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PREFACE

The basic objective of this book is to introduce the reader into the probabilistic and 
statistical model building techniques related to flood problems. 1 he book was written 
in the hope that the relatively simple statistical techniques contained therein will help 
the hydrologist — or the hydrologist student — to identify information contained in 
hydrologic records relevant to flood protection activities.

In order to understand the techniques presented in this book nothing beyond the 
knowledge of elementary calculus is assumed.

In order to make easier the understanding of the statistical methods used in the 
analysis of flood waves the first few chapters of the book summarize the bases of 
probability theory which is illustrated through a number of hydrological, possibly 
flood related, examples.

Subsequent chapters deal with the rather known and conventional statistical meth­
ods but from the point of view of flood hydrology. I herefore, these methods are 
somewhat modified and improved in accordance with the particular features of flood 
computations.

1 he majority of examples is related to the hydrological problems of River I isza, 
Hungary. I his stems, on the one hand, from the particular feature that the catch­
ment system thereof can be handled as an entity and, on the other hand, from her 
importance in the country’s flood protection system. During floods, River 1 isza and 
its tributaries endanger an area of 17600 sq.km that is roughly one fifth of the terri­
tory of Hungary, inhabited by nearly one fourth of our population. 1 he levee system 
of River Tisza is one ofthe most developed flood protection systems in Europe even 
now. The techniques advocated in this book can, however, be applied, perhaps with 
some minor modifications, for any other river system.

1 he statistical analysis of flood waves does not require thc application of just one or 
two particular chapters of probability theory. 1 he analysis will be efficient only if the 
hydrologist possesses a rather broad statistical knowledge and thc methods of statis­
tics arc combined according to thc very nature of the problem. This book tries to 
provide for this task as far as thc limits of its reasonable extent will allow.

'1 he book will achieve its objectives if it inspires thc reader to derive further efficient 
methods beyond those presented therein.

And now a few words about thc structure of the book. Part I, i.e. Chapters 1 to 3, 

9



contain the bases of probability theory. In hydrological applications exactly the 
fundamental bases of the theory play the most important role. Nevertheless, certain 
applications will be demonstrated through a few examples in these chapters, too, 
though they cover only a rather small fraction of the entire area of applications. In 
Chapter 1, when discussing the properties of the Poisson distribution, it is shown 
that the number of floods follow the Poisson rule. (This is justified through a x2-test 
later in Chapter 6.) Whenever it was possible, a simple combinatorial approach was 
used. In this context I want to call the attention of the reader to the fact that combina­
torial techniques play an important role in modern mathematical statistics. Part II, 
Chapters 4 to 6, cover the basic methods of mathematical statistics, illustrated pos­
sibly in connection with flood wave analysis problems. It is shown in these Chapters, 
among others by mathematical statistical techniques, that the number of exceedances 
in a given time interval generally follow Poisson distribution while maximum excee­
dances over a given time period are distributed according to a certain double expo­
nential distribution.

Part III, Chapters 7 and 8, deal with the methods of analysing stochastic relations 
between random variables. This is an important field of practical hydrology and its 
scope is wider than the usual correlation and regression analyses. Some new methods 
which were established recently are introduced in these Chapters. Theory is still 
developing in this field and is far from being ready and complete.

At last I would say thanks to all those who helped to publish this book. First of all 
I wish to express my sincere gratitude to the readers of the book, Dr. Zoltan Szigyartd 
and Dr. Istvan Vincze, for their valuable comments and advices which helped to 
improve the manuscript. Dr. Szigyartd was giving useful advices concerning the 
structure of the book and the applications. Dr. Vincze was providing an assistance 
with respect to the mathematical presentation and to the work as a whole, far beyond 
the duties of a publisher’s reader.

I also extend my thanks to the Publishing House of the Hungarian Academy of 
Sciences, for its efficient help in publishing this book.
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PARTI
FUNDAMENTALS
OF PROBABILITY THEORY





CHAPTER 1

1.1. THE ROLE OF PROBABILITY THEORY LN FLOOD HYDROLOGY

For the interest of flood control, the behaviour of rivers, as reflected by historical 
hydrological sequences, has been in the focal point of reasearch long ago, applying 
probability theory and statistical analysis to hydrologic records. Gauging stations had 
been installed along river banks and water level data were observed on a regular basis. 
Observation data had been, in turn, published in Hydrological Year Books. One of 
the objectives of these observations is to infer the future behaviour of the river in 
question. Ihe water level (stage) of a river at a given location and in a given time 
epoch depends on several factors, which may be considered random events such as 
e.g. the volume of precipitation fallen over a catchment, runoff and temperature 
conditions, stages and discharges of tributaries, etc. 1 hese variables, which are affect­
ed by a large number of, sometimes not even quantifiable, effects are called random 
variables. (1 his notion will be discussed in detail in Chapter II.)

Probability theory deals with the analysis of random variables. Mathematical sta­
tistics, being a branch of probability calculus, is for the practical application of this 
theory.

Probability theory and mathematical statistics are jointly termed as stochastic 
methods including the theory of stochastic processes that is also part of the probabil­
ity theory. Due to the fact that the measurement of water stages is simpler and 
more accurate than that ofthe discharges, the former will mainly be analyzed in the 
subsequent chapters of this book. Primarily, high stage values contain important 
information in flood studies. Earlier, observed annual maximum stages of a given river 
section were considered as basic data for flood protection planning.

I his book adopts a different approach, viz. not only the highest, but also addition- 
al high stage values will be included in the analysis.

How can one ‘read out’ relevant information from a sequence of flood stage values? 
Probability calculus and mathematical statistics arc thc basic means for answering 
this question. I he basic aim of this work is to justify this statement. However, before 
starting an in-depth analysis, first the essence of flood is to be defined along with a few 
other concepts which will be used frequently throughout this text.

1 he first, second and third levels of flood preparedness are determined for all major 
river sections in Hungary. Let C denote thc first level of flood preparedness. If this 
level C is plotted along with thc sequence of daily stage values, called hydrograph, 
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than the uninterrupted sequence of stages above this level C is considered as the 
mathematical model of flood events, see Figure 1.

In other words: a flood event starts when the stage exceeds level C and ends when the 
stage has plummeted again below level C. 1 he maximum of a flood wave is called 
flood crest, or flood peak. Subsequently, the difference between the peak and level 
C, i.e. the maximum value of exceedance, will simply be called exceedance. From 
now on, the value of the exceedance will be denoted by X.

The value of A" depends on several random effects, i.e. the exceedance is a random 
variable. The duration of flood, denoted by Y in Fig. 1., depends also on random 
factors, such as precipitation, temperature, runoff conditions, etc. Therefore, Y is 
also a random variable.

The following chapters will deal with the investigation of statistical laws governing 
exceedances and flood durations. These are essential data, as it is important to know 
the frequency of floods, what is the expected exceedance and what will be the expect­
ed duration of a flood? Also, the relation between exceedances at the different gauges 
will be analyzed, together with the relation between the measure of exceedance and 
flood duration. Stochastic relations among exceedances observed at water gauges 
in confluencing river sections will also be investigated along with some theoretically 
and practically interesting problems.

To undertake probability analysis of floods the reader must have a basic under­
standing of probability calculus and mathematical statistics. For easy reference, the 
first few chapters will summarize the bases of the essential theory. No complete and 
detailed treatment of probability theory and mathematical statistics will be given at 
this place. Only the notions and relations will be outlined, in a presentation suitable 
for hydrologists, which are indispensable for the understanding of the subsequent 
chapters.

Probability calculus helps in identifying the statistical laws of random fluctuations 
inherent in hydrological phenomena. In order to promote the validity of computa­
tions, the mean (expected value), variance, and confidence interval of random vari­
ables or their average values arc defined and calculated.
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It is impossible to exclude the effects of randomness, as the inputs to these phenom­
ena will continuously change. Natural and social processes will never repeat them­
selves exactly. It would lead to serious errors if someone excluded this variability and 
the random effects. Therefore, our objective here (as in any scientific investigation) 
is to apply stochastic methods in such a way as to improve our understanding of the 
processes with respect to the knowledge obtained without the application of these 
techniques. It is our firm belief that the understanding of probability theory and its 
methods together with some successful applications will certainly resolve the reserva­
tions against the use of stochastic methods. The so-called deterministic relations are 
only contours of given phenomena. By a closer and deeper analysis one should realize 
the randomness in those phenomena.

This discussion certainly has led to the realization of applicability of the probability 
theory to flood studies. Since randomness plays an important role in the forming of 
floods, the only tools to cope with this situation are those of probability theory and 
mathematical statistics.

1.1.1. RANDOM PHENOMENON

The aim of probability theory is to formulate mathematically, analyze and determine 
the objective laws of the so called random mass phenomena or experiment.

The term mass phenomenon is related to processes which can be observed under 
the same conditions (theoretically) any times. Now we clarify what is the meaning 
of a random phenomenon or random experiment.

There are phenomena or experiments the outcome of which are usually well deter­
mined by fixing certain number of factors. In such cases we can assume that all the 
conditions, circumstances and influencing factors can be enlisted. For instance, it is 
well-known that distilled water will boil at a temperature of 100 °C and at a pressure 
of 1013.2 mbar. Let A denote the event that the water starts boiling. If the conditions: 
chemically clean water, pressure of 1013.2 mbar and temperature of 100 °C respec­
tively hold simultaneously, event A will necessarily occur.

Phenomena which are uniquely determined by the presence of certain circumstances 
are called deterministic schemes. On the other hand there are phenomena or experi­
ments which do not have a unique outcome under given conditions. This means, that 
repeating the experiment many times the outcome will show in each repetition a cer­
tain change, so called random fluctuation. These phenomena will be described by 
stochastic schemes and are called random phenomena, or random experiments.

There is no antagonistic contradiction between these two cases. A stochastic 
scheme, i.e. a random phenomenon may become deterministic if all the causing 
factors arc determined (and measured). The number of floods of a river during a cer­
tain time period of the year can be described by a stochastic scheme only. It is a ran­
dom phenomenon, because not all the causing factors and their complicated inter­
actions can be taken into consideration in all observation or realization. For instance, 
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if we wish to determine whether there will be any flood in the first three months ofthe 
year at Szeged on River Tisza, we must know the snow conditions over the catchment, 
the rainfall pattern, the speed of snowmelt as a function of temperature, the distri­
bution of precipitation over the tributary watersheds, etc. Moreover, we must know 
whether the floods of River Tisza and of its tributaries will coincide in time, i.e. we 
must know exactly the runoff process. If these flood producing factors were known 
for given years it would not be a help still, as these condition change from year to 
year. Consequently, floods can be described by stochastic schemes only, at the time 

being.
This means that event A related to a phenomenon described by a stochastic scheme 

will not necessarily occur though it may occur. I herefore, those are said to be random 
phenomena which are not uniquely determined by the conditions or causes consid­

ered.
Probability theoiy deals with the investigation of possible outcomes, i.e. events, 

the occurrence or non-occurrence of which can be observed under the same conditions. 
There are statistical regularities in such random mass phenomena. I he mathematical 
description of these laws is the task of probability theory. 1 he discovery of these laws 
enables to forecast the outcome of random phenomena in thc case of a large number 
of future observations. Probability theory and mathematical statistics are important 
tools when coping with randomness in long-term water resources planning. Proba­
bility theory does not deal with single phenomena as the outcome of a chess-party. 
In the following, the mathematical description of random events will be presented.

In the forthcoming discussions the random phenomenon considered will be called 

random experiment.*
The outcome of an experiment has, in general, a fairly complicated structure, 

therefore one or more characteristic values related to the experiment (e.g. peak, 
duration, discharge values in flood) are selected and investigated, they arc called 
random variables. A random variable (e.g. the peak of the River 1 isza at Szeged in 
a given time period of the year) is an abstract quantity containing all its possible 
values. For instance, if the experiment reduces to the water level at a given time and 
site then the outcome of the observation of the experiment is one record, viz. the 
observed stage. This experiment has as many possible outcomes as many different 
water levels may occur between zero and a feasible upper bound of k. In spite of thc 
fact that in the practice stages arc measured with an accuracy of 1 cm, thc set of all 
possible outcomes is in fact the (0, k) interval.

Therefore, water level observation may have infinite number of outcomes. Any 
point in thc (0, k.) interval is called a sample point. 1 he set of all sample points is 
called sample space. The sample space is a simplified model or projection of reality 
with respect to the investigated phenomenon. The essential thing here is that thc

♦ The adjective 'random' will be omitted in the following as this book deals only with random 
experiments.
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model should reflect reality from the point of view of practical interest and of the 
problem to be solved.

If, for example the experiment consists of observing and registrating the rainy 
days in March at a particular location (a day is defined rainy, if say, at least 5 mm 
precipitation has occurred). Ihe possible outcomes of this experiment are 0, 1, 2, ... 
...31. 1 hese are the sample points the set of which will form the sample space.

Consider now another example for sample space. During a long observation period 
it was found that stages at Bratislava, River Danube, fluctuated between 1 and 10 
meters. In analyzing the changes usually not the occurrence of a single value, say 
of 637 cm is of interest but how frequently was the water level greater than 6 m, or 
how often did it fall between 8 and 10 meters?

In this experiment the sample space is some (0, k) interval, where k is again a fea­
sible upper bound. Ihe sample space is denoted by X, which in this special case is an 
interval defined by the set

X = {x: x€(0; k)}.

Any element x of set X is a sample point. Any sub-set of the sample space X is called 
an event.

Events will be denoted by latin capital letters, A, B, C etc. Set X is called the certain 
(sure) event, and is denoted by I, because at a particular experiment some x sample 
point will certainly occur. If an observed stage X is in the range (8 m, 10 m) then the 
event

A = {x: x€(8m; 10m)}

occurred. As thc mathematical model of an event is a set, the sum or product of events 
and its complementary event can also be defined. I hese notions are all related to 
those of the Boolean algebra.

If, e.g.
A = {x: x£(4 m; 6 m)}, B = {x: x€(5 m; 7 m)}

then event A + B will occur whenever stage X is found in interval (4 m, 7 m), i.e.

A+B = {x: x6(4m; 7 m)} = {x: x((4m; 6m)}U{x: x€(5m; 7m)} 

and
AB = {x: x€(4m; 6m)}n{x: x€(5m; 7 m)} = {x: x€(5m; 6 m)}.

1 he product of two events means thc simultaneous occurrence of the two events, 
this is thc intersection of set A and B.

A B

t1 11 1
0 4 5 6 7 K

x___________ t

A + B

Figure 2
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The complementary event A of event A consists of those elements x of the sample 

space which are not in A, i.e.,:
A = {x: x<A} = I—A.

With reference to the previous example, if

A = {x: x€(4m; 6m)} 
then

A = {x: x((0;4m)U(6m;fc)}.

Obviously, A=A, that is the complementary event of the complement of event A 

is event A itself.
The complement of the certain event I is an empty set, called impossible event, 

denoted by 0:
1 = 0; 0 = 1.

If A has occurred but B has not then the event
C = A—B = AB

has occurred. It is easy to show that
A+B = B+AB = B+C.

E.g., if
A = {x: x€(4m; 6 m)}

and
B = {x: x€(5 m; 7 m)}

then _
C = A-B = AB = {x: x€(4 m; 5 m)}.

Figure 3

Events B and C are mutually exclusive since if one experiment yields B then C cannot 
occur, and vice versa. Mutually exclusive events correspond to disjoint sets. I he sum 
of two events can always be generated as thc sum of two mutually exclusive events. 
The fact that B and C arc mutually exclusive events is denoted by BC=0.

This example also shows that
A + B — A T AB 

and
B = AB + AB.

In our example event C= {x: xC(4 m; 5 m)} is contained in event A = 
= {x:x€(4m;6 m)} yielding that whenever event C occurs event A must also occur. 
In other words, the occurrence of event C implies the occurrence of event A which is 
symbolically denoted by CaA.
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Obviously, if CcA then AC=C, and A+C=A. Let the interval (0; &) or the 
base-set I of the above example subdivided by the division points 0= Xo< ...< 
<Xn=K into n parts and let At denote the event [X^j, T,), see Figure 4. Then 
events A2, A„ are mutually exclusive:

Ai-Aj = 0 if i

A, A2 An
----- r——I--------- ।---------------------------------- :--------]-------- ,------

■XCF° X) x2 xn xn =k

Figure 4

and during one experiment one and only one will certainly occur:

A-A2A-... +^n — T

The system of events A^ A2, ...,A„ is called a complete system of events. The 
complete system of events is a partition of the sample space into disjoint events.

1.1.2. THE NOTION OF PROBABILITY. AXIOMS

1 he reader has certainly met previously the notion of probability. Moreover, in many 
cases it can be said without any difficulty whether a random event occurs with a high 
probability or not. In an experiment we wish to express numerically the chance of the 
occurrence of some events of interest with respect to some measuring scale, similarly 
to the measurement of temperature, weight, etc. This desire is motivated by the 
requirement that we wish to know how many times a particular event will occur in 
a sequence of observations.

1 he notion of thc probability of a given event will be approached by means of 
another notion, the relative frequency of a given event in a sequence of observation.

Consider an experiment that can be repeated many times under the same conditions; 
what we are interested in is how many times a given event A will occur among n 
repetitions. Assume, that by repeating thc experiment n times event A will occur k„ 
times. It is also assumed that the outcome of an observation will have no effect on the 
outcome of any other experiments. The quantity k„ is said to be the frequency of 
event A, while thc ratio kjn is called thc relative frequency of event A in thc sequence 
of experiments. It is obvious that repeating thc sequence of n experiments under the 
same conditions will result in a frequency k'„ which, in general, differs from k„; this 
is a consequence of randomness. The usual term is the random fluctuation of quan- 
tity k„ while k„ itself is what we called random variable.

I he sequence of relative frequencies will fluctuate and for large n thc deviation from 
a certain constant will be small.

1 he law which states that if an experiment is repeated many times under the same 
conditions, then thc relative frequencies of a given event A will be stable, is called

2» 
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the law of large numbers (for more precise formulation and details see Chapter 2.3). 
This stability involves that the relative frequencies of event A computed from a long 
record of experiments are practically close to a constant number which is called the 
probability of event A and denoted from now on by P(A).

The probability of a given event is an objective measure that can be measured like 
physical quantities, such as e.g. temperature, weight, etc. 1 he fact that the relative 
frequency kjn of an event A, for large n, is approximately equal to P^Af the prob­
ability of the event A, is denoted by

k 
g(A) = -^P(Af

The “measurement” ofthe numerical value of a probability by relative frequencies 
has to be carried out in such a way that the individual experiments should not have 
any influence on each other, or in other words: the experiments are “independent”, 
and performed under the same conditions.

Since, in case of a large number of experiments relative frequency does not deviate 
too much from probability, the basic properties of probability may be derived from 
those ofthe relative frequency.

The following relations are always valid for relative frequencies, g(.):
(1) For any event A, its relative frequency g„(A) in a sequence of n observations 
satisfies the following inequality:

0 S g„(T) S 1.

(2) The relative frequency of the sure event I (i.e. the one that occurs in each experi­
ment) is

g„(/) = 1,
and of an impossible event

g„(0) = o.

(3) If events A and B are mutually exclusive then

g„(X + B) = g„(^) + g„(^)-

This property holds for the union of finite number of mutually exclusive events, too. 
Based on the above mentioned properties of the relative frequency the probability 

P(A) of an event A is defined as a measure that satisfies thc following axioms:
Axiom I: For the probability P(A) of any event A it is true that

0 5 P(A) S 1.

Axiom II: The probability of the sure event is P(l)= 1.
Axiom III: If Alt A2,A„,... are mutually exclusive events, i.e. if for i^j

ArAj = 0
then

PGO/U+...+4.+-) = W+W+- +m)+-•
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As direct consequences of the axioms some useful relations will be discussed below 
that can be applied to calculate the probability of somewhat more composite cases.

Theorem 1. If the probability of event A is P(A) then the probability of the comple­
mentary event A is

P(A)= 1—P(A).

To prove this Theorem one should consider that

A + A = I, and A • A — 0-

On the basis of Axioms II and III we have

P(J) = P(X + A) = P(^)+P(A) = 1,

from which one obtains Theorem 1. It follows from Theorem 1 that the probability of 
an impossible event 0 is 0*,  and

* Note: The fact that the probability of an event A is 0 does not mean that A is an impossible 
event!

P(0) = ?(/) = \-P^ = 1-1 = 0.

Theorem 2. For events A and B the probability that at least one of them will 
occur is

PC4 + 5) = P(A)+P(B)—P(AB).

To prove this statement both (A + B) and B are expressed as the sum of two disjunc­
tive events. It follows from Fig. 5. that

A + B = A + AB and B = AB+AB.

Figure 5

According to Axiom II:

P(A+B) = + = P(/0+PG?B)

P(B) = P(AB+AB) = P(AB) + P(AB\

By substraction of the two equations

P(A + B)-P(B) = P(A) — P(AB)

from which the Theorem follows. It also follows from Theorem 2 that

P(A + B) P(A) + P(B), 
and if

P(A) + P(B) * 1,

21



then
P(AB) P(A)+P(B) — \.

Theorem 3. If A^ A2, A„ are arbitrary events then

p(A+^2+...W“ZW-.Z J’GM/.H 2 , P(A^.^.)"- + 
i *1^’2

+ (-l)”+1. 2 . PV^-AJ.

This relation can be proved by induction. It follows from Theorem 2 that for n=2 
the statement is true. Assume that for n-1 the statement is also true, i.e.

P(A2 + A3+---A-An) = 2 P(Ai)~ 2 2 P(^i1^it^i>)~'‘--
1 = 2 2gi1<i2<is

Moreover

P(A1A2 + A1A3+...+A1An)= 2
i —2

- 2 P(AxAhA^+ 2 P^A^AJ-....
2Sij-ci2 2gi1ci2<>3

Applying Theorem 2:

P(A1+A2+...+An) = P(A1)+P(A2+...+A„)-P(A1A2+A1A3+...+A1A„) =

= 2P^~ 2 PUM+ 2 pIa^aj-....
i=l

Before discussing the next theorem an important remark is made concerning sample 
spaces containing finite or countable infinite sample points. This remark is the follow­
ing: the probability of any event A equals the sum of probabilities of all sample points 
contained in A. Let event A be consisting of the different sample points elfe2, -,ek. 
Obviously, these sample points are mutually exclusive because during one experiment 
one, and only one sample point may occur, see Figure 6.

k
P(A) = P(el + e2 + ... + ek)=

1 = 1

Consider now an experiment that has a finite number n of outcomes. Let these events 
be e2,..., e„, each with the same probability of occurrence:

P(e,)=l (i= l,2,...,n).

Figure 6
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If B is an event related to the experiment and consists of k sample points, then, in 
accordance with our previous remarks,

k
PW = 2^ = -. 

e^B n

By this the next theorem can be obtained:

Theorem 4. If in an experiment one of n sample points may occur and any sample 
point has the same probability of occurrence, the probability of event B consisting of k 
sample points is

P(B) = -. n

It is to be mentioned in this context that in the early days of probability calculus 
events of numerous finite outcomes and of equal probabilities were mainly investi­
gated.

The next Theorem expresses the monotonic property of the probability, i.e. the 
probability of a given set is not less than that of any subset of it.

Theorem 5. If AzjB, then P(A)^P(B). To prove the theorem let us consider 
that if Az^B, then A = B+AB, i.e.

P(A) = P(B + AB) = PW+PtAB) S P(B).

1 13. EXAMPLES FOR COMBINATORIAL CALCULATION 
OF PROBABILITIES

a) Let the experiment be of tossing a coin n times. What is the probability of tossing 
a head exactly k times?

Assume that n tossing are performed and we assign thc number 1 to heads and zero 
to tails. Because every tossing may have two different outcomes, the number of all 
possible cases is 2" (variation with repetition). To determine the number of successful 
cases i.e. those sequences which contain Al’s and (n-k) O’s, respectively, the corre­
sponding quantity has to be counted. The number of such sequences is j as alto­

gether this is the number of options one might have in selecting k cells out of n. The 
probability then is:

One can sec that the dependence of thc probability on k is expressed by thc nomi­
nator. The sequence of binomial coefficients increases at thc beginning with k but 

later decreases. Its maximum is obtained at • Consequently, it is most probable 

that the half of the tossings will be tails (or heads).
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b) Random walk along the line
Assume that a particle walks over the integer points along the x-axis starting at the 
orig n and taking one step to the left or one step to the right, equally with a probabil­

ity of—. The coordinate of the object will change by + 1, in case of a step to the 
2

right, and by -1 by a step to the left. The path of the object can be illustrated by 
plotting the number of steps on the horizontal axis, versus displacement on the verti­
cal axis. In case of a step to the right a vector upwards by 45°, while in case of a step 
to the left a vector downwards by 45° is to be drawn, see Figure 7. What is the proba­
bility that after n steps the particle will be at point x=l, i.e., in the height x—l in 
our figure? Assume that during n steps the particle moves Mimes to the right and 
Mimes to the left.

Then:

That is, the particle is found at point x=l if it has stepped
n + /
-----  times to the

2

n + l
2 .

• t. n~ I right, and -y- times to the left. This case may occur in different ways.

Then the probability in question is:

n '
n + l

2 . 
2" II I I

Since any step to the right or left can be only an integer and —— is integer if n 

and I are both even or both odd numbers, it follows, that after even number of steps 
the particle can stand only on a height of an odd number. Particular is the case when 
the particle returns to its starting point — the origo — that may occur only after even 
number of steps.
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The probability that the moving point will return to the origin after 2n steps is

The next example is of particular importance from the point of view of mathemat­
ical statistics therefore it is specially recommended to the reader’s attention.

c) Returning to the previous example assume that the particle returns to the origin 
after 2n steps. What is the probability that along its path the particle did not reach 
the point x=kl This question can be reformulated as: what is the probability that 
a sequence of 2n length, consisting of n(+ l)s and n(— l)s, has no partial sums 
greater or equal than kl According to our assumptions all possible sequences of 
n (+ l)s and n (— l)s have the same probability.

To answer this question let the following interpretation be introduced. Assume that 
in case of 2n=8 the following steps were experienced: +1, +1, — 1, +1, — 1, — 1, 
+ 1,-1.

Figure 8

Assign now the vectorial sequence to the sequence of steps as it was done in a pre­
vious example. In such a way a path or a trajectory is obtained. The number of pos-

J.
The question now is: how many trajectories, each consisting of 2n vectors, can be 

plotted out of point (0, 0) to point (2n, 0) that will not reach the X=k line?
It is easier to determine thc number of trajectories which will reach or intersect line (T \

J, from the total num­

ber of trajectories, thc number of trajectories not reaching line X=k is obtained. 
Ihe number of trajectories reaching (or intersecting) line X=k can be determined 
quite easily.

If that part of a trajectory, that reaches line X=k, is reflected with respect to thc 
height X=k which begins from thc first reaching point then this transformed tra­
jectory will start at (0, 0) and ends at point (2n, 2k). 1 his is true for all trajectories 
reaching or intersecting line X=k. 1 hose transformed trajectories correspond to the
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random walk of a particle starting at (0, 0) and found at height 2k after 2n steps. This 
is possible in

(n + kj — (n — kJ

different ways.
Therefore, the probability that a trajectory of length 2n consisting of n steps to 

the right (+1) and n to the left (— 1), will reach or exceed line X—k is:

f 2n "j f 2n 1
(n—kJ _ {n + kj

pn| pn]
| n J ( n J

Consequently, the probability that the path will not reach the height X= k is:

pn) ( 2n j f 2n 1
(1.3) ( n J ~ (n + kj _ j (n + kj

pn) pn)
(nJ (nJ

It is to be mentioned here that Eq. (1.3) can hardly be used for practical purposes as 
the calculation of the binomial coefficients, on the right-hand side of Eq. (1.3), is 
rather cumbersome. On the other hand, a fairly good asymptotic approximation can 
be achieved if n is large, i.e.

(2n)
yi+kj (2n)! („!)« (jJ 2nn
p«] (« + k)!(n-k)l ’ (2n)! ~ ( n + k )M+* ( n-k )""* =
' ” / ( 7 J ( e J y^(n + k)2n(n—k)
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Using the Taylor expansion In (l+x)=x—
x^

— + — —... it is easy to show that

(1.4) e-kl<n.

This is a favourable form for statistical applications and will be used extensively in 
Chapter 6, Section 6.4.3.

d) Runs
A number of interesting and practical statistical analyses can be performed with the 
aid of the previous random walk problem (See: Section 6.4). One of them is the inves­
tigation of‘runs'. A run is defined as the uninterrupted sequence of the same numbers. 
For example, in sequence

+1+1-1-1+1-1-1+1+1+1-1+1-1

there are four (+ 1) runs, with lengths 2, 1, 3, and 1, respectively, and four (- 1) runs 
(lengths 2, 2, 1, 1). (If a random walk is illustrated by a trajectory then a run is an 
unbroken straight line.)

Assume, that a sequence of length A contains n piece of ( + l)s and m piece of 
(- l)s. What is the probability that the total number of runs is exactly R = 2k.

Let R+l denote the number of (+ 1) runs and R_i that of the (— 1) runs.
Ihe sequence starts either with (+1) or with (—1). Assume, it has started with 

( + 1). Then the last value must be (-1) otherwise condition R-2k will not hold. 
As there are n pieces of (+ l)s and because from the point of view of ( + 1) runs the 
(— 1) runs arc just separators, R + l=k may occur as many times as the (+ 1) sequence 
consisting of m members can be disaggregated into k parts. Disaggregation can be 
performed by k- 1 vertical lines, such as e.g. for n=8 and k=3 one possibility is:

1, 1, 1/1, 1, 1/1,1.

Since there may be (n- 1) vertical lines in a (+ 1) sequence consisting of n mem­
bers the event of {R + i = A-} may occur in }) different ways. Similarly, event 

{«_!=*} may occur in |? | different ways. If the sequence consisting of n(+ l)s

is divided by (k- I) lines into k sections, any k decomposition into k parts of the 
™(- 1) sequence can be inserted at the places of the lines. Therefore, if the sequence 
starts with (+ 1) and ends up with (- 1), event R=2k may occur in jj _ ]) 

different ways. Obviously, event {R=2k} will occur similarly if the sequence 
started with (- 1) and ended up with (+ 1). As in N experiments the n(+ 1 )s and the
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m(— l)s may occur in n J different ways, the probability is:

P(R = 2k) =

Using similar arguments one can also see that the probability of event {R-2k + 1} is:

If n and m are large, the computation of the above described probabilities given 
above is fairly difficult. (For approximations see Section 6.5.1.)

1.1.4. CONDITIONAL PROBABILITY AND INDEPENDENCE

The notion of conditional probability is very important and fundamental both from 
the point of view of theory and practice. The importance of this notion is further 
amplified by the fact that different phenomena occurring in Nature, and also in hydrol­
ogy, are usually not independent from one another. The occurrence of certain phenom­
ena implies that of other phenomena. For instance, heavy precip.tation usually 
implies the occurrence of high flows or stages. I herefore, the probability ofthe occur­
rence of certain events is influenced by the occurrence of other events.

As in the discussion of the probability of a given event the notion of relative fre­
quency was used, here the notion of conditional relative frequency will by used to 
approach the concept of conditional probability.

In Table Tl. flood data ofthe lisza River, Section Tokaj are presented above

Table T.l

tokaj
First quarter (From 1st January to 31st March) 
c level: 600 cm

Year X(cm) F(days) Z(r)(Max)

1907 009 003 009
1908 058 010 058
1909 069 004 069

026 006
1912 078 005 078

028 005
003 092
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Year X(cm) Y (Days) Z(O (Max)

1913 027 003 027
1914 024 001 100

100 020
1915 036 005 036
1916 088 013 088

035 014
058 006

1919 086 014 086
1920 112 010 136

136 016
1922 092 010 170

170 009
1923 004 002 004
1924 168 005 168
1926 173 010 173
1932 028 003 028
1933 020 003 020
1937 122 021 122
1940 173 004 173
1941 008 003 200

200 013
014 003

1942 030 006 030
1945 047 008 047
1947 040 002 040
1948 101 007 181

181 020
1950 030 004 030
1953 147 012 147
1955 080 008 093

093 008
088 004

1956 000 001 000
1957 059 008 059

040 (X)6
1958 156 021 156
1960 000 001 0(X)
1962 074 007 074
1963 071 002 129

129 (X)7
1964 010 001 053

053 002
1965
1966

055
153

002
021

055
1531967 229 021 229

025 001
1968
1970

135
128

008
005

135
128
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SZOLNOK
First quarter (From 1st January to 31st March) 
c level: 600 cm

Year X(cm) Y (days) Z(t) (Max)

1903 004 001 004
1908 029 007 029
1909 000 001 000
1912 002 003 002
1914 100 015 100
1915 038 007 038
1916 178 024 178

088 021
1919 085 012 085
1920 104 016 116

116 016
1922 134 016 134
1926 178 023 178
1931 000 001 000
1935 018 004 018
1937 150 024 150
1940 004 002 066

066 004
1941 222 034 222
1942 128 018 128
1945 001 002 001
1946 017 001 017
1947 024 010 033

033 009
1948 184 034 184
1953 201 023 201
1955 020 006 045

045 010
1957 045 012 045

013 005
1958 108 031 108
1962 035 007 035
1963 091 016 091
1964 003 001 003
1965 000 003 039

017 004
039 011

1966 255 039 255
1967 281 028 281
1968 063 Oil 063
1969 059 008 059
1970 019 003 065

056 008
065 (X)4
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TOKAJ
Second quarter (From 1st April to 30th June) 
c level: 600 cm

Year X (cm) Y (days) Z(t) (Max)

1907 159 021 159

056 014

1909 021 006 021

1912 125 013 125

1913 027 002 027

1914 072 007 072

1915 058 007 058

1916 052 003 052

1922 160 017 160

008 001

024 003

1924 202 013 202

128 013

1932 256 020 256

1933 028 001 028

1935 006 001 006

1937 017 002 017

1940 217 012 217

042 004
1941 133 017 185

185 023
116 010

1942 024 003 024
1944 051 Oil 051
1945 065 008 065

026 005
1951 013 003 013
1952 164 023 164
1955 088 005 088
1956 071 014 071
1958 045 005 045

006 002
002 003

1962 194 026 194
1964 257 015 257
1965 123 010 123
1967 132 023 132
1968 055 012 055
1970 151 020 258

258 021
153 014

32



SZOLNOK
Second quarter (From 1st April to 30th June) 
c level: 600 cm

Year X (cm) Y (days) Zd) (Max)

1907 088 019 088
006 009

1912 063 012 063
1914 065 016 065
1915 032 012 032
1916 052 011 052
1919 023 002 023
1920 006 001 006
1922 134 032 134
1924 196 049 196
1932 244 025 244
1937 100 013 100
1940 230 038 230
1941 206 065 206
1942 020 008 020
1944 012 010 012
1952 083 025 083
1956 028 013 028
1958 006 005 007

007 009
1962 185 030 185
1964 203 022 203

1965 143 017 143
1967 174 035 174
1968 023 006 023
1970 259 091 259

SZEGED
First quarter (From 1st January to 31st March) 
c level: 600 cm

3 Reimann

Year X(cm) Y (days) Z(r)(Max)

1901 159 018 059
1902 040 015 040
1906 018 006 018
1908 059 021 059
1909 084 012 084
1912 102 034 102
1913 033 005 033
1914 248 020 248
1915 052 016 180

180 012
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Year X (cm) Y (days) Y (days)

1916 271 030 271
204 026

1917 090 006 090
1920 188 028 188

183 020
V 1922 184 021 184

1923 000 001 117
117 017

1924 043 002 043
’ * • 1926 232 026 232

010 006
' •< r _ 1931 083 012 083

1932 012 004 147
1933 147 009

020 004 020
1934 006 004 006
1935 054 009 054
1937 181 026 181
1940 173 013 173
1941 010 004 269

104 on
269 041

1942 260 030 260
1945 032 006 032
1946 010 004 010
1947 087 022 087
1948 199 037 199
1953 186 026 186

; 1 1955 079 Oil 137
137 016
020 004
026 002

1956 036 007 036
032 007

1957 043 014 043
005 004

1958 210 030 210
' • ■ ♦: 1960 059 008 059

1962 002 092 002
1963 066 015 066
1965 014 003 045

045 008
042 009

1966 278 042 278
1967 270 027 270
1968 054 006 058

058 012
1969 106 013 106

004 002
1970 172 015 172

147 023



SZEGED
Second quarter (From 1st April to 30th June) 
c level: 600 cm

Year X(cm) Y (days) Z(r) (Max)

1901 029 005 029
1902 014 003 014
1907 108 042 108
1912 072 010 072

034 010
1914 128 022 128
1915 110 035 110
1916 073 013 073
1919 266 049 266
1920 016 002 016
1922 124 036 124
1924 220 051 220
1932 273 042 273
1937 053 011 053
1940 197 038 197

040 008
028 005

1941 204 068 204
1942 038 007 060

051 011
060 014

1944 004 003 004
1952 002 005 002
1956 039 010 039
1958 037 007 066

066 025
1962 170 033 170
1964 114 019 114
1965 098 015 098
1967 134 041 134
1970 309 091 309

a given level of 600 cm together with the duration (in days) of these events. These data 
are for the 2nd quarter (1 April—30 June) of the year for the period 1901—1970.

Flood exceedance X and duration Y arc plotted on the plane by co-ordinates 
Un YJ, (Xt, Yt),...» (X„ Y„). See Fig. 10.

Let event A be defined as the flood duration exceeding 14 days. Figure 13 indicates 
that A has occurred 11 times during 41 flood events. Thus, the relative frequency of 
events is:

gG4) =
kU) _ H . J 

n ~ 41 ~ 4 ’

3*
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Let now event B defined as the flood exceedance above 150 cm. In this example, 
as it can be seen from the figure, the relative frequency of event B is k(B)=12. 
Consider now the floods larger than 150 cm and lasting longer than 14 days, i.e. 
consider the occurrence of event AB. This is:

k(AB) = 9.
The relative frequency of A, under the condition that event B occurred, is a con­

ditional relative frequency and is defined as

In our example:
9 3= — = -j.

The conditional relative frequency of event A is about three times greater than the 
relative frequency g(A) of event A, in this case. That is, three quarters of the floods 
exceeding 150 cm lasted more than two weeks. As the flood peak usually appears at 
the half time of the duration in a given flood situation one can predict the whole dura­
tion of a flood event by knowing its conditional relative frequency.

Consequently, conditional relative frequency signifies that, considering only those 
events when B has occurred, what is the percentage of event A occurring simulta­
neously with event Bl

Figure 11

Many experiences justified that if the number of experiments increased then the 
conditional relative frequency showed a similar stability as the relative frequency 
itself. The number around which conditional relative frequency is oscillating is called 
conditional probability and is denoted by P(A\B).

As
k(AB)

n P(AB)
g( k(B) k(B) * P(B) ’

n
the conditional probability P(A\B) is defined by the following expression

= P(B)>0.
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From this definition
(1.5) PW = P(A\B)P(B).

Equation (1.5) is called the rule of multiplication of probabilities.
Event A is said to be independent of event B if

P(A|B) = P(A).
Then

- '^1
that is
(1.6) P(AB) = PU)P(B).

The probability of the product of independent events is equal to the product of the 
corresponding probabilities.

The conditional probability of event B with respect to event A can be defined in the 
same way:
(1.7) P(5M)=^^-, P(T)>0.

By comparing Eqs. (1.5) and (1.7) one obtains

P(A\B)P(B) = P(B\A)P(A) 
yielding

P(/f|P) _ P(A)_
P(B\A) P(B) ’

It is easy to show that if event A is independent of event B then, in turn, B is also 
independent of A. If follows from

that

as, based on Eq. (1.7),

P(B|A) =

P(T|P) = PU)

P(B\A) = P(B)

P(A\B)P(B) PtfW) = 
----- P(^j P(A) 1 A

It is easy to see that if A is independent of B then A is independent of B, A is 
independent of B, and also A is independent of B.

1 hercforc, Eq. (1.6) is to be considered as the definition of independence between 
events A and B. Independence of more than two events may be defined similarly. 
It is necessary, however, to be careful if independence of more than two events, e.g., 
of A, B and C is to be defined. Let now three events, A, B and C be represented in the 
following diagrams:
As it can be seen

P(^) = P(B) = P(C) =
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A B C

AB AC BC ABC

Figure 12

It is easy to understand that
P(^)= j = |-y = P(zt)P(^)

P(XC) = | = |4 = P(,A)P{C)

P{BC) = ^ = ^~ = P(B)P(C).

As a conclusion A, B and C are pairwise mutually independent. However,

P(ABC) = | # |44 =

that is, the three events considered jointly are not independent. Therefore, if n>2
the independence of events A^ A2, ... An is defined as follows:

Ax, A2, ... An are completely independent, or briefly independent, if thc following 
relations are valid:

PlA-.Aj)^ PlWJ i^j

P(AiAjAk) = P(Ai)P(Aj)P(Ak) i<J < k

P(A1At...AJ = P(A1)P(As)...P(Ak).
These relations require the validity of conditions of number

(2) + (”) + “ + (”) "

the validity of which is due to the binomial law, namely.
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It can be shown that if events Alt A2,... A„ are independent, then if any or all 
of these are replaced by their complementary event(s) the system of events obtained 
is still independent. The rule of multiplication of probabilities expressed by Eq. (1.5), 
can be generalized to n events. This general rule is as follows:

If A^ A2,A„ are arbitrary events then

P(A1A2...An) = P(An\A1A2...A„_1)P(An.1\A1A2...A„_2K

It is assumed here that the probabilities of the conditional events are all positive. 
The proof of the theorem is trivial:

P(A1A2...An-1An) = P(A„^A1A2...An^)P(A1A2...A„_1),

PCAiA^.A^) = P(An_1IA1A2...A„_2)P(A1A2...An_2),

P(A1A2) = P(A2MP(A1).

Beyond the notion of independence of events also the notion of independence of 
experiments will frequently be used. This latter is somewhat more general than the 
previous one. Two experiments are regarded as being independent if their outcomes 
are not influencing each other. This means, that any event in the frame of the first 
experiment is independent of any event in connection with the second experiment. 
Textbooks on probability theory usually present the following simple examples of 
repeated tossing of dice or coins to represent sequences of independent experiments. 
Similarly, if balls marked with numbers are put in an urn, one is selected randomly, 
its value is preserved, then replaced in that urn, and the whole set of balls is shaken 
up before the next trial; this will also form an independent sequence of experiments. 
I his model can be used, for instance, to select elements from a demographic (indus­
trial, etc.) population in a random way, as, e.g., drawing from a lot.

In the hydrological practice usually those observations are considered independent 
experiments which are fairly far away from each other on the time scale. Examples 
are: river stages of a particular day of the year, annual stage maxima, annual mean 
flows, number of floods in the individual years, etc.

An important relationship will be here derived, called the total probability rule 
which will be referred to frequently in the following.

Let B2,..., B„ be a complete system of events, i.e.

Bi + B2+... + B„ — I 
and

B,Bj = 0, if

which means that during our experiment at least one but only one Bt will occur. Let 
be an arbitrary event, then

P(A) = P(AI) = P{A(Bl + B3+... + Bn)} = P(^51 + /lJ?a + .,.+JB„).
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The events within the brackets are mutually exclusive thus

P(A) = P(ABj+P(ABJ+...+P(AB„)

since Bt and Bj are disjoint sets therefore subsets AB{ and ABj are also disjoint and 
mutually exclusive, see Figure 13.

Figure 13

Based on Eq. (1.5)

and the relation
P{AB^ = P(A\B^P(B^

(1.8) P^A) = P(.A\B^P(,B^)-\-... + P(A\B^P(B^) = 2 P(A\Bj)P(Bj)

will be obtained.
Expression (1.8) is called the theorem of total probability. If the conditional proba­

bilities of event A with respect to all Bj events are known together with the probabili­
ties of the Bj events, j= 1, 2, ..., n, then the conditional probabilities of events Bj 
with respect to A may be calculated.

Using Eq. (1.7) one would obtain

(1-9) P^A) =
P^B) = P(A\Bi)P(Bi)
P(A) P(A)

Substituting Eq. (1.8) into the denominator of Eq. (1.9)

(MO) .

Expression (1.10) is called the theorem of Bayes. This formula given by Bayes plays 
an important role in statistics, particularly in decision theory.

At the end of this Chapter a remark is made concerning complete system of events. 
A complete system of events Bx, B%,Bn is a decomposition of a basic set / into 
disjoint subsets in such a way that all the elements of / arc in one of the subsets Bj, 
and nowhere else. The question arises then: given a basis set I, how many complete 
systems of events may be formulated? If / consists of an infinite number of elements 
(points) then the number of complete system of events, or in other words, the number 
of set partitions is, obviously, also infinite. If I is a finite set, say In= {1, 2,.... n), 
then the number of complete system of events, that can be generated from l„, may 
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be determined by recursion. Denote Tn the number of complete system of events
generated from set In. Let To= 1. Then the following recursive relation holds:

n (n ^[k ^n-k ~
n (n i

k = 0 k=0

To derive this relation we consider all partitions of In+1 and classify them first 
according to the location ofthe element («+1). Suppose that this element is added to 
a subset of In consisting of k elements. The number of n possible partitions of this 
kind is Tn_k, i.e., this subset can be taken from the set I„ in I” [different ways and 

to each subset belong all possible partitions of the rest of (n—k) elements which 

*S K-k'
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CHAPTER 2

2.1. RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

2.1.1. THE NOTION OF RANDOM VARIABLE AND PROBABILITY 
DISTRIBUTION

In engineering practice the outcome of experiments is usually expressed in terms of 
numerical forms. In the majority of cases, the result of an experiment is numerical 
itself. For instance, if stage measurements are at stake, the outcome of the experi­
ment is a number; at the same time if the measurement is repeated at different time 
instants, these numbers will display random fluctuation since there are many causa­
tive factors which may influence a particular water stage. The stages of a river meas­
ured at the same section, but at different time instants; the number of rainy days in a 
particular month (observed in different years) are all numbers displaying random 
fluctuation.

Quantities which depend upon randomness are said to be random quantities or 
random variables, rhe numbers which are results of experiments (all possible nu­
merical outcomes of experiments) form the sample space of a random variable.

If random variable X denotes the stage of a river at a given cross-section then the 
value of Xmay be any point in a feasible interval.

If random variable Y denotes the number of rainy days, say in May, then its pos­
sible values, the sample space, are the numbers 0, 1, 2, ..., 31.

These two examples show that there are several types of random variables. Random 
variables whose values may be anywhere along the line (or in an interval) are said to 
be continuous random variables. Measured data are usually continuous random 
variables. A random variable that may have a finite number or countable infinite 
number of values is a discrete random variable. Discrete random variables occurring 
in practice usually have non-negative integer values. There arc random variables 
which are neither continuous nor discrete. These variables belong to thc class of 
mixed random variables.

From a mathematical point of view random variable X is a function defined on a 
space £2 of elementary events co. Thc value of this function depends on the occurrence 
of a particular elementary event w: X= X(co).

I he space of elementary events £2 is essentially the mathematical model of an ex­
periment.

Let the experiment be the tossing of a coin n times. Assume, wc assign 1 to thc 
tails and 0 to the heads. Then thc possible outcomes of this experiment are the ele-
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mentary events:
coj =000...00

coa =000...01 Q = («!, coa, coa«}

w, =000... 10

co„ = 100...00 

(Dtn= 111...11.

Let random variable X(a>) denote the number of tails through n tossings. Then 
Ar(co1)=0, JV(co2)=l, A'(®3)=1, ..., y(co2")=n. If cOj is an elementary event con­
taining k(+ l)s, and n—k O’s then Xtw^k. The possible values of random vari­
able X are then the numbers 0, 1,2, The set X= {0, 1,2, ...,n} of the possible 
values of the random variable X is called sample space. Let Ak denote the set of ele­

mentary events cof which consists of exactly &( + l)s—obviously there are of this 

type. Then
P(X = k) = P(Ak) (k = 0, 1,2,

Assume, the tossings are performed by a homogeneous, regular coin. Then both, 
1

tails and heads have the same probability of occurrence, i.e. — . As the outcomes of 

the tossings arc independent, the probability of any elementary event co, is

P(®i) = 4r 0 = 1, 2,-.., 2").

Thus

P(X = k) = P(Ak) =

(n|

PM = ~.2

It can be seen from our example that random variable X(w) defined as a function 
over thc space of elementary events does not necessarily assign different values to thc 
different elementary events. Function X(u>t) assigns the same value k to points / of the 

I , | elementary events of thc above mentioned event Ak. Thc probability of taking 

a given k value for random variable T(co) is equal to thc probability measure P(A~) 
°f set A of thc elementary events co for which

X((o) = k.

Random variable X assigned to thc tossing of a coin can have a finite number of 
values. Possible values for X are thc numbers 0, 1, 2,..., n. If we know the proba-
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bility of all possible values of random variable X, then also the distribution of the 
random variable is known. In our example

P(X = k) =
1

2" (k = 0, 1, n).

If, for instance, the experiment is the tossing of a fair coin five times, then

w = o) = (o)^-^

P(X = 1)= Pj_l 5 
v 25 32

P(X = 3) 10
32

5
” 32

$ G) 26 32’ 

Obviously,
6 

^P(X=k)= 1. 
*=o

This probability distribution can also be illustrated graphically by aid of a proba­
bility diagram, see Figure 14.

Let the experiment be throwing of a die until the number six is obtained.
Let the random variable Y denote the number of tossings until the six is obtained. 

Possible values of Y are then 1,2....... Random variable Y has a countable number of 
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values. If P(l)=p, P(ff)=l-p=q [for a fair die p= — , then the Proba‘ 

bility that Y will have the value of k is

p(Y = k) = q11-1 • p (k = 1,2, ...).
Naturally,

oo 00 X P 1
2P(Y = k) = 2 q^-P =pa + q+q2+-) = -r^- = L
1=1 1 *

The probability distribution of the random variable Y is shown in Figure 15.

Figure 15

A random variable X having finite or a countable number of values is said to have 
a discrete distribution, or simply a discrete random variable. The distribution of a 
discrete random variable is specified by defining probabilities to all its possible values.

Discrete random variables occur in hydrology often. Examples are: the number of 
rainy days in a month, the number of exceeding a threshold level c in water stages 
during a given time interval, etc.

The discrete random variables discussed so far in the previous examples had all 
non-negativ integer numbers for their possible values. In practice, however, partic­
ularly in thc statistical analysis of observation data one may encounter discrete ran­
dom variables which are not necessarily integer values.

Let X be a discrete random variable, with possible values xls xt,..., x„... (finite 
or countable infinite) and these values have thc probabilities

P(X = xj = pc P(X = X^ = Pi, -M P& = X.) = P„, •

If the probability of the event that thc value of X lies between limits a and b is of 
interest, then thc probabilities of all xps for which a^x^b holds are to be summed 
up:

Pla^X<h) = 2 Pi-

In hydrological practice thc analysis is often confined to random variables, such as, 
e-g. thc stage of a river in given space and time, river flow, or thc value of exceedance 
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above a given threshold level during floods, etc. The value of random variables like 
these can fall in any interval of the real line having a continuum of possible values, 
and therefore — as mentioned earlier — these are called continuous random variables. 
If, for example, random variable X is the stage at a given section of a river then usu­
ally that probability is sought that the stage will be between 600 and 700 cm or it 
is less than 850 cm. The distribution of random variable X is known if for any inter­
val (a, b) the probability of event {a^ X^b}

P(a^X< b) 
can be specified.

The distribution of a random variable X will be said to be continuous if a non-nega- 
tive, integrable function f (x), defined on the real line can be assigned to it, for which:

b oo

P(a^X<b) = f f(x)dx and f f(x)dx=l.
O — oo

Function /(x) is called the probability density function, from now on pdf, of the ran­
dom variable X.

From the above definition of a continuous random variable it follows that

P{X = x) = 0.

Moreover, the probability that the value of X will be in the small interval dx around 
xis:

dx v , dx) .. . , P [x—y - x X+~) w dx'

Ax
Figure 16

Fo calculate the probability P(aS.X^b) it is sufficient to know what the proba­
bility is that X is less than any x.

Probability P(A'<x) is a function of variable x. Let this function be denoted by 
F(x). Obviously,

F(x) = / f(t)dt.
— oo

Function F(x) is called the cumulative distribution function (cdf) of the random 
variable A. An ordinate of the cumulative distribution function F(x) specifies, for 
any real x, the probability of finding X less than x.
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Figure 17

Consider now the properties ofthe cumulative distribution function F(x).
(1) Values of a cumulative distribution function F(x) are always between 0 and 1 

as F(x) expresses probability (of event {X< x}):

0^F(x)S 1.

(2) The cumulative distribution function F(x) is a monotonous non-decreasing 
function of x, i.e. if b>~a, F(b)^F(a).

It is easy to show the validity of this property as for b>a the event will
always occur if but also if a^X^b. E.g.

{x < fo} = {X < a}U {a ^X^b}.

There are mutually exclusive events on the right-hand-side. Iherefore, based on 
Axiom III.

P(X<b) = P(X < a) + P(a X < b).
That is

F(b) = F(a) + P(a X b).

From this last relationship one obtains

P(a*X^b) = F(b)—F(a).

Figure IS
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So, by knowing F(x) the probability of finding X in any interval (a, b) can also be 
specified.

The following example will also clearly demonstrate the monotonous non-decreas­
ing nature of the cumulative probability distribution function F(x). Assume, that 
our experiment is the observation of a river stage. Let the stage be defined by the ran­
dom variable X. Let a=5m and 6=7m. Event {T<5} will occur if the stage is 
less than 5 m.

Event {1<5} implies the occurrence of event {T<7} though this latter will also 
occur if the stage is between 5 m and 7 m. It is obvious that the frequency of event 
{5 g 7} is equal to the difference of the frequencies for events {X< 7} and {X< 5}. 
Naturally, the same is true for the relative frequencies of the same events. According

Frequency of the yearly maximal water-level of the River Duna at Bratislava 1892 1961

Table 2.1.

Maximal water-level between kt (frequency)

450—499 1
500—549 1
550—599 7
600—649 11
650-699 15
700—749 12
750-799 15
800—849 2
850—899 3
900—949 1
950—999 2

*1 = 70

to Table 2.1 the relative frequency of event {y<5} is 1/70, of event {5SX<7} it is 
34/70 and that ofcvent {T<7} is 35/70. As relations valid for relative frequencies 
coming from a given sample are equally valid for probabilities, one has

P(X < 7) = P(X * 5)+P(5 S X < 7).

(3) Random variables may have, with probability I, finite values only; event 
{!< + «.} is said to be a sure event, while event {A'< —<»} an impossible event. 
Thus

F(+ ■») = lim F(x) = 1 x-*<»

F(— oo) = lim F(x) = 0.
x-* —oo

Random variables playing role in practice arc not only finite but usually also bounded. 
This implies that there exist numbers like k and K: — oo<k</c< + °o for which 
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F(k)=O and F(K)= 1. If, for example, X is a random variable denoting the number 
of points gained in throwing of a die then

F(l) = 0 and F(T) = 1.

The cumulative probability distribution function of this random variable X may be 
easily constructed. If the probabilities of values 1, 2, 3, 4, 5 and 6 are all equal to 1/6 
then the probability of event i.e. the value of F(x) will be equal to 1/6
times 1, 2, 3, 4, 5 or 6 depending on the number of events that are to the left of x, 
see Figure 19.

The cumulative distribution function then looks like:
If a is fixed and b is approaching a in expression P(a^Xcb)=F(b)- F(a), then:

F(a+0)-F(a) = P(X= a).

If, however, b is fixed and a is approaching b, then:

F(b)-F(b-0) = 0.

(4) This latter relationship indicates that the cumulative distribution function is 
continuous from the left for all values of x. It is, however, not continuous from the 
right in those x=a points where P(x=a)^0.

At this point thc cumulative distribution function has a jump of a magnitude 

P{X=a\ In case of dice-throwing thc probability is P(x=a)=— at points a= 

= 1, 2, 3, 4, 5, 6 and, as shown in Fig. 23., thc cumulative distribution function has 
ajumpofl/6.

Similarly, a discontinuous cumulative distribution function is obtained if the ran­
dom variable X representing thc number of rainy days in a month or a year is consid­
ered. In this case, thc magnitude of jumps is usually not thc same. Ihe magnitude 
of discontinuity of thc cumulative distribution function F(x) would equal thc prob­
ability of event {-¥=&} at points x=k.

The meaning of a cumulative distribution function can further be explained by the 
following example. Let us consider thc axis x as a bar of infinitesimal small diameter, 
°n which a mass of total amount 1 is distributed. Ihe amount of mass belonging to 
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the different sections of the bar may be very different. There might be some parts 
without any mass (on the other hand certain isolated points may be the carriers of 
positive mass quantities but let us take it out of consideration for a moment). If F(x) 
denotes the quantity of mass lying on the left side of x then F(x) possesses the prop­
erties of a cumulative distribution function. The quantity of mass falling in interval 
(a, b) is F(b)—F(a); it is equivalent to the probability that the value of the random 
variable X is found in interval (a, b), if the mass is replaced by probability.

In case of discrete distributions mass is placed only to points x{ for which 
P(x—xi)~p^O and the magnitude of the mass is exactly p:. This is how one can 
talk about probability mass. It will be shown later that this terminology borrowed 
from mechanics may be extended to other notions of the probability theory.

2.1.2. MULTIVARIATE DISTRIBUTION

In many cases the joint analysis of two or more random variables related to some 
phenomenon is required. For example, if one is interested how river stages influence 
groundwater levels along a river bank, then the pair of random variable (X, F) 
of river stage X and groundwater level Y, or the random vector Z = (X, Y) is to be 
analyzed to find the distribution that serves as a basis for identifying any relationship 
between the variables.

If river flow, precipitation and groundwater level are considered jointly, the distri­
bution of a random vector

^ = (X1,X2,X3)

is to be determined or in other words: the joint distribution of random variables 
X2, X2 and X3 must be analyzed.

If n measurements Xx, X2, ..., X„ are performed with respect to quantity X then 
the joint distribution of these measurements, or the distribution of random vector

R — (Xx, X2, X„)

is sought. More often, instead of the distribution of random vector (yn X2, ..., X„) 
the distribution of random variable Y=f(Xx, X2, ..., X„) is of interest, where/is a 
function with n variables. In the most important areas of mathematical statistics, 
such as decision theory and testing of hypotheses such functions of random argument 
are of primary importance.

Let us discuss first the distribution of two-dimensional random vectors. Let Yand 
Y be random variables and consider the distribution of random points (F, F) over 
the plane.

Let P(axsX<aa, bx^Y^b2) denote the probability that the random point, i.e. 
random vector Z-(X, F) will fall into the rectangular area defined by a, a, b 
and b2, see Figure 20.

If this probability is known for every ut, «a, bx and b2, then, one might say that the 
joint probability distribution of random variables X and Y is known.
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Figure 20

The joint distribution of variables X and Y is defined by the joint cumulative distri­
bution function:

H(x,y) = P(X^x, Y^y).
It is easy to see that

(2.1) P(al^X<ai, b^Y b2) =

= H(a2, b^-H(a2, b1)+H(a1,b1) £ 0,

which shows that if the bivariate cumulative distribution function H(x, y) is known 
then the probability measure of any rectangular area on the plane can be calculated.

It is mentioned here without proof that H(x, y) is a monotonous non-decreasing 
function of both variables X and Y and

(2.2) H(+~, Too) = 1, H(x, -<x) = H(-°°,y) = 0.

The mathematical treatment of two-dimensional probability distributions is essen­
tially analog with the analysis of unit mass distributed over a plane (x, y). The quan­
tity of the mass belonging to a rectangle corresponds to the probability that a point 
(x,y) falls into this particular area. The value of H(x,y) in a given point (x0,y0) 
represents now the quantity of mass lying in the quadrant defined by x<x0, y<yo-

If the joint cumulative distribution H(x,y) of (X, Y) is known then the distribu­
tions F(x) and G(y) of variable X and Y can be easily derived:

(2-3) H(x,+^ = P(X^x, Y < + <») = P(X^x) = F(x),

H(+°°,y) = P(X< + °°, Y ^y) = P(Y <y) = G(y).

F(x) and G(y) arc called the marginal distributions of //(x, y).
If o^xj, b^y^ aa= + ~ and ba= + ~ are substituted in Eq. (2.1) then, by 

using Eqs. (2.2) and (2.3) one would have

(2.4) P(X>x, Y >y) = 1-F(x)-G(y)+H(x,y).

From the point of view of applications the most important case is when both X and 
Y are continuously distributed with density functions /(x) and g(y), respectively, 
and the random vector 2 = (X, Y) is also continuously distributed over the plane. 
In this case, similarly to the analogy of continuous mass distribution, the probability 
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density in point (x, y) is given by a bivariate function h(x, y), being a two-dimensional 
surface. If there exists a bivariate function h(x,y) for which h(x,y)^0 and 

oo oo
J j h(x, y)dxdy= 1 then h(x, y) is a bivariate density function. The probability 

that a random vector (X, Y) falls into a domain T of the plane is given by the (double) 
integral of function h (x, y) over T:

P((X = ff h(x, y)dxdy.
T

If this domain is the quadrant defined by (X<x, Y^y) then
X y

(2.5) P(X < x, Y< y) = J" y h(u, v)dudv = H(x, y),

which is a bivariate cumulative distribution function.
The following relation holds between the bivariate cumulative distribution function 

and the bivariate density function:

uxo y

That is, the bivariate density function, if it exists, is the second mixed partial deri- 
vate of the bivariate cumulative distribution function.

If the bivariate density function h(x, y) is known then the marginal distributions of 
variables X and Y may also be determined:

X 4-00 X 4-00

F(x) = H(x, + oo) = y y h(u,v)dudv = f h(u,v)dv]du 
— co —co — oo —co

oo y y 4-eo

G(y) = //(+ oo, y) = y y h(u,v)dudv = J [ J h(u,v)du]dv. 
— oo —oo — oo —oo

After differentiation the probability density functions of variables X and Y are 
obtained

(2.6) /(x) = F\x) = y h(x,v)dv

(2-6^ g(y) = G'(y)= y h(u,y)du.
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2.1.3. CONDITIONAL CUMULATIVE DISTRIBUTION AND DENSITY 
FUNCTIONS

Conditional probability for events was already defined. Similarly, the distribution 
function of a random variable given that another random variable has a particular 
value can also determined:

It is easy to see that

P(X<x\Y<y) =
P{X < x, K < y) = H{x, y) 

P(Y < y) G(y)

, Ptx^ X < x2,Y y) H(x2,y)-H(xl,y) 
P(Y < ylx^r ^xj =----- FM-FlxJ

P(Y<y\X*x) =
P(X ^x^Y < y) 

P(X S x)
G{y)—H{x, y) 

1-F(x)

It can be seen that in the latter formula event {^Sx, Y<y} is the difference of 
events {K<y} and {X^x, Y^y} and the second event is a part of the first. There­
fore the difference of the respective probabilities could be calculated.

