiSince the size of the rigid body is in reality much smaller than the distance ro from the center, we can expand the square root in st up to first order to obtain s”3 « Tq 3(1 + 3x"/r0), from which= (3) roThe totál gravitational torque M is the integrál of these contributions over the volume of the body. The contribution from the term roy" vanishes since the origin is the center of mass. The evaluation of the second term is most convenient in the body frame. Using the relations x" — x' cos a + y'sina, 

y" = —x' sin a + y' cos a, we find
M = f [(y12 — x'2) sin 2a+ 2x'y'cos 2a] dx'dy1 dz'. (4)

The second term of the integrand is a deviation moment which is zero in the principal-axis system. By writing y'2 -x'2 = y'2 +z'2 - (x12 Fz'2), the principal moments R and h with respect to the x' and y' axis appear, and so
M = I ~ ^)sin2a- (5)



166 J. Vanyó and T. Tél

Let denote the angle between the x' axis and a fixed straight line in the pláne. The equation of rotation around the z' axis is then Z30 = M, where I3 is the third principal moment. The equation of motion fór 7 is therefore
0 3/2 - A jm .- ---------- —y sm2a(0). 

z fa ro (6)The equation becomes closed if the relation is given. This is the equation applied by Wisdom to describe the rotation of Hyperion (2).In the three-body problem, there are two gravitational centers, the two main bodies B\ and (of mass and m2) of the three-body problem. Therefore, the totál torque will contain two contributions from the two centers from dis­tance rí and r2- Let us use a reference frame (x,y) fixed to the two main bodies as indicated in Fig. 2.

Figure 2: Configuration of the rigid body B3 in a reference frame (x,y) co-rotating 
with the two main bodies Bi, B?. <f> denotes the rotation angle with respect to the x 
axis.Since angle a (cf. Fig. 1) is the angle between the direction of the grav­itational center and the x' body axis, we have two different angles: =
n + fa — <l>, i = 1,2, where fa is the angle with respect to the x axis under which the center of mass of B$ is seen from center i. The rotation dynamics is therefore governed by to different torque contributions of the type of (6). In the rotating frame (x, y) inertial forces (centrifugai and Coriolis forces) alsó act, bút their overall torque can be shown to be zero. The rotation equation is thus

+ (7)
By measuring time in units of 1/w where w = (7(7711 4- m2)/7?o)^2 is the fre- quency of rotation of the two main bodies of distance Ro along their circular
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orbit, and length in units of Rq, we obtain the dimensionless rotation equation

0 = * -773 sin 2(& W - & + -7^3 sin 
\riW r2(t)where

mi 3(/2-A)
Pi =------------- and 0 = ——:------

mi + m2 2I3

(8)
(9)represent the mass and principal momentum ratio, respectively. Equation (8) can be rewritten as 0 = B(t)sin(2(0-0o(t))) (10)to emphasize that the 0 dynamics is nőt autonomous, it is driven by the center of mass motion of the small body via the time-dependent quantities and 

Mt).This driving originates from the planar, circular, restricted three-body prob­lem which specifies the location (x^t^y^t)) of the center of mass of the small body according to the well known equations (7)-(10)
(íj,

ri3 r2ö

This dimensionless form is valid in the afore-mentioned units. The center of mass motion preserves the energy E in the co-rotating frame, and can be expressed with the Jacobi constant C as E = — C/2, where
C = pin2 + p2r22 +2 — + 2— -x2 -y2. (12)fi r2The coupied set of equation (8) and (11) defines the rotation dynamics. Since 0 does nőt appear in (11), the angle dynamics has no feedback on the center of mass. Fór a given initial condition (xo,yo,xo,yo), the orbit (z(t),?/(t)) uniquely specifies the distances and angles &(£) which are used as input functions fór the angle dynamics with initial conditions (0o,0o)- The full problem has three independent dimensionless parameters p = p2, C and ö. In our study we choose them to be 7r=10“3, C = 3.05, ő = 0.65. (13)
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Figure 3: Poincaré section y = 0 ofthe three body dynamics with p = 10“3, C — 3.05. 
The arrows point towards the orbits we take as particular driving orbits. They are of 
different character: 1) periodic, 2) quasi-periodic, 3) chaotic.

a) b) c)

Figure 4: The center of mass orbits chosen to drive the rotation dynamics. a) The 
periodic orbit 1) in Table 1. b) The quasi-periodic orbit 2) in Table 1. c) The chaotic 
orbit 3) in Table 1. The period of the periodic orbit is T — 12.428596 dimensionless 
units. Symbols B\ and B? mark the location of the large bodies.

The mass ratio corresponds to that of the Sun-Jupiter system, while the Prin­cipal momentum ratio is about twice that of the Hyperion.Since the driving dynamics is provided by a chaotic Hamiltonian system, the actual driving effect depends on the initial condition, and, thus, on the actual form of the center of mass orbit. Fig. 3 shows the Poincaré section of the three- body problem on the y = 0 hyperplane of the phase space in the co-rotating frame.We have chosen several trajectories of periodic, quasi-periodic and chaotic type to drive the rotation dynamics. The results will be shown fór a repre- sentative set whose initial conditions are given in Table 1. The form of these trajectories on the Poincaré map and in reál space are shown in Fig. 3 and Fig.
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Table 1: Initial conditions fór the three prototypic center of mass orbits in (11) which 
will be used to drive the rotation dynamics (8).

driving X y X y1) periodic 0.67810202 0 0 0.600144462) quasi-periodic 0.72902422 -0.00389250 0 0.477244923) chaotic 0.61173708 0.00271398 0 0.76951671

4 , respectively.
3 Chaotic rotationsThe numerical solution of Eq. (8) is shown in Fig. 5, where the temporal evolution of the angular position and the angular velocity of the small body can be seen along the chaotic center of mass orbit. These two data determine the rotational State of the small body.

Figure 5: Temporal evolution of the angle (top panel) and angular velocity (bottom 
panel) of the third body with chaotic driving (orbit 3). Initial conditions are <fo = 0.3, 
0O = —0.1. Black dots indicate time instants which are integer multiples of the period 
T or orbit 1.A comparison of this plot with another one, obtained along the periodic orbit does nőt show a striking difference (see Fig. 6).It is clear that all the curves are irregular, bút’ no reál difference can be observed. Certain characteristic features, in particular those of indicating de- terministic order, turn out to remain hidden in this representation.
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Figure 6: Tempóval evolution of the angle (top panel) and angular velocity (bottom 
panel) of the third body with periodic driving (orbit 1). Initial conditions are 0o = 0.3, 
0o = -0.1.

For periodic driving, an insight intő phase space structures can be obtained by following the dynamics on a stroboscopic map. This leads to a cleanly distinguishable pattern of chaotic and nonchaotic orbits (6).Fig. 7a helps to understand how a stroboscopic map is constructed. In this figure the coupled values of angular position and angular velocity are plotted at integer multiples of the period T of the center of mass motion. The the plotted States are marked by black dots in Fig. 6. At first sight these points are jumping in the phase space without any order. Essence of this method becomes clear by plotting a huge number of point. The initially randomly appearing points eventually fill in a domain of finite area, a chaotic sea. With other initial conditions it can alsó happen that the points trace out a closed curve, or jump among a finite number of discrete States. These cases correspond to quasiperiodic or periodic rotation dynamics, respectively. A interwoven pattern of these types of motion can be observed in Fig. 7b, obtained by following several trajectories over long times.Unfortunately, if the driving is nőt periodic, stroboscopic maps taken with any fix period of time generates fuzzy, unstructured patterns (Figs. 9a, 10a). To have a better insight intő these cases, another method is needed.This method is suggested by the analogy between phase space dynamics and hydrodynamical flows. In the context of advection by fluid flows, it is natural to follow dye droplets (11) which tűni out to have well defined, fractal like shapes even in velocity fields which depend in a chaotic manner on time. As an analóg of this, we shall follow an ensemble of trajectories - called a droplet - in the phase space of the dynamical system.
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Figure 7: Stroboscopic map and the way how it is comes about in the case of periodic 
driving. a) First six points of the stroboscopic map as read off from Fig. 6. b) The 
stroboscopic map. The sequence started on panel a) is followed up to 1500 points, 
and traces out a randomly dotted area, the chaotic sea. Furthermore, trajectories with 
initial conditions e.g. fa = n/Z, fa — 2.9; 0o — tt/2, 0o = 2.9; fa — tt/4, fa = 3.5 
andf fa = tt/2, fa = —1.6 ... are alsó monitored up to the same number of steps. They 
trace out closed curves and correspond therefore to quasi-periodic rotation.

To illustrate the droplet method, Fig. 8 shows the initial stages of the droplet dynamics. Well within a period T the droplet becomes nőt only stretched bút aslo földed. This indicates that the concept of fractal dimension might be useful in this context.
4-------- „---- ,--- ,---- T----,---- T----
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Figure 8: Typical behavior of a droplet fór the chaotic driving. The initial droplet 
has the shape of a small rectangle. Later stage at time instants t — 0, t = 1, t = 2, 
t = 3, t = 4 and t = 5 (dimensionless units) are shown. The stretching and folding of 
the droplet are well observable in this figure, the latter starts at about the fifth. stage.
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The long-time shapes of the droplet are presented fór quasi-periodic and chaotic driving in Figures 9b)-d) and 10b)-d). The snapshots are taken at multiples of the period T of the periodic orbit 1) in Table 1.
b)

c) d)

Figure 9: Quasi-periodic driving, orbit 2). a) Stroboscopic map generated by monitor­
ing 3 trajectories with initial conditions d>o = n/2, <j>0 = —0.7, 0.5 and 3.0. Snapshots 
are taken with the period T of the periodic orbit. The same set of trajectories would lead 
fór periodic driving to a clear, interwoven pattem of quasiperiodic and chaotic regimes 
in the map. b)-d) Droplet dynamics: the initial shape of the droplet is a square of 
size 0.1 x 0.1 centered at (</> = 7r/2,^> = 0.5) (small black rectangle in panel (b)) which 
contains 106 points uniformig distributed. Panels (b), (c) and (d) show the shape of 
the droplet at the times YT, 2T and 6T, respectively.It can be seen that the droplet forms a more and more dense bút always sharp, filamentary pattern. It is remarkable that these sharp fractal-like pat- terns survive over several time units. This is so because the same driving is applied to all the points of the droplet at any instant of time. Note that due to the non-periodic driving no invariant sets, and in particular no KAM tori (6),
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d)
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Figure 10: Chaotic driving, orbit 3). a) Stroboscopic map generated by the same 
set of trajectories as in the previous figure. The droplet is the same as in Fig. 9. 
Panels (b), (c), and (d) show the shape of the droplet at the times 1T,2T and 6T, 
respectively.

"2oL 13?
9

can exist.Since the rotation dynamics is Hamiltonian, the asymptotic dimension of all droplets should be 2, as alsó suggested by panel (d) of Figs. 9, 10. To char- acterize the approach to this value, we numerically determined the information dimension, Di (6), of the distribution defined by the droplets at earlier times. To this end, we evaluated the number of points Pi(e,t) (normalized to unity over all boxes) in box i of size e covering the droplet at time t. The information content He) — — ^Pits,?) InPi(s,t) was found to behave as -P^^lne. The fact that such a scaling behavior is present even fór chaotic drivings over a rangé of more than a factor of 100 in e at relatively early times is shown in the inset of Fig. 11. The figure presents the information dimension as a function of time fór all the drivings.—
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Figure 11: Time-dependent information dimension values (square: periodic, circle: 
quasiperiodic, diamond: chaotic driving) in all three cases of driving. The smooth 
curves are exponential fits according to the fitting procedure has been started at 
points where the information dimension first becomes greater than 1.5. The inset shows 

vs. ln(l/e) fór the chaotic case at time 3T.

The approach to the asymptotic value of 2 was- found to be exponential in all three cases. We can thus write
Di(t) = Di — Ae at, fór t » 1, (14)where Di is the asymptotic value of the information dimension. In our Hamil- tonian problem, Di = 2. The quantity a is the convergence rate towards the value of Di. Table 2 shows the fitted parameters fór our three different driving orbits.

Table 2: Convergence rates and amplitudes of the exponential convergence of the 
dimension towards 2, and average Lyapunov exponents fór different types of driving. 
The error in these quantities is estimated to be 5 percent.

driving a A A1) periodic 0.069 2.4 0.262) quasi-periodic 0.060 3.7 0.213) chaotic 0.064 1.8 0.36

The investigation of other sets of driving orbits indicates that these data seem to somewhat depend on the choice of the driving orbits, although their order of magnitude is the same as in our representative set. The convergence 
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rate appears to be always smaller than the average Lyapunov exponent.We mention that the fractal dimension of the droplets has alsó been deter- mined, and similar behavior has been found. Since, however, the box counting algorithm converges much slower than the Information dimension (6), the data are less appropriate fór extracting a fit fór the time-dependence.
4 ConclusionsWe considered the two-dimensional rotation of an irregular body in the classical three-body problem. In such cases the traditional method of taking strobo- scopic snapshots of a few trajectories leads to a fuzzy pattern which washes out any sign of fractality. We suggest instead the use of the droplet method, based on monitoring a large ensemble of trajectories on stroboscopic snapshots. The droplet shapes have then sharp contours, and fractal or information dimensions can be determined. We have shown that the dimension converges asymptoti- cally to a constant in any case, and found that the approach of the information dimension to this plateau is approximateíy exponential, with a convergence rate smaller than the modulus of the contracting Lyapunov exponent. Our experi- ence with different initial droplet positions and shapes is that the convergence rates at a fixed driving are independent of such factors.We presented here results fór the rotation of the small body around an axis perpendicular to the pláne of the three-body problem. We have investigated, however, generál spatial rotation, too, and found qualitatively similar features.
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Abstract
Stability investigations of exoplanetary Systems are surveyed. Properties of the dy- 
namical classes of multiple planetary Systems are described. In the model of the planar 
elliptic restricted three-body problem stability maps are computed fór single planetary 
systems.
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1 IntroductionThe dynamics of exoplanetary systems has been studied in several papers in recent years. The main problems concern the identification of the dynamical processes which determined their evolution, and the stability of the known Sys­tems. To date 193 exoplanets have been discovered in 165 extrasolar planetary systems. There are 19 multiple planetary systems in which more than one plánét are known. These numbers are rapidly changing owing to the increasing rate of new discoveries.It is highly improbable that planetary systems are formed with just one plánét. Stability investigations of exoplanetary systems with one known plánét can indicate places where additional planets might exist.Multiple planetary systems can be classified according to the level of gravita- tional interaction between their planets (Barnes and Quinn 2004, Beaugé et al.
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2005, Ferraz-Mello et al. 2006). The presently known systems can be grouped intő three classes:• Class la. Planets in resonant orbits• Class Ib. Planets in low eccentricity, near resonant orbits• Class II. Interacting planets• Class III. Hierarchical systemsIn Class la giant planets move in highly eccentric orbits close to the Cen­tral star. Mutual perturbations are strong, planets can remain stable only in resonant orbits. 6 systems belong to this class with period ratios P2/P1 < 5: HD 82943 c,b; GJ 876 c,b; HD 128311 b,c; 55 Cnc b,c; HD 202206 b,c; HD 73526 b,c. The first known resonant system was Gliese 876 with a 2:1 orbital or mean motion resonance (Marcy et al. 2001). Beside this there is alsó an apsidal corotation resonance in this system with aligned apsidal lines. These resonances combined with phase protection ensure the long time stability of the system.Stability of these systems critically depends on the orbital elements, small changes can lead to instabilities. In the case of the 2:1 resonant system HD 82943 earlier orbital elements were dynamically inconsistent. Ferraz-Mello et al. (2005) derived dynamically consistent orbital elements and showed that the system is near to apsidal corotation, however with large librational amplitudes. Seemingly, capture intő resonance took piacé here without damping of the am­plitudes.In the 2:1 resonant system HD 73526 one of the resonant variables librates with large amplitude, the other circulates and the apsidal lignes are nőt aligned (Tinney et al. 2006). In another 2:1 resonant system, in HD 128311 the State of the resonance variables has nőt been determined yet, it might be similar to that of HD 73256 (Tinney et al. 2006).An important problem is the origin of high eccentricities. This problem is studied in the concept of planetary migration. Several migration mechanisms have been proposed. The most probable comes from the interaction between the planets and the gaseous primordial disk. Hydrodynamical simulations have shown that a proper selection of the parameters of the gaseous disk can cause an inward migration of the planets and trapping intő corotation resonance, and alsó excite the eccentricities (Kley 2001, 2003, Papaloizou 2003). In the case of 55 Cnc b,c Klay (2003) showed with hydrodynamical simulations that tidal migration leads to trapping intő 3:1 resonance and alsó to apsidal corotation. Zhou et al. (2004) alsó showed the apsidal corotation. It has to be mentioned, 
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however, that the plánét 55 Cnc c is considered nőt to be confirmed (Naef et al. 2004). Since nearly one third of the known multiple planetary systems are resonant, it is believed that orbital migration plays an important role in the evolution of such systems.In Class Ib the period ratios are small, P2/A < 5, bút either the masses are large and the orbits are relatively far, or the orbits are close bút the masses are small and therefore mutual perturbations are nőt so strong. The orbits have small eccentricities and are close to mean motion resonances. One pulsar planetary system, PSR B 1257+12, and the system 47 UMa b,c belong to this class. The latter shows the most resemblance to our Solar System as to the shape and size of planetary orbits. Our planetary system can alsó be classified as Class Ib. The planets of 47 UMa are close to a 5:2 (alternatively 7:3 or 8:3) resonance. Psychoyos and Hadjidemetriou (2005) computed 5:2 resonant sym­metric periodic Solutions fór the masses of the system 47 UMa. Zhou and Sun (2003) showed the apsidal secular resonance of the system. However, according to N,aef et al. (2004) the plánét 47 UMa c is nőt considered confirmed.In Class II the period ratios are moderate, 5 < Pz/Pi < 30, therefore there are no mean motion resonances between the giant planets. However, the gravi- tational interactions are substantial manifesting mainly in the secular dynamics of the planets. Since the eccentricities are large, Libert and Henrard (2005) de- veloped the perturbing potential up to 12th order in the eccentricities in order to investigate the secular dynamics. 6 systems belong to this class: mu Ara b,c; 55 Cnc e,b; Ups And b,c,d; HD 12661 b,c; HD 169830 b,c; HD 37124 b,c.In the system HD 12661 the planets show anti-aligned upsidal libration (with large amplitude), this is the first such exoplanetary system (Libert and Henrard, 2006). In Ups And the two outer planets c and d perform apsidal libration (Libert and Henrard, 2006).In the system HD 169830 two giants planets of similar size move in close, eccentric orbits. Here the difference of the periastron longitudes is circulating (Libert and Henrard, 2006). The habitable zone (HZ) of the system is situated beyond the orbit of the inner plánét and is crossed by the outer plánét. The dynamical structure of the HZ was studied by Érdi et al. (2004). It was shown that the HZ is strongly chaotic due to the overlapping of the inner and outer mean motion resonances in this region, and alsó because of the large masses of the giant planets. (A hypothetical third plánét in the HZ can have inner resonances with the outer plánét, and outer resonances with the inner plánét. Many of these resonances overlap in the HZ.)In Class III the period ratios are large, Pz/Pi > 30, capture intő mean motion resonance is impföbáble. Planets of these systems interact weakly. 6 
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Systems belong to this eláss: HD 168443 b,c; HD 74156 b,c; HD 11964 b,c; mu Ara d,b; 55 Cnc c,d; HD 38529 b,c. In the Systems HD 74156, HD 168443, HD 38529 the difference of the periastron longitudes of the two planets circulates (Libert and Henrard, 2006). The dynainical sructure of the HZ of the latter two Systems were studied by Érdi et al. (2004).In the system HD 168443 two planets of large masses (the outer possibly a brown dwarf) move in very eccentric orbits close to the star with period ratio 
Pz/Pi = 29.9. According to Érdi et al. (2004) the HZ of the system is largely chaotic due to the overlapping of inner and outer mean motion resonances.In the system HD 38529 a small inner plánét move in eccentric orbit close to the star, while the outer plánét is large orbiting far from the star in eccentric orbit and Crossing the HZ. The period ratio is 151.9. According to Érdi et al. (2004) the outer part of the HZ is chaotic. There is a stable region at the inner edge of the HZ, however, this is crossed by high order (7:1, 8:1,...) inner resonances with the outer plánét. The stability region persists fór a wide rangé of mass and eccentricity values of the outer plánét and nőt only an Earth-size bút alsó a Jupiter-size additional plánét could exist here.
2 Stability investigations in single planetary Sys­

