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PREFACE

The purpose of this book is to give a mathematically rigorous presentation of 
the theory of tree automata, recognizable forests, and tree transformations. 
Apart from its intrinsic interest this theory offers some new perspectives to var
ious parts of mathematical linguistics. It has also been applied to some decision 
problems of logic, and it provides tools for syntactic pattern recognition. We 
have not even tried to discuss all aspects of the subject or any of the applications, 
but enough central material has been included to give the reader a firm basis for 
further studies. Being relatively new and very manyfaceted, the field still lacks 
a uniform widely accepted formalism. We have chosen the language of universal 
algebra as our vehicle of presentation. However, we have not assumed that the 
reader is familiar with universal algebra; the preparatory sections in Chapter I 
should make the book self-contained in this respect. On the other hand, it is 
natural to assume that anyone interested in such a book has some general mathe
matical training and some knowledge of finite automata and formal languages.

The book consists of four chapters, a bibliography and an index. The first 
chapter contains an exposition of the necessary universal algebra and lattice 
theory, as well as a quick review of finite automata and formal languages. We also 
recommend some books on these subjects. In Chapter II trees, forests, tree recog
nizers, tree grammars, and some operations on forests are introduced. Several 
characterizations and closure properties of recognizable forests are presented. 
Chapter III is devoted to the connections between recognizable forests and context- 
free languages. Chapter IV deals with tree transducers and tree transformations. 
Chapters II-IV contain some exercises. Each of these chapters is concluded with 
some historical and bibliographical comments. We also point out some topics 
not discussed in the book. We have tried to make the Bibliography as complete 
as possible. Of course, it has not always been easy to decide whether a given item 

should be included or not. .
We want to thank our colleagues and the staffs at our institutions for the good 

working atmosphere in which this book was written. Dr. Andris Addm and 
Professor IstvAn Peik gave the text a careful scrutiny. We gratefully acknowledge 
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their many remarks. We are also indebted to Dr. Zoltan fisik for his very helpful 
comments on Chapter IV. We wish to express our warmest thanks to Mrs. Piroska 
Folberth for performing very competently the difficult task of typing the manuscript. 
Also, we want to thank our wives and daughters for their support and for putting 
so gracefully up with the inconveniences inevitably caused by our undertaking.

The writing of the book has involved several trips between Turku and Szeged. 
We gratefully acknowledge the financial support provided by the Academy of 
Finland, the Hungarian Academy of Sciences, the Jdnos Bolyai Mathematical 
Society, the University of Szeged, and the University of Turku. Our work was 
also furthered by a possibility for the first-named author to spend a term at the 
Tampere University of Technology. For this thanks are due Professor Timo 
Lepistd.
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NOTES TO THE READER

The theorems, lemmas, corollaries, definitions and examples are all numbered 
by the same numbering within each section. The number of the chapter is mentioned 
only in references to items belonging to another chapter. The end of a proof or 
an example is indicated by the mark □. It appears immediately after a theorem, 
lemma or corollary if this is not followed by a proof. The references to the liter
ature are by the author(s) and the year of publication, and they can be found in 
the Bibliography. In a few cases we refer to a book mentioned at the end of 
Chapter I.
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CHAPTER I

PRELIMINARIES

In this chapter we shall review some basic concepts and results from the theories 
of automata, formal languages, and universal algebras. It is reasonable to assume 
that a potential reader of this book already knows something about automata 
and formal languages. On the other hand, we do not presuppose any knowledge 
of universal algebra. These two assumptions suggested the styles and extents of the 
following seven sections.

Section 1 (Sets, relations and mappings) may be skimmed through for termi
nology and notation.

Sections 2 and 3 present the required universal algebraic concepts and results. 
These are not many, but they should be mastered well as the very basic concepts 
of the theory of tree automata are defined in terms of universal algebra. We have 
tried to make the book self-contained in this respect, but a reader who wants to 
pursue further the algebraic aspects of the theory should certainly consult one of 
the references on universal algebra.

The lattice theory presented in Section 4 is less important here, and the reading 
of this section may be postponed until needed.

Sections 5, 6 and 7 survey some of the most essential facts about finite recogniz
ers, regular languages context-free grammars, and (generalized) sequential ma
chines. A reader less familiar with these matters would do wisely to look up these 
subjects in some of the references given at the end of the chapter.

1. SETS, RELATIONS AND MAPPINGS

The set theory needed here is very elementary and most of our set theoretic 
notation is well-known. However, a few conventions should be pointed out:

(i) A S B means that the set A is a subset of the set B. Proper inclusion is 
denoted by AcB.

(ii) 0 denotes the empty set.
(iii) |/<| denotes the cardinality of the set A.
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(iv) The power set of a set A, i.e., the set of all subsets of A, is denoted by pA.
(v) The union of a family (A^itl) of subsets (indexed by I) of some set is 

written as Similarly, is the intersection.
(vi) The set {x€/4|P1(x), .... Pt(x)} of all elements x in A with the properties 

P1,...,Pk may also be written as {x|Pj(x), ...,P*(x)} when A is understood 
from the context. We shall use this notation in the following more general form, 
too. Suppose f(xx, ..., xm) is an object defined in some way in terms of the objects

..., xm. Then
{/(Xi, ...,xm)}

is the set of all such objects constructed from objects Xj, ..., xm satisfying the 
condition P(xk, ...,xm). Furthermore, we use

{A(X1> Xm)> , ..., Xm)}

as a short form for the union

UIxb ....xj^, ...,xm)}U...UU(xlt ...,xm)|P(x15 ....xj}.

(vii) If there is no danger of confusion, we may write simply a for the one-ele
ment set {a}. Of course, we should not write 0 for {0}.

Sometimes we employ some notation from logic as abbreviations:
(i) “(Vx€^t)P(x)” states that P(x) holds for all xtA.
(ii) “(3%e^)P(x)” states that there exists an x in A such that P(x) holds.

(iii) “P^Q" means that Q holds if P holds.
(iv) “PoQ” states that the conditions P and Q are equivalent, i.e., both of 

them hold or then neither one holds.
(v) “PA Q” is the statement that both P and Q hold. Similarly, “P V Q” states 

that at least one of P and Q holds.
The numbers dealt with here are always integers and mostly even non-nega- 

tive integers. When we write “... for all nSl” we mean, in fact, for all 
integers n£l”. The set of all integers is denoted by Z, the set of the natural 
numbers 1, 2, ... by N, and the set of all non-negative integers by No.

Let A and B be sets andg£.4XPa (binary) relation from A to B. The fact that 
(a, b)tg (a£A, btB) is also expressed by writing agb or a=b(g). The opposite 
case may be expressed by agb or by a^b(g). For any atA, we put

ag = {i>€P|aeb}.

This notation is extended to subsets of A:

Atg = U(ae|a€^i) for Aj s A.

The converse of g is the relation

{(b, a)|(o, i>)€c} S B^A.
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Obviously, 
bp-1 = {a€?4|a0b} 

and
£i0-1=

for all b£B and B^B. The domain of q is the subset dom (q)=Bq~1 of A, 
and its range is the subset range (q)=Aq of B.

The product or composition of two relations qzAxB and tsBXC is the 
relation

@ot = {(a, c)|(3b€5)ag&Tc} S AXC.

In this definition we used the short form apbrc to express the fact that aob and 
bxc. Often we write qr for gor. The product of relations is associative. We note 
also the equality (eoT)-1^-1©^1.

Consider now (binary) relations on a set A, i.e. subsets of AxA. These include 
the diagonal relation bA= {(u, and the total relation ia=AxA. For
any relation q on A we define the powers qn (n^O) with respect to the product 
of relations:

1° Q° = ^a and
2° g"+1 = g"o0 for nSO.

The relation q £ A X A is called

(a) reflexive if dA S q,
(b) symmetric if e-1 —
(c) antisymmetric if and
(d) transitive if g2 S q.
The intersection of any reflexive relations (on a given A) is reflexive, and the 

intersection of transitive relations is transitive. Thus there exists for every 
QSAXA a unique minimal reflexive, transitive relation q* containing q. It is 
called the reflexive, transitive closure of q. One verifies easily that

q* = 5xUe Ue2UesU...,

i.e., for any a, b£A we have aq^b iff
a = aiQaiQa^... a^qa,, = b

for some n£l and ait a„tA.
A relation on A is called an equivalence relation on A, if it is reflexive, symmetric 

and transitive. The set of all equivalence relations on A is denoted by E(A). 
Clearly, bA£E(A) and iAtE(A). Let p be an equivalence relation on J. The e- 
class (or the equivalence class modulo q) of an element at A is the set aq. Obviously, 
aQb iff aq=bq. We shall also write a/q for aq and extend this notation to subsets 
AtzA and n-tuples 8=^.......an) of elements of A (n^l): A1/q= {a/q^tAj
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and ...,aje). The quotient set of A modulo to q is A/q. Obviously,
A/q is a partition on A, that is, every element of A belongs to exactly one g-class. 
On the other hand, every partition on A can be obtained this way as the quotient 
set from a unique equivalence relation and there is a natural one-to-one corre
spondence between the partitions on A and E(A). The cardinality of A/q is called 
the index of q^E{A). If is finite, we say that q is of finite index. We say that 
q^E{A) saturates the subset Hz A if Hq=H, i.e., if H is the union of some 
g-classes.

A mapping or a function from a set A to a set B is a triple (A, B, ip), where 
cpsAxB is a relation such that for every aQA there exists exactly one b£B 
satisfying a<pb. As usual we write (p: A-^B and say that q> is a mapping from 
A to B. If acpb (a^A, b^Bf b is called the image of a and a an inverse image of b. 
This is expressed by writing b—a(p, b=(p(a) or <p: a^-b. For a subset At of 
A we also use the two notations A^ and (pfA^ for the set {u<p|u€^i}. The 
converse <p-1 of cp is always defined as a relation (s BxA), but it is usually not 
a mapping from B to A. Again, <p~x{Bj) will sometimes be used instead of B^cp 1 
when B^B. Note that dom(<p)=/l and range (<p)£.S. The set of all mappings 
from A to B is denoted by BA.

The composition or product of two mappings cp: A-^B and i^: B-*C is 
the mapping

: A -* C

where <pj/ is the product of cp and ip as relations. Clearly, acp\]s=(acp)\l/ for all 
a^A.

The restriction of a mapping cp: A--B to a subset C of A is the mapping

cp\C: C^B

where cp\C=cpf)(CxB). If C-B is obtained from cp: A^B as the restric
tion of cp to C, i.e., Cs A and i]/=cp\C, then we say also that cp is an extension 
of to A.

The kernel (pep-1 of a mapping cp: A — B is an equivalence relation on A and 
a1=a2(cpcp~1) iff a^cp^a^cp (a^a^A). On the other hand, one can associate 
with every 0^E{A) a mapping

0^:A-Aie, a^aO, (a^A)

such that the kernel of 0 is 0. This 0 h is called the natural mapping associated 
with 0.

A mapping cp: A — B is called
(i) injective (or an injection), if cpcp~l = bA,

(ii) surjective (or a surjection), if range (cp) = B, and
(iii) bijective (or a bijection), if it is injective and surjective.
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If <p: A^B is surjective, one says also that <p is a mapping of A onto B. It is 
obvious that the natural mapping 0^ is always surjective (6£E(A)). The diagonal 
relation of a set A defines the identity mapping A—A, a^a(a^A). It is denoted 
by U-

We shall also meet partial mappings, that is, mappings for which the image 
of some elements may be undefined. A partial mapping from A to B is defined by 
a relation cpcAxB such that |a<p|gl for all a£,A. Again, we write rp: A^B. 
If a<p = Q, then we say that (p is undefined for a(a€A). The notations and termi
nology introduced above for mappings apply to partial mappings, too, although 
dom(<p) may be a proper subset of A when <p: A—B is a partial mapping.

It is convenient to think of the elements of a cartesian product A1X...XAn 
as n-tuples (a^ ...,a„) with a^A^ an£An. We adopt the definition of an 
ordinal number n as the set of all ordinals smaller than n: 0=0, 1 = {0}, 2 = {0, 1} 
etc. and, in general, n= {0, 1, ..., n-1}. Then A^X... X A„ can also be defined as 
the set of all mappings

(p: n—AiU... UA„

such that i(p£Ai+1 for i=0, 1, ..., n-1. Of course, we may identify such a rp 
with the n-tuple (Ocp, l<p, ...,(n-l)(p). Now the cartesian power An=AX...XA 
(n times) is the set of all mappings rp: n-A. In particular, ^°={0} since 0 
is the only mapping from 0 to A. Note that the notation A" is consistent with our 
earlier notation BA for the set of all mappings from A to B.

We shall also need countably infinite sequences of elements. Let a>= {0, 1, 2, ...} 
be the smallest infinite ordinal and A any set. The elements of Am are called <u- 
sequences. Thus an co-sequence of elements of A is a mapping

(p; co -* A 
which we may also write as

(0<p, l(p, •••» tUp,

We conclude the section by considering operations. These are special mappings 
and are among the most fundamental concepts of algebra. Let rn^O. An m-ary 
operation on a set A is a mapping from Am to A. If rp: A --A is an m-ary opera
tion on A, then (p assigns to every m-tuplc (aj, ..., am) of elements of A a unique 
element of A which we write as tp^, ..., am). The number m is called the arity 
or the rank of <p. Most operations encountered in the usual algebraic systems 
(groups, rings, lattices etc.) have rank 0, 1 or 2. A few comments on these special 
cases:

(i) A 0-ary operation <p: {0}-^ is completely determined by its only image 
(p(&), and often <p is given simply by naming this element. Note that here 0 may 
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also be seen as the empty sequence of elements, and often one writes (p( ), or 

just (p, for ^(0).
(ii) When m—\, we have a mapping from A to itself. Such operations are 

called unary.
(iii) An operation of rank 2 is called a binary operation. For example, the 

addition and the multiplication in a ring are binary operations. In most such 
concrete examples one uses the infix notation for binary operations. Thus it is 
customary to write the ring operations in the form a+b and a-b instead of 

+(a, i) and • (a, b), respectively.
A partial m-ary operation on a set A is a partial mapping from A to A. For 

any partial m-ary operation (p: Am—A and subset B of A we have a partial

where If (p is an operation and B is closed with respect to
(p, i.e., (p^, ...,a^B whenever alt ...,am^B, then cp\B is an m-ary opera
tion on B called the restriction of (p to B. Often the same symbol is used to denote 
an operation and its restrictions.

Suppose we are given a set A, k m-ary operations <pr, ..., on A and a A-ary 
operation on A (m, ksO). The composition of <plf ...,(pk with is the m-ary 
operation i//(cpi,..., (Pk) defined so that

<Pk)(al> ■”» arn) =

for all alt ...,am€A. Note that the possibilities k=0 or m=0 are included. 
If k—0, then the composition is an m-ary operation with the constant image 
i^(0). If m=0, then the composition is a 0-ary operation with the single value 

<A(<Pi(0), ..., <p*(0))-
Let <p be an m-ary operation on a set A and Alt ..., Am any subsets of A. Then 

we write
<p(Alt ..., Am) = {<p(ai, •••»

Thus <p is extended to an m-ary operation on the power set pA. In general, there 
is no need to introduce a new notation for this extension.