It has been always assumed that the denominator differs from zero.
The probability of event {X=x} is zero for continuous variables, yet there is a 

need to determine the distribution of Y, given this condition. Under certain condi­
tions one can obtain this from the second formula. Let Xi and x2 be substituted by x 
and x+ Ax, respectively, and let both the numerator and the denominator be divided 
bydx:

H(x + Ax, y)-H(x, y) 
dx

p(Y * y|x s X < x+dx) = —•

Ax

If dx-*0 then the expression in the denominator approaches the limit /(x)^0 
and thc conditional distribution is obtained as

DH(x, y) J h(x,v)dv
, dx
{2.1) G(y |x) = P{Y ■< y |X = x) = , +~

j h(x,v)dv

I his indeed is a cumulative distribution function as G(y|x) is a monotonous non- 
decreasing function with zero at — «> and one at + °°. I he conditional density func- 
Hon is obtained by differentiation:

(2.8)
, , . #G(y|x) _ h(x,y)lOW—fw
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Similarly, the cumulative distribution and density function of X given Y=y is

X
y h(u, y)du

(2.7') ---------------
J" h(u,y)du

and

(2.8')
f,. x h(x,y) h(x,y)
f(x\y)= +„ - •

y h(u, y)du

The denominator in both cases is the density function g(y) of variable Y.
This was the case of continuous variables. The situation is somewhat simpler if 

both variables are discrete. There is no unique system for notation in this case and 
it is usually selected as a function of the particular problem.

Let X and Y be random variables having discrete distributions with possible values 
of non-negative integers. A usual notation for such probabilities is:

P(X = k, Y = I) = rkl, k,l = 0, 1, 2,...

k I

Probabilities used in practice can be determined from these quantities. In the 
following the term “cumulative” will, in general, be omitted when dealing with 
distribution functions. The cumulative distribution and marginal distribution func­
tions are as follows:

(2-9) P(X = k) = pk = 2rkl (2Pk=^

(2.10) P(Y = = 2rkl {2Qi=^
k

*-l 1-1
(2.11) H(k,l) = P(X^k,Y ^l)= 2 2 rtj (k,l = 1,2, ...).

i = 0 J = 0

Some conditional probabilities:

P(Y = l\X = k) = —; P(X - k\Y = I) = —
Pk qi

k-l 1-1
2 2 rtj

P(X <klltSY< /,) = .
2 qj

j-h
In mathematical statistics the analysis of more than 2 variables is often required. 

If Xk, X2, ...,X„ are the results of n observations with respect to some random 



quantities then these variables may be considered as elements of an n-dimensional 

random vector

Vector X is a random point in an n-dimensional space. The distribution of vector 
£ is the joint distribution of variables Xx,X2, ...,Xn. Consider now the case when 
the random variables are continuously distributed. The joint distribution of random 
variables Xx, Ah, ..., Xn is an n-dimensional distribution function:

H(xx, x2, x„) = P(Xx < Xx, X2 < x2, ..., X„ < x„).

The n-dimensional density function, if it exists, is then

, H(xi, x2, ■ • ■» x„)
h (Xi, x2, ..., x„) = 0x„ ■

The joint distribution function of n random variables, therefore, gives the proba­
bility of the joint simultaneous occurrence of n events i.e. {Af^xJ (i= 1, 2, .... n).

The n-dimensional distribution function H(xx, X2, • •••> x„) is a monotonous 
non-decreasing function and continuous from the left for all n. If — ~ has been substi­
tuted for any of the variables, then H(xx,x2, ...,x„)=0 (as putting — “ foi Xx 
would imply event {X(< —°°} which is impossible). On the other hand, 
H(+ oo, + oo,..., + oo)= 1 which is the case if all variables are equal to + oo.

The probability that an n-dimensional random vector X is in a prescribed rectangle 
of the /z-dimensional space, i.e.

P(ax S Xx < bx, a2 X2 < b2, ■■■,«„ S X„ < b„)

can be calculated by the distribution function H(xx,x2, ■ ■■, x„). This must certainly 
mean that these probabilities expressed by the values of H should be non-negative, 

see Figure 21.
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If there exists any n-dimensional function h(xlf x2, ..., xn)=0 for any domain E 
of the n-dimensional space, for which

P^eE)= ff"f •••’ Xn) dx1dx2...dxn
E

then X is distributed continuously and relations (2.2) and (2.3) are valid for functions
H(xj, x2,..., x„) and h^, x2, ..., x„). Equivalently:

(2.11) /* /’... j’'h(t1,t2,...,tn)dt1dt2...dtn = H(x1,x2,...,xn),
— oo —oo —oo

and
OO OO OO

(2.12) y f ■■■ f h(xk, x2,xn)dx1dx2...dxn = 1.
— oo — oo — OO

Equations (2.7) and (2.8) can be easily generalized for multi-dimensional distri­
butions. The only thing to do is to replace X and Y by random vectors and obviously 
the functions/(x), g(y), f(x\y), g(y|x) should have the same number of arguments 
like the dimensions of X and Y.

For instance, if the joint distribution of X^ X2, ... Xn is continuous then the 
joint conditional distribution function of X^ X2, ..., X„ given conditions Xt+1=

•••» 2fn=xn is.
JT(Xj, X2, • ••» + •••> X„)

= F(yi < Xi, ■ ■Xkl-^Gk + 1 = ** + l, ~ Xn)

and may be defined by the following limit:

Jf(Xi, Xj, • X^IXj + i, ■ x„) =

= lim ... lim P(Xx ■< Xi,...» Xk ■< xjx^+i S Xk+1 < x*+i +

-j-dx^ + i, xn — ■*- Xn~l“dxn).

The corresponding conditional density function is:

dH(x„ ...,xk\xk+1, ...,xn) 
dxk, ...,dxk = h(xlt ..;Xk\xk+l, ■;X„) =

/1(X1, ...,xn) 
g(x* + 1, ...,x„)

where function has (n—k) variables and is the joint density function of variables 
+ ^* + 2, •••, X„.
Multi-dimensional conditional density functions play an important role in regres­

sion analysis (see: Chapter 8.1).
Let us now investigate and define an important new notion by knowing the joint 

distribution function of more variables: the independence of random variables.
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Random variables Xx,X2,...,X„ are said to be completely independent if for 

any
a; < bt (i = 1,2,..., n)

P(a^ = Xx < bx, a2 — X2 < ba, • ••> an = Xn ' bn)

= P(ax S Xi < bx)P(a2 - X2 < b^...P{an ^Xn< b„).

Specifically, if a;= — 00 and bt=x (i= 1, 2, ...,ri)

P(Xx < Xi, < x2,..., X„ < x„) = P(Xx Xx)P(X2 < x^)...P(Xn < x„).

That is
(2.13) H(xx, x2, ..., x„) = Fx(xx)F2(x2)..-Fn(xn).

In other words: n random variables are completely independent if their joint distri­
bution function is equal to the product ofthe distribution functions of the individual 
variables. If the variables are continuous then their joint distribution function is 
also continuous. It also follows from the above defined independence that the joint 
density function must be the product of the particular density functions:

(2.14) h(Xx, x2,..., x„) = fx(xi)f(x2) ■■■f.(.x„).

The notion of independence is of special importance since the well-established meth­
ods of mathematical statistics are almost exclusively based on independent random 
variables. The further development of statistical methods for non-independent ran­
dom variables is one ofthe most urgent tasks of mathematical statistics.

Intensive research is being conducted nowadays in this direction.
To decide whether random variables Xx, X2, ...,Xn™ independent or not is 

a task of mathematical statistics. Appropriate methods will be discussed in Chapter 6.

2.1.4. THE DISTRIBUTION OF THE MONOTONOUS FUNCTION
OF A RANDOM VARIABLE

In practice it often happens that the distribution of a random variable X is known and 
the distribution of a function of this given vanable is sought. Variable
Y is, of course, another random variable. The distribution of Y can be easily deter­
mined on the basis ofthe distribution of X if T=is a monotonously increasing 
or decreasing and differentiable function, i.e. it can be inverted. If this is true and the 
distribution function of X is denoted by then by using notation GW for the 

distribution function of Y:
G(y) = P{Y ^y) = PI<P(X) * Ji = * VW! =

If variable X has a density function/(x), then thc density function of variable Y is:

(2.15) g(T) = —=------jy--------- {yn dy

57



If, for example, Y=aX+b, or <p(x)=ax+b and the density fri ction of Tf is/(x), 
then

1 ( v — b(2.16) gW=_4Z_4

If
Y = ex 

and
y = (p(x) = ex', x = = Iny

then

(2.17) g(y) =

2.1.5. THE DISTRIBUTION OF THE SUM OF TWO RANDOM 
VARIABLES

Let first discuss the case of continuously distributed variables. Let the joint density 
function of continuous random variables X and Y be h(x,y). In order to find the 
distribution function of Z=X+ Y, the probability of event

{Z^z} = {X+Y ^z}

must be determined for all z. Consequently, the density function h(x, y) is to be inte­
grated over a region T+ on the plane, for which the condition x+y<z holds. If the 
distribution function of z is denoted by K(z), then

K(z) = P(Z < z) = jj h(x, y)dxdy.
t:

This integration can be performed in the following way: first x is fixed and we 
integrate according to y in interval (— «>, z—x), then according to x in interval 
(— °°, + »). In other words, thc double integral may be converted into two successive 
integrations:

oo Z — X

(2.18) K(z) = h(x,y)dy]dx.
— OO — oo

If Xand Y are independent random variables, i.c.

h(x,y) = f(x)g(y) 
then

(2.19) K(z) = J f(x)[ f g(y)dy]dx.
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The internal integral is nothing else than the value of the distribution function of X 

atz-x, and therefore

(2.20) X(z) = J G(z —x)f(x) dx.

The density function is then obtained by derivation according to z:

(2.21) K’(z) = k(z) = / g(z —x)/(x)dx.

In case of identically distributed, independent variables, in other words, if f(x)~ 

=g(x), the density function of X+Y is
co

(2.22) k (z) = / /(z “ dx'

The distribution of sums in a discrete case will be discussed only for independent 

variables: , , _...
Let be the possible values of X, x^,..., and of Y (independent of X) y^y,,....

Let denote the probability of their values by:

P(Z = xt) = A (1 = 1,2,...)

P(Y=yj) = qj (j = l,2,...).

Then for the random variable Z= X+ Y it is true that

(2.23) P(Z<z) = 2 Pt^J

which means that summation should be extended for every pair of the (i,j) indices 
for which x.+y^z. If z cannot be calculated like this above described sum then 

its probability is zero.
Let allow for X and Y to be non-negative integers. 1 hen Z-X+ ) will be also 

a non-negative integer and the probabilities are the following:

(2.23') P(Z = k)= 2oPi^-1

where p{ — P^X=i\ qj~ P(Y =j).

59



2.1.6. THE DISTRIBUTION OF THE PRODUCT AND QUOTIENT 
OF TWO INDEPENDENT RANDOM VARIABLES

Let the density function of X be/(x) and of Y (independent of X) g(y). Let denote 
by T+ the region on the plane (x, y) for which xy< z and by T* for which y < z. The 
following relationships are obvious:

R(z) = P(XY < z) = j'f f(x)g(y)dxdy

S(z) = P (y < z) = ///(x)g(y) dx dy. 
k ; T»

If Y may take only non-negative values: TsO, and g(y)=0 if ySO, then the 
following expressions may be obtained for the distribution and the density functions:

OO z[y OO z V

(2.24) R(z)= / g(y)[ f f(x)dx]dy = f TRlg(y)dy
0 —OO 0

oo xy oo

(2.25) S(z)= / g(y)[ f f(x)dx]dy= f F(zy)g(y)dy
0 —<» 0

(2-26) r(z) = R'(z) = //UlgCy)-^

(2.27) s (z) = S 'W = / yf(zy) g (y) dy.
0

If Y may take negative values, then the density functions will take the form:

(2-2S) r(z)= //(yjgW-y-dy

(2.29)
oo

s(z) = / l/l/(zj)g(y)dy. 

— oo

2.1.7. THE PARAMETERS OF DISTRIBUTION FUNCTIONS

The distribution of a random variable is described by help of thc distribution function 
or (if available) of the density function. In practice, it is often sufficient (and neces­
sary) that an overall picture be at hand about the distribution by aid of some param­
eters. I he analogy between the distribution of a random variable and of mass has 
been earlier mentioned. In case of the distribution of mass thc main question is, 
where can be found the center of gravity, or the centrum and what is thc density of 
mass around this point? The measure of this latter is called moment of inertia. Simi­
larly, it is of prime importance to know also in thc distribution of random variables 
where the center of gravity of the distribution might be which we call “expectation”.
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It is also interesting how close these random numbers will scatter around this 
value - or centrum - and which interval (short or longer) will contain a given per­
centage (say 70—90 percent) of the variables. In probability theory the moment of 
inertia is replaced by variance, by a squared average deviation of the variable from the 

expected value. . .
Beyond expectation, and variance also other numerical characteristics will be dis­

cussed. Limits will be set up containing 25, 50, 75 percent of the values of the random 
variables and a number that is characteristics to the symmetry of the distribution. 
Parameters representing stochastic relationships among more random variables will 

be also discussed.

a) The expectation and its characteristic features
From now on the term “mean” is used in this book mostly instead of “expectation 
or “expected value” which are synonymous expressions.

The calculation of the mean or the centrum of a distribution is analogous to the 
calculation of mass central gravity. Let X be a discrete random variable with possible 

values of Xi, x2, ... and let
P{X=xk) = pk (k = 1,2,...).

In this case the mean of random variable X, denoted by E(X\ is obtained as

(2.30) E(X) = £xkpk,

if |xt|pk<°o. Because £ pk= 1, it is evident that the mean of X is a weighted arith- 

metic average of the possible values of X, where the weights are composed of the prob­

abilities attached to each variable.
If X is a continuous variable with a density of than the mean is obtained by 

expression

(2.31) 
— oo

similarly to the definition of the mass central gravity point from a continuous distri­
bution of mass, supposed that the improprious *ntcBra^ is absolutely convergent, i.e.,

oo
/ |x|/(x)dX <+«• 

— oo
Some important properties of the mean are expressed by the following rules.

Theorem 1: The mean of a constant is the constant itself:

£(c) = c.
Proof: Constant c may be considered a random variable that will take its only 

value c with a probability of 1. So, according to the definition of the mean:

E(c) = c -1 = c.
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Theorem 2: If Xis a bounded random variable, i.e.

a^X^b 
then its mean exists, and

a E(X) S b.

Proof: If X is a discrete random variable with possible representations of xn 
x2, ..., x„, ... and with attached probabilities of pk, p2, ...,pn, ... then because 
every x1? x3, ..., x„, ... is in between the limits a and b:

a = ap1+ap2 + ...^ x1p1+x2p2+ ...^ b = bp1 + bp2 + ... 
and

a = a 2 Pi - 2 XtPi ^b Pi = b.

If A' is a continuous random variable, then

a = a J f(x)dx = af(x)dx S xf(x)dx S

OO OO
S J bf(x)dx = b J f(x)dx = b.

— oo —oo

It should be mentioned that in case of a^X^b

b 
f f(x)dx = 1. 

a

Theorem 3: If Y=aX+b, i.e. random variable Y is a linear function of random 
variable X, then

(2-32) E(Y) = E(aX+b) = aE(X)+b.

Proof: If X is a discrete random variable with possible values of xn x2, ... and 
respective probabilities of Pi,p2, then thc possible values of Y will be axt + b, 
ax2+b+... with probabilities pl,p2,..., so

= 2 (°xk + b)pk = a 2 xkpk + b Z Pk = aE(X)+ b 
k k k

supposed of course that the series of ? l**lp* >s converging, say | J| must have 
a mean.

If Tis continuously distributed with a density function of/(x), then if X=x so 
Y—ax+b and thc density function of Y on the basis of formula (2.16) is:

, 1 y-h)s«=J
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and
00 1 M (y-HE(Y) = I yg(y)dy = —r I yf[-^- 

I I —00

y—b 
and by substitution of -------— u.

a

E(Y) = — [ (au+b)f(u) du = a f uf(u)du+b f f(u)du — aE(X) + b. 
v ' Ini J ~ -00

It should be mentioned as a special case that if Y=X-E(X), then

E(Y) = E(X) — EE(X) = E(X)-E(X) = 0.

Definition: Let random variable Y be a continuous function of random variable 

X: Y=<p(X). The mean of Y is then defined as

(2.33) E(Y) = 2 

in case of a discrete distribution, and

(2.33') E(Y) = J^fMdx
— 00

in case of a continuous distribution supposed that the sum, or the integral is abso­

lutely convergent.
The mean of functions of random - vector variables is defined in an analogous way. 

E.g. if continuous random variables are at hand, and the joint density function of 
random variables ^2, • is hfa, xt, .... xJ and Y—(p(Xl,Xi,...,Xn), 

then
OO ©O

(2.34) E(Y) = f ... f (p(xi, ...,x„)h(xi...... x„)dxl........dx„ 
— 00 — 00

ifthe improprious integral is absolutely convergent.

Theorem 4: Let X and Y be random variables having any kind of distribution 

with existing means, then
(2.35) £(Z+K) = £(X)+£(n

Proof is first presented on discrete variables. Let the possible values of A num­
bers xo Xj.......x„, ... and of Y numbers ........ ••• • And let define

P(X = x^Pi\ P(Y=yj) = qj;

P(X = xhY = yj) = rtJ (IJ=1,2,...)
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where the probabilities stand for a joint distribution of the pair of variables (X, Y).
On the basis of the definition of the mean:

E(X+Y) = Z Z (Xi+yj)^ = Z Z xStj+Z Z yjru = 
i J i J i J
= Zx^Z^+Z yAZ riA-

i J Ji
According to (2.9) and (2.10)

Zrij=Pi, Zrij = qj-

Consequently,
= Zxipi+Zyj9j = E(X)+E(Y).

i J

In case of continuous variables if the joint density function of X and Y is h(x, y), 
then according to (2.34) and by substituting <p(x, y)=x+y

co oo oo oo

E(X+Y) = J f (x+y)h(x, y)dxdy = f j xh(x, y) dx dy+

OO co oo oo co oo

+ / f yh(x,y)dxdy = f J h(x,y)dy^dx + f y( f h(x, y)dxj dy =
— co — oo — OO —oo — oo —oo

oo OO

= J xfMdx+ / yg(y)dy = E(X) + E(Y). 
— OO — oo

The theorem dealing with the mean of the sum of random variables may be gen­
eralized for any finite number of addends by induction:

(2.35') E^+X2 +...+X„) = ECXJ + E(XJ +... + E(X„).

If, namely, X= A\+X2+... + X„^; Y—Xn and suppose that the theorem is valid 
for n— 1 addends, or in other words, if

E(X) = E(X, + . ..+Xn_1) = ..+£(*„_,)

then it follows from the proved theorem that

Wi + .-.+^W = E(X) + E(X„) - £W + £(r) =

= "X E(Xt)+E(Xn) = ZE^).
i-n i-i

Theorem 5. The mean of the product of independent random variables is equal 
to the product of their respective means. So, if X and Y are random variables, then

<2-36) E(XY) = E(X)E(Y).

Proof is given first for the continuous case. Because of their independence, the 
joint density function of random variable X and Y is equal to the product of the den-
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sity functions of each separate variable:

h(x, y) =/(x)g(y).

Based on formula (2.34) and with a substitution of (p(x,y)=x-y.
co co 00

E(XY) = / f xyf(x)g(y)dxdy = { xf(x)[ ] yg(y)dy]dx =

= j xf(x)dx- f yg(y)dy = E(X)E(Y). 
— 00 —00

If y and y are discrete variables and P(X=x^Pi, P(.Y=yj)=qj and their 
joint distribution is:

P(X = xt, Y — yJ) = rij

then because X and Y are independent

rij = ptqj (i,j = L2,...).
Consequently,

E(XY) = 22 Wij = 22 XtYjP^J = 
i j ‘ J

= 2 xtPi(2 yjqj) = 2 w 2 yj^j = e(x)e(y). 
i j ‘ j

This last theorem is easily generalized for the calculation of the mean of products of 
independent random variables in any desired finite number. Pi oof to this may be 
obtained by the use of induction.

It is true, that in case of independence

(2.36') ECX^.-.XJ = ECXJEVQ-

assuming thc existence of the means of thc individual variables.

h) Conditional expectation
Let have X and Y discrete random variables with the following distribution:

y. .... .. 1
{pl,p»,-,pn>-)

Y. p’,, ...,yn, ■ • ]
Un q»...... q^ '

Let be
P(X = xh Y = yj = rtJ (i,J = 1,2,...).

One may define thc conditional mean of random variable Y by thc condition that X 
has taken a value Xp

(2.37) E(r|X = xj = 2 Yjp(Y = = *<)■
j
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By aid of this equation the conditional mean of Y may be attained for every actual 
value of variable X as a condition. The value of this conditional mean depends on 
a value xt of X, which is a random event. £(71^) is therefore a random variable 
with possible values of

£(F|X = x^, E(Y\X= x2), ..., £(T|X = x^, ....

It is easy to see that E(Y|X) takes a value E(Y\X=x{) exactly with a probability 
of A-

Let us calculate the expectation of random variable E(YIT'):

i

If relationship (2.37) is considered the following interesting result may be obtained:

(2.38) £[£(T|X)] = 2 (2 = Yj\X = x^ =
» j

= 22 y^u = 2 yj 2 = 2 y^i = e(y). 
i j J i J

Here, the following relationship was also used:

P(Y = y^X = xt)P(X = x,) = P(Y = yjy X = Xi) = r^.

Eq. (2.38) indicates that the mean of the conditional mean of Y related to X is equal 
to the unconditional mean of variable Y.

If X and Y are continuous random variables with density functions of/(x) and 
g(y) and a joint density function of h(x, y) then the conditional mean of random 
variable Y related to X is defined by

£(T|X = x) = ]y^Ldy = fyg(y\x)dy.

The following relationship is again valid:

(238') £[£(T|Z)] = f( f y^2Ldy]f(X)dx =
— co — oo J

oo eo oo

“ f y\ f h(x,y)dx] dy = f yg(y)dy = E(Y). 
•—OO — oo — co

(With the assumption — of course — that the above defined improper integral 
is convergent).

Function y(x)=£(T|A'=x) which depends on x is called the regression curve 
of variable Y related to X.

In an analogous way the conditional mean of random variable X related to Y may 
be defined.

A conditional mean defined as £(T 1^^..., Xn) may be also interpreted. This 
will be a function of the variables X„ X........Xn, and is called a function with » 
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variables. This function has an interesting minimum-property: if g^, T2,..., TJ 

is a function of variables Xly X2, Xn, then

(2.39) £{[T-g(^i, X2, ...,X„)]2} S E{[T-£(TA'1, T2, ...,T„)]2}.

c) The variance and its characteristics
As it was mentioned earlier the mean is only one of the numerical charactentics of a 
distribution. It is for the definition of a central point around which the values of the 
random variable will fluctuate. About the measure of this fluctuation, however, it 
does not say anything. The scattering of the values of the random variable around this 

central point is usually described by

and is called standard deviation.
Below the square root the squared average deviations of our random variable and 

of its mean are found. We may talk about standard deviation only in the case, if the 
mean E(X) and another mean E[X— E(X)]2 are existing.

The variance of random variable X is defined as.

(2.40) W) = £[*-£0012-

Calculation of variance may be made easier by the use of the following expression:

(2.41) D2(X) = E[X2-2XE(X)+E2(X)] =

= E(X)2-2E(X)E(X) + E2(X) = E(X2)-E2(X).

Because D2(X)^0, it is evident that

E(X2) £ E2(X).

The calculation of variance is the following in case of discrete variables:

D*(X) = 2[Xi-EmPl = 2 xiPi~E^- 
< *

In case of continuous variables:

D'(X) = f [x-E(X)]2f(x)dx = fx^dx-E^X).
— oo

By aid of the notion of variance another important characteristic of the mean denoted 
by E(X)=m may be expressed.
IC a is a real number, then

(2.42) E[(X-a)2] * E[(X-m)*].

Namely,

E[(X-a)2] = £[(X-m+m-a)‘] - E[(X-nO2] + 2(m-fl)E(X-m) + (m-a)2.
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Because E{X~m) — E(X) —m = 0, therefore

E[(X-a)2] = £[(F-m)2] + (m-a)2 = D2(X) + (m-ay D2(X).

The mean E(X')=m is a point on the line from which the squared average deviation 
of our random variable is less than its squared average deviation from any other 
point.

Relationship (2.42) is called the Steiner-formula.

Theorems pertaining to the notion of variance.

Theorem 1: If random variable Fis a linear function of random variable X: Y— 
=aX+b, then
(2.43) D2(Y) = a2D2(X).

Proof: From the definition of variance

D2(Y) = E{[(aX+b)-E(aX+b)]2} = £{[nX-£(ay)2]} =

= a2£{[Y-£(Y)]2} = a2D2(X).

Theorem 2: If X and Y are independent random variables and if Z=X+Y, 
then
(2.44) D2(Z) = D2(X)+D2(Y).

Proof: If X and Y are independent, then also X—E(X) and Y— E(Y) must 
be independent. With consideration to the fact that the mean of the product of inde­
pendent variables is equal to the standard deviation of their mean values, and due to 
E[X— £(F)]=:0 and E[Y— £(K)]=0, on the basis ofthe definition of variance we 
may find that:

D2(Z) = D2(Y+F) = £{[(y+r)-£(F+r)]2} = £{[F-£(F) + r-£(r)]«) = 

= £{[X-£(Y)p}+2£[X-£W]-£[F-£(r)] + £{[F-£(y)P} =

= D2(X)+D2(Y).

Theorem 2 may be extended to a finite number of independent random variables by 
induction:

If Xx, X2,..., Xn are independent random variables, then

(2.44') f>2(yi+Fa+...+A„) = D2(Xl)+D2(X.^)+...+D2(Xn).

By knowing the mean and standard deviation of a random variable the fluctuation 
of the latter around the mean may be well characterized. 1 his is expressed by the 
so-called Chcbyshev-inequality.

Theorem 3: The Chcbyshev-inequality. If the mean and standard deviation of 
a random variable X exist, then

<2-45) P[|X-£W| £W)]
a
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Chebishev’s inequality has the following verbal meaning: the probability that the 
value of a random variable will deviate from its mean in absolute terms more than 

2D (y) is less than 1, or the probability that the observed value of X will fall outside 

the interval [E{X)-3D(X\ E(X)+3D(X)] is less than|, etc., see Figure 22.

----- (-------------- ----- T--------------- j
E(x)-3D(x) E(x) E(x) + 3D(x)

Figure 22

If this interval is depicted on the line of numbers, and a large number of observa­
tions has b:en performed on X, then, about 90 percent of the observed values will 
be found in this interval supposed that the mean and the standard deviation^of^ 

exist. If in Eq. (2.45) the substitution W^X^e is introduced then — = —

and Eq. (2.45) will be equivalent with the following statement:

x D2(X)
(2.46) P(|X-£(X)| > e) = —

Proof: Introduce the symbols E(X)=m and D(X)=a. If X is a discrete ran­
dom variable with possible values of ... and with parallel probabilit.es of 

Pi,p2,..., then

^ = 2(xt-myPi^ 2 (x^p^ i i: (xt—m)»« *•'** *

From this:
. °2 

P(|X-m| >e)

If Yis continuously distributed with a density function of/(x), then 

co
ff2= [ (x-myf(x)dx g f (x-ni)2f(x)dx + 

— oo ““ °°

+ f (x-myf(x) dx g t2 ( Tf(x)dX+ J dx) = e«P(|X-m| * 8). 

m+‘m ( ft
Remark: Chebyshev’s inequality is of general validity. It is a measure of the fluctua­
tion of any random variable which has a mean and a standard deviation. Duc to its 
general validity, however, no accurate calculation may be expected by its use for the 
Probability of a given deviation. We will sec that for example in case of the normal 
distribution, a very important distribution in practice, the values of the random vari­
able arc much closer around the mean than it might be expected from Chebyshev’s 
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theorem. The probability of deviation \X— m|>2cr in this case is less than 0.05. The 
theorem’s importance, however, is in this informative role. It will be working even 
in cases if nothing else but the mean and standard deviation of a distribution are 
known.

d) The moments of a random variable
In the previous section the mean of some function cp(X) of a random variable X has 
been defined by expressions (2.33) and (2.33’). If this function <p(X) is selected in 
a special way we may obtain the moments of a random variable.

Let be <p(X)=Xk, then
(2.47) at = E(Xk).

This expectation*  is called the £th moment of random variable X. The mean is the 
first moment of X.

* If this expectation exists!
** Let assume that the sums and integrals used for this purpose are absolutely convergent.

If then

(2.48) pk = £{[X-fOOD
is called the &th central moment of random variable X. Variance is nothing else than 
the second central moment ofthe random variable:

D\X} = ^ = E{[X-E(XW} * E(X^-E\X) = as-a?.

It is obvious that higher order central moments can also be expressed by non-central 
moments. E.g.
(2.49) = ^KX-aJ3] = E(^3)-3a1E(y2) + 3a?E(V)-a? =

= a3 —3a1a2+2a3.

(2.50 = E(X-aj4 = ot4-4aia3+6aia2-3ai.

Ifthe variable is discrete, calculation ofthe moments is performed by aid of the follow­
ing formulae** :

= 2 tip*
i 

and
Pk = 2 (Xi-CtiYPi.

i

Ifthe variable is continuous, and the density function of X is denoted by f(x) the 
following expressions stand for the same purpose:

a*=  f xkf(x)dx

and
oo 

Pk= / (x-a^^dx. 
— co
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It should be mentioned that if the distribution of a random variable X is symmetric 
with respect to its mean, its odd-order central moments are zero. It may happen, 
however, that the distribution of X with respect to its mean is asymmetric, or 
skewed. The measure of skewness is:

Mi
(2.51) =

(This expression is usually used in case of continuous distributions).
For a measure of the excess of a density function the following equation was 

introduced:

(2.52) 7s = ^-3-

In case of a normal distribution y2=0. If for a continuous distribution 72>0 then 
its density function will reach higher — it will be peakier than the density function 
of a normal distribution (see Section 5.6). If y2<0, it will be flatter than the density 
function of the normal distribution.

Another useful descriptor to characterize continuous distributions is the median 
denoted by Me. It is a value which will be exceeded by the random variable with 
a probability of 1/2. In mathematical form:

W) = |.

Ifequation F(X)=y has more solutions, so for example, if the distribution function 

F(x) reaches a value of 1/2 in point x0 and remains constant up to any point from 

which it will increase again, then

Solution to equation F(x)=p (let assume there is only one solution) is called thepth 
quantile of a distribution denoted by qp. It is obvious that </£ = Me.

Quantiles q t and q^ arc called upper and lower quartiles, sec Figure 23.

Figure 23
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e) The correlation coefficient
There are some descriptors used with respect to the joint distributions of two or more 
random variables. Iwo of them will be here discussed in detail. If two random vari­
ables X and Y are taken simultaneously into consideration in an experiment we are 
usually faced with the following problem: are they independent of each other or is 
there any functional relationship between the respective values? It is often the case 
that a certain tendency may be discovered between X and Y, e.g. if X is large Y is also 
large or vice versa.

If, for instance, X is a stage value in a given point of a river and Y is groundwater 
depth in a nearby well then one may observe any kind of stochastic dependence 
— a tendency — between the two series of measurements even if there is absolutely 
no functional relationship at hand. Therefore, this stochastic dependence is poured 
in a numerical form by aid of the covariance and the correlation coefficient.

Let X and Y be random variables. If they are independent of each other then

£{[x-£Wi[y-£(y)]} = £[y-£W].£[r-£(r)] = o,

based on Eq. (2.36).
If X and Y are not independent of each other then the above presented expectation 
will have a value C which is, in general, different from zero. I he quantity expressed by

(2.53) c = £{[y-£Wl[r-£(y)]}

is called the covariance of random variables X and Y. If Y=X, then C=£[.Y— £(.¥)]" 
which is identical to the variance of random variable X. The value C of the covariance 
may appear in the form of any real number depending on the distribution of the vari­
ables in question. This means that it would be difficult to conclude on the closeness 
of a stochastic dependence from the value of C. It appeared to be more rational to 
settle with another parameter which would have an upper and lower limit, moreover 
it would carry information about the closeness or looseness of the relationship between 
the two random variables. This parameter is called correlation coefficient, having 
the form:

<2-54> «=--------- omom--------- •

The correlation coefficient is the covariance of random variables X and Y divided by 
the product of their respective standard deviations. The value of the correlation coeffi­
cient q may fluctuate between — 1 and + 1 due to the fact that the covariance in the 
numerator cannot be larger than the product of the standard deviations. 'I his state­
ment can be verified by the following theorem: if X and Y are random variables with 
existing expectations of their respective squared values, then

(2.55) |£(XK)| S /£(*’)£( La).

72



Namely, for any optional, real A

and
E^X-Y^ S 0

^E(X2)-2XE(XY) + E(Y2) S 0.

Figure 24

This expression is a second-order polynom for A which may at best touch the Y-axis, 
or in other words, its discriminant is not positive. So,

4[£(YY)]2-4£(Y2)£(K2) S 0

from which our earlier statement can be read out.
If now, in Eq. (2.55) Y-£(Y) is substituted instead of X, and Y-E(Y) instead of

Y, then we obtain

£{[Y-£(Y)][K-£(r)]} S = ^(X)D(Y)

from which it follows that
lei S 1.

In case if random variable Y is a linear function of variable X:

Y = aX+b

then c=l, orp= —1 according to being a^O or a<0.
Its explanation is simple:

£([Y-£(Y)][aY+b-«£(Y)-b]} _ a£|7-£(Y)]2 = « „+1
Q “ D'WD^aX+B) ’ I«IW |aI

Thc statement is true in its reverse. If |C| = 1, then thc first variable is a linear function 

of the second.
For the sake of practical applications expressions of both, covariance and correla­

tion coefficient may be simplified somewhat:

C= £{[Y-£(Y)][r-£(nn = £[(Yr-£WY-£(y)X+£(X)£(Y))] =

= E(XY)-E(X)E(Y).
And from this:

E(XY) — E(X)E(Y)
(2.56) Q--------- D(X)D(Y)
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In order to calculate covariance and correlation between random variables X and Y 
their joint distribution must be known.

If X and Y are discrete, then:

P(X = xO = Pt, P(Y = y*) = Pk 
and

P(X = xt,Y = yk) = rik (i, k = 1,2,...)

c = 2 2 [Xi-E(X)][yk-E(Y)rik = 22 xtyk-rik-E(X)E(Y).
i k ‘ k

If and Y are continuous with a joint density function of h(x, y), then:

C= / f xyh(x,y)dxdy-E(X)E(Y). 
— oo —oo

Here, relationship (2.34) was used.
If X and Y are independent from each other, the covariance of the two is zero. 

Because the mean of the product of independent random variables is equal to the 
product of their respective mean values, therefore:

C = E(XY)—E(X)E(Y) = E(X)E(Y)-E(X)E(Y) = 0.

So, if X and Y are independent
C _Q 

8 D(X)D(Y)

The statement is not valid for its reverse. If the correlation coefficient between A and 
Y is zero, it is not necessary, in general, that the two variables are independent of 
each other. The correlation coefficient is better a measure of the linearity of a sto­
chastic relationship than of closeness! (An example: if X is uniformly distributed 
in interval [-1,+1] and y=5X3-3X then q=0, although there is a functional 
relationship between X and Y.)

If the correlation coefficient between two random variables, say X and Y, is zero 
then we speak about uncorrelated Xs and Ks. As this was earlier mentioned, uncorre­
lated relationship does not mean independence, in general. If, however, the joint 
distribution of X and Y is a bivariate normal distribution then uncorrelated status 
is at the same time independent status. Independence is also predetermined by an 
uncorrelated condition if X and Y are the indicator variables of two different 
events (see Section 7.1.3).

2.1.8. GENERATING FUNCTION AND CHARACTERISTIC FUNCTION

a) The generating function
In the following, two useful analytical tools will be presented: thc generating function 
and the characteristic function. By their help the moments of random variables and 
the distribution of thc sums of independent random variables may be easily calcu­
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lated. Also they are used and seem to be indispensable for the determination of the 

different marginal distributions.
The generating function is used for the investigation of the distribution of non-nega- 

tive integer random variables.
Let X be a random variable with possible values of integers 0,1, 2,and 

with joint probabilities ofp0, Pi, A, ••••
Let formulate the function

(2.57) GW = Z P***

which will be called the generating function of random variable X. Due to the fact 
that the A numbers are probabilities, and 2 ft=l, the power-series representing 

this generating function (if k will take countable or finite values) is convergent if 
w«l, and G(l)=l. It follows that if M«l, function G« is derivable any times, 

and . ,
G'(x) = 2 kPk^ • 

k

If this power-series is convergent also at X= 1, then

G'(l) = 2 kPk = EW 
k

G*(x) = 2 k(k-l)pkxk-2 
k

G"(l) = 2 k2pk-2 kPk = EiX^-EiX). 
k k

It can be seen that the mean of the integer random variable Xis:

(2.58) £W =

And its variance is:
(2.59) Z)2W = G^O + G'fO-lG'fl)]2-

It should be noted that the generating function

G(x) = 2 ^P^ 
k

itself is an expectation, the mean of random variable xx. Namely (according to the 

definition of the mean):
(2.60) E(xx) = 2 xkpk = G(x).

From this observation an important theorem is derived concerning the generating 
function of the sum of independent random variables. II Xt.......A„ are inde­
pendent integer random variables and if y-^+X4+...+^, then the generat.ng 
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function of this random variable is:

GyM = E(xY) = T^x^^"^") = E(xxi • x^.-.x^ =

= = GXl(x)GXt(x)...GXn(x).

Due to the independence of variables Xlt X2, X„ the variables xx', x^, ... xx» 
are also independent and the mean of the product of independent random variables 
is equal to the product of their respective means.

It is now clear that the generating function of the sum of independent random 
variables is equal to the product of the generating functions of the individual vari­
ables. This theorem will be often used for the determination of the distribution of the 
sums of independent random variables along with the discussion of the most impor­
tant distribution functions. The generating function is much more suitable for the 
determination ofthe distribution of sums than the rule of convolution which is mostly 
of theoretical importance.

It may often happen that the distribution of the sum of independent random vari­
ables—identically distributed—must be determined. In this case function Gy(x) will 
take the following form (if n members are at hand):

(2-61) Gx(x) = [G^Wr.

In the explicit form of the generating function GYM the coefficient of xk will give the 
probability P(Y=k).

b) The characteristic function
The generating function is defined only for non-negative, integer random variables. 
In the general case the so-called characteristic function plays a similar role than the 
generating function has played with integer variables. The characteristic function 
of a random variable X is defined by the mean of thc complex random variable e"x. 
Let denote the characteristic function of random variable X by cpx(t), then:

<Px(f) = E(ei,x) = E(cos tX)+iE(sin IX) (i2 = — 1).

The characteristic function will be used in this book only to continuous random vari­
ables. In this case:

oo

(2-62) <px(f)= f e,tXf(x)d(x)
— oo

where/(x) is the density function of random variable X. A characteristic function is 
called Fourier-transform in mathematical analysis. Some important features of thc 
characteristic function arc:

(2.63) |^(,)| = | f s j \e“x\f(x)dx = 1

because

= + Feos’/x+sin2 Zx = + /T = 1.
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It should be noted that

<px(—0 = £(e-"x) = £[cos(-fX)+isin(-fX)] =

= £(cos tX)-i£(sin tX) = iflxOY

According to the theory of the Fourier-transform, if

oo

/ |p(Z)|dt < + “

then

(2.64) fM = f e~Ux(0 dL

In other words, if the characteristic function is known the density function may be 
determined. A distribution is unambiguously defined by a characteristic function. 
During our discussions even the inverse formula of (2.64) will not be needed due to the 
fact that only of a few continuous distribution will their characteristic functions be 
determined and from the well-known characteristic function the identification of the 
distribution will be not difficult.

In the following an important theorem related to characteristic functions will be 
presented for the determination of the distribution of the sums of independent ran­
dom variables.

Theorem: Let Xt, X2, ...,Xn be independent random variables and suppose 
that r=y1+JTa+... + yB. In this case the characteristic function of random vari­
able Y is equal to the product of the characteristic function of the addends. So,

(2.65) <pY(t) = £(e"r) = £[e"<*i+-+M = =

= £(e',xi) •£(?'*«)... £(e"^ = (Px^-^x^-(Pxjt\

Namely, if Xlt X2, ...Xnarc independent then e"x‘,e"x‘, are also indepen­
dent and the mean of their product is equal to the product of their mean values.

If a random variable Y is a linear function of another random variable X, say 
Y=aX+b, then

(2.66) <px(t) = £(e"r) = fte"*4**4*] =

It will be shown now, how the moments of a continuous random variable arc deter­
mined by aid of the characteristic function (if the moments exist at all).

Expression

<px(t)= f e'^f^dx 
— oo

differentiated according to t, gives:

<pi(0 = I ixe^f^dx.
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The mean of the complex random variable Y=eltX=cos t X+ i sin tX— Xk+iX2
is defined by

E(Y) = EtXJ+iEW
and its variance by

D2(Y) = E(\Y-E(Y)\2).
So,

OO

(2.67) <p'x(0) = i f xf(x)dx = iar = iE(X).

Further

(PxU) = j (ix)*eUxf(x)dx

and

<Px(0) = »2 / x2f(x)dx = i2E(X2).

From this:

E(X) = y (p'x (0) = - i<p'x (0)

d^x) = E{x^-UW2 = 4-^<°)-y ^(°)a

(2.68)
In general:

D^X) = [<Px(0)]2-<Px(0).

(2.69)

<j»x)(O = ’* / xkei,xf(x)dx 
— OO

(p^ (0) = 'k f dx = ikxk.

where ak is for the £th moment of random variable x. Based on this, the Taylor-series 
of function <px(t) may be obtained as follows:

(2.70) ^(0= <Px(o)+JP^Lt+-^Lp+...=
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2.2. REVIEW OF PROBABILITY DISTRIBUTIONS OCCURRING 

OFTEN IN HYDROLOGY

The simple alternative
2.2.1. THE INDICATOR VARIABLE OF AN EVENT

The simplest discrete distribution is the simple alternative. This distribution is valid 
if we are interested during an experiment in the fact whether event A has occurred 
or not. Let suppose that the distributions of P(A)=p and P(A)=l-p=q are 

known.
Let now assign to our experiment random variable X. This random variable will 

take a value 1 if A has occurred and 0 if A. In mathematical terms P(X=l)=p, 

P(X=O)=q=l—p. .
The distribution of variable X is usually depicted by the following scheme:

Let calculate the mean and variance of such an indicator variable. According to the 
definition of the mean, and based on the distribution of X:

(2.71) E(X)= \-p+Q-q = p.

And
E(X*) = l2-p+02-p = P

(2.72) D^X) = ECX^-E'W = p-pi = ~P) = P<1-

The generating function of an indicator variable is.

(2.73) G(x) = 2 Pk^ = qx°+px = px + q.
V k = 0

2.2.2. THE BINOMIAL DISTRIBUTION

In hydrological practice the most important discrete probability distribution from 
the point of view of theory and everyday application is the binomial or Bernoulli- 
distribution. It is often experienced that the following problem is of interest: will 
event A occur or not (will event A occur), and our experiment is repeated several 

times in consequence.
If an experiment consists of a series of simple alternatives and the outcomes are 

independent of each other then this experiment is called Bernoulli serial experiment. 
Such experiment is, for example, the so-called head-tail game by tossing a coin. Let 
now present an example for a series of alternatives in hydrological practice. During 
the past 100 years (1876—1976) the following annual water stage maxima had been 

registered for the Tisza river at Szeged:
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Table T.2

Tisza river
Annual maximum stages

Year
Tokaj

Annual max., cm
Szolnok

Annual max., cm

Szeged
Annual max., cm

1876 784 753 786

1877 710 688 795

1878 694 638 720

1879 755 763 806

1880 660 608 627

1881 780 764 845

1882 685 675 691

1883 649 634 738

1884 738 639 613

1885 642 538 565

1886 576 658 534

1887 604 558 660

1888 872 818 847

1889 735 728 805

1890 654 576 566

1891 665 640 668

1892 640 621 630

1893 670 591 726

1894 588 545 568

1895 815 827 884

1896 640 600 525

1897 688 684 730

1898 608 580 604

1899 590 472 460

1900 644 556 525

1901 686 685 680
1902 666 619 668
1903 596 604 508
1904 396 428 450
1905 581 518 518
1906 550 544 550
1907 759 738 758
1908 658 629 595
1909 676 626 642
1910 528 534 496
1911 522 528 563
1912 726 713 753
1913 723 722 802
1914 700 715 778
1915 825 808 791
1916 688 778 791
1917 562 582 614
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Table T.2

Year
Tokaj

Annua! max., cm
Szolnok

Annual max., cm
Szeged

Annual mix., cm

1918 516 462 349

1919 854 882 916

1920 736 716 708

1921 374 378 325

1922 770 784 . 774

1923 672 634 637

1924 802 846 870

1925 857 574 681

1926 773 778 759

1927 590 540 488

1928 571 572 542

1929 508 522 458

1930 639 586 496

1931 663 602 603

1932 856 894 923

1933 695 662 660

1934 540 572 526

1935 606 618 594

1936 552 564 472

1937 722 750 703

1938 570 621 638

1939 502 586 579

1940 818 880 847

1941 804 856 855

1942 636 728 780

1943 462 430 366

1944 651 662 654

1945 603 638 560

1946 558 617 525

1947 640 633 602

1948 781 784 714

1949 617 578 495

1950 632 602 517

1951 613 634 550

1952 767 734 648

1953 748 801 706

1954 535 549 454

1955 693 646 657

1956 671 678 689

1957 659 645 604

1958 756 708 730

1959 550 490 436

19(0 600 599 582

1961 507 394 394

1962 794 836 820
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Table T.2

Year
Tokaj

Annual max., cm

Szolnok
Annual max., cm

Szeged
Annual max., cm

1963 740 691 587

1964 857 853 764

1965 725 793 748

1966 755 855 799

1967 831 881 790

1968 740 673 600

1969 597 659 626

1970 858 909 961

1971 630 608 521

1972 564 563 606

1973 518 427 475

1974 801 840 807

1975 686 757 692

Let now the event denote by A that the annual maximum at Szeged is higher than 
700 cm. The probability of A should be: P(A)=p.

Let calculate the probability that A will occur K times in n years! The number of 
occurrences of event A should be X during those n years in question. The possible 
values of X are now 0,1,2,..., n non-negative integers. The probability Pk=P(X=k) 
is wanted. (Annual water stage maxima are considered independent events. See 

Chapter 6, Section 5.1).
Let the occurrence of event A or A be registered by 1 and zero, respectively. Then, 

the space of elementary events of this experiment formulated by n observations will 
consist of a set of the numbers 0 and 1.
This kind of space of events has been investigated already in Section 1.1 of Chapter 2. 
In this case, however, the probabilities of thc elementary events arc not the same. 
If some (ot elementary event consists of k ones (and n—k zeros), then

P(co() = pV"m-
Event {X=k} will occur if the result of our experiment (consisting of n observations) 
is an elementary event a)t in which k ones and (n— k) zeros can be found. 1 he number 

of such co, elementary events is each with a probability of pkq" k. Ihercfore,

(2.74) P(X=k)= qn~k.

If we write 1 for thc occurrence of A and 0 for 1 then to every observation the indi­
cator variable of event A has been assigned. Obviously,

X = Xl + Xi+... + X„
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where Xt is the indicator variable of observation i. The sum of the values of indicator 
variables is exactly the number of occurrences of event A since the occurrence of 
{X=k} is identified by k indicator variables taking the value 1 and by (n-k) taking 

the value of zero. .
If X stands for the number of rainy days in May of a given year and the indicator 

variables for the individual days are X., X2,X„ (being 1 if it has rained and 0 if 
not) then the value of X is obviously equal to the number of ones among the addends:

X = ^ + ^2+ = 1+0+0+1 + -+0.

The expectation of random variable X with a binomial distribution is:

(2.75) E(X) = E(XJ + EVQ +... + E(Xn) = np.

Because the mean of each indicator variable is p. The variance of X is

(2.76) DHX) = DW-+W) = pq+P^-^P^ = nP^

according to Eq. (2.44'). .
So, according to the standard deviation of the binomial distribution:

(2.77) D(X) = ]/npq.

I he generating function — based on Eq. (1.55) is.

(2.78) G(x) = 2 Pk^ = 2 =
k=0 <=0

where G(x)=px+q stands for the generator function of the characteristic variable 
X, In the generating function G(x) the coefficient of x* will equal the probability 

pk= P(X-k), which in this case will take the form:

Pk = (k) Pkq"~k-

Mean and variance are easily calculated by the help of the generating function

GM = (px+qY

because according to Eqs. (2.58) and (2.59)

(2.79) E(X) = G'(l) = [«(px+#"1/’L-i = nP

and
(2.80) D»(X) = G^O + G'd)-^1)]2 =

= [A(n-l)p1(px+f)Mx.1+'»P-^ = n'p'-np'+np-n'p' -

= np(l-p) = nP^-
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The question arises that if p is given, which pk probability will be the greatest? 

The values of the numbers pk will increase up till

Pk- & 1
Pk-1

or till

(n I nk nn~k , <kJP 4 _ n-k + l _ P

I fv A /

In other words till
(n+V)p^k.

If (n+ l)p is integer, the maximum value of the distribution is/^ where the suffix is 
k=(n+V)p. In this case pk=pk=Pk-i and there are two identical maximums. If 
(„+ l)p is not an integer then the value of pk will be maximum at a k which is the 
largest integer still included in (n+l)p. If n is large then (n+Y)p^np due to p^i.

Let take an example to illustrate the above discussed topic.
The distribution of rainy days at Budapest, Hungary was on the basis of 50 years 

ofobservations (rain is assumed to have a depth of minimuni 1 mm).

month I II in IV V VI yn VIIIIX X XI XII 
rainy days 7.6 6.8 7.3 7.4 8.5 8.0 6.5 6.3 6.2 7.5 8.8 9.1

So, the probability that 7 rainy days will be observed in April of a given year is.

/•mW 1 \7 ( 3 )23
|30| ‘ 2 = 2 035 800^^0.16.
I 7 7 V. 4 7 \ 4 / 4J0

The calculation of such probabilities is cumbersome due to the presence of the bino­

mial coefficients. Usually, approximations are introduced. E.g. the value of is 

retrievable from the table of binomial coefficients, the value of 31SX4-30 may be 
easily determined by logarithms. (See [2.25] and [2.28]).

It is visible that the maximum value of a binomial random variable has a fairly 
small probability. 1 he situation is different if the question sounds: what is the proba­
bility of falling, say, between 5 and 11 of the number of rainy days in April?

k-i

10

2
The calculation of this probability would be extremely cumbersome. Therefore, 
approximative methods must be introduced. See: Section 2.2.8.
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2.2.3. MULTINOMIAL DISTRIBUTION

If an experiment may have different outcomes denoted by A,, A2,A, (A, A, — 
As compose a complete system of events), and if

PMJ = Pi, = P^ —> = Ps
and 2 Pi= 1, then by n continuous repetitions a so-called multinomial distribution 

will be" obtained. The notion is basically a generalization of the binomial distribution. 

If s=2, the two distributions are the same.
The probability that event A± will occur kr times, A2k2 times, and Ask5 times is.

n!
kJ kJ ... kJ

-Pkss-

2.2.4. THE GEOMETRIC DISTRIBUTION

Let consider an experiment with two possible outcomes. This is called - from earlier 
chapters - simple alternative. Let denote the first alternative by A and the second by

A. Let be
P(X) = A, P(A) = 1-P = ?-

Suppose, that the experiment is repeated till event A will occur for the first time. 
The probability that J will occur for the first time in the fcth experiment is:

(2.81) Pk = ^P-

It is easy to see that 2* Pk~ E s’nce

2 Pk - P 2 9 j _ 9 p 

The generating function of a geometric distribution is:

(2.82)

Because

G(x) = 2 P?"' xk = px^ (qxY'1 - 
k-i 1

px
1 — qx

and

_ P^-^ + PW „
G “ (1—^x)a

2no(l-<7x) 2pq-2pq2x

Pk» kj.

P
^-qx)2 ’

Expectation and standard deviation of a geometric distribution arc:

(2.83)

(2.84)

c P P —
WO = G'(l) = 0 "pt p

= G'(1)+G'(HCW =

2p11 1 _L* 
^P+p />■ p’
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2.2.5. THE POISSON-DISTRIBUTION

From among the discrete probability distributions great theoretical and practical 
importance is attributed to the so-called Poisson-distribution. It can be derived 
— as a simplest approach — from the binomial distribution — a limiting case of this 
latter — if the number of experiments n is large, and p (the probability of an event 
in which we are interested) is small. The Poisson-distribution is called sometimes the 
distribution of rare events or of events with a small probability. The importance ofthe 
Poisson-distribution, however, is by no means in the fact that it is a good approxima­
tion of the binomial distribution.

The Poisson-distribution is a suitable descriptor of a number of natural process­
es. The so-called random point “processes” (say, the number of flood waves during 
a (0, /) time interval e.g. a season or quarter of a year) follow Poisson-distribution as 
this will be demonstrated in Section 2.2.6. Similarly, the Poisson-distribution is used 
for the description of random point scattering in certain circumstances. This will be 
later shown in examples.

Let denote by A the event that the annual maximum water stage exeeds a given 
value c. If P(XSc)=P(A)=p, then P(T)=l-p. The case here is the simple alter­
native. So, the probability that A will occur k times during n years is (supposed that 
the annual maximum stages are independent):

jH — k

K J

The formula is cumbersome if n is large, therefore, let us write the above relation in 
the following form:

k\ n I n /

If n— oo and p—0 and np=X is meanwhile constant, then

By letting n—
j* 

(2-85) P^-k!e~"- 

( I VHere e=2.718 281... is nothing else than the limit of the sequence l+ —
\ n)

(h=1,2,
If level c is high enough in connection with annual maximum stages, and thc proba­
bility P(A)= P(X ~c)=p is low, then the probability that in the coming great num­
ber of years (n is large) A will occur k times, may be well approximated by a 
Poisson-distribution.
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If a random variable Y stands for the number of occurrences of event A, then the 

distribution of Y is:
k 0 1 2 ... k ...

2° ,2 . 22 , 2k ,
Pk = = k): ... .

If A: is given, the value of pk is a function of parameter 2. Because X=np, and np 
is the mean of the binomial distribution—when n trial has been made and the prob­
ability of the event in which we are interested is p — so 2 is also an expectation. This 
statement can be also formally proven:

OO °°

(2.86)

=2e-A eA = 2.

Let now calculate the variance of the Poisson-distribution:

00

(2.87) D^Y) = E(T2)-[£(n]2 = 2 =
k=0

oo Ok — 2

= A2e"\§ Tk^y.+

oo Ok —1

= e~l ex+Xe~x ex —22 = 2.

The standard deviation of the Poisson-distribution is:

D(Y) = ±}^-

In order to look after probabilities in the Poisson-tables it is indispensable to know 
the value of parameter 2. In practice it is usually estimated statistically (See Section 

5.1.4).

2.2.6. EXAMPLE FOR THE POISSON-DISTRIBUTION IN FLOOD 
HYDROLOGY. PROBABILITY DISTRIBUTION OF THE NUMBER 

OF FLOODS

In Hood protection it is of cardinal importance to know thc expected number of 
floods in a given cross-section. Let now sec, how thc probability distribution of the 
number of floodwaves may be determined. It should be noted that if in the selected 
time interval (0, t) the water regime is considered generally as homogeneous (accord­
ing to experience in Hungary a quarter of a year will still fulfill this requirement), thc 
distribution of thc number of floods is easily calculated.
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Let select for (0, /) say the first quarter of each year, and let denote the number of 
exceedances by random variable v in this interval. It is obvious that v will take the 
values represented by 0, 1, 2, ... non-negative integers. In this context v is a discrete 
integer random variable. When the distribution of v is sought for the following ques­
tions must be answered: in how many first quarters of the investigated years will we 
have zero, one, two, three, ... etc. floodwaves? To discover something for the future 
let us turn for information to the past. Suppose, we are investigating again the spring­
time water regime of the Tisza River — at the water stage of Szolnok — from the 
point of view of the number of floods. Exceedances observed during the period of 
1903—1970 are summed up in Table 2.2. From this table it is apparent that during 
68 years there were 34 spring-seasons when there was no exceedance above c= 
= 600 cm, in other words, the frequency of event {v=0} was 34. The frequencies of 
events {v= 1}, {v=2} and {v=3} were 26, 6 and 2, respectively. According to 
observations, no more exceedances than 3 occurred in one spring period. During these 
68 years altogether 44 exceedances were recorded at Szolnok, which has set the aver- 

44
agenumbe of the spring floods to 2=—%0.65.

68

If the frequency of event {v-k} is denoted by vk and its relative frequency is —, 
n 

the following table can be constructed:

Table 2.2

Water stage Szolnok 1st quarter e=600cm 1903—1970

k vk Poisson-distribution: npk A=0.7

0 34 34
1 26 23.8
2 6 8.16
3 2 2.04

If the distribution of a random variable is at stage it is not appropriate to rely 
solely on the data of a single gauging station. Let see, therefore, thc situation at anoth­
er stage e.g. at Szeged (also along the I isza River). What was the number of ex­
ceedances in the 2nd quarter (between April 1 and June 30) above level c=650cm 
in the period of 1901—1970. Thc gathered information is presented in Tabic 2.3

Table 2.3

Szeged 2nd quarter c = 650cm 1901—1970

k Poisson-distribution: npk A—0.4

0 45 45.6
1 21 18.4
2 4 4.1
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(In the last column of these tables the corresponding values of the Poisson-distribu- 

tion are presented, later being referred to).
Let now introduce the following combinatorial solution for the determination of the

distribution of v! .
Let consider the first (or second, etc.) quarters of consecutive years like adjecent 

disjoint time intervals on the real axis of the line of numbers.

1 2 3 4 K

Figure 25

Suppose, we have » years of observations and r exceedances were measured above 
a given c level. Let denote these by a„ a,.......n,I Think about having „ numbered 
cells for the consecutive n years in which the exceedances are placed,
see Figure 25. Let now suppose that every position of the exceedances has the same

1 
probability*: —.

In practice the number of cells a is given, it is the number of years for which obser­
vations exist. The number of the allocated exceedances r is a function of the selected 

c level. If c is high, r is obviously small.
Expression -=k is for the average number (the mean) of exceedances located in 

one coll In ca"se of our model we may easily calculate the probability of having 
exactly k exceedances in a randomly selected cell. From among the r exceedances k

and placed in a given cell. The rest (r-k

1 cells according to (n-I/-* variations. (Repe-
are selected ^this can be done in

exceedances) may be placed in n—

"X numtaof all possible allocations is n'. Accordingly, the probability that

exactly k exceedances should be allocated in a given cc is.

(2.87)

1 
where p = "■

the first glance. The calculation shown in page 90 
balls were placed — their common probability was

* This assumption may seem unrealistic for 
convinces us that in a position in which many
ncglectable.
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This is the well-known binomial distribution. If n and r are equally large but with 
r 1

the condition that —=2 (const) then due to the smallness of p=— the binomial 
n n

distribution can be approximated by a Poisson-distribution, like:

(2.88)
& -x

The question arises whether our assumption — namely to contribute for each cell 
the same probability — was not an oversimplification. From a practical point of view, 
e.g. in the case ofthe Tisza River we have observed 31 exceedances at Szeged during 
70 years. The assumption that all of these could fall in one quarter of a year or in 
some quarters of the years is absurd because we know that not more than 3 excee­
dances did fall in any of the quarters.

In reality if r=31 and n=70 are put in Eq. (2.87), then

Po = 0.64

Po+Pi+/’2+J!’3 » 0.999.

2.2.7. THE NORMAL DISTRIBUTION (GAUSSIAN DISTRIBUTION)

If the outcome of an experiment is influenced by a great number of factors — inde­
pendent or almost independent from each other — and the individual factors, one by 
one, are contributing in an extremely limited way to the overall fluctuation of thc 
outcome, moreover the effects of the individual factors may be simply summed up 
like additive terms, we are faced by a so-called normal distribution. Such circum­
stances are often encountered in our practice. This fact leads to the central role of thc 
normal or Gaussian distribution in probability theory. The most often covered areas 
by this distribution are: investigation of statistical populations, error-analysis and 
approximation of the binomial distribution.

By a more accurate, mathematical definition: the distribution of a random variable 
is normal if its density-function has the following form:

(2.89)
1 I*-")*

/(■*) - —e 
a yin
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where m and <r are constants, and a>0. The quantities m and cr are called parameters 
of the normal distribution. It is easy to see from Eq. (2.89) that if m is a finite number 
and cr>0, then the value of function f(x) is positive for each x. The first factor 
because of cr>0, and the second due to 

which is always positive, or zero. Consequently, f(x) will be maximum if x m.
Then

fM = —■ 
a\2n

The smaller the value of paramter a, the larger the maximum of f (x). If o’ — 1, the 
maximum is

f (xl = — — % 0.4.JmaiW /—

If the value of a is fixed, then f (x) will depend only on (x— m)“ which is the same 
whatsoever the sign of the difference x— m would be. The value of f (x) is a function 
of the distance of variable x from the point x9=m. Also,/(x) is symmetric for 
x0=fa The shape of function f (x) is the so-called bell-curve. Its changes ai e depicted 
in Fig. 26 for different a-s.

If Eq. (2.89) is a density-function, the area below the curve must be unity. It is 
not difficult to show the reality of such a statement. Let intioduce in the following 
integral

(2.90) /= f —Jx
-L a ^2n

substitution u=-——. Then x=m+m and dx=adu, so 
a

/ = ‘ [ e~ 3 du,
yin -L
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Figure 27

having the same value like Eq. (2.90). From this expression it is apparent that for 
a curve with parameters of any m and any oO the area enclosed by the function 
and the x-axis is the same as for a curve with parameters m=0 and o=l. In other 
words, the extent of the area below the density-function of a normal distribution does 
not depend on its paramters m and c. So, it is sufficient to prove that 

(2.90')
/2tt

This can be done easily if the validity of /2= 1 can be proved.

This has proven the unity of the area below Eq. (2.89) which has turned out to be a 
density-function f(x) having always positive ordinates.

The distribution function of the normal distribution has the following form:

, x (t-mP
(2.91) FW==_^ f e~ dt.

If substitution u = -—— is introduced in Eq. (2.91), then 
o

(2,92) F(x) = —L. e~ du = 0
^2^ a )
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where <P(x) denotes the normal distribution function with parameters m-0 and 
a= 1. 1 he values of function $ (x) are presented in 1 able I.

The essence of Eq. (2.92) is here discussed in more detail. Let be Xa normal random 
variable with a distribution function of changing m and ff>0 parameters by short 
notation: X:N(m, a). The cumulative distribution function

. x (t-m)1

Fix) =----= f e dt

will give then the probability of X being smaller than x.
Instead of the actually received values of random variable X (the outcomes of our 

X-m
experiment) let now investigate the values of X*=-^- X* is again a random 

variable determined unabigously by the values of X. Random variable X* is called a 
standardized variable. If X would take a value of X=x0 in the course of an experi­

ment then X* will appear as Let denote the cumulative distribution function

of X* as $(x). It is trivial that the probability of event {X-=x} will be the same like 

. (■ x— m}of :
I a )

( x-m}
P{X < x) = P(crX* + m < x) = P I* *= ~J’

or

Fix) = 4>

The probability that a random variable normally distributed and with parameters 
'n and u>0 will fall in an interval (a, b) is:

(2.93) Fib) - Fia) = P(a S X < b) = Pia aX* + m < b) =

Thc tabular presentation of function 0(x) is given, in general, for positive x-s. It 
can be shown that thc values of <P(x) for negative x-s are also easily obtainable.