temsIn most of the so far discovered exoplanetary systems only one plánét is known. This is usually a giant plánét of the order of or several Jupiter masses. It is very probable that planetary systems consist of more than one plánét with terrestrial- like planets among them. It is a great challange fór exoplanetary research to discover Earth-like planets. There are space programs in the immediate future, such as COROT in 2006 and Kepler in 2008 aiming at this goal. Stability investigations can contribute to these research indicating places in exoplanetary systems where additional planets could exist beside the already known giant planets.We made a systematic study to establish the stability properties of planetary systems with one giant plánét. We applied the model of the planar elliptic restricted three-body problem corresponding to a system consisting of a star, a giant plánét moving in elliptic orbit around the star, and a small terrestrial-like test plánét in the orbital pláne of the giant plánét. This model is a first approach which later will be extended fór more generál cases such as non-planar motion of the test plánét, non-negligible mass of the test plánét, and two giant planets 
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in the system.We computed stability maps fór a large set of initial conditions and mass parameters by using the method of the relatíve Ljapunov indicators (RLI). This is a very fást and efficient chaos detection method (Sándor et al. 2000, 2004). The stability maps can be used fór several purposes:• If a new plánét is discovered in a known exoplanetary system with one giant plánét, the dynamical consistency of the orbital elements of the new plánét, derived from the observations, can be established at once from the stability maps.• The stability properties of the HZ of known exoplanetary Systems can be seen from the stability maps. This gives an indication where terrestrial- like planets can be expected to exist in the HZ.• The orbital data of the giant planets of exoplanetary Systems are subject 1 to changes and improvements due to the accumulation of observations.The stability properties of the Systems with improved orbital data can be established from the stability maps since these are computed fór a large set of initial conditions and parameters incomporating those resulting from possible changes of the data of the giant planets.As examples, in Figs. 1 and 2 we show two stability maps computed fór a mass paraméter 0.001 (corresponding approximately to a system with a star of one solar mass and a giant plánét of one Jupiter mass). The horizontal axis corresponds to the values of the semi-major axis a of the test plánét expressed in the unit of the semi-major axis of the giant plánét (so values on the horizontal axis are ratios of the two semi-major axes). The vertical axis corresponds to the values of the orbital eccentricity ei of the giant plánét. The values of the orbital elements along the two axes were changed with a very small stepsize, and fór each corresponding orbit (the other initial orbital elements of the test plánét were taken zero) the RLI value was computed and visualized in the (a, ei) paraméter pláne. Light regions correspond to low values of the RLI (10~10) and ordered, dynamically stable motion of the test plánét. Dark regions correspond to large values of the RLI (10-5) and chaotic bahaviour of the test plánét.In Fig. 1 we displayed a case, where the semi-major axis of the orbit of the test plánét is larger than that of the giant plánét. The dark unstable regions on the left are due to the proximity of the giant plánét. The figure is dominated by V-shaped gray stripes corresponding to outer mean motion resonances between the test plánét and the giant plánét. These resonances, marked at the top



184 B. Érdi et al.

Figure 1: Stability map fór outer orbits of the test plánét when the mass paraméter 
is 0.001.

of the figure, can represent either ordered (stable fór infinite time), or weakly chaotic (which may become unstable after very long time) behaviour. With the increase of ei many resonances overlap giving raise to strongly chaotic and thus very unstable behaviour. The reason fór this is that increasing ei the apocenter distance of the giant plánét alsó increases and the giant plánét perturbs more strongly the outer test plánét.The figure shows alsó the position of the HZ of two exoplanetary systems. Sometimes different sources give different orbital data fór a given system. This may result in different stability properties of the HZ of the same system. This is shown in Fig. 1 fór the case of HD 52265 and HD 121504. The HZ of HD 121504 is stable with the data of the exoplanets catalogue (www.exoplanets.org) (the letter E after the name of the system refers to this catalogue). Using the data of Jean Schneider’s catalogue (www.obspm.fr/planets) there are a few resonances in the HZ of HD 121504 and thus it is partly stable. The HZ of the system HD 52265 is either partly stable (with a few resonances, using the data of the cataloge E), or marginally stable (with many resonances, using the data of JS).In Fig. 2 we displayed a case, where the semi-major axis of the orbit of the test plánét is smaller than that of the giant plánét. Here again inner mean motion resonances between the test plánét and the giant plánét dominate the

http://www.exoplanets.org
http://www.obspm.fr/planets
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I
Figure 2: Stability map fór inner orbits of the test plánét when the mass paraméter 
is 0.001.

stability map. Inside the resonances the stable or chaotic behaviour of the test plánét depends on the initial angular positions of the two planets. In the strongly chaotic regions on the right, which are due to the proximity of the giant plánét, there are two almost parallel light stripes, which correspond to satellite- type orbits around the giant plánét. These orbits are less chaotic (or they may be ordered) than those emanating from the surrounding region. Between these stripes the dark gap corresponds to the perihelion distance of the giant plánét, therefore in orbits originating from here the test plánét suffers close encounters with the giant plánét, or they can even collide.The HZ of our Solar System is shown in Fig. 2, computed with the as- sumption that there is only one giant plánét, Jupiter in the system. It is in the stable region of the figure. The HZ of HD 114729 is unstable, fiiled completely by overlaping resonances. The orbital data of the giant plánét in GJ 777 A are very uncertain resulting in different stability properties of the HZ (changing between stable and marginally stable depending on the orbital eccentricity of the giant plánét).More details of these stability investigations will be given in another paper.
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Abstract
We present here somé new results on the determination of the ages of asteroid families 
based on the analysis of motion of their members. Two independent methods have been 
used to assess the age of Veritas family, one making use of dynamical evolution of the 
stable family members, and the other where we analyze members with chaotic motion. 
In the former case we look fór the refined age estimate by searching fór convergence of 
angular elements to a narrow rangé of values acquired by the fragments immediately 
after the family formation event. In the latter case we compute the rate of chaotic 
diffusion of the resonant family members and estimate the time needed to spread from 
an initially compact distribution to the presently observed one.
Keywords: Asteroids: families, resonances, chaotic diffusion

1 IntroductionThe ages of asteroid families, that is the epochs of their formation by collisional breakup of parent bodies, are of utmost importance fór the study of dynamical and collisional evolution of asteroids. They serve to constrain the evolutionary models, to better understand physics of collisions and their outcomes, e.g. the initial velocity fields, to reveal the mechanical prop'erties of asteroids, their internál composition and strength, to study the associated dúst bands and their interaction with the Earth, etc.
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Until quite recently the ages of asteroid families have been essentially un- known. The rough estimates, uncertain even at an order of magnitude level, have been inferred by using the indirect evidence such as cratering records or space weathering. Then Milani and Farinella (1994) invented the method of chaotic 
chronology and applied it to estimate the age of Veritas fainily. They employed the fact that the two largest members of the family, asteroids (490) Veritas and (3542) Tanjiazhen, chaotically diffuse at a rate that will make them escape the region of the phase space occupied by the family in ~ 60 My. Since both as­teroids are at present still located well inside the family region, they concluded that the family cannot be older than 60 My, thus in fact establishing only an upper bound to its age. In the later studies along the same line (Knezevic, 1999; Knezevic and Pavlovié, 2002), a more conservative upper bound to the age of the family of ~ 100 My has been proposed, bút in the same time it has been pointed out that the true age might be significantly shorter.A couple of new methods to estimate the age of asteroid families have been introduced by Nesvorny et al. (2002) and Vokrouhlicky et al. (2005). In the case of young families located in a region with no strong resonances, the family can be dated with the use of a method which consists in integrating backwards in time the equations of motion fór the family members, until the orientation angles of their perturbed orbits converge to the values they had at the time of break-up. Using this latter method, Nesvorny et al. (2002) determined the age of the Karin family, the most recent break-up discovered so far in the asteroid beit which occurred ~ 5.8 My ago. Subsequently, Nesvorny et al. (2003) applied the same method alsó to the Veritas family and derived an estimate of the age of ~ 8.3 My. In the case of old families, the use is made of the distribution of the family members on the (H, ap) pláne, where H the absolute magnitude of a body and ap the proper semi-major axis of its orbit. Due to the size dependent Yarkovsky non gravitational effect the family members drift in the semimajor axis, forming a characteristic V-shape. The age of the family can then be approximately found, by fitting the borders of the family with a theoretically expected curve depending on the physical parameters of the bodies (Vokrouhlicky et al., 2005).In the following we will present somé new results of the determination of the age of families, in particular an attempt to reíine the existing estimate fór Veritas family. These new results have been obtained by using the modified chaotic 
chronology method (Tsiganis et al., 2006). The tools used fór this research included numerical integration of orbits of family members and of fictitious asteroids fór up to 100 My, computation of the time series of proper elements, of the Lyapunov times, of the coefficients of diffusion, etc.
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2 Veritas family example

2.1 ProceduresWe performed a large body of different analyzes to assess the distribution of Veritas family members in proper elements space, to identify the main dynami- cal groups, to analyze their dynamical behaviors and reveal the long-term effects of different resonant multiplets and the corresponding evolutionary time scales, and to study the cases of diffusive and non-diffusive chaos. Eventually we intro­duced a modified chaotic chronology method to estimate the age of this family. The results of this work are presented in full detail in Tsiganis et al. (2006); here we shall briefly sketch only the most important ones.We first identified the members of the Veritas family by using the Hierarchi- cal Clustering Method (Zappalá et al., 1995) and finding a totál of 180 members fór the value of the velocity cut-off vc = 40 ms-1. Fór each reál family member and fór a set of 400 fictitious objects we computed the Lyapunov times Tl by intégrating the variational equations. Next we studied the long-term evolution of the proper orbital elements of family members fór 100 My. We made two integrations: first, all 180 reál objects were integrated fór 10 My, then the inte­gration has been extended to 100 My fór a sub-group of representative objects. The equations of motion were integrated by means of the public domain Orbit 9 software package1. Using the analytical theory by Milani and Knezevic (1994), we subsequently computed the corresponding time series of proper elements fór all integrated bodies. A 100 My integration backwards in time, followed alsó by a computation of the corresponding time series of proper elements, was performed fór the members of the family with regular orbits.

1 Available from the AstDyS service at http://hamilton.dm.unipi.it/astdys

Fór the resonant family members, we alsó calculated the mean squared dis- placement, ((AJk)2), of the two action variables related to ep and íp, the av- erage being taken over the corresponding set of family members. In terms of a simple diffusion approximation, the mean squared displacement in action grows linearly with time, at a characteristic rate called the diffusion coefficient. The diffusion coefficient in each action, ^(Jk), was computed as the least-squares-fit slope of the ((AJk)2) (t) curve. Finally, a simple random-walk rnodel has been used to describe the evolution of chaotic family members, where, at every At, each body undergoes a random ‘jump’, whose length in Ji and J2 is given by a 2-D Gaussian distribution. The values of TffJi) and TffJz) then correspond to the standard deviation of the projections of the probability density, along the 
Ji and J2 axis, respectively.