2. UNIVERSAL ALGEBRAS

In this and the next section some concepts and results from universal algebra 
are surveyed. Universal algebra is an extensive field of mathematics, but we need 
really just certain basic parts of it. On the other hand, a good grasp of the mate
rial of these sections is essential to an understanding of the rest of the book.
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Generally speaking, an algebra (or a universal algebra) is a set together with 
a set of operations on this set. There may be a finite or an infinite number of 
operations, but we insist that they all are finitary, i.e., the ranks are finite as in 
the definition of operations given in the previous section. As a first example we 
consider the algebra of subsets of a given set U. In the power set pU we have 
several naturally defined operations. For example, there is a binary operation U 
that forms the union AUB of any two A, B^pU. Similarly, we have the binary 
operation IT that forms the intersection of two subsets of U. A unary operation 
is obtained if we map every A&pU to its complement AC=U-A. Further
more, we introduce two 0-ary operations, one that has 0 and one that has U as 
its image. Of course, an infinite number of operations could be defined on pU, 
but if we restrict ourselves to those defined above, we get the algebra

(pU, U, n,e, 0, U)

with two binary, one unary and two 0-ary operations. Note that we get such an 
algebra for each set U. In fact, all of these algebras can be viewed as special 
instances of a general class of algebras known as Boolean algebras.

The example brings forth an important point. In algebra, and this will be the 
case here, too, one is generally not interested just in individual algebras, but 
rather in whole classes of algebras. Algebras in such a class are all “similar” 
in the sense that there is a natural correspondence between the operations of 
any two algebras of the class. Such a correspondence of operations is needed 
when one defines any concept, such as homomorphisms or direct products, in
volving more than one algebra. For example, the multiplications of any two 
groups correspond to each other, and a homomorphism of groups should pre
serve the multiplication. We shall now introduce a convenient vehicle to define 
such a class of similar algebras.

Definition 2.1. An operator domain is a set Z together with a mapping
r: Z — No

that assigns to every <7^ an arity, or rank, r(a). For any mSO, 
Zm = = m}

is the set of the m-ary operators (or operational symbols).
From now on Z is an operator domain. The mapping r is usually not mentioned, 

but we denote by r(Z) the set of all msQ such that Zm^9. One can write Z 
as the disjoint union Z0UZxUZaU... from which the empty sets will be omitted. 

Definition 2.2. A Z-algebrad is a pair consisting of a nonempty set A (of elements 
of.s/) and a mapping that assigns to every operator a^Z an w-ary operation 

a*: Am A,
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where m is the arity of a. The operation is called the realization of a in sd. 
The mapping will not be mentioned explicitly, but we write d=(A, Z). 
The Z-algebra is finite if A is finite, and it is of finite type if Z is finite. When 
Z is not specified, or not emphasized, we speak simply about "algebras”. An 
algebra with just one element is called trivial.

In general, rf=(A, Z), &=(B, Z) and %=(C, Z), possibly equipped with 
subscripts, will be Z-algebras. The realizations of an operator a€Z in these 
algebras are denoted by a^, and a*, respectively.

In the previous example of subset algebras we would have Z = Z0UZjUZ2 
with (for example) Z0={0, 1}, Z1={“|} and Z2={A, V}- The algebra of the 
subsets of a set U is then the Z-algebra where A = p U and the operators are 
realized as follows: 0^=0, l^=U, Y=c (complement in U), A^A 
(intersection) and V — U (union).

Note that the possibility w = 0 is not excluded when we consider generally 
an m-ary operation. For cCZo one often writes instead of ) or a (0) 
(this involves the harmless confusion of a 0-ary operation and its value). When 
Z={<Ti, ..., trj is finite, one usually writes s2=(A, alt..., ok) instead of 
rf=(A, Z).

We introduce now several concepts related to algebras.

Definition 2.3. The Z-algebra is a subalgebra of the Z-algebrast if Bq A and 
aa=a^\B for all cr€Z.

If is a subalgebra ofj/, then B is a closed subset ofst, i.e., (bk, ..., b^^B 
for all (wsO) and bt, ...,bm^B. For every nonempty closed subset 
B ofst, there is exactly one way to realize the operators on B in such a way that 
we get a subalgebra 26 of st'. obviously every a® should be the restriction a \B 
of the corresponding operation of st to B. Hence, a subalgebra is completely 
determined by its set of elements and one may call this subset a subalgebra. 11 a 
is a 0-ary operator, then every subalgebra of st contains the element o*. If Zo 
is empty, then 0 is a closed subset, but we do not count it among the subalgebras.

It is easy to see that the intersection of any family of closed subsets of a given 
algebra st is again closed. Thus we have for any HqA a unique minimal closed 
subset containing H:

[//] = n (B\H Q B Q A, B closed).

If HA0 or Zo^0, then [H] is also nonempty and thus a subalgebra. It is called 
the subalgebra generated by H. If Zo=0, then [0] = 0. A generating set of st 
is a subset He A such that [H]=A and is said to definitely generated if it 
has a finite generating set. It is clear that every finite algebra is finitely generated.
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Definition 2.4. A homomorphism from a ^-algebra sd to a ^-algebra is a mapping 
<p: A^B such that for all m^, and ax, ...,a„fA,

...,a^<p = ^(a^,-,am<p).

We write then (p: sd-*lI6. This homomorphism is called

(a) an epimorphism, if tp is surjective,
(b) a monomorphism, if <p is injective, and
(c) an isomorphism, if <p is bijective.

If there exists an epimorphism from sd to then is said to be an epimorphic 
image of j/. A monomorphism is also called an embedding. If there is an isomor
phism from j/ to 39, thensd and 0 are isomorphic and we write sd^39. Homo
morphisms are often also called morphisms.

If sd^39, then j/ and are the same algebra from the abstract point of view. 
An easy computation shows that the composition of two homomorphisms 
cp: sd-39 and 39-^^ is a homomorphism from.2/ to

A homomorphism is a mapping that is compatible with the operations of the 
algebras. For example, let j/=(Z, +) be the algebra of the integers with the 
usual addition as the only operation, n = l and ^=(Z„, +) the algebra where 
Z„= {0, 1, ..., n —1} and the sum is formed modulo n. Then the mapping 
<p:Z-Z„ that maps every aCL to its remainder r„(a) modulo n (0^r„(a)<n) 
is an epimorphism from sd to 39. Of course, the homomorphisms defined in group 
theory, lattice theory etc. provide further general examples.

The proof of the following lemma is straightforward and thus it is omitted.

Lemina 2.5. Let tp: sd - 39 be a homomorphism. If is a subalgebra of sd, then 
C<p is a subalgebra of 39. If 39 is a subalgebra of 39 and Dtp-1 is nonempty, then 
Dy"1 is a subalgebra ofsd. □

The following lemma contains an important observation.

Lemma 2.6. Let cp:sd^39 and \fi:sd^d9 be two homomorphisms and H a 
generating set ofsd. If ip\H=^\H, then tp=^. In other words, a homomorphism 
is completely determined by its restriction to a generating set.

Proof. Let C= {a£A\a<p=at}. Then H^C by the assumption. If m^O, 
and ax,...,am^C, then 0"^, ..., am)€C:

a^(ax, .......am<p) = ^(a^, ...,am)ij/.

Hence C is closed and we get C—A. This implies <p — ^- 
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We define now two concepts closely related to homomorphisms, namely 
congruences and quotient algebras.
Definition 2.7. A congruence (relation) of si is an equivalence relation on A which 
is invariant with respect to all operations (<r€Z). A relation q^AxA is 
said to be invariant with respect to an m-ary operation f: Am^A if

Z(«i» -,am) =/(&., ...» ^(g)

for all elements alt am, blf ...,bm£A such that

th = bls ...,am = bm(Q).

The set of all congruences of an algebra^ is denoted by C(sf).

Every algebra st has at least the trivial congruences bA and iA. For q£C(s/), 
the g-class aQ of an element a£A is also called a congruence class (modulo g). 
The partition A/q of A defined by the congruence classes is compatible in the 
sense that for all m^O, o^Zm and avo, ...,amQ^AlQ there is a class aQ such 
that

...,amQ) £ aQ.

Obviously, we can choose 0=0^ (alf ..., am). It is also easy to see that an equi
valence relation q£E(A) is a congruence ofj/ only in case A/q is a compatible 
partition. In fact, in automata theory it is usual to deal with compatible parti
tions (also called SP partitions) rather than with congruences, but both concepts 
convey the same idea.

The fact that A/q is a compatible partition for any q£C(s/) also justifies the 
following definition; the operations are well-defined.

Definition 2.8. The quotient algebra st/Q=(A/Q, Z) of a Z-algebra st by a cong
ruence q^Clst} is defined as follows. For any m^Q, o€Zm and alt ...,am^A 
we put

cr^«(Uie, ..., amQ) = ^(ai, ..., a^Q.

The definition of a^lQ may be explained as follows. To compute 
...,amQ) one takes a representative from each of the p-classes, say 

...,am, computes o"** for the representatives and forms then the g-class of 
the resulting element.

Homomorphisms, congruences and quotient algebras are closely related to 
each other as the following three theorems show.

Theorem 2.9. Fer any Q^C(si), the natural mapping a^aQ is an epimor
phism st—st/Q (the natural homomorphism/
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Proof. We know that 0^ is a surjection from A to A/q so it suffices to verify 
that it is a homomorphism: for all m^Q, and alt ...,am£A,

^(a^ aje1’ = ^{a^,am)@ = ...» amQ) =

= ...,ame”). □

Theorem 2.10. The kernel (py^1 of any homomorphism (pi si—Si is a congruence 
of st.

Proof. Consider any w^O, and elements a1,...,am, a[.......am€A such 
that

a! = a{, ...,am = a'^qxp^).

Then a1q>=a'1(p, ...,am(p=a'm(p, which implies 0^(0^ ...,am)(p=ff^(a1(p, ...,am(p)= 
=ox{a2cp. ...,am(p')=ait(a'1,...,am)(p. This means that a^{alt a„)= 
= 0^^, a'^iqjcp-1) as required. □

Theorem 2.11. Every epimorphic image of an algebra si is isomorphic to some 
quotient algebra of si.

Proof. Let (pi si-Si be an epimorphism and its kernel. We claim
that Si^si/Q. The required isomorphism si/O-Si is shown to be given by 

ad>—a(p (at A).

For any a1,a2€A, 
a^ = a20\l/ iff u1<p = a2<p 

iff cq = aa(0).

This shows that iA is well-defined (i.e., adt is independent of the choice of the 
representative at A of the 0-class a9) and injective. Since (p is surjective, it is 
clear that $ is surjective, too. It remains to be shown that is a homomorphism. 
Let m^O, and alt ...,amtA. Then

= ...,a^(p

= aa(a2(p, ...,am(p)
= am0i]/). □

Taken together, Theorems 2.9 and 2.11 say that the epimorphic images of an 
algebra are exactly its quotient algebras (when one does not distinguish between 

isomorphic algebras).
Next, direct products of algebras are introduced. We may restrict ourselves 

to the case of a finite number of factors.
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Definition 2.12. The direct product of two Z-algebras and # is the Z-algebra 

sdXdA = (AXB,Z),

where the operations are defined so that
b^, bj) = ...,am), ...,bm))

for all m^0,aeZm and (au b^,(am, bJ^AxB. The kth (Indirect 
power sdk of the Z-algebra 3/ is defined inductively:

(i) j/° —({0}, Z) is the trivial Z-algebra.
(ii) sdk^=sdkXsd for all k^O.
It is easy to see that direct products are associative in the sense that 

(jdX^X^sdX(^XV) for all sd, SA and Both of these products can be 
written simply as sdX^X^ and their elements may be identified with the triples 
(a, b, c) with a^A, b^B and c^C. More generally, one can define the direct 
product jd^.-Xjdk of k (fcsO) Z-algebras as an algebra with A^.-XAk 
as its set of elements and operations performed componentwise. It is easy to see 
that the projections

Ttp AiX...XAk-At, (di, ...,ak)'—ai
(i= 1,..., k) are epimorphisms from^X... Xsdk to the respective factor algebras 
jdi. Hence, every factor in a direct product is an epimorphic image of the direct 
product.

We shall also need the following, perhaps, less usual, way to construct a new 
algebra from a given one.

Definition 2.13. The subset algebra (or power algebra') psd={pA,B) of a Z- 
algebraj/ is defined as follows. If msO, and Hi, ..., Hm£pA, then put

..., Hm) =

Note that the singleton sets {a} (a^A) form in pj/ a subalgebra isomorphic 
to sd. If Zo=0, psd has the trivial subalgebra {0}.

We conclude this section with a simple example illustrating these constructions.

Example 2.15. Suppose Z consists of one binary operator a and a nullary operator 
y. Let sd=({a, b}, Z) be a Z-algebra such that y*=a and a^(a, a)~a^{a, b)= 
—a^(b,a)=a, a^(b,b)=b. Consider first the direct power sdz=sdXsd. If we

aa ab ba bb
aa aa aa aa aa
ab aa ab aa ab
ba aa aa ba ba
bb aa ab ba bb
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write aa for (a, a) etc., then y^=aa and is given by the above multi
plication table. Let us now construct the subset algebra. The value of the 0-ary 
operation is and the operation is given by the table below.

0 w {b} {a, b}
0 0 0 0 0

{«} 0 {a} W W
{b} 0 {a} (b} {a, b}

{a, b} 0 {a} {a, b} {a, b} □

3. TERMS, POLYNOMIAL FUNCTIONS AND FREE ALGEBRAS

The concepts “term” and “polynomial function” are all-important in our 
modelling of the theory of tree automata. Let us consider an introductory example. 
An expression like (x+yXy+z), such expressions are called terms represents 
in a natural manner a function of the three variables x, y, and z. Two things should 
be pointed out here. First of all, the term defines such a function in any algebra 
with operations denoted by the operators appearing in the term. In our case 
it could define, for example, a mapping Z^Z or a mapping R^R depending 
on whether the addition and multiplication are interpreted as those of integers 
or those of real numbers. Generally speaking, the terms are determined by the 
operator domain, but they define operations in all algebras with that operator 
domain. Secondly, we note that the term not only defines a function but it a so 
describes a way to compute its values from the values of the variables once the 
operations of the algebra in question are known. In fact algebras can be viewed 
as devices that evaluate terms. When we interpret (in Chapter II) terms as trees, 
the step from algebras to tree automata is not long.

From now on, Y will be a set disjoint from the operator domain Z." 
of X are called variables. Other symbols used for sets of variables are Y and Z. 

Definition 3.1. The set ^(Y) of E-termS in X, or EX-terms for short, is defined a 

follows:

52 INFIX') whenever znsO, and F^CX), and

w be obtained by applyine the rules (i) and (ii) a Suite

number of times.
net bv rule (ii) the ZY-term cr(). It is convenient

Ifo is a 0-ary-opera 8 definition of F^X) may be reformulated
to write just <r for such a term. • nv
as follows.
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Definition 3.1’. The set F^X) of L^-terms is defined as follows:

(i)
(ii) ..., t^F^X) whenever m>0, and tt.......t^F^X), and

(iii) every Z^-term can be obtained by applying the rules (i) and (ii) a finite 
number of times.