I he density-function ofthe standardized normal random variable can be derived 
from Eq. (2.89) by substitutions m=0 and a- L

1 -4
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Function (p(x) is symmetric for point x=0, so

(2.94) $(-x) = f <p(t)dt = f <p(t)dt =

= 1 — f (p(t)dt =

which is apparent also from the diagram of the distribution function 0(x), see Figure 
28.

Figure 28

The probability that the value of random variable X* is in the interval (-x, x) is: 

(2.95) $(x)-£(-x) = <P(x)-[l-<P(x)] = 24>(x)-1.

It is easy to understand from Eq. (2.92) that the following two tables are equiv­
alent :

X*: W(0,1) X: Na)

P(-0.67sX*<0.67)=0.5
P(-lsX*<l)=0.689
P(-23X*c2)=0.954
/>(-33X’<3)-0.997

P(m - O.67o- S X-c m+O.67cr)=0.5 
P(m-a s X-c m +a)=0.683 
7’(m-2BSX<m + 2B)«0.954 
P (m - 3ff 3 X-: m + 3a)»0.997
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It is obvious from these tables that the probability is extremely small, less than 
0.05, that the observed value of a random variable A in a normal distribution with 
parameters m and a will fall beyond the distance of 2a along the x-axis. This fact 
will be often used in mathematical statistics. 1 his is the so-called 2<r-rule. Practically, 
it is almost to be taken as certain that the observed value of X will be in between the 
interval (w-3<r, m+3<r). The above presented facts tend to suggest that m is the 
expectation and <r is the standard deviation of random variable A.
And really

oo (x—m)2

E(X) = —-= [ xe~ 2’2 dx =
<T^27t

oo (x-m)8

' =---- — / (x — m + m)e 2°a dx = 
_oo

oo (x-m)8 ~
[ ^Le—^~dx + -^=- e dx.

<r/27t _oo a cry2n
x-m

Let now apply the substitution u---- -—. then,

In the following, the characteristic function of the normal distribution will be often 
used. It was first assessed for random variable A with a standard normal distribution

(2.96)
2 oo U2

= f ue'~du+-^ f e~du=m.
y2n _oo y2n

Moreover,
oo (x-m)8

(2.97) Di(X) = —7= f (x-m)2e 2ffI dx =

oo u2 2 °° M
- Lr- [ u2 e~~ du = J=r [ u-ue 2 du = 

/2n

o u8 a ~= 4L[-He”]-„+ "

N(0, I).

eo X1 1 * -21 - —

<p(t) = £(e"**) - dx = e * ’

Here we apply substitution x-it=z and get the result usually obtained in mathemat­
ical analysis:

J- f e~~ dz = 1.
/2n -Zb

If now the distribution of random variable X is N(m, a), in other words, if
X = aX* + m
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then according to relationship (2.66) 
_ - itm-----------

(2.99) ’ =e '

Of course, with the help of the derivatives of the characteristic fusion 
at t=0 the moments of the normal distribution are easily obtained. (Let leave th 

derivation to the reader.) . , 1 v j y
Let now have two normally distributed independent random variables 2,

with distributions ; aj and N(m2; a2), respectively. Let be X-X,+ X2. lite 
task is to determine the distribution of X. Due to the fact that a characteristic function 
contains in itself precisely the character of the distribution it is sufficient to determine 
the characteristic function. According to formula (2.99).

=

— 2 = ei,(mi+m«) 2

From this it is apparent that 

(2.100)
E(X) = n^ + m, 

D2(X) = ol+^.

The result is a proof of being the sum of independent normally d.stnbuted random 
variables again a normally distributed random vanable. This is true for any desired 
finite number of independent normally distributed random vanab es.

In the following, attention will be called to certain important properties of the 
normal distribution. These are extremely useful from the point of practical apphca- 

^is normally distributed with expectation of E(X)=m and standard deviation 

of D(X)=o, moreover Y=aX+b is a linear function of X then Y will also be nor­
mally distributed with expectation E(Y)=am+b and standard deviation D(Y^

~This statement may be easily proven by the use of relationship (2.16). Thc density- 

function of random variable X is:

-

and according to formula (2.16) thc density-function of variable 1 is.

1 (y-b\ 1 a ,2-
|ai ( a J |a|<rV2n

in other words 
1 (y b)*

p-101’ ■
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This latter formula is our proof of the above formulated statement since (2.101) 
is a normal density-function in which the expectation is am+b and the standard 

deviation: an.
Normal distributions are uniquely determined by their parameters m and 

From this, it follows that if we are encountered with two normally distributed random 
variableswith X-.N^a,) and Y:N(m2,(^ - then we will always find 
numbers a>0 and b>0, by which the distribution of Y=aX+b is N(m2,o2).

In other terms, a normally distributed random variable can be converted in another 
normal distribution by linear transformation. The numbers a>0 and b>0 should 
be selected in such a way that am1+b=mi and Because a>0, it is

enough that one should have
acq =

a — — and b = m2------
(Ti

2.2.8. APPROXIMATION OF THE BINOMIAL tmforpm
BY NORMAL DISTRIBUTION. THE MOIVRE— LAPLACE THEOREM

It was mentioned at the discussion of the binomial distribution

(2.102) Pk =

that the calculation of the probabilities Pk - if n is large - becomes extremely cumber­
some. Therefore, it has been aimed at to replace formula (2.102) by some other, 
simple, easily used approximation. Depending on the value of parameter p two pro­
cedures are applied if binomial distributions must be approximated. If the value of 

p is between the limits:
0.637 , 0.637

(where n is the number of trials), the approximation will be:

1 (*-»»)'
<2.io3) ■

This approximation may be defined - in other words - like this: if the value ofp is 
in the range of the two aforementioned limits, the binomial distribution is substituted 
by a normal distribution with expectation np and standard deviation )/npq. If the 
value of p is outside the limits (close to zero or 1) the Poisson-distribution should be 
used to approximate the binomial. Eq. (2.103) works best if n is large and p is close
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If substitution x=———is introduced in formula (2.103), then 
^npq

1 1 1
(2 104) Pk ~ e 2 ' /-----11 = V W{ ’ /2n \npq \npq 

where <p(x) is a standard normal density-function.
In practice it is not often that the values of individual terms of the binomial distri­

bution are of interest but rather the sum of certain terms.
The mathematical derivation of Eq. (2.103) by means of mathematical analysis is 

simple. Nothing else is needed than the Stirling-formula and the Taylor-series of 

function y=ln(l+x).
By use of the Stirling-formula:

(—1 pTtrt
p)______n!______ ________ke>________________ —
IiJ — k'(n-kY. ( k)k ( n — k)"-k ----- —------—GJ I—e—J y2n(n-k)

nn 
kk(n-k)n-k

After this, the probability pk may be written in the following form.

Let introduce substitution x=k—np, then

k = np+x

and

(2.105)

n-k = nq-x

It is easy to see that if n increases then —*0 and thc first factor will tend to —
» yinnpq

the same as in formula (2.103).
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The logarithm of the second factor is:

(np+x)ln[l+-^) + («9-x)ln[l —=

[x x2 x3 1
np 2n2 p2 3„3 p3 J

, J* x2 x3 , 1 _
— (nq-x)------h-z-s—r+ □ 3 l8~ + ”• ~L nq 2n- q~ 3n3 q J

x2 , x3 x2 x3 |
~X 2np + 3n2p2 " np 2n2 p2

X3 x3 X2 X3 t =
“ X 2nq 3n2 q2 + nq 2n2 q2

x2 p n x3 r i__ L)_ - x~
-2n(7 + 7J 6n2 \ p2 q2 J "' 2npq'

Beginning with the second term of this expression subsequent members may be neg- 
Y3lected because —-0 if n-°°. To agree with this one should see that x=k-np, 
n2

and the deviation of random variable k from its expectation has an order of magni­
tude ofwhich is coming quite straight from the Chcbyshev-inequality. Follow- 
ingly,

x3 x3'2 L-'O-
M2 “ »* "

X8
The denominator ofthe second factor of Eq. (2.105) is and the probability
denoted by pk is:

1 —i-
n, m , e 2"p" •

/2nnpq

2-2.9. TWO-DIMENSIONAL NORMAL DISTRIBUTION

Tfm among a number of multi-dimensional distributions only thc two-dimensional 
uormal will be discussed here in detail due to its great practical importance.

Random vector 2 = {X,Y) is called two-dimensional normal distribution if its 
density-function is:

(2106) h{x,y) = ----------L—<*p[-2(T=7T
27TCTJ aa \ 1 - Q2 I v '

Ux-m,)2 , ) । 0 > Il
[o’2 'I



The geometry of this density-function is a continuous surface with the approxima- 

“mXehve^arameters (constants) in the formula. Depending on the value of 

these naramters the shape of the surface is like that of a real bell or of a compressed 
. 11 from two sides This vague similarity will be specified based on geometrical inves 
tigations described later on. Let, however, see first what the meaning of the parameters

rn. and are the mean
variable X. and ,s of random vaiable Y, and d is the correlate coefficent calcu 

■“Xh^dXved as it follows. On the basis ofthe theory of two-dimensional 

distributions see (Eq. (1.15)) the density-function of X was:

f(x) = f h(x,y)dy. 
— oo

Let introduce in Eq. (2.106) the following substitutions:

x-nq . y-»h
// — —----- ------, V —“ 01 ^2

then ।

“----- 1—[u’-agMu+P8] ,
f e 2(-e«) dv -

— oo

U*
—a” ~ (v- e»)‘

_ e — [ e~ 4<l"«’> dv.

By introducing variable

and

v £2, dv= y 1 - Q^dz and so:

£_2_ [ e 4 dz=—^e 4 •
2noi 01X271

” 1
___  f e 4 dz = —^e 
}'2n -L

। (x-mi)1
/W = -?5Te” 2°;

<Fi y 2k

rtnwi*^
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which is a proof that X is normally distributed with mean and standard deviation of 
and <r„ respectively. Formula (2.106) is symmetric for variables X and Y, there-

fore, the density-function of Y may be obtained in an analog way:

i

which is again a proof that Y is normally distributed with mean and standard devia­

tion of m2 and cr2. ,
After this short investigation the roles played by parameters ^2 anda 

could be better defined and it became clear that the common distribution of rand 
variables Xand Y is a two-dimensional normal distribution in which the componen s 
are also normally distributed. In other words, the marginals of two-dimension 
normal distributions are one-dimensional normal distributions.

It will be shown that parameter q found in Eq. (2.106) is the correlation coefficient 
between X and Y. The covariance between variables X and Y is, on the basis of q.

(1.46): _ „

C = E^X-m^Y-nQ = f f (x-m1)(y-m2)h(x,y)dxdy =

00 (y
= _ / e dy •

2<7i cTg 11 -■ Q2 —

- 1 p-mt—e 2±5-'

If now the following substitutions are applied:

1 , v = y~— 
“ ~ l-g2 I Ui °a

then

C = — f J (<h uv + 0(71

e Y .e~ 2 dudv =

~
„ ^£121 f v*e~ a dv f e a du +

, F ve t dv f ue adu = Qa1ffl
+ 2n _£
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in other words
c E[(y-mi)(r-m,)]

Ci O’2 Ci Co

which is exactly the definition of the correlation coefficient.
By analysing Eq. (2.106) it is visible that if X and Y are uncorrelated, i.e. e=0, 

then

(2.107) h(x,y) = I "• J =

I (x-mp2 1 G-m»)z
-------- e 2a2--------- -= e 2a*
Ci/2tt c2f27r

In this situation the joint density-function of variables X and Y is the product of the 
density-function of each single variable. This is, on the other hand, a proof of inde­
pendence between X and Y. Our result was — summing up the above presented ideas — 
that if the joint distribution of two random variables was a two-dimensional normal 
distribution and there is no correlation between these variables, then they are inde­
pendent of each other.

2.2.10. THE LOG-NORMAL DISTRIBUTION

Random variable Y is log-normally distributed if In Y has a normal distribution. Let 
be y=ln Y and let X be normally distributed with parameters m and c. In this case, 
the density function of X is:

[ (x-m)*

Based on Eq. (2.17), the density-function of Y is:

I | (In x-m)2
(2.108) g(x) = JL/(lnx) = —(x > 0).

|x| X

Let calculate the mean and standard deviation of random variable Y:

(in x-m)‘
E(Y) = —j= / e ^~dx. 

a 0J
By using substitution

In x — m - ----------= u 
a

then
x _ e<r»+m anj dx = aea"+mdu.
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Finally,

EW = -tU
^2*

(2.109)

E(Y2) =

e 2 du =

1
(7

i “ {u-aY .„ ,
= ' te^—du = e’^

2n J — oo

so (lnx-m)2 i “

' xe~ 2a‘ dx = e2m+2ai —= J e 
]/2n

(u-2o)S
2 du = e21"^

(2.110) = E(Y2)-[£(T)12 = e^+^-e2”’^ = e^+’^e’2-!).

Log-normal distribution is generally applied in the processes of comminution, 
cell-division, or disintegration as the distribution of weight, volume or some other 
dimension of the end-product.

2.2.11. UNIFORM AND RECTANGULAR DISTRIBUTIONS +

In the case of tossing of coins or rolling dice, random variables attached to such 
experiments will take their possible values with the same probability. This kind of 
random variables are called variables with uniform distribution. We may distinguish 
between discrete and continuous uniform distributions. Let X be a discrete random 
variable with a finite number of possible values x2, ■ ■■, x„ values and let be

(2.111) P(X = x^ = - (i = 1,2, ...,n).

Then the random variable X will have uniform distribution on the numbers of 
Xj, X2, ..., In classical probability theory only this kind of random variables were 
examined. Discrete uniform distributions are defined only on a finite set of different 
outcomes. Problems concerning random variables with discrete uniform distribution 
may be answered by combinatorial methods. (See Section 1.1.4.)

Mean and variance of a random variable with a distribution described in (2.111) 
are formulated by the following:

E(X) = H = - y x( = x 
n n

Which is the arithmetic mean of the possible values.

D2(X)=^

A continuous random variable X has a rectangular distribution in an interval [a, b] 
if its density function is the following:

(2.112) f(x) = b-a ’
if a S x -c b

0, otherwise,
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f (X)

Figure 30

The distribution function of (2.112) is then:

0, if x < a

(2.113) F(x} =
x-a 
b — a ’
1, if

Mean and variance can also be easily calculated.

(2.H4)

(2.115)

b a 1 ba—a2 a + b

a

/ x2 , ( a + b2} (b — a)2
Dm = / -^dx~ r^-J ~ “tf-• 

a

2.2.12. THE GAMMA DISTRIBUTION-FAMILY: GAMMA-, 
EXPONENTIAL- AND /’-DISTRIBUTIONS

Let the density function of a continuous random variable X be.

(2.116) f(x\ a,p) = F(p)
x^e^,

0, otherwise.

if a S x b

if x > 0

Here r (p} is the so-called Euler’s gamma function with parameter p.

(2.117)
OO

r(p) = / x^e^dx.
0

It is easy to see that /(x; a: p) is really a density function, because

f xp-ie-xdx - -L f (ax)’-^—Xd(ax) = 
o a 0

and, so

/ /(x; a,p)dx = 1.
0
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Random variable X with a density function like (2.116) is eventually called gamma­

distributed variable with paramter p.
Let calculate the characteristic function of a gamma distribution with parameters 

a, n!
(2.118) <p(0 = / e^ftx; a,p)dx = f x^e-^-^dx =

1

" b--r\ a J

It can be seen that these relationships are valid if a is a complex number but the real 

part of it must be positive. . r .
By changing the values of parameters a and p in density function /(x; a, p) one 

may obtain different distributions considered as very important in practical applica­

tions. E.g. if p= 1
(2.119) f(.x-,a,\) = ae~ax
which is the well-known exponential distribution. This distribution plays an important 

role in the hydrology of floods.
Its cumulative distribution function is:

(2.120) F(x)= l-e-“.
The characteristic function of the exponential distribution may be formulated as:

(2.121) J •

By aid of the characteristic function one may obtain the mean and variance of this 

distribution according to (2.67) and (2.68)

(2.122) = 7</(°) = 7

(2.123) D'W = foW-^0) = so = 7'

It is visible that the mean and standard deviation of an exponentially distributed 

variable is numerically the same.
If a=l and p=- are selected as parameters of the density function of (2.116) 

then the density function of thc so-called ^distribution is obtained:

(2.124) M*) ==/(*;-py) =------- e 2
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This distribution is very important in statistical applications. Squared sums of 
independent normally distributed random variables are ^-distributed. More pre­
cisely, if ^,^2, ...,Xn independent random variables have a standard normal 

distribution 7V(0; 1) and if
X = X2 + X% +... + X2

then the density function of variable X will take the form of (2.124).
In order to verify this statement let see first the distribution ofthe addendants. If 

X is standard normally distributed N(0; 1) and 7=^ then the distribution func­

tion of Y is:

(2.125) G(x) = P(Y < x) = < x) = P(-^x ^X fx) =

= 2^(1Gy-i.

The density function is then :

(2.126) g(x) = 2fW'^--7=e =

So, random variable Y= X2 has a gamma-distribution with parameters a=- and

p=~. The characteristic function of variable Y — based on formula (2.118) — may 
2

be set then, as:

(2.127) “ T" •
(1—2*0*

Due to the fact that the distribution of every random variable X?(i= 1, 2, ..., n) 
If

playing a role in the summation of X= £ A “ is identical with the distribution of Y, 

thc characteristic function of variable X will be:

= // 'Px^ “(2.128)
I

t
(1—2*0*

1
n

(l-2i7P
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If this formula is compared with function (2.118) it becomes evident that the lattei 
is the characteristic function of a gamma distribution with parameters

1 , n
a = — and P = y-

The density function of X is the one given in formula (2.124). The shape of this func­
tion is plotted in Fig. 31 for n— 1, n—2 and n=6.

The density function denoted by kn(x) and formulated by (2.124) which has been 
gained as the distribution of the squared-sum of n independent N(0: 1) normally 
distributed random variables is sometimes defined as a distribution witli n degiees 
of freedom. The sense of the degree of freedom is explained in Section (6.3.2). By 
aid of the characteristic function of (2.128) one may easily calculate the moments of 
Xa-distributions with n degrees of freedom. When the mean and variance are calculat­
ed one has to consider, that

^(0) = -^[(l-2ir)’T_,(-2i)] = in

(i+Olt'12'fl 1V

= i2(n2 + 2n).

So, after considering formulae (2.67) and (2.68)

(2.129) E(X) = n, D*(X) = -m« + mi+2h = 2m;

D(X) = /2n.

By the use of the characteristic function it is provable that ^-distributions arc 
additive. This attributum has thc consequence that the sums of two independent /*- 
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distributed variables are again ^-distributed. If XL has n, degrees of freedom and 
is ^-distributed, and X, has n, degrees of freedom and is also f-distnbuted and they 
are independent of each other then the characteristic function of the sum X-Xx+X2 
is the product of the two original characteristic functions.

(2.130) ‘PxW = ?Xi(0 ‘ =
"1 — nl

= (l-2iO~-(l-2iZ) 2 =
nt + n, 

= (l-2it)” 2 .

This is a proof that X is ^-distributed with a degree of freedom of n2.
So if redistributed random variables are added to each other the degrees of free­

dom’should be also added up and the type of the distribution remains unchanged. 
It should be noted, however, that if the number of the summed ^-distributed random 
variables is large, and the degree of freedom becomes too high, the central limit 
theorem (see: 2.3.9) will come into effect and a normal distribution is obtained. 
E.g. if n=30, the density function of a ^-distribution will hardly be different of the 

density function of a normal distribution.

2.2.13. THE STUDENT-/ DISTRIBUTION

Some important problems in mathematical statistics require the analysis of distribu­

tions like:
nX

(2-131) '= y%2+^+...+*»2

where Xx, X2,.... Xn and X are independent random variables with standard nor­

mal distribution, 1V(O; 1).
To calculate the density function of the random variable t we have to assess first 

the density function of the numerator, then that of the denominator and finally, the 
formula defined for the calculation of the density function of the quotient of random 

variables must be applied.
Let assume that random variable T is a continuous function of another random 

variable X:
Y = (p{X\

If the density function of X is denoted by /(x), then the density function of I is.

Let now calculate the density function of the numerator of (2.131):

Y = X\ ^"1Cy)=4=-y;
\n
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SO x>

h(x) = 
^2nn

The density function of the denominator of (2.131) is obtained easily if the density 
function of a ^-distribution with n degrees of freedom is known. The denominator 
is namely X and Xis ^-distributed with n degrees of freedom. Thus

2y-1e 2 
g(y) = i (nV

2 2 r J

If now the density function of random variable t has been denoted by sn(x), then:

s„(x) = / yh(x, y)g(y)dy -
0 

oo /x1 , x y2 
_______ 1________ f ' 2 dy.

^2nn22 °

p2
By introducing substitution u— 2 ’ we obtain

Figure 32
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2.3. THE LAW OF LARGE NUMBERS

2.3.1. THE BERNOULLI-FORMULA OF THE LAW OF LARGE NUMBERS

In practice the problem often arises that an unknown probability P(A)=p of event 
A in which we are extremely interested is approximated by aid of the well-known 

k-
relative frequency — in n trials, and we want to know what the difference between 

n
this relative frequency and our unknown probability might be. We may be convinced 
about the smallness of this difference if n is enough large if the law of large numbers 
formulated by Bernoulli is considered.

Let apply Chebyshev’s inequality for the binomial distribution.
In formula (2.45), that is in

A

let introduce the following substitutions:

then
X = k, E(X) = np and a = npq, 

P(\k-np\ > kl/npq)^^.

Let divide the inequality in brackets by n:

If the notation 2 is introduced, then

and

(2.134)

1 = 1
A2 ne2 — 4ne2 

n P J 4ne2 '

Relationship (2.134) is the Bernoulli-formula of the law of large numbers. Thc 
right side of (2.134) is approaching zero if n— <» which proves that if thc number of 
trials is increased unlimited, the deviation between relative frequency and probability 
will be small with a desired large safety. In practice, we do not have the opportunity 
to increase the number of trials without limitation so we are extremely interested to 

know what the deviation between relative frequency — and probability p will be with 

a large probability if n has been fixed; or how large n must be that this deviation 

l~~^l be 'ess a prescribed s. This question may be answered by using (2.134) 
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but our n would be larger than needed. The reason for this is explained by a remark 

at the end of Section 2.3.1.
It was shown earlier that a binomial distribution may be approximated by a normal 

under conditions presented in Section 2.2.8. From a table below Fig. 34 it is apparent 
that a normally distributed X random variable will deviate by less than its triple stan­
dard deviation from its mean with a fairly large probability, so

P(|y-m| < 3a) % 0.997.
So again, the probability is approximately 0.997 that the deviation of the frequency 

k of event A from its mean np is smaller than the triple of its standard deviation:

(2.135) P(\k-np\ < 3 \npq) ~ 0.997.

In other words, the probability of being \k—np\ larger than 3 /npq is so small that 
practically it should not be reckoned with. This is the so-called 3a-rule.

In (2.135) it is allowed to divide both sides by n, so 

(2.136)

This is an evidence ofthe fact that the deviation ofthe relative frequency from our 

unknown probability is less than 3 . with a large probability.

With regard to the fact that the value of pq=p^-p) cannot exceed 1/4 it is

practically sure, that 

(2.137)
k 3 1-5

-----p -= —■= = -7=
n 2\n yn

so it is almost certain that p will fall between
k 1.5
« fn

and
k 1.5

----- 1---- 7^ 
n yn

This error-bound is considered as acceptable if our unknown probability is near to
1/2. Ifp is substantially different from 1/2 then pq is smaller than 1/4* and the standard 

i / pq 1
deviation ofthe relative frequency is 1/ — <—— •

' n 2yn
fc •

In such cases we may write thc value of relative frequency — instead of probability

pand I-----=-------- instead of q=(\—p), so 
n "---------------------———

1/ pq 1 k(n — kT

f n n j n

—------------- ... 1
* Function Z(p)“P(l -p) has i,s maximum where 1 -2p=0, and this point is 2 •

because -2, our extreme is really a maximum.
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Figure 33

A further improvement ofthe estimation of the standard deviation may be attained 

if instead of n, n-1 is written in the denominator.
It is practically true, with a very large probability, that

k 3 i/ Kn-k) 
n P n] n —1

If the question must be answered what the value of n, the number of trials should 

be in order to let relative frequency | deviate from our unknown probability by less 

than e.g. 8=0.1 with a large safety, then based on (2.137) only the following equa-

tion must be solved:
11 = 0.1.

For n we will obtain 225. . , • j ♦»,-8=0.1 is not always satisfactory in practice. If accuracy is to be improved, the 
number oftrials will increase. If 8=0.05 is selected, (2.137) will give

n = 900

and if 6=0.01 (this accuracy is rarely wanted in practice), the number of necessary

trials is
n = 22 500.

2.3.2. THE CENTRAL LIMIT THEOREM

The central limit theorem is for a theoretical explanation of the fact, why so often 
the normal distribution is valid while natural processes are investigated. I he essen ' 
of this theorem is in thc finding that if the random fluctuation of a variable A is t 
resultant of the sum of independent random components exciting only a snu 
influence individually on the fluctuation of these sums, then X is normally distri­

buted. .
We saw at the investigation of the binomial distribution that a binomially < is 

buted random variable X is the sum of n independent indicator variables:

x = xl+x»+...+yB
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where the members X( may take the value of zero or one, independent of each other. 
It has been shown that a binomial distribution is close to the normal if the value of 
parameter p is not too small, or not too large, in other words, if the variables do not 
take in sequence — or predominantly — one of their possible two values. (We may 
say, if the distribution of Xt is not too degraded).

Approximation of the binomial by normal distribution is a special case, although 
a very important one, of a far more general regularity which may be defined as it 
follows: if a very large number of independent random variables are summed up and 
the individual components do have finite variances then their sum will be normally 
distributed without any regard on the distribution of the individual components.

The central limit theorem may be defined mathematically in several ways. Due to 
the fact that in mathematical statistics we are faced usually with independent, identi­
cally distributed components, we will discuss first the case in which the independent 
components have the same distribution.

Theorem: If X2,..., Xn are independent, identically distributed random 
variables with finite standard deviation, e.g. E(Xk')=m, D2(Xk)—a2(k= 1, 2, ...,n)
then

(2.138) lim P n-*■<*>
Xk+X2+...+Xn-nm

n

x "-1^ f e 2 du.

Proof: Let denote the characteristic function of random variable Xk—m by (pQ). Then
Xk — m .

the characteristic function of variable----- — is:
a }n

( f I
<P—7= • la \ n)

Let be:
„ Xt + X2 +... + _ v

Because of independence of the components

r f f )1"vA') = k —7= •
l Iff pi 7 J

Let introduce the notation =u and let expand function (p(u) in Taylor-scries:
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The derivatives of the characteristic taction at n=0 ma, be expressed by the 

moments according to (2.70):

<p(u) = 1 +ai iw + a2 2|

(iu)k , is + ak^r + o(uk),

Xk — m
where a; is they th moment of variable .

ax = E
Xk - m t- k = 0

a2 = E
£«,-»)• = 1.

no2 n

Based on this:

<P
t2

>-s+0 1-

And finally: 

(2.139) lim
r2
2n

fl' +°h = e 2

* • 4- <i „;th the normal distribution this function is exactly the charac-
As it was discussed with the normal u

taction of the that lhe components should
A next formulation ot the tneui cm r . , . , _heni,lte

, , ,. . .. .■ _ hnt would postulate the existence of their third absolutehave the same distribution but wouiu

£ ^0 
variables having third absolute moment, if £( J . >

if:

. 1 __ A
lim c5 v

where
pk = EdA'j3). s„ = |/ 2

then 

(2.140)
Xl+A'a + -.. + -V„
---------£ X

/2n -
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The central limit theorem is of great practical importance. On the one hand, if the 
conditions of the theorem are fulfilled — at least with acceptable approximation — 
one may assume that the standardized variable is normally distributed which can be 
checked easily by the methods of mathematical statistics. On the other hand, it is 
well-known that statistical functions used usually in statistical analysis consist in a 
very large number of the sums of independent random variables being usually nor­
mally distributed individually due to the large number of observations upon which 
they are based. Asa consequence, the characteristics of the normal distribution and 
the function-tables of the normal distribution are important aids in statistical deci­
sion-making.

«•
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CHAPTER 3
Markov-chains. Markov-processes.

3.1. MARKOV-CHAINS

3 .1.1. THE NOTION OF THE MARKOV-CHAIN, EXAMPLES FOR 

MARKOV-CHAINS

In the previous chapters sequences of experiments were discussed where the outcome 
of experiments are independent. In hydrology another type is most often used wher 
the outcome of the experiments is more or less dependent on the results of previou 
ones Hydrological observations are usually recorded in the form of time series meas 
ones. Hy g is trivial that e g daiiy water stages are not indepen-
ured in equai i monthly mean discharges display some
dent from eaf of experiments will be investigated with certain
dependence In this the simplest
stochastic relations depends on the Mh trial but without
type of such models £ £ndirect dependence means depen-
direct dependence on trials (A ij, l >' v . A A he
dence through the outcome of the Mh trial.) More precisely, let A{. A, ...,An be

. ° „fpvpnts The Mh trial is characterized by the random variablea complete system of events, inunm • the
XN, if the result of the Mh experiment is Aj, then XN-j. Such an exami . 
water stages of a river are measured at a gauging stat.on at time points;J=0 , 2, •
Ifthe state is denoted by X then events means Aj: {a^a^j-O, 
where an and a + 1 are the possible smallest and highest observable stages After a

, " • y X X °f random variable X will be at our disposa .while a time series X» X, ••• „ . ..
Event {X^j} will occur if in the time point i the measured stage falls into

10 Another eS.mple is the changes of the stored amount of water in a reservoir which 

may be characterized in a similar way if our observations are carried out in discret

general the values of the random variable X. X, X, - should be considered 

a sequence of states of a physical system.
Let us now consider a physical system with a finite number of possible states. Attn 

beginning let our system be in state X and after N steps in state X (the possi

values of XN are 0,1, 2,..., ri).
Transitions X^X^X-*--1 

are satisfying the following rule 
it should reach state XN+1~j

arc of random nature and let us suppose that they 
if the system is in state XN=i at the Mh step then 
with a probability independently of its carli^r 

states.
(3.1) Pij — = j\XN = i) (i,J = 0, 1,2, ...,n),
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of course, as one of the J/s certainly will occur. The sequence {A\} is called here 
a homogeneous Markov-chain, and the conditional probabilities ptj are called tran­

sition-probabilities.
Beyond the transition-probabilities the so-called initial distribution i.e. the distri­

bution of y0 is of importance if a Markov-chain is to be determined:

(3.2) p^ = P(X0 = i) (i = 0, 1,2,...,»).

Let us denote by p<^-» = P(XN^ = k) the probability that our system is in state 
k after N— 1 steps. The probability that the system is in state j after N steps — 
supposed that it has reached state k after N— 1 steps is. pkJ. By virtue of the 
total probability rule:

(3.3) P(XN=j) = 2 P^n=j\^n-i = k)P(XN^ = k).
k

Equation (3.3) leads to the following recursive relation for the probabilities p^:

(3.4) p^ =p^; P^m) = (m = l,2,...).

If at the beginning the system was in state i with probability 1 then the initial distri­
bution is : p™= 1, p^=0 if k^i. In this case probability^ is identical with the 
transition-probability p^ which stands for the probability of finding the system in 
state j after N steps if the initial state was i:

(3.5) p^ = P(XN=j\X0 = i) (j=0,l,2,...,n).

Incase of this special initial distribution, equation (3.4) will lead to the following 
recursion for the calculation of the transition-probabilities.

(3.6) nW | I lf 7 ’
PlJ lo if

p/r-Zp^A, (^=1.2,...).
kJ

The probabilities p^ may be arranged in a matrix. (Assume that i,j-0,1, 2,.... n) 
Matrix is obviously a unitmatrix:

1 0 0 ... 0

p(0) —

0 ... 0
1 ... 0

0 I
0 0

0 0 0 ... 1

(3.7)
Poo

P<” = [pJ = Pio

Pot Pon
Pit ••• Pl" =

PnO Pul ••• P'>”
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which is the matrix of one-step transition-probabilities. Based on relationship (3.6) 
Z PikPkj^2- The elements of matrix P(2) are calculated in the follow­

ing way: elements of the ith row of matrix P are composed by elements of the/th 
column of the same matrix which corresponds to the multiplication of matrices.

Similarly,
p‘3> =2^)Pv = p2-p = p3 

k

(3.8)
pw = 2A(r1)^=pW-1-p=p ■ 

k

Obviously, the matrix of the m-step transition-probabilities equals the m-th power of 
the matrix of the one-step transition-probabilities. So, the determination of m-step 
transition-probability matrices of Markov-chains is a problem of calculating the 
powers of a given matrix which often needs computer-aid.

It should be noted that the one-step transition-probability matrix P given in (3.6) 
is a so-called stochastic matrix having only non-negative elements with a sum of 1 in 
every row. The product of two stochastic matrices is also a stochastic matrix. It 
follows that Pv is a stochastic matrix for every N as well. On the basis of (3.4) the 
A-step absolute probabilities may be expressed with the aid of the initial distribution 
vector pw=[P<0),Pi0)’■••’P(n°)] and of the one-step transition-probability matrix 

P=[pj;] in the following way:

3.1.1. RANDOM WALK BETWEEN ABSORBING BARRIERS

= t/e pio). Poo Pol

Pio Pll ••
Pfln

Pin *. ptt0 1

.PnO Pni Pnn.

Our problem should be confined to a random walk over the integers of the real line. 
A particle should begin its motion from a point i for which Let us suppose
that in points x=0 and x=n the particle will be absorbed, in other words, absorb­
ing barriers are present. This means that if the particle reaches one of these during its 
random motion, it stops and remains at that point. Let be puo=l, P„n= L Pu~® 
(i= 1, 2, ..., n— 1) and

Pu =
P 
‘I 
0

if j = i +1 
if j = i -1 
otherwise.
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Ihe matrix of the one-step transition-probabilities is:

P

10 0 0. . 0
q 0 p 0 . . 0
0 q 0 p . . 0

0 0 0 0 1

being an (n+l)X(n+l) matrix.
If p^a=- the random walk is called symmetric. Let us define the N-step transi- 

2 ’
tion-probabilities!

It is easy to see that by certain changes in the rows and the columns our matrix Pt 

may be brought into the following form:

P =[E °1
1 IB, Pl

where P is the following matrix of order n— 1:

P =

0 p 0 0 ... 0 o’
q 0 p 0 ... 0 0
0 q 0 p ... 0 0 

(1 0)> E—Io ir

0 0 0 0 ... q 0
It is easy to see that 

(3.9) w
In connection with this random walk the following problems are of practical impor­

tance
a) What is the probability that the particle will be absorbed in N steps by wall 

*=0?
b) What is the probability that the particle will be absorbed in N steps by wall 

x~nl
c) What is the probability that the particle will return to its starting point in 2N 

steps?
d) What is the probability that the particle will not be absorbed during N steps?
e) What is the mean number of steps till absorption ?
We turn now to the answer of these questions.
Question a) will be answered if we determine the probability that the part.de, 

Orting from point x=i, reaches point x=l after N— 1 steps (without earlier 
Sorption; this probability is given by the elements of matrix PN~>) and this proba­
bility is then multiplied by q".

pW =
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Answer to question b) is similar:

Pin'1 = P-Pi^-1-

So, we need the (N- l)th power of matrix P; it can be obtained without the effective 
performance of this operation. Namely the following factorization of matrix P holds:

(3-H) where 11! = PQ 0 1 0 ... 0
1 0 1 ... 0
0 1 0 ... 0 

0 0 0... I

The canonic decomposition of matrix n is well-known (see e.g. A. 18). Its eigen­
values and eigenvectors are given by the following formulae:

kre
Eigenvalues: A* = 2cos-^- (k = 1, 2,.... n-1).

Eigenvectors: w*
. kn 

sin---- , 
n

(n — \)kn 
sin------------  n 

n-1
Consequently: II = £ huk ul- 

k-l
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It is known that in this case: nN=2 Based on <3-9)and (3-10):

(3.12) PN = T^pq^T-1 =

To answer questions a) and b) the elements of matrix PN 1 are needed: 

(3.13) cosp}^ =

sin
p Y 1 . jkn — sin ------- =

2 ■
= HP

N-l-i+j N-l+i-J n-l kn

2 q 2 2 cos —
*=i "

. ikn . jkn 
sm-----sin------- •n n

Finally, the answer to question a) is:
N N-i N + < n-l

(3.14) P^ ^qP^ =~P 2 q 2 Si

cos'*-1
kn . ikn . jkn
---- sin------ sm ——- 
n n n

Based on this, the reader may answer easily question b).
(It should be mentioned that (3.13) was first obtained by Feller using the method
of generating-functions, see: A. 6.) .

If question c) is to be answered then the probability that the part.cle will return to 
its starting point x=i after 2N steps (without being absorbed) is to be determined. 

This is the following:

(3.15)
n—1

p^ = L-p^^2^„N kn . . ikn2N-------sin2---------- 
n n

In connection with question d), the probability that after N steps our particle is still 
not absorbed is obviously equal to the probability that thc particle started its motion 
«n point x=l then reached some point x=l, k-2, or ... x-n 1 after N steps. 
Due to the fact that these events arc mutually exclusive, thc probability isexactly the 

sum of thc ith row of matrix PN.

(3.16)

P(X > N) =
■)N+t t-L 2H1L ■-! „ kn
-—p * q ' 2 2T

n k-i n

sin------ < n J

n
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where random variable X stands for the number of steps before absorption. Ifin the 

above formula p = 9=Ls substituted the relationship presented by Loeve (see:

A. 18) is obtained:
2 n“1 v kn . ikn . ku 

(3.16') P(X>N) = -^2 cos* —sin — ctg —,

where k' is for the rule that summation should be carried out only for odd k-s. Finally, 
if question c) is answered, the mean of random variable X denoting the number of 

steps before absorption, will be:

E(X) = 2^P{X=N)
N = 0

Where P(X = N) = P(X^N-\)-P(X^N).

Bv aid of (3 16) P(X= N) can be easily determined. In case of symmetric random 
walk this probability is obtained from (3.16'). The mean of thenumber of steps before 

absorption is in this case:
. ikn kn, sm cos  1 n--------n

(3-17) = '
* sin3-z—2n

The reader’s attention is called to the fact that (3.14) is used in a method to test homo­

geneity (see Section 6.4.3).
Random walk between absorbing walls may be discussed in a similar way. Also, 

by aid of relatively simple matrix-theoretical methods the problem of random walk 
among the lattice-points of an n-dimensional space may be investigated between 
absorbing or reflective barriers (see e.g. B. 29).

Although the above presented, bounded random walk model may be successfully 
used in a series of practical problems, it is often the case that a more general mode 
would be needed allowing for the particle not only to step onto thc neighbouring 
lattice-point but also to jump onto others. Such a more general model is needed for 
the description e.g. ofthe sequence of changes ofthe states of a reservoir.

3.1.3 THE PROBABILITY OF EMPTYING AND THE OVERSPILL 
OF A RESERVOIR

Let be thc possible states of a reservoir (by using appropriate coding), 0, 1, 2, ....k- 
Assure, that the initial state was X=z. If now, during a properly selected time inter­
val an amount of / m3 will enter thc reservoir its state will be z+l. If a m3 water is

0 or l—a-<0withdrawn from the same reservoir its state will be z+l—a. If l-a>- 
the reservoir will step in a larger or smaller state than z.
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Let now assume that a particle is pursuing random walk in a [0, k] interval of the 
line where absorbing walls had been placed in points x=0 and x=k. Our particle 
will take steps to the left or to the right starting from point x=z. The length of its 
steps is the difference between inflow and release, I—a, where / is a random variable 
(inflow in m3/time unit) and a is a fixed number. (The possible values of I-a are: 
~a, -a+ 1, -1, 0, 1, 2, ....) The state of the reservoir is characteristic to the
amount of stored water (in integer m3-s), the location of the particle is — on the 
other hand — the state of the reservoir. The absorbing walls in points x=0 and 
x=k indicate the following extremities: if the particle reaches or surpasses point 
x=0 the reservoir emptied, if it reaches or surpasses point x—k, overspill has 
occurred. Naturally if an absorbing point has been reached or jumped over, motion 
of the particle ceases.

Assume that the lengths ofthe individual steps are represented by random variables 
X15 y2, .... Let assume that the individual variables Az; are independent and uni­
formly distributed:

P(y. = h) = ph for every i, h = ..., — 3, — 2, — 1, 0, 1, 2 (h = I — a). 

(Assume that this distribution — which is basically the distribution of inflow is 
known). Motion of the particle will be terminated if

A1 + A'3+...+.¥N < z or Xi+Xa+.-.+A^ S k-z

in any N time point.
The above investigated generalized random walk is basically a Markov-chain with 

a one-step transition-probability matrix represented by the following stochastic 
matrix:

1 0 0 0 ... 0 0
r, p0 Pl Pi Ph-2 Pi

p r2 P-1 Po Pl — Ph-3

rh-i Ph + i........................ P» Ph-i
0 0 ................ 0 1

where rh=ph+ph+l+ ...Qh=Pk-h+Pk-h+i+ A-stcp transition-probabilities can be 
imputed by matrix-involution but this operation needs usually computer-help in 
case of larger matrices. It will be shown that the probability of emptying (absorption 
at x=0) or overspilling (absorption at x=k) of a reservoir may be approximated 
w>th simple considerations by Feller's method (sec: A. 6).

Ihe probability that a particle will move from a point z in point x in one step, is: 
P*~t. The probability that a particle being in point .v will be absorbed in point zero 
is denoted by: mx.

The probability that a particle starting from point z is absorbed in one step at 
A = is: rs. Obviously,

r, = p-t+p-t-i+P-*-»+'-‘

may take the value zero, too).
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After these, the probability of emptying of our reservoir (initial state: z) will be:

fc—1
(3.18) «z = 2 uxPx-z + rz (z = 1, 2, k-1).

In this way we will have (k- 1) linear equations and (k-1) unknowns, and 
(7=1 2 .,k— 1). This system of equations is not homogeneous, because if motion
into negative direction is possible at all (less inflow than intake), the following une­

quality must hold: Fi>0.
It is a requirement that adequately homogeneous systems of equations, like

k—1
(3.19) uz = 2 UxPx-z

should have only trivial solutions. If a nontrivial solution of (3.19) was available then 
one of the values «,(z=l,2, ...,k-\) would be the largest absolute value.

Let be Ul=M>0. Assume that p^O. Because the sum of coefficients px-t 
in (3.18) is at best 1, equality in (3.18)

M = W1 Pl-z + ^P2-z+‘-

is possible only if the coefficients of the probabilities,,., other than zero are Mand 
their sum is 1. Assumption ,.,^0 immediately leads to With a similar

logic »I_a=...M1=Af. If z=l, then

M=Ui- 2 uxPx-i = «iPo+«oPi+ ••• + 
x=l

k — 2
+ ^k-1 Pk-z M 2 Pi*

/»0

Because p1?*0 and Pi^t consequently M=0. Similar logic is used if p_i=0 

but another probability ph(h^ 0) is different from zero. This leads to unique solution 
of (3.18). Let introduce the following boundary conditions.

Mx = l if xSO

(3.18) can be written, in this case, in the following from:

co

(3.21) ut- 2 uxPx-z-
x— —•o

If k is large, the direct solution of k- 1 equations would be tedious. Another ap­
proach is here used which is extremely advantageous if the distribution (pit) h^s 

relatively few positive components.
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Assume that positive probabilities ph may be found only if -v^h^p. This in­
volves that the possible largest positive jump is v and the possible largest negative 
jump is p. One may assume without restricting generality that the mean of distribu­

tion {pk} is zero. So,

In this case A+Bz is a formal solution to equation (3.21), namely:

mz = ^(A+Bx)px-Z =A2Ph+S(z+h^ = 
X

= A2 Pn+Bz 2 pH+B2hph = A+Bz.

If A and B are selected so that
^+52 = 0 should hold if z = k+p-l

and A+Bz=l if z—0

Figure 34

Consequently, A + Bz will satisfy the following boundary conditions:

(3.22) w* S 1 if x - 0

ux £ 0 if X ~ k.

Based on the conditions of (3.22):
A+B(k+p~1) - 0

^ = 1 and B = - finally:

z

If, however, A and B arc selected as to have
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A+Bz = O if z = k

A + Bz =1 if z = -v+1 
then

A + Bk = §\ Bk = -A

-1
/4 + B(-v+l) = 1; -Bk-Bv+B=\; B = k + v~’

A= k + v-l

_ 2"
M, £ A+Bz = —------T-.1 k + v —1

Based on these, the following limits can be assessed for the probability of u,:

k —z , z
<3.23)

For the sake of safety the upper limit is used if u. is estimated:

(3-24) U^~T^

ut is a measure ofthe probability that our reservoir reaches its zero state (which can be 
determined only somewhat arbitrarily in practice) if our investigation started from 
a state z and the distribution of {p,,}, the difference of inflow and intake, is given. This 
method will tell us, however, substantially more. We may calculate (estimate) the 
probability that the amount of stored water will decrease earlier by given A units 
than overspill would occur.
On the basis of relationship (3.24):

} A
(3-25)

By similar considerations one may have the (approximate) probability that the 
reservoir will sooner overspill than being emptied if {ph} is the given probability 
distribution with an assumed expectation of zero. Let denote this probability by v,. 
Then, its estimation will be:

1 v —1
(3-26) v^T^Z = ~k^-

(The appropriate geometrical construction is shown in Fig. 34.)
Also, it can be calculated what the initial state z should be from which overspill may 
occur by a larger probability than emptying if the probability distribution was {/»»}• 
rhis will be the case, if

(k + l)(k+p)
2 2k+p + v
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3.1.4. ERGODICITY OF MARKOV-CHAINS

As this was mentioned at the definition of a Markov-chain, the different states of a 
Markov-chain are not independent of each other. Future states are functions of the 
present state, which in turn, is a function of past states. The question was still not 
investigated how the different states are stochastically dependent on each other. It 
was earlier mentioned that in hydrology Markov-chains are usually used to model 
time series. The task of a hydrologist is generally the following: there is a X^ T>,

X„ realization of a time series based on observations in regular time intervals and 
the problem is how to approximate the elements (components) of this time series by 
a Markov-chain. Statistical analyses are usually started by a categorization of the 
values of random variable X2, ... in certain classes 1, 2,..., n. I hen the statistics 
of the frequency, or relative frequency of the transitions i—j (i,j= 1, 2,..., „) are 
prepared and placed in an nXn size matrix. If the series ol infoi mation is enough 
long, this matrix will be the approximation of the one-step transition-probability 
matrix P=[pu]. If the rows of matrix P are near to identical, in other words, if in 
a column the same numbers are discovered (the columns, of course, may differ from 
each other), then it is obvious that the time series reaches a given state with the same 
probability, with no regard on its previous state. I his implies, at the same time, that 
the series consists of independent random variables. The time series is, in this case, 
not a Markov-chain but an independent sequence of observations. The more different 
the rows of a P transition-matrix the more dependent the components of our time 
series, in case of Markov-chains the subsequent states of the Markov-chain.* Depen­
dence among the individual states is strongest, if

0 0...0'

1 = E.

0 0... 1.

1
0

0

Here, if the Markov-chain is in state i, then it will remain there which is symbolized 
by X* + 1=X (k=l,2,...). The matrix of the one-step transition-probabilities is:

0 1 0 0 0... 0
0 0 1 0 0...0
0 0 0 1 0...0

0 0 0 0 0... 1
10 0 0 o... o

Miich is a so-called cyclic-matrix, and thc scries of the states of thc chain is:

0 - 1 - 2 " - L

(In this case thc numbers in a column arc also difibrent compared to each other.)
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It should be noted that, in this case, P is double-stochastic. (E is also double-stochas­
tic) Markov-chains applied in practice usually allow transition from a iven sta 
1 more possible SUUS. Let now consider a finite Markov-cham with possib 

states of l,2,...,m. Let assume that its one-step transition-probability matru 
P- [p.j may have an exponent — say N — for which

and for which its elements are positive, say

min p^ = 5 > 0.
U 1

This assures that the chain may move from any state i into any sLatey with.a positive 
probability (with another terminology: state/can be attained from state I mN steps, 
i /= 1, 2, ..., m). If now the transition-probability matrix is future involuted, matrix

pN+1 will be obtained:

pN+i _
Pn
P21

P12 • •' Pim
Pz2 • • • P2m

HP
p&

„(N) nWl
Pl2 ■•■Pim 
nW nWP22 ••• Pim

... P^' 
p$+1)-p£+1>

.Pml Pm2 ■' • Pmm.
n(N) LPml

nW DW
Pm2 b£+1) „(V+D p(N+l)

Pml Pmm

where PikP^ is the weighted arithmetic mean of the elements of
column /of matrix P* Ind the weights are the elements of row i of matrix P The 

convex arithmetic mean of m positive members must be m between the largest and 

smallest values (even if more positive weights were applied), so

minpip min<+1> max^^1’ S maxp^ (j = L 2,.... m).

This, however, will lead to an ever decreasing difference between the largest and small­
est values with an increase of n (and assuming that more positive elements exist m 
every row of matrix P) in every column of matrix P (n—N I 1. N I. , • ••) 1 
involution of matrix P is continued beyond any limit, lirn 1 —I is a matrix 
which the columns are identically built up, or in other words, where any row >s

identical:

lim P" = lim n-»oo n-»oo

pW ptf ••• PW

P^ - P™

Pl 
pt

Pl ■••Pm

P» ••• Pm - P*.

.Pt Pt--Pm.

p^+1)

In case of Markov-chains with finite number of states P* is a stochastic maui- 
Pi^ 2 Pk=l- rows of matrix P* represent thc same distribution, called 

limit-distribution. This limit-distribution is independent of thc corresponding ini­
tial distribution. The chain reaches state; — in a limit-case — with the same proba­
bility p] no matter what thc initial state was. Markov-chains for which thc limit* 
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limp^^*.^!^, ...,m) exist, which are independent of i and for which 

£p‘-l, are called ergodic. The necessary and sufficient condition for a Markov- 

chain to be ergodic is defined by Markov’s theorem, in the following form.

Markov’s theorem: A homogeneous Markov-chain with a finite number of states 
is ergodic if its one-step transition-probability matrix

Pll P12 ■•■Pim 
p _ Pil P22 •••Pim

.Pml Pm2 ••• Pmm.
has an Nth power-matrix in which the elements of one column at least are all positive. 
1 he velocity of convergence toward the limits Pj(j— L 2, ..., m) is exponential:

(3.43) sfl-W’1

where is the number of columns containing only positive elements in matrix P , 
and <5 is the smallest value in these columns.

Proof to this theorem is found in literature (See: A. 23). It should be noted that 
because in a given column of the limit-matrix P* the probabilities are the same, after 
a longer time (large n) the Markov-chain will attain state j with the same probabil.ty 
whatever its initial state was. We may say that the chain does not remember its 
Past, the dependence on its initial state ceases, for a matrix with identical rows is 
the representation of a series of independent states.

It is easy to see that the elements of any of the rows of a limit-matrix P’ are the 
limits of the n-step absolute probability-elements p^, p^ •••> Pn » al the same time, 

since

Pln) = 2 p^,1-1 
and

lim rf" = lim 2 ereP = 2 pI”p! = = p’-

The question arises how the limit-matrix P* or, which is equivalent, the limit-proba­
bilities lim p^p] can be calculated? It will be shown that the problem is rather 
simple, ^requires only the solution of a linear system of equation with m unknowns.

Let start with the Markovian relationship

A»+l) . 2 PJPJ”
>1

and by executing the n- ~ limit-transition:

<3-44) P^2PJPJ^
J-i
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In a matrix-form:

(3.45) (ptpl-,Pm} = (PtPt -,Pm} [/’ll

Pu
P12 •■•Pim •

P22 • ■ ■ P2m

.Pml Pm2 ••• Pmm.

It will be shown that this system of equation has a solution consisting of tn numbers 
which are non-negative and their sum is 1. Namely, if ?i,?2» •••»?» are m rea^ 

numbers for which

qj so, J q} = 1

and

(3.46)
m

qk 2 qjPjki 

j=i

then by multiplying both sides of (3.46) by pk and then summed up, we obtain: 

m mm m t

qai) q = 2 qkPk = .2 q) 2 PjkPk = .2 qjPj-

If the procedure is continued then for every positive n it is true that

m
(3.48) qk = 2 qiP^-

If n—oo, then 
n m

(3.49) qk = lim J qjpft = 2 qjPk = Pk (k = 1,2, ..., m). 
n /=!

So, in case of ergodic Markov-chains the calculation of limit-probabilities is a simple 
problem of linear algebra.

It should be noted that the P=[pJ transition-probability matrix is double-sto­
chastic and if the Markov-chain is ergodic, then the limit-matrix takes the form:

(3.50)

1 1 1.. ■■■ ——.I ■ II 1
m m in

1 1 1■ ■ ..
p* = m m m

1 1 1■ ■■ ——
m m m

due to the rule that any power of a double-stochastic matrix is double-stochastic and 
in the columns of a limit-matrix uniform elements can be found.
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The Markov-chain is stationary if the absolute-probabilities p^(y=l,2, 
are independent ofn, so

P21

P12 • • • Pim

P22 — Pzm

= (pF,pF, pF)-

Further:
.Pml Pm2 • ■ • Pmm.

(pF, pF, p^’) = (pln. pF, -, pF) m = (pF, pF, .... pF) [p2L 
etc.

It is visible that in case of ergodic Markov-chains (3.45) has only a single solution:

(pF, pF,-, pF) = (pt pl,-, pF)-
If the Markov-chain is ergodic the limiting distribution p} (/—1, 2,..., m) is 

stationary, at the same time.

3.2. MARKOV PROCESSES WITH FINITE OR COUNTABLE INFINITE 
STATES

fhe termonology introduced for the description of Markov-chains is applied once 
again in case of a physical system with continuously changing states in time. (Such 
a physical system is e.g. the set of discharges of a river at a gauging-station). Accord­
ing to our present assumption the state-transitions may occur in any time t, regularity 
between the consecutive steps is not a prerequisite. Another assumption should be, 
°n the other hand, that the system would have finite or countable infinite possible 
states denoted by 0, 1. 2,... integers. Such a physical system is called a system with 
discrete state-space. Let denote the state of our system in time point t by X,. Let 
assume that the system is stochastic, and X, is a random variable for every t. A further 
assumption is that if the system is in state i at a time point s then it will reach state; 
at time 54-1 with a probability pv(/) independent of its former behaviour:

(3-67) pu(t)= P(Xa+,=j\Xs = i) (ij = 0,1,2,...).

This model is called a homogeneous Markov-process, an analog of the homoge- 
ne°us Markov-chain. The probabilities p^t) arc called transition-probabilities for 
this case again. Similarly to the Markov-chains the initial distribution is used for the 
determination of the process:

(3’68) pt(0) = P(X0 = i) (i = 0, 1,2, ...).

Lct denote by pj(i) the probability that the system is in state/in time point t:

(3>69) Pj(t)^P(X,=j).

»•
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Let be further:
if i=j

PiJ^ to if (i, j = 1, 2, ...).

In a similar way than in the case of Markov-chains the following relationships hold: 

i

(3.70) p^s+t)^ for desired s S 0, t S 0.
k

The transitions of a Markov-process with continuous time parameter and discrete 
state-space may occur in any desired t time point, as this was earlier mentioned. Ihe 
run, or life-time of such a process can be presented by a function. Let denote the 
time points in which the transitions occur by In a coordinate-
system (t X) a step-function X, stands for the behaviour of the process. I his func­
tion has jumps at time points h, t2,... which in turn is a function ofthe transition 
from one state into another. In interval (tt, ti+1) the function is constant, see Fig­

ure 35.

Figure 35

Every function X, is a possible realization of the process. The set of possible realiza­
tions should be denoted by {XI which in turn may be considered a Markov-process 
{XI with a discrete state-space. X, is a random variable for desired t—s. Ihe time 
interval between two jumps of the state is also a random variable. Let denote this 
by t(tSO). It will be shown that due to the Markovian property (3.70) r is exponen­
tially distributed.

Let assume that in time point /=/0 the system was in state i. Then, another state 
has been reached in a time point /0+‘r bcin8 als0 of random nature. What is the 

probability that P(rg/)?
Let be
(3.71) Pi* S 0 = <P(0-
If now s^t and t^s then thc system is still in state i in time point /0+^ on the 

basis of relationship (3.71):

P(r =- s + t|r >■ s) = P(r £ t) =
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Because
P(t > s + r) = > s + dr > s)B(t > s) = (p^cp^s)

the following function-equation may be obtained:

(3.72) <p(s + t) = (p($)(P (fl­

it can be shown that a function of the form ip(t)=e~u is a unique solution to equa­
tion (3.72). As a consequence,

(3.73) P(t *t) = e-f

The distribution function of t is then:

(3.74) F(t) = P(r < 0 = 1 -e~u (t S 0),

which is the well-known exponential distribution itself. (See Chapter 2. Section 12). 
Parameter 2 is called intensity of movement and is nothing else than the reciprocal

°f the mean of 2, because £(t)=— (See Chapter 2., Section 2.102). 
2

If 2=0, the

system is remaining in the same state. If 2>-0, then the probability that the system
will leave a given state during a small At time interval is:

1 - <p(At) = 2zk+0(d0(3.75)

• is a quantity for which Jiin
0(^0

At
Io conceive (3.75) thc following should be known:

lim dl-0
1 -e~w 

~At

Let now denote by Tn ta, ... the time intervals lasting till the first, second, ... etc. 
tr&nsition. The probability Pn(t) should be now calculated that in a time interval 

r] thc number of transitions was exactly n.
Let denote by Yt thc number of transitions in interval [0, /]! Event {f^n} is 

obviously equivalent to event {Ti+ti+.-. + tn-ct}- It is easy to sec that:

(3-7Q p^ = P(Y, = n) = P(Y, £ n)-P(Y, % n+1).

^introducing F„(t)= P(ti + + one may obtain:

(3<77) P„(f) = FM-Fn+M- 

"(0 is thc distribution function of thc sum of n independent, exponentially distributed 
randOm variables. Because it was shown in Chapter 2 and Section 2.12 that thc sum 
of 'ndependent, exponentially distributed random variables is gamma-distributed, 
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therefore:
(3.78) Pn(t) = Fn(t)-Fn+1(t) - f lg ^dx

< 1n + l 
— f — x"e~*xdx.

J nl

If substitution Xx=u is introduced, then by partial integration we obtain

At n 1
U"~le~“du = ^e^l+^J ^ndu =

J (n — 1)! o 0 u

= ^.c-«+-L f (Xx)ne~Xxdx.
«! «! oJ

It follows that

Relationship (3.79) shows that the number of transitions of random variable Y, in 
interval [0,0 is Poisson-distributed with a paramter it. The number of states in 
interval (0, T) may be described again by help of the function Y,. If the transitions 
occurred at time points l„ <„ has “ “nit JumPs-,hen ,tSValue

will be constant in between, see Figure 36.

Figure 36

The step-function gained so far is a realization of thc random process {KJ. ih® 
set of all these step-functions is called a Poisson-process {K,}. I he Poisson-proccs. 
is also a Markov-process with discrete state-space. I he set of all possible realizations 
of thc Poisson-process is considered now as the state-space of an experiment consist 
ing of the counting of the transitions in interval [0, 7] of a given Markov-process- 
The state-space is a set of functions in this case, denoted by Q. Any function-reali­
zation is now an elementary to event. Event ^k={y,= k} consists of a set of ec 
mentary events, in other words of a set of step-functions which will run to a height 
at time point t. This function-set is a subset of £2.
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Figure 37

According to formula (3.79)
P(Ak) = P(Y,^k') = ^-e~u (< SO).

So by fixing t a probability has been determined on the subsets of a state-space £2 
consisting of a set of functions. Random variable Yt will attach to each elementary 
event w, in other words, to each step-function an ordinate belonging to t.

It must be noted that a Markov-process with discrete state-space is a special 
case of the random processes fluctuating according to time, or by different termi­
nology of the stochastic processes. Our experiment may consist of continuously 
measured stages in an interval [0, T] at a given site which is called the realization of a 

stage-process. The set of all such realizations may be considered as a state-space 
as a function-set defined in interval [0, T], Again, every random realization is 

considered an co elementary event. Subsets of event-space £2 may be determined as 
follows: let select time points 0st1<ta<...-<£n=T, let define intervals [anhj, 
^2’ ..., [a„, hj and let see the set of Xt functions which will run in the given time
Points between the given intervals, see Figure 38.

Figure 38

T 4 is an event that a realization is moving in between the denoted intervals at time 
Points rt(/= 1,2........ n), then

P(A) = P^ S Xtl .......= aB S X,n b„).
111 this way, a set of n-dimensional probabilities may be assessed over an event-space 

£2. If for every n and for any desired interval the appropriate 
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n-dimensional distribution is available then the stochasitic process {Xj has been

SPIf the process is random from the point of view of time then a random variable X, 
may be defined for every t value which would help to attach to every co elementary 
event (to each realization) the ordinate at t of a function describing this elementary 
event co. If now a random function co (a realization) is selected, then XSv) is the 
function of time parameter t (not a random function any more), characterizing one 

concrete run of the process.

3.3. DURATION OF A FLOOD-WAVE (OF THE TIME OF FLOODING): 

A STOCHASTIC PROCESS

In this chapter a mathematical concept is presented to determine the seasonal average 
duration of a flood-wave over a given level. It should be stressed that separate ana - 
yses are made for the first, second, etc. season in order to overcome the effects of 

seasonally •
The values X of the stages, a stochastic process denoted by {X„ is

split in two disjunct intervals by a given c level based on our decision from the point 

of flood-protection, see Figure 39.

Let these intervals be A and B and let X=A + B. The process will interchange 
values between A and B. Let denote the times of duration in A by Uit U»........  
and in B by K8,..., V„.

Assume that the random variables U3, ..., Vt, V3, ... are non-ncgativc, 
independent, and

P(U,^x) = G(x), P(YjSx)^H(x).

G(x) and //W arc distribution functions, continuous from the left and from the

right, respectively.
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Let now define process (X(/), Ost<+ °°} as the indicator process of state B.

(3.80)

Let be

(3.81)

X(j) =
1 if X£B 

.0 if XfA.

K0 = / X^dz. 
0

Variable 0(P) is a measure of how long the process has been found in state B, while 
a(r)=/-/?(/) is the same for state A.

Let now introduce the following notations:

(3.82)

(3.83)

(3.84)

S„ = Cri + t72 + '" + Lrn ✓ _ 
7; = ^ + ^+...+^

P(Sn < x) = Gn(x)

P(Tn < x) = Hn(x).

It is obvious that if xSO then ff0(x)=l, if then and by agree­

ment
Goto = 1.

The distribution function of variable (Hj) is:

(3.85)

Consequently,

P^t) < x) = Z,(x).

(3.86) P(a(t) < x) = 1 -Z((t-x).