http://hamilton.dm.unipi.it/astdys
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2.2 ResultsThe Veritas family members exhibit a complex distribution in the space of proper elements. In particular, the (ap,ep) distribution reveals that the family can be decomposed intő at least four dynainically distinct groups, arranged along the ap values spanned by its members. Bodies clustered around ap = 3.168 AU (group B) and around ap = 3.174 AU (group A) have significantly larger spread in ep, than the rest of the family. The low a side of the family (group Rí), mostly composed of bodies on regulát orbits (Nesvorny et al., 2003), fits well inside the elliptical equivelocity curve computed using the equations of Gauss (Morbidelli et al., 1995), while groups A and B are cutting through this ellipse, producing two ‘finger-like’ features. If we assume that the family borders immediately after the break-up can be approximated by an equivelocity ellipse, then the initial spread in eccentricity fór group-A and group-B objects should have been much smaller than observed at present. We, however, know that these ‘finger-like’ features are associated with the strong three-body mean motion resonances (Nesvorny and Morbidelli, 1998; Knezevic et al., 2002; Nesvorny et al., 2003) among Jupiter, Satum and the asteroid. The remaining component of the family (group Rz) is located between the two dispersed groups and has again a small spread in ep.In order to analyze the dynamical behavior of the main groups we first carried out an analyzis of the chaotic zones and resonances involved. We found that there are two broad chaotic bands cutting through the family, characterized by two different values of 71: group-A bodies, including (490) Veritas itself, reside in the Tl « 104 yr chaotic bánd, while most group-B bodies are located in the 71 ~ 3 • 104 yr bánd. The rest of group-J? asteroids as well as Rz bodies are located between these two main chaotic bands. Chaotic sidebands are alsó observed on both sides of the 71 = 104 yr bánd, as well as somé less important features. While it is well known that the group-A chaotic bánd is associated with the (5,—2,—2) Jupiter-Saturn-asteroid mean motion resonance (Nesvorny and Morbidelli, 1998), the 71 = 3 ■ 104 yr bánd is associated with the (3,3,-2) resonance (Knezevic et al., 2002); alsó asteroid (37005) moves in the vicinity of the (7,-7,—2) resonance. These two latter resonances are due to frequency combinations of the main (5,—2,—2) resonance and the 2/5 near resonance of Jupiter and Satum.Group Rí consists entirely of asteroids on regular orbits, their proper ele­ments being stable over a 100 My time interval. A somewhat different behavior is observed fór the members of the Rz group, as well as fór the members of group B located outside the (3,3,—2) chaotic bánd. The nearby resonances in- 
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duce long-periodic, small amplitude perturbations, bút these perturbations do nőt build-up, at least within 100 My. Thus R2 and non-chaotic asteroids of group-B alsó have very stable proper elements over a 100 My time span and their long-term behavior is very similar to that of Rí bodies. In our study of the pást evolution of regular family members we, however, considered Rí bodies only, since they are less affected by the nearby resonances.By examining more closely the motion inside the two main chaotic bands, we found that the group-A bodies diffuse very efficiently in ep and sinip. As inferred from our integrations, already after 10 My they cover a phase-space region that is about twice as big as the initial one. The behavior of group-B asteroids is quite different as their evolutionary traces cover practically the same region as the one óccupied by their present-day distribution, and no macroscopic diffusion is observed. This might appear as somewhat surprising in view of nőt so very different Lyapunov times for the two groups. However, the instabilities of proper elements are related to the resonances involved, so that different res­onances can have similar values of in their chaotic layers, bút very different long-term stability properties (hence the notion stable chaos; see Milani and Nobili (1992)). We actually found several group-B bodies, whose mean semi- major axis changes in time, the asteroid ‘jumping’ from one component of the resonance multiplet to another, bút this type of chaotic motion does nőt seem to produce macroscopic diffusion in ep and sin ip.Using the 10 My integrations of the reál bodies, we computed the diffusion coefficients in J[ and J2 for both chaotic groups. The mean squared displace- ment in both actions has been found to be a linear function of time and the corresponding values of the diffusion coefficient were ^(Ji) = 1.1 • 10~14 yr-1 and 7?(J2) = 1-4 • 10-14 yr-1. On the contrary, for the chaotic group-B aster­oids, we found a much smaller value for P(Ji) = 9.6 ■ 10~17 yr-1 and a much smaller value for = 1-9 • 10-18 yr-1. Thus, chaotic motion is strongly diffusive for group A, while it is almost non-diffusive for group B.Finally, we derived two independent estimates of the age of Veritas fam­ily, one making use of dynamical evolution of the stable family members, and the other based on the members with chaotic motion. In the former case we integrated backwards in time the orbits of the 50 family members of Ry for 10 My and calculated their proper elements time series. Following Nesvorny et al. (2003), we computed the mean difference of nodal longitudes of all bodies, (AQ), with respect to the largest member of the family with a stable orbit, asteroid (1086) Nata, as a function of time. A clustering of the nodes within 30° was found at t = -8.3 My. Thus, we have confirmed the result obtained by Nesvorny et al. (2003),T>üt our results show a more tight clustering of the nodes 
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(within 30°) mainly because we excluded from the calculation all non-chaotic 
B and family members, and because we made use of proper elements, thus reducing the effects of short periodic variations.An independent estimate of the age of the family can be obtained, using a modified chaotic chronology method fór group A asteroids. A simple random- walk model can be used to describe their evolution, as described in Section 1. Starting from an initial distribution extended as suggested by the equivelocity ellipses, we took a number of snapshots of the evolution of a fictitious initial dis­tribution of 400 (5,—2,—2)-resonant bodies in the (ep,sinip) space, according to our random-walk model, and we superimpose it on the present-day distribution of group-A family members.The fictitious objects are spreading diífusively in action space, the variance of the distribution growing linearly with time. The box in a 2-D phase space representing the observed distribution is füled by our random-walkers within less than 10 My; even several particles have leaked out of the box, bút still more than 67% of the particles is well contained within the box in both variables. Next we checked the area of the pláne covered by the reál group-A members, when the latter are propagated fór 10 My intő the future. At t — 20 My, the random-walkers cover an area, which has approximately the same extent as the one covered by the future images of reál group-A members. The above results confirm that a simple random-walk approach can be used to obtain an estimate fór the age of group A, and, in fact, they indicate that the age of this group must be ~ 10 My.Of course, the diffusion zone spanned by group-A asteroids does nőt have the simple elliptical shape of the region covered by the random-walkers. In particular it has three ‘tails’, two at small and one at high eccentricities, while most of the bodies seem to occupy a more compact region. This suggests that, as the resonant bodies spread, they approach phase-space regions, characterized by different transport properties: the diffusion coefficient may vary significantly, with respect to the region occupied by the present-day distribution of group- 
A bodies, or transport may deviate significantly from norma! diffusion, due to a complex phase-space topology. In either case, the normál diffusion is only an approximation of the reál transport process. However, the simple diffusion approximation seems to provide a good estimate fór the transport time scale.In other words, the above results show that, even though the evolution of the distribution function of group-A bodies cannot be assumed to follow Fick’s law (see Eq. (1) in Tsiganis et al. (2006)) fór all times, their current distribution can be viewed as the evolution of a narrow initial distribution in Jj, whose variance grows with time as ct2(x) = 2?/2 • t. Using the obtained values of 
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P(Ji) and of <t(Ji) = 2.2 • 10-4 taken from the data, we estimate the age of group A to be n = (9.0 ± 1.3) My. This value agrees satisfactorily with the 8.3 My age-estimate of the regular component of the family, taking intő account the approximative natúré of our assumptions. A similar calculation can be performed fór the J? distribution. The corresponding values are — 3.6 -10-4 and r? = (18.6 ±2.7) My. The reason fór which Ti is closer to the value obtained from the analysis of the regular bodies is that the initial Ji distribution is much closer to a delta function, which is the expected distribution of family members immediately after break-up, than the J? distribution.
3 ConclusionWe have shown in this paper that the methods to determine the age of asteroid families improved in the recent years to the point that we can nowadays estimate thé age of a number of asteroid families quite accurately, providing they comprise members having either very stable, or strongly (diffusively) chaotic orbits. These dynamical methods have been applied in a number of cases (Veritas, Karin, Eos), of which we have described here the case of Veritas. The results of the application of two independent methods presented here agree fairly well, and this indicates that the family of Veritas has most probably been created as a whole in a single break-up event. It is a very young family, and indeed the youngest known family in the main asteroid beit originated from the parent body as large as 150 km in diarneter.
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Abstract
The dynamical structure of the phase space of the Pluto-Charon system is studied 
in the model of the spatial circular restricted three-body problem by using numerical 
methods. With the newly discovered two small satellites Hydra and Nix, the Pluto- 
Charon system can be considered as the first known binary system in which celestial 
bodies move in P-type orbits. It is shown that the two satellites are in the stable 
region of the phase space and their origin by capture is unlikely.
Keywords: Celestial mechanics - planets and satellites: generál - Kuiper Beit -

methods: numerical _

1 IntroductionIn 1930 C. Tombaugh discovered Plútó, the ninth plánét of the Solar system. Pluto’s first moon, Charon was found by Christy & Harrington (1978). The Pluto-Charon system is remarkable, since in the Solar system Charon is the largest moon relative to its primary, with the highest mass-ratio 0.130137. Sub- sequent searches fór other satellites around Plútó had been unsuccessful until mid May 2005, when two small satellites designated as Hydra and Nix were discovered (Stern et al., 2005). With this observation Plútó became the first Kuiper Beit object known to have multiple satellites. These new satellites are much smaller than Charon, with diameters 61-167 km (Hydra) and 46-137 km 
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(Nix) depending on the albedo. Both satellites appear to be moving in nearly circular orbits in the same orbital pláne as Charon, with orbital periods 38 days (Hydra) and 25 days (Nix).From a dynamical point of view the Pluto-Charon system corresponds to such a binary system whose mass paraméter is approximately one tenth. The phase space of binaries and the Pluto-Charon system can be studied simultane- ously. To survey the phase space of binaries is a fundamental task, since more and more exoplanetary systems are being discovered. The great majority of exoplanets have been observed around single stars, bút more than 15 planets are already known to orbit one of the stellar components in binary systems (this type of motion is referred to as satellite or S-type motion).There are somé studies on planetary orbits in binaries. The so far discovered planets in binaries move in S-type orbits. Theoretically there is another possible type of motion, the so-called planetary or P-type, where a plánét moves around both stars. There are several studies on S- and P-type motions using the model of the planar elliptic restricted three-body problem see e.g. (Dvorak, 1984, 1986; Holman & Wiegert, 1999; Pilat-Lohinger & Dvorak, 2002) and references therein. The three-dimensional case, that is the effect of the inclination was studied by Pilat-Lohinger, Fűnk & Dvorak (2003) fór P-type orbits in equal- mass binary models.The main goal of this paper is to investigate the dynamical structure of the phase space of the Pluto-Charon system which can be considered as the first known binary system in which celestial bodies, namely Hydra and Nix move in P-type orbits. In Section 2 we describe the investigated model and give the initial conditions used in the integrations. The applied numerical methods are briefly explained in Section 3. The results are shown in Section 4. Section 5 is devoted to somé conclusions.
*

2 Model and initial conditionsTo study the structure of the phase space of the Pluto-Charon system we applied the model of the spatial circular restricted three-body problem. We integrated the equations of motion by using a Bulirsch-Stoer integrátor with adaptive stepsize control. The orbits of the primaries were considered circular and their mutual distance A was taken as unit distance. The orbital pláne of the primaries was used as reference pláne, in which the line connecting the primaries at t = 0 defines a reference x-axis. We assume that the line of nodes of the orbital pláne of the massless test partiele (i.e. Hydra or Nix) coincides with the x-axis at 
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t = 0, thus the ascending node fi = 0°. The pericenter of the test particle’s orbit is alsó assumed to be on the x-axis at t = 0, thus the argument of the pericenter w = 0°. Though Hydra and Nix are in the orbital pláne of Charon, still we study the problem more generally by considering the effect of non-zero inclinations on the orbital stability. Thus our results are applicable to a wider eláss of satellite or planetary Systems around binaries fór the mass paraméter 
H = m2/(m1 + m2) = 0.130137, corresponding to the Pluto-Charon system (mx and m2 being the mass of Plútó and Charon, respectively).To examine the phase space and the stability properties of P-type orbits, we varied the initial orbital elements of the test partiele in the following way (see Table 1):• the semimajor axis a is measured from the barycentre of Plútó and Charon and it is varied from 1 to 5 A with stepsize Aa = 0.005 A,• the eccentricity e is varied from 0 to 0.3 with stepsize Ae = 0.05 (Ae = 0.002 in Fig. 2),• the inclination i is varied from 0° to 180° with stepsize A? = 1°,• the mean anomaly M is given the values: 0°, 45°, 90°, 135°, and 180°.The above orbital elements refer to a barycentric reference frame, where the mass of the barycentre is mi + m2. By the usual procedure we calculated the barycentric coordinates and velocities of the test partiele and then transformed them to a reference frame with Plútó in the origin. In the numerical integrations we used the latter coordinates and velocities.In totál almost six millión orbits were integrated fór 103 Charon’s period (hereafter Te) and approximately 500 thousand fór 105 Tc.

3 MethodsTo determine the dynamical character of orbits we used three methods. The method of the relative Lyapunov indicator (RLI) was introduced by Sándor, Érdi & Efthymiopoulos (2000) fór a particular problem, and its efficiency was demonstrated in a later paper (Sándor et al., 2004) fór 2D and 4D symplec- tic mappings and fór Hamiltonian Systems. This method is extremely fást to determine the ordered or chaotic natúré of orbits.Fór an indication of stability a straightforward check based on the eccentric­ity was used. This actipn-like variable shows the probability of orbital Crossing
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Table 1: In the first three rows the orbital elements from unrestricted fits (epoch = 
2452600.5) are listed (Buie et al., 2005): a, e, i, w, Í1 and M denote the semimajor 
axis, eccentricity, inclination, argument of the pericenter, longitude of the ascending 
node, and mean anomaly. In the last column the orbital periods are given in days. The 
orbital elements fór P-type orbits are given with the corresponding stepsizes.Object a [A] e z[°] W[°] M[°] T [day]Charon 1.0 0 96.145 — 223.046 257.946 6.387Nix 2.487 0.0023 96.18 352.86 223.14 267.14 25Hydra 3.31 0.0052 96.36 336.827 223.173 122.71 38P-type 0.55-5 0-0.3 0-180 0 0 0-180A 0.005 0.05 1 - - 45
and close encounter of two planets, and therefore its value provides information on the stability of orbits. We examined the behaviour of the eccentricity of the orbit of the test partiele along the integration, and used its largest value ME as a stability indicator; in the following we call it the maximum eccentricity method (hereafter MÉM). This simple check was already used in several sta­bility investigations, and was found to be a powerful indicator of the stability character of orbits (Dvorak et al., 2003; Süli, Dvorak & Freistetter, 2005).The maximum difference of the eccentricities method (MDEM). We developed this new method and applied it fór the first time in this investi- gation. Two initially nearby trajectories emanating from a chaotic domain of the phase space will diverge according to the strength of chaos. The divergence manifests itself in the differences between the eccentricities of the orbits and in the angle variables. The more chaotic the system is, the faster the difference in the eccentricities grows. This difference is sensible to the variatipns around the running average of the eccentricity and depends alsó on the position along the orbit. Thus if the positions along the two orbits change chaotically, the eccen­tricities of the two orbits alsó behave differently and their momentary differences can be large even if the average value of the eccentricity of each orbit remains small. This method characterises the stability in the phase space, whereas the MÉM does it in the space of orbital elements. We define the stability indicator MDE as: MDE(t) = max|e(t, zo) — e(t, Zo + Az) |, (1)where zo is the initial condition of the orbit and Az is the distance of the 
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nearby orbit in the phase space. The method of the MDE has the advantage with respect to the MÉM that in the case of chaotic orbits the MDE grows more rapidly than the ME, and while the difference between the ME fór regular and chaotic motions is only 1-2 orders of magnitude, this can be 4-7 orders of magnitude fór the MDE and therefore can be detected more easily.
4 ResultsWe show the results of our investigations in Figs. 1-2. These were obtained as follows. By varying the initial orbital elements as described in Section 2, we performed the integration of each orbit fór five different initial values of the mean anomaly: M = 0°, 45°, 90°, 135°, and 180°. Fór each M the indica- tors were determined, where stands fór RLI, ME, and MDE,respectively. Any value, plotted in the figures, is an average over M:' Z(a,e,i) = l^I<M’(a,e,i). (2)

° MWe note, that this averaging in the case of the RLI and the MDE emphasises the chaotic behaviour of an orbit, while in the case of the ME is nőt so drastic.The three methods are nőt equivalent, however they complete each other. The ME detects macroscopic instability (which may even result in an escape from the system), whereas the RLI and the MDE are capable to indicate mi- croscopic instability.In most of the simulations the values were calculated fór 103 Te- To decide whether this time interval is enough to map the reál structure of the phase space, several test runs were done fór a much longer time span, fór 10'5 
Te-We found that the maps obtained from simulations fór a time span of 105 
Te and 103 Te are in close agreement. Thus we can conclude that the phase space of the Pluto-Charon system can be surveyed in a reliable way by using a time span of 103 Te-

4.1 The phase space of the Pluto-Charon systemWe investigated the behaviour of P-type orbits systematically by changing the initial orbital elements of the test partiele as described in Section 2 (see alsó Table 1). Beside direct orbits (i < 90°) we studied alsó retrograd P-type motion 
(i > 90°) of the test partidé. All the integrations were made fór 103 Te- The
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RU

MÉM

MDEM

Figure 1: The results of the 103 Te simulations fór e = 0,... ,0.3 in the a,i pláne. 
The dark area is unstable, the grey regions are stable. See text fór details.

results are shown in Fig. 1, where the indicators I are plotted on the a, i pláne fór different values of e.In generál, the results show an increase of the chaotic area fór higher ec- centricities: fór i < 160° the chaotic region grows with e. However, the rate of the increase strongly varies with the inclination. The stabilé region is more extended fór retrograde (i > 90°) then fór direct (i < 90°) orbits. It can alsó be seen that the resonant islands (4:1 at a = 2.52 A, 5:1 at a = 2.92 A etc.) merge with the growing chaotic zone. The most striking feature is that the stability of the retrograd P-type motion practically does nőt depend on e. Inspecting Fig. 1 it is evident that the bordér of the chaotic zone fór i > 160° stay almost constantly at a & 1.7 A.