When Z and X are unspecified or unemphasized, we shall speak simply about 
terms. The inductive definition of F^X) suggests a useful method to deal with 
terms. It could be called term induction. If we want to define a property or quantity 
c(t) for every Zy-term t, it suffices

(i) to define c(t) for all t^X, and then
(ii) to give a rule how to determine ..., tmS) in terms of a (€Tm) and 

cM, ...,c(tm) (m^O).
Sometimes the variation suggested by Definition 3. T is more convenient: in (i) 

one defines c(t) for t£Z0, too, but in (ii) one can then restrict oneself to values 
m>0. Proofs by term induction can be modelled according to the same pattern.

Note that F^X) is empty iff Zo=*=0- Since we do not want t0 consider this 
uninteresting case separately every time, we shall tacitly assume that always 
ToU^#0-

Example 3.2. Let where and I2={a}.
If X= {x, y, z], then x, z, p, a{z, and t=a(x, a(z, tQx))) are
some examples of Zy-terms. □

A Zy-term t is evaluated in a given T-algebra as follows. First we assign a 
value xa£A to every variable x£X. Then the operations of zX are applied to 
these elements as indicated by the form of t. For example, given a mapping 
a: X—A, the r of the previous example would yield the element

(xa, o^(za, t-'^))).

Of course, the result depends on the choice of a, too. This evaluation process can 
be formalized as follows.

Definition 3.3. With every T-algebra sd and iy-term t we associate a mapping

t": Ax -^A
as follows: for any a: X—A

(i) xJ*(a)=xa (x€X) and
(ii) t*(a)^<r,‘(tf(a), .... r^(a)) when t=cr(tl, ..., t„) (m^Q,
•••» ^C^rPO)- The mappings t* are called the polynomial functions of 

in variables X and their set is denoted by Pa(j/).
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It may seem strange that the polynomial functions t^^Px(sd) are evaluated 
on mappings from X to A, but this is, in fact, just a modification of the usual way 
to express polynomial functions. When one writes the value of a polynomial 
function in the form p(at, a„), a given order of the variables is assumed, say 
X= {xX) ..., x„}, and the n-tuple (an ..., a„) is just a convenient way to give the 
mapping a: X^A such that xia=ai (i= 1, , n).

In a sense, the polynomial functions of an algebra are the operations one can 
derive by composition from the basic operations o"^ of sd, and they share
many properties with these. This is exemplified by the following four lemmas. 

Lemma 3.4. If 38 is a subalgebra of the Xalgebra sd and a. X—A a mapping such 
that Xct^B, then t*(a)EB for all t^F^X). □

The lemma states, in other words, that subalgebras are closed with respect to 
polynomial functions. The proof is a simple exercise in term induction quite 
similar to that of the next lemma which expresses formally the fact that congru
ences are invariant with respect to polynomial functions.

Lemma 3.5. Let 0 be a congruence of the Xalgebra sd and a: X—A, /?: X—A 

two mappings such that
xa = xP(0) for all X^X.

Then ^(a)  ̂(f)(0) for all tMX).

Proof. We proceed by term induction on t. If t=x£X, then

^(a) = xa = xP = t ^(P) (0-

Let 1 = 0^, ..., tm) and suppose

(f)(0) for all i = l.......
Then also

<"<«) = ....w......................=
as 0 is a congruence. Here the possibility »t=0 can be allowed as a trivial special 

case.
Lemma 3.6. Let be a homomorphism of Xalgebras. Then

t^(a)(p = t*(acp)

for each mapping a: X—A and each LX-tam t.
Umm.3.1.le,^<mdHbeMgebra1.«nd X-A and X-B an,mapplnls. 
If we define a mapping y: X—AXB by putting

xy = (xa, xfi) for all x^X\
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then
= ^(a), t^(fi)) for all t^Fx{X). □

Lemmas 3.6 and 3.7 can easily be verified by term induction.
The subalgebra generated by a subset can also be described in terms of poly

nomial functions.
Lemma 3.8. For any subset X of a X-algebrad we have [X] = {^(“xW^W}’ 
where ax= 1A|X i-e., ax is mapping from X to A such that xax=x for all 

x€X.
Proof. Denote {^(MteW)} bY C- For every x^xax=x^^C. 
Hence X^C. Also, C is closed under the operations of a/:

(tf (ax), ..., tm (ax)) = , • • • > O (axK C

for all m^O, and .... t^F^X). Lemma 3.4 implies that CzB 
for every subalgebra which contains X. Hence C=[X]. Note that the result 
is true even if Fo=X—0. In this case [Af] = 0. □

We shall now turn to the Z-algebra formed by the LT-terms.

Definition 3.9. The Z-algebra ^x(X)=(F1(X), Z) defined so that

for all m^O, oeFm and tlt.... t^F^X), is called the FX-term algebra or 
the free F-algebra generated by X.

We shall first account for the name “free algebra”.
Definition 3.10. Let K be a class of Z-algebras. A Z-algebra P=(F, I) is said to 
be freely generated over K by a subset X^F, if the following conditions are 
satisfied:

(i^K.
(ii) X generates

(iii) Every mapping a: X--A of A into any algebra^/ in K has an extension 
into a homomorphism &: —a/.

If these conditions are satisfied for some subset X ol F, then .F is called a free 
algebra over K (with |X| generators), and X is called a/ree generating set.

A well-known example is provided by the free semigroup X + generated by a 
set (alphabet) X. The elements of %+ are all the finite nonempty strings of ele
ments of X. The product of two such strings u and v is simply their concatenation 
uv. The associativity of this product is obvious and thus X * is a semigroup. As 
every string u£X+ is obtained by concatenating individual elements of A, it is 
clear that X generates AT+. To prove that X+ is freely generated by X over the 
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class of all semigroups we consider any semigroup y and mapping a:y-S. 

The required (unique) homomorphism
A: X+^S

is obtained by putting
(XiXj ... Xk)A = (%!«) • (*2a) • ■ fe7)

for all x1x2..xk^X+ (products to the right are formed in ^).
Free semigroups are considered later again, but we return now to our term 

algebras.
Theorem 3.11. The ZX-term algebra is freely generated by X over the class 

of all Z-algebras.
Proof. That X generates is quite obvious when we compare the definitions 
of F^fX) and ^(X), but it follows also from the useful observation that 

^£<«(ay) = t for all t^F^X)

(where ax = lF rf). The proof of (*) goes again by term induction. Let V 
be any Z-algebra and a: X~A any mapping. We claim that the mapping

A-.F^X^A, tf+t^cL} {teF^X}}

is the required homomorphism. For every x^X xA=xy=xa. Hence, ^=a. 
It remains to be verified that & is a homomorphism. Indeed,

......
= {tk {a},..., tm (.d)}

= 0*^, ...,tmA)

for all m^Q, a£Zm and ti, • ••> F^W- □
We add a few general comments on free algebras. First of all, 

that the homomorphic extension d. a°„bras over a given class do not

is unique. This follows rom ” d t ined up t0 isomorphism by the
always exist, but when they do,•’ey ar following lemma,
cardinality of the free generating set. This is stated ioi y

Lemma 3.12. Any mo algebras freely generated over tbe same close of algebras by 

sets of the same cardinality are isomorphic.
j uweh orp free over the same class K and that they have 

Proof. Supposed and .' both .. Then js ,
free generating sets X and Y, resj Y bijection from Y to X.
bijection a: X~ Y. Th? converse of it, //-a »aem j
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Now there exist morphisms

&: stf -* 38 and 38

such that (2|Y=a and ^\Y=p. Butthen

sd — and 38 — 38

are homomorphisms such that lx and jB<2|y=lr. This means by Lemma 
2.6 that ^ = 14 and ^=\B. Hence, & and 3 are isomorphisms inverse to each 
other. This implies ^^38. □

Lemma 3.12 allows us to speak about the algebra freely generated over a class 
K by a set X.

We shall fix the notation <2 used above for the rest of the book: for any j/ and 
a: X—A, &: .^(X)—^ is the homomorphism such that 6i|Y=a. To evaluate 
a ZT-term t in a Z-algebra sd for a given assignment a: X—A of values to the 
variables amounts to the computation of t&. Indeed, we showed in the proof of 
Theorem 3.11 that t^(ai)=t& for all s4, a. and t.

The polynomial functions in variables X of an algebra d are the mappings one 
can get from the “projections” xd (x£X) by iterated compositions with the 
basic operations (<r£ 2j. If the generating set of functions is enlarged by the 
set of all constant mappings (c£A)

yc: Ax — A, a»-*c (aC/4x),

then we get, in general, a larger class of functions. These are called algebraic 
functions. We shall need just the unary (i.e., l-place) algebraic functions and these 
only are defined below. In this special case X is a singleton {x} and we may iden
tify any mapping a: X—A with the element xa^A. Then the unary algebraic 
functions can be defined simply as certain mappings from A to A.

Definition 3.13. The set of unary algebraic functions Algi (xa/) of a Z-algebra .a/ 
is defined as follows:

(i) l^Alg^).
(ii) For every c^A, Algl(j/) contains the constant mapping ye: A—A, 

a—c (a£ A).
(iii) The composition ... ,fm) is in Algl (j/) whenever m^O, 

and flt ..../^AlgJj/).
(iv) All members of Algl (a/) are obtained by the rules (i)—(iii).

The constant mapping (c£A) is usually denoted simply by c. It is intuitively 
clear from Definition 3.13 that every /€ Algl (aa/) can be represented by an expres-
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sion similar to the terms that gave the polynomial functions. Let X=a4U{x} 
(x^). Following the inductive form of Definition 3.13 we associate with every 
AAlgjlX) a ZX-term tf as follows:

(i) = x.

(ii) te = c for all c( = yc) (c^A).

(iii) If f = ^(/i, -Jm), then (f = bJ-

It is now an easy task to verify that the following lemma holds.

Lemma 3.14. For every /CAlgxfO there exists a term t^F^AUx) such that, 

for all a^A,
f(a) = t^a)

when xa is the mapping such that aa|X —1^ and xaa a. □
The assignment aa depends on at A only. We may think of as a ZX-term 

for a suitable X, in which all variables, save x, have been assigned constant values 
from A In other words, the unary algebraic functions are obtained from polyno
mial functions by fixing the values of some variables. It is now obvious in view 
of Lemma 3.5, that congruences of^ are invariant with respect to unary algebraic 
functions. The converse of this observation holds also. In fact, it can be stated 
in a stronger form in terms of the special unary algebraic functions introduced in 

the following definition.
Definition 3.15. A mapping f. A-A is called an elementary translation of the 
L-algebra if there exist an m>0. a til and elements

...,cm€A such that

f(a) = ^(q, cJ+1,.... cj for all atA.

The set of all elementary translations ofa/ is denoted by ET(j/).

It is obvious that ET(a/)S Algi(^)>

Lemma 3.16. An equivalence relation KEW is a congruence of si iffO is invariant 
With respect to all elementary translations of st.

n » _ L/m imnlipc f(a} = f(b)(0) for all a, b^A and /£ET(a/).
Suppose «=1W> ........ ...................

“tae the foUowim m elementaty translations:

fj^ = ...» bj-i, i, aj+n •••> ~
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Then
^(ai, a2, ...» am) =/i(ai) =/i(K)(0)

=f2(a2)=f2(b^(e)

= (bi, b2,..., b^.
Hence 0^, ..., a^^, ...,bm) and we have verified that 0€C(^- The 

converse is obvious.

4. LATTICES

We shall need a few facts from lattice theory, and these are quickly surveyed here. 

Definition 4.1. Let A be a set. A relation q^AXA is called a partial ordering 

of A, if

(1) (q is reflexive),

(2) (e is antisymmetric), and

(3) qq S Q (q is transitive).

If q is a partial ordering of A, then (A, q) is called a poset.

The usual symbol for a partial ordering is S. Often a set A is called a poset 
when a certain partial ordering of A is understood.

An example of a poset is (pS, £), where S is a set and S the usual subset 
relation in the power set pS. Another simple example is (N, S) where a is the 
“less than or equal” — relation of natural numbers. This S is a total ordering, 
which means that any two elements of the poset are comparable, i.e., either aSb 
or bsa holds for any two elements a and b. A poset CL S) in which S is a total 

ordering is called a chain.
Let (A, S) be a poset and a, b^A. We may write a^b when bSa, a^b 

when aSb and a^b, and a>b when a^b and a^b. Clearly S is a partial 
ordering and the poset (A, s) is said to be dual to (J, S)- Each one of the rela

tions s, ■< and > determines S completely.
An element a^A is an upper bound of a subset H^A if bSa for all b£lL 

An upper bound a of HqA is the least upper bound, or the supremum, of H, 
if aSc for all upper bounds c of H. Lower bounds and greatest lower bounds 
(infimums) are defined similarly. The least upper bound and the greatest lower 
bound of a subset H are denoted, respectively, by VH and hH. In case of an 
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indexed family (a^iel) of elements the notations M^iel) and A^lid) may 

be used.
An element c£A is a zero element of the poset A if c-^a for every at A. 

If a poset has a zero element, it is unique and usually it is denoted by 0. Similarly, 
the unit element 1, is defined by the condition that a^l for all at A . Clearly 
kA exists iff the poset has a zero element 0, and then A^=0. Similarly, VA 
exists, and then equals 1, iff A has a unit element 1.

Definition 4.2. A poset (A, ^) is a lattice, if V {a, b} and A {a, b} exist for all 
a, be A. It is a complete lattice, if VH and AH exist for all subsets H of A.

In a lattice one usually writes a^b and a kb for V {a, b} and A{a b}, respec
tively. The element a\/b is also called the join of a and b, and a kb is the meet 
of a and b. It is easy to see that VH and AH exist for every finite, nonempty 
subset H of a lattice. However, V0 exists only in case the lattice has a zero ele
ment 0. Then V0=O. Similarly, A0 exists iff the lattice has a unit element 1; 

then A 0 = 1. „ , . . , x.
The following lemma follows directly from the definitions of the jom and the 

meet.
Lemma 4.3. If (A, S) is a tarto then and V satisfy the following identities:

(LI) xkx—x, xVx=x (idempotence).

(L2) xky=ykx, x\!y=yVx (commutativity).

(L3) xk(ykz)=(xky)kz, x^y^^y^z (associativity).

(L4) xk(x'jy)=x, x\/(xky)=x (absorption). □
The identities (LI)-(L4) are characteristic of lattices in the following sense. 