Let consider the time-process of stay as the path of a random-walking particle 
where vector Ui is a horizontal step, Vj a vertical one, see Figure 40.
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Finally, let be

(3.87)

(3.88)

a = f xdG(x\ 0 = f xdH(x) 
0 0

<^= ] (,X-aydG(x), 

= f (x-^dH(x).
0

Let now calculate the distribution function of random variable M). 

It is easy to see that
(3 89) ^(0 — ki+K2+...+Lv
where v is again a random variable. (It is the number of exceedances. The last ex­
ceedance is often truncated. It should be taken as complete. So, it is the proHem of 
determining the distribution function of the sum of random number of random 
variables. The problem was discussed by several authors (e.g. Takacs [B 37] Todoro 
vic [B. 38]). Solution may be obtained in a rather simple way by use of the theorem of 

complete probability:
(3.90) P(0(O * x|v = k) = 7(^-1-^+... + ^ < x) = Hk(x)

Zt(x) = p^n ^x)= =v-

An interesting result is obtained if the characteristic functions of both sides are 

formulated:
(3.91) f e^dZ,(x) = 2[! ^dHu(x)] P(y = k).

J k = 0 nn

Let denote the characteristic functions of the variables by <?(»)•
The initial assumption was that F2,..., Vn are independent and aic i enti

cally distributed:

(3.92)
[ eiux dZt(x) = ^[9>(»)]*7(v = k\ 

J k^O

If now it is assumed that v is Poisson-distributed with a parameter kt, then.

(3.92') W") = 2 [<?(«)!*-TT*’'1' =

Let assume that the variables are exponentially distributed, so 

(3.93) IKx) = P{V, x) = 1 -e-”'

and the sum 7*=^+... + ^ will be gamma-distributed.
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Namely, the characteristic function of a gamma distribution with parameters a and 
y is:

(3.94) <p(u) = / x^e^e^dx = f x'-'e-^* dx =

= r// • V I [(y-^xr-^-^dKy-iu-jx] = 
r(a)(y-iw) o' 1-—

The characteristic function of the exponential distribution is a special case of the 
above formula with substitution: a= 1.

. x 1(3.95) (p(u) =-------
1 y

Because the characteristic function of the sum of independent random variables is 
the product of the characteristic functions, it follows that

l y )
and

Based on this:
z,« = W - X) = 2^(7

And, on the basis of formula (3.92'):
Mtu

(3.96) WM) =

The calculation ofthe exact distribution of variable P(t) is rather complicated. It is 
easy, however, to determine thc mean of durations P(t)-

The conditional expectation of variable P(t) is the following by aid of the distri­
bution function (3.93) and by assuming that v=k and that the distribution of V, 
's exponential:
, k
(3.97) £(^ + ^» + - + K*) = p

On thc basis ofthe theorem of complete probabilities:

(3.98) E[P(t)] = E{(P«)\v = k)} -

v k 2 - -^y k! y *-1 (fc—0! y

Hiis result is very important from a practical point of view.
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The same result may be obtained by aid of the Zt(x) distribution function.

(3.99) 2,r(k)* k\

(3.100) 2W1 =

0 ’ z

The result is trivial. If V\ is exponentially distributed according to distribu­

tion function (3.93) then its mean is y which means that during one exceedance 

the flood will stay in the mean for a time interval of — above level c. Due to the fact 

that the expected number of exceedances is kt, the expected value of being above level 

c is: kt • —.
7
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PART II
STATISTICAL INFERENCE





CHAPTER 4

4.1. MATHEMATICAL SATISTICS AS A SECTION OF PROBABILITY 
THEORY

Mathematical statistics is a very important section of probability theory, particularly 
for practice. Its scope is similarly the analysis of mass phenomena, however, its 
problems and, consequently, in most cases its methods are of peculiar character.

Up to now the probabilities of some events were taken as known value and the 
determination of probabilities belonging to more sophisticated events were problems 
to be solved. The distribution of a certain random variable (its cumulative distribu­
tion function or density function and their parameters) was also taken known and 
the questions associated with probabilities were answered in the possession thereof. 
On this basis certain anticipation could be got on the future course of phenomena.

For instance, it was said that if a random variable A having a normal (Gaussian) 
distribution with expected value m and standard deviation a>0 the probability that 
observed value of X would fall into a given interval (a, b) was

P(a X b) = —= f e 2a‘ dx. 
a

However, in practice the probabilities of events in question are usually unknown; 
it cannot be known whether the distribution of a given random variable is normal 

although sometimes, through certain theoretical considerations such as the valid­
ity of the central limiting theorem or through previous experience, the anticipation 
of normal distribution may be justified — and the expected value and standard devia­
tion of A'that is parameters m and a defining the distribution are also unknown. How 
to determine the unknown probability P(A)=p for an event A? How to calculate 
the expected value of a given random variable A"? How to calculate the standard 
deviation of a random variable X? I low to decide whether the distribution of a given 
random variable is or isn't normal (Gaussian)?

These problems arc not discussed in other sections of probability theory. To answer 
Such questions is the task of mathematical statistics. If a hydrologist concerned with 
the behaviour of floods wants to utilize as an aid the methods of probability theory, 
tQo, he will face primarily problems of this kind and if these remain unanswered the 
“Pplication of probability theory will be impossible. To demonstrate what was said 
3,1 example is given below.
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Suppose that one’s task is to study the statistical rules prevailing in he develop­
ment of flood peaks observed at Szeged in the 1 isza river. Let the random vanable 
X be chosen as the peaks of flood waves at Szeged. 1 he occurrence of an J 
= m}, involving inundations, represents a rather serious danger so that the
knowledge of probability P(A)=p would be important. Without experimental da a 
(observations, measurements), solely through speculation, this unknown probabi i y 
cannot be determined. The records of floods peaks observed in the Tisza river at 
Szeged should be at hand (e.g., taken from the Hydrographic Yearbook) and the 
5 , ,. v Y V (in our case n= 100), the determination of thebased on observations Ai, X2, On our case »
relative frequency k/n of event A will become possible. By virtue of the law of larg 
numbers - if » is high enough - the relative frequency k/n will. not differ greatly 
from the unknown probability p. In our case, as it is usual with hydrological records 
a cannot be considered high enough so that the exact determmat,on of the unknown 
probability by means of relative frequency is impossible, a certain approximation 
to - a so-called estimate of - probability p should be accepted as satisfactory. I he 
unknown probability is a certain point within the interval (0, I). Now, even if he 
exact value ofp cannot be calculated, at least a relatively short interval containing the 
probability p ought to be found. To achieve this the opportunity is given smee the 
number k of outcomes when (in the course of,, experiments) event A occur is> a
random variable with binomial distribution whose expected value is E(k)=np and 
standard deviation is D(k}=\m .Consequently, the expected value and standard

(k\ ( kx pq • 1-)=p and respectively.

Now, by virtue of the Moiv re-Laplace theorem on limiting distribution (see Chapter 
2, Section 2.8) and as a consequence of the known property of normal distributions

(4.1)

This relationship means that the interval

(4.2)
fl-21/— 
fn F «

which, since the value of its centre, -, is randomly dependent, will contain the 
n

unknown probability with high certainty. Formula (4.2), however, is not of great 
value since the length is unknown and it contains an unknown p (and a q=\-pk 

Introducing now the estimates p^k/n and q^—— such a result will be obtained

that the interval

(4.3)
fl 11/HlH | 2 1/ k(n-k) 
fn n F n ’ n n F n 
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whose position and length is of random nature will cover the unknown probability 
p by a probability of about 95 per cent; this means that if the procedure of construct­
ing the above interval on the basis of n observations is repeated many times the prob­
ability p will be contained in this interval in 95 per cent of the cases while the reverse 
will be true in 5 per cent. 1 his procedure of interval estimation is the so-called method 
of confidence intervals which will be dealt with in Section 5.1.4 more exactly and 
in more detail; it can be used to estimate not only an unknown probability but also 
the numerical characteristics of probability distributions such as expected values, 
standard deviations, quantities, etc., that is to derive approximate statistical estimates 
for generally unknown parameters. (Note that when estimating an unknown proba­
bility p it is the parameter p of binomial distribution that is estimated.)

1 he statistical determinaton of an unknown (constant) parameter is dealt with 
in a section of mathematical statistics called theory of estimation.

In connection with the random variable X denoting the peaks of flood waves it is, 
of course, not only the probability of event A= {^>8 m} that a hydrologist is inter­
ested in. It would be much more meaningful if, for an arbitrary x, the probability 
of event {Y>x cm} or of just the reverse event {Jf<xcm} could be determined; 
this would mean the knowledge ofthe distribution function F (x) belonging to the 
random variable X.

In mathematical statistics methods to estimate the unknown distribution function 
F(x) (or the density function F'(x)=f(x)) of a given random variable X can also 
be found (see Chapter 4, Section 1.3 and Chapter 4, Section 1.5).

Frequently what is necessery is not to find parameters or a distribution but to 
decide whether one or more parameters or thc very distributions of two statistical 
Populations are or aren’t identical. As to the flood waves of River Tisza the records 
date back to some 100 years. For instance, hydrologists may be interested in the prob­
lem whether the flood peak levels are or aren't increasing. T o decide this a procedure 
may be, e.g„ that by regarding thc peak values measured in the period 1876/1936 
as observed values for a random variable X and those measured in thc period 1936/ 
1976 as observations for a random variable Y and by using the methods of mathe­
matical statistics an examination is made on whether the hypothesis E(X)=E(Y) 
Or another one, c.g., F(x)=G(x) can or cannot hold; here F(x) denotes the distri­
bution function ofthe random variable X and G(x) denotes that of F. 1 hus here the 
Identity of distributions or of parameters is presumed and a special method of mathe­
matical statistics, thc so-called hypothesis test, is used to make decision on thc accep- 
tance or rejection of thc hypothesis. Hypothesis testing constitutes another large 
domain of mathematical statistics which is based on observations (experience) as well 
as is thc theory of estimation. A set of observations if it possesses thc properties to be 
discussed later (sec Section 4.1.1) is called statistical sample.

1 he theory of estimation and thc statistical tests of hypotheses arc two —and al- 
rcady classical—sections of mathematical statistics; from the viewpoint of hydrologi- 
^1 applications both fields arc considered to hold principal importance. 1 hesc topics 
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have been integrated in the theory of statistical decision functions by Abraham Wald 

<S Ba“on tf foregoing, in general terms the basic task of mathematical statistics 

can be formulated as follows: on the basis of experience (observations, measureme ) 
inference has to be made on unknown probabilities of events or on unknown distri­
bution functions and parameters of random variables. Mathematical statist! 
to give solutions to this fundamental problem by elaborating methods which 
lizing the observations, provide the most possible information on the requi . 

^T^cifiiatL of the basic task of mathematical statistics as given above indi­

cates the distribution nor the parameters of the random variable X was know 
advance so that they should be determined from observations related o X In 
hydrology of floods this means that in order to have anticipations on future the past 
observed values of random variables associated with flood waves should be relied on.

In statistical theory a sequence of independent and identically distributed random 

variables 

(0 x±, x%,..., x„

is called statistical sample. This means that we have the result of n 
vations made under identical circumstances on a certam random vanable X Remits 
of the individual observations as random variables are the elements of he ample 
The number of sample elements is called the size of the sample. The sample elements 
are listed in the sequence of observations.

Statistical inference is a special procedure or decision of probabilistic nature; in th 
following our intention is to present it in connection with various problems.

This chapter will deal with the basic notions and methods of mathematical statis­
tics. In practice there is a need to combine the different methods and to apply them 
in a sequence depending on the problem at hand. 1 o demonstrate this, in t e or 
coming chapters the statistical analysis of some hydrological problems associate 
with floods will be presented assuming that the methods outlined in thc present c ap 

are known.

4 .1.1. THE SAMPLE. PROCESSING OF HYDROLOGICAL RECORDS

As it was mentioned in the previous section in most cases in the hydrological ptactic^ 
neither statistical sample is a set of independent random variables whose number is 
finite, having identical distributions. Io demonstrate this an example is given be o^ 
Let the random variable X denote the annual maximum stages at a given gauge- 
Making observations on the annual maximum stages at this gauge during n ye‘ir 
sample (I) will be obtained. Through these observations, of course, concrete values 

namely,
A\ — Xj, X^ = Xg, ..., X„ — x„
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that is n numerical values will be obtained whose set will also be called statistical 
sample in the following.

In flood hydrology sometimes the requirement of stochastic independence is 
met in approximation only. The annual maximum stages are, in general, independent 
because usually there is a rather long interval (several months or even more than one 
year) between two subsequent observations of flood stages. However, as to the diurnal 
stages, they are evidently not independent of one another. So by making daily records 
on stages during n days, by virtue of the foregoing, not a statistical sample but a so- 
called time series will be obtained which will be discussed in section 4.1.1. Random 
variables associated with floods such as the magnitude of maximum exceedances 
above a given level c in the individual flood waves or the maximum flood flows ob­
served in each flood wave, etc., are generally of such kind that the elements of the asso­
ciated sample are independent of each other (especially for subsequent flood waves 
with a rather prolonged interval in between). Statistical methods utilizable for check- 
hig the independence of results given by a sequence of hydrological observations will 
be described in detail later on. The most elaborate theory of mathematical statistics 
relates to samples consisting of independent elements; good approximations to distri­
butions, etc., can be obtained from such samples. This is the reason why independent 
observations are strived for.

In hydrology the requirement that the elements in a sample should be random 
variables with identical distribution, i.e., that similar observations under identical 
chcumstances should be repeated n times, can be met approximately only (since the 
impact of environment, man made interventions, runoff conditions, etc., that is 
important factors are constantly changing). Methods to check whether the distribu- 
hon of observations can or cannot be considered unchanged will also be recommend­
ed (see Section 6.5).

Io meet the requirement of having comparable distributions the procedure to be 
followed is to analyse thc random variables associated with flood waves such as, e.g., 
the magnitude of exceedances, thc duration of flood waves, etc., separately for each 
Season.

4 |'2 the STATISTICAL FUNCTION (STATISTICS)

As it was outlined in Section 4.1.1 the distribution of a random variable studied and 
tbc characteristics (parameters) of this distribution were to be concluded from 
4 mathematical sample.

Let
P(X ex)- TW

be the distribution function of a random variable X. Information on thc distribution 
^nd on its parameters are certainly included in thc sample elements but in a scattered 
Orm. In order to be retrieved from the sample elements this information should be 

niade more compact, with a view to answer the statistical questions. Another inten­

io«
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tion is to perform this compaction possibly without any loss of information. What 
are the items requiring retrieval of information from the sample?

They are first the distribution itself that is the distribution function F(x), then its 
position that is its expected value, median and quantiles and, finally, the scattering 
of its values that is the standard deviation, etc. The way of making the information 
more compact by using a statistical sample is to compose one or a few data from the 
sample elements. These extracts of the sample elements are called statistical functions 
or in shorter form statistics. As the sample elements, depending their values on chance, 
are random variables the statistics calculated from them are random variables as well 
so that each of them also has a distribution, expected value, standard deviation, etc. 
Frequently the determination of the exact distribution of a statistic is not a simple 
task but in case of large samples there are many instances where an approximate 
distribution (or limiting distribution) of a statistic can still be determined. In general 
what is to be estimated in connection with a statistic is its expected value and standard 

deviation.

4.1.3. THE EMPIRICAL DISTRIBUTION FUNCTION.
THEOREM OF GLIVENKO

Asa basis of a statistical analysis on the distribution of a random variable X whose 
distribution F(x) is continuous the statistical sample

(I) Xx, X2,..., X„

will serve. The situation in the practice of hydrology is that the distribution function 
Ftf of the random variable X is mostly unknown. As it will be seen, when the number 
of sample elements is high enough a rather good approach to the distribution func­
tion F(x) can be found by using the following simple method.

Arrange the elements of sample (I) into a sequence of increasing magnitudes.

(H)

Let now a step function F„(x) be defined in the following way:

(4.4) Fn(x) =
0 if x^X: 
k/n if X^x^X^ 
il if x > Xf.

The function F„(x) is called empirical distribution function belonging to the sam­
ple concerned. It can easily be seen that the Fn(x) has the properties of a distribution 
function its values fall in the range between 0 and I, it is monotonically non-decreas­
ing and it is continuous from the left. At all abscissa points X' (/=1,2....... 
F^x) has a jump upwards by \/n. So at a certain point x the value of F^x) is so many 
times k/n as many sample elements lower than x can be found. In other words th® 

value of F„(x) at a point x is equal to the relative frequency of the event
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The probabil'ty of the same event is P(X<x)= F(x). So the relation between the 
empirical distribution function F„(x) and the theoretical cumulative distribution 
function F(x) is in a way the same as the relation between the relative frequency of 
a given event and the probability of the same event. If n is large enough there is a high 
probabil'ty that the relative frequency will differ only slightly from the unknown 
Probability.

As known the frequency has binomial distribution whose parameters are the 
number of observations, n, and the probability of the event which is F(x). Therefore

(4.5) 

Furthermore, 

(4.6) 

and

(4.7)

p(f„(x) = -J

E[Fn(x)] = F(x)

D[FnM] =
[ F(x)[\-F(x)]

' -------- n---------

\kJ

Flow such a question may arise whether, with a fixed n, what an approximate differ- 
encc between the empirical distribution function F„(x) and the theoretical distribu- 
tion function F(x) can be expected?

According to the Chcbyscv inequality

(4.8) \FnM-FM\ * A
F(x)[l-F(x)] 1

n J s A2P

S'ncc F(x)[l-F(x)]s — it follows that, by a high probability, the absolute value 
4

difference for any x will be in thc order of magnitude \^n which also involves 
With increasing n thc difference will converge to zero. If n-oo then, on the one 

'®nd, thc jumps of F,(x) will become gradually smaller and, on the other hand, the 
difference between F^x) and F(x) will be small, see Figure 42. This fact is expressed 
by the theorem of GHvcnko stating that if n is increasing the empirical distribution
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function converges uniformly on the whole real line to the theoretical distribution 
function. In more exact terms, if

(4.9) Dn = sup \F„(x) — F(x)\

then
(4.10) f(lim Z>„ = 0) = L

Due to its great importance Glivenko’s theorem is referred commonly to as the 
main theorem of mathematical statistics. The convergence of the maximum difference 
between F„(x) and F(x) to zero means for the practice that if n is large enough the 
probability F(x) can be determined approximately by F„(x). The rate of convergence 
of the maximum difference between F„(x) and F(x) to zero is expressed by the theorem 
of Kolmogorov and Smirnov to be discussed in Section 4.2.5.

If a discrete random variable may take the values Xi,x2, ... with (unknown) 
probabilities ...p2....... respectively, and vt is the number of occurrences of

in a sample of size n, —can be considered an approximation ofp.
n

4.1.4. IMPORTANT EMPIRICAL CH AR ACTERISTICS. SAMPLE MEAN

One of the most important statistics often used in practice is the arithmetic mean of 
sample elements, i.e. the sample mean

Being a random variable)? fluctuates around thc theoretical expected value E(X)=nh 
The reader is reminded of thc rule that if thc distribution function of X is F(x) then 
E(X) is calculated by using thc formula

OO

E(X)= f xdF(x).
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F(x) is unknown but, instead, the empirical distribution function F„W can certainly 
be determined by using the ordered sample (II), so if n is large enough, Glivenko’s 
theorem yields that

. I I*

(4.12) f xdF,(x)=
‘=1 n

So the sample mean X provides information on the position ofthe location parameter 
E(X) that is on the centre of gravity of the distribution.

Empirical median

The location of a distribution is illustrated similarly by the so-called empirical median 
which is the middle one among the elements of the ordered sample (II) if n is an odd
number. If n=2m (even number) the median 
two elements in the middle. So

- _x*+x*+1
(4.13) 1/2 ~ 2

^1/2 = Xm + i

is calculated as the arithmetic mean of

if n = 2m

if n = 2m +1.

Empirical quantiles

then the sample element is called the empirical a-quantile of the 
distribution. The empirical a-quantile of a distribution is a number compared to 
which 100a percent ofthe sample elements are smaller. The median is the quantile 
belonging to a=l/2. In addition, thc knowledge of the so-called lower and upper 
Pantiles, X* and X«nl respectively, are also highly informative. If the

[t]+1 Uj+r
number of sample elements is large enough thc empirical quantiles fluctuate around 
the theoretical quantiles ofthe distribution.

Estimate of the variance, thc sample range

The estimate ofthe theoretical is thc "mean square deviation” defined by thc formula

(4.14) (x. -X)a+(xa-:m.
n

U is used to characterize thc dispersion of thc sample elements around thc sample 
X. The square root of S2 (with positive sign) is called “empirical standard 

deviation”.
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Remember that the variance of a random variable X was defined by the formula
co

Z>2(X) — J" (x-m^dF^x).

Considering this,

D^X) f (x-x)2 dFn(x) = ----- ---------= S2

that is the estimate of variance, S2, fluctuates around the theoretical variance D2(X), 
it is a statistical approximation thereof.

In practice — especially when n is not too large — the so-called corrected estimate 
of variance is used:

Z^-X)2

(The expediency of using this corrected estimate of variance is explained in Section 
5.1.3).

As a measure of dispersion the sample range

(4.16) R = X^~X*

is also used; this is easier to calculate than S2 but, as a statistic, its reliability is lower. 
To obtain a coefficient representing the relative dispersion in the case of positive 

variables the coefficient of variation is calculated:

(4.17) K = T‘

The empirical moments
m =1 2Xf (r = 1, 2, ...) 

n iti

will be needed as well. Note that and m2=S2+X2.

4.1.5. DENSITY HISTOGRAM OR EMPIRICAL DI NSITY FUNCTION

As it was seen, by applying Glivenko’s theorem the theoretical distribution function 
F(x) of a certain random variable X could be approximated by the empirical distri­
bution function F„(x) and to calculate this approximation in practice was a very 
simple task. I he density function F'(x)=f(x) can give a more illustrative picture 
on the distribution. In order to obtain statistical approximation for a density func­
tion usually a graphic procedure is used in the following manner:

Divide the interval (a, b) whose boundaries arc a=X[ and b=X* into m partial 
intervals by means of dividing points a=d^d^ where the vain® 
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taken by tn depends on the number of sample elements, n (the choice of m will be 
discussed later). If, among the sample elements Xlt X2,..., Xn, the number of those 
falling into the interval [d^j, d} is denoted by V; let an oblong be drawn above each 
interval with a height of

. (i = 1,2,..., m).
n^-d^)

In this way a step function will be obtained under which the whole oblong area 
amounts to 1. This step function is called density histogram or empirical density 
function. If n is large enough the area under the density histogram belonging to a 
certain interval (c, d) provides in approximation the probability that the observed 
value of X falls into (c, d}

Constructing a density histogram usually two problems will arise: how to choose 
the number tn of intervals and how to locate their dividing points. Depending on the 
sample size n the practical procedure is the partition of the sample range into 8 to 14 
parts which reflect the shape of the theoretical density function but depending on 
spatial circumstances (small or large size, the shape of the density function) this 
number may be less than 8 or more than 14. The dividing points may be located in a 
manner to obtain uniform partition (intervals with equal lengths) but the location of 
points may also be made dependent on the location of the sample elements (e.g., the 
partial intervals next to both ends can be chosen longer because here the density of 
sample elements is lower).

To illustrate the foregoing consider the following example:
Denote the random variable AT the exceedances measured at Tokaj in the first half 

of each year between 1903 and 1971. With a choice of m=600 cm the frequencies by 
which the values of X fell into the intervals

1 to 50 cm d4 = 151 to 200 cm

= 51 to 100 cm d6 = 201 to 250 cm

are:
dj = 101 to 150 cm d. = 251 to 300 cm

Frequency Relative frequency, vjn

4, 34 0.36 0.72
4, 24 0.26 0.52
4, 15 0.16 0.32
4, 14 0.15 0.28
4, 4 0.04 0.08

3 0.04 0.06

Total 94 1.00 1
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If, in an orthogonal co-ordinate system, oblongs are drawn over the intervals in 
a manner assuring that the area of each oblong is proportionate to vjn, the relative 
frequency of observations belonging to the respective interval, and that the sum of 
these areas is equal to 1, a density histogram shown in the figure below will be ob­

tained, see Figure 43.

Note that the empirical density function can be defined in several ways. Most 
frequently the definition

(4.18)
Vj 

n(di~dl-1) 
0

if d^ x di

otherwise (i = I, 2, ..., m)
M =

is used. It is easy to see that the emprical density function/.(x) defined by formula 
(4.18) is the difference ratio ofthe empirical distribution function F„(x) within the 
interval (d^, dt) that is

(4.19) /„(*) = where dx = dl-dl-1 (i = 1, 2.......m)
Ax

^as an analogy of the relationship/(x)= dl\x)
dx

Equation (4.19) provides a graphical technique to get the empirical density function 
fn(x) from the empirical distribution function F„(x) by using thc so-called graphical 
differentiation, a procedure where a unit length is measured along the X axis back­
wards from each dividing point dt towards and a line is drawn parallelly t0 
the chord connecting the points
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It can be shown that, applying equal length of intervals, if the number of dividing 
points, m—mn, meets the condition

3 ’^n \ /

and n is increasing the density function/,(x) as defined in formula (4.18) will, under 
rather general conditions, converge to the theoretical density function that is

n = max |/„(x) -/(x)| -* 0 if n —

Another definition given for the empirical density function also utilizes the differ­
ence ratio of the empirical distribution function Fn(x) with the only difference that 
the location of dividing points varies from case to case.

E. Parzen’s suggestion for the definition of the empirical density function fn(x) is 
the formula
(4.20) fn(x) = ^x+h)-F„(x-h)

where h is a suitably chosen positive number. Again with this definition the problem 
faced is how large the number h is to be chosen. Obviously, the choice of h will depend 
°n the number of sample elements, n:h=h(n). I he larger the number of sample 
dements the smaller h(n) may be chosen so that meeting the condition

lim h(n) = 0

's an apparent requirement. The numerator of the empirical density function f„(x) 
as defined by formula (4.20) is the relative frequency of sample elements contained 
by the interval whose centre is at x and length is 2/i. In his paper [B. 26] Parzen con­
ducts an in-depth analysis on the following estimator of the density function f(x):

(4.21)
— ©o

f x~XJ 1
I h J

bis has been derived by means of the function 

™=(o'3 if 
if

|y| 35 I
M > 1

and represents essentially another form of relationship (4.20): it is an integral mean 
formed by utilizing thc empirical distribution function F„(x). In addition he has 
Proved [B. 26] that if thc relation

lim nh(n) = 0
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also holds then the empirical density function/„(x) calculated by formula (4.21) will

meet that 

(4.22) 

and

lim E[/„(x)] = f(x)

00 f(x)
lim nhDWx)] = f(x) f K2(y)dy =

that is

(4.23)

Formula (4.18) provides a step function for the empirical density function while 
formula (4.21) is the so-called moving uniform division because once an h value has 
been chosen x can be caused to run along the domain of f (x).

For instance consider the series of exceedances measured in the first three months 
in the Tisza river at the Szolnok gauging station (Table T. 1). Elements of the ordered 
sample are given in Table 4.1. The empirical cumulative distribution function is 
shown in Fig. 61. In this figure the estimates of the theoretical density func-

Table 4.1

Tisza river at Szolnok, first quarters (1903/1970)

1 1 0.01 21 59 0.51
2 2 0.02 22 63 0.54
3 3 0.04 23 65 0.55
4 4 0.05 24 66 0.55
5 5 0.06 25 85 0.65
6 13 0.15 26 88 0.67
7 16 0.18 27 91 0.68
8 17 0.19 28 100 0.72
9 18 0.20 29 104 0.73

10 19 0.21 30 108 0.75
11 20 0.22 31 116 0.77
12 24 0.25 32 128 0.81
13 29 0.30 33 134 0.83
14 33 0.35 34 150 0.86
15 35 0.35 35 178 0.92
16 38 0.37 36 179 0.93
17 39 0.38 37 184 0.93
18 45 0.42 38 201 0.95
19 46 0.43 39 222 0.97
20 56 0.49 40 255 0.99

41 281 1.00

R = 80.98 as 81 cm
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tion/(x) are also plotted at the abscissas x=0.25; x=0.5m; x= 1.0m and x= 
= 1.5 m. With respect to the fact that the processing of data contained in the table 
requires a relatively small amount of calculation, estimation to the density function 
was by using the empirical density function J„(x), utilizing formula (4.18) where the 
interval h was chosen as 0.25.

In the recent years the course of estimating a density function through the empirical 
density function/„(x) contained in formula (4.18) and the properties of estimates have 
been discussed by several authors, among them Revesz [B. 32], Rosenblatt [B. 33], 
Parzen [B. 26], Nadaraja [B. 25], Tusnady [B. 40], etc.

In case of the sequence in question*

* The shape of the empirical cumulative distribution function F„(x) and the course of values in the 
'"Pirical density function refer equally to an exponential distribution.

/„ (0.25) = 0.92; £(0.5) = 0.6; /„(!) = 0.3; Ad-5) = 0.15.

At the same time

l-F„(0.25) = 0.73; 1(0.50) = 0.53; 1-F„(l) = 0.32; 1 -F„(1.5) = 0.15.

Considering the results, above a certain c it seems to hold (in the example at least for 
exceedances larger than 1 m) that

■ ss 1 (constant), 
i-w)

It is known (see, e.g., [A. 20]) that, when dealing with a continuous distribution 
of a random variable X, the relation

(4.24) , = A (constant)
l-f(x)

■s met above a certain c, i.e., when X>c then P(X-<x\Xsc)= 1 —This means, 
with the aforementioned stipulation, that the conditional distribution of the random 
triable X is exponential distribution.

Namely, if relation (4.24) fits the distribution of the random variable in question 
then

d In [1 - F(x)] = ; 
dx

ln[l-F(x)] = -Ax 

l-f(x) = e-Ax

F(x) = l-e’^.

If the relation (4.24) holds for all x values larger than zero the distribution is expo- 
nentiai.
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Note that E. Zelenhasic [B. 49] has found that in the case of some North American 
rivers the distribution of the exceedances is exponential or gamma. Now we justify 
that if the distribution of a random variable X is gamma then, for a certain level ofc, 
the conditional distribution of X, under the condition that X^c, will be distributed 
exponentially, with a good approximation. Namely, as it was seen in Section 
1.4.11, the density function of gamma distribution was

(4.25)
z" 

r(p) 
o

if x > 0

if x 0.

Applying now L’Hospital’s rule it yields that

/(x) 
1—F(x) /(x) X

(constant).

So with x values large enough it holds that -A.

Note that the (constant) value of A contained in (4.24) is at the same time the param­
eter of exponential distribution. As out of our record there are a few points only 
where values for the empirical density function /„(x) have been calculated a result 

A= 1 will be denied.
In Section 5.1.2 it will be seen that the maximum likelihood estimator of parameter 

A in an exponential distribution is the statistic A= 1 (X) (reciprocal value of the arith­
metic mean of observations).

in our example X=0.81 so that 1=1/0.81 = 1.25. A comparison made, e.g., at 
the points x=0.5;x=l; x=1.5; x=2 between the values of the empirical distri­
bution function F„(x) representing the series and the values of the exponential distri­
bution function F(x)= 1—e-1'”’ yields the following table:

Table 4.2

X F(x)-l-r‘,“x W

0.5 0.47 0.47
1 0.71 0.67
1.5 0.85 0.85
2 0.92 0.90
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Based on the good agreement between the theoretical and empirical values the 
statement is that, for the given gauge and season, the distribution of exceedances is 
exponential. As to the acceptance of a hypothesis presuming exponential distribution 
decision can be made by conducting a so-called test ol exponentiality. (In literature 
it is often referred to as Stdrmer test.)

4.2. ELEMENTS OF THE THEORY OF ORDER STATISTICS

4.2.1. THE ORDERED SAMPLE

The appearance of the theory of ordered samples has opened a new chapter in the 
development of mathematical statistics. This theory is fundamentally important in 
the analysis of hydrological observations. In the sequel that part of this theory will 
be outlined in brief which will be applied in the further chapters.

Let X be a random variable having continuous distribution function represented 
by n independent observations that is let be considered a statistical sample.

Let
(I) XlfX2...... Xn
be a sample of size n, i.e., independent observations on the random variable A" having 
continuous distribution. Commonly the elements are listed in random order, e.g., in 
temporal sequence of observations (measurements). If now the temporal sequence 
is disregarded and, with consideration to their numerical values, the observations are 
ranked in increasing order of magnitude a so-called ordered sample will be obtained: 

di) x; < x? x*.
(If the elements of statistical sample (1) are plotted on the line they will line up 
automatically according to their magnitudes.)

Anyway, among the elements of sample (I) there will be a smallest one, a subsequent 
second smallest one, etc. Since the sample elements are independent and identically 
distributed the smallest observed value Af may be any clement of the series An 
Tj, Aa, ...,X„ by a probability of just 1/n. Similarly, elements X2,X3, ... of the 
ordered sample may be originated from any element of sample (I) by the same prob- 
ability. So the elements of the ordered sample can be considered random variables 
as well as the elements of statistical sample (I). However, the elements in the ordered 
sample (II) are no longer independent of each other as there is a rank relation among 
them so that their distribution will also differ: the distribution of A; is not the same 

that of A3 and the respective distribution of As, A4, A„ will be different 
il8ain. It might seem that by ranking the sample elements the advantageous propcr- 
ties of sample (I), i.e., the independence of elements and the identity of their distri- 
butions have been lost. In fact, however, the operation of odering—this simple trick - 
lcads to far-reaching mathematical consequences through which new results in the 
Probability theory and efficient techniques in mathematical statistics could be devel­
oped.
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4.2.2. DISTRIBUTION OF THE ORDERED SAMPLE ELEMENTS

Let the distribution function of a continuous random variable X be F(x). Now the 
distribution of the ordered sample (II) will be derived from F(x).

It is the distribution ofthe largest element in the ordered sample that is the easiest 
to find. Let the cumulative distribution function of the largest sample element X„ 

be denoted by Fnn(x):
(4.26) FM = P(X^x).
Obviously, the largest observed value X* can be less than x only if each observed 
value is less as well. Since the elements of sample (I) are independent and have the 
same distribution that is the distribution function of each sample element is F(x) it 

follows that
P(Xx < x, X2 < x,..., Xn < x) =

= P(Xx < x)P(X2 < x)...P(X„ < x) = [F(x)]n 
so that
(4.27) FM = PM < x) = [F(x)]".

The derivation of the distribution of the smallest sample element X* can also be 
performed easily. If the distribution function of the smallest sample element X* is 

denoted by Fnl(x) then
1 -F^Cx) = P(X? S x) = [1 -F(x)]".

This is because an event {f^x} can occur only if each observed value is greater 
than or equal to x.

P(Xx s x, X2 a x,.... Xn S x) = P{Xx £ x)... P(Xn S x) = [1 — F(x)]"

so that
(4.28) F„,i(x) = 1 — [1 — F(x)]".

Denote by F„ik(x) the distribution function of the/c-th element Xk in the ordered 
sample. Obviously, an event {A^x} can occur either if there are k observed values 
less than x and thc other n-k observed values are greater or if there arc A+1 
observations less than x and another (n-k- 1) observations greater or if each one 
is less than x, etc. T hese events arc mutually exclusive so that thc probability of event 
{A^-cx} is given by the sum of their probabilities.

The probability that out of n independent observed values there will be exactly ' 
ones less than x and thc other n-i values will be greater is, according to the bi­
nomial distribution, the following:

(■) F'(x)[l-F(x)r-'.

Therefore
(4.29) P(X? c x) = F„.k(x) - 2 (-)[F(x)]'[l -F(x)r-'.
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The distribution function Fn k(x) can be written in other form, too. Such an event 
that the £-th sample element Xk in the ranked series is less than x can occur in the 
following way.

If t denotes an optional value t<x the probability that out of n independent sam­
ple elements one falls into the narrow interval (/—At, t) is nf(t)- At; at the same 
time k— I values are less than t and the rest, (n— k.) values, are greater than t. Prob­
ability of the latter is:

By virtue of the rule that the probability of joint occurrence of independent events is 
the product of their probabilities this probability is

4* ~!) iw-ui-ram

If now the interval (— x) is divided into adjacent intervals with lengths of At then, 
by adding up the probabilities of the aforementioned mutually exclusive events one 
can obtain that
(4.30) F„ik(x) * 2 JjZ|1 [W-HI-K01"-7(')-

— n
«-l)

— OO

From (4.30) the density function of the &-th element Xk in the ordered sample is ob­
tained by derivation:

(4-31) = n(fcZ ]) [fw-’h -w-vw.
Now an important transformation utilized frequently in practice is referred to. 

Let F(x) be a function increasing strictly monotonically and introduce the new vari­
able u=F(t); thus du=f{t)dt and the formulae above will take the following forms:

(4.32)

(4.33)

(4.34)

rw 
Fn.M=nj (l-uY^du 

0

V Z 0

F(x)
F„.n(x) = n{ if-1 du.

0

So if y is distributed uniformly in thc interval (0, 1) — let now its distribution 
denoted by G(y) — that is if

0
G(y) = y 

i

if y*0 
if 0 3 y < 1
if y£ 1
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then the distribution functions written above will take simpler forms as follows:

gm^ /(i-u)"-1^ i-(i-yr 
0

(h—n y fc_]l f ^(i-u^du
7 0

y
G„,„(y) = n f u^du = y".

0

Concludingly, in this case the element Y^ of the ordered sample follows beta distri­
bution with parameter (k, n-k+ 1). The expected value and variance of the k-th 
element in the ordered sample are found as

, k(n—k+\)
E(Yk) ~ '( (n+l)i(»+2) •

Furthermore, it is worth mentioning that the distribution of the sample range 

R^X^-X^

can be determined easily; it has the form

(4.36) ^n(r) = n /
— co

Note that if the distribution function of X is the strictly monotonic F(x) and •* 

Y— F(X) the random variable Y is distributed in interval (0, I) uniformly since

(4.37) P(Y ^y)= P[F(X) * y] = P(X F^(y)) = F[F"*(y)] = y.

Thus, within interval (0, 1) the scries of random variables F^X^, F(Xt)....... 
can be taken as a statistical sample related to a random variable with uniform dist" 
button.

The joint distribution for pairs, triads, etc. constituted by the elements of an ordered 

sample can also be derived (see, e.g., [A 25]).
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4.2.3. THE CASE OF THE EXPONENTIAL DISTRIBUTION

Due to the fact that exponential distribution plays a highly important part in flood 
hydrology consider now in somewhat more detail the distribution of elements belong­
ing to an ordered sample

(I) xt^x?^...^x*

derived from a statistical sample

(II) Xk,X2,...,Xn

which relates to an exponentially distributed random variable X.
As it is known (see, e.g., [A. 22]) a characteristic feature of exponential distribution 

is that
P(X<y+x\X^y) = P(X^x) (ifx>0, y>0).

Namely, since F(x)=l-e one may write that

(4.38) P(r<x+y|ysy) =
F(x+y)-F(y) 

l—F(y)

1 _£-«*+>)_[! -e-^] = ] _p_Ax
_ g-b

First the distribution of differences Xk+1—Xk are calculated from the ordered 
sample (I). Then, maintaining the condition that Xk=y, consider the following 
Probability:
(4-39) PW^-X? 5 x|# = y) = P(X?+i £ x+y\X{ = y).

The event in the right hand side of Eq. (4.29) means that having the condition 
T*=y each of the random variables A^i, A„ greater than x+y.
This means at the same time that under thc condition Xk—y there are exactly 
(""&) sample elements greater than x+y. As in sample (II) thc sample elements are 
'^dependent identical exponentially distributed random vaiiablcs and as

(4.40) [P(A's x)]"-* = e-<*-*>Ax

Ihe conditional distribution function of differences Afc+i~ Ak under the condition 
th*t X^y is

(4-41) PW+l-x: < x W = y) = 1

As it can be seen thc value of the conditional distribution function (4.41) doesn’t 
^Pcnd on y so that (4.41) simultaneously provides the unconditional distribution 
Action Of x;+l-x;.

The validity of this statement follows from thc theorem of total probability, too 
866 • Section 1.1,5):
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Denote by GA(y)the distribution function ofthe random variable Xk. So

(4.42) P(Xt+i-Xt ^x)= f P(Xt+1-X? < x\X{ = y)dGk(y) =
0

= f dGk(y) =
0

dGk(y) is, of course, equal to one since Gk(y) is a distribution function.) Thus Eq.

(4.42) shows that the differences Xk+1-Xk are also distributed exponentially with 

expected value of

O-«) -^1 <k = 1-2.......»-»■

The distribution ofthe smallest element X* of the ordered sample is exponential as 
well; this can be realized plainly by introducing an auxiliary variable T*=0 but 
the same can be conceived by considering Eq. (4.42):
(4.44) P,.^) = 1 Hl -W = 1 -e-1"*.

So the expected value of X* is equal to . Based on the foregoing it can be seen that

all the differences
(4.45) 3k+1 = (n-k)(X^+1-X^) (k = 0, 1, ...,n-l)
are distributed exponentially with expected value of l/X It can also be realized easily 
that the random variables 8n as a whole are independent since thc condi­

tional probability
(4.46) P(X^k-X^x\X^ = y1,X^-X^yi,...,Xi-X;_k = yk) (y,^^ 

doesn’t depend on the values of •■■,yk- This is because Eq. (4.46) is equiv­

alent to the probability

(4.47) P(X^-X^ ^x\Xk = yk+...+yk) = 1
which, as it was seen, is independent of the condition. Because, by virtue of E<J- 
(4.45),

x; = {x:-x^+{x:-x:)+...^-x;^ =

। ।
~ n n—1 n—k+1

the consequence is that
(4.48) £(xn = EM+Ef-^-l+.-.+Ef-A-r) =

\n) \n — \) \n—k+1/

=s1LL+JL_+„.+_1_1
A kri n-1 n-k+1 J
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The expected value of the largest element of an ordered sample, derived specially 
from exponential distribution, is

/ 1 (1 1 1 ,) In n(4.49) £ra = _[_+__+...+_+lJ»=—.

Furthermore,
(4.50) D^X^ = D2 +... + D2 (7=^71-) =

= A21) + +‘'+ -HF‘

The variance of the largest element belonging to exponential distribution is

(4.51)

Based on formula (4.27), when exponential distribution is dealt with, the distribu­
tion function of the largest element of an ordered sample can be found as

P(j;<x) = FM(x) = (l-e-A’)B.

Introducing the notation x=E(X*)+zm——Fz the limiting relation 
A

(-Az — € AZ i
1+——J

is obtained which is called commonly extremal distribution of the first kind.

4>2-4. THE DISTRIBUTION OF THE LARGEST EXCEEDANCES

ln general, from the viewpoint of flood control in a given river, it is primarily the 
distribution of the annual maximum stages that is considered essential. In our opinion 
the distribution of total exceedances in the individual seasons may also provide useful 
'"formation. The distribution of seasonal maximum exceedances above a level c 
chosen suitable from thc viewpoint of flood control seems to be especially important. 
Let be examined therefore the probability distribution of maximum exceedances 
observed in a given time interval [0, /); this will provide supplementary information on 
foe regime of floods.

As it was seen in Section 4.1.2 if, by a suitable choice, the level c was high enough 
fo® distribution of exceedances would be in general exponential (at least as far as 
r'v®rs covered here, e.g., thc Tisza river, arc concerned but thc same is probable for 
°focr rivers with medium flow rates, too). Generally, thc number of exceedances 
Ca" be approximated by Poisson distribution. More than one exceedance in the given 
Per'od [o, t) can, of course, well occur. Suppose that the number of exceedances 
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observed in the given interval [0, t) is v and let these exceedances be denoted by

where v itself is also a random variable. Denote by Z( the magnitude of maximum 
exceedance above the level c within an interval [0, /) that is

(4.53) Z,= SUP Y2, Xv}.

Find the probability of events {Zt^x}. When there is no exceedance within interval 
[0, r), i.e., when {v=0} then Z(=0 automatically. So, if v has Poissonian distri­
bution whose parameter is Xt it follows that

(J AO
(4.54) P(Zt = 0) = P(v = 0) = = e^.

Consequently, if the probability distribution of flood events is known (see Section 
2.2.6) the probability of the event {Zt=0} is known as well. Therefore, it is the 
conditional distribution function of the random variable Z, that is to be derived by 
keeping in mind the condition that {v>0}. Denote by

Ft(x) = P{Z, < x|v > 0)

the conditional distribution function of the maximum exceedances Z,. According to 
Todorovic and Zelenhasic [B. 49] Ft(x) can be derived as follows:

Let the sample elements X^,...^ be arranged in increasing order of magni­
tude that is let be formed the ordered sample

y; < y2* <...< x*

where the number of sample elements, v, is also a random variable. Thus the distri­
bution function F,(x) is the distribution function of the largest clement of an ordered 
sample composed of a random number of elements, under the condition that excee- 
dance(s) did occur that is at least one sample element does exist.

The possible values of the random variable v are the non-negative integers 0,1,2. ••• 
and the probabilities by which these are taken by v are P(v=0), P(v= 1), • 1
probability of the joint occurrence of events {Z(<x} and {v>0} is

(4.55) p({z < x}n {v > o}) = i p({z, < xjn {v . A}) =

= £ P(Z,^x\v = k)P(v = k). 
k-l

that if 
v)

Resting on the theory of ordered samples (Section 4.2.2) it is easy to sec 
H(x) is the distribution function of each of the random variables Xt(i= 1. 2, 
then

P(Z, < x|v = k) = H\x) 
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since in this case Zt is the largest element of an ordered sample containing k elements 
(see Eq. (4.27)). So it follows that

2 Hk(x)P(v = k)
Ft(x) = P(Zt < x| v > 0) = ------

When the number v of exceedances is distributed according to the Poisson law, 
having expected value It in the given interval [0, r) then

(4.56) =
k = l_______K-_____

1 -e’"”

1 —e~u

brom this equation it can also be seen that if 77(O)=O then F,(0)=0 and Ft(+ =»)= 
= 1.

As it was seen in Section 4.1.2 the exceedances observed at the gauges of the Tisza 
river is distributed exponentially that is H(x)= 1 — e~^x (/?>0). So

(4.57) FrW =
e-Ue-P* — e~u

l-e"*'

h will be seen later that for instance for the Tisza river the distribution of maximum 
exceedances fits this conditional distribution function rather well.

It was shown in Section 2.2.3 that if the distribution of the random variables Xv, 
■^a,..., X„ was exponential defined by a cumulative distribution function H(x)=

— the random variables

(4-58) =

and
^-(v-k + l)W-^*-i)

"'"uld be independent and distributed exponentially, with expected value 1/^ 
and variance (1=1,2........ v). As

(4.59) A+-

V— 1

_A_
v-fc+l

11 ls involved that when having exponential distribution the expected value of the Ac-th 
lenient in the ordered sample is

(4.60) ^^7(v+^+"+T3E+t)
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Utilizing this relationship the conditional expected value of Z„ keeping in mind the 
stipulation that within the period [0, /) the number of exceedances was k, can be 

given as
1 * 1

(4.61) E(Zt\v — k) — -p 2^'

Because the random variables <515 52, ..., Sk are independent it follows that

1 r i i 11
(4.62) D^) = ^ + 77TIjT+-+ (v-k+l)d

so that

D2(zt\v = =

The unconditional expected value of the largest random variable Z, is equal to the 
expectation of its conditional expected value (see Section 1.3.4) that is

(4.63) E(Z^ = £[£(Zt|v)] = 2 E(Zt\v = k)P(v = k) =

e-u (Xt)k (4, in 
P(l-e-u) Li k! L-i i)J'

The numerical calculation of Eq. (4.63) requires usually computer. Here an attempt 
is made to derive a lower and an upper limit for £(Z,).

To obtain a lower limit it is sufficient to consider that the expected value of the 
largest exceedance may not be less than the expected value of all (any) exceedances; 
now, since exceedance X follows exponential distribution having a distribution func 
tion where £(Z)=l/£ this involves that

(4.64) E{Z^ a 1/0.

To derive the upper limit for £(Z,) note that 1In (k+1)—y (const) 
X A-

where y=0.577..., the so-called Euler constant. Thus

so that

(4.65)

y — %ln(k + l)+y -= k (if k 2) 
iti i

e-xt r ~ (W r » rE(Z,} ~ L? k! I? «’ ■

P(\-e~x')

If
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Consequently, 
1 M

(4-66) -^E{Z^-^^

where, if 1, the right hand side of this inequality is surely an upper limit. (In 
practice, as far as our own studies are concerned, with interval [0, r) as a quarter of 
year the condition 1 was always satisfied for the expected value of exceedances.)

The unconditional variance of the maximum exceedance Zt can be calculated by 

formula
(4.67) D^Z,) = ^LDHZJv)] +D* [£(Z,|v)]

which leads to a rather sophisticated relationship when the magnitude of exceedances 
are distributed exponentially and the number thereof follows Poisson distribution. 
No complicated calculation is needed to guess but an upper limit for L>2(Zt). As 

(4.68)

and

(4.69) 

it follows that

(4.70)

1 k 1
D~(Zt\v = k) — 2^ p

-2 7t
thatis

While to calculate the moments of the maximum exceedance Z, is rather cumber­
some and tedious (even if only the expected value and standard deviation is needed) 
the calculation of distribution quantiles (e.g., of median, lower and upper quantiles, 
etc.) can be executed easily. Any a-quantile can be obtained by using formula

FM = 1 — e~u
= a.

It is because formula (4.54) involves that

which yields that

Fr°m this wc get 

(4.71)

= a+(l-a)*'*

. 'n [«~b( 1 A>
e ----------------It

1 r -In fa-bO-«)*"*
= I A/

The mode X of maximum exceedance Z, is calculated by means of density function

(4.72) f;(x) =
kt • P _pire-J«+M

1 -e
(x £ 0).
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A simple calculation yields that

(4-73)

Hence

(4.74)

//(*) -
Atp2e~^,e~l,x+^

1 — e"^

In kt
T if 2/>l.

(Ate-^-l).

The point of inflection of the density function (when kt> 1) are at points

(4.75)
1 , 3±/5 

%1'a p n 22/

In the course of practical applications (in calculations for gauges in the Tisza river, 
for three month intervals) kt was found to be less than 1. It is easy to realize that in 
this case, for positive x values, the density function f(x) is monotonously decreas­
ing. Namely,

f'(x) <0 if kte~fx < 1 that is if x > —

As when 2/< 1 then ln2/<0 and since /J>0 the mode is 

x =0.

4.2.5. KOLMOGOROV—SMIRNOV TYPE LIMITING DISTRIBUTIONS

As it was seen, according to Glivenko's theorem the statistic

D„ = sup|F„(x)-F(x)|

tends to zero with probability 1 if n tends to infinity. This means also thc convergence 
of Fn(x) to the theoretical cumulative distribution function F(x). Kolmogorov 
investigated the problem how fast this convergence is, i.e., with large n, how large 
absolute difference can be expected between thc empirical and theoretical distribution 
functions. It was shown already by Eq. (2.5) that thc order of magnitude of D„ was 
approximately 1/y'n. Kolmogorov proved that thc random variable j/7iDn fluctuated 
around a bounded value and he obtained for thc limiting distribution of this random 
variable thc following expression:

(4.76) Jim Ptfn D„ < z) = f (~ D'e-*'”' = K(z).

Values of thc limiting distribution K(z) can be found in Tabic 6.
Thc above result of Kolmogorov applies to cases where thc number of sample 

elements is large. However, in the practice of hydrology thc records arc short fre­
quently. This is the reason why a table is annexed here which contains thc critical 
values of thc random variable for relatively small values of n.

170



As to the exact distribution of the random variable /n Dn (with finite n) reference 
is made to work [A.9].

The distribution of the random variables

Di = sup[Fn(x)-F(x)]X 
and

D~ = sup[F(x)-F„(x)]

(one-sided deviations) were analyzed by Smirnov who arrived at the followinglimit­
ing distribution theorem:

(4.77) lim F(j6? Di ^z} = lim (f w D~ < z) = 1 = S(z) (z s 0).
it-* o© n-* oo

Table for applying the Kolmogorov one-sample test for two-sided alternative hypo­
thesis

n 0.95 0.99 n 0.95 0.99

8 0.4543 0.5419 21 0.2827 0.3443
9 0.4300 0.5133 22 0.2809 0.3367

10 0.4093 0.4889 23 0.2749 0.3295
11 0.3912 0.4677 24 0.2693 0.3229
12 0.3754 0.4491 25 0.2640 0.3166
13 0.3614 0.4325 26 0.2591 0.3106
14 0.3489 0.4176 27 0.2544 0.3050
15 0.3376 0.4042 28 0.2499 0.2997

29 0.2457 0.2947
16 0.3273 0.3920 30 0.2417 0.2899
17 0.3180 0.3809 35 0.2243 0.2690
18 0.3094 0.3706 40 0.2101 0.2521
19 0.3014 0.3612 45 0.1984 0.2380
20 0 2941 0.3524 50 0.1884 0.2260

If thc observed value of D„=max |F„(x)-F(x)| attains or surmounts thc value 
X

given in the table then thc hypothesis that thc distribution function of the random 
variable is F(x) has to be rejected.

The application of Smirnov’s limiting distribution doesn't need any special tabic 
but a tabic of natural logarithms.

The mode, expected value and median of thc limiting distribution of random vari­
able Di can be found through simple calculations.

I he mode ! can be obtained from thc density function

(4.78) S’(z) - s(z) - 4ze-a*’

by solving the equation

s'(z) = 16z2e'1,1 = 0.
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Withz= 1/2
i

/(z) = 2e 2 % 2-0.6 = 1.2.

The expected value E(/n Df) will be obtained by means of partial integration
OO 00

(4.79) / z • 4ze~21' dz =-ze-2z'\~ + fe~2!'dz
o o

applying the substitution z=u/2:

— / e 2 du = —-— % 0.627.2 / 4

Furthermore, as to the median z1/2 its derivation is

e->z’= 0.5, fJ/2 % 0.6.

It can be seen that the rank of magnitudes is

z < z1/2 < £(/« D+)

that is mode< median< mean. (Note that in many cases of continuous one-peaked 
distributions the sequence of these three numerical characteristics is either mean< 
< median< mode or the reverse, as with the distribution above.)

The maximum of the relative deviation

In certain cases beyond the deviation between the empirical and theoretical distribu­
tion functions the relative deviation, i.e., the ratio of the maximum deviation and of 
the theoretical distribution function should also be examined.

The limiting distribution of the relative deviations that is the asymptotic behavior 
of statistics

and

7?+(a) = /n sup 
aaix

Fn(x)-F(x) 
F(x)

R„(a) = /n sup 
a^x

|Fn(x)-F(x)|

was investigated by Rdnyi [A.22]. (Here a denotes a number for which F(a)>0 but 
at the same time small.) According to Rdnyi’s theorem

(4.80) 

and

(4.81)

Jim P[R+(a) z] = y — J e 3 dt, z S 0 

d - iy w+o* i-FW 
limP[Rn(a)^z] = ±257TT« * , zaO.
n-~ n (_0 + 1

For these statistics tabulated values can be found, e.g., in [A.22].
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It is worth mentioning that the analogous relative deviations for the empirical 
density function /„(x) and the theoretical density function /(x) were examined by 
Tusnady, G. [B.40]; he proved that if f(x) satisfied certain conditions (these can be 
met, e.g., for the density function of the exponential distribution) and iffn(x) denoted 
the empirical density function defined by Eq. (2.17) then, with

= sup
L(.x}-Kx) 

f(x)

= 8n \2k log m — ^2 log m-jlog logm

limP(dM

and

(4.82) A„

one could obtain that 

(4.83)

This is nothing else but the well-known Type I distribution of extremes.
Concerning the order of magnitudes of the quantities k, m and n the following 

restrictions should be satisfied:

2
where O<A<1; 0<k<jA; see [B.40]
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CHAPTER 5

5.1. THEORY OF STATISTICAL ESTIMATION

5.1.1. PROBLEM OF ESTIMATION

In the statistical practice often occurs that the type of distribution function of a 
random variable X is known but it contains unknown parameters. This means that 
in the expression

X X
P(X < x) = F(x) = / /(/) dt= / f(t- 02,...» 0k)dt 

— CO — OO

wehaveaknown /(x; ..., 0*) with partly unknown parameters 0k, 02, ..., 0k.
As it was stated in Section 4.1.4, when dealing with flood waves the X magnitude of 

exceeding a certain water level c was an exponentially distributed random variable 
so that the density function of its distribution was

/(x) = ae~“

an unknown parameter a which is to be estimated from the statistical sample Xk, 
X2,..., Xn. Here Xj=peak value minus c.

If the number of exceedance above c during a specified season of year, say in the 
first quarter, is denoted by v then, as it will be seen in Section 6.3.3 this v follows 
a Poisson distribution:

P(y = fc) = —-e-*1
K •

where 2 is also an unknown parameter which should be estimated by a suitable statis­
tic.

T heoretical considerations frequently suggest that a random variable X is normally 
distributed with a density function

1 (x—
/(x) = —==e

a\2n

where m and a are unknown parameters which should again be estimated from a sta­
tistical sample.
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5.1.2. METHODS OF ESTIMATION

Following from the foregoing one of the basic problems of statistics is the following.
Denote by/(x; 0) the density function of a random variable X (where 0 stands 

for a real parameter or a parameter vector); how to determine the unknown value of 
9 on the basis of a statistical sample of size n

(I)

Another formulation of this question could be: what kind of statistical function ought 
to be formed from the sample elements to obtain a statistic whose calculated value 
would give a good approximation of the parameter 0? Is it possible, at all, to create 
such a statistic from the sample? It will be seen that it is possible and, what is more, 
not only by a single method.

As it was seen the sample elements were independent random variables with iden­
tical distribution; this means that the distribution of each sample element can be 
described by using the same distribution function

PiXt < x) = P(X < x) = F(x; 0), i = 1,2, ..., n.

This involves that if a statistical function 

*s constructed from the sample (I) then 0„ will be a random variable as well; conse­
quently, 0B also has some kind of distribution, expected value, standard deviation, 
etc. A simple example of such a 0 statistical function is the sample mean

l\(Xi,X2,...,X„) =
Xt+x^T-- - + -vn _ y 

n

through which the expected value E(X)=0 of a random variable X is approached 
(estimated). X itself is, of course, a random variable as well, a variable whose expect­
ed value equals exactly the parameter E(X)=0 and whose standard deviation is 
niuch more less than <7. the standard deviation of the random variable X, notably

This means that ifn is large there is a high probability that the value X

W1'l be close to the expected value 0.
As it was seen (Section 1.1.2) the P(A)=p probability of a certain event A was 

approached by the relative frequency k/n of A where k was the number of outcomes 
of event A in a sequence of n independent experiments. If the random variables 
**........  arc the indicator variables of the outcomes (events) of this sequence and
°ut of them there arc k and (n-k) that take the value 1 and zero, respectively, then

= — = 6. 
n "
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This means that to estimate the probability p of an event A is a special case of esti­

mating an expected value.
Now this raises the question how to obtain a statistic giving

a good approximation to the parameter 9. Several methods do exist to obtain esti­
mators for a given parameter 0. Out of them two methods are described below, the 
one is the method of moments and the other is the so-called maximum likelihood 
estimation. Both procedures will be illustrated for given distributions. What a “good” 
estimator means will be treated in 5.1.3.

a) Method of moments
A method of estimating the parameters 0lt 02, ..., 0n occurring in the distribution 
F(x; 9x, 02, ..., 9„) of a certain random variable X is the so-called method of mo­
ments. This method consists of making equal the theoretical moments — expressed 
as functions of the parameters concerned — and the corresponding empirical 
moments. In this way an equation system containing the parameters can be obtained 
which is to be solved for the unknown parameter values.

Consider first the case of the exponential distribution. So the cumulative distribu­
tion function of a random variable X is F(x)= 1—As it was seen in Section 
2.2.12 in case of exponential distribution

Mfx) = E(X) = ^ = j xf(x)dx.

The method described yields that
(5.1) MfX) = - / xdF„(x) = 2^x*

and so—=X that is
& X

Consider now the case of normal distribution. The density function of a random 
variable X is

i <*- ”)*

where
(5.2) MAX') = E(X) = m, = MfX)-M^(X)

(5.3) Mt(X) = E(X') = aa4- AffQO = a’ + m1.

Our equations will be

Mt(y)= fxdFM^ f xdFn(x) = £Xf-~ = X = m 
QO — «0 *

and 
** n 1

M2(X) = / x*dF(x) = / x'dFM = 2 = ^’ + m’
— eo *» «• * 
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and hence

(5.4) m = X

and
(5.5) = 12 -x2 = — = S2.

n i n

Let be considered now the gamma distribution. If the density function of a random 
variable X is

/(x;a,p) = -^yx'’-1e-“ (x>0) 

then

(5.6) MAX) = E(X) = fx^dx =

1 Fr v — ' 1 + - p

and

(5.7) MAX) = E(X) = / x^e-^ dx =
* \P) 0

= f (axy^e-^dCax) =
a2L(p) 0J

1 IAp + 2) 1 (p + DHp+J) _ P^P
“ a2 r(p) ” a2 r(p) a2

As the expected value of a distribution may be estimated by the sample mean X and 
the variance by thc estimate of variance S2 it follows that

MAX) = ^ = X

and

MAX)-M^X) = -^- S-.

^^ni these two equations we obtain

(5-8) = 4

and 

(5.9)

Ihc conclusion is that the parameters contained in thc gamma distribution can be 
Cstiniatcd by the arithmetic mean and thc variance.
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b) Maximum likelihood estimation
This method and its application is presented through an example.

Suppose that the distribution of a random variable X is exponential with a density 
function f(x)=de~ex where 0 is an unknown parameter.

The observations on the random variable X are now written into the formula of 

the joint density function which is denoted by

" „ -OX*.
(5.10) L(,Xi,x2, ...,xn', 0) = n^e~ex‘= 0ne * .

The probability that the random vector (X^ X2, falls in a small interval

C. ;of the n-dimensional space is
k 2 2 2 7
(5.11) L(xi, x2, .... x,; 0)Ax1Ax2...Axn.
Obviously, with different values of 0 this probability will have different values as well. 
Now a fundamental principle of mathematical statistics is that when there are several 
options to select an unknown parameter the one is chosen by which the probability 
ofthe event occurring actually is higher or the highest. This means that such a 0 value 
is looked for which maximizes the probability (2.64). As the value ofthe maximum 
doesn’t depend on Axi- Ax2 -... • Ax„ the relation

n-ex x
L(Xl, x2, x„', 0) = 0ne ■ = max

is to be solved.
To simplify calculations, instead of the function L(x-i,x2, ...,xn;0) its logarithm' 

i.e., In L(xx, x2,.... xn; 0) can be examined which, being a monotonic function of 
it, will, of course, take its maximum at the same 0 value as does the function itself•

ln£(xt,xa, 0) = nln0-0^Xp

Consider now the location ofthe maximum for which thc derivative must be equal to 

zero:
d In L n "
■TF- “ = "

that is

cP In L n * 1 , . „ hnldsSince —--------- ------- <0, at 0-— there is a maximum, indeed, and thc same m
</02 02 x _

for the function L(xn xg,x„; 0) as well. In case of exponential distribution t

statistic is called thc maximum likelihood estimator ofthe parameter 0- 
x
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When a random variable X is normally distributed with a density function f (x)=
1 

cr

(x—rn)2
. the joint density function of the sample element is

L(x1,x2, ...,x„; 0) =
i £ 

e at1
<r"(2n)'’/2

The logarithm of the likelihood function is

I I " (xf —m)2
ln£(x; m,CT) = ln-^7r-«lnff—2——

Suppose now that the value of parameter cr is fixed, so

that is

(5.13)

#ln£ 1 " n—---- = —2xi-in = 0
dm n i

n
2 

m = —----- = x.
n

The conclusion is that when the maximum likelihood estimation is applied for a nor- 
ntal distribution then sample mean X will be obtained as the estimate of the expected 
Value. As to the variance, after a substitution m=X, one will obtain that

= -2+_L <xt-X )2 = °
41 do a a3 i
that is

Z(Xi-XY = no3.
I

Hence

2W-*)
(5.14) *2 = J-------------=

n

This means that by using the maximum likelihood estimation for normal distribu- 
the estimate of variance will be obtained as the sample variance.