4.2 Stability of the satellites Hydra and NixWe have addressed the problem of stability of the recently discovered satellites of Plútó. The results are shown in Fig. 2, where the values of the MDE (computed fór 103 Te and averaged over fór the mean anomalies) are plotted on the a, e pláne fór the planar case (i = 0°). Below a = 2.15 A the system is unstable fór all e, above a = 2.15 A there is a stable region depending on e. The two satellites are situated here, in the small rectangles, indicating their dynamically possible most probable places of occurance. These rectangles are defined by the ME, computed in the vicinity of each satellite. This means that we took a grid around the present value of a of each satellite with a stepsize Na = 0.005 A, 
Ni = 1.25° in the interval i = 0 — 180°, and with initial e = 0 we computed the largest MEmax during 105 Te (including averaging over the five values of M). We obtained that MEmaa: = 0.045 fór Nix and MEmoi = 0.02 fór Hydra. In Fig. 2 these values give the height of the rectangles. We computed the possible
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Figure 2: Stability map in the a,e pláne.

minimál rp = a(l —MEmax) pericenter and maximai ra = a(l+ MEma;c) apocenter distances of the satellites, these are 2.41 and 2.63 A fór Nix and 3.23 and 3.37 
A fór Hydra. These values define the horizontal limits of the rectangles in Fig. 2, and alsó the places of the vertical lines in Fig. 1.From Fig. 2 it can be seen that the determined orbital elements of the two satellites are well in the stable domain of the phase space. If Nix and Hydra move in the orbital pláne of Charon, their eccentricities cannot be larger than 0.17 and 0.31, respectively. The present semimajor axis a of Nix is very close to the 4:1 resonance with Charon, whereas that of Hydra is close to 6:1. The locations of the exact resonances are well inside the small rectangles. We presume that these satellites probably move in resonant orbits. This could be confirmed by new observations.
5 ConclusionsUp to now the Pluto-Charon system is the only known binary system which has a relatively large mass-ratio and celestial bodies revolve around it in P-type orbits. This circumstance and the high ratio of binary stellar Systems among stars make it important to study the stability properties of P-type orbits in binaries and particularly in the Pluto-Charon system. Our investigations show that the stable region is wider fór retrograd than fór direct P-type orbits. With the increase of the eccentricity the chaotic region becomes larger, and because of it the eccentricities of the two satellites, at their present semi-major axis, cannot be higher than 0.17 fór Nix and 0.31 fór Hydra. Below a = 2.15 A orbits are unstable fór all eccentricities, thus no satellite could exist here.Stern et al. (2005) has shown that Hydra and Nix were very likely formed together with Charon, due to a collision of a large body with Plútó, from mate- 
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rial ejected from Plútó and/or the Charon progenitor. This is based on the facts that Hydra and Nix move close to Plútó and Charon in nearly circular orbits in the same orbital pláne as Charon, and they are alsó in or close to higher-order mean motion resonances.Our results are alsó against the capture origin of these satellites. Firstly, since the stability region fór retrograd orbits is wider, it would have been more probable fór the satellites to be captured intő retrograd than fór direct orbits. Secondly, capture intő orbits close to the Pluto-Charon binary cannot be with high eccentricity (e > 0.17 and 0.31 at the present semimajor axis of Nix and Hydra), since these orbits become unstable on a timescale of 103 Te- On the other hand, fór eccentric capture orbits the tidal circularisation time fór Hydra and Nix is much longer than the age of the Solar System as Stern et al. (2005) pointed out.
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Abstract
The determination of the galaxy interaction rate is obtained by measuring the inci- 
dence of strongly-disturbed galaxies or close pairs of galaxies. Photometrical data and 
HST/WFPC2 morphology of galaxies in dense environments of 3C 220.1 and 3C 34 
rádió galaxies are used in order to measure the rate of major galaxy merging/ interac­
tion. In our study we determine the photometric redshifts of galaxies and we analyze 
the frequency of galaxies close pairs in the fields studied.
Keywords: Galaxies: morphology, dynamics, interactions

1 IntroductionRádió galaxies are used as efficient tracers of high redshift clustering, because they are usually situated in dense environments. These galaxies configurations represent an opportunity to determine the galaxy interaction rate by measuring the incidence of strongly-disturbed galaxies or close pairs of galaxies.This paper presents the results of a photometrical, morphological and dy- namical study of galaxies in the field of the rádió galaxies 3C 220.1 (z = 0.62, 64 gal. in a 6.2 arcmin2 field) and 3C 34 {z = 0.689, 89 gal. in a 6.2 arcmin2 field), using optical and NIR photometrical data (V, Z, J, ZZ, K) and HST/WFPC2 mor­phological data of Stanford et al. 2002.
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The prirnary aims of this paper are:- to determine the photornetric redshifts fór the galaxies in the fields studied;- to search fór clustering features of galaxies with similar redshifts in the fields studied;- to measure the incidence of close pairs of galaxies or strongly-disturbed galaxies,
2 Photornetric redshifts determinationsThe photornetric redshifts technique concentrates on broad features, such as the 4000Á break, and the global shape of a spectrum, redshifts being obtained by comparing the broad bánd photometry to predictions from galaxy spectral energy distributions (SED’s).Using the Z-PEG software (Le Borgne & Rocca-Volmerange, 2002) we obtain the redshifts fór galaxies in the field of 3C 220.1 and 3C 34 rádió galaxies. Z-PEG effectuates a x2 test, representing the minimization of the distance between the photornetric bands observed and synthetic photometry from galaxies simulated by the evolutionary code PEGASE.In our study the photometrical data are corrected fór Galactic reddening. The optical data are calibrated intő the Landolt system and the NIR data intő the CIT system. The typical rms of these calibration are 0.02 (optical) and 0.03 (NIR).Fór our photornetric redshifts determinations we consider:- 5 colors: {y — I), (J — K), (V — K), (H — K), (I — K) (transformed intő the Bessel, Brett (1988, 1990) system in order to be in the same system with Z-PEG model);- the spectral types of template galaxies to be used in the fitting procedure (Starburts - E - S0 - Sa - Sb - Sbc - Se - Sd - lm);- the redshift step (0.05);- the age (2 Myr -17 Gyr)/redshift rangé (0 < z < 5) of the fitting procedure;- the cosmological parameters HO=65 km/s/Mpc, go=0.15.In Figures 1 and 2 we present the histograms of the photornetric redshifts determined fór galaxies with K < 19.5 mag in 30 220.1 and 3C 34 fields.Fór 3C 220.1 field we determined 17 galaxies in the redshift rangé 0.45 < z < 0.7 (E/S0) and 26 galaxies in the redshift rangé 0.75 < z < 1.05 (15 E/S0, with z ~ 0.8). The peak in the redshifts distribution possible represents a galaxies cluster at z ~ 0.8 —0.9, superposed on the poor cluster of galaxies at the redshift of rádió galaxy 3C 220.1 (z ~ 0.65).
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Fór 3C 34 field we determined 40 galaxies in the redshift rangé 0.65 < 

z < 1. The peak around z ~ 0.85 is conspicuous in the photometric redshifts distribution. Galaxies are mostly E/SO and constitute a possible cluster of galaxies at z ~ 0.85.

Figure 1: Photometric redshifts distribution of gal. with K < 19.5 mag in 3C 220.1 
field

3 The galaxies distribution function of HST/ 
WFPC2 morphologyThe distribution of the galaxies function of HST/WFPC2 morphology is pre- sented in Figure 3.Fór 3C 220.1 field the symbols are as follows: squares - E/S0 galaxies (22 gal.); dots - S galaxies (16 gal.); diamonds - Irr/mergers galaxies (i.e. galaxies in interaction) (20 gal.); + - galaxies outside the WFPC2 field (6 galaxies with undetected morphology).On the existing symbols the following ones are overlapped: (+) - 17 galaxies with photometric redshifts in the redshift rangé 0.45 < z < 0.7; (X) - 26 galaxies with photometric redshifts 0.75 < z < 1.05 are clustered in three groups, con- taining 15 E/S0 galaxies. Only 11 galaxies are located in the inner region of the field (50") close to the brightest cluster galaxy (with K=15.76, (Z - Zí)=2.74, (J-K)=1.7).Fór 3C 34 field there are the following symbols: squares - E/S0 galaxies (19
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Figure 2: Photometric redshifts distribution of gal. with K < 19.5 mag in 3C 34 
fields

gal.); dots - S galaxies (2 gal.); diamonds - Irr/mergers galaxies (17 gal.); (+) - galaxies outside the WFPC2 tieid (51 galaxies with undetected morphology).The symbols (X) are overlapped on the existing ones and represent 40 galax­ies with photometric redshifts in the rangé 0.65 < z < 1. 30 galaxies with 0.65 < z < 1 are clustered in the inner region of the tieid (50") close to the brightest cluster galaxy (Zf=15.54, (Z - K)=2.97, (J - ZC)=1.96), possibly rep- resenting a cluster of galaxies at z ~ 0.85.
4 Incidence of strongly-disturbed galaxies or close 

pairs of galaxiesAn integrated measure of galaxy clustering on small scales is provided by close pair statistics. These statistics are often assuined to be independent of selection etfects such as sampling depth and completeness.Pairs of galaxies can be uniquely specified by their projected physical sepa- ration and rest-frame line-of-sight velocity difference:10h kpc < ^Tproj rmax^^bhrmax — 30,50,100 h kpc Au < 500km/s (1)
For a close companion that is likely to merge soon (within 0.5 Gyr), the
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Figure 3: The distribution of galaxies in the field of 3C 220.1 (left) and 3C 34 (right) 
function of morphologyifollowing conditions are considered:

&rproj < 20h 1kpc; Av < SOOkm/s (2)The spatial distribution of galaxies pairs, that meet condition (1), is pre- sented in Figure 4.In Figure 4 - top (3C 220.1 field), Pairs I and IV consist of galaxies with redshifts in the rangé 0.45 < z < 0.7 and projected distances smaller than 50 kpc. The interaction is obvious in the case of Pair I and Pair IV, where a inixed morphology is revealed.Fór Pair I, the BCG (E/S0) interacts with an irregular galaxy and a spirál one (see alsó the distribution of galaxies in the field of 3C 220.1 function of morphology). So, a single galaxy can contribute to two separate dinamically bounded pairs, forming a triplet system in our pair sample. In the field of 3C 220.1, four triplet systems are detected.Pairs II, III, V, VI and VII consist of galaxies with redshifts in the rangé 0.75 < z < 1.05. The mixed morphology can be alsó observed fór Pairs III, V, VI and VII. Pairs III and V contain galaxies that are classified as mergers or galaxies in interaction.In Figure 4 - bottom (3C 34 field), Pair I is formed by galaxies with redshifts in the rangé 0.65 < z < 1 and projected distances smaller than 50 kpc. This is the most interesting region because the BCG (E/S0) interacts especially with other E/S0 galaxies (see alsó the distribution of galaxies in the field of 3C 34
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Figure 4: K-band image of 3C 220.1 (left) and 3C 34 (right) - the distribution of 
pairs of galaxies

function of morphology).Pairs II, III, IV and V contain galaxies with redshifts in the rangé 0.65 < 
z < 1, the mixed morpohology existing only fór Pair II.
5 ConclusionsThis study belongs to an extended study of search fór galaxies clusters and close pairs of galaxies, in the redshift rangé 0.6 < z < 1.3 (Popescu, 2006). Our goal is to identify and analyze somé morphological, photometric and dynamical properties of disk galaxies and elliptical galaxies at differeut stages of interaction.Photometrical data and HST/WFPC2 morphology of galaxies are used in order to obtain the photometric redshifts of galaxies and to analyze the fre- quency of galaxies close pairs, in dense environments of 3C 220.1 and 3C 34 rádió galaxiesUsing the Z-PEG software (Le Borgne & Rocca-Volmerange, 2002) we de- termine the redshifts fór galaxies in the field of 3C 220.1 (z = 0.62) and 3C 34 
(z = 0.689) rádió galaxies (a totál of ~ 150 gal.).The presence of clustering features of galaxies with similar redshifts is re- vealed in both fields (especially in the 3C 34 field).Fór our study we analyze a sample of 12 pairs of galaxies, observing only 8 mixed pairs (i.e. an elliptical/lenticular galaxy + a spirál or irregular/merger galaxy).
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A strong pair isolation criterion in terms of the apparent angular separation and rest-frame line-of-sight velocity difference has been used.
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Abstract
The main aim of this paper is to investigate the long-time behavior of three high order 
geometric integrators, namely an implicit Runge-Kutta-Gauss method, the composed 
Störmer-Vériét method and a high order linear multistep method. All these three 
families of methods perform fairly accurate, at least qualitatively, when they are used 
in the integration of the outer Solar system. No spirál outwards or inwards are observed 
when their orders exceed six. With the long time energy conservation the situation 
change considerable. A significant improving in the computation of Hamiltonian is 
observed passing from order two to six bút further, in contrast with the trajectories, 
almost nothing is gain by increasing the order of the method. A partial answer to this 
intriguing situation is furnished by the analysis of round off errors.
Keywords: N-body problem, outer Solar system; composed geometric integrators, 

round-off errors, compensated summation, long time energy conservation

1 IntroductionIt would seem to be an obvious goal fór a Hamiltonian-integration method both to preserve the symplectic structure of the flow and to conserve the energy, bút it has been shown that this is in generál impossible (Zhong and Marsden,
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1988) . Thus a symplectic method which only approximate a Hamiltonian cannot conserve the totál energy of the system. Energy conserving algorithms have been designed at the expense of nőt being symplectic, bút fór most applications retaining the Hamiltonian structure is more important than energy conservation.A large number of numerical studies, during the last two decades, confirmed that using symplectic integrators the energy can only undergo bounded oscil- lations. This is in contrast to integrating the same Hamiltonian system with a nonsymplectic method, where there would be no bound on the energy, which could then increase or decrease without limit, transforming the system intő a dissipative one, with completely different long-term behavior. It is well known that the dissipative Systems have attractors and Hamiltonian Systems do nőt. This is a major advantage of symplectic methods.There is a further point about symplectic maps that affects all numerical methods using floating point arithmetic, and that is round-off error. Round- off error is a particular problem fór Hamiltonian systems, because it introduces non-Hamiltonian perturbations despite the use of symplectic integrators. In this respect we observe that the Hamiltonian systems are nőt generic in the set of all dynamic systems, in the sense that they are nőt structurally stable against non-Hamiltonian perturbations.Although symplectic methods of integration are undoubtedly to be preferred in dealing with Hamiltonian systems, it should nőt be supposed that they solve all difficulties of integrating them; they are nőt perfect. Channell and Scovel (1990) give examples of local structures introduced by using such methods.The contents of this paper are as follows. In the second section we introduce the governing equations and the numerical methods, in the third section we carry out the numerical experiments and eventually we present somé concluding remar ks.
2 Governing equations and numerical methodsWhen we treat eachplánét as apoint of massmi withposition r^i = 1,2,. ■. ,N, in a heliocentric frame, the planetary orbits satisfy the following Newtonian system

NG (Ms + mi) rj Gm,—ír (1)
j=l
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Here Ms and G stand fór the mass of the Sun and the Gaussian constant respectively. The Hamiltonian corresponding to this system is separated and reads

N

j=l

1 N N , x
3 qiQj

(2) In this expression q) and q are vectors of N components pi and qi respectively, 
Qi ■- (n,i ri<2 rit3y and pi := q^.The second order differential system (1) is transformed intő a first order one and then integrated starting from the initial data r, (to), ti (to), i — 1,2,..., N.The first method used, in order to solve numerically this Cauchy problem, is an implicit Runge-Kutta one. It was introduced mainly in the work of Butcher (1963) and is discussed in details in Chapters V and VI of the monograph of Hairer et al. (2006). The method is symplectic and symmetric, so that it is well suited in the context of geometric integration.The second method is a partitioned multistep method. It is known that neither explicit nor implicit classical multistep methods have been successful in geometric integration. More than that it is nőt evident to discuss symplecticity and symmetry of multistep methods because they are nőt transformations on the phase space. However, Kirchgraber (1986) showed that to every consistent strictly stable multistep method one can associate a so-called underlying one- 

step method which has the same long-time dynamics. In this sense it is natural to call the multistep method symplectic and symmetric if the underlying one-step method has these properties respectively. In our experiments we used a method of order eight which is analyzed in the monograph of Hairer et al. (2006), Chap.XV.The third method is the so-called Störmer/Vériét method. This method has the following properties: it is of order two, it is symmetric and symplectic, it exactly conserves quadratic first integrals, e.g., the angular momentum in N-body problems and, unlike the methods above, fór separable Hamiltonians, it is explicit. As fór long time computations in astronomy, where a very high accuracy is demanded, the order two of this method is too low, we will use in our experiments the composed of the method up to order ten. The method is almost exhaustively examined in Hairer et al. (2003).In order to quantify the importance of round-off errors in long term behavior of Störmer/Vériét method we reported in our paper (Gheorghiu and Muresan, 2006) the following result.
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Fór the second order system
í Q-P,1 p = f(q),the Störmer/Verlet method readsQn+l = Qn + h (pn + (qn)) ,

Pn+l =Pn + (Sn) + f (?n+l)) , n = 0, 1,2,...Consider two sequences (pn,gn) and {pn,Qn) defined respectively by (3) and a similar system perturbed by £^, i = 1,2 where < e, e being the ma- chine rounding-off constant, i.e., e = 10~16. Suppose that the vector tieid f is Lipschitzian of constant L and introduce the notations an := ||gn — Qn|| and 
fin := ÜPn - Pnll • Then our result readsmax(an+1,/?n+1) << ^1 + \J L A (^)2^ • [max (a0> A)) + (n + l).max (1,1 + e] eTA, n = 0,1,2,...,where A = A \J L A (^)2 and T is the length of integration interval. This result improves that classical of P. Henrid (1962), p. 332, which refers to a larger eláss of multistep method fór the above system, bút contains the power 
T2 instead of T in the above estimation. This gain was possible due to the fact that we analyzed the method as a one-step method.
3 Numerical experiméntsThe Hamiltonian system (1) was solved comparatively by using the above men- tioned numerical methods. Fór the mass of each plánét and initial data we used the values from the paper of Quinn et al. (1991), Appendix A. The period of integration was mildly large, up to 2 x 106 days, and h = 10 days.As numerical codes we used the MATLAB codes from (Hairer, E. and Hairer, M.). They effectively implement the so-called compensated summation (see fór instance (Higham, 1993) fór this concept) in order to reduce the round-off errors. The oscillations of the Hamiltonian of the outer Solar system (N = 5), as well as its power speetrum, are depicted in Fig. 1. The maximai error in computing the Hamiltonian was equal to 1.4456361257225933e - 01. The oscillations of
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Figure 1: The variations of the Hamiltonian of the outer Solar system (N = 5)

the Hamiltonian of the reduced outer Solar system (N — 4), as well as its power spectrum, are depicted in Fig. 2. The oscillations of the indívidual Hamiltonians of these four planets (from Jupiter to Neptune) follow closely (remain in the same limits) the oscillations of this system. It is important to observe that in this case the maximai error was better, i.e., equal to 3.947533392243384c — 02. The worst approximation fór Hamiltonian was encountered fór the plánét Plútó.
Comparing these two pictures it is a matter of evidence that the presence of the smallest plánét in the model, worsen considerable the conservation of the Hamiltonian. It is alsó worth noting at this point that variations of mass of plánét Plútó from l/1.3e + 08 to l/(3e + 07) have no effect on the numerical results. Another important remark refers to the length of the interval of compu­tation. We performed the experiments on various intervals ranging from 2 x 104 to 2 x 106 days. In spite of this quite large scale, no variation of the maximai error in the evaluation of Hamiltonian was noticed.
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Figure 2: The variations of the Hamiltonian of the outer Solar system (N = 4)