If (A, A V) is an algebia with two binary operations that satisfy these identities, 

then (A, s) is a lattice when S is defined so that

a g b iff = a (a> beA)-

, □ a for all a, beA. In lattice theoryIn this lattice V {a, b}=a\jb and A {a, ) ets and as alee-
lattices arc usually defined and considered m parallelbo h as posets alg 

bras. The two aspects of the theory complement eac t certain
The following lemma is often useful when one wants to show that a certam 

poset is a complete lattice.
i a t (A is a complete lattice, if kH exists for each subset
Lemma 4.4. A poset (A s) » u q

HqA.
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Note that the existence of A 0=1 should also be ascertained when Lemma 4.4 
is used. We shall now apply the lemma to an important example. Let A be a set. 
It is easy to see that the intersection /) of any equivalence relations et 
(it I) of A is again in E(Af This means that

A(s(|i€Z) = A (e^iCZ)

always exists in the poset (E(A), c). (In particular, A0=U-) Hence, we get

Lemma 4.5. For each set A, (E(A), s) is a complete lattice. □

In general, the union of equivalence relations is not an equivalence relation 
For any H^E(A\ VH is the intersection of all equivalence relations which 
contain the union UH. A more useful description of the supremum is given in 

the following lemma.
Lemma 4.6. Let H^E(A} and a,beA. Then a=b (V H} iff there exist an nsO, 

£1.......En£H and alfa^A such that

a£iai£2^2 ••• ^n —

The lemma may be used to prove the following important fact.

Theorem 4.7. For any algebra ^=(.A, Z), CW forms a complete sublattice of 
(E(A), £), that is to say, \H^CW and LH^CW whenever H^CW- □

The direct product (L1X...XLn, S) of posets S), S) is a poset 
when we define 3 in Z^X...XLn so that

(ai,...,a„)^ iff at^bt for all i = l,...,«.

If the (Lt, ^)’s are lattices, then the direct product is also a lattice in which

(a15..., a„)V(bi, •••, bn) = («iVbi, ...» a^bn) 
and

(«!,..., a„)A(bi,.... b„) = (cqAbi,...» anLb^).

An ideal of a lattice (X, S) is a nonempty subset I of A such that, for all a, be A,

(1) a, bed implies aVbel, and
(2) a^bel implies
A dual ideal of a lattice (A, S) is a nonempty subset D of A such that, for all

a, beA,

(!’) a,beD implies at\beD, and
(2’) a^beD implies a^D.
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General examples are provided by the

(i) principal ideal (a]= generated by an element a£A, and by the
(ii) principal dual ideal [a)={x€^4|xSa} generated by an element a^A.

Let A and B be posets. A mapping <p‘. A-+B is said to be isotone, if

(yai, a^A^ ^a2- a1cp S a2<p.

Suppose now that A and B are complete lattices. The mapping cp is co-continuous, if

V(a(|i SO)9> = V^l' = °)

for every ascending <a-sequence

o0 S ai a2

of elements a^A (Osi<co). An co-continuous mapping is always isotone, but 
the converse is false.

Let A be a poset and <p: A-^A a mapping. An element a^A is a. fixed-point 
of cp, if a(p=a. It is the least fixed-point of cp, if all other fixed points of cp are 
above it. Of course, there can be at most one least fixed-point. A well-known 
theorem by A. Tarski states that every isotone mapping in a complete lattice 
has a fixed-point. For co-continuous mappings the following stronger result holds.

Theorem 4.8. Let (A, be a complete lattice and <p: A—A an m-continuous 

mapping. Then
[p] = V(O<p |i S 0)

is the least fixed-point of (p.

Proof. Since (p is isotone, implies

0 S 0<p S 0<p2 o^p3 s....

By co-continuity, we get now

= V(0^'+1|i * 0) = V(0<p'|i S 0) =

For any fixed-point a of (p, OS a implies

Qcp ^acp - a,

■ . Om^a Hence [o>]Sa, and [<p] is theand in general by induction on itU, U(P —a-
least fixed-point of (p.
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5. FINITE RECOGNIZERS AND REGULAR LANGUAGES

In this section several basic concepts and facts from the theory of finite automata 
are reviewed. For many readers there is probably nothing really new. The pre
sentation is quite telegraphic and proofs are sketched at most. Much of the mate
rial will be generalized to tree automata in Chapter II, and the present section 
is intended mainly as an outline of the proper background scenery.

An alphabet is a finite nonempty set of symbols which are called letters. We 
shall usually use the letters X, Y and Z to indicate alphabets. A finite string of 
letters from an alphabet X is called an X-word or a word over X. Consider an arbi
trary y-word

w = xxx2... x„ (n S 0, Xi, ..., x^X).

Here x—Xj is possible even for i^j. If n=0, then w is the empty word which 
is denoted by e. The length of w is n and we write it |w|. Obviously, |w|=0 iff 
w=e. The set of all y-words is denoted by X*, and the set of all nonempty X- 
words is denoted by X+. The letters of an alphabet are viewed as indivisible 
symbols. This means, in particular, that for any msO, n=0 and 
Xi, -,xm, ylt ...,yneX,

x1x2...xm = y1y2...yn

holds just in case m=n and x(=y( for all i=l,...,m. Letters are considered 
words of length 1. Hence, we may write XcX+aXi and X^=Xi'\Je.

In Section 3 we noted that X+ is the free semigroup generated by X, when the 
product of two words is defined to be their catenation. Similarly, X* is the/ree 
monoid generated by X. The identity element is the empty word: ew=we=w 
for each

A language over X, or an X-language, is simply a subset of X*. An ^-language 
is e-free if it does not include the empty word. Of course, formal language theory 
concerns itself with such languages only that can be specified in some effective 
manner.

A family of languages & is defined by indicating for each alphabet the set 
(JV) of ^-languages belonging to the family. For example, if (%) could consist 

of all languages recognized by automata of a given type with input alphabet X. 
If LEifCV), one may write just Two families of languages and 
are equal, which we write Jf = if, if XC{X')=i£fX} for every alphabet X. 
Similarly, the inclusion Jfsif means that X (A3 £ if (X) for every X.

One way to specify a language LsX* is to give an automaton that can exam
ine any given A"-word and then tell whether the word is in L or not. Such autom
ata are called recognizers. The most basic type of recognizers is the following: 
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Definition 5.1. An X-recognizer (also called a Rabin—Scott recognizer) A consists of

(1) a finite (nonvoid) set A of states,
(2) the input alphabet X,
(3) a next-state function b: AxX—A,
(4) an initial state a^A, and
(5) a set A' £ A of final states.

We write A=(^, X, S, a0, A').

If the y-recognizer A of Definition 5.1 is in state a (fA) and receives the input 
x (fX), it enters state <5 {a, x) and remains in this state until it reads the next 
input letter. The next-state function is extended to a function

a: AxX* -A 
as follows:

1° ^(a, e) = a for each a£A, and

2° §(a, wx) = 5(^(a, w), x) for all a^A,

w£X* and x^X.
We will omit the cap from & For any a^A and w£X*, 5 (a, w) is the state of 

A when it has read the whole input word w, from left to right, and the state in the 
beginning was a. As a language recognizer A operates as follows. The word w to 
be tested for membership is entered to A so that the state of A initially is a0. 
Now w is accepted by A if <5(u0, w) is a final state. Otherwise w is said to be rejected 
by A. The language recognized by A consists of all y-words accepted by A, i.e., 
it is the y-language

L(A) =

An y-language L is called recognizable, if there exists an y-recognizer A such 
that L=L(K). The family of recognizable languages is denoted by Rec, and 
Rec X denotes the set of all recognizable y-languages.

In the definition of y-recognizers the finiteness of the state set is essential. 
Otherwise, every y-language would be recognizable.

We shall now prepare for the first of the many characterizations of recogniz
able languages.

The product of two y-languages U and V is the y-language

UV = {Mv|u€tf, v€R}-

The product is associative:

U(yW) = (UV)W for all U, V, W £ X*.
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Furthermore,
[70 = 0[/ = 0 and U{e}= {e}U = U

for every X-language U.
The powers Un (n^O) of an X-language U are defined inductively:

1° U° = {e} and

2° Un= U^U for n > 0.

By means of the powers we may define the iteration of U

U* = U(U"|n = 0).

Excluding U°, we get the language

U+ = U(U"|n S 1).

Clearly, U*=U + \J{e}, and U + = U* iff e^U. A word w^X* belongs to (7* 
iff it can be expressed in the form w=u1ui...u„, where nSO and ulf ..., u„£ U.

Note that X" is the set of all X-words of length n (n^O) and the set X* of all 
X-words really is the iteration of X (when X is viewed as the set of X-words of 
length 1).

Union, product and iteration are called the regular language operations.

Definition 5.2. The set Reg X of regular X-languages is the smallest set R such 
that

1° 0£R and {x)CR for each x£X, and

2° U,V^R implies CUE, UV, U\R.

Regular languages are also called rational languages. All finite languages are 
regular. Hence Reg X is the smallest set of X-languages containing the finite 
X-languages which is closed under the three regular operations.

The form of Definition 5.2 implies that every regular X-language can be repre
sented by a regular expression which shows how the language is obtained from 0 
and the languages {x} by forming unions, products and iterations.

Example 5.3. Let X={x, y}. Some members of RegX are 0, {x}, {y}, {xy}= 
= WW> {xy,yy}= WWU{y}{y}=({x}U{y}){y} and

U = {x'y^i S 1, j £ 0}U {yx^lfc S 0}.

A possible regular expression for the language U would be »/=(x(x)*(y)*) + 
+(y(xx)*) (usually ‘ + ’ is used for union). If we agree on the usual hierarchy of 
regular operations (first iterations, then products, and unions last), then some 
parentheses can be omitted and t] becomes xx*y*+y(xx)*. The language U is 
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recognized by the T-recognizer defined by the state graph of Fig. LI (the initial 
state is a0 and the final states are a, b and c). □

The following theorem is one of the cornerstones of finite automaton theory.

Theorem 5.4. (S'. C. Kleene 1956). Rec = Reg. □

The theorem is effective in the following sense. There are algorithms to construct 
a recognizer for any regular language given by a regular expression. Conversely, 
a regular expression representing L(A) can be found for any given recognizer A.

Kleene’s theorem implies also that the family Rec is closed under the regular 
operations. We shall present some more closure properties of the family Rec.

Theorem 5.5. Let X and Y be arbitrary alphabets.
(a) If U.V^ecX, then 1707, U-V^ec X.
(b) If U is a recognizable X-language, then so is its mirror image (or reversal)

mi (t/) = {%„... x2%i|n SO, x^.-.x^U (*;€%)}.

(c) IfUandV are recognizable X-languages, then so are the quotient languages 

U-iy = = v for some u^U, v£V}
and

UV-1 = {w€y*|wa = u for some u^U, v£V}.

(d) Let <p: X* — Y* be a homomorphism (of monoids). If U^ecX, then 
Ucp^ecY. If F£ Rec T, then V(p~r^ccX.

(e) If t/gRecT and <p: p%*-pK* is such a substitution mapping that 
xtp^ec Y for all x^X, then Utp^ec Y. □

Recall that a mapping <p: pT+-»pr+ is a substitution, if

1° {e}<p = W.
2° {wx)(p = (wtp^xtp) for all w^X*, x£X, and
3° U<p =U(ucp\u£U) for all U G X*.
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Obviously, the substitution is completely defined when the languages x<p (x^X) 
are given. Extended to mappings of languages, homomorphisms (p: X* — Y* 
are special substitutions for which every x<p (x£ X) consists of exactly one word. 

Often it is convenient to allow a recognizer to be nondeterministic. In a non
deterministic X-recognizer A=(A, X, d, Ao, A') the next-state function is a 
mapping

d: AxX-pA.

Also, the recognizer has a set Ao s A of initial states. If A receives in state a the 
input letter x, then it may enter any one of the states in S(a, x). The operation 
of A may be started in any initial state a0£A0. A word w=x1x2...xn (n^O, 

...,xn£X) is accepted by A if there is such a choice of states a0, alt ..., a„ 
that

(i)
(ii) x^ for all i=l,...,n, and

(iii) a„£A'.

The mapping 5 extends to a mapping

5: pAxX* - pA 
as follows:

1° ^H,e}=H for all He A, and

2° ^(H, wx)= U(^(a, x)|a€^(/f, w)) for all He A, w£X* and x£X.

Obviously, S(H, w) is the set of states A may reach under the input word w 
from at least one state in H. The language recognized by A can now be defined 
formally as

E(A) = {w€y*|S(J0, w)n/ # 0}.

Every ^-recognizer may be interpreted as a nondeterministic A-recognizer A, 
where Ao and the sets <5 (a, x) all are singletons. On the other hand, every nondeter
ministic A-recognizer A may be turned into the equivalent ^-recognizer

B = (pA, X, 5, Ao, A"),

where A" = {H^pA\HClA'^0}; this is the well-known „subset construction". 
Hence, a language can be recognized by a nondeterministic recognizer iff it is 
recognizable in our original sense of the word.

Now we recall some algebraic characterizations of Rec.
An equivalence relation q on a semigroup if is a right congruence, if agb 

implies aepbe for all a, b, S. Every X-recognizer A = (A, X, 5, a0, A') defines 
a right congruence of the free monoid X* as follows:

iff <5(a0, u) = 5(a0, v) (u, v£X*).
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The index of is at most |^4| and

£(A) = U(m^aI«€A'*, 5{a0, u^A’).

This shows that every recognizable ^-language is saturated by a right congruence 
of X* of finite index.

Suppose now that the ^-language L is saturated by a right congruence q of X* 
of finite index. The Z-recognizer

A = (X*Iq, X, <5, eq, L/q),

where 6 is defined by the condition

8(uq, x) = (ux)q (u^X*, x£X),

is then well-defined and
3 (eq, u) = uq

for each u^X*. This implies L(A)=L€Rec X. Among all right congruences of 
X* saturating a given ^-language there is a greatest one which is called the Nerode 
congruence of L. We denote it by Ql and it can be defined by the condition that

u = v(qL) iff (Vw€^*)(ww€L o vw^L)

for all u, v£X*. From these observations it is easy to construct a proof for the 
following theorem.

Theorem 5.6. (A. Nerode 1957/ For any X-language L the following three condi
tions are equivalent:

(1) LCRecy.
(2) L is saturated by a right congruence of X* of finite index.
(3) The Nerode congruence qL is of finite index. □

There is a similar characterization which uses congruences of X*. Every X- 
recognizer A defines a congruence 0A of X* of finite index which saturates L(A):

u = u(0A) iff (fia£A)3(a,u) = 3(a,v).

If L £ X* is saturated by a congruence, then a recognizer for L can be construct
ed as above in the case of right congruences. The greatest congruence 0L saturating 
L is called the syntactic congruence of L. It may be defined by the condition that

u = v(0L) iff (fw, wfiX^(wuwfiL o wvwfiL)

for all u, v£X*.
Theorem 5.7. (J. R. Myhill 1957)’For every X-language L the following three con

ditions are equivalent:

39



(1) LCRecy.
(2) L is saturated by a congruence of X* of finite index.
(3) The syntactic congruence 0L is of finite index. □

Let 0 be a congruence of X* saturating an y-language L. Then L=(L0 ^0 -1, 
where

0”: y* - y*/0

is the canonical homomorphism, and X*/0 is finite iff 0 is of finite index. This 
applies, in particular, to the syntactic congruence 0L. The monoid X*fiL is called 
the syntactic monoid of L. On the other hand, if we have a finite monoid JI, a 
homomorphism

cp: X* - M

and a subset H^M for which L=Hcp~\ then cpcp^ is a congruence of X* of 
finite index saturating L. It is now clear that Myhill’s theorem can be reformulated 
as follows.