Now an example is given for thc application of the maximum likehood estimation 
"'hen the probability distribution is discrete.

l-et be X distributed according to the Poisson law that is

P(X = k) = A*0, k — 0,1,2.......
R I

•t will be seen in Section 6.3.3/a that, if thc number of exceedances above a given wa- 
lCr level c and within a given period (say, in thc first quarter) is denoted by X, this 
vMable follows in many cases a Poisson distribution. Choosing from thc hydrograph­

>!•
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ic yearbook n years, the number of exceedances, in the first quarters throughout, 
the statistical sample

A\ = klt X2 = k2, X„ = k„

will be obtained. Now the likelihood function is

ni = 2 ki

(5.14)' L(X1, x2,..., x„; A) = P(Xx = k^P^ = k2)...P(Xn = kJ =
n / )k, \

= 77 _ e-U

Hence

lnL = 2 kjln A-An — 2 ln 
i i

ln _ y kt _dk "^A

(5.15)
2^

; = —=x. 
n

So by using the maximum likelihood method for the Poisson distribution the sample 
mean X will be obtained as the estimate of parameter A.

Finally, let us examine what kind of estimate will be obtained by using the maximum 
likelihood method for the P(A)=p probability of an event A.

If out of n independent experiments the outcome A occurs k times (k^O) while 
the outcome A (n—k) times the likelihood function has the form

In L = k In p+(n—k) In (1 -p) + ln L

Hence

(5.16)

d In L _ k__ n-k _ k-np Q 
~dp P ^~P P^~P) ~

P = k/n

which means that the maximum likelihood estimate of the unknown probability I’ 
is the relative frequency. It will be seen that the estimates derived by the maximum 
likelihood method possess certain favourable properties.

Finally, it is worth mentioning that the method of least squares is also a fun^ 
mental method of statistical estimation. I his method will be presented in Chaptcr 1 •
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5.1.3. REQUIREMENTS FOR ESTIMATORS

There are different viewpoints to make judgement on the “goodness” of estimation. 
In general, the intention is to get estimators with the following properties:

a) Unbiasedness
The statistic X2, ..., Xn) is called an unbiased estimator of a parameter 0
when the expected value of the random variable 0 is equal to 0 that is when

E0) = 0,
for all possible values of 0.
x _ Xi + X2 +... + X„.
Now it will be proved that the sample mean X—-----------------------is an unbiased

estimate of E(X)=m, the expected value of a random variable X, in case of all 
distributions possessing a first moment. To realize this statement it is sufficient to 
consider that each of the independent sample elements Xt, X2, Xn is identically 
distributed and the relation P(Xi<x)= P(X<x) (i= 1, 2, ..., n) holds; so, by 
virtue of Eq. (1.28) which relates to the expected value, it follows that

(5.17) E(X) = ^ 2iE(Xi') = ^-n-in = m.

I his relationship also implies that the relative frequency k/n is an unbiased estimate 
°f the probability P(A)=p of the event A. Namely, if n experiments are performed 
aod to each one an Xj indicator variable of the event A is attached then

TO=1) = P. P(X< = O)=1-A

E(X^ l-p+0-(l-p) = P- 
then

y — ^1+^+...+ArB _ 

n n'

E{X^~ZEW = ^n-p = p. 
n i

^So in cases where m is estimated by using a weighted arithmetic mean pt= 1 j

^T8) = plXl+p2Xi +■■•+Pn^n

an unbiased estimate of E(X)=m will be obtained as well.
It is because

(519> EM = Z AW = m 2 A = w-
i 1

^spite this fact to use thc arithmetic mean is more advantageous than to apply any 
°2ler Wci8hted arithmetic mean. This will be shown in thc section dealing with the 

ciency of estimators.
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If the statistic

« i

is used to estimate the o2 variance of a random variable X this estimator fails to meet 
the requirement of unbiasedness since

E(S2) * a2.

Namely, if the statistic S2 is written in the form

Sn2 = -2[(^-m)-(X-m)F = 
n i

and since

and

= -i(^-m)2-(X-m)2 
n i

^-m)2 = D2(Xi) = a2

E(X-mV = = D‘

CT2= -LnD\Xi) = — 
n2 n

is follows that

(5.20) Ef^^- — =
n - 1

<7 
n

So the value around which the random variable S’ fluctuates is------- a2 instead of tf'

The unbiasedness can be reached easily since thc corrected variance 

ZW-Xy 
।

is already an unbiased estimator of a2:

(5.21) E(S^ = —1- E(S2) = ffi = a\
n — I n — 1 n

As Jim------ (7a=<72 thc estimator Sj becomes asymptotically unbiased if « lar?c' 

Estimators of this type are called asymptotically unbiased estimators. So thc maxim011 
likelihood estimation provides asymptotically unbiased estimates for a*.
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b) Efficiency
An important requirement against unbiased estimators is that their fluctuation around 
parameter 0 be as small as possible, i.e., the variance E{0-^ be the possible small­
est. If and 02 are two unbiased estimators for 0 and D2(d1')^D2(02) then it is said 
that is a more efficient estimator of 0 than 02, for all possible values of 0.

If among the unbiased estimators of the parameter 0 such a 0O exists whose variance 
is smaller for all 0 values than the variance of any other estimator, 0O is called 
the uniformly most efficient unbiased estimator. It can be proved that if an estimator, 
producing the least variance, exists then this is the only estimator of this type. The 
index of efficiency of the estimator 0O is the quotient

infD^i)
(5-22) £o(0) =

whose value always falls in between 0 and 1 and which is equal to 1 only when 0O is 
the best unbiased estimator.

The efficiency of estimators are not always related to the variances of all existing 
unbiased estimators but sometimes to such a narrower class of estimators which 
sometimes contains the uniformly most efficient estimator. For instance, if the E(X) 
expected value of a random variable AT is 0 then, among the linear estimators of the 
form

i-i ' i

the arithmetic mean J is the most efficient estimator for which 

Pl = 1/n (i = 1, 2.«)•

By virtue of the Schvarz inequality

/ n \2 " ” o
^2^-2^-

\i„l / 1 1
holds.
het now be al=phbl=l (/=l,2.......then

1

that is Vrf £ 1 With equality if and only if *= b 2< - - Evidently, 
1 M ”

( X.+Xs+- + ^ 
----n

. -2 
n i
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and

(5.23) D2&) = D-(x, p, +... + x„ pn) = D2(XJ 2 p? S D2(XJ.

So the arithmetic mean, and only this, is among the linear estimators having the 
smallest variance.

At the same time, as far as the expected value is concerned, the arithmetic mean is 
not for all kinds of distributions the most efficient estimator. If, e.g., within a certain 
[a, b) interval a random variable X has the rectangular distribution that is when the 
distribution function of X is

0 if x S a

F(x) = P(X < x) = b— a
1

if a < x S b

if x > b

,<X* is the ordered form of a sample of size n related to X then the
statistic

M1/2 =

i .e. the mean of the largest and smallest sample elements is an unbiased estimator
a+b 

of the expected value £'(X)=———that is

a + b
2 ’

and, on the other hand,

(5.24)

while
(5.25) D2 (X) = = 0 (.
v K 12n (n)

So while the standard deviation of the arithmetic mean has thc order of magnitude 
that of Af1/a (midrange) is 1/nonly; this means that for uniform distributions 

midrange is a much more efficient estimator of thc expected value than thc sampk 

mean.
It is worth mentioning here that for thc probability P(A}—p of a certain event / 

the relative frequency kin is not only an unbiased estimator thereof but at the sam® 
time it has minimum variance among all possible unbiased estimators.

c) Strongly consistent and consistent estimators
In general the more the number of sample elements, thc higher thc accuracy expect 
in thc estimation of distribution parameters.
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If 0„=5„(yi, X2,X„) is an unbiased estimator of the parameter 0 and the 
variance of 0n tends to zero as n tends to infinity that is if

(5.26) £[^„-0)2] —0

then 0„ is said to be a strongly consistent estimator of the parameter 0.
The statistic 0n is a consistent estimator of 0 if the relation

(5.27) limP(|9„-0| >s) = 0
«•*<»

holds for all s>0.
By virtue of the Chebyshev inequality — for an unbiased estimator 0n — the follow­

ing relation holds:

(5.28)

This means that if with increasing n £[(0„—0)2] tends to zero or, in other words, 
when the estimator is strongly consistent then it is consistent as well.

If relation (5.27) is satisfied is said to converge stochastically to 0. So an esti­
mator converging stochastically to the estimated prarameter is called consistent 
estimator.

As it was seen the arithmetic mean

JG+^+.-.+X,
n

was an unbiased estimator of the expected value E(X) and, on the other hand,

D2(X) = D2^- - 0 if-*n 
' n

so that the arithmetic mean is a strongly consistent estimator of the expected value for 
aU distributions whose standard deviation is finite.

If, however, for a variable X thc fourth moment also exists, the corrected estimate 
variance, S’2, is an unbiased and strongly consistent estimator of a2.
A consistent estimator is not necessarily unbiased but it is always asymptotically 

unbiased. I he reforc, when large samples arc handled, consistency is a more important 
Property for estimators than unbiasedness.

d) Cramer—Rao inequality
As it was seen thc variance of a highly consistent estimator tends to zero as n tends to 
Infinity. Now thc question arises whether, in thc case of a fixed samlpc size n, an esti­
mator can be found whose variance is very small or, conversely, there exists a lower 
''mit for the variance of thc unbiased estimator. 'I his question is answered by the 
so-called Cramer—Rao inequality which states the existence of such a lower limit.

Suppose that the distribution function of a random variable X contains one single 
real parameter, say 0, and let the statistic be an unbiased estimator of thc parameter 
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g(9). Furthermore, let

(5.29) /(x„x2, 0)

be the joint density function of the sample elements X2, T„. Now the Cra­
mer—Rao inequality, which may also be called the uncertainty relation of mathemat­
ical statistics, is valid under certain regularity conditions only, for the proof and for 
non-regular cases we refer to. The Cramer—Rao inequality expresses that with fixed 
finite n the variance of any estimator cannot be smaller than the reciprocal value of 
Fisher’s information quantity, times g'(0)2:

(5.30) S

where
r rpinn’ , dfv 

/"- I - / I dO J dXl-dX" - E[f de)
— co — oo

is called the Fisher’s information quantity.
We have to remark that relation (5.30) under the regularity conditions is true for 

a sample with non-independent elements. For independent samples In=nlx is true, 

i.e.,0 (—1 is the best order of magnitude.
In/

Eq. (5.30) is of great theoretical and practical importance: if, when making esti­
mation by means of a certain unbiased 0„ and the Cramer—Rao lower limit is reached 
then we have a minimum variance estimator.

Two examples are presented below, in both cases for the statistic 0„ the relation

is satisfied.
a) Denote by X the indicator variable of event A, having probability p:

{I if event A occurs
0 if event A occurs

and
P(X=\) = p, P(X = 0)= l-p.

If out of n experiments event A having probability p occurs k times the joint "den' 
sity function” of sample elements Xt, X2,.... X„ is

f^X....... Xn-,p) = pk(\-p)-k.
Since

ln/= k In p+(n-k) In (1 -p)
the derivate is

dIn f k n-k k- np
dp ~"p~ [~P " P^-P)
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so that
IT k-np 'j j 
lUo-p)) J

1
P2(l-/02

E(k — np)2

np(l-p) = n
p^-p? pO--pY

If now the relative frequency p—— is applied as an estimator of parameter p this 
n

yields that

na (Al - = _L
V n / n In

This relationship indicates that the most efficient estimator for the unknown 
probability is the relative frequency.

b) Let now AT have Poisson distribution with parameter A and suppose that in the 
course of n observations concerning X the observed values were Xx=kx, X2—k2, 
■ ■.,Xn=k„ (where each of the numbers kx, k2, kn is one ofthe values 0,1, 2, ...).

The joint “density function” of the sample elements is

f(X„ X2...... Xn\ A) =

AT Ai Ale-"*
kx\' k2\ "■ kn\

In f =-nk+ 2 kt In A - 2 'n 
i-i i-i

lf statistic A= A1AAlA_lAAl = X js applied to estimate thc parameter A then 
H

1 » nA A 1

This result indicates that in case of Poisson distribution, when estimating thc expected 
Va^e, A, there is no estimator with better efficiency than thc arithmetic mean.

The question as to what is thc type of distributions with which it may be expected 
that thc lower limit in the Cramer-Rao inequality will be attained is answered in the 
ne« section.
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e) Sufficient estimators
The main aim of mathematical statistics is to obtain all information from the sample 
Xlt X2, X„ representing a random variable X on the distribution of X. Formulat­
ing this from the viewpoint of theory of estimation in other words this means that 
our intention is to form from the sample elements a statistical function comprising 
in itself all such information on the estimated parameter which is contained in the 
sample. A statistical function possessing these properties is called sufficient estimator.

As to the parameter in question, in certain cases the opportunity to find a sufficient 
estimator to it is given; this will be demonstrated below by a few examples. Since the 
reader may raise the question how to recognize whether a certain statistic actually does 
or doesn’t contain all information on the parameter concerned, in the course of anal­
ysing the examples an attempt will be made to answer this question.

Suppose that a random variable X is normally distributed with an expected value 
E(X)=m and a fixed standard deviation D(X)=a. To estimate the unknown 

expected value m from the sample Xi, Xn,X„ statistic X —----- - is used which
n

is, as it was seen previously, an unbiased and strongly consistent estimator of the 
expected value m.

Now the question faced is whether the information on m would not be more by 
considering the numerical value of each sample element, that is by utilizing the loca­
tion of the sample along the line, instead of forming a single numerical value from the 
sample elements, as the same sample mean X can belong to an innumerable quantity 
of samples, see Figure 45.

As it was seen, with normal distribution the distribution of the sample mean Y was 

normal as well; in our case E(X)=m and D(X)=-^so that the density function 
/n

ofX is
। nr(5.3D AW.±y_,- ... .

As the individual sample elements Xt are independent and their distribution <s 
N(m; a), their joint density function is

(5.32) /(xj.x,, m, o) =

(cr |/2n)"
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Considering the following equation (which can be conceived through a simple calcu­
lation)

(5.33) i(xk-m)2=2(xt-x)2 + «(x-m)2
1 1

the joint density function of the sample elements can be written in the form

(5.34) m,a) =

(cr ^2^)"

a \2n

J
(o y27t)"-1|/n

The joint conditional density function of sample elements X^, X2, ..., X„, under 
the condition that X=x is

(535) /(x1,x2,...,x„|X = x) =

- J
(a^n)"-1

The value of this conditional density function doesn’t depend on m, consequently, it 
doesn’t contain information on nil This means that having the sample mean X = x 
this contains all information concerning m and therefore sample mean A is a sufficient 
statistic on the expected value of m.

Eq. (5.34) indicates that thc joint density function of the sample elements can be 
divided into a product of two factors one of which depends on the sample elements 
*i. Xt.......x„ only, but doesn’t depend on the parameter m, while the other one, 
through statistic X, depends on thc sample elements Xt only and the parameter in 
a]so appears in it.

Such a factorization can be executed in all cases where a sufficient statistic can be 
found to thc parameter concerned; hence the conditions to the existence of a suffi- 
Clcnt statistic may be formulated as follows:

If the distribution of a random variable X depends on a parameter 0 and if 7 — 7 (xt, 
*».......x„) is a statistic, and. the Joint density function of sample elements can befac-
Prized in the form

(5'36) fix,...... X.; 0) - n^,-. 0) =

=/(xi,...,xjr °)

'^en 1 is a sufficient statistic for thc parameter 0.
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To check the sufficiency of a statistic T usually the relationship

(5.37) f(xJ,..„x„IT = t) =
f(xr,x2,xn; 0)

g(T; 0)

is used: the joint density function of the sample elements is calculated, then the den­
sity function g(T; 0) of T is determined and, finally, the quotient contained in Eq. 
(5.37) is formed. If the density function obtained in this way depends no longer on 0 
then the statistic T is a sufficient estimator for 0.

For later purposes (see Section 6.3.3) let now be considered the estimation of expect­
ed value for an exponentially distributed random variable X by means of the sample 
mean X. Let the density function of X be /(x^Ae-*1 and let Xlf X2,..., X„ be 
a sample of size n for X. Then the joint density function of the sample elements is

(5.38)
n 

f(xx,x2,...,xn‘, 2) = [J = 
i = l

n
= ^e~X^x‘ = 2^6“^.

The density function of the sample mean X can be derived easily by using the 
characteristic function. As the individual sample elements, Xh are independent and 
have the same exponential distribution that is for all variables Xt the characteristic 
function is

<M') =

and since for the sum of independent random variables the characteristic function is 
the product of the characteristic functions it follows that for a random variable 
nX=Xx+X2+ ... + Xn the characteristic function is 

(5.39) <Pnx(0 =

Formula (5.39) involves that the density function of nX is

(5-40) =

It follows from Eq. (5.40) that for the sample mean X the density function is

(5.41) g(x) = nf(nx) --j^inxy-'e-^*.
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Hence

(5.42) f(Xl,...,x„\X = x) =

2e~"Ax (n-1)!
~ nX" ' j n”xu~l 

-—(nxY^e-”^

(T(n) = (n —1)1)

As it is seen the conditional density function obtained depends no longer on 2 so 
that in the case of exponential distribution X is a sufficient statistic to the expected 
value E(X)=1IX (and, at the same time, to the standard deviation, too).

As to discrete probability distributions, the situation is the same. Consider the case 
of the Poisson distribution. Also here X is a sufficient statistic for the parameter 2.

Let the sample be Xt=ki, X2=k2, X„=k„. Now

P(Xt = ki, X2 = kt,X„ = k„) =

kA
e~k —

1

The distribution of statistic X1 + 2fa+ ... + X„=nk will be determined now by means 
of the generating function. The generating function for Poisson distribution is:

(5.43)

virtue of Eq. (5.43)

G,,« =
fc-0

_ eA(x-l)

GM =

^hich is also thc generator function of Poisson distribution but with parameter nX so 
that

^•44) p(Xi = k^X^k........ X„ = k„\X = £) =

(/^)!
ktlk,!...^'^ ’

which depends no longer on 2.
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It can be proved that if statistic 5n is an unbiased estimator of g(0) and if the rela­
tionship Z>2(0n)=?'W4 holds then f(xlt x2, xn; 0) can certainly be factorized 
and 0n is a sufficient statistic.

So in the case of exponential distribution 0„=X is such an unbiased estimator for 
g(X)= 1/2 for which the Cramer—Rao limit will be reached; in this way X is a suffi­
cient statistic for 1/2.

5.1.4. INTERVAL ESTIMATION. CONFIDENCE INTERVALS

In our investigations when estimating a certain unknown 0 parameter of a distribu­
tion this was done by a single value, the numerical value of 0=0(X15 X2, ..., X„), 
constructed from the sample elements. This method of estimation is called point 
estimation as the actual value of the parameter 0 is a point on the I ne and our endeav­
our is to “hit” or at least approach “well” this point by a 0 value calculated from the 
sample. The 0 statistic — let it be supposed to be an unbiased estimator — is a ran­
dom variable whose values are fluctuating around the true value of the estimated 
parameter 0. In practice, when an estimation is performed on the basis of a sample 
containing n elements, by using a certain statistical function &=d(Xlf X2, ..., X„)> 
information is desired on the reliability of this estimation: one may wish to know what 
a maximum distance may occur by high probability between 0 and its true value.

When dealing with a large sample and if 0 is an unbiased and consistent estimator, 
the value of an estimate 0 will be close to 0; however, even after 0 has been quantified 
the exact value of 0 is not known. Therefore it is desirable to define such a lower 
and an upper limit, cq and a2, respectively, by which it is assured that the unknown 
parameter 0 will fall by high probability into the interval [oq, aj; in this case with 
these limits and with a predetermined small value e a relationship given as

S 0 § a2) = 1 —«

will hold. An interval [cq,aj possessing this property is called confidence interval 
of level (1—«). Values of at and a2 are, of course, also calculated from thc statistical 

sample so that they are random variables as well:

at = at(X1(Xa,...,XB);

ag = ^(X^ X2,..., Xn).

Now a few examples are given for confidence intervals.

a) Confidence interval for the expected value of normal distribution
Let X be a random variable from normal distribution with unknown expected value 
ni and given standard deviation ct0. If thc expected value m is estimated by the sampc 
mean X then the distribution of X is also normally distributed with expected value 
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and standard deviation <r0//n; so if, e.g., a level e—0.05 that is 1 — e—0.95 is chosen 
then
(5.45) pfm-2-^ y < m + 2-^1 = 0.95.

' I \n \n)

The event within the parenthesis can be written in the following form, too:

X-2^-^m^X+2^ 
n \n

that is with
a^X-2-^- and a2=^ + 2 — 

\n F«

a 95 per cent confidence interval is defined to the unknown expected value m. 
Confidence interval to the expected value in of a normal distribution when a is not 

known.
A question may arise as to the way to define confidence intervals to a constant m 

when a is not known. A self-evident idea is to substitute in this case the unbiased 
estimator

C*2 _ 1____________
" n —1

for ff2 that is to examine the interval
c*

X-l-2, . Interval

v* S*
[n Vn

is equivalent to inequality

can be proved that random variable

= /nT
X-m 

s:
’s a random variable from Student distribution with n 1 degrees of freedom. By 
Using the table of Student distribution (lable 1.7) it >s possible to choose such a A 
valuc Wjth which

sB_1W = p((5.46) n(X-m) 
s:

s A

= 6
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where

In Table T.7 beside n and p the A values satisfying inequality (5.46) are also includ­
ed. However, when n^30 and our choice is e=0.05 then A is equal approximate­
ly to 2 that is the Student distribution leads to the same values as does the normal 

(5* _ 5 \
X— 22 —2, X+ 2 —^71 is a 95 per cent

^n / 
confidence interval for the unknown expected value m.

An example to illustrate the foregoing is given below.
In Table T.3 the annual maximum stages of River Danube, as observed at Buda­

pest, are shown. The sample mean is
70

2^
X= =626.66 cm.

The estimate of standard deviation amounts to

70
2(W)’

1

69 87.5 cm.

Hence, for the expected value of annual maximum stages the interval

= (605.86; 647.46)

is a 95 per cent confidence interval.

b) Confidence interval for the variance of normal distribution 
As it was seen in Section 5.1.3 the corrected estimate of variance

2(W) 
_ 1________  
n-1

was an unbiased estimator of <r2, variance of a random variable X. It can be proVLt* 
that if a random variable X derives from normal distribution the random variab'c

n —— follows distribution whose parameter is (n—1). By using the table *

distribution (Iable T.5) such ct and cg values can be determined with which

and (
CU £

2
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that is with which

(S*2 1
c± < n—^- < C2J = 1—e.

Hence the (1 — e) level confidence interval for is

Now take an example for illustration!
The maximum annual stages of River Danube observed at Budapest in the period 

1901/70 are given in Table T.3. In the example S>87.5 cm. As in the Table of %2 
distribution critical values are given up to n values not more than 30, the table cannot 
he used if, e.g., e/2=0.02 is chosen. In cases, however, when n>30 the /-distri­
bution can be approached by normal distribution.

Table T.3

Danube river
Annual maximum stages at Budapest

Year Annual max. 
cm

Year
Annual max. 

cm
Year Annual max., 

cm

1901 569 1926 737 1951 606
1902 596 1927 596 1952 667
1903 712 1928 628 1953 530
1904 510 1929 469 1954 804
1905 549 1930 622 1955 672
1906 636 1931 542 1956 689
1907 693 1932 576 1957 658
1908 608 1933 529 1958 682
1909 628 1934 415 1959 677
1910 664 1935 584 1960 598
1911 608 1936 599 1961 551
1912 708 1937 624 1962 582
1913 595 1938 598 1963 529
1914 668 1939 704 1964 566
1915 6(X) 1940 788 1965 845
1916 594 1941 670 1966 709
1917 713 1942 689 1967 597
1918 628 1943 689 1968 532
1919 608 1944 754 1969 468
1920 757 1945 654 1970 670
1921 482 1946 652
1922 564 1947 705
>923 784 1948 675
1924 718 1949 681
1925

645 1950 378
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As the expected value of a random variable from ^-distribution with parameter 

(n—1) is

fc*2 X
n —H— = n and the standard deviation of the same is /T2 J

D , the so-called double <r rule that is relationship1 ZT2 /

(5.47) n-2y'2n n^T < «+2/2«J « 0-95

will hold approximately. Relationship (5.47) is equivalent to relation

(5-48)

So interval

(5.49)

is a 95 per cent confidence interval for a2. The corresponding 95 per cent confidence 
interval for the unknown standard deviation is:

1-2

s* (76.08; 150.80).

c) Confidence interval for the X parameter of the exponential distribution
As it was seen in the previous section the X exceedances of stages in the Tisza nvcr 
above the alarm level c followed exponential distribution with distribution functic" 
F(x)=l —e~^ or with density function f(x)=Xe~Xx.

When, by using the maximum likelihood estimation, parameter 2 is estimated ft0111 

the statistical sample Xt, X2,..., X„ by means of statistic

2^ 1=2--- = X 
n

then point estimation is used. X itself is, of course, also a random variable since it1 

the sum of n random variables:

nX = Xi + X2 +... + X„.
The sample elements themselves are independent and they have the same distribute 

given by a cumulative distribution function which is thc same as that of the ran 
variable X:

P(Xt^x) =
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So the density function of a random variable AX; is f (x)—e x. By virtue of formula 

(2.66) the characteristic function of a random variable A^ is <£^(0= and 

with Eq. (2.65) the characteristic function of a random variable nXX=XXl+ ... + AA), 

is (pn^x(t)=___-__ . Recalling those described in Section 2.1.8, from the formula of 

the characteristic function it may be read out directly that random variable nAX 
derives from gamma distribution and its density function is 

so that

(5.50) P(nXX^x)= /

Furthermore, E'(nAy)=n, D(ntX)=yn. _
In the knowledge of the distribution of random variable nXX such limits,/in(e/2) 

and /?„(! — e/2) can be determined with which

(5.51) P(/I„(e/2)^«Ay </r„(l-e/2)) = l-£

^at is these limits will form a (1—e) level confidence interval for the random 
variable nAX. Eq. (5.51) is equivalent to relationship

?[-^(e/2) S A - A„(l -e/2)] = 1-8.

Uy means of the table of z2 distribution instead of the limit values A„(e/2) and 
'’»(1 -e/2) their doubles can be determined easily. Namely, it is simple to conceive 
that the distribution of random variable 2nAX is z2, with parameter 2n since by 
v*rtue of Eq. (5.50) the density function of 2hAX is 

which is not else as the density function of a z* distribution whose parameter is 2n. 
Note that if n is large enough then, in accordance with the validity of the theorem 

of Antral limiting distribution (Section 2.3.2), the distribution of X can be considered 
n°rmal and its expected value and standard deviation can be glven by the followmg 
relationships: }
(S-53) E(J) = £(X)= l/A,D(X) = ^^- = yj^--

this basis confidence intervals with any desired level can also be constructed by 
Us,ng the table of standardized normal distribution.
. an illustration let be considered again the exceedances of Rtver Tisza, observed 
at Szolnok in the first quarters (Table 1.1).
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In our example X=0.81mand n=41. In accordance with the validity of the theo­
rem of limiting distribution the distribution of sample mean X may be considered 
normal. As it was seen in Section 5.1.3 in case of an exponential population E(X)= 
= 1/A and D(X)= 1/A /n so that from the table of standardized normal distribution

(5-54) P -1.64 < 1
A ]n

< 1.64 «0.9.

(Due to the large variance of exponential distributions in general a safety of 90 per 
cent has to be regarded sufficient.)

It is easy to see that Eq. (5.54) is equivalent to relation 

where the limits within the parenthesis mean a 90 per cent confidence interval for 
parameter A.

In our example:
P(0.93 SA< 1.57) % 0.9.

The confidence interval obtained is rather wide: this indicates that n=41 as the 
number of sample elements is rather small to construct confidence intervals. If a 
reduced safety might be sufficient the confidence interval may be tightened. For in' 
stance the 70per cent confidence interval for A is: (1.05; 1.45).

d) Confidence interval for the empirical distribution function of exceedances
It was seen in Section 4.1.3 that the empirical distribution function Fn(x) cxprcssc 
the relative frequency of event {X<x}, on the basis of n observations. For the sano® 
event its probability is given by the theoretical cumulative distribution function 
F(x). In Section 5.1.3 it was also demonstrated that the empirical distribution funC 
tion was an unbiased and strongly consistent estimation of the theoretical cumulativ® 

distribution function F(x) since

^[^(^)] = D[Fn(x)]

As / F(x)[l-F(x)] g 1/2 the empirical distribution function F„(x) satisfies the in® 

quality

(5.55) D[F„(x)]S\/2^.

In general, relation
f F„ (x) - 4- * F(x) F„ (x) + -11
I /n /nJ 
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is satisfied at a sufficient level of reliability (according to the Chebyshev inequality 
this is at least 75 per cent but, due to the fact that binomial distribution may be 
approximated by normal distribution, the true reliability is higher).

As to the exceedances observed in the Tisza river at Szolnok, since n=41 and 
\n %6.4, the confidence interval from Eq. (5.5.6) is

F„(x)-0.16 < F(x) < Fn(x) + 0.16.

which is a rather wide interval. This indicates again that n=41 is a rather small 
sample size to construct confidence intervals.
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CHAPTER 6

6 1. TESTING STATISTICAL HYPOTHESES

On the tests of statistical hypotheses — problems in flood hydrology
A few problems are enlisted occurring often in practice; solutions of these problems 
need the tools of mathematical statistics.

a) 1 he maximum stages of River Danube at Budapest follow normal distribution. 
May such a statement be made that the expected value of maximum annual stages at 
Budapest is equal to 625 cm?

b) Is it true that in the 1 isza river at Tokaj the probability of a flood wave with a 
duration of more than 20 days is less than 0.1?

c) Is the expected value of the annual maximum stages of River Tisza at Tokaj 
and Szeged, respectively, equal?

d) Is the distribution of the annual maximum stages at Budapest identical for the 
periods 19C0/1940 and 1941/1970, respectively? (Has any change occurred in the 
distribution of annual maxima?)

e) Is it true that at Szeged the magnitude of exceedances above the flood protection 
alarm level c=650 cm follows an exponential distribution?

In each of these problems one or two random variables are included. The questions 
formulated above relate to the distribution of random variables concerned or to its 
parameters. Each of the problems includes a certain assumption and what is qucS" 
tioned is whether this assumption docs or doesn’t hold. 1 he assumption relating t0 
the distribution of a certain random variable or to one of the parameters of a distri' 
bution is called statistical hypothesis.

In a more exact manner, using mathematical terminology, thc questions above can 
be formulated as follows.

a) Eor a normally distributed random variable X docs or doesn’t hold that

E(X) = 625cm?

b) In the Tokaj section out of n flood waves there were k flood waves with longer 
duration than 20 days. 1 he question, based on thc relative frequency k/n, relates 
the inequality

p ■< 0.1

where p is thc unknown probability.
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c) If the annual maximum stage at Tokaj is denoted by and that at Szeged by
X2 does the equality

E^X.) = E(X2)
hold?

d) Denote by Xx the annual maximum stages at Budapest in the period 1900/1940 
and by X2 the annual maxima in the same section during the period 1941/1970. Is it 
true that

P^ < x) = P(X2 < x)? (0 < x < oo).

e) Denote the exceedance observed at Szeged above the stage c=650cm by X. The 
problem is whether the distribution of X can or cannot be represented by the distri­
bution function

P(X^x) = l-eH*

(containing a certain fixed but otherwise arbitrarily chosen parameter A>0)?
The questions are to be answered by affirmative or negative answers i.e. decisions 

are to be made on the acceptance or rejection of the assumptions concerned. In the 
course of testing a hypothesis statistically the starting point is the assumption that 
the hypothesis formulated as above is true. 1 his assumption is the so-called null 
hypothesis which is denoted by Ho.

Another assumption related to a distribution or to a parameter which is in contrast 
lo the null hypothesis is called alternative hypothesis or alternative and it is denoted 
by^.

Consider the null hypothesis under a). Suppose that from previous experience the 
type of distribution is known: the distribution of that random variable is normal. 
Furthermore, suppose that the standard deviation of X is known and its value is: 

cm.
1 hen the task is to decide whether the null hypothesis

Ho: £(X) = 625 cm

does or doesn’t hold So the problem is confined to the question whether thc only 
unknown parameter of thc distribution is or isn’t a given value. In this case the distri­
bution is unambiguously defined by thc null hypothesis //0. Such types of hypotheses 
arc called simple hypothesis. Here //0 is simple hypothesis not because it relates to 
the value of a single parameter but because thc distribution is unambiguously defined 
by the assumption; in this case thc assumption is that thc distribution of X is repre- 
Sented by thc density function

If to a certain, otherwise true, null hypothesis more than one distribution i.e., a 
^in set of distributions can be taken into account then a composite hypotheses 
the case. If, e.g., MJ: 62OS£(X)*63O and <70-87cm then Wo is a composi c
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620 630

Figure 46

hypothesis because, if satisfied, a whole set of normal distributions with identical 
standard deviations can be considered, see Figure 46.

Hypothesis Hn : E(X)=625 cm is a composite one as well if a is unknown, i.e., 
<rC[O, + “]. In this case the hypothesis will be satisfied for an infinite multitude of 
normal distributions with given expected value and optional standard deviations, see 
Figure 47.

In general terms the problem of simple and composite hypotheses can be illuminat­
ed as follows:

Denote by P(X<x)= F(x; 0) the distribution function of X where 0 stands for 
a parameter or a parameter vector 0=(0i, 02, • ••, 0J-

Define within the k-dimensional space (parameter space), a specified J(l region 
(subset) and regard hypothesis

H„: P(X<x) = F(x;0) O£Ao

as a null hypothesis; now H„ is a simple hypothesis if A„ is a single point in thc k-di- 
mensional space while it is a composite one if more than one point can be found in

It is a frequent case that, since the null hypothesis is false, in thc parameter space 
a certain At region will need special attention because, e.g., from a practical point 
of view this region represents the most unfavourable situation. In such a case the null 
hypothesis is tested against the alternative

Hit P(X^x)= F(x-O), 0^Ax

which can be equally a simple or a composite hypothesis. It is, of course, assumed 
that i.e., that sets Au and At are disjoint.

If there is no specified alternative hypothesis then the common procedure is to test 
thc problem for all of thc possible alternative hypotheses, i.e., for thc alternatives

h;-. p(x^X) = f(X,0),
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Parametric and nonparametric problems
In flood hydrology the chosen random variable derives from the practical back­
ground (peak value, flood wave duration, maximum flow, etc.) and, consequently, the 
distribution functions to be found will emerge, in general, from a certain set of distri­
bution functions.

Parametric problem is the case when the parameter space is of finite dimension and 
the distribution to be found is unambiguously defined by a single point thereof 
(e.g., dealing with exponential distribution the parameter space is the positive half 
of the line and the point A=A0 on it indicates which distribution function, F(x)= 
= 1 —e~Ax, is the case; in case of normal distribution the point (m0, cr0) on the plane 
defines unambiguously the distribution function concerned, etc.). In such cases the 
statistical problem relates to one or more parameters. The methods of hypothesis 
testing related to parameters are called parametric tests. Note that the best known 
ones relate to the normal distribution. However, it frequently occurs that the type 
of distribution is also unknown and, e.g., about the stages of a river (at a given site 
and at a specified point of time) the only thing known is that it is a random variable 
with continuous distribution. So the set of possible distributions is the set of contin­
uous distributions. In such cases nonparametric problems are dealt with. Such 
nonparametric problems are, e.g., to decide whether the distribution of two random 
variables is or isn't the same or to decide whether a given parameter, say the median, 
of two random variables is or isn’t identical. The statistical methods aiming at deci­
sions to be made in nonparametric problems are called nonparametric tests; these 
include, e.g., the methods of fitting test and the test of homogeneity. In general the 
nonparametric tests can simply be executed and can easily be conceived; the 
sphere of their application is wide, there is no need to suppose, e.g., the normal or 
exponential nature of a distribution.

Since in flood hydrology the normal distribution is encountered relatively infre­
quently, the nonparametric procedures will be discussed in this book in a bit more de­
tail. However, at first a brief overview will be given on the theory of statistical tests 
a»d on the parametric tests used most frequently.

6 | >- GENERALS ON STATISTICAL TEST

In each of the problems enumerated in the previous section under a) through c) 
a certain question was formulated which could be answered affirmatively or nega- 
tivcly. An affirmative answer represents the acceptance of hypothesis Ha while a nega- 
tivc answer means its rejection. The task of a statistical test is to provide, on the basis 
ofa statistical sample related to a random variable X included in the problem, oppor­
tunity for making decision as to Ho should be accepted or iejected.

The construction and properties of statistical tests will be described in connection 
7th testing the hypothesis mentioned under a). This example is suitable to draw 

Cr>cral conclusions therefrom.
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Let the random variable Xbe normally distributed; its standard deviation is known: 
<t0=87 cm. The hypothesis to be tested here is

Ho: E(X) = m0 = 625 cm

where m0 is a given value. Consider the statistical sample Xlt X2, ..., Xn consisting 
of n elements, representing the random variable X.

As it was seen in Section 5.1.3 a rather good estimate of the expected value was the 
yx.

sample mean X—-^ and, since the case is a normal distribution, A" is a random 
n

variable with normal distribution as well, represented by the unbiased estimator
— CoE(X)=m0 and standard deviation D(X)=-—.

in
Being the sample mean a random variable, the observed value of X, due to changes 

by chance, will probably differ from m0 even when hypothesis Ho is true. For making 
decision it seems to be a rather apparent principle that Ho may be accepted when 
X is close enough to m0 while Ho should be rejected if X is far therefrom.

However, the question remains what are the cases where X should be regarded to 
be close to or distant from m0, respectively. This question can be answered if the 
distribution of the random variable X is known. The starting point is that 7/0 is true 
and then m0=E(X\ A well-known property of the normal distribution is that (ac­
cording to the so-called double a rule)

(6.1) P(m ^^x^m0+~}^Q.95.
( /n in J

This means that, if is true, X will be closer to m0 than two times the standard 
deviation by a high (95 per cent) probability and the probability that it would fall 
outside these limits is 5 per cent only. An equivalent form of the expression above 
(6.1)is

in

Based on thc foregoing, as to the acceptance or rejection of hypthesis thc fol' 
- X-Mo 

lowing principle of decision can be established: calculate thc statistic u= In —-—" 
fo 

and if thc value of u falls into thc range (—2, +2) hypothesis Ho may be accepted- 
otherwise it should be rejected. By doing so the decision is made by a probability 
95 per cent or, using the common terminology, at a level of 0.95.

m f
Since, when Ho is true, the statistic u= in-------- —will have a standard norn^1

<70 c
distribution with E(u)=0 and P(w)= l, when making decision thc level of 
needn’t be adhered to. Choice may be made for an optional low value of an<^’ 
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by using the table of normal distribution, such an interval (—ux, u„) can be defined 
which will be in concert with relation

H-u,< j/n^—nltfol = 1—a. 
V (To 7

In this way the level of decision on accepting or rejecting Ho is 1 — a.
To answer the question under a) let a be chosen as 0.05 (this choice is common in 

the practice of statistics but sometimes a choice with a=0.01 may also be justified).

X = 626.7 cm, u = —/70 « 0.17, 
o /

SO that there is no reason to reject Ho that is Ho may be accepted.
The statistical test outlined is called u-test. In this decision procedure the principle 

followed is to accept hypothesis Ho in question of the value of statistics u falls into 
the interval ua) and to reject Ho if that value is outside this interval. So from 
the point of view of decision making the line has been divided into two subsets. Inter­
val (u_a, wa) is called the region of acceptance while the part of the line outside (i.e. 
the complementary set of this interval) is called critical region, see Figure 48.

Dealing with statistical tests it can be said that their essence is to choose a critical 
region. For a statistician the starting point is always an assumption that null hypothe­
sis '4 is true; then such a critical region K has to be chosen into which, while Ho 
is true, the value of the calculated statistic u=u(A'n A'2,..., A„) will fall by low 
Probability. If, nevertheless, the actual value of u falls into the critical region K then

should be rejected. 1 he probability by which, while Ho is true, the value of the test 
statistic falls into the critical region A is called the size of the test so that in case of

P(u$K) = a 
the size of the test applied is a.

As it was seen, in the course of applying a u-test the procedure is quite mechanical 
the size of the test, the critical region K, have been chosen. If u^K, Ho is reject- 

CtJ> otherwise it is accepted. When making decisions, mistakes can, of course, also 
Occtir. May happen that Ho is true that is EW=m0 and still the value of an u-sta- 
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tistic (due to chance) falls into the critical region K and, therefore, Ho is rejected. By 
doing so an error of the first kind is made. So such a mistake which is made when 
a true hypothesis is rejected is called error of the first kind.

In w-tests the probability of making an error of the first kind is

P(|w| > wj/fol) = a

that is the probability of such an error is equal to the size of the test. It may also 
happen that Ho is false but a certain alternative hypothesis If: E(X)=m1^m0 is 
true and still the value of the u-statistic falls into the non-critical region, i.e., into the 
region of acceptance (—ux, uf) and so Ef is accepted. In this way a so-called error 
of the second kind is made. The decisions possible in logical sense and both kinds of 
errors which may be made are summarized in the following scheme:

Hypothesis Ho

accepted rejected

Z/Ois true Right decision Error of the first kind

Ho is false Error of the second kind Right decision

Examine the probability of making an error of the second kind in case of u-tests. 
Suppose that an alternative hypothesis If: £(A’)=m1^mu is true. Here the expect- 

.— X—m0
ed value of random variable u=yn---------  will no longer be equal to zero since 

Co
E(X)= nh and so

v Oq / (To

For a given E(X)=ml the probability of making an error of the second kind is
shown in Fig. 49 by the measure of probability shaded.

Figure 49

Denote by [1 the probability of making an error of the second kind, so

= P(-wa < « «c wjmj).

Obviously, the probability of errors of the second kind will depend on Mi that is 
the magnitude of the expected value belonging to random variable X. Based <’n 
Fig. 49 it can easily be realized that if /rq is close to m0 (i.e., J is small) then //u 
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accepted by high probability although it is Hi that is true; in this way an error of the 
second kind will be made by high probability. Fortunately, if is close to m0 hypo­
thesis Ho will almost be satisfied so that, in general, its acceptance will not cause 
a greater trouble.

Concludingly, through the aforementioned choice of the critical region the require­
ment that the probability of an error of the first kind be equal to the prescribed a 
can be fulfilled; here a, due to practical considerations, should be chosen as a suit­
able low value (e.g., 0.05 or 0.01). Dealing with w-tests it is apparent that the less 
the value of a (i.e., the wider the interval (—wa, ufi) the higher the value of p that is 
the probability of making an error of the second kind, beside a given Hx. The situa­
tion is the same in general cases as well; for a lower error of the first kind a higher one 
of the second kind should be paid. The size of test to be applied for testing a given 
hypothesis depends on the concrete nature of the problem. Considerations should be 
made on whether what harm can be caused by making errors of the first or second 
kind, respectively.

6-1.2. the power function

In case of a combined alternative hypothesis Hi the probability of an error of the 
second kind depends, as it was seen previously, on whether what the true value of 

belonging to random variable X is. So the probability of an error of the 
second kind is a function of m:

<6-3) p-. P(|u| < ua|m)

if the required level of decision on hypothesis Ho is 1-a.
Consider now the probability

^•4) 1—/?: P(|u| c

which represents thc probability that the calculated value of statistic u falls into the 

critical region, provided that E(X)=nt. This probability is, of course, also a function 
Of This function is called thc power function of the test. It is apparent that

since thc critical region has been chosen in such a manner that this proba- 
bility by equal to a if Ho: E(X)=m0 is true. Calculate now the value of the power 
^action for a freely chosen value m^ni0 in case of an u-test. Since with E(X)=m 

n°w random variable /n - - will have standard normal distribution apply thc 

lowing transformation:

X—m = । — 4- J,
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Since
8„(m) = P(|a| > aa|m) = 1 -P(-«a < w < =

X — m0 , )- Ma < /n-------- -  < Ua\m = 
Co-------------- '

X — m , , )
-ux < \n--------- + zf < ajm =

Co >

, a X-m .. 1= 1-P -wa-d <------------e «a-d|m
\ c0 /

what is obtained is

(6.5) s„= l-[«l>(ua-21)-<i>(-ua-J)]

where denotes the standard normal distribution function.
The shape of power function can be guessed by simple considerations. If m=Wo, 

i.e., 4 = 0 then

s„(wo)= 1wa)] = 1—(1—a) = a

which is, in general, a small value (e.g., a=0.05). But if m--°° then

f m — m0 . -
# u„------------f n I — #(-») = 0.

\ Cq /

Furthermore, if m— — « then similarly

I — a, — ——— 1»J — <P(-“) — 0 
\ c0 /

that is
gn(ni)—1 if m—±OO

which means that the higher the absolute value of E(X)=m thc greater the value of 

the power function that is thc closer the value of £n(m) to 1. It is said that if 
the power of test approaches to unity. .

Consequently, the diagram of a power function e(/h) may be sketched in thc form 0 
Figure 50. The figure indicates that the greater thc difference between the true expcct 
ed value E(X)=m and the supposed value, m0, thc higher the probability that the 
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value ofthe //-statistic falls into the critical region that is the higher the probability
of rejecting hypothesis Ho. At the same time in case of m-±oo the probability 

\ — of an error of the second kind will approach to zero.
Thus, with a given the higher £„(m) for a given m the better the test; this

e„(m) is called the power ofthe test against the given alternative w. However, for m 
values being close to m0, £„(m) is close to a that is the power of the test is small. What 
could be the way to increase the power of a test beside a given m?

Since is given and the error ofthe first kind, a, has been chosen in advance it is 
the value of n that can be increased. Namely, by considering the formula

( m — m0
e„(m) = 1-<J wa------ - ----

\ o0

( m— mn
+ 0 -i/a------- -------

k Oo

>t can be seen that with «-► ± <»

( — oo) = 0

) = o

So that with any given m 
lim = 1.

A test whose power converges to one when n-* ± °°> f°r aH elements of the alter­
native hypothesis, is called consistent test.

Consequently, dealing with w-tests, if the number of observations will be increased 
and a certain 6 is fixed, the power e„(w0± can be approached to unity as close as 
necessary.

Hitherto, by using a concrete test, the problems discussed were how to determine 
thc Probabilities of errors ofthe first and second kind, respectively, how to construct 
an alternative with due regard to practical requirements and how to improve the test 
b* increasing the number of sample elements. In thc following the way of construct- 

a parametric test will be formulated in more general terms. The u-test outlined 
,n foregoing was to serve as illustration only. Below a remark will be made on the 
n°tion of critical region. _ _

In case of M.tcsts thc definition of critical region has been formulated as a set of u 
V*lu* for which a hypothesis Ho should be rejected; this set is the complementary 

Set of interval f -u — m9+ u on the line that is (in thc sense of set theory) 
the °

Union of two infinite intervals, see Figure 51.
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A sample Xi, X2, ...»Xn is a random point in the n-dimensional space, the so- 
called sample space. Decision on the acceptance or rejection of hypothesis Ho is to 
be made through the position of the random point ^=(Xx, X2, ...,X„). So, lor 
making decision, a procedure might be to choose such a subset, denoted by K, >n 
the ri-dimensional space, which is considered critical region and if hypothesis 

would be rejected, see Figure 52. What will be done is essentially the same. What 
is said is let the critical region K be regarded as a set of all such points X 
= (Xj., X2, ..., Xn) for which statistic

(6 .6) u = u(Xt, X„.... Xn) = fa

falls into the set [ — m0 - w, -~r 1 UI + «t —£•, + 001 •
\ yn) \ yn )

Since both the n-dimensional space and the subsets thereof are sophisticated. 
latter itself, i.e., the relevant two infinite intervals of the line will be called critic 
region.

6. 1.3. UNIFORMLY BEST TEST FOR SIMPLE HYPOTHESES

Now a method will be presented for constructing the best test in the case of simp 
hypotheses. A test will be called "the best” one if among the tests with size « 0^ 
with error of the first kind of probability a) the one will be chosen for which 

probability of making an error of the second kind is the least. The basis for 
ing such a test is the so-called Neyman Pearson lemma (the theorem desen 
below was proved and used first by these two statisticians).
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Let the random variable X have a continuous distribution with density function 
/(x; 0) where 0 is an unknown parameter. (The proof will be scheduled for the real 
variable X and unknown 0 but the theorem also holds when X denotes a vector.) 
Suppose that a sample of size n for X resulted in the values

Let the null hypothesis be //O:0=0O while the simple alternative hypothesis: 
^i=0=0v

The Neyman—Pearson lemma claims the following: there exists a constant kx 
with which 

(6.7)

i.e., 

(xi, ...,x„): i = l

i=l

(6.8)

nf^ 
i = l

with P(K\Oa)=and Ai is the best critical region with size a. 
The proof of the lemma is relatively simple.
Tor sake of simplicity let us use the notation

Lo = ^/(x,; 0O) and L. = II 
/-I I"1

(rhe function L(0)=^ f(x ; 0) is called the likelihood function.)

Since the sample elements are independent random variables with identical distri- 
Tution, £oand £j are the joint density functions of the sample elements if Ho and Hi, 
respectivcly, are true.

Let K* be another critical region having the same size a (see I igurc 53).

Figure 53
10
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With the above notations
fL0 dx = a

K

which expresses the probability that the sample point falls into region K is Ho is true, 
being the probability of an error of the first kind. Since the size of both K and K* is a 
it is involved that

jLodx = J Lo dx = a. 
K k*

As it is seen on the figure B=KQK* so that equality

(6.9) f Lodx = f Lo dx
K C

also holds.
We turn now to the determination of the probabilities of the error of the second 

kind. These are equal to the probabilities that the sample point falls outside the 
critical region if//j is true. These are equal to 1 minus the probability that the sample 
point falls within the critical region if Hi is true, which means that for K and K*:

P = 1 - [Lidx; fi* = 1 - f Lr dx.
K k*

Consequently:
P* — p = JLtdx~ f Li dx = 

K K»

= J Lidx— f Lxdx =
A+B B + C

= [ Lidx+ J Li dx J" Li dx J Lidx
abb c

that is
P* - P = J" Lidx- J Li dx. 

a c

Since set A is a part of set K, at all points of A holds that

Lq kLi 
and so

. 1 .
J Lidx S ~r j Lodx. 

c k c

As set C falls outside region K, it holds at all points of C that

that is
Lq k L i

y Ltdx 3 y y L^dx. 
c k c
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Hence
0*-p= J L^dx-f I^dx^ f Lodx- 

A c *

Because, by virtue of relationship (6.9), 

f Lodx- fLodx = O 
A C

one can obtain that 
p*-p = 0

that is the error of the second kind of region K* is greater than (or equal to) the error 
of the second kind of region K', this means that no better critical region can be found 
than K.

Below an example is given for the application of the Neyman-Pearson lemma.
L« f{x-0) beequaltoOe-^UsO), i.e., let X be distributed exponentially. Let the 
nuB hypothesis be: Ho:0=0o and the alternative hypothesis W1:0=01<0O.

The likelihood function for 0=0o is

n — Oo £ xi
Lo= jJf(xt-,0o) = 0”oe ■ 

i-1

and for 0=0t 
n — 27

Li= JJ^O^^OIe ' •
i-1

The critical region K corresponding to equation (6.7) is a set of all those sample 
Points for which

-9. s 
^L-^k

that is 
n / o y"

'■Worming both sides into logarithmic form (Because of the monotonity of the 
°8arithmic function):

(0o-0i)2*i *lnk+/»Cn0o-ln0O-

As °1-0O. after dividing both sides by (00-0.) we obtain for the ciritical region K:

(6.i0) ■ _
2 *i - 0o-0i
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Dividing both sides of this inequality by n we obtain:

(6.10a)
_ _ln 0O —In 0j In k
X “ 00-01 + "(0o-0i)

Here the value of k or C should be chosen to get P(X>C|7/0)=a. But C depends on 
a and 0O only because the distribution of X depends on 0O. This means that we ob­
tained a best test (critical region) between the simple hypothesis Ho: 0=0O and 
the composite hypothesis

Relationship (6.10/a) shows that with 0<0O the best critical region is the right 
hand side tail of the distribution, see Figure 54.

6.2. PARAMETRIC TEST

6.2.1. STUDENT r-TEST

a) The one-sample case
Student t test is used to test a hypothesis on the expected value of a normally distri' 
buted random variable. The test described in Section 6.1.1 can be applied to check 
a hypothesis on the expected value of a normally distributed random variable Jonh 
when the standard deviation of the distribution is known. In practice this is infrequent 
the standard deviation has to be estimated usually from the sample by using the sta* 
tistic

In such cases the so-called t test is applied.
Let the distribution ofXbe N(m; a) (-+ «, cr>0) and let Xi,Xs..  

be a sample of size n for X.
To check hypothesis Ho: E(X)=m0 construct the statistic

(6.1D t =
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The cumulative distribution function of this statistic is

r
(6.12) P(/<x) = —=2= 

/n(n-l)

du
n—1

2
14-^v 

n — 1

n/2

r

the so-called Student distribution with (n— 1) degrees oi freedom. By using a table 
such a tx/2 value can be picked out for any arbitrary £ level with which it holds that 

(6.13) P(|t| > ra/2) = «■
This means that for the alternative hypothesis Hi: the a-size sym­

metrical critical region (t^tx/2 or is applied.
As it can be seen in formula (6.12) the distribution of t doesn t depend on the un­

known <7, so that the probability of an error of the first kind is independent of a as 
well; with given tx/2 the size of test is a for any a. (A test of this type is called similar 
test.) The region of acceptance for a t test is, therefore, the interval

_ X-ma _ ,
-t./l —5*----- -

which has probability 1 —a under Ho.
Relationship (6.13) is equivalent to

/ S* 5*
T mo - f«/2 -7=^ < * m®+ dn a,

lf the value of X fails to fall into the above interval.
In case of a one-sided alternative Hi against H„ that is with : E(X)=m>m0 

the critical region is that part of the line which is to the right from t, defined by

™ Vn

Figure 55

Figure 56
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b) The two-sample case
When the task is to make comparison between the expected values of two normally 
distributed random variables and the variances are not known, the corresponding 
Student test, the so-called two-sample t test, may be constructed only when the un­
known variances of both variables are identical.

The equality of variances may be verified by previous experience or theoretical 
considerations. When these are lacking the equality of variances require justification 
by applying an F test (Section 6.2.2).

Let X and Y be independent random variables from normal distribution with 
equal standard deviations D(X)=D(Y) and let the null hypothesis H0:E(X)= 
=E(Y) be tested on the basis of independent samples: Xl,...,Xn for X and 
Yl, Y„ for Y. For making decision in this problem the statistic

« 14) ,]/ nm(n + m-2)

has to be applied.
If Ho is true this statistic follows a Student distribution with parameter (n+m-2)-
If : E(X)^E(Y) then, similarly to the one-sample case, a symmetrical critical 

region is to be chosen i.e. from the table of Student distribution such a tx value is taken 
out with which it holds that

-P(~ 4/2 + m —2 ~ 1

Ifthe 4+m_2 statistic calculated for the test falls outside the interval defined in the 
parenthesis then the hypothesis Ho will be rejected at level (1 — a).

Note that if the number of elements, n, is the same in both samples statistic then 
(6.14) takes the following simpler form:

(6.15) ^-2 —
X-Y

Vs^+s^
Now an example is presented for the application of the two-sample t test.
In table T.2 the annual maximum stages of River Tisza, as measured at Szeged- 

are shown. By making a fit test (see Section 6.3.1) the distribution of annual maximum 
stages may be considered normal.

Denote by random variable X the annual maximum stages of the River Tisza at 
Szeged, observed in the period 1876/1925, and by Y the same for 1926/75. Consider 
the hypothesis Ho: E(X)=E(Y). Alternative W, let be taken as
We may assume that D(X)=D(Y) according to the result of the F-test (sec 6-2.2> 

Calculation of the test statistic yields:

663-632 ^50 = 1,14. 
k 135s+138“

•2a —2--------===r
rsr+s;*

In the table of Student distribution with parameter N— 100 the critical valuC 
4,m= 1-984 can be found. Without using interpolation it can be seen that the tes 
statistic falls into the region of acceptance and so there is no reason to reject Ho-
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6.2.2. F-TEST

When the problem is to decide whether two normally distributed random variables 
— X and Y — haver or haven’t equal variances the so-called F test is used. The true 
expected values of both variables can be neglected now. 1 he formula

r ( f'+f* )
f l 2 J

(6-16) P(^<X) = T71>'
1 UJ I 2 J

But in the practice for the two-sided alternative Hr: D(X)^D(Y) the test statistic

(0*2 51*2)
TH’1

is applied.
Let the hypothesis Ho be thc equality of variances that is

Ho = D(X) = D{Y).

Oppose that for Xa sample of n elements: X.. X........

elements: X. y, X is available. The F-statistic is —. this means

•hat the larger estimate of variance is written in the numerator and in this way 
’"-1 and if the first term is greater than the second one see F.gure 57.

Commonly against the alternative H, as critical region at (1-u) level the follow,ng 

region is chosen:

Figure 57
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The way of applying the table used for F tests is, when the chosen level is (1-e), to 
compare F* to F1_c contained in the table. When using the table it should be kept 
in mind that is always the number of sample elements of the sample being in the 
numerator, whose estimated variance is larger while f2 is the number of sample ele­
ments being in the denominator.

If F*^Ft_aH0 is accepted while if F*^F^a it is rejected, at (1 —a) level.
As an example let be considered the problem whether the variances of annual 

maximum stages of River Tisza at Szeged, calculated for the intervals 1876/1925 and 
1926/75, respectively, are or aren’t equal.

Denote by X the maximum stages in the first fifty years and by Y the same for the 
second. Then

Sx2 = 135- and Sr*2 = 1382,

1382
^ = /* = 49-

If a=0.1 then F1_a=1.6 so that there is no reason to reject Ho (Ho is accepted at 
90 per cent level).

6.3. TEST OF GOODNESS OF FIT

6.3.1. ON TESTING THE GOODNESS OF FIT

In hydrological research it is a frequent situation that the distribution of a given 
random variable is not known. In the previous sections dealing with parametric tests 
the distribution of the random variables was supposed to be normal. I his means that 
in such cases the normality is to be justified. On the other hand, in the practice of 
hydrology other kinds of distribution occur frequently as well. In flood hydrology* 
where, e.g., annual maximum stages or the durations of flood waves, etc., are ana­
lyzed, in the first place the distribution of the random variables in question arc to bc 
determined. Considering, e.g., the physical background of the phenomenon, somc" 
times an attempt can be made to derive a theoretical form of the distribution and then 
to create some hypothesis on the type thereof. The hypothesis obtained in this waj 
is then checked by the tools of mathematical statistics, by means of the so-called 
testing of goodness of fit.

In certain cases the theoretical inherence on the nature of distribution is not to1’ 
difficult. For instance, if in connection with annual maximum stages the only thinf- 
we are interested in is whether the annual maximum observed at a given gauge 'V,|S 
higher or lower than a given the situation faced is the case of binomial distribution 
defined by some parameter P(X^x„)=p. Here, however, another difficulty 
arise, namely, whether the p probability of exceeding the level has or hasn’t changed 
during the past years or decades. Therefore it is convenient that the record available 
(which is, in general, unfortunately not too long) is divided into parts and a test o 
homogeneity (see Section 6.4) is carried out thereupon.
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When the physical background of a process is too sophisticated to build up some 
apparent hypothesis and the sample size is large enough then, using the sample, a 
density histogram is constructed whose shape may provide some instruction on the 
nature of distribution which should be checked then by a statistical test.

I he most wide-spread two tests used to check fitting are the /“-test and the Kol­
mogorov test. The /2-test can be used equally for discrete or continuous distributions 
but a prerequisite to its application is the large number of sample elements. The 
Kolmogorov test can be applied for continuous distributions only. In the majoiity 
of cases such a hypothesis concerns not a single distribution but a (parametric) 
set of distributions. Hence in both tests in the form of estimators are used (the param­
eters of the distribution function has to be estimated also from the sample), reduc­
ing thereby the efficiency of these tests. In case of a smaller sample sometimes the 
sample elements will be transformed suitably and the Kolmogorov test will be applied 
°n the new variables. For tests on normality a useful procedure of transformation 
is presented in Section 6.3.5.

6-3-2. THE z’-TEST

First the theoretical basis of the /* test will be given, then its application to the good­
ness of fit tests and then, using hydrological examples, the so-called homogeneity 

and independence tests will be treated. ,
Let ....... /(r a complete system of events, i.e., J/<,■=/ and AtAj=Q if

r

Consider the null hypothesis Ho: PtA^Pi L 2, ..., -p - 1).

Suppose that out of m experiments the occurrences of events AX,A2, ...,Ar were 
h,v2.......rcSpcctivcly. The distribution of the random vector variable

v»» •.., v,) is multinomial that is if Ho is true then

P(v, ...... v,-

Whcre k^k^.^+k^n.
Let now be formed the following statistic.

(6.19) Xs =
y (v<- "1^- 

"Pi

'^petais is ,rue then £(>,)- Nr, that is in the nominator of the ternu the 
of deviations between each random variable and ns own expected value can 

be found.
, Section 2.112 it was seen that th. sum ofthe squares of r

having standard normal distribution is MM according; t> t he Z 
*’Wbution with parameter r. In formula (6.1» the sum ofthe squares of r non-mde 
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pendent random variables is contained. It can be proved that if n tends to infinity the 
X2 statistic defined by formula (6.19) has z2 distribution with parameter (r— 1) that is

1

22 . r 12 )
(6.20) lim < x|/f0) = n~*o©

x r—3

J t 2 e~‘dt. 
0

As a consequence, from the table of za distribution a critical value zj./e) can be 
taken out for certain e>0 with which

(6.21) Ptf < Zr-l(e)) = 1—«•

Note that the limiting distribution in formula (6.19) doesn’t depend on pt contained 
in Ho so that the same table can be used to different hypotheses (considering, however, 
the value of r, the number of terms in the complete system of events). When selecting 
events care should be taken for assuring that np^ 10 holds for the sake of relia' 
bility of the test; furthermore, this procedure can be used with large n values 
only. When the probabilities pt depend on parameters of number s which were esti­
mated from the sample then the parameter of the z2 statistic will be diminished by 
i.e., it will be r-s— 1.