4 Concluding remarksThe numerical experiments reported above, as well as a lót of others performed on perturbed Kepler’s problem (Schwarzchild potential) or Kepler problem with large eccentricity, i.e. eccentricity = 0.9, confirm the net superiority of high order symplectic and symmetric methods over even higher order, bút non sym- plectic methods such as Runge-Kutta and multistep methods.The preservation of the totál energy still remains an open problem. However it is quite clear that the increasing of order of symplectic and symmetric methods is only a partial solution. It seems that much more sophisticated techniques are needed in order to reduce the numerical nőise.
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ABOUT THE EfFICIENCY OF FÁST
Lyapunov Indicator Surfaces and 
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Abstract
Chaos detection methods based on calculation of Fást Lyapunov Indicator (FLI) and 
Small Alignment Index (SÁLI) are known as fást methods. The celerity of these meth­
ods can be improved by the application of a fást and precise, numerical integration 
method like the conservative integration one. With an integrátor, based on the conser- 
vative integration algorithm, I constructed SÁLI and FLI surfaces, to identify chaotic 
and non-chaotic zones near equilibrium points, and I compared the efhciency of these 
two chaos-detection methods. Accepting the SÁLI value as sample, I was interested 
in finding the value of FLI in the moment of apparition of chaos.
Keywords: Chaos detection, small alignment index, fást Lyapunov indicator, conser­

vative integration, restricted problem of three bodies

1 The conservative integrátorThe conservative integration method was introduced by Shadwick, Bowman and Morrison (Bowman et al. 1997, Shadwick et al. 1999, 2001). These authors argued that a faithful evolution of the dynami'cs is provided by building explicitly the knowledge of the analytical structure of the equations, fór example preserving the known first integrals of the motion. They illustrated the method 
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applied to a three-wave truncation of the Euler equations, the Lotka-Volterra problem and the Kepler problem. Kotovych et al. (2002) extended the method to the equations of motion of n bodies in space: to circular restricted three- body problem, then to the generál three-body problem and finally to the full n-body case. The equations describing the motion of the solar system form a conservative system: one should consider that in absence of friction no energy is lost, so the whole energy and the angular momentum are conserved. The description of the conservative integration method as it follows is based on the description presented in Froschlé et al. 1997b.The basis of a conservative integration method is that the dependent vari- ables are transformed in a new space where the energy and other conserved quantities are linear functions of the transformed variables. Then a classical integration algorithm is applied. The new calculated values are retransformed. This transformation is motivated by the following lemma
Lemma 1 Let x and c be vectors in Rn. If f : Rn+1 -> has values orthogonal to c, so that I = c • x is a linear invariant of the first-order differential equation = f(x, t), then each stage of the explicit m-stage discretization

j-i

Xj = x0 + T^bjkf{xk,t + ajr') j = (1)
k-0alsó conserves I, where r is the time step and aj, bjk e R (5).A conservative integration algorithm is constructed by writing any conven- tional integration algorithm of the form (1), with known specific values of aj and 

bjk, in a transformed space. Consider fór example the second order predictor- corrector scheme fór the system of ordinary differential equations = f(x, t),
x = x0 + Tf(x0,t), (2a)

x(t + t) = Xo + ~[f(xo, í) + f(x, t + r)]. (2b)zIn the conservative predictor-corrector algorithm one seeks a transformation £ = T(x) of the dependent variable x such that the quantities to be conserved can be expressed as linear function of the new variables. Then keeping (2b) as the predictor, in the transformed space one applies the corrector
+ t) = £0 + J[T'(xo)f(xo), t) + T'(xf(x, t + r)]where £o = T(xo) and T' is the derivative of T. The new value of x is obtained by the inverse transformation, x(t + r) = T-1(((t + r)).
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2 The restricted problem of three bodies (RPTB)The restricted problem of three bodies can be defined as follows:

Two bodies (of masses mi and m?) revolve around their center of mass in 
circular orbits under the influence of their mutual gravitational attraction and a 
third body (m^, attracted by the previous two bút nőt influencing their motion) 
moves in the pláne defined by the two revolving bodies. The restricted problem 
of three bodies is to describe the motion of this third body (Szebehely, 1967).The Hamiltonian of the system is given by:1 o Ox 1/9 2\ M M
where:

n = \/(x - p)2 +y2,

, r2 = + 1 - M)2 + y2>
mi 

p =------------- -
?ni + 7712Using canonical variables

qi = x, q2 = y, Pl = x - y, P2 = y + x,the Hamiltonian becomes:1 „ „ 1 — p p
H = M+pÜ +PW2 ~P2qi - —------ —,

Z ' 1 ’ 2and the equations of motion are:
dH . dH . dH . dH

qi ~ d^2 ~ dp2'Pl ~ dqi’P2 dq2'so the Hamiltonian of the system can be rewritten as follows:
In conservative integration this expression of Hamiltonian is transformed in a linear function and integrated as it is described above.Observing figure 1 one can conclude the importance of the precision of calcu- lations. The left panel shows us a relatively precise integration and an irregular
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Figure 1: The trajectory of an infinitesimal body in the Sun-Jupiter system.
Left: The initial value of Jacobi constant is 0=3.00107500556531351 the final value 
is 0=3.0010750055653078. Integration time: 1461 Earth-years. Integrátor: Adams - 
Moulton multistep integrátor.
Right: The initial and final value of Jacobi constant is the same
0=3.00107500556531351 Integration time: 9550 Earth-years. Integrátor: con- 
servative integrátor.

trajectory. After applying the conservative integrátor to the same problem, it can be noticed that, nőt even after 9000 Earth-years the infinitesimal body leaves the system (right panel). So, in this case nőt the chaos is the cause of the apparition of irregularities bút the imprecise calculus. It is evident the necessity of a highly precise integrátor in orbit calculus and determination.The regions where the motion of the massless partiele is possible are the 
Hill-regions. These regions are bounded by the zero velocity surfaces of equation 2Q = C, where

Q = |(z2 +y2) + LJÍ + £ + ^±1 2 rí r2 2

The shape of the Hill-regions depends on the values of constant C, which is the 
Jacobi constant. The system of primaries is characterized by five critical values 
Ci = 2íl(£i) í = 1,..., 5 where Lt are the Lagrange-points. Fór these constants we have 3 = C4 = C5 < C3 < Ci < C - 2 < 4,25. (Szebehely, 1967).
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3 Owerview of terms being used
Stable orbits; There are two types of stability, a weaker and a stronger one:

• Marginal stability; Every orbit starting in the neighbourhood of a specified orbit will remain in its neighbourhood at the same distance.
• Asymptotic stability; Every orbit starting in the neighbourhood of a spec­ified orbit will approach the specified orbit asymptotically.
Unstable orbits; Every orbit starting in the neighbourhood of a specified orbit will leave its neighbourhood exponentially.
Periodic orbits; Orbits with periodic motions that contain one or more fre- quencies that are rationally related (resonance).
Quasi-periodic orbits; Orbits with periodic motions that contain at least two incommensurable frequencies (the ratio of the frequencies is an irrational number).
Aperiodic orbits; Orbits whose motion cannot be described as a sum of periodic motions.
Regular orbits; An orbit contained in n spatial dimensions can be decom- posed intő n independent periodic motions. The regular orbit can be described as a path on an invariant n-dimensional torus.
Irregular orbits; Orbits that cannot be decomposed intő independent peri­odic motions: they can move anywhere energetically permitted.
Devaney’s definition of Chaos (Devaney, 1987). Let (x, d) be a metric space. A function f : x x is called chaotic if and only if it satisfies the following three conditions:(Dl) : f is topological transitive, that is, fór any two sets U and V, there exists 

k, k > 1 such fW(U) O V / 0, where fW = o f.(D2) : The set of periodic points of f is dense. A point x is called periodic if /W(x) = x fór somé k > 1(D3) : fhas sensitive dependence on initial conditions, that is, 5 J > □ such that fór any open set U and fór any point x 6 U, there exist a point y G U, such that d^k\x), f^ty)) > 5 for somé k. The positive number ö is called sensitivity constant; it only depends on the space x and the function f.
Chaotic orbit; - A chaotic orbit is unstable.- A chaotic orbit is aperiodic.
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4 The fást Lyapunov indicator (FLI)Consider the flow: x = F{x{t)), x G Rn and t G R and v =
Froeschlé et al. (1997a) used the value of lóg ||v(í)|| at a given time T to dis- criminate between regular and chaotic motion, even a slow chaotic one. This was the first definition of the Fást Lyapunov Indicator (FLI). Another definition of the FLI was introduced in (Froeschlé and Lega, 2000) by averaging the values lóg llvWII in the interval [T — At, T], Froeschlé and Lega (2001) introduced a third definition of the FLI by considering:FLZ(x(0),v(0),T) = sup log||v(fc)||.

0<k<TFór chaotic orbit the FLI shows an exponential increase with time. In the case of a regular non-resonant orbit the FLI grows linearly with time. As it is shown in (Froeschlé et al. 1997a), the weak chaotic motion is quickly detected by the exponential increase of the FLI. Fór a periodic orbit, the FLI becomes constant after a while {Froeschlé and Lega, 2001).In other words, given a n-dimensional flow defined by 
we are looking at the evolution of a vector v which is given by the tangent flow, defined by

~ = Df(x)v, 
atwhere Df is the mátrix of the variation of the flow given by the velocity fieldf, i.e.: [Df]i7- = —We integrate the above system of equations starting with 

OXjinitial conditions xo and v0. Thus, the evolution of v is given by v(t) = J(í)vq. Here J{t) is the n x n Jacobian mátrix, given by5 = Df(x)J'The Lyapunov indicator is based on the computation of the dynamical variable </>(í;xo) = lóg ||v(t';x0)||, where v(í';x0) is a tangent vector of the flow at time t (Shchekinova et al. 2004).
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5 The small alignment index (SÁLI)Let us consider the 2n-dimensional phase space of a conservative dynamical system, described by a symplectic map T or a Hamiltonian system defined by the n degrees of freedom Hamiltonian function H. The time evolution of an orbit with initial condition P(0) = (xx(0), x2(0),... ar2n(0)) is defined by the repeated applications of the map T or by the solution of Hamilton’s equations of motion. The time evolution of the deviation vector £(0) = (dzi(0),dz2(0),... ,dxn(0)) is given by the equations of the tangent map:

í dT \ 
^N + 1) = \ÖP(N))fór maps and by the variational equations

j é' = dh e',for.flows, where (’) denotes the transpose mátrix, and matrices J and DH are defined by
d2H

DHij = a a with i,j = 1,2,...,2n, 
J OXiOXjIn being the n x n identity mátrix and 0n the n x n mátrix with all its elements equal to zero. In order to define SÁLI fór the orbit with initial conditions T’(O) we follow the time evolution of two initial deviation vectors £i(0) and f2(0). After every time step we normalize each vector to 1 and define the parallel alignment index

and the antiparallel alignment index
d+(t) m&w+6(011,where (|| • ||) denotes the Euclidean norm of a vector. The smaller alignment index SÁLI is given by (Skokos, 2001 and Skokos et al. 2003)SÁLI = min(d_(í),d+(0).From the above definitions we can conclude that when two vectors fi(t) and £2 (0 tend to coincide we get—"+ d+(0 -> 2, SÁLI —> 0



228 B. Kovács

while when they tend to become opposite we get
d-W 2, d+(t) -» 0, SÁLI -> 0

Therefore, it is evident that SÁLI is a quantity, that clearly informs us if the two deviation vectors tend to have the same direction by coinciding or becoming opposite. In a system of 2n-dimensional phase space, with n > 2, the two vectors tend to coincide or become opposite fór chaotic orbits. If the tested orbit is ordered, the SÁLI does nőt tend to zero, bút its values fluctuates around a positive value (Skokos et al. 2003, Voglis et al. 1999).

Figure 2: Variation of FLI (first picture) and SÁLI (second picture) fór a chaotic
orbit in the Earth-Moon massless body system, C = 3.00010914683260
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6 Results

The Hill-region in vicinity of the lagrangean point Li i = 1,... ,4, was repre- sented by an 100 x 100 mátrix. A massless body was launched from every point of the mátrix, and the trajectory was calculated numerically with the conserva- tive integrátor. The initial conditions, in fact yo, was calculated fór the given 
Jacobi constant, using the i2 + y2 = 2íl(x,y) - C expression of Jacobi integrál, as íq was considered zero fór every starting point. The numerical integration lasted t = 100 time units/point. After every integration step FLI and SÁLI were calculated. If the value of log(SALI) decreased to 10 8 or less, the inte­gration was stopped, and FLI and SÁLI values were registered. These values represented the basis of the FLI and SÁLI surfaces. It is important to remark that the value of Jacobi constant, was constant to the precision of the calculator as well the value of the Hamiltonian.

Figure 3: SÁLI (lejt) and FLI (right) sections near Ll, it the Earth-Moon infinites- 
imal body system, C = 3.184164148174713080

On figure 3, 6, and 7 the complete black parts of the SÁLI and FLI regions are surfaces with 2Q — C < 0. The motion of the infinitesimal body is nőt possible in these forbidden regions (Szebehely, 1967). The Jacobian integrál allows the establishment of well-defined regions in the pláne, where motion with given initial conditions may take piacé. It is obvious that the left-hand side of the Jacobi integrál is always positive.



230 B. Kovács

Figure 4: SÁLI (left) and FLI (right) sections near L3, it the Earth-Moon infinites- 
imal body system, C =3.024150262881448730080
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Figure 5: SÁLI (left) and FLI (right) sections near L4, it the Earth-Moon infinites- 
imal body system, C =3.00010914683260
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Figure 6: SÁLI (left) and FLI (right) section near Ll, Sun-Jupiter infinitesimal body 
system, C =3.706796224 087156590

Figure 7' SÁLI (left) and FLI (right) section near L2, Sun Jupiter infinitesimal body 
system, C =3-039713803336780980
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Figure 8: SÁLI (left) and FLI (right) section near L3, Sun-Jupiter infinitesimal body 
system, C = 3.001906821795273570

Figure 9: SÁLI (left) and FLI (right) section near L4, Sun-Jupiter infinitesimal body 
system, C =3.000000681648089080
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7 ConclusionsObserving figures 3—9 one can conclude that SÁLI and FLI surfaces have the same shape and it is obvious that FLI and SÁLI indicate in a similar way the ap- parence of chaos in the movement of the infinitesimal body. The chaotic portion existing in the SÁLI surface appears in the same shape and same position in the FLI surface. A question rises: on apparition of chaos, when log(SALI)< 10 8, what is the value of FLI? Figures 10...13 are to respond to this question.

Figure 10: SÁLI values on the apparition of chaos. Earth - Moon infinitesimal body 
system.
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Figure 11: FLI values on the apparition of chaos. Earth - Moon infinitesimal body
system.The average value of FLI on figure 11 is 2.485473954, the minimál value of the FLI is 1.053644271 and the maximai value is 3.998231636.The average value of FLI on figure 12 is 1.604314857, the minimál value of the FLI is 0.700365626 and the maximai value is 2.757631229.
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Figure 12; SÁLI values on the apparítion of chaos. Sun - Jupiter infinitesimal body 
system.