Theorem 5.8. For any X-language L the following three conditions are equivalent:

(1) LCRecy.
(2) There exist a finite monoid JI, a homomorphism cp: X*—M and a subset 

HcM such that L=Hcp~\
(3) The syntactic monoid of L is finite. □

An y-language L is called local, if there exist sets H,KqX and X2 such
that

L~{e} = (HX*QX*K)-X*IX*.

The membership of a nonempty word w in such an L can be tested by checking 
that the first letter of w is in H, the last letter of w is in K, and that no two con
secutive letters of w form a pair belonging to I. Note that a local language may, 
according to our definition, contain the empty word.

A homomorphism cp: y*—T* is called length-preserving if |w^>| = |w| for 
all w^X*. Obviously cp is length-preserving iff XcpcY.

In terms of these concepts one more characterization of Rec can be given.

Theorem 5.9. An X-language L is recognizable iff L=Ucp for some alphabet Y, 
local Y-language U and length-preserving morphism cp: Y*—X*. □

An y-recognizer A is said to be minimal, if no y-recognizer with fewer states 
recognizes £(A). It is obvious that every regular language has a minimal recognizer. 
To say more than that, we need a few concepts.
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Let A=(A, X, 5, a0, A') be an Y-recognizer. It is said to be connected, if there 
exists for every a^A a word w£X* such that a=S(a0, w). Two states a and b 
of A are said to be equivalent, and we write a^b, if

(Vw€X*)(^(a, w)£A' o 5(b, w^Ay

The recognizer A is reduced, if a^b implies a~b.
A relation 0££(A) is a congruence of A, if

(1) aOb implies 5{a, x)03(b, x) for all a, b£A and x^X, and
(2) 0 saturates A'.

Let C(A) be the set of all congruences of A. It is not hard to prove that ~ is a 
congruence of A. In fact, it is the greatest congruence of A.

If 0£C(A), then one can define a quotient recognizer

a/0 = (aio, x, y, aoe, A'/e)
by putting

5'(a9, x) = b(a, x)9 for all a^A and x€X.

The congruence property (1) guarantees that <5 is well-defined. An easy induction 
on |w| shows that

b'(a0, w) = 3(a, w)0 for all a^A and w^X*.

This implies L(A/0)=L(A). In particular, L(A/~)=L(A). It is now obvious 
that a minimal recognizer should be reduced and, of course, connected.

Let A=(A,X,6,a0,A') and B=(B, X, q, b0, B') be two ^-recognizers. 
A homomorphism <p: A-B is a mapping <p: A^B such that

(1) b(a, x)<p — q(a<p, x) for all a^A and x£X,
(2) a0(p=b0, and
(3) B'qr^A'.

Epimorphisms and isomorphisms of ^-recognizers are, respectively, surjective and 

bijective homomorphisms. .
Homomorphisms, congruences and quotients of X-recogmzers are related to 

each other the same way as the corresponding concepts in algebra. Hence, for 
any the natural mapping de is an epimorphism A-A/ll. If <p:
is an epimorphism, then W is a congruence of A and A/W- is isomotphtc 

to B. Moreover,
3(a,w)<p for all a£A, w£X\

This implies L(A)=L(B).
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The Z-recognizer B is a subrecognizer of A if Be A, b0=a0, B'=A'P\B and 
q—b\BxX. The subset B determines such a subrecognizer completely. The 
connected part

Ac = {<5(a0, w)|w€y*}

of an Z-recognizer is the state set of a subrecognizer

Ac = (Ac, X, bc, a0, A'QAC)

where bc=b[AcXX.
The following theorem summarizes the main facts concerning minimal and 

reduced recognizers.

Theorem 5.10. (a) The minimal recognizer of a regular language is unique up to 
isomorphism, i.e., if two recognizers are minimal and equivalent to each other, then 
they are isomorphic.

(b) A recognizer is minimal iff it is connected and reduced.
(c) For any recognizer A, the quotient A/~ is reduced and its connected part 

(A/~)c is minimal. The recognizer AJ~ is isomorphic to (A/~)c.
(d) If A is minimal, B is connected and L(A')—L(S), then there exists a unique 

epimorphism (p: B-*A. □

Theorem 5.10 implies that one can find a minimal recognizer for a regular lan
guage L by starting with any recognizer A of L; first one finds the connected part 
Ac and then one has to determine the equivalent pairs of states in Ac. For both 
tasks there are simple algorithms. The order may also be reversed; first form A/~ 
and then find the connected part of this reduced recognizer.

The decidability of the emptiness, finiteness and equality questions for regular 
languages follows from the following simple observation.

Lemma 5.11. Let A be an X-recognizer with n states.

(a) If L(A) contains a word w of length ^n, then one may write w = uvz so that 
and uvkz£L(X) for all k^O.

(b) L(A) is nonempty iff it contains a word of length ^n.
(c) L(A) is infinite iff it contains a word w such that n^ □

Statement (a) is often referred to as the “pumping lemma” for finite recognizers.
To test whether L(A) is nonempty it suffices to try all input words of length 

<|J|. Similarly, the finiteness of L(A) can be checked by applying all input 
words w such that ]A|s2|. From any two ^-recognizers A and B one 
can construct a recognizer for (L(A)-L(B))U(L(B)-L(A)). But this language 
is empty exactly in case L(A) = L(B). Hence, the equivalence of A and B can 
also be decided.
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6. GRAMMARS AND CONTEXT-FREE LANGUAGES

We shall now consider the most important tools of formal language theory, 
Chomsky’s grammars. A grammar is a device to define a language by showing 
how to generate the strings of the language. The concept is very flexible, and by 
imposing various restrictions on grammars several interesting families of languages 
can be obtained. A good example is provided by the celebrated Chomsky hierarchy 
consisting of four families of languages. At the bottom of the hierarchy we find, 
once more, the recognizable languages. However, most of this section will be 
devoted to context-free languages. These form the second step in the hierarchy.

Definition 6.1. A grammar is a 4-tuple (N, X, P, a^, where

(1) A is a finite nonempty set of nonterminal symbols,
(2) X is the terminal alphabet,
(3) P is the finite set of productions, and
(4) a^N is the initial symbol.

It is required that AAA=0. Every production is of the form P-y, where p, y€ 
€(AUAy and p contains at least one nonterminal symbol.

Let G=(N X P a0) be a grammar. For we write u=>Gv
(or just u^v, whenG is understood) if there exist u', H"€(AUy)* and a produc
tion p^P so that u=u'Pu" and v=u'yu". If u^Gv, then u is said to gener
ate v directly in G. If there exists a derivation

Uo^ G«l=* G^^ G---^ GUn (" — °)

such that m0=u and un=v, then we write u^Gv (or just u^d). The language 

generated by G is the ^-language

L(G) = {w€X*|flo=*Gw}-

Two grammars are equivalent, if they generate the same language.
The grammars of Definition 6.1 are very general and every recursively enumer

able language can be generated by such a grammar.

Definition 6.2. A grammar (N, X, P, a.) is called right linear, if each production 

is of the form
a - xb, a - x or a - e,

where a,b£N and x^X. A language is right linear, or of type 3 (in the Chomsky 
hierarchy), if it can be generated by a right linear grammar.
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A right linear grammar G=(N, X, P, a0) can be converted into a nondeter
ministic T-recognizer

A = (7VU {c}, X, 8, {a0}, A') (c $ A)

which recognizes L(G) as follows. For any a, b£N and x£X, put

(i) b£b(a, x) iff a —xb^P,
(ii) c£b(a,x) iff a-*x^P, and

(iii) 8(c, x) = 0.

Finally, let A'= {c}U {agA|u—egF}. Conversely, every T-recognizer 
X=(A, X, 8, a0, A') can be replaced by the right linear grammar G=(A, X, P, a0), 
where

P = {a ->■ xb|<5(a, x) = ft}U{a — e[a€A'}.

These observations lead to one more characterization of Rec:

Theorem 6.3. The type 3 languages are exactly the regular languages. □

Now we proceed to the main topic of this section.

Definition 6.4. A grammar (N, X, P, a0) is context-free (CF, for short) if each pro
duction is of the form

a -* y

where a^N and yC(AUT)*. A language is context-free (CF) if it is generated 
by a CF grammar. The family of all CF languages is denoted by CF and the set 
of CF T-languages by CF(A).

The CF languages are the type 2 languages in Chomsky’s hierarchy. Every 
right linear grammar is CF. Hence RecgCF. If |A| = 1, then Rec JV=CF(A"), 
but in all other cases the inclusion is proper.

Example 6.5. Suppose X contains two distinct letters x and y. Every derivation 
in the CF grammar

G = ({a}, X, {a -► xay, a — xy}, a)

is of the form

a =>xay =>xxayy =>...=> xn~1ayn~1 =>xnyn (n S 1).

Hence, L(G) is the nonregular language {x"y|n £ 1}. □

The main fact to connect CF languages with tree automata is that context-free 
derivations can be represented by derivation trees. A derivation tree is a descrip
tion of the syntax of a word of the CF language. (Here it would be more natural 
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to speak about “sentences” of a language.) Derivation trees have proved very 
useful tools in the theory of CF languages. Later we shall define “trees” in a 
way suitable for our purposes, but here there is no need to define the concept too 
formally.

Let G=(N, X, P, a0) be a CF grammar. The derivation tree representing a 
derivation of a word u£(XUN)* from a symbol aZXXUN) in G is defined by 
induction on the number k of steps in the derivation:

1° If k=0, then u=a and the derivation tree consists of a single node 
labelled by a.

2° Consider a derivation

(*) a => uL => =>...=► uk-! => u

where itsl. Suppose u1=d1...dm, where msO and dltdm£N\JX. At 
this point the context-freeness of G becomes essential. Every application 
of a production in (*) rewrites exactly one d( or a nonterminal derived from 
exactly one dt. This means that (*) may be decomposed into a number of sub
derivations”

dt =>... =>vt (i = 1,

each of which yields a segment vt of u and u=v1v2...vm. If the derivation trees 
of the subderivations are tlt tm, respectively, then the derivation tree of ( ) 
is that shown in Fig 1.2.
The possibility m—0 was not excluded. Then k= 1, u=e and the derivation 
tree reduces to a single node labelled by a.

The word xxxyyy has the derivation

a => xay => xxayy => xxxyyy

in the grammar of Example 6.5. The corresponding derivation tree is shown in 

Fig. 1.3.
Consider any derivation

a0=>... =>w



of a terminal word w£L(G) from the initial symbol. The corresponding deriva
tion tree is also called a derivation tree of w, and w can be read from the “leaves” 
of the tree.

The grammar G of Example 6.5 has the rather special property that every word 
in L(G) has just one derivation in G.

Example 6.6. Consider the CF grammar

G = ({a0, a, b}, {x, y}, P,

where P consists of the productions

a0 ab, a - xay, a xy, b ybx and b - yx.

Obviously, L(G)= {xmym+"x"|m, nsl}. The word xyyx^L^G) has the two 
derivations

a0 ab => xyb =► xyyx 
and

a0 => ab => ayx =► xyyx

both of which are represented by the derivation tree shown in Fig. 1.4. In general, 
the word xmym+nxn has (m + ”| different derivations all of which are represented

f n )
by the same derivation tree. □

Fig. 1.4.

In Example 6.6 the different derivations of the same word do not represent 
different syntactic descriptions of the word. In fact, they can all be obtained from 
each other by changing the order in which the individual steps are carried out. 
If we agree on some fixed order in which the subderivations are to be carried out, 
then there would be just one derivation for each derivation tree of a word in the 
language.

Definition 6.7. A derivation

Uq => Ui => Ug =>... =>uk 

46



in a CF grammar G=(M X, P, u0) is called a leftmost derivation, if we can write, 
for every i=0, k—1,

= WjdM- and ui+1 =

so that wfX*, a^N and a--y€P. The grammar G is ambiguous if some word 
w in L(G) has two different leftmost derivations from a0. Otherwise G is unambig
uous. A CF language generated by at least one unambiguous CF grammar is 
said to be unambiguous. If all CF grammars generating a given CF language are 
ambiguous, then the language is said to be inherently ambiguous.

A CF grammar G is unambiguous if every word w£L(G) has exactly one deri
vation tree. It is ambiguous, if at least one word w£L(G) has more than one deri
vation tree. The grammars of Examples 6.5 and 6.6 are unambiguous. Every regular 
language is unambiguous. Of course, a language generated by an ambiguous CF 
grammar may be unambiguous. The language

{x{yJzk\i=j or j = k (i,j,k^l)}

is a well-known example of an inherently ambiguous language.
There are many simplifying additional conditions that a CF grammar may 

always be assumed to satisfy. Some of these are listed below.

Definition 6.8. Let G=(N, X, P, a0) be a CF grammar-
(a) G is reduced if either P=9 and N={a0}, or then for every a^N,

a0 =>* uav =>*w

for some u,v£(N\JXf and w^X*.
(b) G is in Chomsky normal form if each production is of the form

(i) a - be {a^N, b,c^N-a0\

(ii) a -* x (a^N, x£X), or

(iii) a0 -* e.

(c) G is in Greibach normal form if each production is of the form

(i) a -^xa1...am (m ^0, atN, altam£N-a0, xtX), or

(ii) a0 - e.
If mst for all productions of type (i), then G is said to bo in Greibach k-form 

(tso>.
Proofs for the following facts can be found in the references given at the end 

of the section.
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Theorem 6.9. (a) Every CF grammar (N, X, P, a^ can be converted into an equiva
lent reduced CF grammar (N', X, P', a^, where N' cN and P' ^P.

(b) Every CF grammar can be converted into an equivalent CF grammar in any 
one of the following normal forms: Chomsky normal form, Greibach normal form, 
and Greibach 2-form. In all cases the grammar can be made reduced. □

We recall now some of the closure properties of the family CF.

Theorem 6.10. If the languages U and V are CF, then so are t/U V, UV and U*.
□

The languages U — {Xnynzn\m, n S 1} and V={xnynzm\m, nsl} are CF, but 
UnV={xnynzn\n^l} is not. This observation implies also that the difference 
U— F of two CF languages U and V may be noncontext-free. However, the 
following theorem holds.

Theorem 6.11. If U is a CF language and V is a regular language, then UCV and 
U— V are CF languages. □

The following theorem implies, as a special case, that CF is closed under mor
phisms.

Lemma 6.12. Let (p: pF*—pF* be a substitution mapping such that x<pCCF(F) 
for all xeX. If U£CF(X), then U(peCF(Y). □

The following useful lemma is obtained most naturally by considering deriva
tion trees.

Lemma 6.13. (Bar—Hillel's pumping lemma). For each CF grammar G one can 
find two natural numbers p and q such that the following holds for every 
word w^L(G)'. if |w|>p, then we may write w=ulv1w'v2u2 so that

(i) ^w'v^q,
(ii) v^^e, and

(iii) upv^w'v^u^HG) for every i^O. □

Next we recall some decidability properties of CF languages. A CF language 
is always assumed to be given by a CF grammar generating it.