6.3.3. APPLICATION OF THE z’-TEST FOR FLOOD DATA

a) Testing the distribution of flood wave occurrences
According to records on the stages of River Tisza at Tokaj between 1903 and 1971 
that is during n=68 years there were 30 years when water level e=600 cm was not 
exceeded in the first quarter. One exceedance in a quarter was observed in 25 yc3^ 
while two or more in 13 years.

Let now such a hypothesis H„ be chosen that the number v of exceedances in thc 
first quarter follows Poisson distribution. For the parameter A the value 0.8 was 
obtained from the data. Let be used the notation ^,= {¥=0}, Ja={v=l), 
= {vs2}. From the table of Poisson distribution when A=0.8 then

P(/f,) = A = 0.4493 ^ = 30.55

P(AJ = pt = 0.3595 Npt = 24.45 

P(A3) = ps = 0.1912 Np3= 13.00.
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With these data
. (30 - 30.55)2 (25—24.45)2 (13-13)^

* =----- 3055----- + 24.45 + 13

From the table of z2 distribution with parameter (r-2)=l and with the choice 
a=0.05 the critical value zgos=3.841 is obtained. Consequently, there is no reason 
to reject the hypothesis. (Otherwise, as the coincidence between frequences v; and 
the expected values is surprisingly good, this result might be anticipated in advance.)

Note that since also the 2 parameter of the hypothesized Poisson distribut.on has 
also been estimated from the sample, in the table of/Mistribution the critical value 
has been taken from the row corresponding to a parameter (r 1 1). In piactice 
mostly this kind of tests occur. If the parameters of the distribution are supposed to 
be known independently of the sample then the procedure is the same and the param­

eter of statistic z2 is r— 1.

b) Testing the distribution of exceedances
Consider the exceedances of the Tisza river at Szeged, above the level e=650 cm 
in the second quarters. The numerical values are shown in Table T.l. Theoretical 

, . , ■ < ^1, enooKt that the distribution is exponential. Thisconsiderations and experience both suggest mat
Sives the hypothesis = X = 0.

The value of parameter A has’to be estimated from the sample: as x- 1/A~ 100 cm 

T=0.01. The exceedances are ranked into four categories by means of the quartiles 
°f the distribution function F(x)= l-e'1""': A,^30™' 70cm

~ 140 cm. Now
P(X * 30 cm) = P(30 cm X < 70 cm)

= P(70 cm S X 140 cm) = W 8 <*> “ ° 25-

1 he frequencies of the events above arc:
v, = 6, vs = 9, v, = 9» v4 = 7.

With the given partitioning MA=31:4=7.75^8 as lhe numb r 
observed in the second quarters of the period 1900/

Apply now the z2 test I The test statistic (with r- is ■

of exceedances

1 = 0.875. 
8(6-8)2(6-8)- +

* Zi *------------=------5 r 8 " 8i»i npt o
A« »t. • . c using the estimation of one parameterwhat ,s performed is a goodness of hl tost us 8 of r_ j_ ] =2 degrees of 
tlK result obtained should be compared with the Z ° thc Bt
is^rik"1' !hC V,'“e °f h”, 'u X'-dWtibhiion it is seen that, if W. is true, 
the ^^r8004' ‘, Llr deviation than 0.875 is greater than

Probability of obtaining by chance a la g 
b per cent. So there is no reason to reject hypot esis «
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Although our result seems to be rather convincing, having a relatively small sample 
the performance of a Stdrmer test is still advisable. (This is expedient all the more 
because in a Stdrmer test no part is played by the value of parameters.) For the Stdr­
mer test see Section 6.3.6.

c) Testing the distribution of the largest exceedances
We establish our null hypothesis according to considerations in Section 6.1. This 
means that the conditional distribution

#o: Ffx) = 1 — e~u

will be the basis of our procedure; accordingly, only those years will be taken in which 
exceedance happened at all.

Consider again the exceedances in the Tisza river at Szeged (in the second quarters) 
but now in all quarters only the maximum one will be considered. Estimating both 
/.t and /? from the sample the null hypothesis has the form

Ho: F(x) =
£-0.44e-0.01.v _g-0.44

1-e-o.w

The number of sample elements (from Table T.l) is now m=25 which is, un­
fortunately, rather low. The maximum exceedances Z are ranked into four categories 
by using again the quartiles. The quartiles of the cumulative distribution function 
Ffx) are

-Xi/4 35 cm, — 81 cm, ~ 155 cm.

With the given partitioning:

P(Z < 35 cm) = P(35 cm S Z < 81 cm) =

= P(81 cm s Z< 155 cm) = P(Z £ 155 cm) = 0.25.
From fable T. 1 the frequencies of t he above events are:

Vi = 6, va = 5, v3 = 7, v4 = 7.
As nA=25/4% 6 the actual value of the test statistic (with r=4)is:

(6-6)* (5-6)» t (7—6)a (7—6)a 3 n ,

Since the number of parameters estimated is two the critical value of the /‘-disW' 
bution belonging to r-3 degrees of freedom at 0.05 per cent level is

Zi(crit.) = 3.84.
From the table of ^-distribution it is seen that, if is true, the probability of 

obtaining by chance a larger deviation in ya than 0.5 is greater than 95 per cent. So 
there is no reason to reject Ho.
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d) Application of f-test for testing homogeneity
When large samples are handled the /-test is used customarily to perform a so-called 
homogeneity test. The purpose of testing homogeneity is to decide whether two ran­
dom variables, X and Y, are or aren’t of the same distribution that is, in other words, 
whether the sample Xr, X,, ..., X„ and the other, Yt, Y2, Ym related to Y, are 
or aren't drawn from populations with the same distribution. So the null hypothesis is:

Ho: P(X < x) = P(Y < xf (-oo<x<+oo).

Testing homogeneity is of very great importance in the practice of hydrology. If, 
e-g., the question to be answered is whether in the course of long decades there were 
or weren’t significant changes in the flow regime of a given river the data series is 
divided into two (or more) sub-records, in accordance with the date(s) of change(s) 
(such as land use, structures, etc.) and a test is performed to check homogeneity. 
The test of homogeneity is also of great importance when the integration of data series 
>s the problem ■ e.g , in order to have a larger sample for improving the reliability of 
a next test of fit. Due to the importance of this subject other methods of testing homo­
geneity are also presented in Sections 6.4.2 and 6.4.4.

By using the /-test the procedure of testing homogeneity is as follows. Div.de 
the line into r parts by applying the division points -o - -i ••• -r ”■ Out 
of the sample representing a random variable X denote by v; the number of observa­
tions found in interval (z,-., z,) while let denote the same for a random variable 

r(/=l,2,..„r). Obviously, J v^n and 2 The following statistic will 

be applied:

It rank . , r then the distribution of the statistic 6.2211 can be proved that if «-«■ and tnen w
lcnds to a / distribution with parameter (r- I).

The test of homogeneity will be demonstrated by the Mlowmg exampie. I he qu- 
to be answered is whether the annual maximum stages of River I ts^as. otarved 

« Staged. did or didn't follow the same distribution tn the periods 1876/1925 and 

l926/75. (See Table T.2.) . .. r . Mre nnd
Don u , , . Ui. V .ho maximum stages in the first fifty years andL»enote by the random variable X the maxim t /

T those in the second Using the notation 4 A2. {5 m X -6 mJ,
rose in the second, using 1 • (X*8m) and, in addition denoting

• (0 A - 7 ml A f7m*X- S mh • v' 1 , rbyvth- v O 4 I 1 .... v contained in set and by the number ofy vi the number of sample elements A* coni ,
“"Pie elements Y. in the same set 0=1.2........ 5; *-1.2....... '•1.................... W
the Xs statistic (n=m=5O,r=5) takes a simple form.

Xs - «* 2
1 Al /7 >77)
7^ * v‘+^
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The data obtained are as follows.

Ai 5 10
Ai 11 11
Ai 13 13
At 13 10
At 8 6

(5 —10)2 (11 —ll)2 (13-13)2 (13-10)2 (8-6)2
k 15 1 22 26 23 1 14 —35‘

Since in our example r=5, for testing the null hypothesis the critical value can 
be taken from the y2 distribution whose parameter is (r— 1)=4. As for the level 
chosen (a=0.05) 1 — a—0.95 this value is y2(0.05)=9.48.

As it can be seen there is no reason to reject hypothesis Ho.

e) Test of independence by using f-test
The purpose of testing independence is to check if two random variables — let they be 
denoted by X and Y — can or cannot be considered independent that is it does or 
doesn’t hold that

Ho: P(X ^x,Y^y) = P(X^ x)P(Y < y), (- x, y < + «).

The test of independence is a tool of analysing the stochastic relation between two 
random variables, an important problem encountered frequently in the technic^ 
practice. This subject is discussed in Chapter 7 in more detail. 'I he only intention he|C 
is to show the procedure of applying y2-test for checking independence and to illustrate 
this procedure through a concrete example.

Consider a sample of N elements, each consisting of a couple (X, Y): (^i» 
(^«» T2); ...;(Xn, Yn). (Here Xt and Yt are related values, coming from the same 
f-th observation.) Random variables X and Y may be of quite different nature, c.g > 
A can be a discrete while Y a continuous variable.

Now the x*-test is applied in the following manner. Divide thc x axis into r sub 
intervals by division points — oo=x0-<Xi-<x,-< ...-<xr= + «>, taking into account 
the possible values of X, and the y axis into s sub-intervals by division points "

+ «>, in accordance with thc possible values of Y. Denote by 
the event {x^jSZ-cxJ and by Bj the event {jy-iS F-cyJ, (/= 1» 2» 
J= 1, 2,.... j). 1 he paired values (Xlf FJ, GTa, F,),.... (XN, YN) constitute a set o 
points on a plane.

Denoting by vtJ the joint occurrence of events A, and Bj, obviously vM is equal t0 
the number of points within an oblong with sides At and Bj, sec Figures 59 and b
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Figure 60

lf * «nd Y are independent the events A. and B, are independent as well so that for 

ypothesis //0 the hypothesis

Hi = B(A„ Bj) - F(AI)P(BI) = P,«). (' ” '•2...... r; J “ '•2.........’’

bn replaced. To show the frequeneies of the paired events A,B, commonly a so- 
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called contingency table is prepared:

Xs^1 B2.. Bj- ■ Bs I

Ai Vil V12- V1J- ■ Vis V1.

Az V21 vM.. . v2;.. • Vas V2.

At vn V/2 • -ViJ . •Vi,

Ar Vrl V,2 • - ^rj • ■■ v„ vr.

I Vi. V.2 VJ V.s N

In the marginal row and column, respectively, marked by Z the frequencies corre­
sponding to the so-called marginal distributions can be found. (v; is the frequency of 
event A( and v j is that of Bt). The test statistic for checking independence is

(6 23) Z2= 2 2 NPt^ .
( } NPiqj

If the null hypothesis (that is independence) is true and n—then the test statistic
(6.23) will have (asymptotically) a /2 distribution with parameter r • s— 1.

g) Testing independence the distribution functions being unknown
In practice the distribution functions of the random variables in question are usually 
not known and the probabilities P(Ai)=pi and P(Bj)=qj cannot be determined, 

they have to be estimated from the sample. Using the contingency table we have

Pi 0 = b2,...,r);

Now the test statistic is 

r > I VU M I
(6.24) 2

i-U-l Vj V j

I his statistic follows (asymptotically) ^-distribution with parameter (r— 1)(J
Statistic (6.24) has a simple form when r=s= 2:

(6.25) ft - A'
Vi.Vj.VjV_,

In this case we have a statistic distributed according to ^-distribution with paramcttf 

(r-l)(j-l)=L fl|
As an illustration consider the following example: Check whether the an'*l,sC 

maximum stages of River Tisza at Tokaj can be considered independent of1”0 
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observed at Szeged. (Between these gauges several tributaries belonging to separate 
catchments flow into the Tisza river.) Based on Table 1.1 the following contingency 
table and z2 values can be obtained:

Y (Szeged)

bT V13 = 0 V23 = 5 v33 = 9 v.3 = 14

b2 v12 = 3 v22 = 41 v32 = 4 v2 = 48
vu = 22 v21 = 16 vM = 0 v.i = 38

A, A2 A3 X (Toka

Vi = 25 v2< = 62 vs. = 13

As now the distribution to be considered is the z2 distribution with (r l)(s l)-4 
Agrees of freedom for which the critical value at level 0.001 is 18.465 the hypo- 
1 esis of independence should be rejected.

6 3-4 kolmogorov-test
£°r testing the goodness of fit when continuous random variables are considered the 

^ogorov-test can also be used.
denote by X a continuous random variable and let the corresponding sample be

(I) Xx,Xt...... X„

^^ting of n elements. \ ■ , .
thesis is now Ho: P(X^=W where F(x) is supposed to be com- 

Pciely known. When F( v) has unknown parameters they should be estimated from the 
^1 in such cases goodness of lit tests with estimation are performed. In tins case 

1S ni°te convenient to use the method which is based on the transformation of sample 
etnents (see 6 3 5)

b Th‘ feting proa.dore is as follows. First the elements of sample (l)«e ranked m 

reasing order of magnitude:
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then the empirical distribution function F„(x) is constructed and, finally, the test 

statistic
Dn = sup |F„(x)-F(x)|

is calculated.
Since the empirical distribution function Fn{x) depends on the sample elements 
y2)..., xn (i.e., F^x) is a random function), the Dn value of the maximum devia­

tion between the theoretical and empirical distribution function depends on chance 
as well that is D„ is a random variable .

Ii Ho is true then, in accordance with Glivenko’s theorem (see 4.1.3), with increas­
ing n the Dn value tends to zero. When n is fixed the order of magnitude of Dn is 1/V11 
and therefore the y nDn value fails to tend to zero even if n is extremely large. 1 he 
limiting distribution of random variable ~nDn was determined by Kolmogorov who 

showed that if Ho was true then

(6.26) lim P(fnD„<z} = 2 (-l/e-"*1’= K(z), z>0. 
W*«> = — oo

Values of function K(z) have been tabulated (see Table T.6).
By the aid of a table containing function K(z) such a z0 can be chosen for whic 

the relation
1 —K(z0) = F(/n Dn > z0) = a

holds where a is a given value (e.g., a=0.05), the size of the given test. If the ac,u 
value of }nDn appears to be greater than z0, hypothesis Ho is rejected at (1—«) '

Note that statistic
D+ = sup[F„(x)-F(x)] X

is also commonly used for fitting tests; this is an examination of the one-sided maXI 

mum deviation when the hypotheses are

Ho . P(X x) = F(x) 
and

: P(X c x) > F(x),

i.e., the alternative is one-sided.
It has been shown that

(6.27) Jim Ptfn D+ < z) = I = S(z), (z S 0).

To calculate the critical values no table is needed. c
If a level of (1 — a) decision is required for the decision then it is sufficient to c 0 

such a critical value z0 for which e~a4=a. Hence -2zo=lna and

z0= 1/ -y Ina.
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The critical region is that part of the line which lies to the right from z0. If, e.g., 

a=0.05 then In a=-2.99^-3 and z0= /1.5= 1.2247.
The expected value of statistic can also be determined easily as its denslty 

function is s(z)=4ze~2z*. 
co

E(^D+) = / z(4ze-u') dz —j- = 0.627.
0

Now a few examples are shown, using the Kolmogorov test.

a) Testing of the goodness of fit for the distribution of annual maximum stages of 

Riifr Danube at Budapest observed in the Danube at Budapest between
The data of annual maximum stages observed in mt K
1901 and 1970 can be seen in Table T.3.

Let hypothesis Ho be .,
If p—^dT

F& = “7^ J ay2n -00
, , , .____ —2 ore estimated by the sample mean X
where the expected value in and variance <7
and by the estimate of variance, respectively. 1 he samp e m

70

2
v _ J___ = 626.66 cm

A " 70

while the estimate of standard deviation comes to

5„ =

....

1 = 87.21 cm.
70

Af, . . ^mrine the empirical distribution function
er standardizing the sample c cmen , distribution function the maximum

•• a) and plotting the standar ize n located The maximum difference can
Terence between these two functions is I (0.45)=42/70=0.6 so that

bcfound about at x=0.45. Here (0.45)=0.674 ana nv
,  .— , v j,- 8.4-0.074 = 0.6216./70 D70 = ^70 sup | Fn W - V Wl

Ar^ r f 4. the critical value belonging to the level
t0 thC tab e ° unc 101 .-Q^rence found in the example is consider-

As I**6*”1,1 **’e00nd 
ters ,7? demonstrated in Section 6.3.3 for. . of cxcccdances above the level c= 
= 650' ?Cd in thC HSZa nVCF ■ ^distribution. This was obtained by using the 

050 cm fitted "well" the exponential distnouuu
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Z2-test. Let us turn now to the Kolmogorov test to check how the exceedances above 
c=600cm observed in the second quarters at Szolnok fit the exponential distribution. 
The data of exceedances are shown in Table T. 1. A maximum likelihood estimation 
on the A parameter of exponential distribution results in A—1/X—1/0.8 —1.25. 
Let be chosen the hypothesis Ho so that the distribution function of X exceedances 
is F(x)=l-e“1Mx.

Utilizing the ordered sample prepared from the exceedances contained in the table 
it is convenient to plot the empirical distribution function as it is shown in Fig. 61.

From the figure the maximum difference is P„=max |FB(x)—F(x)|. z0—0.08 and 
in this case n=41. According to Table 6.1 for n=40 the critical value for Dn is 
°-25 which is about three times the value of the present z0. So there is no reason to 
reject hypothesis Ho. Otherwise the fit is convincing m_erely by v.sual inspection, too. 
if the reliability of accepting Ho is needed then the ^nDn value should be calculated. 
This is about 0.6 and in the table of Kolmogorov’s K(z) function X(0.6)% 0.1457% 

*015. So
lim P(fnDn >0.6) « 0.85

means that if H. is true, merely by chance, in more than 85 per «nt of the cases 
’ higher maximum absolute difference would be observed between FM and F(x) 

than the present value. , , . . .,
The table below indicates that similar conclusions can Ite drawn also when the 

distributions of exceedances observed at Tokaj, Tiszafured, f.szaug and Szeged are 
concerned, either in the first quarter or in the second.

c) Testing the goodness of fit to the distribution function
if p — At© _p—At

F,(x)=f------------L_ in the case of maximum exceedances
1 — e-*

.Consider the tit of maximum exceedances for different gauges in the Tisza over 
* fat and second quarters to the distribution funetton F.W Ftg. 62. Note that 
' ■"I is a conditional I distribution function. If, in a given quarter the magmtudof 
fa’famn exceedances is denoted by Z, and the number „ exceedanos n the same

by v then /;( v) .v|v>0). As v is distributed according to the Poisson 

with parameter At it holds that

P(y s 0) = e-A' = F(Z, 5

parameters A, and /> are estimated from the corresponding samples. (The data of 

^edances and the levels ofc are given in the table.) tr!hlllion
,n Tabic 6.2 sup |Wl ,S thC CmP*nCal

u"ction and is the actual"value of the quantity | » .
U ,s ^n from the table that in all cases convincmg fits can be found I
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Table 6.1

Fit of the X magnitude of exceedances to the exponential disbrution;

H(x) = 1-e-^ 

fn Dn= Yn max |/f„(x) - W(x)|

where Hn(x) is the empirical distribution function.

Tokaj: Quarter I:

P = 0.012
XX Da = 0.9030

P(XXd„> YXd0) = 0.39

Quarter II:

P = 0.01 
fa Do = 0.8784 

P(faD„> fa Do) = 0.42

Tiszafured: Quarter I: Quarter II:
P = 0.02 P = 0.02

= 0.7006 l/X Do = 0.6890
P(JXDn> XX D„) = 0.62 P(faDn >faD„) = 0.73

Tiszaug: Quarter I: Quarter II:
P = 0.01 p = 0.008

XX Do = 0.7860 YX Do = 0.7156
p(XXd„> /7do) = O.48 PfaX D„ > faDo) = 0.69

Szeged: Quarter I: Quarter II:
P = 0.0096 P = 0.01

XX Da = 0.8438 fX Do = 0.5851
___________P(XX Dn> faDo) = 0.48 PWXDn /XDo) = 0.88

6.3.5. TEST OF NORMALITY BASED ON THE TRANSFORMATION 
OF SAMPLE ELEMENTS (SARKADI TEST)

Given a sample for X, for which neither its variance nor its expected value is knowl1 
decision should be made on whether it does or doesn’t come from normal distribU' 
tion. Let the sample elements be Xlt Xt,Xn. Apply the following transformatio11 •

(6.28) y, = jl 1S ’I s J i = 1, 2, ...» n —2

where X is the arithmetic mean of the sample and X' is

(6.29)

while 5 is calculated from
n + /Tn

(6.30) s1 = —3...
n-1 n 2 "
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Table 6.2

Tokaj: Quarter I Quarter II
P = 0.012; kt = 0.8 

zt = 0.7411 
P(^Dn^ z0\H0) = 0.6430

P = 0.01; kt = 0.6 
z^ = 0.5610 

P^Dn^z„\H0) = 0.9164

Szolnok: Quarter I Quarter II
P = 0.01: kt = 0.64 

z„ = 0.6833 
P(Vn Dn * zo|tfo) = 0.7484

P = 0.01; kt = 0.38 
z„ = 0.6063 

P(^D„ S z0|H0) = 0.8674

Tiszafiired: Quarter I Quarter II
= 0.02; kt = 0.50 

z„ = 0.9617
P(^Dn^ z0|/f0) = 0.31

P = 0.008; kt = 0.29 
z0 = 0.7411

P{^Dn^ zn\H0) = 0.64

Tiszaug: Quarter I Quarter II
P = 0.01: kt = 0.35 

zt = 0.9110
P(/^D„ zM) = 0.38

P = 0.008; kt = 0.26 
z,. = 0.623 

P(^Dn^ z„\H<,) = 0.83

Szeged: Quarter I Quarter II
P = 0.01; kt = 0.89 

z„ = 0.7025 
z0|//0) = 0.71

P = 0.008; kt = 0.26 
z0 = 0.6231

P(lf^Dn^ zv\H^ = 0.1%
__ ___

'I he value of function iA»-g(x) <s determined from the n— 2 parameter Student 
distribution and of the x2 variable in the following way. Denote by P(t | v) the distri" 
bution function of the Student variable whose parameter is v that is

rp+11
(6.31) ------ A f-z______________

42 J
and by 1 — Qv(t) the distribution function of the variable whose parameter is 1 
which yields that

(6.32) 2(/| v) = 1 f u * e * du.

2’

s(O can be determined by means of the following relation :

&-«{W'„-s(/)]a} - 2<f>n_a(0-1, t a o.
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Since in this book the tables off and Student distributions contain only a limited 
set of values necessary for the corresponding tests they are unsuitable to perfoim these 
calculations. Appropriate tables can be found in the following works: Biometrical 
fables for Statistician [C.6] or Bolsev—Smirnov [C.l].

Through the above transformation a set of n—2 variables Yr, Y2, Yn_t wi 
be obtained which are - as it has been proved by Sarkadi - independent variables 
with N(0; 1) distribution provided that the original sample comes from normal 
distribution. In this way the problem has been traced back to the analysis of such 
a sample where hypothesis is its normality with known parameters. For samples of 
this type purely a fitting test can be applied, e.g., the Kolmogorov test.

Note that this method can be used to test normality (even when - as in the analysis 
of variance - normality has to be tested) for several small samples simultaneously 
This happens, e.g., in the analysis of variance. In such cases the expected values and 
variances may be different in the different samples. Consequently the transformation 
has to be performed on each small sample. If the number of samples is r with sample 
sizes i nr then, after transformation, the number of independent variables 

obtained will be J n-2r, each with N(0; I) distribution, provided that normality 

holds in each small sample. After transformation the test of hypothesis can take place 

for the great sample which is the union of the r small samp es.

6-3.6. A TEST FOR EXPONENTIALITY
, * v v X the question is whether they

ven the independent sample elements " certain narameter
may or may not be regarded as distributed exponentially with certain paramet . 
In this case the applicable transformation is

(6.33)
gfa-lXn.-ffl (=i^....v_1}

2 x? 
j-i

x;. X' ... X- is thc ordered form of the given sample (that is X^X^ 
_, * - »

If.k = , ... sct of n-1 variables Y^Y'^
_ I*1® original distribm.on is '’I™™1'”' ' M thc ordered form of a sample 
of "if- ; o’"1""1 in ,his way '"ayl 8‘ interval [0,1). This problem can bo 
lestcd ' ClCmc",s 6t4) and this combined method is
’synm, ( T8 ““ Kolm°g°™V ’ Lrnnnve hypotheses. Example on thc 

yoiptotically consistent for all continuous alterna
‘ pPhcation of this method can be found in Section 4. . •
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6.4. METHODS FOR TESTING HOMOGENEITY

6.4.1 ON TESTING HOMOGENEITY, IN GENERAL

Let X and Y be continuous random variables with cumulative distribution functions 
F(x) and G(x), respectively. The question whether the distribution function of these 
random variables are the same (which means homogeneity) will be answered by 
nonparametric tests. Here the null hypothesis is

Ho: F(x) = G(x) 
and its alternative:

He FM G(x).

So the meaning of this alternative is that these two cumulative distribution functions 
are not identical, there is at least one point where they differ (but in this case, due to 
continuity, they differ along a certain section). If Ho is not valid that is H^ is true then 
G(x) includes a very wide variety of distributions differing from F(x). A question 
arising now is whether it is possible at all to produce such a statistical test which will 
provide an efficient method to reject Ho in all cases where a certain distribution func­
tion G(x) differs from F(x). Such nonparametric tests being consistent against all 
alternatives do exist; this means that with sufficiently large number of sample elements 
(denoted by N—o°) the probability of rejecting Ho tends to unity provided that 
G(x) = F(x). This means that, dealing with sufficiently large samples, the test will 
reveal even the relatively small differences between the distribution functions. A test 
having this property is, e.g., the Kolmogorov—Smirnov two-sample test. With 
number of sample elements the power of such a universal test is, of course, difFereIlt 
against different alternative hypotheses. If the difference between G(x) and F(x) ‘s 
small the disclosure thereof may be expected only when the number of sample cL' 
ments is very large. 1 herefore, it is a common task to consider what are the alternatives 
against which a given test is efficient and less efficient, respectively. Especially thc 
following two types of alternatives are investigated customarily:

H^: G(x) = F(x-6)
which represents a shift in the expected value while the nature of distribution 1S 
unchanged and

G(x) =

which assumes a change in the scale of the variable that is in the variance. Couccrl 
ing the alternative hypothesis Hf*’, if then the variance of Y is greater tM 
that of Y while with h-< 1 the reverse is true. .,

Certain nonparamctric tests arc more sensitive to altenativcs of type w 1 
others to those of type H{**\ Sometimes the practical experience permits to ^ra 

conclusions on the type of such alternatives for which a test is more suitable.
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The majority of nonparametric tests for homogeneity is based on ordered samples. 
To determine the test statistics based on ordered samples the elements of the two 
samples belonging to A'and Y will be ranked in increasing order of magnitude: 

(I) 
and 
(11)
(The decision as to which one of the random variables will be denoted by Xand which 

one by Y has to be made before the test.) . .
A test covering more than one sample can be performed by utd.zmg the not.on of 

rank attached to the elements of the samples. The dehnition of rank ,s the follow,ng. 
Let us have two samples and let us order them into a sing e sequence m mcreasmg 
order of magnitude from 1 to (n+m). Let this ordered sample be denoted by 

(III)
Then we look for the place occupied by the smallest element of sample (I) Xf Let 
this place be denoted by r, in the combined sample 111; then e num er , 
rank of sample element X,1 Similarly, let the rank of X be denoted by . eta In 

this way the rank numbers of sample (I) will be represente y 2. , »
c°mbined sample let the ranks of the remained elements Y, 2>-’ » 
bv r m ■ u - nfWthp rank numbers of both series will give theoy So it is obvious that the ranK num fur-
lr|tegers from 1 to (n + m). It is easy to realize that r''r~^"u " ‘ ,
^rmore,that and SjSj. The numbers r( and ^themselves are rando

Variables . . , ..
lf hypothesis H. that both samp.es are of the same

Pmhability of aU arrangements of the two samples re a >v 1 rn+mt
As .he number of possibilities to place X, elements to (n+m) places is | „ J Uethe

Pr°bability of a given sequence is - — r- • Consequently,
I H ~i JVI
( n J 

1
P(ri = olt ra = «»• •••» ^ = o„\Ho) - fn + ni'| 

(nJ

if the n " /material methods it is possible .0 deter-
mine he bi'po,h'S1’ ,s ,ruc- ' Lotions of random variables r, and r,.
Thisno? ly dis,rib”"°? ° ,“Lions even when a relatively simple func­
tion „r ”melimes ra,hcr ted'°“ “ L, lHc, Of some tests cover small sample

^r®nk numbers is defined. Therefore the * . . limiting distributions are
only and when the number of sample elements ,s large Imut.ng d,str,but,ons 

used.
^°w presentation of a few nonparametric tests follows.
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6.4.2 . WILCOXON-TEST

This is a two-sample test which can be performed rather simply. It is asymptotically 
consistent for the alternative hypotheses. Its sensitivity is lower when the medians of 
distributions F(x) and Gfx) are equal. But in turn it is consistent and efficient for 
hypotheses of the type Ha: F(x)=G(x) and G(x)= F(x—<5), <5-4*0.

The test is used mostly to check the null hypothesis

Ho: P(X < Y) = P(X > Y) = 1/2.

Its one-sided form is applicable against the alternative hypothesis

Hf: P(y<T)>l/2.

In a case where P(X<Y)<i/2 variables X and Y can be inverted. The two-sided 
test is applicable to check the alternative hypothesis

Hx . P{X <Y) * P(X>Y).

The Wilcoxon test statistic has the form

(6.34) ^=2(^-1)=
i-1 i=l 2

which is, apart from an additive constant, the sum of the rank numbers of the X 
sample elements. It is easy to see that what is substracted from the sum of the ranks 
is the possible minimum of the sum of their ranks. Namely, if for the ranks it holds 

that fi = 1, r2=2,rn=n then the sum of the ranks is —-P . The value of 
n

a Wx, y statistic may vary between 0 and nm.
It can be proved (see [A. 17]) that if Ho is true the expected value and the variance 

are

(6.35) 

and
^x,y) =

n ■ m 
~T~

(6.36) Wv.r) =
nm(n + m + 1)

12
respectively. It has also been shown (sec, e.g., [A. 17] or [A. 10]) that the limiting dist'' 
bution of IVx Y is normal that is the following relation holds:

* x|//oj =iim P 
n,m • O(^x.r)

An exact formula for the distribution of statistic Wx Y is not known. For sn'^ 

samples the tables have been calculated by using the following recursion which can 
proved easily:

(6.37) /’(^,m = k) = PW^ - k)+-2- P(W - k).
firm n + m
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The critical region at (1 - a) level is the interval (Wx, where the value of wa 
•s determined by applying the relationship Px,yOT^wJHo)— 1 a.

For showing the application of the Wilcoxon test an example is given for the one­
sided case. Suppose that the problem is to check whether there has been an increase 
in flood levels in the Tisza river at Tokaj in the second quarters within the period 
1945/70. In the period concerned the maximum exceedances (c=600cm) observed 

in the second quarters were (see 1 able T. 1):
1945/58:^ = 65; Xa=13; Xs=164; = 88; *5 = 71; T0 = 45;

1962/70:^=194; ys = 257; ys=123; T4 = 132; Ts = 55; ye = 258.

The ordered samples are:

X* = 13, Xa* = 45, X3* = 65, A? = 71, 

y* = 55, y; = 123, y3* = i32> Y* = 194,

x* = 88, X* = 164 

Y* = 257, r6* = 258.

Now W0:P(Z<y)=l, H^.P^Y)^. The rank numbers are 

„=1; „ = 2; r, = 4; r. = 51 r. = 6; r. = 9; 

,, = 3; s. = 7; s, = 8; ’>=": s"-‘2'

test statistic is

C 8 r 12n = 27, 2si = 51-

8 6-7 _ ,H',. = 2r,——-6-

f„, sample sizes «=6 and
value of is 5. As the actual value of theteas at.su, 

n° reason to reject Wo so that the assumption that th
61ven cross section and in the period concerned is accep c . y) crjtjcal

to the two-sided alternative hypothesis i ■
re^on is the set or itical value: w' since the null

Or two-sided cases the table contains only
distribution of the , statistic is symmetrica! to the expected value,-, so that 

« <, are in symmetrical position. Thus, when the value of IP,., .s greater

the value to be compared to the critical value is —- W,.,-

Nou i onnlication of the Wilcoxon test and this
Elates, thCr CXamP'e * Sh°Wn i . mmined the problem whether the behav­
iour J?" t0 “ fl00d prOblenL ! C1 n°W floods in the Tisza river at Tokaj is the 
san, hc ma8mtudc of exceedances — M uch) as in the second ones
(fro^'L‘firSt quar,ers (fr°m ISl JahnU“hc random variable X the maximum ex- 

1st April to 30th June). Denote by the ran 
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ceedances in the first quarters and by Y the same in the second. The samples related to 
Xand Y, respectively, are shown in Table T.l.

With these two samples (which are relatively large) their ranking in increasing order 
of magnitude, integration into one single ordered sample and the establishment of 
ranks are cumbersome tasks. In fact these can easily be carried out if the sample ele­
ments are plotted on scale paper in the sequence of their numerical values, using two 
different colours or marks for the sample elements Xt and Yj. In the course of such 
a representation the sample elements will get automatically into an ordered sequence 
and to determine the sum of rank numbers will also be easy since this is not influenced 
by the permutation of Xt elements among themselves.

In the example m=36 and n=29 so that what is applied is the normal limiting 
distribution of statistic WXt r:

^x.y = 510, E(Wx^ = -^- = ^- = 522-,

^x.y) = 76.

D(W) 76

From the table of the standardized normal distribution

P(—2 SW* < 2) % 0.95

so that there is no reason to reject hypothesis Ho. (In the course of performing a teS 
of this type such a problem may arise that certain sample elements have the same va u 
that is there are equal Xj and Yj elements and they cannot be ranked into a sequence- 
Suppose that the sample elements having the indices k, k +1, ..., k + J are allI equ 
in the combined sample, disregarding whether they are Xj—s or Yj—s. In this c* 
each Xj from among the equal elements will get a rank number

k + (k + l) + ...+(k + s) =‘4-s +1

Note that if the elements of both samples are plotted on the line (applying di e 
marks for Xj an d Yj observations) and for all Xj variables the Yj values less t 
these Xj, that is the number of the pairs (Xh Yj) for which Yj^X,, are counted F 
denoting this number by IVX r, the so-called Mann—Whitney statistic is calcu a 
which is identical with the Wilcoxon statistic. To realize this assertion considc^ 

ordered sample Xj^Xj-<...^Xj and the corresponding ranks: 0()k
As the rank of Xj is r, the number of Yj-s to the left therefrom is r|— * I 
of A”a* is rt, the number of observations, Yj, less than Xj is rt— 1 but these *nc 
Xj, too, so that the number of Fy-s less than Xj is r,-2, etc. Obviously, the nun
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°f Kj -s less than A" is r„—n and so

IFy,x = ri-l+^-Z + .-. + rn-w =

„ . £ n(n + l)
= JrJ-(l+2+... + n)= --------2-----*

i=l I-*

Thus the Mann—Whitney test is essentially the same as the W.lcoxon test the only 
difference being that in the former a different method is included for the numerical 

Quantification of the tests statistic. .
As to the other variants of the Wilcoxon test and its power reference ts made to 

Lehmann’s work [A. 17].

6<3. A COMBINATORIAL METHOD OF TESTING HOMOGENEITY

■» the hydrological practice it is a frequent problem that decision should be made cn 
th' identity or discrepancy of the distributions of two random variables, X nd , 
based on a sample where the number of elements is relative y sm<

Suppose that for a random variable A the statistical samp c

2» •

and for Y another sample 
(H) 2, *

available. Suppose that the distribution of both random variables is continuous, 
denote the probability function of random variable A by U)

Tr , p y 1UI . bv means of testing homoge-he task ,s to test the hypothecs H.. f U)-C
ly. For cases where the sample sizes are equal *

Or°lyuk have elaborated the exact distribution of the sta

and
Bi

B„„

= sup
X

= sup {nl^Cx)-^^}-

Tn „ . j m.rpnt and thus, for the application of
the Cm? h°”eV"’thC “""P tons would have to be omitted which
Woufd ", O-Koro,)'uk ,CS'- r ton TO avoid this, the Gnedenko- 
k ld rcsult in the loss of valuable information. Jo

Rank the samples (I)
B ^be m^n but the difference m-n should oc ‘F
”,d CD in increasing order of magnitude by which the ordered samples

«•> ' ... . v- 
(IP)

rc Stained.
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Combine now the ordered samples (I*) and (II*) into one single sample in increas­
ing order of magnitude:
(in*) zr^z^...^z*+n.

Let
(+1 if Z*€(I*)
l-l if Z*€(II*)

and S/=31+92+...-l-5/, (/= 1, 2,m+n). The partial sums S, can be visualized 

by trajectories as shown in Fig. 63.

All possible trajectories run within the oblong shown in the figure and, obviously 

the number of all trajectories is

m + n 
n

nt + n 
in

Choose now a straight line running parallelly to they axis at a height k. Now 
a trajectory which reaches this line, if reflected on the straight line y—k t>0n1 
first point of touch, will end after (m + n) steps at the point 2k—(m—n). e

Count the number of trajectories of this kind! For the sake of simplicity sUP n). 
that both m and n are even (this means the omission of at most one observa 
So let m+n=2N, m—n=2l. Now the task is to find the number of such js 
which start from the origin and terminate after 2N steps at a point whose deva 
2k—2/. If the number of steps upwards is a and the same downwards is P then

a+P = 2N
a-P = 2k-2l

a= N+k-l 
p „ N-k + l.

242



Consequently, the number of trajectories reaching the line y k is now

( 2N 1
Whence

(6.38)

To calculate formula (6.38) accurately the table of binomial distribution can be 
used (at least when N^25), in the following way: From the column under ^-0.5 
>n the table of binomial distribution (I able 1.10)

2N ) 
N+k-l)

Hence

(6.39)

1
2^n 9

H the required level of decision on hypothesis//0 ,s > andTuch
appropriately, quotient (2.150) could be calculated for k-1 2 and such 

a ‘ value be selected with which the value of the above quotient w,U be less 
'han ». However o he basis of a theoretical considerate given below, the value 
^can be .XJZ by good approximation and in th.s way many unnecessary 

'visions can be avoided.
Now utilize the well-known relationship

(6.40)

Writc Eq. (6.39) in the following form:
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Hence

(6.41) P(max Sj £ k) % e N .

From this relationship the value of k will be obtained by solving the equation 
kt — 2kl

e n = a. After a simple calculation:

k2-2kl+Nln<x = 0

i 2/±/4P-4Alna , -----------
(6.42) k =------ —------------- = I + /F - N In a.

In the practice of statistics a=0.05 is chosen in most cases: thus the value of k will 
be given by the following relationship :

(6.43) k = Z+KF+32V

(because In 0.05= —2.99« —3).
The applicability of this formula is shown now through a numerical example.
Let m=17; n=13; with these 2A=30, 1=2. By virtue of formula (6.43)

k = 2 + ^49 = 9.
Concludingly

Indeed, in the table of binomial distribution

(30'1
P22 1221 0.00545
P13 ” (30) ” 0.11152 ~ °-048 % °-05

can be found in the column of p=0.5. So, in our opinion, by using formula (6.4.3) 
the critical k value will be obtained by a sufficient accuracy, and thus the preparation 
of any table is unnecessary!

Note that for m-n that is with /=0 formula (2.149) includes one of the results 
reached at by Gnedenko and Korolyuk namely that

(6.44) P(sup W] > M

I A J
Nor is in this case a table needed; the critical k value will be given by formula

(6.45) k = /— Aina
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if the level of decision required to hypothesis Ho is (1-a). If n=m and a=0.05 
the critical value is

k = /3A.

From Eq. (6.41) an interesting limiting distribution can be derived in the following 
way:

Introduce the notation B^n=max G„(x)] with which

_^-2H

P(max Sj < k) = P(B+n ^k) = l-e " .

Let now __ __
k = zy2N, l = m-n = cY2N

which, by virtue of Eq. (2.156), yields a limiting distribution of the Kolmogorov-

Smirnov type: 

(6.46)
B„,n 

^m + n
] _ g-2z*-4cz .< z

It can be proved that the above test is asymptotically consistent for the alternative 
hypothesis : F(x)>G(x). To statistic 

Bm,n = max X
m — n

m Fm (x) - nG„ (x) + 2
m—n

2

the Gnedenko—Korolyuk test may be generalized as well. (See, e.g., [B. 28].) As to 
the efficiency of these tests the interested reader will find information in paper [B. 28].

As an illustration for the practical application of this test consider the exceedances 
of the Tisza river at Tokaj. Let the maximum exceedances observed in the first quar­
ters (from 1st January to 31st March) be represented by the random variable X and 
those in the second (from 1st April to 30th June) by Y. Denote the distribution func­
tion of X by F(x) and that of Y by G(x). The statistical samples related to the random 
variables Xand Fare given in Table 4. In this example m-35, n-29.

The sequence of the random variables 9- and the corresponding tra­
jectories arc shown in Fig. 63 from which max S;=H can be read. In this case 
m-„=2/=6 with which, by virtue of formula (2.153), the k value corresponding to 

the critical level =0.05 is
k = i + + = 3 + /IO5 = 13.2.

So there is no reason to reject hypothesis IF : F^G^x). This means that the 
distribution of the maximum exceedances at Tokaj observed in the first and second 
quarters, respectively, are equal, allowing the integration of both samples through 
which a statistical sample with considerably larger (almost double) number of sample 
elements will be obtained for the maximum exceedances.
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Note that to perform this test the representation of trajectories is unnecessary. 
By forming the series 3,= ± I (where i— 1, 2, m+n) a sequence S,(i= 1, 2,...) 
can be formed and max can be found very easily as this is shown by the table below.

9, 1-1 1-1-1 1-1-1 1-1 1-111-1-1-1
Si 1 0 1 0-10-1-2-1-2-1 0 10 1 0-1

11-1 11-11-1-1 1
0 1 0-10 10 1 0-1

9i 1 1 1-1 1 1 1 1-1-1 1 1-1 1 1
St 1 2 3 23456 5 456 567

11 1-1-1-111 1 1-1-1 1 -i -1 i

8 9 10 9 8 7 8 9 10 10 9 10 9 8 9

-1 -1 -1
8 7 6

6.4.4. KOLMOGOROV—SMIRNOV TWO-SAMPLE TEST

This test is also used for testing homogeneity that is the problem to be solved through 
it is to test whether the distributions of random variables X and Y are identical (con­
tinuous).

Let the distribution functions be

P(X < x) = F(x) and P(Y x) = G(x)

The null hypothesis is
: F(x) = G(x)

Let the sample from X be

(I) Xx,X2,...,Xn
and from Y
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From the ordered form of these samples construct now the empirical distribution 
functions, F„(x) and Gm(x), respectively:

Smirnov proved that

(6.47) lim P [ 1/-^-max (Fn(x) - Gm(x)] < z\H01 = 1

and
(6.48) lim p[l/-^-max|F„(x)-Gm(x)| < z|H0 =
v 7 «, m—co m-rn x j

= K(z) = 2 (-1)^-^’. 
k = — co

With the one-sided alternative hypothesis F(x)>G(x) the test statistic is

D+„ = max (F„(x)-Gm(x)]

and the critical region at (1 —«) level is where can be calculated from
relationship

P(D^ < = 1 -a

as it is described in Section 2.5.5. As to the power of the test Vincze’s paper [B. 45] 

can be referred to.
When the question to be answered is only whether the distribution of a random 

variable X is or is not the same as that of an F that is when the two-sided alternative 
is F(x)^G(x) then the (I-a) level critical region is constructed
by using statistic

P„,m = max |F„(x) —Gm(x)|

where D can be determined from relationship I -Da\H^ 1 a. With large 
n and m the table of Kolmogorov’s K(z) function can be used to calculate D\. With 
“=0.05, a common choice in the practice of statistics, and with n,m^50 hypothesis 
H„ will be rejected at the 95 per cent level if

J01L D 
n + m n'm

1.35.

Now an example related to floods is presented on the application of the two sample 
Kolmogorov—Smirnov test with two-sided alternative hypothesis.

Examine whether the maximum stages of the Tisza river observed at Szeged follow 
the same distribution in the periods 1876/1925 and 1926/75, respectively.

Denote by random variable X the annual maximum stages in the period 1876/1925 
and by Y the same in the second fifty years. The samples related to X and Y are given 

>n Table T.2. Let
Hn: F(x) = G(x) and H.: F(x) £ G(x).

247



The reader will prepare easily both the data ranked into a single sample in increasing 
order of magnitude and the corresponding empirical distribution functions.

Essentially, either now the representation of empirical distribution functions 
Fn(x) and Gm(x) in unnecessary, what is required is merely the position of sample 
elements Xt and Yj relative to one another. This is because in this example n=m=50 
so that

1 / nm iIn _ 1 , „ , . „ ,
k = V yDm =-^ma*\nFn(x)-nG„(x)\ =
r n -f tn r | 2# x

1 9
max St = — = 0.9. 

\2n ‘ 10

In the table of Kolmogorov’s K(z) function the critical value belonging to level 
a=0.05 is z0= 1.35, no reason is, therefore, to reject hypothesis Ho. The application 
of this test on other gauges of River 1 isza have led to similar results which fact may 
act as a confirmation of the decision made here.

6.5. METHODS FOR TESTING RANDOMNESS

6.5.1. THE WALD-WOLFOWITZ-TEST AND ITS APPLICATION 
FOR TESTING THE RANDOMNESS OF EXCEEDANCES

There is a strong seasonal variation in the hydrological cycle and, consequently, 
in the flow regime. From the viewpoint of flood control, due to the development of 
meteorological conditions, the behavior of most rivers is different in the different 
seasons. In accordance with this fact it is expedient that the behavior of flood waves 
in the different seasons are examined separately; in our case the examination of flow 
regime performed separately for the first, second, etc. quarters seems to be appropri­
ate. Therefore, in the further discussions it is the quarters that will be chosen as inter­
val [0, T). By doing so the seasonal variations (by the very fact that separate seasons 
are considered) will in fact be eliminated since as far as the rivers examined here are 
concerned their flow regime may be considered homogeneous.

Let the chosen quarters of the given years be regarded as [0, T) intervals whose 
number is k (and which include observations on exceedances at given gauges). In 
connection with the flood waves observed in temporal sequence the exceedances in 
the Z-th period are denoted by the random variables X^, Xi2,Xlv. If the values 
may be regarded as independent random variables from the same distribution the 
sequence

(I) Xn, Xl2,Xlvt; XM,..., X2vi\
^kli •••» ^kvk

may be considered a sample representing a random variable X which denotes the 
value of exceedances in the chosen period. For sake of simplicity let the series be 
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re-denoted in the form
(F) X1,X2,...,Xn

k 
where, apparently, n= £ vi- 

i = 1
Thus the first problem to be analysed is whether the elements in series (F) may or 

may not be considered independent random variables obtained from the same distri­
bution. If so, the estimation of the distribution, expected value, etc. of X from this 
sample may be justified.

A sequence consisting of independent random variables from the same distribution 
is called commonly “random sequence” and this has the important property that 
although the Xt values are given in temporal sequence still they may be regarded as 
those forming a random sequence.

Different statistical methods called “testing randomness” — and, therefore, belong­
ing to the sphere of hypothesis testing — can be used to check whether the elements 
of series (F) form a random series.

First a Ho hypothesis assuming that the elements of sequence (F) constitute a ran­
dom sequence that is a statistical sample, is set up. Thus this means that random vari­
ables Xi, X2, ..., Xn are independent and that for the cumulative distribution 
functions P(A'(<x)=Fi(x), (/= 1,2,...»n), a relation stating that F^^F^x^ 
= ...= F„(x) will be valid.

The procedure then is that described in Section 2.4.1: a statistic providing the basis 
of test is chosen and — supposing that Ho is true — its distribution is determined. 
Then the critical region is constructed for the given level; if the actual value of the 
statistic falls in this region hypothesis Ho will be rejected otherwise it is accepted.

The problem is the type of statistic to be constructed from the elements of sample 
(F) which provides a basis to make decision on Ho. To find a suitable statistic is made 
difficult by the fact that there may be several reasons resulting that Ho is false. When 
selecting a statistic all the realistic alternative hypotheses should be considered. 
Obviously, Ha will be false if some trend is present in sequence (F) that is when the 
elements of the sequence show an increasing or decreasing (or possibly another) 
tendency. H„ will be false also when some dependence, stochastic interrelation pre­
vails among the elements of the sequence. (It may, e.g., occur that there is a depen­
dence between the magnitude of an exceedance and the picceding one.)

Wald and Wolfowitz [B. 42] have elaborated a so-called exact proof to test ran­
domness, which is based on the serial correlation. Below a brief description of their 
method is given and then the application thereof is shown by testing the data scries 
of exceedances observed at Szeged in the 1 isza river.

Consider again the sequence
(F) Xi, X2,
and what is to be tested is the hypothesis Ho related to this series. Calculate the arith-

methic mean X= —2 and subtract this from cach element of thc serics that 
n T
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is let bs formed
(6.49) Xi' = X-X, (i= 1,2,...,«).

Now calculate statistic
(6.50) R = "Z X- X,'+1+X'X{.

i = l

As it was shown by Wald and Wolfowitz the standardized random variable

(6.51) R* R — E^R) 
D(R)

is asymptotically N(0; 1) distributed which means that if 1.96 hypothesis Ho 
should be rejected at the 95 per cent level.

Statistics E(R) and D(R) are estimated from sample (I') in the following way:
For the sums of powers introduce the notation 

(6.52) Sr= 2 W 
i = l

while for the expected value and variance of R apply the following estimators:

(6.53) E(R)~ S2 
n-1

(6.54) D2(R)
Sg-S4 , Sf—2S4 SI
n-1 (n—l)(n—2) (n-1)2

As an example consider the sequence of exceedances observed in the Tisza river 
at Szeged above the level c=650 in the second quarter (from 1st April to 30th June) 
each year in the period 1901/1970.

Table 6.3

X, x, x, x, xl
Year

cm cm cm

1901 1 29 -71 1922 11 124 24 1944 22 4 -96
1902 2 14 -86 1924 12 220 120 1952 23 2 98

1907 3 108 8 1932 13 273 173 1956 24 39 - 61
1912 4

5
72
34

-28
-66

1937 14 53 -47 1958 25 37 -63

1914 6 128 28 1940 15 197 97 26 66 - 44
1915 7 110 10 16 40 -60 1962 27 170 70
1916 8 73 -27 17 28 -72 1964 28 114 14
1919 9 266 166 1941 18 204 104 1965 29 98 -2
1920 10 16 -84 1942 19

20
21

38
51
60

-62
-49
-40

1967
1970

30
31

134
309

34
209
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In the example:
31

2*
X = -^- = 100.35 cm « 100 cm

30
A = X, Xj^i-j-XsiXx = 1186 

^W--^-7207 

522-2S4 2L
30.29 302

3.7447

As 122*1 % 1.96 there is no reason to reject Ha. So, by using the Wald—Wolfowitz 
test, the conclusion is that in the given case the exceedances above the chosen c level 
are independent random variables from the same distribution that is they constitute 
a statistical sample.

6.5.2. TESTING RANDOMNESS ON THE BASIS OF RUN STATISTIC

To check a Wo hypothesis related to the randomness of a series (T)^, X2, X„ the 
application of the so-called run statistic is also common (see, e.g., Lehmann [A. 17] pp. 
313 to 315). The procedure may be, e.g., that first the empirical median of series (I'), 
that is the Me value related to which the half of observations is smaller and the other 
half is greater, is singled out and then each value of Aj is compared to median Me; if 
A^-Af^O a figure 1 while if Xt-Mt<0 a zero is written. If Ho is true, the series 
obtained in the above manner, consisting of zeroes and ones, will behave as such 
a Bernoulli sequence where for each place the probability of occurrence of both 
zeroes and ones is equally 1/2. Then the number of all runs in the obtained sequence 
is determined (see Section 1.2.4).

The procedure is illustrated through an example. Consider the sequence of exceed­
ances observed in the Tisza river at Szolnok in the first quarters from 1903 to 1970 
(Table 6.4).

Comparing Xt values to median A'38=59 cm the following sequence will be 
obtained:
(II) 0001011111110101110000

110000101000111001

In the sequence the number of 1-s and 0-s is the same: m=20. The number of all 

funs is: r= 18.
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Table 6.4

Year x, rl Year x, r(

1903 4 4 1922 134 32

1908 29 13 1926 178 35
1912 2 2 1931 18 9
1914 100 27 1937 150 33

1915 38 16 1940 5 5
1916 178 34 66 24

88 25 1941 222 38

1919 85 24 1942 128 31
1920 104 28 1945 1 1

116 30 1946 17 7

1947 24 12 1963 91 26
22 14 1964 3 3

1948 184 36 1965 17 8
1953 201 37 39 17

1955 20 11 1966 255 39
45 18 1967 281 40

1957 46 19 1968 63 23

13 6 1969 59 21 M. |

1958 108 29 1970 19 10
1962 35 15 56 20

65 22

Wald and Wolfowitz have shown (see [B. 42]) that statistic

(6.55) r* = /2
Vm

has N(0; 1) distribution. In the example

r. = ^^.^±«zl = -o.66. 
' yio 3.16 3

Since the actual value of r* is within the 95 per cent confidence interval (- 1.96; 1.96) 
there is no reason to reject Ho.

As to the power of run statistics and the construction of different run tests when 
a specified class of alternative hypotheses is dealt with the reader’s attention is drawn 
to the work of Lehmann [A. 17].

As an alternative to hypothesis Wo which expresses the randomness of series (I') 
may frequently be supposed the existence of some trend, e.g. an increase in floods. 
If so, obviously, the assumption Fj(x)= Fa(x)= ...= F„(x) cannot be satisfied.

When the randomness of sequence (I') is to be checked to reveal a trend the use of 
the following simple nonparametric test is proposed.
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Rank the observations 4I2,...,X, into a sequence in increasing order of mag­
nitude, obtaining thereby an ordered sample,

(i") x^x^...^x^.
If here then the rank of ^is r^j, if X2=X* the rank of X2 is r2=k, etc. 
Now, by substituting the indices for the observations made in temporal sequence and 
by writing below each index the rank attached to the respective observation in the 
ordered sample, the following table will be obtained:

H 2 ... nl
Ui r2...rj"

If in sequence (I') a trend of rise prevails then, in general, a higher rank number will 
belong to a higher index and therefore the use of statistic

(6.56) d = (r1-l)a+(r2-2)2+...+(rB-n)2 =

= 2^-2 2 ^+2 ^ = ^2 i2~2 2 "i 
iii ii

seems to be reasonable. Obviously, the more definite the increasing trend in sequence 
(I') the less the actual value of d. It can be proved that, if Ho is true, with large n the 
distribution of d is asymptotically normal and its expected value and variance are

and

£ (d) =
n3 — n

6

D^d) = n2(n+l)2(n-l)
36

respectively (see Lehman [A. 17] p.p. 292).
As an example consider again the data given in Table 6.4 where the ranks for all 

Xt values are also included.
The calculations lead now to the following results:

41 41

d = 2 2^-2 2^,= 10782 
<-i <-1

£W = ±M = n48o

VW = = 329476, 
36

D(d) = 575

. _ d — E(d) 698 , 2
d “ D(d) 575

Since the distribution of d* is asymptotically A(0; 1) and its actual value falls in 
the 95 per cent confidence interval there is no reason to reject Ho due a trend.
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6.6. TESTING HYPOTHESES ON THE PROBABILITIES OF EVENTS

a) Testing the mill hypothesis P(A)=p
The problem is to test the null hypothesis

Ho: P(A) = p0

set up for an event A, by using observations. Here p0 is a predetermined, fixed value 
specified independently of the outcome of experiments either by theoretical considera­
tions or on the basis of previous experience.

Suppose that out of n observations the event A occurred k times while the event 
A (n—k) times. If the question should be answered at (1 — a) level then, in the possession 
of a table covering the binomial distribution, such kv and k2 values can be chosen 
with which the x frequency of event A will satisfy the following relation

P(kx < x < /c2|//o) = 1 -« 
under the conditions

P(x S ki|H0) = P(x S k2\H0) = a/2.
So the critical region is

Xk = {x S kY or x S k2}.

However, there are only relatively few p and n values included in the table of bino­
mial distribution. When n is large and p is not too small the normal approximation 
to binomial distribution may be used. So the distribution of the random variable

x—np 
)/np(\-p) 

is approximately 7V(0; 1) and, with a ua value to be determined from the equation 
2<P(ua)— 1 = 1 — a, the relation

/ x—np , \
P < J=7r a ~ 1-aI \np(\—p) )

will be valid by a good approximation. Hence, at (1 — a) level, the following critical 
region is obtained: Xk= {>c^np0-ua /np0(l-p0) or x^np0+ua -p0)}.

The approximation with normal distribution may be considered good if for a given
9

value ofp the relation nS--------- is satisfied. Consequently, e.g.,
P(l-P)

Ifp Then minimum n

0.40 or 0.60 38
0.30 or 0.70 43
0.20 or 0.80 56
0.15 or 0.85 71
0.10 or 0.90 100
0.05 or 0.95 189
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If the exact value of p is not known out it is known to fall within a given interval 
then from among n values belonging to the end points the larger one should be taken 
into account.

When np<l or n(l— p)< 1 the procedure may be to approach the binomial 
distribution by means of the Poisson distribution; in this case the corresponding 
limits of probability have to be taken from the table of Poisson distribution. Here, too, 
such kt and k2 limits may be specified for the critical value with which it holds that

P(x kx\np) = P(x^ k2\np) = a/2

where np is the parameter of the corresponding Poisson distribution.
Finally, it should be noted that for testing a null hypothesis H0:p>p0 the test 

will be uniformly the most powerful if Xk= {k^k0} is chosen as critical region. Here 
p0 and k0 are fixed values with which, to meet the requirement that the level of test 
houldbe (1-a), the condition P(x<k0|pu) must be fulfilled.
s
b) Testing the equality of two probabilities
In practice the question of the — unknown — probabilities belonging to two events 
are equal or not will arise rather frequently. Many times, as far as our knowledge is 
concerned, both the complete phenomenon and the two events in question had taken 
place in identical circumstances but still a possibility might emerge that one of the 
influencing factors was not the same in both cases since, e.g., some change came about 
meanwhile. In these cases what is checked is whether the magnitude of such a change 
in the respective condition was significant enough to influence the value of the proba­
bility. Such a question might be, e.g., whether the probabilities that flood levels at two 
gauges of a given river will exceed a certain c level are the same or not.

Accordingly, let the events concerned be denoted by A and B, the probabilities by 
P(/j)=p, and P(B)-p-i and the null hypothesis by H0:pt=p2-, the latter, as the 
common probability is unknown, is a composite hypothesis.

One of the solutions to the problem is — when the number of observations is large 
—- the application of a y2 test as it was discussed in Section 6.3.2. Frequently, however 
the experiments involved are costly so that desirably only a (relatively) small sample 
ought to be covered. It was R. A. Fisher who elaborated an exact method to this prob­
lem, being the examination of the so-called 2X2 contigency table. Other problems 
also lead to this formula or method; these will be discussed later.

For cases falling in between — that is for medium-size samples — an approxima­
tion by means of normal distribution is applied; this procedure will also be returned 

to later in this section.
Considering now the basic problem suppose that for two phenomena nt and h2 

experiments were carried out and for the first pehenomenon event A was observed kx 
times while for the second one event B kt times. Write the numbers of observations
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in the following table:
ki
k2

Mi-kx 
n2-k2 «2

K = kx + k2 n^^-K
If the hypothesis Pt=p2 is true then, under the condition that k^+k^-K, the 

conditional probability of this division is
n1!n2!K!(«1 + «2-*')!

Pik^K, wJ - ’

This distribution constituted the basis to compile the Finney—Latscha—Bennett- 
Hsu table [C. 2] containing the critical values needed to make decision on hypothesis 
Ho In this table for cases where 3^n2Snx^30 the critical value of a one-sided test 
is given for the nominal levels (l-a)=0.95; 0.975; 0.99 and 0.995 while when n2S 
^n^40 the levels included are (l-a)=0.95 and 0.99 only. In the first part of this 
table the exact values of the errors of the first kind are also given.

The way of using this table is as follows. If against hypothesis Ho the one-sided 
alternative Pl>p2 is set up then, since n^n2, a relation k^k2 may be supposed 
(in an opposite case k^kj^ so that the alternative should be rejected imme­
diately); for the given h15 n2 and kr values the table provided such a critical value, k„ 
which will lead to a difference being just significant that is the critical region will be 
xK= {k2Sk*}. As K is regarded as a fixed value the critical region for kx in the table 

means that
minfK.np
2 P(k\K, Sa

and
min(K. nj)

2 P(k\K, nif n2) > a

so that, for this kj, k^K—kt and P(k2Ska)—a.
If, in a case where n^na, against hypothesis Ho the assumption to be tested were 

P1^p2 then the assumption tested would be (1 - pa)> (1 - p0 (that island nt-kt 

would be interchanged).
In case of two-sided hypotheses a critical region has to be constructed (through the 

procedure described in the table in detail) that is such (kt,k2) related values have 
to be found — with given k, + ka=K — for which k, is cither too small or too large; 
the latter involves the procedure described above while in the former case the large 
values of the difference (Mj—kJ are considered.

jf HJ&40 the approximation by normal distribution may take place in the follow 

ingway.
'I he expected value and variance of the aforementioned distribution are
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and

D^K' ni, nJ - („i + „2)2(ni+„a_i)

respectively. In case where /<1/n1>fc2/n2 the quantity

k,~ 0.5 —m
u =------------- —

<7

will be normally distributed; to the given null hypothesis the probability of a critical 
region xK= {K>ki} (that is the probability of an error of the first kind) for the one­
sided test is equal to Here 0 stands for the distribution function of the
standardized normal distribution while the subtraction of 0.5 provides an adjustment 
needed because a discrete variable is replaced by a continuous normal distribution.

Finally, when the total number of sample elements, is extremely large
then, as it was mentioned, the x2 test may be applied.