2.5

Figure 13: FLI values on the apparítion of chaos. Sun - Jupiter infinitesimal body 
system.
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One can notice that, from case to case the FLI-based chaos detection method or the SALI-based chaos detection method was more effective. It happened, that the FLI-based method indicated chaos before the SALI-based one, see figure 2. The reverse is true as well: on figure 7 (left panel), one can observe a white ”stable-ring” and again a ”stable-triangle”, detected by SALI-based method, and ignored by FLI-based one (fig. 7, right panel).
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Abstract
The ballistic capture is the phenomenon, where a massless partiele changes its Kepler- 
energy around one of the primaries from positive to negative (Belbruno (2004)). Bel- 
bruno used the time as measure of the capture. In this paper we study the phenomenon 
of capture by using the variation of the polar angle of the relatíve position vector of 
the small body around the capturing plánét. We defined the capture effect of the 
plánét to the captured body, as the variation of this polar angle during the capture. 
Several zones are determined around the capturing body, in which, fór a given velocity, 
the capture take piacé. These regions are called capture domains. In this paper we 
show that the capture domain is a subset of scattering region and chaos in the capture 
domain is transient.
Keywords: Ballistic capture, capture effect, capture domain, scattering region

1 IntroductionCapture of small bodies by major planets is an interesting phenomenon in plan- etary system, with applications to the study of comets, asteroids, irregular satel- lites of the giant planets (Astakhov et al., 2004) and different type of low energy lunar transfers (Belbruno, 2004). This phenomenon can be studied by using 

ia.siculorm.ro


238 Z. Makó

different methods. Many authors studied this problern introducing different concepts of capture, like weak capture (Belbruno, 1999); (Belbruno and Mars- den, 1997), ternporary capture (Brunini, 1996), longest capture (Winter and Vieira, 2001), resonant capture (Yu and Tremaine, 2001), ballistic capture (Bel­bruno, 2004), etc. The ternporary, longest and resonant captures are geometric notions and requires that the motion of massless partiele is bounded around a primary body. Ballistic capture is analytically defined fór the n-body problem (Belbruno, 2004).The ballistic capture is the phenomenon, where a partiele changes its Kepler- energy {1) 2 rpwith respect to a primary body, from positive to negative. The region where this capture can occur in the phase space is called the weak stability boundary. Ballistic capture occuring on the weak stability boundary is called weak capture.

2 The capture effectIn all enumerated studies the time is used as measure of the capture. In this paper we try to study the phenomenon of capture by using the variation of the angle of the small body around the capturing plánét. We introduce the capture effect A<p of the plánét to the captured body, as:
Definition 1 The capture effect of the plánét P2 to the captured body P3 
is the totál variation of the angle at centre during the capture, as long as the 
Kepler-energy

Kp ~ k2
3 2 ||P2P3|| (2)

of the small body relatíve to the plánét P2 is negative, where Vp3 is the velocity 
squared of P3 related to P2, mp2 is the mass of plánét P2, HP2P3II is the distance 
between bodies P2 and P$ and k is the Gaussian constant of the gravity. The 
begining point of the capture is P® where the Kepler-energy of the captured body, 
relatíve to the capturing body P2, becomes negative. The end of capture is in the 
point P$ where the Kepler-energy becomes positive (see Figure 1).Let be the beginning and te the end moment of the capture. We assume that tb — íq < ti < ... < tn = te is a small partition of the interval te], such
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that in each subinterval the = <pi+1 is monotone. The captureeffect of P2 to P3 with initial conditions (xo, yo, ^0, ^0, yo, ^0) is
n— 1

&<p(xo,yo,zo,xo,yo,zo) = l^í+i “ Vi\, (3)
i=0where (pi = ip (ti). The capture effect gives the totál variation of the angle at centre of P3 during the capture.The capture effect can be determined by using numerical integrators of the n-body problem. Our algorithm has the following steps:1. The position and velocity of the small body P^ are determined at the time 

to.2. The position and velocity of the capturing plánét P2 and all considered bodies in n-body problem are determined at the time to-3. Using these initial conditions the equations of motion of P3 are numerically integrated. The Kepler-energy of P3 relative to the capturing plánét is evaluated at each step, with the forrnia (2).
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Figure 2: Stable and unstable motion

4. The variation of the angle A<^ is summed, from the beginning to the end of the capture.
Definition 2 The capture domain of effect a > 0 is the following set of initial 
conditions

Sa = < (xo,yo,zo,xo,yo,zo} : Ay> (xo,yo,zo,xo,yo,zo] > a} . (4)This is a region of the phase space from where starting the test body, the ballistic capture is bound to happen.The capture domain can be determined by using numerical methods. Our algorithm has the following steps:1. We consider numerous test particles in a certain region of the phase space with negative or zero Kepler energy relatíve to the capturing plánét P?.2. Equations of motion are numerically integrated, and the Kepler-energy (2) relative to the capturing plánét is evaluated at each step.3. The variation of the angle A<^ is summed, from the beginning to the end of the capture.4. If the totál variation of the angle Aip is greater than a, then this startingpoint is in the capture domain Sa-
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Figure 3: Weak stability boundary and variation of the capture effect around the
Moon, relatíve to Earth

Belbruno and Marsden (1997) discussed the motion of ten short-period comets strongly perturbed by Jupiter. In their view the motion of a comet about Jupiter is stable, if starting with elliptical initial condition with respect to Jupiter it returns to a reference plán, pssing through its initial condition, without first having moved around the Sun (see Figure 2). It is a difficult un- solved problem to give the necessary conditions of this stability. Our capture domain with capture effect 2% is a subset of that initial conditions, from which arise stable motions.Makó and Szenkovits (2004) proved that fór the reál capture phenomenon analysis the model of circular restricted three-body problem is nőt adequate. Therefore, we studied the variation of capture effect around the Moon, relatíve to Earth, in the Sun-Earth-Moon and small partiele system. The capture effect is calculated by using a fourth order Wisdom-Holman simplectic n-body integrátor (Wisdom and Holman (1991); Wisdorn and Holman (1992)). We study the variaton of capture effect relatíve to Earth by taking 32000 test particles in the orbital pláne of Moon fór 100000 kilometres around. All these test particles have at the initial moment the velocity of the Moon.In the first picture of Figure 3 the black zone is the subset of initial conditions (xo,yo) of the test particles, from which arise stable motions relatíve to Earth, i.e. the angle at centre deseribed by the test partiele around the Earth is greater than 2?r. In this picture the color of a started point is growing dark in the same
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Figure 4: Scattering function

way as grows the measure of the angle at the center described the by test partiele around the Earth. The second picture of Figure 3 illustrate the variation of the capture effect relative to Earth. The grade of darkness increases the same way as the value of the capture effect. The high-grade similarity of these pictures shows the close relation between stable motion and capture effect notions, i.e. the weak stability boundary and capture domain have similar structure.
3 Transient chaosIf the chaotic process has only finite duration, i.e. the complexity and unpre- dictability of the motion can be observed over a finite time interval, then this type of chaos is called transient chaos (Tel and Gruiz, 2005).The chaos in capture phenomenon is transient since, generally the ballistic capture is temporary and, after somé time, the Kepler-energy changes back to positive and the massless partiele leaves the neighborhood of the primary.
Definition 3 The scattering function is

S&b,\\P2P3\\) = <p, (5)
where <pb — is the angle at centre, HP2P3II is the distance between P2 and 
P3 in the beginning moment of the capture and the output paraméter p is the 
angle of deflection (see figure 4).
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Figure 5: Variation of the capture effect and graph of the scattering function around 
the Moon, relatíve to Earth

Proposition 1 In the planar case, fór a given velocity, between scattering func­
tion and capture effect has the following relation:= △¥’(ll^2F3||cos<p6, mod^rr). (6)
Remark 1 The scattering region B is the domain where the interaction is sig- 
nificant, i.e. where the capture effect is positive or zero. Consequently

Sa C B fór all a > 0. (7)The first picure of Figure 5 illustrate the variation of capture effect around the Moon, relatíve to Earth and, the second picture contains the graph of scat­tering function around the Moon, relatíve to Earth. Inboth of these pictures the dark is growing in the same way as the value of the capture effect △</?, re- spectively as the value of deflection angle <p. The high-grade similarity of these pictures shows the close relation between the scattering region B and graph of scattering function.
Proposition 2 (The generál properties of chaotic scattering) Chaotic 
scattering is the conservative limit of the transient chaos. Inside the scattering 
region it can be found the hyperbolic structure of chaos.
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4 ConclusionsThe introduced capture effect gives a new tool to characterize the phenomenon of capture in a time-independent way. Using this measure and studying the structure of the capture domains we can find new aspects of the complicated phenomenon of capture.The capture shows us a high sensitivity to the variation of the initial condi- tions. Small variations of the initial conditions may cause fundamental changes in the behavior of the captured body. Near a ”long” captured initial condition (with large capture effect) we found initial conditions that lead to non-captured orbits. This is a good evidence of the fact that there are many initial condi­tions in whose neighborhood the property of capture depends chaotically on the initial conditions.Chaos in capture domain is transient since the capture domain is a subset of scattering region and the capture effect satisfy the relation (6).Using a modified fönn of the capture effect, measuring only the one-directional variation of the angle at centre, we can determine those initial conditions, which lead to orbits encircling completely the capturing body. We can measure alsó the number of loops of the captured orbit.Belbruno (2004) showed that the unstable properties of the weak stability boundary can be used to find a different type of low energy transfer to the Moon using ballistic capture. Since the weak stability boundary is a subset of scat­tering region it is possible to elaborate a new methodology fór the construction of low energy transfers fór spacecraft using the scattering region or chapture domain.
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Abstract
The paper presents a computer algebra program dedicated to the synthesis and gener- 
ation of numerical code fór the integration of the n-body problem using an arbitrary 
precision arithmetic library. The program is able to apply several numerical methods 
specified in the high level programming language of the computer algebra system and 
to generate efficient low level code. The library is tested in the numerical integration 
of the generál n-body problem starting with the initial conditions where the equal 
mass bodies having equal velocities are placed at the vertices and in the center of a 
regular polygon. In this case the problem has analytical solution bút proves to be 
hard to integrate numerically in standard double precision due to the instability of the 
symmetric configuration.
Keywords: n-body problem, numerical methods, computer algebra, stability

1 IntroductionThe polygonal n-body problem is a particular case of the generál n-body prob­lem, where n - 1 bodies of equal mass m are placed in the vertices of an n - 1 
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regular polygon and one body of mass M is placed in the center of the circum- scribed circle. If the initial velocities of the n - 1 bodies make the same angle to the radius from the center and have equal magnitude, while the Central body is at rest, the polygonal configuration is preserved during the orbital evolution of the system and the problem has a simple analytical solution.Indeed, due to symmetry, the resultant gravitational forces that act on each body are oriented towards the center of the polygon, thus the motion of each of the polygon bodies is equivalent to a motion in a Central field produced by an equivalent mass m*, that can be easy computed as:
n—2 ,, r m v~1m* = M + :—4 sin i=l n-lFurthermore, if the initial velocities of the bodies are oriented perpendicular to the radius from center and their modules have the value of the circular velocity for the mass m*: _______
/Gmt ucirc — ythe trajectories are circular (figure 1, a) and in a rotating frame all bodies are at rest. If the above conditions are nőt fulfilled the trajectories are conical sections,

Figure 1: Trajectories for the polygonal problem a) circular case, b) elliptical(e.g., ellipses, figure 1, b) bút the polygonal symmetry is kept throughout the evolution of the system.Since in the polygonal configuration the n-body problem has analytical solu­tion, we attempted to use this particular configuration as a test for our generál
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n-body integrátor, i.e., we have fed the polygonal configuration of positions and velocities as initial data to a generál n-body integrátor in order to test its ac- curacy. However, in somé cases our attempt to integrate the system fór longer time intervals has failed systematically, regardless of the numerical method we had used.We have used as a test fór accuracy the level at which the integrátor main- tains the polygonal symmetry after a number of orbital periods. The initial data depends on two parameters: the number of bodies n, and the mass ratio 
M/m. What we have observed is that fór certain ranges of these parameters, the integrátor is unable to keep the polygonal configuration fór more than a few orbital periods. We have used various numerical methods from symplectic methods tailored fór hamiltonian Systems (Yoshida, 1993) to powerful numerical integrators fór generál equations (Hairer et al., 1987) and methods specific to stiff problems (Hairer et al., 1991). The list of methods includes:• explicit and implicit Euler,• leapfrog,• embedded Runge-Kutta Prince-Dormand 8(7),• implicit Runge-Kutta Kuntzmann-Butcher of orders 6 and 8,• backwards differentiation formula,• a symplectic method of order 4 based on generating function (Yoshida, 1993).All these methods failed to keep the symmetry of the polygonal configuration very soon after the start of integration, with very small differences and regardless of the stepsize and other specific parameters such as the stationarity condition fór implicit methods.The explanation fór this failure is given by the fact that the physical system is unstable fór different values of n and small values of M/m ratio. The stability of the polygonal configuration was studied by Elmabsout (Elmabsout, 1987, 1996). All the cases where we experienced difficulties fali in the rangé of linear instability theoretically computed by Elmabsout. Since the physical system is unstable, in the numerical simulation of its orbital evolution errors tend to accumulate and throw rapidly the system from its symmetrical configuration.Although using precise numerical methods may reduce the inherent approx- imation errors, there remains an important source of errors that cannot be dealt 
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with by means of improving the numerical accuracy: roundoff errors. Indeed, in our experience, the only method to increase the number of orbital periods fór which the symmetry is preserved is to increase the numerical precision of the integrátor beyond that of double precision.This paper describes our approach to integrate multiple precision arithmetic in our symbolic code generation program sydna (Zapotinschi, 1999), and its application to the integration of the polygonal n-body problem.
2 Code generation with sydnaSydna is a MuPAD package dedicated to code generation of numerical algo- rithms. Its core libraries are codeg that is able to translate a subset of MuPAD language to C and partéval a library that supports partial evaluation. Usage of sydna consists in implementing numerical algorithms in an abstract fashion, using computer algebra capabilities of MuPAD, then using the partial evalu- ator to instantiate the algorithms on concrete algebraié data and perform all symbolic operations, finally generating C program by translation of the resulted code.The principles of sydna usage can be easily presented by considering a simple example: Newton’s tangent method fór solving a nonlinear equation /(x) = 0. It starts from a ”first guess” solution xo and improves it by the iteration
In this example, the symbolic data is the particular form of the function f, while the symbolic operation is computing the derivative; this operation cannot be directly translated to C (unless a symbolic computation library is used, bút this option falls out of the scope of this paper). Thus, one has tó specify the function /, say sin(x) and sydna will replace its instances and compute its derivative resulting an iteration of the form:sin(xn) Zn+l =xn------- )—<■cos(xn)that now can be translated to C using codeg library.The computations performed by sydna become more complicated when less trivial examples are considered. Fór instance, if the nonlinear equation is re- placed with a set of nonlinear equations, it becomes apparent that sydna has 
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to perform a synthesis of the numerical method and the specific problem. Fór instance, the problem can consist in a set of equations of the form:{/1(Z1,Z2) = 0,/2(xi,x2) = 0}bút it can alsó be an indexed set like:{/i(^) = 0}, i,je{l,...n}or

{fijM =0}, € {l,...n} x {l,...m}where the numbers n and m are nőt statically known, i.e., they will be provided by the user of the generated program. Thus, in the first example, the final code will consist in two iteration formuláé, while in the other two cases loops on the index set should be generated, as well as linear algebra function calls to compute the inverse of the Jacobian mátrix.’ In the case of numerical integration of initial value problems fór Systems of ordinary differential equations, as the n-body problem, the synthesis calculus is more intricate since several numerical methods should be applied to different variants of the problem, each being specified separately. Consider the system of differential equations: axand the simplest Euler method:y(®»+i) = y(x») + (xi+i -xí) f(xí,y(®i))In sydna this method can be specified simply as:fór j in Index(y) doy[i+l] Ej] :=y[i] [j] + (x[i+l]-x[i])*f [j] (x[i] , Seq(y[i]))end_forbút its final implementations will vary depending on actual values of y and f.If fór instance the set of differential equations consists in a fixed number of equations, say two, the Euler method will be implemented by unrolling the fór loop:yl[i+1] :=yl[i]+ (x[i+l]-x[i])*f1(x[i], yl[i], y2[i]);y2[i+l] :=y2Eil+íx[i+l]~x[i] )*f2(x[i] , yl[i], y2[i])
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Typically, in this case, the functions fi and f2 are known statically and thus they can be inlined, i.e., their actual expression can replace the expressions fl(x[i], yl [i]) and f2(xEi] , yl Ei]). In somé cases however, the compu- tation of these functions (or just fór one of them) is too complicated and inlining cannot be performed.Now, if the number of equations is nőt known in advance the implementation of the Euler method will certainly contain a loop:fór j from 1 to n doyEi+1] Ej] :=y[i] Ej]+(xEi+l]-xEi])*f Ej] (x[i], yEi]) end_forLet us complicate things more: consider that the system of differential equations of motion fór the n-body problem in two dimensions, i.e., the set of 4n equations:
=
= Vyj

k=l, k^i ík

= É G^^k -
k=l, k^i íkIf the number of bodies is nőt statically known, an efficient implementation should only partially unroll the fór loop, in fact it should transform it to loop nőt through the equations, bút through the n bodies. Furthermore, the right hand sides of the last two equations are extremely simple and they can be easily inlined, while the first two should be implemented separately:fór j from 1 to n dox[i+l] [j] :=xEi] Ej]+(tEi+l]-tEi])*vxEi] Ej];yEi+1] Ej] :=yEi] Ej] + (tEi+l]-tEi])*vyEi] Ej];vxEi+1] Ej] :=vxEi] Ej] +(tEi+l]-tEi])*fvx(tEi], x[i], yEi], vxEi], vy[i]);vyEi+1] Ej] :=vyEi] Ej] +(tEi+l]-tEi])*fvy(t[i] , xEi], yEi], vx[i] , vy[i]) 

dtdt 
dvXJ 

dt

dvyj 
dt

end_for
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Sydna System is capable of synthesizing efficient code in all these cases, and alsó fór a lót more complicated numerical algorithms, such as Runge-Kutta methods, that are implemented in a generic fashion, i.e., a particular RK method is generated if the corresponding set of RK parameters is provided. All the methods mentioned in the introduction were implemented in this generic fashion.
3 Arbitrary precision arithmeticThere are two ways in which we can make use of arbitrary precision arith­metic (APA): one is to use a computing system that includes in its structure a higher precision arithmetic library, fór instance a symbolic computing environ- ment such as Maple, Mathematica or MuPAD. By altering a global paraméter (Digits in Maple, DIGITS in MuPAD or $MinPrecision and SMaxPrecision in Mathematica) one can simply set the precision of the numerical computa- tions. The main disadvantage of this approach is the fact that a computer algebra system introduces supplemental latencies due to the interpreted natúré ofits programming language and alsó to its inherent inefficiency in handling datastructures.The other method to employ APA is to call functions of an APA library from a compiled program written in a language like C or Fortran. Examples of APA libraries are PARI (http://pari.math.u-bordeaux.fr/), GMP ( Gnu MP, http://swox.com/gmp/), CLN (http://www.ginac.de/CLN/) and many others. The major disadvantage of this approach is the fact that programming using these libraries is very cumbersorne since all arithmetical operators should be replaced to specific library function calls.Our goal is to have both the ease of a computer algebra system and the increased efficiency of the compiled program. In our approach, this is achieved by extending sydna code generátor such that it is able to transform arithmetical operations intő calls to an APA library. Fór our tests we have used GMP with its extension MPFR (http://www.mpfr.org), bút targeting the code generátor to other APA libraries should be quite simple.Basically, what the APA code generátor does is to separate each arithmetical operation in two operands expressions. Fór instancex:=a+b*cshould be decomposed inVl:=b*c;x:=a+V1

http://pari.math.u-bordeaux.fr/
http://swox.com/gmp/
http://www.ginac.de/CLN/
http://www.mpfr.org
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Then, all these operations are translated to MPFR function calls.The example in figure 2 shows the MPFR translation of the expression:
__________ ~ ^2)_________________  