Theorem 6.14. There are algorithms for deciding the following questions:

(1) Is a given word in a given CF language ?
(2) Is a given CF language empty?
(3) Is a given CF language finite? □

The decidability of the finiteness problem follows from Bar—Hillel’s lemma. 
The other two statements can be justified quite directly.
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Theorem 6.15. The following questions are undecidable:

(a) Are two given CF languages equal?
(b) Is the intersection of two given CF languages empty? | finite? | regular? | 

context-free?
(c) Is the complement X* — U of a CF X-language U empty? \ finite? | regular? [ 

context-free?
(d) Is a given CF grammar ambiguous?
(e) Is a given CF language inherently ambiguous? □

In the previous section we noted that every regular language has a minimal 
recognizer. One might want to find a CF grammar equivalent to a given one with 
the smallest possible number of nonterminals (nonterminal minimization problem) 
or with a minimum number of productions (production minimization problem). 
However, the following theorem holds.

Theorem 6.16. Both the nonterminal minimization problem and the production mini
mization problem are unsolvable. C

Let n be a fixed natural number. The sum of two n-tuples of nonnegative integers

a = (a1( .... a„) and b = (b^,.... b„)

is formed componentwise:

a + b = (ai + bl> •••• +

Similarly, we put
ka = (kat, ka„)

for all £€N„ and a€NJ.
A subset K of NJ is called linear, if there exist an mSO and n-tuples alt ..., am, 

b€ NJ such that
K= {fciaj + ... + kmam + blfcl.......fcmeNo}-

A subset of NJ is Semilinear if it is the union of finitely many linear sets.
Let X be an alphabet with n letters (nil). It is convenient to think that the 

letters of JTare listed in some fixed order, xn .... xB. The Parikh vector of a word 

w^X* is the n-tuple
Par (w) = (an .«» a«)

where at is the number of occurrences of xt in w (i=l, • ••.«)• The resulting 

Parikh mapping
Par: X^ NJ
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satisfies the conditions

(i) Par(e) = (0, ...,0)
and

(ii) Par (wt>) = Par (u) + Par (a) (u, v€X*).

The mapping Par is extended to X-languages in the natural way:

Par (L) = {Par (w)|w6L}
for all L^X*.

Theorem 6.17. For every CF language L, the Parikh set Par (L) is semilinear. □

7. SEQUENTIAL MACHINES

Automata that produce outputs in response to inputs are generally called se
quential machines. The basic example of these is provided by the Mealy-machine 
which arose as an abstract model of digital circuits with memory. A Mealy- 
machine is a system A=(X A, Y,a0, 5, A), where

(1) X is the input alphabet,
(2) A is a finite, nonempty set of states,
(3) Y is the output alphabet,
(4) a0£A is the initial state,
(5) 5: AxX—A is the next-state function, and
(6) A: AxX—Y is the output function.

In many applications there is no fixed initial state, and a0 is then omitted from the 
definition. The operation of A can be described as follows. If A is in state a (€ A) 
and receives an input x(CA'), then it enters state 3 (a, x) and emits the letter 
2 (a, x). In order to describe the behaviour of A under an arbitrary input word 
w^X* we extend 3 and 2 to mappings

AxX* * A, 1: AXX* — T* 
as follows:

1° 3(a,e)=a and X(a,e)=e for every a£A.
2° 3 (a, wx)—3(3(a, w), x) and 3(u, wx) = 3(a, w)2(<$(a, w), x) for all a^A, 

wex*, xex.

If A receives in state a the input word w, it emits the word X(a, w) (C T*) and 
ends up in state 3 (a, w). The translation induced by A is defined as the relation

tA = {(w, X(a0, w))\weX*}(sX*XY*).

Two Mealy-machines are said to be equivalent if they define the same translation.
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In the case of a Mealy-machine A every input word w has exactly one transla
tion l(a0, w) and this has the same length as w. Mealy-machines enjoy a number 
of desirable properties and they have a well-developed theory. For example, the 
following facts are known:

(a) The translations induced by Mealy-machines have a very simple character
ization.

(b) The equivalence problem of Mealy-machines is decidable.
(c) For any Mealy-machine one can find an equivalent minimal Mealy- 

machine and this is unique up to isomorphism.
(d) Let A be the Mealy-machine defined above. If L6Rec X, then LrA6Rec K 

If LCRec Y, then Lr^eRec X.

There are several ways to generalize Mealy-machines. First of all, both the next
state and the output behaviour may be nondeterministic. Another generalization 
allows the sequential machine to emit a word in response to each input letter. 
Moreover, one may add a set of final states. Then a translation of a word is 
accepted just in case it leaves the machine in a final state. We shall now define 
a generalized sequential machine which includes all these features. It is now con
venient to use a set of productions which will account both for the next-state 
behaviour and for the outputs. We arrive at the following concept.

Definition 7.1. A (nondeterministic) generalized sequential machine (gsm) is a 
system A=(A, A, Y, a0, P, A') where

(1) X is the input alphabet,
(2) A is a finite, nonempty set of states,
(3) Y is the output alphabet,
(4) a0 (£A) is the initial State,
(5) P is a set of productions of the form ax^wb with a,b^A, x^X and 

MEF*, and
(6) A' c A is the set of final states.

It is assumed that A A (AU F)=0. The gsm A is said to be deterministic if there 
exists for each pair (a,x)(AXX exactly one production of the form ax^wb.

Let A be the above gsm. A production ax—wb is interpreted as follows. If A 
>s in state a and receives the input x, A may enter state b and simultaneously 
emit the word w. We shall now define the translation performed by A. For any 
two words p q^A^X^Yy, we write p^q if there exist a production ax^wb 
in P and words p' and p" such that p=p'axp" and q=p'wbp". The reflexive 
transitive closure of =>A is denoted by =>A. Thus p=>\q (p, ?€(AUAU F)*) 
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holds iff there exists a derivation of the form

P = K-'-^kPk-q (ksO).

Now, the translation induced by A is defined as the relation

tA = {(w, tOluCJV*, aou=>A^ for some

If (u, v)^Tk, then v is a translation of u. If A is deterministic, then each AT-word 
w has at most one translation. Two gsm’s are equivalent if they induce the same 
translation.

The tree transducers, which form the subject matter of Chapter IV, may be 
viewed as further generalizations of gsm’s in which trees replace words as inputs 
and as outputs. The following two theorems may be compared with some of the 
results to be presented in Chapter IV.

Theorem 7.2. Let A=(y, A, Y, a0, P, A') be a gsm. If L^Rec X, then LrA£Rec Y. 
If L^RecY, then Lt^RecX. □

Theorem 7.3. The equivalence problem of deterministic gsm’^ is decidable, but the 
equivalence problem of nondeterministic gsm’s is undecidable. □

The next-state behaviour of a gsm is identical to that of a nondeterministic 
Rabin—Scott recognizer. Thus the following fact, which will be needed in Chap
ter IV, is obvious.

Lemma 7.4. Let A be a gsm as defined above. For any two states a, b£ A, the 
language

L(a, b) = {u£X*lau =>kbv for some 
is regular. □

REFERENCES

Extensive treatments of universal algebra can be found in the following two standard references:

P. M. Cohn, Universal algebra, D. Reidcl, Dordrecht (2. ed. 1981).
G. Gratzer, Universal algebra, Springer-Verlag, New York (2. ed. 1979).

The following more concise texts may also be recommended:
H. Lugowski, Grundziige der universcllcn Algebra, Teubner, Leipzig (1976).
H. Werner, Einfiihrung in die allgemeine Algebra, Bibliographischcs Institut, Mannheim (1978).

A good introduction to lattice theory (available in German and in French, too):
G. Szasz, Introduction to lattice theory, Academic Press, New York (1963).

Two general texts on finite automata and regular expressions:
F. G£cseg and I. Peak, Algebraic theory of automata, Akadimiai Kiad6, Budapest (1972).

52



A. Salomaa, Theory of automata, Pergamon Press, Oxford (1969).
An extensive algebraic treatment of the theory of finite automata can be found in the follow
ing two volumes:

S. Eilenbero, Automata, languages, and machines, Academic Press, New York (Vol. A 1974,
Vol. B 1976).
The general area of formal language theory is covered, for example, by the following books: 

A. V. Aho and J. D. Ullman, The theory of parsing, translation, and compiling, Prentice-Hall, 
Englewood Cliffs, N. J. (1972).

M. A. Harrison, Introduction to formal language theory, Addison-Wesley, Reading, Mass. 
(1978).
J. E. Hopcroft and J. D. Ullmann, Formal languages and their relation to automata, Addison-

Wesley, Reading. Mass. (1969).
A. Salomaa, Formal languages, Academic Press, New York (1973).

A highly recommendable classic on context-free languages is:
S. Ginsburg, The mathematical theory of context-free languages, McGraw-Hill, New York 

(1966).

53



CHAPTER II

TREE RECOGNIZERS AND RECOGNIZABLE 
FORESTS

This chapter is devoted to finite-state tree recognizers and the family of forests 
recognizable by them. Here trees are defined as terms over a finite operator domain, 
and a forest (or tree language) is just a set of trees. As in the case of formal lan
guages, there are two particularly natural ways to effectively define a forest; a 
forest can be recognized by an automaton, or it can be generated by a grammar. 
In Section 2 we introduce the tree recognizers which correspond to Rabin—Scott 
recognizers. It does not make any difference whether Rabin—Scott recognizers 
are defined to read words from left to right or from right to left, but here we should 
consider both recognizers that read trees from the leaves down towards the root 
(frontier-to-root tree recognizers) and recognizers which work in the opposite 
direction (root-to-frontier tree recognizers). In both cases the recognizer may be 
either deterministic or nondeterministic. This gives us four types of finite-state 
tree recognizers. Three of these define the same family of forests, the family Rec 
of recognizable forests. Deterministic root-to-frontier recognizers are essentially 
weaker and they define a proper subfamily of Rec. In Section 3 we define regular 
tree grammars. After having shown that these can be reduced to a very simple 
normal form, we prove that regular tree grammars generate exactly the recogniz
able forests. Often it will be convenient to use regular tree grammars in the 
study of recognizable forests. In Section 4 several operations on forests are con
sidered. Many of these arise as a generalization of some basic language operation. 
Usually Rec can be shown to be closed under such operations. However, one 
should note that there are often many ways to generalize from languages to forests, 
and a right choice among the alternatives is essential if one wants to generalize 
the corresponding results, too. For example, there is a natural generalization of 
the product of languages with respect to which Rec is not even closed. A related 
point is demonstrated by the case of tree homomorphisms. Here the greater gener
ality of trees compared with words admits of some entirely new phenomena, such 
as the copying of subtrees.

In Section 5 regular expressions to denote forests arc defined, and the appropriate 
generalized Kleene theorem can then be proved. Section 6 contains the minimi
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zation theory of deterministic frontier-to-root tree recognizers. In Sections 7 to 9 
the family Rec is characterized in some further ways. Recognizable forests are 
described by means of congruences of the term algebra, as solutions of fixed-point 
equations, and in terms of local forests. Moreover, a Medvedev-type character
ization in terms of certain elementary forests and elementary operations is given. 
In Section 10 we show that the emptiness, the finiteness, and the equivalence 
problems of recognizable forests are decidable. Section 11 is devoted to determin
istic root-to-frontier recognizers. The forests recognizable by them are charac
terized by means of a certain closure property. Furthermore, we show that 
these recognizers have canonical minimal forms.

In this chapter we try to cover the central parts of what could be called the 
generalized theory of finite automata”, but many topics had to be excluded. 
Some of these are mentioned in the Notes and references. There we shall also 
indicate a few other developments not directly related to this chapter as well as 
some applications of the theory of tree automata.

1. TREES AND FORESTS

The “trees” which appear in tree automata theory may be visualized as tree
like directed labelled graphs. Such a tree has exactly one node, the root, to which 
no edge enters. From the root there is exactly one path to every node. Moreover, 
it is essential that the edges leaving a given node have a specified left-to-right 
order. This concept has been formalized in several ways, but the variations in 
the definition are of little or no consequence. We shall choose a definition that 
suits well an algebraic treatment of the theory.

For the labelling of the nodes of a tree we need two alphabets of different kind, 
a ranked alphabet and a frontier alphabet. As a rule, these two are assumed to be 
disjoint. A ranked alphabet is a finite nonempty operator domain (cf. Sect. I. 2). 
From now on I always represents a ranked alphabet. Other symbols to be used 
for ranked alphabets include Q and r. The inclusion l£ 12 means that I £ Qm 
for all wsO. If ImAf2„ = 0 whenever m^n, then IUQ may be defined:

(lUI2)m = ImUf2m for all msO.

* frontier alphabet is simply an alphabet in the usual sense, but sometimes we 
should let it be empty. In fact, in most cases there is no need to exclude this possi
bility. Our usual symbols for frontier alphabets are X, Y and Z.

For any I and X, a EX-tree is simply a ZiV-term. Thus the set of Tyrees is 
FAX). In many cases I or X, or both, are either understood or unspecified. In 
such cases we often speak about X-trees, X-trees or just trees. A similar situation 
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will arise whenever a concept involves a ranked alphabet and a frontier alphabet. 
We shall not lengthen such definitions by listing the modified names, but they 
will be used without explanation whenever convenient.

The letters p, q, r, s and t are reserved for trees.
Although trees are defined as strings, they can be visualized as, and are in fact 

intended as representations of, such tree structures as described above.

Example 1.1. Let I—be a ranked alphabet, where Z0={y}, 
and Za={o}. As the frontier alphabet we take X={x,y}. Then 
t=co(a(y, x))) is the ZY-tree shown in Fig. II. 1. □

u

Fig. II. 1.

Any other way of writing ZY-terms would suit our purpose equally well. For 
example, in Polish notation the tree t of Example 1.1 would be written as mayayx, 
but it would still be treated in tree automaton theory as the “tree” shown in Fig. 
ILL

Term induction will now be called tree induction. Below some important con
cepts are defined by tree induction.

Definition 1.2. The height hg (Z), the root root (t) and the set of subtrees sub (Z) 
of a ZY-tree t are defined as follows:

1° If Z€YUT0, then hg(z) = O, root(z) = z and sub(z) = {z}.

2° If t = <r(Zi, ...,t^{m>- 0), then

hg(7) = max(hg(Z()|i = 1,.... m)+l,

root (0 = a, and

sub (t) = U(sub (Z^l S i s m)U t.

For the tree of Example 1.1 we get hg(z) = 3, root(z)=co and sub(z) = 
= {t, a(y, o(y, x)), y, a(y, x), y, x}.

Subtrees of height 0 are referred to as the leaves of the tree. A leaf is labelled 
by a letter from the frontier alphabet or by a nullary operator. The length |z| 
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of a tree t is simply its length as a word. The leaves of tree t of our example are 
y, y and x. Its length is 15 (when parantheses and commas are counted, too). 
Of course, one can define and prove things about trees by induction on the length; 
but in practice this mostly reduces to tree induction. Induction on the height 
hg (?) is equivalent to tree induction.

We shall use the term frontier in a rather informal way to designate the part 
of a tree consisting of the leaves. The frontier of the tree of Example 1.1 consists 
of the nodes labelled by y, y and x. The same letter or nullary operator could 
appear several times as a leaf in the frontier. The visual picture of a tree also 
suggests the notions of a branch and that of a path. In our t there are two main 
branches leaving the lower a. They correspond to the subtrees y and cr(y, x). 
There are three paths from the root to the frontier. They spell out the words 
copy, way and coaax, respectively. These terms are used in a descriptive manner 
to aid the intuition and no precise definitions are needed.