6.7. ELEMENTS OF THE THEORY OF STATISTICAL DECISION 

FUNCTIONS

As it was seen, all statistical procedures were finished by some decision. When the 
problem is to make an estimation the decision to be made is the acceptance of a cer­
tain value instead of the true value of a parameter sought. To accept or reject a hypo­
thesis is a typical case of making choice between two alternatives. When a confidence 
interval is defined the scope of decision is a given interval in which the true parameter 
should fall All these decisions are based on statistical samples and therefore they 
are called statistical decisions. In all cases the tool of decision is a function constituted 
by the sample elements, i.e, by a statistic. To choose suitable statistics is the funda­
mental task of mathematical statistics. This problem was discussed in the sections 
covering the estimation theory and hypothesis testing; the choice of a suitable statis­
tic was justified occasionally by the “mathematically” favourable properties of such 
a statistic For instance, when the variance of a random variable was to estimate the 
proposal was to use the corrected estimate of variance, Sn, which is an unbiased and 
strongly consistent estimate of the variance. However, by using the sample size 
r-r the variance can be estimated in a much simpler manner and with a mini­
mum amount of calculation. For testing hypotheses tests involving small errors of 
the first and second kind were recommended which, in turn, require sometimes a very 
large number of observations. Many times economic requirements arc also to be 
considered when choosing a statistical procedure. In the pract.ce of hydrology, mclud- 
ing flood hydrology, a decision, which has been made in the course of a procedure 
of parameter estimation or hypothesis testing, may determine at the same t.me cer- 

। too which, due to chance, may be correct ortarn practical measures, decisions , too, wn , ’ j
, i ■ ounce a considerable economic loss. Since the basiserroneous. A faulty decision may cause a tuna™
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of decisions is an actual value (or a statistic composed of actual values) of some ran­
dom variable observed, the decisions involve certain economic risk. How to quan­
tify the risk of a decision? How to select such a decision whose risk is the possible 
minimum? These questions can be answered by the aid of the statistical decision 
theory.

6.7.1. STATISTICAL DECISION PROCEDURE. LOSS FUNCTION 
AND RISK FUNCTION

An attempt to illustrate the notion of statistical decision and the course of a decision 
procedure is made below, by using an example.

Suppose that from previous studies it is known that the flood peaks of a certain 
river follow exponential distribution whose density function is f(x)=9e~3x, (xsO), 
where 9 is the unknown parameter to be estimated that is the decision to be made 
relates to the numerical value of 9. The result of such a decision is a real number. 
3—d. When, as a result of estimation, a verdict that 9=J is returned, a statistical 
decision is made. In the example d can be any of the points along the positive half 
of the real line. So the set of all possible decisions is 3 —«>}. The set 3 is 
called decision space. Consider now what is the basis to make a decision that 3-d. 
The value of parameter 9 cannot be observed directly (if could be, estimation would not 
be needed). Instead, observations can be made on the value of a random variable X 
representing the peak, usually many times. Denote by X= (Xx, X2,..., A„) the sample 
representing a random variable X. Since the distribution of the random variable X 
depends on a parameter 9 each observed value of X contains some information on 9. 
The vector variable X, that is the sample, contains, of course, even more information 
on 9 than does one single observation. It is this information that will be utilized to 
make a decision on 9 that is the value of X will be decisive to the choice that which 
one from the decisions 3=d will be made. So d is a function of X: d=8(X). The 
rule 5(y) that is the instruction specifying what a number d should be coupled with 
the observed value of X is called decision function. As in the example 9 is the recipro­
cal expected value of the exponential distribution, a reasonable decision rule may be 
constituted, e.g., by the following variants:

W) = -^- 
2i

62(T) =----------- where 2 Pi = •> P» - °»
2 P^i 
i

W) =
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For sake of simplicity later on the random variable providing the basis of decision 
will be denoted by Xeven when it is a vector variable. If X= (X^ X2,..., XJ denotes 
a sample then the information included therein will be compressed into a certain 
— possibly a sufficient — statistic t(X)=t(X1, Xn) which itself is also a random 
variable and which will serve as a basis for making decision on 3.

Based on the above example the decision procedure — although somewhat ab­
stractly but with a rather general validity — may be formulated as follows. Given the 
sample space T, observations are made on an element X^X thereof and a choice is 
made for a decision d from the set of the possible decisions 0 defined by the practical 
problems. The set 0 is called decision space. Selection from the decisions takes place 
on the basis of a certain rule. This rule is called decision function and is denoted by 
<?(.¥). A decision rule <5(X) states: the decision to be chosen is the one belong­
ing to an observed X that is d=8(X).

Loss function and risk function.
With given X the different decision functions ^(X) provide in general different 

numerical values for d so that a question if which of them should be chosen may well 
arise. To answer this question a check on the consequences going together with the 
decision is necessary. In certain cases estimations can be made on the magnitude of a 
damage or loss caused by a wrong decision when 3 is not equal to d. Obviously, the 
greater the difference between the numerical value d belonging to a certain decision 
and the true value 3 the greater the loss which can be caused if it is a wrong decision. 
The sizing of levees or other flood control activities can be mentioned as examples 
where the starting point is the distribution of flood peaks. Since when X is known the 
numerical value of a decision, 3=<7, will depend solely on whether what a 8(X) 
decision function is chosen, the loss caused by the decision is a function of the deci­
sion function, 8(X). Let the loss be denoted by L[3, 5(^)1 if 3 stands for the true 
value of the parameter and if the decision function used is 5(A) and let X=x.

Such losses could be. e.g.:

or
= I3-WI-

As X is a random variable, the same decision function, due to chance, may provide 
different numerical values for </so that with a given decision function different losses 
may be obtained. Therefore, when making judgement on the efficiency of a given 
decision function, for the approximation of the true value of 3 the average loss in­
volved by a given decision function should be taken into account.

I he average loss caused by a given decision function, <>(A), is

/?4x>(9) = d WJ " J L[9,dF(x’ S)'

This R is function of 3 and is called the risk function of the decision function. Con- 
cludingly, a risk function is the conditional expected value of the decision function 
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under the condition that 5 is the true value of the parameter. (Here F(x; 9) is the 
distribution function of a random variable X with a hypothesized value of 9.)

Supposedly, the foregoing has made it clear that the problem of parameter esti­
mation is a case of statistical decisions. As it was mentioned in Section 4.1 the theory 
of estimation and hypothesis testing had been integrated by Abraham Wald into the 

theory of decision functions.
Examine now the case of hypothesis testing as a problem of decision making!
Consider the following example. It was mentioned in Section 6.3.4 that the maxi­

mum stages of River Danube followed the normal distribution, A(9; tr0). Suppose 
that cr0 is known and a decision on parameter 9 will be made through choices from 
the hypotheses H0:9s90 and : 9>90. Now a statistician faces two possible 
decisions: either Ho or is accepted. Acceptance of Ho is the decision d± while that 
of Hx is d2. So the decision space consists of two points: 2= {di, d2}.

When the basis of decision is a sample, X=(Xn X2, ..., X„), the sample space 
X is an n-dimensional Euclidean space, Rn. I he set 0 defined by the possible values 
of parameter 9 (the so-called parameter space) is 0={-°°, +4 I he set of the 
possible 8 {X) decision functions consists of all functions which transform the sample 
space, X, into set @={di,d2} and which have the properties that the relation 
P&[d(x)=di] will be unambiguously defined for all 9£0.

Let the loss function be

L&’ if 9 g 9q
(6’57) P if 9>90

L(9,d2) .f

where 4 and Zs are positive numbers*. (In general the loss function is selected so as to 
obtain zero loss for the correct decision.)

In this case the risk function can be calculated easily:

(6.58)
„rn , , if 3>9o
R^dWi-\l2P3[8(X) = d2] if 9 S 90.

Two types of error can be made in the course of decision making. If 9>-0o th 
probability of making an error by choosing a decision dt is P [5(X)—dj, sine 
a decision d2 ought to be chosen, provided that 9 is the true value of the parameter 
Similarly, if 9s 90 the probability of making an error by choosing a decision dt >

Pa[5 (X) = da] = 1 -/^(X) = dj,

♦ It is easy to see that loss (6.57) fails to measure the consequence caused by the magnitude of 
difference between 6iX) and 9 so that for representing the loss this choice will not be appropr 
in all cases. 
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since a decision ought to be chosen, provided that 9 is the true value of the param­
eter.

The above example was to demonstrate that the problem of hypothesis testing may 
also be discussed in the frame of statistical decision theory. To readers interested in 
the details of this subject-matter books [A. 7] and [A. 25] are recommended.

6.7.2. PRINCIPLES OF CHOOSING A SUITABLE DECISION FUNCTION. 
BAYES’S PRINCIPLE FOR DECISION MAKING

It was outlined in the foregoing that when a decision was to be made on the 9 param­
eter of a random variable X whose distribution function was F(x; 9) and a decision 
function 3(X) was used then the risk function,

P3(x)(9) = F9[M9, d(x)] = f L[9,5(x)]dF(x; 9),

was function of parameter 9; this means that, depending on the true value thereof, the 
risk of a given decision function 3(X) may vary widely.

Now if the risk of two different decision functions, say <50(x) and ^(x), is quantified 
and with a given 9*
(6.59) F^0(X)(9*) < )

is found then it is said that with 9* the estimate S0(x) is better than S^x). The decision 
function <50(x) is called uniformly better than ^(x) if the relation

(6.60) I^)(^) —

holds for all 9 and the relation (6.59) is satisfied for at least one 9*.
If (^(9)=^ (v)(9) holds for all 9 then the decision functions 50(x) and S^x) 

are called equivalent.
When in a given decision problem such a decision function, 50(x), exists with 

which the relation (6.60) are satisfied for any other decision functions, S^x), then 
^o(x) is said to be the uniformly best decision function.

If in a given decision problem it is found that &A) >s a uniformly better decision 
Unction than ^(x) and the application of the latter cannot be taken into account 
then 5/x) is called inadmissible decision function. However, when no uniformly best 
decision function can be found in a given decision problem then the best thing what 
can be done is to use an admissible decision function. If both ^(x) and ^a(x) arc 
admissible decision functions this means that for certain 9 values ^(x) is better than 
*s(x). Which one of these decision functions should be chosen in such a case?

If 9 were known the choice between ^(x) and 5a(x) would be easy but in this case 
no decision would be needed. In the knowledge of at least the probability by which 9 
falls into a given interval the decision would be easier.

Suppose that parameter 9 is a random variable and that the a priori distribution of 9 
» known, e.g„ from previous experience. Denote by t(9) the distribution function of
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9 in the parameter space 0. Now, having a given a priori distribution, r(9), such 
a decision function is looked for with which the so-called Bayes risk

(6.61) r(r,3) =
o

will be minimum, where the risk function in the integrand is

RiMW = f m^x)]dF(x\9).

The decision <5(x) with which risk (6.61) is minimum is called a Bayes decision 
belonging to the a priori distribution, r(9). A Bayes decision is therefore a decision 
of minimum Bayes’ risk.

To calculate Bayes’ risk as given in (6.61) consider the following continuous ana- 
logons of the theorem of total probability:

F(x) = fF(x\9)dT^) 
e

and
t(9) = J x(9\x)dF(x).

x
By virtue of these, the expression

r(r, 5) = f[f L[9, ^(x)] dF (x|S) dr(9) = f[f L[9, 3(x)] dt(9\x) dF(x) 
ox ox

yields the Bayes’ risk to be minimized (supposing that the sequence of integration 
within the double integral above may be interchanged).

Instead of the denotation used in the above Stieltjes integral a denotation using 
density functions, the Riemann integral, is more common:

Let

-^- = g(9), =g(3|x);

dF(x) 
dx = f(x)

then
(6.62) r(x, 9) = f[f L[S, d3] f(x) dx.

x e
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So to minimize the quantity r(r, 5) expressed by the double integral the internal one, 

f L[9,5(x)]g(9\x)dS = ES[T(9, d)\X = x], 
e

has to be minimized.
The conditional density function g(9|x) is called the a posteriori density function 

of the random variable 9. So a Bayes decision is such a <5(x) decision function which 
will minimize the a posteriori (conditional) loss.

Consider now the case where

L[9, <5(x)] = (9-d)2, where cl = 5(x) if X = x.

Here Bayes decision will be a decision with which

E9 = [L(9, 5(x)|X = x)] = f (9-d)2g(9|x)d9 = min. 
e

Then
^[^(^1^ = *3 = _2 J[9—d]g(9|x)d9 = 0.

Hence
pg(W3

® ------------_ = pg(9|x)d9.
/ g(9|x)d9 d

Consequently, when calculated with the given a posteriori density function, the condi­
tional expected value of parameter 9 is 3(x)—d=E(9\X~ x).

If in a parameter estimation the loss function is

L[9^(x)] = |9-5(x)|
then the Bayes decision will be the median of the a posteriori distribution of parameter 

Namely, in this case the expression

(6.63) Es[£(9, W = x] = /|9-d|g(9|x)d9

as to be minimized, where d=3(x). Suppose that (9 ( °°, to) then

(6.64) 7 |9-d|g(9|x)dx = J (d-9)g(9|x)</9 + 
— OO

d

+ f (9-d)g(»\x) d9 = d f g(9|x) d» -
J

- / 9g(9|x)d9-d / g(9|x)d9 = min.
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For the a posteriori expected value of 9 introduce now the denotation f 9g(9|x)r/9= 
— oo

oo

= m and take into account that f g(9|x)^9=l, so Eq. (6.64) may be written as

co d
(6.65) J |9—d|g(9|x)d9 = d J g(9|x)d9-

d d
— J" 9g(9|x)d9 + m — j 9g(9|x)d9 —

d
— d[l— f g(9|x)d9] = min.

The minimum of Eq. (6.65) with respect to d may be at the same location where the 
derivate with respect to d is zero. Produce, therefore, the derivate of Eq. (6.65) with 
respect to d:

d
f g(S\x)d$+dg(d\x')-dg(d\x')-

co
-dg(d|x)-l+ / g(9|x)d9+dg(d|x) = 0. 

— oo
Hence

/ g(9|x)d9 = l 
— oo

Consequently, d is the median of the a posteriori distribution of parameter 9.
Note that in the possession of the a posteriori distribution of 9 the Bayes risk can 

be calculated and the Bayes decision can be found even when 9 is not a parameter of 
a random variable X. If both X and 9 are random variables with interdependence, 
stochastic relation between them, and both the conditional distributions related to 
one another and the distribution of one of them is known then the procedure described 
above is applicable. Following an example is presented on the application of Bayes’s 
decision principle in the hydrology of floods.

Example on the application of Bayes’s decision principle
Suppose that dealing with a flood wave observed at a gauge of a certain river the 
decision (action) to be made expediently is di if the travel time is shorter than two 
weeks and d2 if it is longer (where dx and dt may be decisions on certain protection 
works, e.g., levee reinforcement, transportation of materials needed for protection, 
deployment of flood fighting forces, etc.). During a flood event the actions men­
tioned should, of course, be taken as soon as possible. In Chapter 8 it will be seen that 
there is a rather close interrelation between the peak value of a flood wave and the 
travel time: knowing the peak level conclusion can be drawn on the travel time o 
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a flood wave. As, roughly, the peak is attained at the half of the travel time it is expe­
dient that the information contained in the peak value be utilized to decide whether 

or d2 should be chosen as a decision. It is said that if the travel time is shorter than 
two weeks the nature is in state while if it is longer the state of nature is 92. ln this 
simplified model the set of the possible states of nature is 0= {9j, S2} and the set of 
possible decisions is £0= {di,d2}.

Let the loss matrix be the following: 

2 2 0

that is L(91,J1)=0, L^d^l, L^d^l, L(S2,d2)=0. (In reality numbers 
1 and 2 represent certain amounts, say some million forints.) With consideration to 
the peak values let J=1 if the peak value is lower than c metres and let X=2 
otherwise.

In the given example four decision rules can be set up, let they be the following:

81(X=l) = dlf 81(X — 2) = d1

32(X=\) = d1, 82(X = 2) = d2

3a(X=V = d2, 5i(.X = 2) = d1

^(Y=l) = tZ2, 3i(X=2) = d2.

These decision rules can be interpreted in the following way: since, in general, to 
a higher peak a longer travel time will belong, it may be said that nature, through the 
random variable X, informs us on its actual state: 9, that is with X= 1 an outcome 
9=9, may be expected when the correct decision is d,. However, a swindle of nature 
may also occur when with X= 1 the outcome is 9=92 and the decision to be made 
would be d2 Furthermore, it is also possible that with X=2 when the action 

ought to be taken, etc. Now if the decision function is applied, independently 
of peak value X the action (decision) chosen will always be d. while with the decision 
function 8AX) always the decision d2 will be made, i.e., the information given by 
nature through the random variable X on its future state 3 will be disregarded. The 
decision function 8AX) reflects our belief that what is said by nature is true while 
^(^J represents that nature is always misleading. In fact the situation is that, .four 
action taken relative to 9 is rendered dependent on the random variable X, in certain 
oases nature will tell the truth and in other cases it will be misleading.

For instance, as to the Tisza river, on the basis of flood waves observed so far 
(first quarters from 1900 to 1970, Table T.l) the distribution of the random variable
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X— given its true value as a condition — was found to be

P(Y = 1|9 = 90 = 3/4,

P(X = 2|9 = 90 = 1/4,

(6.66) P(Y= 1|9 = 92)= 1/3,

P(X = 2|9 = 90 = 2/3.

Calculate now the risk of the decision rules 5j(X), 52(A0, <53(A0, ^1(^01 The risk is the 
conditional expected value of losses where the condition is the true state of nature, 
9=92.

/?(9j,50 = ^i^i(^ = 1)W= 1|9 = 90+

+£[9^ d^X = 2)]P(X = 2|9 = 90 =

= 0-3/4+0-1/4 = 0.

71(9!, <50 = £Pa,W= 1)W = 1|9 = 92) +

+£[9^* = 2)]P(X = 2|9 = 92) =

= 2 -1/3 + 2-2/3 = 2.

7?(91,^) = T[91,d2(X= 1)]P(X = 1[9 = 90+

+1^, d2(X = 2)]P(X = 2|9 = 90 =

= 0-3/4+1-1/4= 1/4.

R^, <50 = m, = D]^ = 1|9 = 90 +

+£[92, W = 2)] P{X = 2|9 = 90 =

= 2- 1/3 + 0-2/3 = 2/3.

/J(91,5a) = L[91^3a= W = 1|9 = 90 +

+ £[9n a3(Y = 2)] P(X =219 = 90 =

= 1-3/4+0-1/4 = 3/4.

*8) = £(#., W = W =1|9 = 90 +

+ L[9a, da(X = 2)] P(X =2|9 = 90 =

= 0-1/3+2-2/3 = 4/3.

/?(91,<5O = T[91.(5.,(y= 1)]P(X= 1|9 = 90 +

+£[9l,<54(X = 2)]P(Z = 2|9 = 90 =

= 1-3/4 + 1-1/4= 1.

*(9«, <50 = L[9t, = 1)]P(Y = 119 = 90 +

+ L[9„ <54(y = 2)] P(X = 2|9 = 90 =

= 0- 1/3 + 0- 2/3 = 0.
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On the basis of results obtained a choice from the decision rules <515 <52, 53 and <54 
would be a hard one as they have rather different risks depending on whether the true 
state of nature is 9-^ or 3=32. So no decision can be made on whether in the 
choice of actions the observed value of the random variable X (peak value) should 
be disregarded or not and, if considered, be it trusted or not. In any case, inspecting 
the distribution what is seen is that the random variable X has given a good informa­
tion on 8 in three fourth of the cases when 8= 8j and in two third of the cases when 
8=82. If the probability by which 8 takes the value of 3j or 32 were known the choice 
from the decision rules <52, <53 and <54 would be easier. Remaining at the above 
example, as far as the flood waves of the Tisza river observed at Tokaj are con­
cerned, the distribution of 8 determined through the relative frequencies has been 
obtained as

(6.67) P(8 = 8J = 4/5; P(3 = 80 = 1/5.

On this basis the average risks belonging to each of the decision functions <5;(A'), 
(i= 1, 2, 3, 4), can be quantified as follows:

r(8, <50 = R(^, ^0^(5 = «0+^^2. W(8 = 82) =

4.1 6
_°-j+2- 5 - 15

r(3, <50 = ^0^(8 = 80 + ^(82, ^0^(8 = 82) =

1 £ ££ = £_
“ 4 ‘ 5 + 3 ’ 5 15

r(3, <53) = R($i, = 80 + ^(82. ^0^(8 = 82) =

3 4 £ 1 - 13
~ 4" 5 3 ' 5 15

r(3, <50 = R($i, St)P(9 = 80 + -R(8a, ^0^(8 = 82) =

4.1 12
= 1-T+°-J= 15

The average risk, r(8. <5,)= £.[«(8, 5()], is called the Bayes’ risk of decision <5(. 
As it can be seen in the example the decision rule involving the least Bayes' risk is

In Bayes’s decision theory distribution (6.67) is called the a priori distribution of 8.
It may occur of course, that the a priori distribution of 3 is not available. In this case 
Bayes’s principle for decision making cannot be applied. Instead, to select an appro­
priate decision function, the procedure may be as follows:

Find the maximum risk of the decision function <5((A"), (i-1,3, 2, 4), that is find 
the risk

max /.J3p 0 " 1- -)•
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In the example
maxL[9j, 5j(y)] = L[92, ^i(^)] = 2

maxL[9j-, 5a(y)] = L[92, 52(A")J = 2/3

maxL[9y, 53(^)1 — i[9a, = 4/3

max L[9;, = L[915 ^s^)] = 1.

Now the chosen decision function, S^X), will be the one with which the maximum risk 

is minimum:
min max L[97, = L[9a, ^(X)] = 2/3.

This principle is called minimax principle. It is seen that it is the decision function 
<52(x) that gives an optimum (has the lowest risk) also in the sense of the minimax 
principle, similarly as in the case of Bayes’s principle.
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PART III
STOCHASTIC RELATIONS
BETWEEN RANDOM VARIABLES





CHAPTER 7

7.1. CORRELATION ANALYSIS

7.1.1. MEASURING STOCHASTIC RELATIONS

Both in research and practice of hydrology the examination of relations between two 
or more random variables is a fundamental task. This problem is also of great impor­
tance in the hydrology of floods. A stage or flow observed at a gauge of a certain river 
depends greatly on the depth of precipitation fallen on the catchment, on the stages 
and flows of tributaries, on temperature, on runoff conditions, etc.

The methods serving the examination of relations between random variables is 
summarized commonly under the title of correlation and regression theory. I his 
sphere of problems includes tasks of rather different nature whose common feature 
is that the qualitative and quantitative properties of relations between quantities are 
examined. The so-called correlation theory deals primaiily with the closeness of 
relations and intends above all to decide whether a relation exists between the random 
variables or they are independent of (or at least uncorrelated to) one another. If 
some relation does exist the next question is whether this relation is loose or close, or 
Possibly, it is functional. The latter is regarded to be the closest relation.

The main objective of regression theory is to construct such a functional relation 
between two random variables.

7,1.2. THE CORRELATION COEFFICIENT

1 he joint behavior and interrelation of two random variables is described completely 
by a bivariate joint distribution function or density function. However, on the one 
hand, in practice this function may be considered known in very rare cases only and, 
°n the other hand, even if it is known, it is desirable to have a small number of 
characteristics which informs us sufficiently on the relation between the random 
Variables concerned.

The notion of correlation coefficient associated with two random variables, X and 

described in Section 2.1.7 as

(7.1) = = E(x
D(X\D(Y) D{X)D(Y)
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where
X—E(X) 

D(X)
, Y—E(Y) 

and Y D(Y)

are the respective standardized variables.
If g=0 the variables X and Y are called uncorrelated. q will be equal to zero when 

X and Y are independent. So when certain random variables are independent they 
are at the same time uncorrelated but in the reverse case, when X and Y are uncorre­
lated, their independence, in general, does not hold.

As it was pointed in Section 2.1.7 if the joint distribution of X and Y is a two- 
dimensional normal distribution their uncorrelatedness implies their independence. 
I he situation is the same when X and Y are indicator variables belonging to two 
events.

The value of the correlation coefficient q may vary between -1 and + 1. If M = 1 
then a linear relation of the form Y=aX+b prevails between X and Y that is Y is 
determined definitely by X. 1 he closer |g| to 1 the more linear the character of relation 
between the two variables.

In cases where the distribution is two-dimensional normal, the value of |g| is a good 
measure of the closeness of their relation. The greater the departure of |g| from zero 
the closer the relation between the two random variables concerned. When the joint 
distribution of (X, X) is not a two-dimensional normal then the conclusion on the 
closeness of relation between them is not always so clear. Therefore a correlation 
coefficient reflects the linearity of a relation rather than the closeness thereof.

Correlation coefficient q is estimated from sample (Xx, XJ; (X2, Xa);..., (Xn, Yn) 
by using the following called empirical correlation coefficient

Zf^-X^-Y)
, 1 "’ll

<7-6> r= 1/ * ” - ’
y (^-Yy

where
X = ^-- Y - 2Y‘- 

n ’ n ’

Sl = --------- - , ^2-

^(X^XHY.-Y) 
=---------- n---------- •

In case of large samples the following asymptotic formulae are valid:

fl + n2)a
(7.7) £(r) « e; «---- -—-•
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So the empirical correlation coefficient, r, is an estimation of the theoretical correlation 
coefficient, q, which is asymptotically unbiased and asymptotically strongly consis­
tent.

In case of two-dimensional normal distribution the density function of r is

(7.8) /,(*; <?) = -^(i-eaMi-**)“•
Tt

r x”~2 dx
J (1-QXZ)"-1 /1-x2

where q is the theoretical correlation coefficient. If q—0 the density function (7.8) 
will be simplified into the following form:

rf”-111 J —
(7.9) fnM = 2 .

yrr P I n — I
I 2 J

This means that even in the case of independence (e=0) it cannot be expected that 
the r value calculated from the sample will be zero. For cases where q=0 it can be 
proved, that for the two-dimensional normal distribution, statistic

(7.10) t=]^—L=
I 1 —r*

is distributed according to the Student law with parameter (n—2). Consequently, 
when a joint normal distribution is the case statistic (7.10) is suitable to test the hypo­
thesis of independence.

If the null hypothesis

Hn: P(X < x, Y < y) = P^X < x)P(Y < y)

is considered then the t value calculated according to (7.10) has to be compared with 
the interval (-t„ tj selected from the table of Student distribution for which

P(-t, 1-8.

If the actual value of t falls outside interval (-1„ tt) the hypothesis of independence 
will be rejected at level (1 — e).

When the joint distribution of X and Y is not a two-dimensional normal then for 
statistical purposes a transformation introduced by R. A. Fischer:

„ 1, l+r(7.11) z“Tln~

is advisable. In the case of large n, under rather general conditions, the distribution
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of the random variable Z is approximately normal with expected value and variance

(7-12) 

and

£(Z)« jin 1 + P . Q 
1-q + 2(n —1)

DW«
1

n — 3

respectively. The same transformation as (7.11) may be used when two empirical 
correlation coefficients are to be compared, as below.

Consider samples of elements «i and n2, respectively, taken for the pairs of random 
variables {X, Y) and (U, V):

I. (X1,Y1),(^,Y^),...,(Xni,Yni)

II. (t71,K1)(t7a,ra),...)(C7nj,rni).

Denote the correlation coefficient of the pair of variables (X, T) by Q!=Qi(X, Y) 
and that of ((7, K) by q2=q2(U, Y). Now the hypothesis to be tested is

Calculate from sample I the estimate r1^Q1 and from sample II the estimate 
r2 ~ p2 ■ Random variables

1 , l+ri j _ 1 , J+HsZi —-yin - and Z2 ?n 1—r z 1 — *1 a r2

can be regarded as they come — by a good approximation — from normal distribution 
with variances

D‘(Z,) = -^ and 
Hi — □ /*2

respectively. If hypothesis Ho is true the expected values, and E(Z2\ are equal 
and, consequently, random variable

W =
^1 ~Z2

»i—3 + nt— 3

has distribution N(0, 1). So if the value of IK falls into interval (-2, +2) hypothesis 
Ho may be accepted at a level 95 per cent.

The procedure given above may be used, e.g., to decide whether the coefficient of 
correlation between flood peaks and flood durations is the same or not at two different 
gauges.

T he comparison of more than two empirical correlation coefficients is also possible 
in the following way: denote the empirical correlation coefficients calculated from 
samples consisting of n2,.... n* elements by r2,.... r* and the corrcspond- 
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ing theoretical values by Qi, q2, Qk- To check null hypothesis Ho: Qi = q2= ■■■ — 
= Qk calculate the statistic

X3 =
i=l

which follows x2 distribution with parameter (k— 1). Here

Zf = |ln i+n 
l-ri

2(^-3)^ 
and Z = -T-i-------------- 

2(«i-3) 
i=l

If y2</2(e) that is when the calculated y2 is less than the critical value contained 
in 1 able T.5 for (1 — e) then Ho is accepted at this level. (Note that the value of k, as 
compared to the number of sample elements, should be small since in the formula 

(7.12) of the expected value the term of correction, ————, has been neglected.)

7.1.3. THE MEDIAL CORRELATION

Pairs of random variables occurring in the practice of hydrology show in many cases 
monotonic tendencies. Rising stages involve the increase of flow values, a heavy 
rainfall in the catchment results in rising stages in the channel, etc. Departures from 
these tendencies are induced mostly by the behavior of additional variables.

Random variables X and Y are said to be positive quadrant dependent if the in­
equality

(7.2) H(x, y) = P(X^x,Y^y)^ P(X -= x)P(Y < y) =

= fw^
is satisfied for any quadrants {X-<x, Y^y}. The concept of positive or negative 
quadrant dependence (sec Eq. 7.2) as introduced by Lehmann [B. 20] reflects the 
positive or negative association between the variables. Numerous so-called nonparam­
etric measures have been introduced to quantify the monotonic association. In this 
section the so-called medial correlation is presented; it was introduced by Mostcller 
[B. 24] while its statistical analysis was performed by Blomquist [B. 6],

Let the joint distribution function of random variables X and Y be denoted by 
H(x, y). Let F{x) be the distribution function of X and G(y) the same for Y. Further­
more, denote by jf1/a the median of distribution of variable X and by y1/g the same 
for Y that is let

Using the medians divide the sample space into four quadrants in the following way
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Figure 66

A B

xi
2

X

(see Figure 66.) (For sake of simplicity the X and Y values are considered positive.) 
Now calculate the probability

(7.13) ei/8 = P(A + C)-P(B+D) = PG4 + C)-[1-7WQ] = 2P(/ + C)-1, 

the estimator of which is the Mosteller—Blomquist statistic. Due to the property of 
the median points

P(A)+P(B) = 1/2

P(C)+P(B) = 1/2

that is P{A)=P(C) and because P(A+C)=P(A)+P{C\ one can obtain that

(7.14) Qm = P(A + C)—P(B+D) = 4P(A)-\.

As P(A)—H(x1/2,jKi/a) so
(7.15) ei/2 = 4/f(^i/1,yi/a)-l.

Measure q1/2 is called medial correlation, it is applicable very well to get a quick 
and simple information on the relation between two random variables. When the 
joint distribution function, H(x,y\ is not known then Qh2 is to be estimated from 
the sample. Let x1/2 and be the sample medians which determine the event 
A= {X^x1/2, Y<y1/2}. Using the k/n relative frequency of event A, value of Qi/2 is 
estimated by

(7.16) =

This estimation requires rather little calculation as what is to be made is just to count 
the points in set A and to calculate relative frequency k/n.

Since relative frequency k/n is an asymptotically unbiased estimate of probability 
P(A)=H(xl/2, yi/a) therefore
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so that

Furthermore,

Figure 67

X

417(x^, ^1/2)—1 — @1/2 •

«/ F n

If Xand Fare independent then W(x1/2,/1/2)=F(x1/2)G(F1/i!)=l/4 whence E{q^= 
= 0. Since in this case

i/TI
- / 4 4 =I nJ~ n 4^

if follows that D2 (^1/2) - 42 • that is

In case of independent random variables value of ^x/g satisfies the approximate rela
tion

Measure $1/2 has several advantageous properties. When X and Y are independent 
then &/2=0. Furthermore, when there is a monotonic functional relation between 
X and F, that is if Y=(p(X), then el/2= 1 if <p(.) is monotonic increasing and 
el/3=-l if <p(.) is monotonic decreasing. (The reverse of these statements is, 

in general, not true.) Relation

(7.17)
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is always satisfied since, as it can be seen in the following, is a special correlation 
coefficient:

Let and indicator variables of the events {X<xJ and {Y^y}, respectively, 
that is

= _ P if
~ lO if X S x

fl if Y^y
^“lO if Y^y.

Calculate the coefficient of correlation between random variables and i]y. Applying 
formula (7.1) it can be written that

(7.18)
E^^-E^E^)

----------WW

H(x, y)—F(x)G(y)
Y F(x)[l—F(x)]G(y)[l—G(y)]

If x—x^^ and y—y^i then
/e. . #(*1/2,~F^nJG(y1/2)

(7.9) Q^x1/2,riyll2) y f(xi/2)[1 _ fCx,^

■#(*1/2 ^i^) "■■4'
= --------------- p--------------= 4H(xj/2,yi/2) —1 = 01/2 •

T

Quantity q(^x, rj) in formula (7.18) is called indicator correlation (see [B. 30]). 
So the medial correlation, is a special case of indicator correlation.

From Eq. (7.18) it can be deducted that if X and Y are independent that is when 
H(x,y)=F(x)G(y) then §^x, ri^—0, consequently, following from (7.19), (?1/>=0. 
It can also be seen that, in case of a positive quadrant dependence: H(x,y)& 
^F(x)G(y), g^o.

To realize that a monotonic (increasing or decreasing) functional relation, Y= 
= (p(X\ between random variables X and Y involves that |c|=l now such an 
important notion is introduced which will be relied on several times later on.

Definition. In case of H(x, y)> F(x)G(y) the set of coupled points (va,ya) 
while in case of H\x,y)^ F(x)G(y) the set of coupled points (.£«, A-J is called 
quantile curve.

In the definition X„ and yx are the a-quantiles which satisfy equation F(X,)= ■ 
= G(yx)=:a while G(y1_x)= 1-a, a€[0, I].

In the following it is supposed that both F(x) and G(y), the marginal distribution 
functions, are strictly monotonic increasing functions.
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If between the random variables X and Y there is a monotonic increasing or de­
creasing functional relationship, Y=<p(X), then holds the following

Lemma 1. Let there between the random variables X and Y be a monotonically 
increasing (or decreasing) functional relation, y=<p(Jf), then y^—fp^x^ (or 
j'1_a=<p(x1_a)) where xx and (or x1_x and j^) are the a- and (1 -a)- quantiles of 
the distributions of variables X and Y, respectively.

Due to Definition 1 this lemma asserts that in these cases the regression curve of 
the random variables X and Y, the function y—cp{x), and the quantile curves are 
identical.

The lemma can be proved simply. Let Y = cp (X) be monotonically increasing, then 

x = P(Y^yx) = P((p(X)^y^ =

= P(X < ^{y^.

Since from the definition of a-quantile P(X<x^=a. it follows that <p-1(ya)=xa 
that is

(7.20) A = (P(^) for all a€[0, 1].

The decreasing case is similar. 
If a= 1/2 then in both cases

(7.22) A/2 = (ptxi/z)

which means that the quantile curve passes through the point defined by the medians.

On this basis as indicated by the figure, for a monotonic increasing functional rela 
tion
(7.23) 5V1 = 4P(4)-1 =4-1-1 » 1 (as P(A) = P(Q) 
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while for a monotonic decreasing functional relation

(7.24) £1/a = 4PU)-l =4-0-1 =-l.

If the joint distribution of the random variables X and Y is a two-dimensional nor­
mal then the following relation holds between the medial correlation, and the 
correlation coefficient, q :

(7.25) g = sinjg1/2.

which can be obtained by direct calculation.
Note that the value of indicator correlation q in Eq. (7.18) can be calculated easily 

not only for the median point (x1/2, yV2) but also for any point (xa, yj of the quantile 
curve. Denoting by xx and yx the a-quantiles of the marginal distributions then ac­
cording to Eq. (7.18) relation 

will be obtained where a€[0, 1]. Formula (7.26) incorporates formula (7.19) as a 
special case.

7.1.4. KENDALL’S AND SPEARMAN’S q.

Among the measures representing the closeness of connection between random vari 
ables are commonly used the formulae

(7.27)
co co

t = 4 J f H(x,y)h(x,y)dxdy—I 
— oo — oo

introduced by Kendall [A. 13] and

(7.28)
eo eo

^ = 12 / f H(x,y)f(x)g(y)-3 
— oo —oo

proposed by Spearman [B. 35], where H(x,y) and h(y, x) are the joint distribution 
and the joint density function of random variables X and Y, respectively, and f(x) 
and g(y) are the marginal density functions. The derivation of both measures can be 
traced back to the following idea. Dividing the sample space A2 at each (x, y) point 
into four quadrants, A, B, C and D, see Figure 69, calculate the probability

(7.29) g(x, y) = P(A + C)-P(B+D) = P(A + C)~ 

-[1-P(4 + C)] = 2P(4 + C) - I

which is, obviously, a function of variables x and y. The quantity H(x,y) gives essen­
tially the measure by which, at point (x, y), the tendency of monotonic increase 
between the random variables X and Y is stronger than the tendency of monotonic
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D C

Figure 69

B

X

decrease. Averaging the quantity §(x,y) and using the joint density function h(x, y) 
we obtain the expression

(7.30)
oo co

/ / Kx,y)h(x, y)dxdy. 
— co — oo

Now we turn to prove that this is equal to r. Since for point (x, y) relations

P(A) = H(x, y) and P(C) = 1 -F(x)-G(y) + H(x, y) 

hold and with these

P(A + C) = P(A)+P(C) = 2H(x, y) - F(x) -G(y)+l 
and

q(x, y) = 2P(A + C)-1 = 477(x, y) -2F(x)-2G(y)+1

it follows that

r = 4 J f H(x,y)h(x, y)dxdy — 

-if f F(x)h(x, y)dxdy- 

-2 f f G(y)h(x,y)dxdy—1.

Considering that
oo f oo --

f f F(x)h(x,y)dxdy = f P(x)[ f /i(x,y)dypx = 

00—00 — oo

= f F(x)f(x)dx = -
— oo

and that, similarly,

f f G(x)h(x,y)dxdy = y

2
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what is obtained is

(7.31) t = 4 J f H(x, y)h (x, y)dx dy— 1,

which is Kendall’s measure.
However, if quantity §(x,y) in Eq. (7.29) is averaged by using the product of the 

densities an expression of the form 

co oo
(7.32) — Ss=f f Q(x,y)f(x)g(y)dxdy =

— oo — oo

= 4 f f H(x,y)f(x)g(y)dxdy —

-2 J f F(x)f(x)g(y)dxdy =

= 2 f / G(y)fMg(.y)dxdy-l = 

co oo

= 4 f / H(x, y)f(x)g(y)dx dy—1 
— oo — co

is obtained which equals to one third of Spearman’s measure.
It can be seen that the values of both measures, r contained in Eq. (7.27) and qs 

included in Eq. (7.28) are zero if X and Y are independent. On the other hand, the 
values of both measures are + 1 if a monotonic increasing functional relation holds 
between X and Y and — 1 if Y is a monotonic decreasing function of variable X. In 
addition, the value of both r and qs is invariant under monotonic (increasing or 
decreasing) transformation of both variables.

For the determination of the closeness of a stochastic relation the use of formulae 
(7.27) and (7.28) can take place only when the joint distribution function H(x,y) of 
the variables is known. Since in practice this is usually not the case the value of both 
t and qs is estimated from a sample. Whereas the estimation of the medial correlation 
q1/2 can be obtained by an extremely simple calculation the estimation of t and tt, 
is rather tedious. Below the estimation of r is presented while for the estimation of Cj 
we refer to the literature (sec [B. 16]).

Let a sample of size n be

(i) (^,7,). ...... (x^y^.

An estimation of t can be obtained for each point (Z(, YJ in the following manner. 
The points (Xh E()and(A'J, E;) will be called concordant if (Xt-Xj)(Yt— Yj)^- 

In the opposite case they arc discordant. Now the estimator of t can be obtained from
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the following expression:

(7.33)
number of concordant points

The number of the concordant points can be counted in the following way (see 

Figure 71.).

S3=4

S4=3

Sp2

S2-1

X3 X3 X4

R, = 1 R2=2R3=3 R4 = 4

Figure 71

Accept the X co-ordinates of points in sample (1) in their natural order and attach 
to them ranks corresponding to their indices. So the rank of the lowest X, will be 1 
that of the next lowest one will be 2 and so on. By projecting the Y co-ordinates of 
(Xh Y.) points to the T-axis an ordered sample will be obtained where for Y, its 
rank. v that is a number corresponding to its location in the order of magnitudes is 
substituted. as it is seen in Fig. 71. Point (Xt, YD is substituted by a rank pa.r (R„ St) 
in a manner that the point pairs conserve their concordance or discordance.
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Write under one another the ranks belonging to pairs (^, F,) in a table as shown 

below:
Rank of Xt_______________
Rank of the corresponding Yt

2 3 4 n1
S,S2 S»

Ranks St constitute a permutation of numbers 1, 2 ..., n. Determine now the number 
of points concordant with point (1, SJ. This number varies between 0 (if S1=n) and 
n- 1 (if Sj= 1). (The number of St ranks higher than should be counted.) Then 
the number of points concordant with point (2, S2) is determined (excluding point 
(1, SJ), etc. Finally, the number of concordant point pairs obtained in this way is 

divided by ( " 1 = , the number of all pairs, and what is obtained is the same
(2/ 2

from which the estimation of t can be calculated.
We remark that the right hand side of (7.33) is the average of the estimations of 

probabilities P(^ + C) taken for each point (x,,^).
The attention of readers interested in further details is drawn to work [B. 16].

7.1.5. EXAMINATION OF THE POSITIVE QUADRANT DEPENDENCE

In the practice of hydrology, so in the hydrology of floods as well, the case of positive 
quadrant dependence occurs frequently. 1 his indicates a monotonic increasing ten­
dency between the random variables X and Y. Such cases are, e.g., the development 
of a stage Y if X denotes the rainfall depth on the catchment or if Y is the flood dura­
tion and X is the flood peak, etc. In the following it will be supposed that both vari­
ables, X and Y, have continuous, strictly increasing distribution functions, F(x) and 
G(y), respectively. The positive quadrant dependence means, that

H(x,y)* F(x)G(y)*

For any joint distribution function H(x, y) the following inequality holds:

(7.35) max [0, F(x) + G(y)-1] £ H(x, y) S

£ min [F(x), G(y)],

which will be shown below. Quantities at the left and righ hand side of inequality 
(7.35), respectively, are called Frechit bounds.

To realize the validity of this inequality consider events J={y<x), B={Y^y} 

and AB={X^x, Y^y}. Obviously

P(AB) S P(A)
and

P(AB) £ P(B)
that is

P(AB) S min [PG4), P(B)]

» See:[B.14]
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whence
H(x, y) = min [F(x), GO)].

Furthermore,
P(A +B) = P(A) + P(B)-P(AB) S 1 

that is
P(AB) P(A) + P(B)—as P(AB)^0

and , ,
P(AB) S max [0, P(A)+P(B)~ 1]

so that
H(x, y) S max [0, F(x) + G(y)-1].

Concludingly, in case of positive quadrant dependence that is when relation 
^(x,y)sF(x)G(y) is satisfied inequality

(7.36) F(x)G(y) S H(x, y} £ min [F(x), G(y)]

will hold.
Equality H(x,y)=f(x)G(y) holds if and only if the random variables X and Y 

are independent.
Equally H(x, y)= min [F(x), G(y)] holds if and only if between random 

variables X and Y there is a monotonic increasing functional relation: Y=<p(X). 
In this case, as it is apparent form the figure below (Figure 72), the whole mass of 
probabilities is located on the quantile curve, y=<p(x)=G-1[F(x)]:

Figure 72

If H(x,y)=min [F(x), G(y)J then, with P^, 
H(^yt) = F(^ = a

that is

for all x?(0, 1] and p>«, which implies that the probability measure of area above 
(and similarly below) the quantile curve is zero.

= W = «•
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This implies that the value of the density function is zero except at the points of the 
quantile curve.

The marginal distributions of the two-dimensional distribution function

/f(x, y) = min [F(x), G(y)] are

H(x, + «) = min [F(x), G( + «>)] = F(x),

= min [F( + ~), G(y)] = G(y).

By virtue of relationship (7.36) min (F(x), G(y)] is the uniformly greatest bi­
variatedistribution surface whose marginal distributions are F(x) and G(y), respec­
tively. On the other hand, if H(x, y)=min [F(x), G(y)] then, in accordance with the 
foregoing, there is a monotonic increasing functional relation between the random 
variables X and Y, in the form Y= <p(X). This represents, obviously, the closest rela­
tion between them that is this is the case where the positive quadrant dependence is 
the strongest.

When X and Y are independent the marginal distributions of the bivariate distri­
bution function H(x, y)=F(x)G(y) are also F(x) and G(y).

The positive quadrant dependence is the lowest when X and Y are independent.
In respect of all such X and Y random variables whose joint distribution function, 

H(x, y) satisfies inequality (7.36) and whose marginal distributions are F(x) and G(y), 
respectively, it may be said that the closer (uniformly) the value of 77(x, y) to distri­
bution function min [F(x), G(y)] the stronger the positive quadrant dependence that 
is the closest the relation between the two variables. So inequality (7.36) defines a 
certain graduation for the strength of quadrant dependence.

In his paper Yanamigoto [B. 48] introduced the following definition for the grade 
of quadrant dependence:

Definition 2. If the marginal distributions of the two-dimensional distribution 
functions H\x,y} and 7/2(x,y) arc F(x) and G(y), respectively, and H^yY' 
S Ht(x, y)s F(x)G(yY it is said that the positive quadrant dependence of the ran­
dom variables is stronger when the joint distribution is Hx(x,y) than when it is 
H2(x, y).

In general the determination of the one-dimensional distributions of the random 
variables Y and Y is easier (e.g., through test of fit) but it is much more difficult for 
their joint distribution function, H(x, y). I wo such measures will be presented.

Starting from inequality (7.36), if a positive quadrant dependence is the case, the 
inequality

(7.37) 0 - H(x, y) - F(x)G(y) min [F(x), G(y)]- F(x)G(y)

is always satisfied. Consequently, for all (x, y) points this may be written in the form

(7.38) H(x, y)-F(x}G(y) = z(x, y){min [F(x), G(y)]-[F(x)C(y)])

286



where A is a continuous function with bounds Os A(x, y)s 1. Let the function

(7-39) A(x, y) =
H(x, y) — F(x)G(y) 

mm[F(x),G(y)] — F(x)G(y)

the function of connection between X and Y with distribution F(x) and G (y), respec­
tively. The function A(x, y) at a given point (x, y) is the ratio of the difference between 
the values H(x,y) and F(x)G(y) and of the maximum difference possible at this 
point. Note that at the median point (x1/2, yj/2) the value of function A(x, y) is just 
the same as that of the medial correlation g1/2 since

77(^1/25^1/2)

A (^1/2» Tl/2) ~ i j

2 4

— 4/f(x1/2,yi/2) —1 — 01/2

The following average value of A(x, y):

(7.40) A* =
“ H(x,y)-FMG(y)___

J J min [F(x), G(y)] - F(x)G(y) '

■f^g^dxdy =

= f j X(x,y)f(x)g(y)dxdy 
— 00 — 00

will be considered one of the measures representing the grade of the positive quadrant 
dependence. Considering formula (7.37) it can be seen that 0sA*s 1 and that A*=0 
if and only if X and Y are independent while A*=l if and only if H(x,y)= 
= min [F(x), G(y)] that is when there is a functional relation between the random 
variables X and Y, which is, of course, monotonically increasing.

Let now //i(x, y)^ TM-V’F)- ^(xjCly) and

«- f f

F F-
J J ■ min [F(x), G (y)] - 7 W® 0)

I fence

(7.41) AJ-A: = f f ____J J min [7 (x), 6 (y)] — 7’wG(y)
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that is, using A* as a measure, if H^HZ, Hi is more quadrant-dependent than Hz. 
Another measure can be given by the following ratio:

f f [H(x, y) - F(x)G(y)]dx dy

(7.42) A** = ------------------------------------------ •
J J {min [F(x), G (x)] — F(x)G (y)}dx dy 

— co — oo

It is easy to see that, in case of positive quadrant dependence, 0 SA**S 1, further­
more that A**=0, if and only if X and Y are independent while A**= 1 if and only 
if there is a monotonic increasing functional relation between X and Y. Furthermore, 
if Hi^HzSFtxjGty) then, using A** as a measure, Hx has a larger quadrant- 
dependence than Hz.

Remark 1: Measure A** is the quotient of two volumes, viz. the ratio of the volume 
between distribution surfaces H(x,y) and F(x)G(y) and the volume between sur­
faces min [F(x), G(y)] and F(x)G(y).

Remark 2: Measure A** can be called covariance quotient. It is known (see, e.g., 
Lehmann [B. 20]) that

oo oo

(7.43) f f [H(x,y)-F(x)G(y)]dxdy =
— oo — oo

= E(XY)—E(X)E(Y) = cov (X, Y).
On this basis 

oo oo

(7.44) f f {min[F(x)G(y)]-F(x)G(y)}dxdy =
— oo —oo

cov+ (X, F)

where cov+ (X, Y) is the covariance between random variables X and Y if their joint 
distribution function is min [F(x), G(y)]. So

cov (X, Y)
67 45) p, cov(X,D _ D(X)D(Y) _ Q
( ’ cov+(X,F) cov+(X,n Q +

D(X)D^

which means that A** is at the same time a correlation quotient.

Remark 3: In the knowledge of marginal distributions F(x) or G(y), respectively, 
measure A** can be estimated very simply from a statistical sample. First the correla­
tion coefficient is estimated by using the usual method (sec formula 7.6) and then, in 
the knowledge of the marginal distributions, it is already possible to calculate the 
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maximum correlation coefficient g+ since, after calculating function <p(x)=G-1[F(x)], 

cov+ (X, 7) = E[X, <p(Z)]-£(y)£(n =

= f x(p(x)f(x)dx- / xf(x)dx f yg(y)dy

and what is still to do is to divide by the product of standard deviations which can 
also be calculated as the marginal distributions are known.

Remark 4: If the quantile curve relating to random variables X and Y is a straight 
line that is when y=G-1[F(x)] = ax+h then p+ = l so that in this case 
In this way, on the basis of Remark 1, for distributions of this type a new geometric 
interpretation has been obtained to the correlation coefficient.

If the quantile curve y=G-1[F(x)] is not a linear function then g + <l, conse­
quently, in this case A**> Q- Now A** is a better measure for the closeness of relation 
between variables X and Y since through q rather the linearity of their relation is 
measured.

Special cases:

a) Let H(x, y) be a two-dimensional normal distribution with parameters E(X)= 
D(^x)=a1, E(Y)=mt and D(Y)=a2 and with correlation coefficient q.

With these the marginal distributions are

x a-mp1
1___ f e 2a' dt =

0'1 VIK -OO

1
F(x) =

The equation of the quantile curve is G(y)=F(x) that is y=G ’[F(x)]. In our 

example

I <T, J
whence

(7.46) = 

which is the equation of a straight line so that by virtue of Remark 4 ^=Q.

b) Let
(7.47) H(x, y) = min [F(x), G(y)] + O -X)F(x)G(y)

where OsAsl, A=const.
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Hence

(7-48)
H(x,y)-F(x)G(y)

Z min[F(x),G(y)]-F(x)G(y) 

=2(x, y) = const.
Consequently,

(7.49) 2* = y y 2(x, y)h(x, y)dxdy =

= 2 f j h(x, y)dx dy = k.

Furthermore,

J1 / [H(x, y)—F(x)G(y)]dx dy = 

f / {min [F(x), G(y)]~ F(x)G(y)} dx dy

that is co co
/ / Wx, y)-F(x)G(y)] dx dy

(7.50) 2 = 2** = --------------------------------------------
J1 y {min[F(x), G(y)\-F(x)G(y)}dxdy 

— ©o — oo

So for a distribution as given by Eq. (7.47) 2=2*=2**=—. 
Q+

7.1.6. TESTING DEPENDENCE BY MEANS OF QUANTILE VALUES

In general, the purpose of measuring stochastic relation between random variables 
is to decide to what extent these variables may be considered independent or, in other 
terms, how far their stochastic relation may be regarded close, to what extent they 
may be associated with a monotonic increasing or a monotonic decreasing tendency.

Conduct now an examination to the question if what a quick procedure can be 
developed to have a preliminary information on a stochastic relation, on the basis 
of numerical values obtained for the indicator correlation

If only the k2, ka frequencies of sample points located in the quadrants defined 
by points (x1/4, yV4), (i1/2, yv2), (£3/4, js/4) are figured out (see Figure 73), their ratio 
itself is already a rather informative indication on the stochastic relation.

In case of independence it holds that

I 1 4 9

that is their ratio is
(7.80) k^.k^ks = 1:4:9
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while for a functional relation it is

(7.81) k1:k2:k3= 1:2:3.

So if the ratio of empirical values is close to either of the two series above a corre­
sponding decision may be taken. When the result is not sharp the division can be uti­
lized in a x2-test. When a large sample is treated the number of quantiles applied may 
be greater.

In the course of statistical analyses such a test whether the random variables 
y2) ..., X are independent or not is needed frequently. In an event where a 

(pairwise) dependence may be suspected this question can be answered through an 
approximation where the indicator correlation is utilized in the following manner:

Produce the pairs (A\, Aj), (Aj, Ag), •••» (An-g, An-i), (An-i, A„), plot them as 
points on the plane and apply the procedure above. (As a solution to this problem the 
Wald—Wolfowitz test can be found in literature, see [B. 42], which is based on serial 
correlation and whose execution is extremely tedious.) E.g., when what should be 
known is whether the A',, X., Aso exceedances observed in the Tisza river at 
Szeged in the sequence of second quarters (see Table T.l) may be considered a statis­
tical sample which represents an X random variable whose distribution is a given 
F(x); that is. whether there is a dependence between the subsequent data or not, then, 
as described in the foregoing, a test of independence may be carried out before test­
ing the fit.

The location pattern of points (A\, X^, (A'2, A:1), •••. (Aa#, A31l) is shown in Fig. 72. 
In this case the ratio of the number of points located in the quadrants (x1/4.

.Pl/gX ^8/4) *®

2:9:16 = 1:4.5:8

which, apparently, differs only slightly from the ratio 1:4:9that is it reflects conditions 
characteristic to independence. (Considering that the sample tested is a relatively small 
one the ratio obtained seems to be convincing to accept independence.)
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7 1.7. SIMPLE APPROXIMATION OF POSITIVELY 
QUADRANT-DEPENDENT BIVARIATE DISTRIBUTIONS

When dealing with two-dimensional distributions, the calculation of probabilities for 
different events is much more complicated than in the one-dimensional case.

A simple method will be proposed to approach probabilities for two-dimensional 
events :n case of positively quadrant-dependence.

Let H (x, y) be the joint distribution function of the pair of random variables (a, r), 
for which H(x,y>F(x)G(y), where F(x) and G(y) are the marginal distribution 

functions of X and Y respectively.
Let us investigate the approximations the function by means of the values of

(7.51) Hx(x, y) = A min(F, G)+(l-X)FG

in the sense of quadratic mean deviation. Choosing A such, that
OO CO

(7.52) <P(A)= J / (H-HYfgdxdy = min

As
H, _ h = (H, - FG)-(H- FG) =

= A[min(F, G)-FG]-(H-FG)
we obtain m „
(7.53) <p(A)= / 1 {H,-H^fgdxdy = ^ J J (min(F,G)-FG^fgdxdy-

-2A / f[mm(F,G)-FG][H-FG]fgdxdy+ J jjH-FG^fgdxdy S 0.

— OO — OO

Introducing the quantities:

(7.54) ;i=90 f J (H-FG^fg dx t/y (Hoeffding [B. 11]) and 
— OO —co

(7.55) v = 90 f f [min(F,G)-FG][H-FG]fgdxdy
— OO —OO

we have
A2 _ Av m

(7.56) = 90~2 90 + 90-

(Obviously vS/z and a simple calculation shows, that n=v=l if H=min (F,G).) 

The value of <p(A) will be minimum if

(7.57) <P'(A) = = 0 ie- A = v

Then for (7.56) we get:

(7.58) i-e- v^F — vi
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Hence:
It — v2 V (1 — v) 1

(7.59)

The mean-square deviation between H and can of course be much less. For 
example let us consider the Morgenstern-distribution (see: [B. 23]).

(7.60) H — FG+aF(l-F)G(l-G) (OSaSl)

For this distribution:

^ = 90 / / (H-FG)2fgdxdy =

CO oo 2

= 90a2 f f (F— F2)2(G - G^fg dx dy =

V = 90a ff F2(l-F)G(l-G)2fg dx dy + 
FSG

3 y
+ 90a ff F(l-F)2G2(l-G)fgdxdy^—.

F=-G

In this case

,0(v) - = 0.0001a < -10~3.
- 90 9000 9

The result is similar for the distribution
(7.61) = min (F,G)-a min (F,G)(1-F)(1-G) (0 s a s 1) 

as well.
In case of F(x)= l-e-^ G(f)= 1 ~this bivariate distribution is the joint 

distribution function of the exceedance X and the duration T of a flood-peak above 
of a sufficiently high level c for the River I isza (See. [B. 31]).
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CHAPTER 8
Regression analysis

8.1. METHODS TO CALCULATE REGRESSION

8.1.1. THE LEAST SQUARES METHOD. THE REGRESSION CURVE

The least squares method is a very important aid of probability theory and mathemat­
ical statistics. The method is used to determine and interpret theoretical quantities 
in probability theory and to estimate functions and constants from measurements in 
mathematical statistics. It is the analysis of results through mathematical statistics 
that may provide a support to justify the application of this method; however, cases 
where this is not the most suitable method will also be seen while in other cases the 
efficiency of this method will be pointed out. Below the method will be presented first 
as a means of determining the so-called regression curves for two random variables, 
followed by a brief discussion on the case of multivariate functional relations.

Consider the pair of random variables X and Y. On the basis of theoretical con­
siderations or empirical data it is known about them that although neither of them is 
determined accurately by the other, nevertheless, the possible trends in the values 
of one of them has an influence in a specified way on the values of the other. 1 he value 
of Y (which can be measured in a more difficult way or only later) is attempted to 
be approached by a certain function g(x) of variable X. Examine now the question 
that what a function g(x) of X will approach Y "the best in the sense that

(8.1) £{[T-g(x)]s} = minimum.

By the aid of the joint density function of the pair of random variables (X, Y) this 
condition may be written in the form

(8.2) f / [y-g(x)]2h(x, y)dxdy = minimum.
— co — co

This condition is satisfied by

(8.3) g(x) = £(y|X = x)

which is a function representing the conditional expected value of variable Y under 
the condition that X=x. This can be proved as follows.

As the expected value of the conditional expected value of a random variable is 
equal to the unconditional expected value (see Section 2.1.7/b) it follows that

(8.4) E {[T- g(x)]a} = E (£[r-g(x)]s|* = 4
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Furthermore, according to Steiner’s theorem (see formula 2.4.2)

(8.5) £{[F-g(x)]2|y= x} = minimum if g(x) = E(Y\X = x)

for all fixed values X=x. This involves that

(8.6) £{[T—g(x)]2} = minimum if g(x) = E(Y\X = x).

Function E(Y\X-x}=y{x) is called the regression curve of Y related to X. Under 
all conditions where X=x the Y values fluctuate around the expected value 
£(T|y=x)=y(x) and so if X value is measured and Y value is calculated by using 
formula y(x)= + £(F|X=x) then what is expected is that through many measure­
ments the errors (deviations) will be balanced. Using the joint density function the 
formula of a regression curve can be written as follows:

(8.7)

J yh(x, y)dy 

y(x) = -^--------------  
/ h(x, y)dy

Unfortunately, in most cases the joint density function of the two random variables 
is not known and therefore in the derivation of the formula depicting the regression 
curve difficulties are encountered.

The regression curve of X related to Y, function £(T|K—y) x(y), may be inter­
preted in a completely analogous way. Note here that if X and Y are independent 
then y(x)=£(F|X=x)=£(r)=q (const.) and x(y)=c2 (const.).

When the joint density function h{x,y) is not known or when the density function 
is too sophisticated then, by the aid of the sample (cluster of points on a plane):

KJ (X, Kn) ,(Xn,Y„), which represents the pair of random variables 
(X, Y), the regression curve is substituted possibly by a simple curve, a straight line or a 

Polynom.

8.1.2. REGRESSION IN CASE OF BIVARIATE NORMAL

DISTRIBUTION

In cases where the joint distribution of random variables X and Y is two-dimensional 
normal that is when their joint density function is

^•8) *(x,y) = --------
2x01 aa fl -0

(x-mP*_2 , (y-m^ 1
. aj "i". a; J

one can write the equation of the regression curve that is the formula of the function 
expressing the conditional expected value, £(m=x)=X*). by utilizing formula
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(8.7), as

f vh(x, v) dv
_ 02 ^2

(8.9) £(n^ - x) = y(x) = —---------------- = m2+e — x-Q — m1
J" h(x, v)dv

where m^E^X)-, m2=E(Y\ a2=D(Y) and q=q(X,Y) is the corre­
lation coefficient. So in case of bivariate normal distribution the regression curve is 
a straight line:

(8.10) y(x) = m2+e-^-(x-m1)

that is

Relationship (8.11) means that if X and Y values are standardized that is if variables

and
tr2

are introduced then the regression curve of variable Y* related to X* is a straight line 
of the form

(8.12) y-QX.

This line passes through the origo and its direction is determined by q= q(X, K), the 
coefficient of correlation between the two variables. Note that a curve of regression 
between two variables may be a straight line even when their joint distribution is not 
bivariate normal. If the regression between X and Y is linear the equation of the re­
gression line, y=ax+b, will be given.
Remark:

We have seen in formula (7.47) that the quantile curve for two-dimensional normal 
distribution is

y(x) = — (x-mJ + mj = G-1{F(x)}.

From (8.10) follows that

y(x)-ma = e —(x-nh) = = eG-UFM]-
<71

It means that in the normal case:

(8.13) yW = eG“1[F(x)]+(i-e)E(r)

which is a quite simple relation between the quantile curve and the linear regression 
line.
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The fact is pointed out here that if the random variables X and Y have the joint 
distribution H(x,y) with marginals F(x) and G(y) and the marginals are the same 
type of distribution i.e. F(x) and G(y) differ from each other only in the value of 
parameters, then the quantile curve is linear and (8.13) holds.

8.1.3. APPLICATION OF THE QUANTILE CURVE TO RAPID 
DETERMINATION OF THE RELATION BETWEEN
THE MAGNITUDE OF EXCEEDANCE AND FLOODING DURATION

The corresponding values of X exceedances and Y flood durations in case of flood 
waves observed in the Tisza river at Szeged are given in Table T.l. This is the case 
utilized to demonstrate how to express the relation of random variables X and Y 
by means of the quantile curve. Plotting the corresponding values as a cluster of 
points on a plane the pattern of dispersion shown in Fig. 74 is obtained. T o have a 
measure for the closeness of relation between the random variables A^and Y the indi* 
cator correlation qx is calculated with a= 1/2. Using the empirical medians, 
and j1/2, what is obtained is

fc 14

which value indicates a close relation so that a search for the shape of a function is 
worth while. On the basis of those set forth in Section 8.1.10 if there is a monotonic 
functional relation Y=(p(X) between the random variables X and Y the function 
describing this relation is the quantile curve of both variables: <p(x)=G_,[F(x)]. 
The quantile curve is a curve passing through the joint quantile points (a^i, jai), 
(x^yj, —■> Produce now, by using the table, the ordered samples

x^x^...^x  ̂
and

Y* Yj *...*= F3i
and, with respect to the fact that each clement of the ordered sample is a certain 
quantile of the distribution, plot the set consisting of points (X*, Y*), (X*, y*),...,

Wv ^i) and connect these points by straight sections. In this way a polygon 
Will be formed which provides the approximate shape of the quantile curve (sec Fig. 
74). Apparently, the relation between variables X and Y is of linear character. Since, 
as it was said in Section 6.3.3, the magnitude of exceedances, the random variable

is distributed exponentially, it follows that if the duration of flooding, Y, is a linear 
Unction of X then Y is also distributed exponentially.