((zi - z2)2 + (3/1 - y2)2)3/2

nptr_init2(fvl, 1024); 
apfr_init2(fv2, 1024); 

mpfr_init2(fv3, 1024); 
mpfr_init2tiv4, 1024); 

apfr_inlt2(fv5, 1024); 
npfrjnit2(fv6, 1024); 
npfr_ínit2(fv7, 1024); 

npfr_init2(fv8, 1024); 
mpfr_init2(fv9, 1024); 
npfriinit2(fvl0. 1024); 
npfr_init2(fvll, 1024); 

npfr_init2(fvl2, 1024);

1024); 
npfr„mii2(fvi4, 1024): 
npfr_sub(fvl. xl, x2, GM?_RNDN); 
mpfrjail(fv2, C, fvl. CM?_RNDN); 
npfr_sub(fv3, xl, x2, GM2..RNDN); 
mpfriset-i(fv4, 2. GW.IWDN); 

mpfr_powCfv5, fv3, fv4. GMPJWN): 
Bipfr„subCfv0, yl, y2, GM?_RNUN); 
mpfr_setJCfv7. 2, GMrjNDN); 
Bpi'r_pow<fv8, fvB, fv7, GMPJNDN); 
npfraddtfvS, fvS. fv8. >W RNDN); 
npfrjset-HfvlO, 3, GWJNDN); 
npfr_s«J.(fvll, 2, GMP_1NPN); 
mpfr_div(fv!2. fvlo, fvll, CMRJWDS); 
npfr_pow(fvl3, fv9, fvl2, 6MP.RNDN); 
mpfr_div(fvl4, fv2, fvl3, GMP_RNDN); 
mpfr_neg(ax, fvl4, GMTJNON); 
npfr..clear(fvl);
rr:r_clear(fv2);

Figure 2: MPFR/GMP translation of the x component of the gravitational accelera- 
tion in the two-body problem (MuPAD output)Before starting the code generation process, a preprocessing step is required to eliminate all floating point operations from statenients, without changing their semantics. Consider the simple loop statement:while xl-x2>tol do end_whileSince the loop continuation test xl-x2>tol contains two arithmetical operations (subtraction and comparison), a new statement that evaluates the difference should be generated and added before each program point from where the test can be reached:
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vl:=xl-x2;while vl>tol dovl:=xl-x2end_while
4 Runtime comparisonAs we have stated above, an increase of the precision of the arithmetic computa- tions will improve the quality of the integration. In particular, it will increase the number of orbital periods (np) for which the polygonal symmetry is maintained by the integrátor. This fact is shown in figure 3 for the leapfrog integrátor.

Figure 3: Number of orbital periods for which the leapfrog scheme keeps the polygonal 
symmetry, depending on precisionWe are mainly interested whether the generated code is faster than the original MuPAD program. Again for the leapfrog method (shown in figure 4), the generated code is several times faster than the original MuPAD code in simple and double precision; however, when the precision increases, and the floating point operations tend to the dominate the computation, the speedup decreases while still remaining significant.It is alsó interesting that our tests performed on the integration of the n-body problem show that setting the computation accuracyof the MPA library such that it provides the same precision as the numerical processor (double precision for instance) make the code up to 100 times slower than the same code that uses
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Figure 4; Runtime dependence on numerical precision fór leapfrog integration, n=4, 
comparison between computer algebra code and generated C/GMP

built-in fioating point numbers, i.e., the arithmetical operations are performed by the numerical processor.
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Abstract
Two very simple and fást methods to separate chaotic from regular orbits fór mappings 
are presented. When computing the Lyapunov Characteristic Indicator very little 
attention has been given to the first part of the computation which was considered as 
a kind of transitory régimé. The methods are based on the computation of the norm of 
the tangent vector and their behaviour in the transitory régimé is used as an indicator 
of the motion. The bi-dimensional standard map is used as model problem.
Keywords: Chaos indicators: LCE, FLI - 2D standard map

1 IntroductionThe numerous experiments conducted in the last decades show that the chaotic behaviour is typical and already occurs in simple bút nonlinear Systems. This finding throws completely new light upon these Systems and the study of chaotic behaviour became of high concern. A major part of the frontline research focuses on the structure of the phase space, therefore the problem to separate ordered and chaotic motion in Systems, which possess only a few degrees of freedom and are described by ordinary differential equations, has become a fundamental task in a wide area of modern research. The phase space of these nonlinear systems can nőt be described by the known mathematical tools. To map the phase space and study the chaotic behaviour of a given system fást and reliable numerical tools are needed. These tools are extremely useful in those cases, 
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when the inspected dynamical system has more than two degrees of freedom and accordingly its phase space can’t be explored in a direct way, or the classical method of surface of section can nőt be applied which is widely used in the case of conservative Systems with two degrees of freedom. The basic idea of the method of surface of section (SoS) was invented by Poincaré (1899) and its application was renewed by Hénon & Heiles (1964).
In the pást decade several research was initiated to develop new numerical methods to characterize the stochasticity of the trajectories in the phase space in short timespan and in arbitrary dimension. The developed methods can be classified in two groups: one group consists of the methods which are based on the analysis of the orbits (e.g. SoS or frequency analysis see Laskar (1990)), the other one is based on the time evolution of the tangent vector i.e. the solution of the linearized equations of motion (e.g. Lyapunov Characteristic Exponents (LCE) see Benettin et al. (1980)). Fór a detailed üst of the methods see Table 1 of Süli (2006).
In this paper two new methods are introduced and compared with the LCE and the Fást Lyapunov Indicator (FLI) (Froeschlé et al., 1997) in the framework of the bi-dimensional standard map. In the literature the above quantities are commonly referred to as chaos indicators. This terminology may be misleading since these quantities indicate nőt only chaotic motion bút alsó regular one. Already in Froeschlé et al. (2000) new terms such as indicators of complexity and methods of analysis have been introduced to replace the inappropriate ter­minology. In the spirit of this effort the motion indicator (MI) is used in this paper. These quantities are inherently connected to the motion itSelf and indi­cate whether the phase trajectory lies in the regular or in the chaotic domain of the phase space. This terminology was already used by Nagy et al. (2006).
The paper is organized as follows. In Section 2 the 2D standard map is described and the initial conditions of the orbits are given. In Section 3 the def- inition of the Mis are given and their behaviour is shortly described. In Section 4 the results, such as the efficiency, the dependence and the confidence of the methods are presented and compared. In Section 5 the results are summarized.
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Figure 1: The phase space of the standard map fór K = 0.3. The vicinity of the 
hyperbolic point (ír, 0) is enlarged to visualise the initial condition of the strongly and 
weakly chaotic orbit.

2 Model and initial conditions

The dynamical system used to demonstrate and compare the methods is the area-preserving bi-dimensional standard or Taylor-Chirikov map, defined by
Xi+i = xí+ yi,

Vi+i = yi- Ksm(xi + yi),
mód 2ir (1)

where K > 0 is the non-linearity paraméter.Throughout the paper the K = 0.3 case is considered. Fór this value of the non-linearity paraméter the complete phase space of the system and the vicinity of the hyperbolic point (tt,0) is depicted in Fig. 1.In this work the new Mis and the LCI and FLI were calculated fór four different kinds of orbits. The initial conditions fór the four orbits of the standard map are listed in Table 1 with their type and appearance on the phase space (see Fig. 1).
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Table 1: Initial conditions of the four different kinds of orbit.(®o, yo) type appearance(0,1.5) (1-0) (3.14,0) (3.1024048,0)
quasi-periodic quasi-periodic strongly chaotic weakly chaotic

invariant curve (rotational torus)invariant (closed) curve (librational torus) clouds of pointsclouds of points
3 New motion indicatorsCuriously little attention has been paid to the study of the behaviour of the LCI and FLI in the first part of their computation. Actually this is considered as a kind of a transitory régimé when the tangent vectors are ”searching” fór the direction of the largest characteristic exponents. A systematic study of the LCI and FLI in the transitory régimé leads to the definition of two new quantities.First let us briefly review the definition of the LCE and the FLI! Given a mapping M from íRn to !Rn, an initial condition fo £ and an initial vector fo 6 R” of norm 1, the definition of the largest LCE (Benettin et al. (1980)):

LCE = Hm Jlogll&ll, X / k-too K (2)and the definition of the FLI (Froeschlé et al. (1997):
FLI = sup ||^(í)||,

where the evolution of the vector & is given by the set of coupled equations
Ek+l 

£k+l

= MSk,- d£ (^)a- (4)
The second equation of Eq. (4) is the first order variational (i.e. linearized) equation.In Fig. 2 the LCI curves go to zero in the case of regular orbits (motion on librational and rotational tori), whereas in the case of chaotic or sticky orbits they converge to positive values. In Fig. 3 the FLI tends to infinity both fór ordered and fór chaotic orbits bút on completely different time scales which allows to classify the orbits. The stopping time was set to 107 iterations. In the
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Figure 2: Variation of LCI with the number of iterations fór four kinds of orbits of
the standard map. The axes are logarithmic.

case of FLI an additional stopping criteria was used: whenever the FLI reached 1020 the computation was stopped.
Inspecting the curves belonging to all four different types of orbit the LCI and FLI curves can be characterized in terms of the number of peaks and of the amplitudes of the fluctuations. From Figs. 2 and 3 it is clear that the curves evolve completely differently fór regular and fór chaotic or sticky orbits. This
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Figure 3: Variation of FLI with the number of iterations fór four kinds of orbits of 
the standard map. The axes are logarithmic.

difference is reflected in the following quantities, defined as:1 n0SCn = “ 52(5) 
n k=0
nNLEn = Number of Local Extrema, (6)

k-0where n is the number of iterations, the MI can be either the LCI or the FLI, and the local maximum and minimum are based on three consecutive points of the MI curve.
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4 ResultsIn the following the calculation of the OSC and the NLE was based on the time evolution of the norm of the tanget vector £o (practically the evolution of the norm of the tangent vector in time is nothing else bút the FLI). The stopping time was set to 107 iterations and an additional stopping criteria was used: whenever the norm of £ reached 1020 the computation was stopped. From Fig. 4 where the above defined new Mis are plotted, the efficiency1 can be established. In the case of OSC (left panel) after 10 iterations the regular and chaotic motion are already well separated, moreover the OSC allows alsó to distinguish among ordered motions of different origin. It must be emphasized that the curves of the strongly chaotic and sticky orbits almost coincide with each other, allowing to correctly characterize alsó the sticky orbits in very short time. In order to achieve correct classification using the LCI or the FLI one has to continue the computations fór a much longer time (see Fig. 2 and 3). In the case of LCI and FLI the indicator corresponding to the weakly chaotic orbit follows exactly the curve belonging to the strongly chaotic orbit fór the first 10 iterations. Afterwards the weakly chaotic curve essentially follows the curves corresponding to the ordered orbits fór approximately 106 iterations. Using LCI the classification is only possible after approximately somé 106 iterations, when the curve has a turning point, and its slope becomes zero. The FLI needs approximately 106 iterations fór the assignment. Inspecting Fig. 4 it can be seen that after 103 all curves reach their maximum value. Fór the latter computations this number of iterations can be used as the stopping time.On the right panel of Fig. 4 the NLE is plotted fór the same set of orbits. The classification of the orbits is possible after several 10 iterations. Again it is remarkable that the sticky orbits can be detected as soon as the strongly chaotic ones and in addition the NLE definitely discriminates between motion on librational and rotational tori.Figs. 2 and 3 show the efficiency of LCI and FLI. Between 1 and 102 itera­tions neither the LCI nor the FLI is capable to establish the type of the orbit: both curves are overlapping each other inhibiting the classification. Inspecting the LCI panel of Fig. 2 it is evident that after 103 the chaotic and regular curve are well separated. In the case of the FLI the separation is possible after 102 iterations.It is only natural to expect_that the methods axe sensitive to the initial direction of the tangent vector £0. To test the dependence of the Mis on the 

xThe efficiency or speed is measured by the minimum number of iterations needed to 
establish with certainty the natúré of an orbit.
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Figure 4: Variation of OSC and NLE with the number of iterations fór four kinds 
of orbits of the standard map. The x-axis is logarithmic, the y-axis is linear fór OSC 
and logarithmic fór NLE

direction of the tangent vector, is rotated by $ e [0,360°] with stepsize 0°.5, and the Mis are calculated. The result is presented in Fig. 5 in which the values of the Mis are plotted against the angle 0, fór the different kinds of orbits and fór different numbers of iterations. The 0 is the angle between and the x-axis. The calculations were performed fór N = 102 - 105 iterations depending on the MI. From Fig. 5 it is obvious that the LCI and the FLI values are far from being constant when varying the angle 0. This is nőt the case with the OSC or the NLE methods: nőne of them shows any significant variations with 0.In order to measure the dependence of the methods on the direction of the tangent vector(s) the following quantity is introduced: 
△mi — log10 max(MI) min(MI) (7)

which measures the order of magnitudes of the dependence (it vanishes fór those methods which are completely independent of £Ó). The results are listed in Table 2 fór different number of iterations (in the case of LCI fór 102 iterations no calculation was done since it is insufficient, as it was explained above, whereas 104 and 105 are too many fór OSC and NLE). Table 2 contains alsó the value of where the Mis reached their maximum and minimum.It can be seen that Ami decreases as N increases except fór the FLI where
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Figure 5: Variation of the Mis as a function of the initial direction of the tangent 
vector(s). Upper left the LCI, upper right the FLI is plotted fór three different numbers 
of iteration. In the lower left panel the OSC, in the right the NLE is plotted fór two 
different nurnbers of iteration.

it stays constant around 0.15. Clearly the new methods have the smallest de- pendence with almost the same values (see the 5th and 6íh columns), and the LCI has the largest one. The consequences will be very well demonstrated in the confidence test in Fig. 7.The LCI is periodic with 180° since this method is based on one tangent vector, while the FLI is periodic with 90°, because it is based on two tangent vectors which are initially perpendicular to each other. In Fig. 5 a sharp minimum of the LCI curve is visible at 0 = 118° and its maximum is at 0 = 28° (see alsó Table 2). From Fig. 6 it can be seen that if the tangent vector is perpendicular to the local tangent of the orbit (i.e. 0 = 28°) then the LCI(0) function takes its maximum value. If £o is parallel with the local tangent of the orbit (i.e. $ = 118°) then the LCI(0) function takes its minimum value. This follows because in the direction along the flow, £0 grows only linearly with time. Similar behaviour can be observed fór the FLI, bút naturally such relationship does nőt exist in the case of the new Mis.
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Table 2: Dependence of the Mis fór a regular orbit on a librational torus (x = l,y = 
0/ (ne stands fór no computation was done and NaN fór nőt a number (because the 
min(LCI) is negative).

N LCI FLI OSC NLE△mi 102 ne ne 0.0266 0.028△mi 103 NaN 0.15 0.00264 0.00266△mi 104 1.15 0.15 ne ne△mi 105 0.64 0.15 ne ne
^min 118° (118°) 73° (163°) — —
^max 28° (208°) 28° (118°) - -180° 90° - -

Figure 6: Regular orbit (librational torus) of the standard map with initial conditions 
(1,0) and the local tangent and normál of the orbit (see text fór details).