Note. In the literature the root is often called the “top” of the tree, while its 
frontier is referred to as the “bottom”. Then “top-down” indicates the direction 
from the root towards the frontier, and “bottom-up” means the opposite 
direction. This terminology is connected with the common practice of drawing 

trees upside-down.
The same tree may occur several times as a subtree of a given tree and one 

should distinguish between a subtree and an occurrence of a subtree. It is possible 
to assign coordinates to the nodes of a tree and then indicate a certain occurrence 
of a subtree by the coordinates of its root. However, the following ample device 
to specify an occurrence of a subtree will suffice. For any occurrence of a sub
tree , of a tree t, there is a unique way to write t^usv. Here u and a are just 
words and the occurrence of s is uniquely determined by u

Wc shall now consider some ways to construct new trees from g,ven ones. The 
very definition of suggests such a construction If rnsO and 
1........ then »«............................. is > b
Tateno,ton of ,.........V » is X £ % ™

, t„ a new root labelled by o. The constructton is illustrated by Fig. 11.2.

Fig. II.2.
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Note that the a-catenation is the cr-operation of the ZY-term algebra ^(X):

Let t be a TX-tree and suppose we are given a tree sx for every x£X. The tree 
denoted by

t{x — sx|x$X), or just t(x *- sx),

is obtained by substituting in t, simultaneously for every x£X, sx for each occur
rence of x. The formal definition by tree induction reads as follows:

1° If r = z^X, then t(x sx) = sz.

2° If t = o-CZq, then t(x *- sx) — a.

3° If / = <7^,rm), then

Z(x - Sx) = - Sx), tm(x - sj).

If the trees are TX-trees, then t(x+-sx) is also a ZX-tree. However, the con
struction works also in the more general case where the trees sx are fiX-trees for 
some Q and Ysuch that Zmni2n=0 whenever m^n. Then

Suppose X= {xlt , x„}. One may then write t(x*-sx) in the more explicit 
form

- sX1, -,xn - sXn).

If the order xb ..., xn is understood, we may write simply l(sx , ...,sx ).
A letter x may be left unrewritten by choosing sx=x. The notation 

r(x1-^51, ..., x„ —sn) is used more generally to indicate a substitution where the 
letters x( are rewritten as the corresponding st,s (i= 1, ..., n), but all other letters 
of X are left unchanged in the tree t.

Example 1.3. Suppose ycTg, and x, y, zeX. If t=cr(y, <r(y, x, y), z), then 

r(y-x, z*-c(x, x, z)) = u(x, a(y, x, x), a(x, x, z)).

The tree is shown in Fig. II. 3. q

Often a certain occurrence of a subtree s of a tree t should be replaced by a 
tree r. If the presentation t=usv indicates the particular occurrence of s, then 
the result is urv. It is easy to show that urv is also a IX-tree whenever t, re F^X). 
The operation may also be described as follows. Let { be a new letter. There is a 
unique tree FeF^XU® with exactly one occurrence of £ such that t=t'(^s). 
Then urv=t'(i^r). Other ways to operate on trees will be encountered later on.

Trees define polynomial functions in algebras. These will be very important, 
and we shall now see how the basic tree operations are reflected in them. Let 
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rf=(A, Z) be a Z-algebra. If t^F^X) is obtained by ^-catenation from the trsee 
G, .... tm OsO, aCEm), then

t^ = o^tf,

is simply the composition of tf, ..., with Now consider the substitution 
operation. Let X={xlt ...,x„} and t, ...,s„eF^X). The polynomial func
tion

Ax - A

is computed as follows. For any a:X—-A,

where P:X-*A is defined so that XiP=sf(cc) for all i=l,...,n.
Finally, consider the replacing of an occurrence of a subtree s of a ZA'-tree 

t by a ZA'-tree r. Write t=t'(^s) as explained above. For any a: X-^A, 
we get then

- rH(a) = t^(a')

where a': A is defined so that a'|y=a and £a=r (a).
A EX-forest is simply a subset of F^X). Many authors call forests tree lan

guages. In general, we use the letters R, S and T for forests
If EQ Q and XQ Y then all ZT-trees are <2/-trees, too. Thus every EX- 

forest may be viewed'as an flK-forest. In most cases this can safely be done. 
For example, a ^-forest is recognizable (in the sense defined in the next section) 
as a ZT-forest iff it is recognizable as an I2F-forest.

Of course, those forests only are of interest that can be defined in some nat
ural way. This chapter is devoted to a family of such forests, the forests recogniz
able by finite tree automata. In the theory of these forests many concepts and 
results familiar from the theory of recognizable languages can be perceived The 
generalization from words and languages to trees and forests will be considered 

in the next section.

2. TREE RECOGNIZERS

In this section we introduce tree recognizers, that is, tree automata which 
deline forests. There arc four basic types of these recognizers. A tree recognizer 
may be defined in such a way that it reads its input trees from the fronfer toward 
the root. Then it is called a fnmler-io-rool recognizeror an F-reeogmzerfor 
Short. A tree recognizer which reads the trees starting al the root proceeding the 
towards the frontier is called a mt-lo-frontier recognizer. or simply an R-recog- 
nlzer. In both cases the recognizer may be either Merlin: or nondnermmMc.
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As a rule, all tree recognizers considered here are finite, i.e., they have a finite 
number of states.

Our first task will be to compare the families of forests recognizable by these 
four types of tree recognizers. It turns out that we get just two families. Deter
ministic F-recognizers, nondeterministic F-recognizers and nondeterministic F- 
recognizers all have the same recognition power. The forests recognized by them 
are termed recognizable. Deterministic F-recognizers are considerably weaker 
and they yield a rather special subfamily of the recognizable forests.

As stated in the previous section, Z is always a ranked alphabet and X is 
a frontier alphabet.

Definition 2.1. A frontier-to-root ZX-recognizer or an (F)ZX-recognizer, for 
short, A consists of

(1) a finite Z-algebra j^=(A, Z),
(2) an initial assignment a:X-*A and
(3) a set A'QA of final states.

We write A = (j/, a, A') or A=(A, Z, X, a, A'). The forest recognized by A 
is the ZX-forest

7(A) = {/^(X)!^)^'}.

A ZX-forest T is said to be recognizable, if there exists a ZX-recognizer A such 
that F=F(A). The family of recognizable forests is denoted by Rec, and 
Rec (Z, X) denotes the set of all recognizable ZX-forests.

The recognizers defined above are finite and deterministic although this has 
not been emphasized in the name. They are our “basic” type of tree recognizer 
and we shall usually omit the label “F” which distinguishes them from root-to- 
frontier tree recognizers. The elements of the underlying algebra are called the 
states of A and A is its state set.

If not otherwise specified, A will be the ZX-recognizer a, A'). Also, 
B and C will usually be the ZX-recognizers (^, p, SB') and (W, y, C'), respectively. 
Here ^-(B, Z) and V=(C, Z) are Z-algebras, [kX-B and y:X-C are 
the initial assignments, and B’QB and C'gC.

In algebraic terms the operation of the ZX-recognizer A can be explained 
as follows. Given an input tree t^F^X) the polynomial function /■* is evaluated 
on the initial assignment a. The tree is accepted exactly in case the result t*(a) 
is a final state. If
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is the extension of a to a homomorphism, then

^(a) = t& for every teF^X), 
and we may write

T(A) = {t^F^^A'} = A'&~\

A more pictorial description of the operation of A in automata theoretic terms 
is also possible. Given an input tree t, A starts reading it from the leaves in states 
that depend on the labels of the leaves. If a certain leaf is labelled by a frontier 
letter x, then A is in state xn at that leaf. If the label is a nullary operator <r, then 
A starts from that leaf in state a3*. Now A moves down all the branches towards 
the root step by step as follows. If a given node v is labelled by the m-ary operator 
<r (w>0), then A enters v in state where a1( am are the states
of A at the nodes immediately above v, listed in order from left to right. The tree 
is accepted if A enters the root in a final state.
Example 2.2. Let Z=ZiUZ2, Zx={~}, Z2= {A, V} and X={x,y}. Define 
the operations of the Z-algebra = ({0, 1}, Z) by the tables below:

a ^(a) a b (a, b) b)

0 1 oo
10 0 1

1 0
1 1

Define an initial assignment so that xa 
tion of our TA"-recognizer A we choose 
tion of A on the tree

t = A(~(A(y,-

is shown in Fig. II.4, The states of A at 
tree is accepted since the state at the ro

0
0
0
1

= 1 and 
1} as the

v)), V(~ 

the node, 
ot is 1. Le

0
1
1
1

ya=0. To complete the defini- 
set of final states. The computa-

(y), *))

are shown in parentheses. The 
:t A and V have their usual

Fig. H.4.
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meanings as symbols for the logical connectives “not”, “and” and “or”. Then 
LA-trees are expressions of propositional logic in the two propositional variables 
x and y. If 0 and 1 are interpreted as the truth values “false” and “true”, respec
tively, then A computes the truth values of propositions, when the truth values 
of the variables are given. The forest recognized by A consists of the propositions 
(in variables x and y) that are true when x is true and y is false. □

Example 2.3. Let £=£,= {+,.} and A={xj, .... x„} for some n^l. The 
TA-trees may now be interpreted as arithmetic expressions in variables Xj, ..., x„. 
Using the customary infix notation one would write, for example, x1+x1-x2 
rather than +(x!, Let and define the Z-algebra
•^=({0, L m — 1}, L) so that

a+sib = a + b (modm) 
and

a • ^b = a • b (mod m)

for all a, b=0, 1, ..., m — 1. If t is a TA-tree and a: A—A is any mapping, then 
^(a) is the value of the expression t (mod ni) when the variables are assigned 
values according to a. Thus any TA-recognizer A=(^/, a, A') based on the al
gebra si recognizes a set of arithmetic expressions which get a value (mod w) in 
A’ when each variable x( is given a certain value x(a (i=l, ..., n). □

The examples suggest some useful general observations on tree recognizers. 
A tree recognizer is a device that evaluates an expression (a tree) for given values 
of the variables (given by the initial assignment) and decides then on the basis of 
this value whether the expression belongs to given set or not. Since the state set 
is finite such an evaluation is always “modulo something”. For example, we could 
not construct a tree recognizer which would find out whether the value of an arith
metic expression is a prime or not. Similarly, there is no tree recognizer that recog
nizes the set of all trees in which two given operators appear the same number 
of times. The following example discusses another manifestation of the same 
phenomenon.

Example 2.4. Let T=T2= {o’} and let A be an arbitrary nonempty frontier alpha
bet. Then the forest

T=

is not recognizable. For suppose 7’=7'(A) for some TA-recognizer A. Since A 
is finite, there must exist two different TA-trees s and l such that s&=t&. But 
then we would have that

= a“(s&, t&) = ^(s&, s&) = a(s, s)&£A', 
which implies the contradiction a(s, t)£T. □
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Let us now look how tree recognizers arise as generalizations of the Rabin— 
Scott recognizers through a universal algebraic interpretation. First, let 
A=(J, I, <5, a0, A') be an /-recognizer as defined in Sect. 1.5 (to avoid confusion 
we use I as the input alphabet). Define a ranked alphabet Z such that Zk=I and 
Zm = 0 for all The next-state mapping of A is completely determined by 
the Z-algebra sd=(A, T) which is defined so that

tr^a) = 5{a, a) for all a^A and

If we put X= {x}, then /-words and TX-trees can be identified as follows. The 
empty word e corresponds to the tree x, and a nonempty word ... crk (k = 1, ex /) 
may be interpreted as the tree crft(...<r1(x)...) (the reverse Polish notation for trees 
would make the identification even more natural). Define a. X-*A so that
xa=a0. Then

S(a0,t) = for all ?€/*(= Fj(Z)l).

This implies that the forest recognized by the £A-recognizer (j/, a, A ) is, inter
preted as an /-language, the language recognized by A. Hence a Rabin Scott re
recognizer may be viewed as a tree recognizer over a unary ranked alphabet and 
a one-element frontier alphabet. The general T^-recognizers result when one does 
not require I to be unary and allows also an arbitrary frontier alphabet X.

The nondeterministic frontier-to-root tree recognizers that we soon shall define 
may be viewed as generalized F-tree recognizers in which nondeterminism is 
allowed both in the Assignment of states to the leaves and in the next-state behav
iour. First we have to introduce nondeterministic operations and nondetermin

istic algebras. .
An m-ary nondeterministic (ND) operation on a set A is a mapping from A 

to pA (msO). Thus an m-ary ND operation

/: Am -* pA

assings to every m-tuple of elements from A a subset of A. A nullary ND operation 

/: {0} * PA

fixes a subset of A. and/may be identified with this subset/®. A
(ND) Z-algebra jJ=(A, I) consists of a nonempty set A and a family k H 2.} 
of ND operations on A such that for each o^Z, <r is m-ary if The N 
Z-algebra is finite if A is finite. A Z-algebra may be viewed as an ND Z-algebra 
when elements of J are identified with the correspond,ng smsktons {«}.

On the other hand, we associate with every ND Z-algebra d-(A, Z) an ordi- 

nary Z-algebra, namely the subset algebra

psd = (pA Z)
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where
...,Am) = U(o^(a1,..., a^a^At, ...,ameAm)

for all msO, aeZm and Alt ..., Amf= A. Now any mapping

a: X-pA

may be extended to a homomorphism

&: ^(X) - psi.

Consider a ZT-tree t. The computation of the set t& may be described in automata 
theoretic terms as follows. If a leaf is labelled by a letter x, then the automaton 

may start at that leaf in any one of the states in xa. If a leaf is labelled by a 
nullary operator, then is the set of the possible starting states. Let v be any 
node in the tree labelled by an m-ary symbol a (m>0). Let <r(ti, ...»tm) he the 
subtree of t which has v as its root. Then t^, ..., are the respective sets of 
possible states of at the nodes immediately above v. Now may enter v in 
any one of the states from ..., tm&). Clearly, t& is the set of all states in
which si may be at the root of t.

Definition 2.5. A nondeterministic frontier-to-root ZX-recognizer, or an NDF 
ZX-recognizer for short, A consists of

(1) a finite ND Z-algebra si=(A, Z),
(2) an initial assignment a: X—pA and
(3) a set A'£ A of final states.

We write X=(si, a, A') or A=(A, Z, X, a, A'). The forest recognized by A is 
the ZT-forest

T(A) = # 0}.

The definition of T(A) means that a tree t is accepted by A iff there is a set of 
choices of initial states for the leaves and next-states for the other nodes such that 
A enters the root of t in a final state. It is rather obvious that the ZA-recognizer

pA = {psi, a, A"), 
where

A" = {^jCpXMiCU' # 0},

recognizes the same forest as A. Indeed, for any t^F^X), 

t£T{pX) iff t^{^A" iff t^A" 

iff tAHA'^0 iff t£T{X).

This is the natural generalization of the usual subset construction as applied to 
ND Rabin—Scott recognizers, and pA is the “subset recognizer” corresponding 
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to A. Since every ZA-recognizer may be viewed as an equivalent NDF 2T-recog- 
nizer we have verified the following theorem.