The quantile curve of exponentially distributed two random variables is given as 

E(Y)
<p(x) = X'

^ith the data of Table T.l
E(Y) « P = 23.58 and E(X) « = 100.35.
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So the equation giving the quantile curve is

„ „ 23.58 24
<p(x) = G ’[F(x)] — |qq 35 x w JOO X ~ ^-^x-

By means of formula (8.13) we have
y(x) « gG-HFWl+Cl -e)^) = 0.S6 • 0.24x+0.04 • 23.58 = 20.64+0.94. 

In this case we have the following rapid estimation foi the duration of flood.

E(Y|X) « ^P+1 days.

which is valid only for the River Tisza at Szeged in the second quarter of the year.

8.1.4. ESTIMATION OF LINEAR REGRESSION FROM A STATISTICAL 
SAMPLE

When the distribution of a random vector variable (X, Y) is not known the equation 
of the regression curve E(Y\X=x)=y{x) cannot be derived. Suppose that a two- 
dimensional statistical sample (XnjJ, (xWs) is available for a vector
variable (X, Y) After plotting the sample as a cluster of points on a plane the shape 
of this cluster will frequently suggest such an approximation where the relation be­
tween the variables X and Y is represented by a linear function. In such cases it is 
supposed that the regression of variable Y related to X has the form Y=aX+b. By 
virtue of the least squares principle the quantification of a and b may take place under 
the condition that E(Y-aX-bY=minimum. The determination of constants a and 
b requires the knowledge of the first and second moments of the random variables in 
the parenthesis and this necessitates the knowledge of the joint density function of the 
pair of variables (X T). Therefore the straight line j=ox+b is derived directly 
from the sample, based on the condition that

f(a, b)= 2(yi~ax>'b^ = minimum-

Now the values (x„ y) are given numbers while the parameters a are not known 
and what is to be determined is the extreme value of the bivariate funct.on of these 
variables. The solution is obtained by equating the dei ivates to zero.

(8.14)
b) __7 ^(yi-axl-b)xl — 0

Da i-i

(8.15) W£^>- = -2 2(y,-«xl-b) = 0.
From Eqs. (8.14) and (8.15) the following system of linear equations is obtained for

the unknown a and b:
(2^a+(2x^)b = ^x,yt 

(2 xi)a+nb"
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By the application of Cramer’s rule:

a = 2 yi__  
2x1 2x~
2 yt n

n 2 Xjyt-2 xt2 yi 
« 2 x'i - (2 xy

2 xiyi __------------xy n

(8.16)
2 Xi 2 Xiyi
2 xi 2 yi
2 Xi 2 xi
2 yi n

-—*—X2 
n

2 (Xi-x){yi-y) 1/ 2 (yj-yY 
_________ n_____________ ] n_______________ Sy

2 (.Xj-xy1 2 (yt-y)2 J 2^-^ r sx
n n ]/ n

2xl2yi-2xi2 
n2xl-{2x^

b =

2x2 ~2xiyi
y a n n

------------- X2n

In this way practically the problem has been solved but the formulae obtained will 
be somewhat transformed as follows:

2XiVi -- 2<Xi-x)(yi-y)
~T~ Xy _ n
2 x2 -2 2 Ui-*)2

n ' n 

(8-17)

—x2 y+x2 y—x X‘yf
n n

n

n _ _
= y~ ' 

n
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Let be recalled here that the estimation of correlation coefficient q is the empirical 
correlation coefficient

(S.1S) r = , 

and that to estimate the expected value of variables X and Y, the respective sample 
means x and y can be used while the estimations of variances D(X) and D(Y) can be 
given by

5 - ZC^"*)2
x r «

and __________
5 -1/ 2(yi-y?

y r n ’
respectively.

So the result is in accordance with the theoretical results contained in (8.10) and 
at the same time the statistical estimations of the theoretical parameters contained in 
(8.10) have also been produced.

Consequently, the formula which can be used to calculate the empirical regression 
line of Y related to X from a statistical sample is

(8-19)
Sy _ Sy _ 

y = r~-x+y—r-^-x. 
Ox

8.1.5. REGRESSION SURFACE AND PLANE

Usually the quantities playing part in hydrological research depend on several fac­
tors. It is necessary, therefore, to clarify how a given critical quantity depends on 
other quantities and out of these which the given quantity depends strongly or weakly 
on. In many cases such a question should also be answered whether a strong relation 
between two quantities is causal indeed or the semblance of a close relation is caused 
by other quantities. Below r random variables will be considered and out of them one 
will be tested as a function of the remaining variables. All the variables involved 
are supposed to be random variables so that the fluctuation of this vector variable 
may be attributed to chance.

Denote the set ofrandom variables concerned by a random vector (Xlt X2, ...,Xr) 
and the joint density function of these variables by/(xn x2,..., xr). If a variable, Xi, 
is to be approached by some function of the remaining variables, g(x„ x3,.... xr), 
then — as it was seen — the least squares method will lead to the conditional expected 
value:

JEfYilXi, x2,...»x,) = g(x2, x3, ..., xr) =

= £(^1^2 = xx, x3= x3,= xr) =
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/ Xif(xr, x2, x^dxi

/ f(Xi,X2, ..^XrjdXi 

— oo

So XY — in the sense of averages mentioned several times before — may be substituted 
by the conditional mean of the vector variable (X2,y3, Xr). The above expres­
sion of g(x2, x3, ..., xr) is called the regression surface of Xt related to 
(X2, X3, ...,Xr). In the special case where the joint distribution of variables 
(Xlt X2, ..., Xr) is n-dimensional normal the regression surface is a plane that is

ECX^ = x2, ...,Xr = xr) =

= a12X2 +a13^3+ ••• +fllrA7 + fli.

Instead of variable y15 of course, any one of the variables may be expressed as a 
function of the remaining ones.

Just as the regression curve, which belogs to two variables, can be substituted by 
a straight line, when dealing with more than two random variables frequently an 
approximation through a linear function to the chosen Ai variable is considered satis­
factory as well: such a regression “plane” (in fact an (r-l)-dimensional, so-called, 
hyper plane) is determined to which — in accordance with the principle of least 
squares — the deviations of the Xx values are, in average, the least.

For sake of simplicity suppose that the expected value of each variable is zero that 
is

E(X^ = 0 (i = 1,2, .... r).

This can be attained by subtracting the respective expected value from each random 
variable.

Now what is searched is an (r— 1) -variate linear function,

U12^a + al3-^3 + ... +(JirA7, 
with which

(8.20) E{Xl-ai2X2-aKX3...alrXr)i = minimum.

Unlike in the case of two variables here the coefficients are expressed by the aid of 
the (unknown) moments and then the moments are estimated from the sample.

With the assumption that the joint distribution of the variables concerned is a con­
tinuous r-dimensional distribution, Eq. (8.2O)can be written in the form of an integral, 
too:

oo oo

(8.21) / (xl — a12x2...alrxr)2f(Xi, x2, ..., xr)dxi-..dxr = minimum
— oo — oo

where /(Xj, x2, .... x,) is the joint density function.
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To denote the mixed moments (covariance) the notation used is

(8.22) biJ = bji= f f xixJf(x1,...,xr)dx1...dxr.

In a special case:
(8.23) ba = E(X?) = D*VQ (i = 1, 2, ..., r).

Through derivation the following linear equation system is obtained for the unknown 
coefficients, :

(8.24) ^,2^12+&13U13 +••• + birUir — ba (i 2, 3, ..., r).

Supposing that the covariance matrix

bn b13 ... blr

,bri br2 ... brr_

is not singular (that is \B\#0), expression

(8.26) (k = 1, 2, .... r) 

is obtained as solution where Blk and Bn denote the algebraic subdeterminants be­
longing to the elements blk and bn, respectively.

The correlation coefficient of variables Xt and Xj can also be calculated by using 
the elements of matrix B:

o(x ^Xj) _ btj
D^DiX^ fb^

(i,j=l,2,...,r).
Produce now the difference

Ki — T) —012^2—al3X3 —... ukrXr—

S^Xj,

the so-called residue, through subtracting the “best” linear approximation of Xt 
from Xk. It is easy to realize that Yk is uncorrelated to variables X2, X3,..., Xr and, 
in addition, when an r-dimcnsional normal distribution is the case, it is independent 
of them but is positively correlated to Tj since

(8.28) E(Yt,Xt) = -g— ^2 hjbij -

|g|
Bn 

0

if i = 1

if i / 1.
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(Here |B| denotes the determinant of the covariant matrix B.) Since according to our 
assumption the expected values of variables Xu y2, Xr are equal to zero the 
consequence is that £(y1)=0 and so

Wi) = E(Yl) = • ZJ = ^o.
-Oil

The fact that |5| and Bn are non-negative is a consequence of the symmetry of matrix 
B.

The coefficient of correlation between Yt and X1 is

(Y Y} —

If the statistical sample used to represent an r-dimensional random variable 
(X^, ...,Xr) is

(X^X^...,^) (j = 1, 2, .... r)

the following estimate may be used in the formulae above:

bik ^ik = ^(Xij-XtXxkj-xJ.

Applying this the equation of the empirical regression plane is

(8.29) X± = — [512(x2 —x2.)+^i3(x —x3 ) +... + j§lr(xr — xr)]

where B^ is the estimate of subdeterminant Bi} if the btJ elements of matrix B are 
substituted by the b^ numbers.

8.1.6. MULTIVARIATE LINEAR FUNCTIONAL RELATIONSHIP. 
GAUSSIAN NORMAL EQUATIONS

Suppose now that a variable y is a linear function of variables xi,x2, ...,x,:

y = a1x1 + a2x2 + ...+ciJxs

where the coefficients at are to be determined on the basis of measure­
ments.

Suppose that measurements had taken place at points xu, x2(,..., xsJ (/= 1,2,..., n) 
and that from an experiment which had been performed on the /-th system of value 
a quantity subjected to random fluctuation, Yt, was obtained for y that is

(8.30) Yt = GiXil + fl2x2| + ... + oJxjJ+eJ (i = 1, 2, n) 
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where the errors e( are supposed to have zero as expected value, to be uncorrelated 
and to have the same variance:

£(^ = 0, =

E(etej) = 0 if i # j (i,j = l,2,...,n).

In accordance with the least squares method as a starting point for the estimation 
of the coefficients the following condition has to be used:

(8.31) Ffa, a2,as) =
n

= £ (Xi—a1Xu—a2X2i — ... —asXsi)2 — minimum. 
i=l

2 aj(Xj, Xk) = (Yt, Xk) (k = 1,2,s). 
J-i

The whole equation system in a detailed form is 

ai(X1,Xl)+ai(Xi,X1) + ...+ 

+a,(X„X1) = (Y,Xl) 

ai(Xk, X2) + a2(X2, X2) +...+ 

+a,(X„ Xt) = (Y, Xt)
(8.33) :

ai(Xt, A'sJ + flafyu, X3) + ...+ 
+o»(^n X3) — (Y, X3).

Equations (8.33) arc called Gaussian or normal equations.

Hence

= - 2(Yi—a1Xu—a2X2i — ...—asXsi)Xki = 0 (k = 1, 2, ..., s)
()ak 1=1

that is

2 2 “jX^ = ZY^ 
i-u=i

and so

(8.32) 2 2 Vki = 2 YiXkl (k = 1, 2,..., s).
j=i *=i <=i

A simpler form of this equation can be obtained if the notation

is introduced.
Eq. (8.32) above can also be written in the form of a scalar product:

Y =

__
__

__
__

__
__

__
_

1

; xk = rH 
C

) ..
\____________

; x2 =

■■
tQ

 IO
tO

 H* ; ...,xs =

Y„. Xln. X2n. x5„.
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(8.34)

The solution to equation system (8.33) provides the estimates of coefficients cq, 
a.:

(Y,XJ 
(Y, X2)

(Y,XS).

where matrix D, the so-called Gram matrix, is evidently a symmetrical one:

(8.35) D = D*

'(X^XJ (X^X,) ... (X^xS 
(X^XJ (ya,y2) ... (X2,XS) 

l/y^yo (ys,y2) ... (y5,y5)J

This is essentially a geometric problem: out of x linearly independent vectors X^ 
X2, ..., Xs located in the n-dimensional space which one is closest to vector Y.

Figure 75 below illustrates the solution to the case where s=2:

Figure 75

It is seen that vector yo, the solution, is the orthogonal projection of Y on the plane 
(subspace) spanned by vectors yt and X2. Since in this case vector Y-Xo is perpen­
dicular to the subspace consisting of all linear combinations of vectors Xt and Az2 
it follows that it is perpendicular to all vectors in this sub-space, including vectors 
Xt and X2, so that

(r-y0, y,) = 0

(r-yo,ya) = o.
Hence

(F. y.) = (y<„ yj - (u1yl+aayv yj = 

= a1(yl,y1)+«2(ya,y1)

(Y, ya) = (y0, yj = (a^+^y., ya) = 

= «1(yl,y2)+a3(ya.ya).

The situation is analogous in case of any finite ^-dimensional sub-space.
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The solution to the normal equation system in unambiguous when the |D| deter­
minant of matrix D differs from zero that is when vectors A\, y2, ...,XS are linearly 
independent. In this case it can be proved that the a; components of the solution vector 
(a15 a2, •••, as) are unbiased estimates of coefficients a;(z= 1, 2, s) and, what is 
more, it is these estimates that have the least variance among all the unbiased linear 
estimates. (Theorem of Gauss.)

The variance and correlation coefficient of estimates a; can be calculated in a rela­
tively simple manner. Denote by DJk the (s— 1) order subdeterminant belonging to 
the element (Xj, Xk) of determinant |£>| and introduce the notation Qjk=DJkl\D\. 
It can be shown that

E[(aj-aj)(<xk — a*)] = Qjka2 (j, k=l,2,..., s).

If j—k then the variance of random variable oq is obtained:

(j = l,2,...,s).

The correlation coefficient is

If the cr2 variance of errors £f is not known, a situation occurring in most of the cases, 
an estimation can be found to a2 through formula

n
2 (Yi - «1 - aa x2i - ■ • • - as xsi)2

S2 = ---------------------------------------
n—s

which is an unbiased estimator of a-:

E(S2) = o2.

With an assumption that the distribution of each error e, is normal the joint distribu­
tion of (oq, a2, ..., as) will be an s-dimensional normal distribution and the distri­
bution of S2 will be a r distribution with parameter (n- j) and with variance

So in case of normal distribution S2 is a strongly consistent estimate to a2.
Note that in the above application of the principle of least squares such an assump­

tion was made that the values of variables were known accurately. In practice 
sometimes the situation is different from this. Nevertheless, if the values of variables 

can be measured much more accurately than those of Y the above statistical state­
ment may be considered valid, in approximation.
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8.1.7. POLYNOMIAL REGRESSION

A case where the planar representation of a sample (X^ Y^ (i= 1, 2,n) shows 
that no good approximation would be obtained by linear regression can be discussed 
in a quite similar way. Now variable Y is approached by a polynom of variable X:

Here the number of coefficients to be determined is (s+ 1). Consider the case where the 
locations of measurements are xr, x2, x„ and the result of measurement at a 
point Xj is the random variable Yt:

Yt = a0+a1xi+a2Xi + ... + asxf+Ei.

Suppose that variables £; are uncorrelated random variables with equal variances:

£(e;) = 0, Efa, Sj) = 0 if i j,

D^e^a2 (i,j = 1,2,

The least squares method leads now to the following system of equations which cor­
responds to the normal equations:

From a statistical point of view the estimates a„, oq, ...,a, obtained for the unknown 
coefficients by solving the equation system behave in the same manner as in the pre­
vious case.

Formally the estimation of coefficients may be performed in the same way when 
both X and Y are random variables; however, in this case the statistical behavior 
of estimates may no longer be examined in such a simple way. It can also be seen 
that the calculation of polinomial regression can be traced back to the case of 
multivariate linear regression.

8.1.8. PARTIAL CORRELATION

Consider the random variables Xt, Xit ..., X, and calculate the coefficient of 
correlation between variables Xt and Xk :

= Qik = 
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which is called customarily the coefficient of total correlation. This coefficient, as it 
was explained in Section 2.1.7, might take any value between — 1 and +1 and if its 
absolute value was close to 1 then it was said there was a close correlation between Xt 
Xk. A close correlation may appear also as a consequence of a situation where the 
development of both Xt and Xk values is influenced by their dependence on the other 
random variables. In fact, there is no causal relation between Xt and Xk so that if the 
impact of the other variables were eliminated no close correlation could be found 
between them. Here the question may arise how to eliminate from a relation between 
two random variables the impact of other variables.

Out of n random variables select two variables, say Xk and X2 (the numbering of 
variables is, of course, arbitrary). Express both and X2 through the best approxi­
mate linear combinations composed of variables X3, X4, ..., X„:

Xi = 2 X2 = £ a2j-Xj. 
J—3 k=3

Now construct the variables

Ki = 2 a^XjY, = X2-Z aajXj,
j-3 k=3

the so-called residues, for which it can be shown that they are uncorrelated to vari­
ables X3, ..., X„, moreover, in case of joint normal distribution, they are indepen­
dent of them but there are positive correlations between Yk and Xk and between Y2 
and X2.

The coefficient of correlation between residues Yk and Y2 is called partial correla­
tion between Xk and X2, related to variables (X2, ..., X^). The parial correlation is 
considered to reflect the relation between Xt and X2 in its cleaned form, without the 
impact of variables X3,Xn-

The partial correlation can be calculated by using the elements of matrix B as given 
in (8.25):
zo n(Y Y) = =____( 0 l’ 2 1buBu

where BtJ denotes the algebraic subdeterminant belonging to the element bu of 
matrix B.

If n=3, that is when in the course of analysing the relation between Xk and X2 
what is to be eliminated is the impact of a single third variable Az3, the partial correla­
tion can be calculated as well by utilizing the coefficient of the pairwise total correla­
tions. Introducing the notation

Yi = Xi—ai2Xs', Y2 = X2—a23X3',

Qn — ^s)» Cis = c(Yi> ^3);

C23 = Q (^2 > ^3),
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formula 

(8.37) q(Xi,YJ = @12 ~ @13 @23
/(1 ~ @is)(l — @23)

is obtained. When the joint distributions are not known then, utilizing the statistical 
sample and using the methods desribed in the previous sections the corresponding 
empirical correlation coefficients are drawn into calculation.

8.1.9. MULTIPLE CORRELATION

In certain cases there may be a requirement that the stochastic relation of a certain 
ran dom variable Xt should be measured by a set of variables Xz, X3, ..., Xn, instead 
of a single one. Resting on the foregoing it seems to be expedient that this relation 
is expressed by the relation between variable Xt and variable

(8.38) Xi = a12X2 + a13X3 +... +«i„ X„

(the “best” linear approximation of A)) that is a correlation coefficient

.„ ^(X^X})
(8.39) q^X^- d

is formed which is called the coefficient of multiple correlation between X± and 
(X2, X„). The coefficient of multiple correlation can be expressed as well by using
the covariance matrix B as it is given in Eq. (8.25):

(8.40) = 1/1-^^- ■
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APPENDIX

COMBINATORIAL TOOLS

Combinatory deals with the counting problems related to finite sets. Let A denote the 
set of the first n integers

A = {1, 2,..., «}

i.e. a set of n different elements.

a) Permutation
As a first problem we discuss the following question: what is the number of differ­
ent arrays of the elements, 1, 2, ...,n while each number may occur only once? Any 
number can be put in the first place, any of the remaining n- 1 can be put in the 
second, any of the remaining n— 2 in the third, etc. Consequently, the number of all 
the possible arrays is n. (n-1)... 3-2.1.

Each ordering of numbers 1, 2, ..., n is called a permutation.
Let the set of all possible permutations of 1, 2, ..., n be denoted by that is called 

the space of permutations of order n. The number of elements of &n is denoted by 
Pn. Then

1)... 3 • 2 • 1 = n!

i .e. n factorial. Thus, the value of n! is to be calculated by multiplying the natural 
numbers from 1 to n.

The sequence n! is a fairly fast increasing function of n.
Table 1.1 contains the results of a number of permutations.
If the value of n is large, n! becomes extremely large. It usually happens that the 

exact value of n 1 is of not too much importance, in many cases wc are rather interested 
in its order of magnitude. 1 hus, the need foi appioximating n! may arise. A very good 
estimation for n! can be obtained by use of the Stii ling-formula

where e=2.7182 81... is the Napierian number for natural logarithm. For example, 
if n= 10 then the Stirling-formula gives

/ in _____
— f20zt = 3 598 600.

\ e /
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Table 1.1

Table of Factorials

n nl n n!

1 1 26 40 329 146 10”
2 2 27 10 888 869 1021
3 6 28 30 488 834 1022
4 24 29 88 417 620 1023
5 120 30 26 525 286 1025
6 720 31 82 228 387 1028
7 5 040 32 26 313 084 1028
8 40 320 33 86 833 176 1022
9 362 880 34 29 525 280 1031

10 3 628 800 35 10 333 148 1033
11 39 916 800 36 37 199 333 103‘
12 47 900 160 10 37 13 763 753 1Q30

13 62 270 208 102 38 52 302 262 1037
14 87 178 291 103 39 20 397 882 103»

15 13 076 774 105 40 81 591 528 10*°
16 20 922 790 106 41 33 452 527 10‘2
17 35 568 743 10’ 42 14 050 061 10“
18 64 023 737 108 43 60 415 263 1015
19 12 164 510 10l° 44 26 582 716 10"
20 24 329 020 1011 45 11 962 222 10*’
21 51 090 942 1012 46 55 026 222 103°
22 11 240 007 10“ 47 25 862 324 1032
23 25 852 017 IO13 48 12 413 916 10“
24 62 044 840 IO1’ 49 60 828 186 10“
25 15 511 210 1018 50 30 414 093 IO37

(01 = 1, is a purposeful convention)

Comparison to the precise value of 101 = 3628800 yields a relative error of 0.8 per cent. 
The larger the number of n the better the approximation, i.e. the smaller the relative 
error.

b) Permutations with repetition
Assume that certain elements kt, k2, ...,k of a set
A— {at, a2,... a„} are identical, and

kt + k2+ ... +kr = n.

If all possible sequence of these elements are considered than the number of different 
arrays is:

P(rcp) ______ _________
~ kt\kt\...kr ’
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As an example, consider the letters of the word MATHEMATICA. The number of 
all different sequences is:

11! 11- 10• 9 • 8 • 7 • 6 • 5-4 • 3 • 2 ■ 1 ,
2!3!2!1!1! 2-6-2 - 1663 200.

c) Variations
Let k elements be chosen from set A — {1, 2, n} one after the other and be 

written in the order of selection. The sequence of elements is called a variation. 
What is the number of different A-element variations from the elements of set Al 
Any of the n elements can be selected for the first place, any of the n-1 elements for 
the second, any of the n— 2 for the third, etc. For the £-th place any of the remaining 
(n-k+ 1) elements may be selected. Therefore, the number of ^-element variations of 
set A is

Vkn = n(n-l)...(n-*+l) = ■

Consider now the following allocation problem: Given k elements, alt a2, ..., ak. 
Let them be located into n^k cells labelled by 1, 2, ..., n in such a way that any cell 
may contain one element only. What is the number of the possible allocations?

Element ak can be set in any of the n cells. Element a2 then can be put in any of the 
remaining (n- 1) cells. The number of all possible allocations is:

n(n — l)...(n — k+ 1).

d) Variations with repetition
Consider again the previous allocation problem but without the constraint to 

allow at most one element in one cell. (It is allowed to allocate all elements in the 
same cell.) Therefore, any cell may contain any subset of ak, a2, ...,ak. What is the 
number of possible allocations in this case? Any of the n cells may be selected for 
element at any for element a2, etc. To allocate elements ak and a2 we have altogether 
n2 possibilities, similarly, we have n3 possibilities to allocate elements ak, a2 and as, 
etc. The number of possibilities to allocate elements alta2, ■■.,ak is then:

K"(rep) = nk.

e) Combinations
Consider again the allocation problem where elements ak, a2,...»ak are allocated 

into n cells in such a way that there is only one clement in one cell. Assume that ele­
ments alt at, .... ak arc identical, i.e. at = a2= ... = ak.

Say, k undistinguishable objects are allocated in n cells. How many possibilities do 
we have?

1 he allocation of k undistinguishable objects in n cells is equivalent to the selection 
of k different cells from n different cells, irrespectively of the order of selection. These 
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allocations are called combinations. The number of all distinguishable combina­
tions is now:

n(n-!)...(«-k+1) n! _ (n)
C*“ l-2-...-k ~ kl(n-k)\ W’

Expression Ck = is for the number of all subsets containing k elements of set

A= {1, 2,n}. Consequently, out of 1, 2, ..., n numbers altogether options 

are available to select k different numbers.
As an application the binomial law may be mentioned used to perform the n-th 

power of an expression consisting of two members:

12 n
(p+q)" =

Multiplication is performed in such a way as to select one member from each fac­
tor, these are then multiplied in turn and the products are added up. If q is selected 
from each factor then qn is obtained. There is only one way to get this expression. If 
member p has been selected out of k factors and q from the remaining n—k then one 
may get members likepkqn~k. These can be obtained in the same number as k terms 
may be selected from n terms, i.e. in LI different ways. Therefore

(1-1) (p+^n = +

The computation of I | for large values of n and k is extremely cumbersome due to 
IK I

the large values of higher factorials. The problem, therefore, is how to estimate

for large n and k values? In case if n is even having the form 2m and k=m the use 
of Stirlings formula is a good estimate for the middle (largest) element:

(2m)! ( e ) 28m
UJ (m!)’

\e )

This estimate will be needed many times in the sequel.
The symmetry property

p) ( n 1
(kJ — (n — kJ

314



can be obtained easily by substituting the factorials:

n! ______ n!________  
k\(n—ky. (n-/c)! [n-(« — &)]!

It should be noted that as a special case of Eq. (1.1) one has 

(1-2) (1 + 1)" = = 2”.

On the basis of Eq. (1.2) one can answer the question of how many subsets the 
finite set A= {1, 2, ..., n} will have. Set A has

one-element subsets 

two-elements subsets 

three-element subsets 

fc-element subsets,...

If empty set 0 and the full set A— , n} are also considered as subsets of A
then the total number of subsets is:

{1,2,

f) Combinations with repetition
The notion of combination with repetition may be explained by the following 

allocation problem. Given n cells, labelled by the number 1 to n we allocate k identical 
(indistinguishable) objects in them. How many combinations are there possible? 
(Here, more than one object can be put into one cell, moreover all objects may be 
put into one cell.) For example, for n=4 and k=5 one possible allocation is:

As n cells are represented by n-1 lines, these n-1 lines are to be allocated 
amongst k points each representing some identical object. Every allocation is a con­
figuration of n— l + /c sings, from which n- and k are identical, respectively. The 
number of all distinguishable cases is, obviously, by permutation with repetition:

(n + k-1)! p + fc-1) (n + fc-1 
k\(n —1)! “I * J I n~k
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Table T.4

The normal distribution function

X #(x) X X X *(x)

0.00 0.5000 0.35 0.6368 0.70 0.7580 1.05 0.8531

0.01 0.5040 0.36 0.6406 0.71 0.7611 1.06 0.8554

0.02 0.5080 0.37 0.6443 0.72 0.7642 1.07 0.8577

0.03 0.5120 0.38 0.6480 0.73 0.7673 1.08 0.8599

0.04 0.5160 0.39 0.6517 0.74 0.7703 1.09 0.8621

0.05 0.5199 0.40 0.6554 0.75 0.7734 1.10 0.8643

0.06 0.5239 0.41 0.6591 0.76 0.7764 1.11 0.8665

0.07 0.5279 0.42 0.6628 0.77 0.7794 1.12 0.8686

0.08 0.5319 0.43 0.6664 0.78 0.7823 1.13 0.8708

0.09 0.5359 0.44 0.6700 0.79 0.7853 1.14 0.8729

0.10 0.5398 0.45 0.6736 0.80 0.7881 1.15 0.8749

0.11 0.5438 0.46 0.6772 0.81 0.7910 1.16 0.8770

0.12 0.5478 0.47 0.6808 0.82 0.7939 1.17 0.8790

0.13 0.5517 0.48 0.6844 0.83 0.7967 1.18 0.8810

0.14 0.5557 0.49 0.6879 0.84 0.7995 1.19 0.8830

0.15 0.5596 0.50 0.6915 0.85 0.8023 1.20 0.8849

0.16 0.5636 0.51 0.6950 0.86 0.8051 1.21 0.8869

0.17 0.5675 0.52 0.6985 0.87 0.8078 1.22 0.8888

0.18 0.5714 0.53 0.7019 0.88 0.8106 1.23 0.8907

0.19 0.5753 0.54 0.7054 0.89 0.8133 1.24 0.8925

0.20 0.5793 0.55 0.7088 0.90 0.8159 1.25 0.8944

0.21 0.5832 0.56 0.7123 0.91 0.8186 1.26 0.8962

0.22 0.5871 0.57 0.7157 0.92 0.8212 1.27 0.8980

0.23 0.5910 0.58 0.7190 0.93 0.8238 1.28 0.8997

0.24 0.5948 0.59 0.7224 0.94 0.8264 1.29 0.9015

0.25 0.5987 0.60 0.7237 0.95 0.8289 1.30 0.9032

0.26 0.6026 0.61 0.7291 0.96 0.8315 1.31 0.9049

0.27 0.6064 0.62 0.7324 0.97 0.8340 1.32 0.9066

0.28 0.6193 0.63 0.7357 0.98 0.8365 1.33 0.9082

0.29 0.6141 0.64 0.7380 0.99 0.8389 1.34 0.9099

0.30 0.6179 0.65 0.7422 1.00 0.8413 1.35 0.9115

0.31 0.6217 0.66 0.7454 1.01 0.8438 1.36 0.9131

0.32 0.6256 0.67 0.7486 1.02 0.8461 1.37 0.9147

0.33 0.6293 0.68 0.7517 1.03 0.8485 1.38 0.9162

0.34 0.6331 0.69 0.7549 1.04 0.8508 1.39 0.9177
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X KM X X X

1.40 0.9192 1.75 0.9599 2.20 0.9861 2.90 0.9981
1.41 0.9207 1.76 0.9608 2.22 0.9868 2.92 0.9982
1.42 0.9222 1.77 0.9616 2.24 0.9875 2.94 0.9984
1.43 0.9236 1.78 0.9625 2.26 0.9881 2.96 0.9985
1.44 0.9251 1.79 0.9633 2.28 0.9887 2.98 0.9986
1.45 0.9265 1.80 0.9641 2.30 0.9893 3.00 0.9989
1.46 0.9279 1.81 0.9649 2.32 0.9898 3.20 0.9993
1.47 0.9292 1.82 0.9656 2.34 0.0904 3.40 0.9996
1.48 0.9306 1.83 0.9664 2.36 0.9909 3.60 0.9998
1.49 0.9319 1.84 0.8671 2.38 0.9913 3.80 0.9999
1.50 0.9332 1.85 0.9678 2.40 0.9918
1.51 0.9345 1.86 0.9686 2.42 0.9922
1.52 0.9357 1.87 0.9693 2.44 0.9927
1.53 0.9370 1.88 0.9699 2.46 0.9931
1.54 0.9382 1.89 0.9706 2.48 0.9934
1.55 0.9394 1.90 0.9713 2.50 0.9938
1.56 0.9406 1.91 0.9719 2.52 0.9941
1.57 0.9418 1.92 0.9726 2.54 0.9945
1.58 0.9429 1.93 0.9732 2.56 0.9948
1.59 0.9441 1.94 0.9738 2.58 0.9951
1.60 0.9452 1.95 0.9744 2.60 0.9953
1.61 0.9463 1.96 0.9750 2.62 0.9956
1.62 0.9474 1.97 0.9756 2.64 0.9959
1.63 0.9484 1.98 0.9761 2.66 0.9961
1.64 0.9495 1.99 0.9767 2.68 0.9963

1.65 0.9505 2.00 0.9772 2.70 0.9965
1.66 0.9515 2.02 0.9783 2.72 0.9967

1.67 0.9525 2.04 0.9793 2.74 0.9969

1.68 0.9535 2.06 0.9803 2.76 0.9971

1.69 0.9545 2.08 0.9812 2.78 0.9973

1.70 0.9554 2.10 0.9821 2.80 0.9974

1.71 0.9564 2.12 0.9830 2.82 0.9976

1.72 0.9572 2.14 0.9838 2.84 0.9977

1.73 0.9582 2.16 0.9846 2.86 0.9978

1.74 0.9591 2.18 0.9854 2.88 0.9980
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Table T.5

The/2 distribution

^\p
0.99 0.98 0.95 0.90 0.80 0.70 0.50

1 0.000 0.000 0.003 0.016 0.064 0.148 0.455

2 0.020 0.040 0.103 0.211 0.446 0.713 1.386

3 0.115 0.185 0.352 0.584 1.005 1.424 2.366

4 0.297 0.429 0.711 1.064 1.649 2.195 3.357

5 0.554 0.752 1.145 1.010 2.343 3.000 4.351

6 0.872 1.134 1.635 2.204 3.070 3.828 5.348

7 1.239 1.564 2.167 2.833 3.822 4.671 6.346

8 1.646 2.032 2.733 3.490 4.594 5.527 7.344

9 2.088 2.532 3.325 4.168 5.380 6.393 8.343

10 2.558 3.059 3.940 4.865 6.179 7.267 9.342

11 3.053 3.609 4.575 5.578 6.989 8.148 10.341

12 3.571 4.178 5.226 6.304 7.807 9.034 11.340

13 4.107 4.765 5.892 7.042 8.634 9.926 12.340

14 4.660 5.368 6.571 7.790 9.467 10.821 13.339

15 5.229 5.985 7.261 8.547 10.307 11.721 14.339

16 5.812 6.614 7.962 9.312 11.152 12.624 15.338

17 6.408 7.255 8.672 10.085 12.002 13.531 16.338

18 7.015 7.906 9.390 10.865 12.857 14.440 17.338

19 7.633 8.567 10.117 11.651 13.716 15.352 18.338

20 8.260 9.237 10.851 12.443 14.578 17.266 19.337

21 8.897 9.915 11.591 13.240 15.445 17.182 20.337

22 9.542 10.600 12.338 14.041 16.314 18.101 21.337

23 10.196 11.293 13.091 14.848 17.187 19.021 22.337

24 10.856 11.992 13.848 15.659 18.062 19.943 23.337

25 11.524 12.697 14.611 16.473 18.940 20.867 24.337

26 12.198 13.409 15.379 17.292 19.820 21.792 25.336

27 12.879 14.125 16.151 18.114 20.703 22.719 26.336

28 13.565 14.847 16.928 18.939 21.588 23.647 27.336

29 14.256 15.574 17.708 19.768 22.475 24.577 28.336

30 14.953 16.306 18.493 20.599 23.364 25.508 29.336
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0.30 0.20 0.10 0.05 0.02 0.01 0.001

1.074 1.642 2.706 3.841 5.412 6.635 10.827 1

2.408 3.219 4.605 5.991 7.824 9.210 13.815 2

3.665 4.642 6.251 7.815 9.837 11.345 16.268 3

4.878 5.989 7.779 9.488 11.668 13.277 18.465 4

6.064 7.289 9.236 11.070 13.388 15.086 20.517 5

7.231 8.558 10.645 12.592 15.033 16.812 22.457 6

8.383 9.803 12.017 14.067 16.622 18.475 24.322 7

9.524 11.030 13.362 15.507 18.168 20.090 26.125 8

10.656 12.242 14.684 16.919 19.679 21.666 27.877 9

11.781 13.442 15.987 18.307 21.161 23.209 29.588 10

12.899 14.631 17.275 19.675 22.618 24.725 31.264 11

14.011 15.812 18.549 21.026 24.054 26.217 32.909 12

15.119 16.985 19.812 22.362 25.472 27.688 34.528 13

16.222 18.151 21.064 23.685 26.873 29.141 36.123 14

17.322 19.311 22.307 24.996 28.259 30.578 37.697 15

18.418 20.465 23.542 26.296 29.633 32.000 39.252 16

19.511 21.615 24.769 27.587 30.995 33.409 40.790 17

20.601 22.760 25.989 28.869 32.346 34.805 42.312 18

21.689 23.900 27.204 30.144 33.687 36.191 42.820 19

22.775 25.038 28.412 31.410 35.020 37.566 45.315 20

23.858 26.171 29.615 32.671 36.343 38.932 46.797 21

24.939 27.301 30.813 33.924 37.659 40.289 48.268 22

26.018 28.429 32.007 35.172 38.968 41.638 49.728 23

27.096 29.553 33.196 36.415 40.270 42.980 51.179 24

28.172 30.675 34.382 37.652 41.566 44.314 52.620 25

29.246 31.795 35.563 38.885 42.856 45.642 54.052 26

30.319 32.912 36.741 40.113 44.140 46.963 55.476 27

31.391 34.027 37.916 41.337 45.419 48.278 56.793 28

32.461 35.139 39.087 42.557 46.693 49.588 58.302 29

33.530 36.250 40.256 43.773 47.962 50.892 59.703 30
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Table T.6

The X(z) function

z z z K(Z)

0.28 0.000001 0.71 0.305471 1.14 0.851394

0.29 0.000004 0.72 0.322265 1.15 0.858038
0.30 0.000009 0.73 0.339113 1.16 0.864142
0.31 0.000021 0.74 0.355981 1.17 0.870612
0.32 0.000046 0.75 0.372833 1.18 0.876548
0.33 0.000091 0.76 0.389640 1.19 0.882258
0.34 0.000171 0.77 0.406372 1.20 0.887750
0.35 0.000303 0.78 0.423002 1.21 0.893030
0.36 0.000511 0.79 0.439505 1.22 0.898104
0.37 0.000826 0.80 0.455857 1.23 0.902972
0.38 0.001285 0.81 0.472041 1.24 0.907648
0.39 0.001929 0.82 0.488030 1.25 0.912132
0.40 0.002808 0.83 0.503808 1.26 0.916432
0.41 0.003972 0.84 0.519366 1.27 0.920556
0.42 0.005476 0.85 0.534682 1.28 0.924505
0.43 0.007377 0.86 0.549744 1.29 0.928288
0.44 0.009730 0.87 0.564546 1.30 0.931908
0.45 0.012590 0.88 0.579070 1.31 0.935370
0.46 O.O16OO5 0.89 0.593316 1.32 0.938682
0.47 0.020022 0.90 0.607270 1.33 0.941848
0.48 0.024683 0.91 0.620928 1.34 0.944872
0.49 0.030017 0.92 0.634286 1.35 0.947756
0.50 0.036055 0.93 0.647338 1.36 0.959512
0.51 0.042814 0.94 0.660082 1.37 0.953142
0.52 O.O5O3O6 0.95 0.672516 1.38 0.955650
0.53 0.058534 0.96 0.684636 1.39 0.958040
0.54 0.067497 0.97 0.696444 1.40 0.960348
0.55 0.077183 0.98 0.707940 1.41 0.962486
0.56 0.087577 0.99 0.719126 1.42 0.964552
0.57 0.098656 1.00 O.73OOOO 1.43 0.966516
0.58 0.110395 1.01 0.740566 1.44 0.968382
0.59 0.122760 1.02 0.750826 1.45 0.970158
0.60 0.135718 1.03 0.760780 1.46 0.971846
0.61 0.149223 1.04 0.770434 1.47 0.973448
0.62 0.163225 1.05 0.779794 1.48 0.974970
0.63 0.177753 1.06 0.788860 1.49 0.976412
0.64 0.192677 1.07 0.797636 1.50 0.977782
0.65 0.207987 1.08 0.806128 1.51 0.979080
0.66 0.223637 1.09 0.814342 1.52 0.980310
0.67 0.239582 1.10 0.822282 1.53 0.981476
0.68 0.255780 1.11 0.829950 1.54 0.982578
0.69 0.272189 1.12 0.837356 1.55 0.983622
0.70 0.288765 1.13 0.844502 1.56 0.984610
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z XW z z

1.57 0.985544 1.93 0.998837 2.29 0.999944
1.58 0.986426 1.94 0.998924 2.30 0.999949
1.59 0.987260 1.95 0.999004 2.31 0.999954
1.60 0.988048 1.96 0.999079 2.32 0.999958
1.61 0.988791 1.97 0.999149 2.33 0.999962
1.62 0.989492 1.98 0.999123 2.34 0.999965
1.63 0.990154 1.99 0.999273 2.35 0.999968
1.64 0.990777 2.00 0.999329 2.36 0.999970
1.65 0.991364 2.01 0.999380 2.37 0.999973
1.66 0.991917 2.02 0.999428 2.38 0.999976
1.67 0.992438 2.03 0.999474 2.39 0.999978
1.68 0.992928 2.04 0.999516 2.40 0.999980
1.69 0.993389 2.05 0.999552 2.41 0.999982
1.70 0.993828 2.06 0.999588 2.42 0.999984
1.71 0.994230 2.07 0.999620 2.43 0.999986
1.72 0.994612 2.08 0.999650 2.44 0.999987
1.73 0.994972 2.09 0.999680 2.45 0.999988
1.74 0.995309 2.10 0.999705 2.46 0.999989
1.75 0.995625 2.11 0.999723 2.47 0.999990
1.76 0.995922 2.12 0.999750 2.48 0.999991
1.77 0.996200 2.13 0.999770 2.49 0.999992
1.78 0.996460 2.14 0.999790 2.50 0.9099925
1.79 0.996704 2.15 0.999806 2.55 0.9999956
1.80 0.996932 2.16 0.999822 2.60 0.9999974
1.81 0.997146 2.17 0.999838 2.65 0.9999984
1.82 0.997346 2.18 0.999852 2.70 0.9999990
1.83 0.997533 2.19 0.999864 2.75 0.9999994
1.84 0.997707 2.20 0.999874 2.80 0.9999997
1.85 0.997870 2.21 0.999886 2.85 0.99999982
1.86 0.998023 2.22 0.999896 2.90 0.99999990
1.87 0.998145 2.23 0.999904 2.95 0.99999994

1.88 0.998297 2.24 0.999912 3.00 0.99999997

1.89 0.998421 2.25 0.999920

1.90 0.998536 2.26 0.999926

1.91 0.998644 2.27 0.999934

1.92 0.998744 2.28 0.999940
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Table T.7

Student distribution

\p 0.90 0.80 0.70 0.60 0.50 0.40 0.30

1 0.158 0.325 0.510 0.727 1.000 1.376 1.963

2 0.142 0.289 0.445 0.617 0.816 1.061 1.386

3 0.137 0.277 0.424 0.584 0.765 0.978 1.250

4 0.134 0.271 0.414 0.569 0.741 0.941 1.190

5 0.132 0.267 0.408 0.559 0.727 0.920 1.156

6 0.131 0.265 0.404 0.553 0.718 0.906 1.134

7 0.130 0.263 0.402 0.549 0.711 0.896 1.119

8 0.130 0.262 0.399 0.546 0.706 0.889 1.108

9 0.129 0.261 0.398 0.543 0.703 0.883 1.100

10 0.129 0.260 0.397 0.542 0.700 0.879 1.093

11 0.129 0.260 0.396 0.540 0.697 0.876 1.088

12 0.128 0.259 0.395 0.539 0.695 0.873 1.083

13 0.128 0.259 0.394 0.538 0.694 0.870 1.079

14 0.128 0.258 0.393 0.537 0.692 0.868 1.076

15 0.128 0.258 0.393 0.536 0.691 0.866 1,074

16 0.128 0.258 0.392 0.535 0.690 0.865 1.071

17 0.128 0.257 0.392 0.534 0.689 0.863 1.069

18 0.127 0.257 0.392 0.534 0.688 0.862 1.067

19 0.127 0.257 0.391 0.533 0.688 0.861 1.066

20 0.127 0.257 0.391 0.533 0.687 0.860 1.064

21 0.127 0.257 0.391 0.532 0.686 0.859 1.663
22 0.127 0.256 0.390 0.532 0.686 0.858 1.061
23 0.127 0.256 0.390 0.532 0.685 0.858 1.060
24 0.127 0.256 0.390 0.531 0.685 0.857 1.059
25 0.127 0.256 0.390 0.531 0.684 0.856 1.058

26 0.127 0.256 0.390 0.531 0.684 0.856 1.058
27 0.127 0.256 0.309 0.531 0.684 0.855 1.057
28 0.127 0.256 0.389 0.530 0.683 0.855 1.056
29 0.127 0.256 0.389 0.530 0.683 0.854 1.055
30 0.127 0.156 0.389 0.530 0.683 0.854 1.055

40 0.126 0.255 0.388 0.529 0.681 0.851 1.050
60 0.126 0.254 0.387 0.527 0.679 0.848 1.046

120 0.126 0.254 0.386 0.526 0.677 0.845 1.041
oo 0.126 0.253 0.385 0.524 0.674 0.842 1.036
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0.20 0.10 0.05 0.02 0.01 0.002
\p

3.078 6.314 12.706 31.821 63.057 636.619 1
1.886 2.920 4.303 6.965 9.925 31.598 2

1.638 2.353 3.182 4.541 5.841 12.941 3
1.533 2.132 2.776 3.747 4.604 8.610 4

1.476 2.015 2.571 3.365 4.032 6.859 5

1.440 1.943 2.447 3.143 3.707 5.959 6

1.415 1.895 2.365 2.998 3.499 5.405 7

1.397 1.860 2.306 2.896 3.355 5.041 8

1.383 1.833 2.262 2.821 3.250 4.781 9

1.372 1.812 2.228 2.764 3.169 4.587 10

1.363 1.796 2.201 2.718 3.106 4.437 11

1.356 1.782 2.179 2.681 3.055 4.318 12

1.350 1.771 2.160 2.650 3.012 4.221 13

1.345 1.761 2.145 2.624 2.977 4.140 14

1.341 1.753 2.131 2.602 2.947 4.073 15

1.337 1.746 2.120 2.583 2.921 4.015 16

1.333 1.740 2.110 2.567 2.898 3.965 17

1.330 1.734 2.101 2.552 2.878 3.922 18

1.328 1.729 2.093 2.539 2.861 3.883 19

1.325 1.725 2.086 2.528 2.845 3.850 20

1.323 1.721 2.080 2.518 2.831 3.819 21

1.321 1.717 2.074 2.508 2.819 3.792 22

1.319 1.714 2.069 2.500 2.807 3.767 23

1.318 1.711 2.064 2.492 2.797 3.745 24

1.316 1.708 2.060 2.485 2.787 3.725 25

1.315 1.706 2.056 2.479 2.779 3.707 26

1.314 1.703 2.052 2.473 2.771 3.690 27

1.313 1.701 2.048 2.467 2.763 3.674 28

1.311 1.699 2.045 2.462 2.756 3.659 29

1.310 1.697 2.042 2.457 2.750 3.646 30

1.303 1.684 2.021 2.423 2.704 3:551 40

1 296 1.671 2.(XX) 2.390 2.660 3.460 60

1.289
1.282

1.658
1.645

1.980
1.960

2.358
2.326

2.617
2.576

3.373
3.291

120
oo
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Table T.8

Table for the Poisson distribution

k\ 1 2 3 4

0 0.36783 0.13534 0.04978 0.01831
1 0.36788 0.27067 0.14936 0.07326
2 0.18394 0.27067 0.22404 0.14653
3 0.06131 0.18045 0.22404 0.19537
4 0.01532 0.09022 0.16803 0.19537
5 0.00306 0.03609 0.10082 0.15629
6 0.00051 0.01203 0.05040 0.10420
7 0.00007 0.00343 0.02160 0.05954
8 0.00085 0.00810 0.02977
9 0.00019 0.00270 0.01322

10 0.00003 0.00081 0.00529
11 0.00022 0.00192
12 0.00005 0.00064
13 0.00001 0.00019
14 0.00005
15 0.00001
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

324



*\ 5 10 15 16

0 0.00673 0.00004 0.00000 0.00000
1 0.03369 0.00045 0.00000 0.00000
2 0.08422 0.00227 0.00003 0.00001
3 0.14037 0.00756 0.00017 0.00007
4 0.17547 0.01891 0.00064 0.00030

5 0.17547 0.03783 0.00193 0.00098
6 0.14622 0.06305 0.00483 0.00262
7 0.10444 0.09007 0.01037 0.00599
8 0.06527 0.11260 0.01944 0.01198

9 0.03626 0.15511 0.03240 0.02131

10 0.01813 0.12511 0.04861 0.03409

11 0.00824 0.11374 0.06628 0.04959

12 0.00343 0.09478 0.08285 0.06612

13 0.00132 0.07290 0.09560 0.08138

14 0.00047 0.05207 0.10244 0.09301

15 0.00015 0.03471 0.10244 0.09921

16 0.00004 0.02169 0.09603 0.09921

17 0.00001 0.01276 0.08473 0.09338

18 0.00709 0.07061 O.O83OO

19 0.00373 0.05574 0.06989

20 0.00183 0.04181 0.05592

21 O.OOO88 0.02986 0.04260

22 0.00040 0.02036 0.03098

23 0.00017 0.01328 0.02155

24 0.00007 0.00830 0.01437

25 0.00002 0.00498 0.00919

26 0.00001 0.00287 0.00566
0.00159 0.00335
0.00085 0.00191
0.00044 0.00105
0.00022 0.00056

JU 0.00010 0.00029
31 0.00005 0.00014
32 0.00002 0.00007
33 0.00001 0.00003
34

325





LITERATURE

A) Books

A.l Chow, Ven Te: Handbook of Applied Hydrology. Me Graw Hill, New York. 1964.
A.2 Cramer, H.: Mathematical Methods of Statistics. 8th printing, Princeton Univ. Press, 1958.
A 3 Cramer H. and Leadbetter, M. R.: Stationary and Related Stochastic Processes. Wiley and 

Sons, New York. 1967.
A.4 Boob, J. L.: Stochastic Processes. Wiley and Sons, New York. 1953.
A 5 Ezekiel M. and Rox, K. A.: Methods of Correlation and Regression Analysis. Wiley and Sons, 

New York. 1959.
A.6 Feller, W.: An Introduction to Probability Theory and its Applications. Wiley and Sons, New 

York. 1957.
A 7 Ferguson, T. S.: Mathematical Statistics, A Decision Theoretic Approach. Academic Press 

New York—London. 1967.
A 8 Fisz M.: Probability Theory and Mathematical Statistics. 3rd ed. Wiley and Sons, New York.

1963.
A 9 Gnedenko, B. V.: The Theory of Probability. 4th ed. Chelsea, New York, 1968.
A 10 Hajek, J.:'Nonparametric Statistics. Holden Day Inc, San Francisco. 1969.
A.l 1 Hall, M. J.: Urban Hydrology. Elsevier S. P, London—New York. 1984.
A 12 Kartvelisvili, N. A.: Stochasticheskaya Gidrologiya. Gidrometeoizdat, Leningrad. 1975.
Ad3 Kendall, M.’: Rank Correlation Methods. Griffin London—New York. 1955.
A 14 Kendall’, M.G—Stuart, A.: The Advanced Theory of Statistics, I—3. Griffin, London. 1966.
A 15 Kolmogorov, A. N.: Foundations of the Theory of Probability. 2nd ed. Chelsea New York,

1 Jj\l’
A 16 Lehmann E L.: Testing Statistical HypoMex/r. Wiley and Sons, New York. 1959.
A 17 Lehmann’ E. L.: Nonparametrics. Holden Day Inc., San Francisco, 1975.
A 18 Lodve M • Probability Theory. D. Van Nostrand Company. Inc., Princeton. 1963.
A 19 Parzen E • Modern Probability Theory audits Applications. Wiley and Sons, New York. 1960.
A 20 Parzcm E.: Stochastic Processes. Holden Day Inc., San Francisco. 1962.
A 21 Reimann, J.—V. Nagy I.: Hydrological Statistics (in Hungarian). Tankonyvkiado, Budapest.

A.22

A.23
A.24
A.25

A.26
A.27

A.28

Reimann J.—T6th, L: Probability Calculus and Mathematical Statistics. (In Hungarian.) 

Tankdnyvkiadd, Budapest. 1985.
Rdnvi A • Probability Theory. AkaddmiaiKiadd, Budapest. 1970.
Shaw E M ■ Hydrology in Practice. Van Nostrand Reinhold Co. Ltd., Berkshire, England. 1983.
Vinca, ’lA Mathematical Statistics with Applications in Industry (in Hungarian). MQszak.

Wald A ' Statistical Decision Functions. Wiley and Sons, New York. 1961.
Yevjevic’h,'V.: Probability and Statistics in Hydrology. Water Resources Publications. Fort

Collins, Colorado, USA. 1972.
Yevjevich, V.: Stochastic Processes in Hydrology. Water Resources Publications, Fort Collins,

Colorado, USA. 1972.

327



B) Papers

B.l Arnold, H. J.: “Small Sample Power for the One-Sample Wilcoxon-Test for Non-normal 
Shift Alternatives”. Ann. Math. Statist. 27. 1767—1778. 1965.

B.2 Bardzik, A. /‘Hydrological Models of Flood-wave transformation in River-channels used for 
outflow prediction.” Proc, of the International Conference on “Hydrological Processes in the 
cathment". Cracow. 1986.

B.3 Bhattacharya, P. K.: “Estimation of probability density function and its derivates.” Sankhya 
29.373—382. 1967.

B.4 Billingsley, P.: “Statistical Methods in Markov Chains”. Ann. Math. Statist. 32. 12—40, 1961.
B.5 Blomqvist, N.: “On a Measure of Dependence between Two Random Variables”. Ann. Math. 

Statist. 21. 593—600. 1950.
B.6 Diaconis, P—Efron, B.: “Testing for independence in a two-way table. New interpretations of 

the chi-square statistics.” The Annals of Statistics. 1985. Vol. 13. No. 3. 845—874.
B.7 Gnedenko, B. V. and Korolyuk, V. C.: “On the Maximal Deviation between Two Empirical 

Distributions”. Dokl. Akad. Nauk, SSSR 80. 525—528, 1951.
B.8 Gupta, V. K.—Duckstein, L.—Peebles, R. W.: “On the joint distribution of the largest flood 

and its time of occurrence.” Water Resour. Res., 12/2. 295—304,1976.
B.9 Gumbel. E. J.: “Bivariate Exponential Distributions.” Amer. Stat. Association Journal, Decem­

ber. 1960.
B. 10 Haan, C. T—Johnson, H. P—Brakensiek, D. L.: “Hydrologic Modelling of Small watersheds”. 

ASAE Monograph. 5. 1982.
B.ll Hoeffding, W.: “A nonparametric test of independence.” Ann Math. Statist, 19. 546—557.
B.ll Karr, A.: “Two extreme value processes arising in hydrology.” J. Appl. Probab. 13. 190—194, 

1976.
B.12 Kawas, M. L.: “Stochastic Trigger Model for Flood Peaks”.

1. Development of the Model. Water Resour. Res. 18(2). 383—398, 1982.
2. Application of the Model to the Flood Peaks of Goksu—Karahacili. Water Resour. Res. 

18(2). 399—411, 1982.
B.13 Kiefer, J. and Wolfowitz, J.: “Optimum Designs in Regression Problems”. Ann Math. Statist. 

30. 271—294. 1959.
B.14 Konijn, H. S.: “On the Power of Certain Tests for Independence in Bivariate Populations”. 

Ann. Math. Statists. 27. 300—323, 1956.
B. 15 Konecny, F. and Nachtnebel, H. P.: “Extreme value Process and the Evaluation of Risk in 

Flood Analysis.” Arbeitsbericht, Institut f. Wasserwirtschaft, Universitat fUr Bodenkultur, 
Wien. 1983.

B.16 Kruskal, H. W.: “Ordinal Measures of Association.” Amer. Stat. Association Jornal, 1958.
B.17 Kuczera, G.: "Robust Flood Frequency Models”. Water Resour. Res. 18. 2. 315—324, 1982.
B.l 8 Lancaster, H. O.: “Ordinal Measures of Association” J. Ann. Statist. Assoc. 53.
B.19 Lehmann, E. L.: “The power of rank tests”. Ann. Math. Statist. 24. 23—42, 1953.
B.20 Lehmann, E. L.: “Some Concepts of Dependence”. Ann. Math. Statist. 37. 1137—1153. 1966.
B.21 Linfoot, E. H.: “An informational measure of Correlation”. Information and Control. 1. 

85—89.1957.
B.22 Lloyd, E. H.: “What is and what is not, a Markov Chain?” Journal of Hydrology, 22.1—28. 

1974.
B.23 Morgenstern, D.: “Einfachc Bcispiele zvvcidimensionaler Vcrtcilungcn.” Mitt. Math. Statist. 

8. 234—235. (1956)
B.24 Mosteller, F.: ‘On some useful “inefficient” statistics’. Unpublished thesis. Princeton Univ. 

1946.

328



B.25 Nadaraja, E. A.: “On nonparametric estimates of density functions and regression” Teor. 
Verojatnost i Primenen 10. 199—203, 1965.

B.26 Parzen, E.: “On estimation of probability density function and mode”. Ann. Math. Statist. 27. 
832—837.1956.

B.27 Rao, U. V. R.— Savage, I. R. and Sobel, M.: “Contributions to the Theory of Rank Order 
Statistics; The Two-sample Censored Case”. Ann. Math. Statist. 31. 415—426. 1960.

B.28 Reimann, J. and Vincze, 1.: “On the Comparison of Two Samples with Slightly Different 
Sizes”. Publ. Math. Inst. Hungar. Acad. Sci. Vol. V. Ser. A. Fasc 3. 1960.

B.29 Reimann, J.: “Unsymmetrical Random Walk on the Plane and in the Space with Absorbing 
Barriers”. Acta Math. Sci. Hung. Vol. XV. Fasc. 3—4. 1964.

B.30 Reimann, J.: “The Statistical Treatment of Flood Peaks”. UNESCO Technical Reports on 
Scientific and Practical Results of Selected IHD Projects. Paris. 1974.

B.31 Reimann, J.: “Investigation of positively quadrant dependent bivariate distributions.” Peri­
odica Polytechnica. Vol. 32. Nos 1—2.

B.32 Revesz, P.: “On Empirical Density Function”. Periodica Math. Hung. Vol. 2. (1—4) 85—110. 
1972.

B.33 Rosenblatt, M.: “Remarks on some non-parametric, estimates of density function”. Ann. 
Math. Statist. 27. 832—837. 1956.

B.34 Sarkadi, K.: “On Testing for Normality”. Publ. Math. Inst. Hungar. Acad. Sci. Vol V. Ser A. 
Fasc. 3. 1960.

B.35 Spearman, C.: “The proof and measurement of association between two things”. Amer. Journal 
of Psychology, 15. (1904)

B.36 Taesombut, V. and Yevjevic, V.: “Use of Partial Flood Series of Estimating. Distribution of 
Maximum Annual Flood Peak”. Hydrology Papers, Colorado State Univ. Fort Collins, Colo­
rado, Okt. 1978.

B.37 Takacs L.: “On holding-time problems” (in Hungarian). MT A HI. Oszt. Kozlemenyei, VII. 
3—4.1957.

B.38 Todorovic, P.: “Stochastic Models of Floods.” Water Resour. Res., 14. (2) 345—356, 1978.
B.39 Todorovic, P. and Woolhiser, D. A.: “On the time when the extreme flood occurs”. Water 

Resour. Res. 7. (5) 1144—1150. 1971.
BAO Tusnady, G.: “On Testing Density Functions”. Periodica Math. Hung. 5. 161—169. 1974.
B.41 Wald, A.: “The fitting of straight lines if both variables are subject to error”. Ann. Math. Sta­

tist. 11. No. 3. 1940.
B.42 Wald, A. and Wolfowitz, J.: “On a Test Wether Two Samples Are from the Same Population”. 

Ann. Math. Statist. 11. 147—162. 1940.
B.43 Waylen, P. and Ming-Ko Woo: “Prediction of Annual Floods Generated by Mixed Processes”. 

Water Resour. Res. 18 (4). 1283 1286, 1982.
B.44 Vincze, I.: “On some joint distributions and joint limiting distributions in the theory of order 

statistics”. Publ. Math. Inst. Hungar. Acad. Sci. 4. 29—47. 1959.
B.45 Vincze, J.: “On the Cramir—Frtchet—Rao inequality in the nonregular case”. Contributions 

to Statistics. Academia. Prague. 1979. .... ,
B 46 Vincze J • “Remark to the derivation of the Cramir Frechet Rao inequality in the regular 

case". Lecture notes in mathematical statistics. Springer-Verlag, Wien, 1986.
B.47 Wolfowitz, J.: "Asymptotic Distribution of Runs Up and Down . Ann. Math. Statist. 15.

B.48 Yamoto, T-: "On Measures of Association and Related Problems". Ann. Inst. Statist.

B.49 Zelenhasic, E.: “Theoretical Probability Distributions for Flood Peaks . Hydrology Papers. 
42. Colorado State Univ. Fort Collins. 1970.

329



C) Tables

C.l Bolshev, L. N.—Smirnov, N. W.: Statistical Tables (in Russian) Nauka. Moscow. 1969.
C.2 Finney, D. J.—Latscha, R.—Benneth, B. M.—Hsu, P.: Tables for Testing Significance in a 

2x2 Contingency Table. Cambridge. Univ. Press. 1963.
C.3 Hald, A.: Statistical Tables and Formulas, Wiley and Sons. New York. 1960.
C.4 Owen, D. B.: Tables for computing bivariate normal probabilities. Ann. Math. Statist. 27. 1956.
C.5 Owen, D. B.: Handbook of Statistical Tables. Addison—Wesley. Reading Mass. 1962.
C.6 Pearson, E. S.—Hartley, H. O.: Biometrical Tables for Statistician. Cambridge University 

Press. 1962.













The statistical analysis of flood-waves will be efficient only if the 
hydrologist possesses a rather broad statistical knowledge and the methods 
of statistics are combined according to the nature of the problem at hand. 
This book tries to provide for this task as far as the limits of its reasonable 
extent will allow.

The basic objective of this book is to introduce the reader to the 
probabilistic and statistical model building techniques related to flood­
problems (or other hydrologic problems).

In order to understand techniques presented in this book nothing 
beyond the knowledge of elementary calculus and combinatorial tools is 
assumed.

And now a few words about the structure of the book. The first few 
chapters summarize the bases of probability theory, the elements of Markov- 
chains and Markov processes, which are illustrated through a number of 
examples (chapters 1—3). Chapters 4—6 cover the basic methods of 
mathematical statistical analysis and decision theory, illustrated with 
hydrological problems. The methods are of general character and are 
applicable in many branches of engineering practice. Chapters 7 and 8 are 
devoted to the investigation of connections between random variables. This 
part of the book is the so called generalized correlation and regression theory 
which is a very useful tool in the engineering research and planning.

The book was written in the hope that the statistical techniques 
contained therein will help the hydrologist, the hydrologist student, or other 
civil engineers to get the most possible information from the results of 
observations for practical purposes.
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