To determine the Mis confidence the MI values fór a set of 1001 x 1001 initial conditions regularly spaced on the (x, y)-plane in the region [0, rr] x [0,7r] was computed. According to the previous results the values of the LCI and FLI
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depend on the direction of £o and therefore it is important to take the same & fór the whole set of orbits in order to be able to compare their dynamical character. Fig. 7 shows the two dimensional MI map, that is the yalue of LCI, FLI, OSC and NLE after 103 iterations on the (íc, y)-pláne; the £o was always set in the direction of the ;r-axis.

Figure 7: Values of the Mis on the (x,y)-plane after 103 iterations. The tangent 
vectors were £io = (1, 0) an^ €20 = (0,1). The colour code fór the values are given on 
the right of each panel.The most striking feature in Fig. 7 is the structure that appears on the
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LCI map bút absent ón the other maps. This structure is like a thick line that connects the [tt, 0] and the [tt/2, %] points. Along this line the values of the LCI are significantly smaller than for the adjacent points. The advantage of our siniple inodel is now undeniable: this structure is nőt reál bút an artifact of the inethod LCI. Apart from this significant difference, the maps are in excellent agreement with Fig. 1. Islands are distinct from tori and the chaotic zone i.e. the separatricies between them are well visible.In order to get rid of the unreal structure several changes were made in the parameters of the computations: greater iteration number (104) and different initial tanget vectors were used to compute the 2D maps. Increasing the number of iterations by a factor of 10 reduced the size of the false structure bút it did nőt disappear as it is visible from the upper left panel of Fig. 8. After considering Fig. 5 (upper left panel), where alsó the dependence on the iteration number is presented this is what one expected: the dependence decreases bút does nőt vanish. An adequate choice of the tangent vector £o = (0,1) résülted in a perfect 2D map for the LCI as shown in the upper right panel of Fig. 8. To demonstrate the independency of the new methods on the tangent vector both of them were recalculated on the above defined grid with £Ó = (0,1). The two lower graphs of Fig. 8 show the results.
5 SummaryIn this article we introduced two fást, efficient and easy to compute quantities in order to check if orbits of 2D area-preserving map are ordered or chaotic: the computation of the oscillation (CSC) and the number of local extrema (NLE) of the time evolution of the norm of the tangent vector. We follow the evolution in time of an orbit and the tangent vector. At each time step we compute the norm of the tangent vector and at the same time the OSC and thé NLE is alsó determined. It was shown that these quantities are different for chaotic and for regulát orbits. The proposed method therefore classifies definitely an orbit as ordered or chaotic. It must be stressed that the classification of weakly chaotic or sticky orbits is just as fást as that of strongly chaotic orbits. Using other methods the detection of sticky orbits takes several order of magnitudes longer time. A further advantage of using OSC or NLE is that they are practically independent of the initial direction of the tangent vector.These methods were compared with other well known methods that are de- veloped to determine the ordered or chaotic natúré of orbits. First the efficiency was tested and it turnéd out the these new methods are faster than the LCI



Motion indicators 269

Figure 8: The tangent vector is £o = (1,0) fór the upper left panel and the map was 
iterated 104 times. The tangent vector is £o = (0,1) fór the upper right panel fór 103 
iterations. Values of the OSC and NLE fór (o = (0,1) are on the lower two panel, 
respectively (N = 103).

and at least as fást as the FLI. In the dependence test the new methods clearly proved to be better than the other two since they practically are independent of the initial direction of the tangent vector.The confidence of the LCI, FLI and the new methods were tested on a large portion of the phase space. The most striking feature in Fig. 7 is the appearance 
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of a false structure on the LCI map. This structure is absent on the FLI, OSC and NLE map. The false structure is the result of the fact that the LCI strongly depends on the initial tangent vector, therefore the increase of the maximum number of iterations did nőt removed it. Using adequate tangent vector this false structure is completely removed and the results are in perfect agreement with the reál phase space structure as a comparison of Fig. 7 with Fig. 1 shows.
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Abstract
This presentation summarizes the evolution of solar researches in Románia during 
these fifty years passed from ÍGY to IHY. New projects are designed fór the new goals 
of IHY Science.
Keywords: Sun, Heliosphere, ÍGY, IHY

1 IntroductionThe International Geophysical Year included comprehensive global geophysical activities during one year and half. In this project were involved more than 70 countries that led to the discovery of the Van Allén radiation belts around planets, the theory of tectonic plates, exploration of outer space, construction of artificial Earth satellites, and increased research in the Arctic and Antarctic Polar Regions. The International Council of Scientific Unions, which functioned as an apolitical, global, scientifically oriented entity, oversaw this International scientific endeavor from July 1957 to December 1958. In the National Academy of Sciences (NAS) of USA, ÍGY Program Report, this 1.5 year program goal was: ”...to observe geophysical phenomena and to secure data from all parts of the world; to conduct this effort on a coordinated basis by fields, and in a space and time, so that results could be collated in a meaningful manner.”

crisdQaira.astro.ro
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The ÍGY advanced our understanding on Earth and atmosphere Sciences and had a significant effect on the future of the Antarctic Continent. Solar researches known an important spring and a new éra of space researches started.The ÍGY idea came from the two previous Polar Years, 1882 - 1883 and 1932 - 1933, where coordinated scientific studies were conducted to understand our planet’s natural processes and cycles.The most significant ÍGY achievements were:• Defining the system of mid-ocean ridges that encircle the globe, furthering our understanding of the Earth’s crust and the theory of Plate Tectonics.• Discovery of the Van Allén Radiation Belts. These belts surround the Earth at altitudes of hundreds and at thousands of kilometers above the surface and are significant to present day electronic Communications.• Collection of synoptic data, a comprehensive overview of global physical phenomena.
2 ÍGY in RomániaThe story begun in 1952, when the International Council of Scientific Unions (ICSU) decided to establish July 1, 1957, to December 31, 1958, as the Interna­tional Geophysical Year (ÍGY) because the scientists forecasted that the solar activity cycle would be at a high point then. The investigations focused on the following areas: aurora and airglow, cosmic rays, geomagnetism, glaciology, gravity, ionospheric physics, longitude and latitude determination, meteorology, oceanography, rocketry, seismology, and solar activity. In addition, a technical panel was set up to attempt to launch an artificial satellite intő orbit around the earth. The International Geophysical Year was proposed by several reasons. The solution to various probléma in Earth science and astrophysics requires data synchronously taken worldwide. Such problems include better predictions of events and natural phenomena. The Sputnik launch opened a new éra of researches and international cooperation.Románián researchers participated at the ÍGY coordinates activities within the frame organized by Soviet Union and Eastern European countries. A Na­tional Committee of Geodesy and Geodynamics, chaired by Academician Ghe- orghe Demetrescu, director of the Bucharest Observatory at that time, was founded in 1956. Professor Cálin Popovici understood the opportunity of the 
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moment and settled up new areas of research at the Bucharest Observatory, under the aegis of the Románián Academy.The systematic solar observations began in Bucharest in 1956, through the setting up of a solar working group in 1955. The solar observations were per- formed at the Prin-Merz double astrograph: two lunettes Bardou were attached on the equatorial montage. One lunette Bardou was used fór the sunspots draw. The other one, equipped with a spectroscope, was used fór the prominence obser­vations. Later, a five meters diameter solar dome was built and the equipment was purchased fór survey the solar photosphere and chromosphere. The Instru­ments of this dome were two refractors on a unique montage: the lunette fór photosphere - a Zeiss equatorial 13/195 cm and the other fór chromosphere - 11/16.60 cm.First results were published in “Analele Universitatii C.I.Partion” in 1956 (Obs.sol., 1956), where the solar rotations 1363-1368 were surveyed between 28 July 1955 and 7 January 1956. Observationes Solaires nr.l - Rotations 1374- 1381, entitled “Bulletin”, containing observations performed between 23 May 1956 and 27 December 1956, was published in 1958, as a lithographed issue. In 1958 a second lithographed volume was issued too (Obs.sol., 1957). These two volumes contain the first Románián observations of solar prominences, where a special spectroscope was used. Starting with 1961 (Obs.sol., 1961) and till 1997, Observationes Solaires, an annual bulletin of photospheric and chromospheric observations performed at Bucharest Observatory, was published in a continuous series under the aegis of the Románián Academy. Observations Solaires was nominated after 1990 fór the awards of the Románián Academy. The last issue was published in 1997 (Obs.sol., 1997), containing the observations performed during the year 1994.Officially, the astrophysics section of the Astronomical Observatory of Ro­mánián Academy exists since 1961, containing three departments: solar physics, stellar photometry and satellites. In a report of Acad. Cálin Popovici, published in 1966 (Popovici, 1966) we found precious Information on the research activity at the Bucharest Observatory. We will focus on the solar researches in this article. The research was focused on the solar patrol of the photosphere and chromosphere in the frame of the International cooperation to survey the solar activity. Many researches are carried out within International collaboration of the Eastern countries and USSR. The oldest collaborations are with Ondrejov Observatory (now in Czech Republic) - from 1960 and Pulkovo Observatory from USSR - from 1963. Special collaborations weré alsó set up with Zürich Observatory in 1957, with Meudon Observatory in 1961, with “Fraunhofer In- stitute” (Freiburg, Germany) in 1961. A long collaboration with the world data 
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centers of the solar activity started in this period: with Moscow Data Center B and Boulder Data Center A (1965).The solar photosphere observations were focused on the sunspots area and positions determination, using photographic records on plates. The relatíve sunspot number was found írom the daily diagram plot. A special attention was paid to the sunspot groups’ evolution. The visual observations of the solar photosphere were communicated regularly to Zürich and were alsó published in “Quarterly Bulletin on Solar Activity”, since 1957. The photographic observa­tions of the photosphere were included in the “Catalogue of the solar activity” of the Pulkovo Observatory (USSR) since 1958.H alpha observations of solar chromosphere started in 1958, with the acqui- sition of a Lyot-Ohman filter. This filter was used with the 11/160 cm refractor until 2004. A new H alpha filter (Solar Spectrum) will start to work this year.Starting with 1958, the chromospheric patrol observations were made daily. Regularly observations of prominences and flares were submitted to the world data centers and were alsó published in our own bulletin Observations Solaires. At the early stage of this survey activity, the records of the Románián observa­tions were alsó sent to:• Daily maps of the Sun, Fraunhofer Institut, Freiburg, Germany, since 1961• Quarterly Bulletin on solar activity, Zürich, UAI, since 1961• Solnechnyie Dannye Bulletin, Pulkovo Observatory, since 1963• Compilations of solar-geophysical data, NBS, Central Rádió Propagation Laboratory, Boulder-Colorado, USA, since 1963• International Geophysical Year - Intermediate Report of Prominences (Fil- aments) Activity, since 1964.The researches were focused mainly on statistics study of various solar and geomagnetic phenomena or to observational topics linked to active regions, prominences and flares (Dumitrache&Popescu , 2005).
3 New topicsAfter 1995 new area of researches was added: numerical MHD simulations. In this context prominences and coronal streamers formations, flares and CME 
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phenomena and coronal holes numerical models were obtained (Dumitrache , 2002).The space new éra opened different approach fór the observational papers: data from the specialized satellites are now interpreted to obtain information on solar phenomena, CME, solar wind or interplanetary magnetic field. The Ro­mánián researchers worked up data from SOHO and TRACE and new projects are at the beginning or in progress with focus on the next solar and heliospheric satellites.The obvious next step is to extend global studies intő the Heliosphere to incorporate the drivers of geophysical change intő the global system - the Inter­national Heliophysical Year. The main goals of IHY program are two folds:• Coordinating somé specific scientific activities (observing campaigns, data sharing, meetings) that require cross-disciplinary studies;• Education of students and large public about the recent progress on these activities through conferences, exhibitions etc.The International Heliophysical Year (IHY) expands the frontier of the ÍGY to the boundary of the heliosphere with a focus on fundamental processes. Five themes are of great interest fór IHY Science:• Evolution and Generation of Magnetic Structures and Transients• Energy Transfer and Coupling Processes• Flows and Circulations• Boundaries and Interfaces• Synoptic Studies of the 3-D Coupled Solar-Planetary-Heliospheric SystemThe Románián scientists have new projects fór the future. Our interest will focus alsó on the interpretations of data provided by specialized satellites launched by ESA and NASA. Our interest goes now to the study of 3D structure of coronal mass ejections or of Heliosphere itself. The co-rotating system from the solar atmosphere and heliosphere alsó represents an important question we wish to investigate, as fór as the magnetic field distribution intő the interplane­tary space. In this order we will consider the heliospheric extension of the solar current sheets and the CME disturbance on the IMF boundaries. We intend to use data from STEREO and others future solar missions (Dumitrache , 2006).
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Our projects cover alsó problems linked to the Heliosphere - Galaxy cou- pling and data provided by Ulysses and Voyager will be used to understand the heliospheric horizons. New challenges wait fór us to iniprove our knowledge on the Sun, solar system and neighborhood. We wish to point out that the solar and heliospheric researches are very important fór the direct impact on the Earth life.
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Abstract
Fór detecting and observing NEOs fór astrometrical purposes, we prepared a special 
observing system. We mean a special equipped instrument and a specific CCD method 
of identifying the object and data acquisition. Our efforts were concentrated on both 
subjects: the topic shows the improvements made to the instrument to the pointing 
device, the observation system CCD camera / accessories and the results obtained. 
Keywords: Astrometry, NEOs

1 Introduction
We define a NEO as an object having a perihelion distance of ~ 1.3 AU. Dynam- 
ical calculations show that lifetime spans fór NEOs are typically a few millión 
years, eventually ending by crashing intő the Sun, being ejected from the so- 
lar system, or impacting a terrestrial world. NEO population must have somé 
source of resupply. Understanding the source and mechanism of their resupply 
is one of the fundamental scientific goals fór NEO studies.

Asteroidal NEOs are traditionally subdivided intő groups based on their 
orbital characteristics a, q, Q (semi-major axis, perihelion distance, aphelion
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Table 1:Major existing NEO Surveys Telescope Diameter (m)Spacewatch 1.8 48054NEAT 1.2 12803LONEOS 0.6 12713LINEAR 1.0 157346
ess 0.4 4309

distance) with respect to Earth’s and are called Ámor, Apollo and Atena as- teroids. Ámor objects are defined as bodies residing just outside the orbit of Earth (a ~ 1 AU), having 1.017 < q < 1.3 AU. Objects having a semi-major axis = 1 AU and q < 1.017 AU are known as Apollos. Relatively equal numbers of Ámor and Apollo asteroids are currently known; combined they account fór ~90% of all currently known NEOs. Atens have orbits substantially inside that of Earth (a < 1 AU, Q > 0.983 AU), and represent about 8% of the known NEO population (short-period comets account fór the remaining 2%).The discovery of the potentially hazardous near-Earth asteroid (NEA) com- ponent of the minor-planet population has been enhanced by better detecting and computing technology. Improved detector and computing technology has stretched the search volume fór 1-km objects to make the NASA goal potentially achievable in the future with the curent smaller aperture telescopes, and dis- cussion is shifting toward extending the inventory to smaller objects that could cause significant régiónál damage. Fór example, a catalog 90% complete to the 300-m size is one of the proposed objectives of the Large-aperture Synoptic Sur- vey Telescop (NRC, 2001) recommended by the recent astronomy decadal study. The Spaceguard report estimates that there are between 12,500 and 50,000 NEA larger than 300 m. Below ~ 100 m, the mass that survives entry through the atmosphere is likely too small to create widespread destruction. Table 1 is a description of main NEO surveys in the last years.
2 Observational programWas based on the detection system CCD camera Apogee AP47P, with the chip that contains 1024 x 1024 square pixels sized at 13 /am. and quantum efficiency
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exceed 90 % at 650 nm. Technical data of instrument System:• Finder with Mintron CCD camera;• Field: 6.08 ± .08 arcmin;• Angular resolution: 0.712 arcsec/pxl in 2 x binning mode.
3 Observational tasks• To solve the problem of magnitudes. On the images we need magnitudes more than 15m, in order to be able by adding the images to obtain 18m — 20m. Finder with Mintron CCD camera;• To solve the problems concerning instrument stability.• High-speed Identification and pointing the observational area.• Accurate finder CCD image means accurate parallelism of optical axes (telescope, finder) and accurate methods of Identification. We used differ- ent catalogues with sufficient number of stars in the area with magnitudes more than 15m and adequate computing methods.• High speed detection of objects Crossing the images.
4 Image processingThe software used fór image reduction and analysis was IRAF, both fór bias, dark and fiat corrections, and fór the astrometric computations. Positions of stellar objects in CCD images are extracted using daofind routine. Catalogs data (USNO B1.0, UCAC2, 2MASS) fór the selected area are obtained using batch mode Scripts from VizieR web service, ccxymatch is used to match stelar positions from catalogs with positions extracted from CCD images by daofind. Finally with the matched star fist from ccxymatch, ccmap compute the plate solution and adds WCS Information to the FITS headers fór each image. Fake matching induced by bright stars near to the image’s edge were rejected by choosing a matching tolerance of 0.5 pixels.
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5 Conclusions• The need of technical support consist in contracts fór improving the In­struments and investments in detection and computing system.• The need to build a reference system referred to the ICRF sources in order to perform the connection of the dynamical reference system (asteriods) and cinematical reference system (ICRF and catalogue stars)• The need of accurate star catalogues and zonal catalogues (aronud ICRF sources), fór provinding better positions of NEOs.
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