Theorem 2.6. The forests recognized by nondeterministic frontier-to-root recognizers 
are exactly the recognizable forests. □

We begin the discussion of root-to-frontier tree recognizers with the nondeter
ministic version. In a nondeterministic root-to-frontier Z-algebra (NDR Z-algebra, 
for short) st=(A, Z), A is a nonempty set and every with m^l is realized 
as a mapping

o-*: A -p(^m).

For o’C^'o, is a subset of A. We call st finite, if A is finite.

Definition 2.7. A nondeterministic root-to-frontier ZX-recognizer A, or an NDR 
ZX-recognizer, consists of

(1) a finite NDR Z-algebra st=(A, Z),
(2) a set A' c A of initial states, and
(3) a final assignment a: X—pA.

We write X=(st, A', a) or A=U, Z, X, A', a). The elements of A are called 
states.

In order to make the formal definition of the forest recognized by such an A 
easier to understand, we shall first describe its intended operation. At the root of 
a given ZJV-tree t, A may be in any initial state a(:A'. Consider now any node 
v of t labelled by some a£Zm with msl. If a is a possible state of A at v and 
(a1( ..., aj^a^a), then A may assume state Ol at the leftmost node immediately 
above v, state u2 at the node immediately to the right of this node etc. For every 
w-tuple in a"(a), A has such a sequence of possible next-states for the nodes 
directly above v. Note that the possible states at these nodes are connected 
with each other: (at, (a{.......a^Ka^^ does not imply, for example, 
(aj, a2, ..., am)e<7^(,d). The tree t is accepted by A if it is possible to choose the 
initial state for the root and then make the consecutive choices of next-state 
vectors in such a way that A arrives at each leaf labelled by a frontier letter x in 
a state belonging to xa, and at each leaf labelled by a 0-ary symbol a in a state 
belonging to It is easier to formalize this recognition process by tracing it 
from the leaves back to the root. The idea is to see which states at each node can 
lead to acceptance. For the leaves this is clear. If a leaf is labelled by x£X, then 
the accepting states for that leaf form the set xa. If a leaf is labelled by a^Z,, 
then the accepting states are those belonging to of Now one can infer the states 
that are accepting at the nodes immediately below the leaves. When these have 
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been found, we may determine the states in which A should be at nodes one level 
deeper in the tree. Finally one finds out the accepting states for the root. The tree 
is accepted iff at least one of these is an initial state.

Definition 2.8. Let A=(^, A', a) be an NDR ZA-recognizer. A mapping

a: F^X^pA 
is defined as follows:

1° If x^X, then xa. = xa.

2° If then =

3° If t = a(ti, ..., Q(m S 1). then 

ta = {aC^lo-^^A^iaX.-.X^a) X 0}.

The forest recognized by A is the ZX-forest

Example 2.9. Let us consider again the arithmetic expressions defined in Example 
2.3. We shall construct an NDR Z^, x2}-recognizer which accepts an expression 
in variables xx and x2 iff the value of the expression is divisible by 4 when x^O 
or 2 (mod 4) and xa=3 (mod 4). An obvious choice for a state set is 
A = {0, 1, 2, 3}. The set of initial states is {0}, and the final assignment is defined 
by Xia={o, 2} and x2a={3}. The next-state behaviour is determined by in
fering the possible summands or factors from the sum or product, respectively.

We get
4-^(0) = {(0, 0), (1, 3), (2, 2), (3, 1)} 

+x(i) = {(0,1), (1, 0), (2, 3), (3, 2)} 

etc., and

• ^(0)= {0}XXUXx{0}U{(2,2)} 

•*(1)={(1, 1). (3,3)}

etc..

Note that we would get an equivalent NDF-recognizer by ‘ inverting these oper
ations (0+J/0=0 etc.), and making (0} the set of final states and a the initial 
assignment.

The concluding observation of Example 2.9 can be generalized as follows. We 
say that the NDF ZA-recognizer A=(J, I, X, a, A') and the NDR 2 A-recognizer 
B=(B, Z, X, B', (1) are associated if
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(1) A=B, A'—B' and
(2) (a) iff a^a^^, ..., am), for all m^l, cr€Zm and

ax,..., am, a£A, and
(3) cr^a® for every <r£Z0.

It easy to see that &=^ if A and B are associated. Since every NDF tree recognizer 
has an associated NDR tree recognizer, and conversely, we get

Theorem 2.10. The forests recognizable by NDR tree recognizers are exactly the 
recognizable forests. O

A deterministic root-to-frontier ZX-recognizer, or a DR ZX-recognizer, is a 
NDR ZX-recognizer A=(a/, A', a) such that A' and all of the sets a^(a) (aEZm, 
m&l, a^A) and with <7£Z0 contain exactly one element. Thus a DR ZX- 
recognizer A has exactly one initial state and in every situation there is exactly 
one choice of next-state vector. Moreover, there is exactly one final state for each 
leaf labelled by a nullary symbol. The forest recognized by A is defined the same 
way as in the general case.

That determinism is a real limitation in the case of root-to-frontier recognizers 
is shown by the following example.

Example 2.11. Suppose o^Z2 and x,y£X. If a DR ZX-recognizer accepts the 
trees u(x,y) and a(y,xf then it must accept o(x, xf too. Hence, the forest 
T= {a(x, y), a{y, x)} cannot be recognized by any DR ZX-recognizer. On the 
other hand, it is obvious that TfERec (Z, X). □

The inability of these recognizers to cope with situations such as that in Example 
2.11 is due to the fact that they have to read disjoint subtrees separately without 
any possibility to combine the information gathered from the individual sub
trees. In an NDR tree recognizer this handicap is compensated for by their abil
ity to make several guesses about the subtrees jointly before reading them sepa
rately.

3. REGULAR TREE GRAMMARS

So far, the recognizable forests have been characterized by means of three types 
of tree recognizers. Now we shall introduce a class of tree grammars that also 
defines the family of recognizable forests. These grammars are the natural coun

terparts to type 3 grammars.

Definition 3.1. A regular ZX-grammar G consists of

(I) a finite nonempty set N of nonterminal symbols,
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(2) a finite set P of productions of the form a—r, where a^N and 
r^F^NUX), and

(3) an initial symbol a0£ N.

It is assumed that WCXTUY^fl. We write G=(N, Z, X, P, a0).

When Z and X are not specified, we speak about regular tree grammars or just 
grammars, if there is no danger of confusion.

Let G be a regular tree grammar as in the definition above. The right-hand side 
of a production is a tree in which nonterminal symbols may appear at the leaves 
only. For p, q^F^X^N), we write

(or just p => 9)

if there exist a^N, r^F^N) and words u, v such that p=uav, q=urv and 
a—r£P, i.e., p=>07 means that q is obtained by replacing an occurrence of a 
nonterminal symbol a by a tree r, where a—r is a production of the grammar. 
More generally, we write

p=>^q (or just p => *4)

if p=q or there exists a (nontrivial) derivation

P =* gP1 ^G-'-^cPn-l G? O1 — D

of q from p. Hence, =>* is the reflexive, transitive closure of =>, when we view it 
as a relation in /^(YUN).

Definition 3.2. The forest generated by a regular ZY-grammar G=(N, Z, X, P, a0) 
is the ZY-forest

T(G)=

Two regular ZY-grammars Gx and G2 are said to be equivalent if T(G1)=T(G^).

Example 3.3. Let Z = Z0UZ2, I0={w}, £2={ct} and Y={x). Define the regu
lar ZY-grammar

G = ({a, b}, Z, X, P, a), 
where

P = {a — o(x, a(x, b)), a — a(co, a), b — a(x, x)}.
The tree

t = a (co, a(x, a(x, a(x, x))))

is in T(G) and it has the derivation

a =>o(co, a) => a (co, a(x, a (x, b))) => t.
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If the graphical representation of trees is used, this derivation can be written 
in the form

A regular ZX-grammar may be viewed as a context-free grammar with a ter
minal alphabet consisting of X, X, the parentheses and the comma. Thus, if we 
treat trees as words, then the forests generated by regular tree grammars are 
special CF languages. However, we are mainly interested in them as forests, and 
we shall prove that exactly the recognizable forests can be generated by these 
grammars. To facilitate the proof first we show that the form of the productions 
may be restricted considerably without limiting the generative power of regular 
tree grammars.

To begin with, we note that productions of the form

a-b (a,beN)

are not needed. All such productions can be deleted if we add to P all productions 
a-^r [a^N, r^F^^-N) such that a^*b and b-rtP for some b£N. 
(It is easy to see that a=>*b is decidable for a, baN.)

Call hg(r) the height of the production a^r. If the height of a production 
a-^r is >1, then r is of the form a (n, rm), where mSl, and hg(r,)<
*hg(r) for each i=l, Ifwe introduce new nonterminal symbols .......am

and the productions 
(*) a — afuj,am)
and
(**) at - rt (i = 1........ «)» 

then the production a~r may be deleted without changing the forest generated. 
Indeed, any application of a-r can be replaced by an application of ( ) followed 
by applications of the productions ("). On the other hand, none of the produc
tions (■•) can be used unless C) has first been used, and when ( ) lias been applied 
it must be followed by applications of all productions <") as there is no other 
way to rewrite the now nonterminals a,. The total effect of these steps is the same 
as that of a single application of a-r. Ulus every production of height >1 can 
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be replaced by productions of lesser height. The process can be repeated until 
there are no productions of height >1. In (**) there may be productions of the 
type a-b, but they can be eliminated. Hence each production of height 0 may 
be assumed to be of the type

(i) a -* x (a^N, x^X)

or of the form

(ii) aa (a^N,

A production of height 1 is of the form

a -* o(r1,..., rm) (m S 1, a£N),

where each r( is a frontier letter, a 0-ary operator or a nonterminal symbol.If r( 
is a letter from X or a 0-ary operator, then we may substitute a new nonterminal 
symbol d for it and introduce the production rt of height 0 without changing 
the forest generated. Thus we may assume that all productions of height 1 are 
of the form

(iii) a — ..., am) (m S 1, a, a1( amaN).

We say that a regular tree grammar is in normal form if each of its productions 
is of type (i), (ii) or (iii). The previous discussion amounts to the following lemma.

Lemma 3.4. Every regular tree grammar can be transformed into an equivalent 
regular tree grammar in normal form. □

Example 3.5. None of the productions of the grammar considered in Example 3.3 
is in normal form. The production a—o(x, a(x, b)) can be replaced by the fol
lowing set:

a — trfaj.aa), at — x, a3 — <r(«i, b).

Notice that we could use the new nonterminal symbol Uj twice since in both 
functions it should be rewritten as x. Similarly, the production a—a (at, a) is 
replaced by the two productions

a — tr(a3, a) and a3 -* co,

and the production 6—a(x, x) is replaced by b—o^a^a^ (we already have 
Oi—x). We have got a grammar in normal form with five nonterminal symbols 
a, b, alt a2 and a3, and the productions

a-dfdj.aj), a-o-(a3,a), b—aCa^a,),

at — x, a2a(alt b) and a3 — w. □
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The following minor generalization of regular tree grammars is introduced as 
a technical aid. An extended regular SX-grammar

G = (N, Z, X, P, A')

is defined otherwise exactly as a regular ZY-grammar, but it has a set A sN of 
initial symbols. Also =>£ is defined the same way as for regular tree grammars. The 
forest generated by such a G is

T(G) = {teFA^o^ct for some ao^A'}-

It is immediately clear that every language generated by an extended regular tree 
grammar can be generated by an ordinary regular tree grammar, too.

Theorem 3.6. The forests generated by regular tree grammars are exactly the 

recognizable forests.
Proof. We associate with every NDF ZZ-recognizer A—(A, X, X, a, A ) an 

extended regular ZZ-grammar

G = (A, Z, X, P, A'), 
where .... ,

P={a~x\x€X, a€xa}U {a - ^<r€T0, a£o }U

U{a-<r(a1,...,am)|mSl, a£Zm, a, at,..., am(A, ae^^,.... am)}.

The grammar G is in normal form (i.e., the productions are of type (i)—(iii)). 
It is clear that every extended regular ZZ-grammar in normal form arises this way 
from a NDF ZZ-recognizer. To prove the theorem it suffices now to show that 
T(A) = T(G) for such an associated pair A and G. To do this we show by tree 

induction that
(*) a£t& iff a=>^t

holds for all aZA and t€Fll(X'). _ ,
1° For t = xeX, aex& iff a - xtP iff a x (here we needed the fact that 

G has no productions of the form a—b).
2° The case t^Z, is similar: iff ata' iff iff a
3° Let t=a{tx,...,Q fa*1) and suPPose that hoIds f

and all states. If a^*t, then there is a derivation of the form 

a =>a(aitam) a(ti, »^m)>

where a., .... aSN and
Oj =** fi for ' = 1’ m.

Then ata^.-.a^ by the definition of P, and C) implies a^A, 

Hence , .
ata^^^iA.......tm® =

,amtt„A.
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Conversely, a£t& means that
a^^, ...,am)

for some a^h&, ...,am£tm&. But then (*) implies a^*^, ...,am=Stm. Also, P 
contains the production a—o^a^,a^ and we get the required derivation

a =>o-(ai,..., am) .... tj = t.

This completes the proof of (*), and we have for every ZX-tree t, 

t^T^A) iff t&DA'^Q

iff a£t& for some at A'

iff for some atA'

iff ttT(G).

Hence T(A) = T(G) as required. □

4. OPERATIONS ON FORESTS

In this section some more insight into the family of recognizable forests is gained 
by studying its closure properties with respect to various forest operations. In 
the following definitions and theorems all forests usually have the same ranked 
alphabet and the same frontier alphabet. To show that this is no serious limitation, 
we note the following simple fact.

Lemma 4.1. Let Z and Q be ranked alphabets such that and let X and X 
be frontier alphabets such that X^Y. Then

Rec (I, X) = Rec (£2, FJClpF^X). □

Of course, the lemma presupposes the point of view that every ZX-forest is 
also an £2 X-forest. Now let Z and Q be any ranked alphabets such that Ym A £2„=0 
whenever myn. Also, let X and Y be arbitrary frontier alphabets. The lemma 
implies that if Rec (I, X) and TCRec (£2, X), then S and Fean be regarded 
as recognizable forests over a common ranked alphabet ZU £2 and a common 
frontier alphabet XU Y.

Theorem 4.2. If S, TtRec (Z, X), then SClT, SUFand S-Tare also recogniz
able LX-forests.

Proof. Suppose S and T are recognized by the ZX-recognizers A and B, respec
tively. Let and define

y: X — C by (xa, xp).
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Then
t^ = (t&,t^) for all t^F^X).

This implies that we get from and y ZY-recognizers for SAT, SUT and S—T 
by choosing, respectively, as the set of final states A'XB', A'XBUAXB', and 
A'x(B-B'). For example, let

C = y, A'XB').
For any t^F^X), 

t€T(C) iff t? = (t&, t^A'XB'

iff ^T(A)AT(B).
That is, r(C) = SAT □

Note that the complement FZ(X)—T of a recognizable Zy-forest T is recogniz
able. If Tis recognized by a ZX-recognizer A, then the complement is recognized 
by (X, a, A-A').

Definition 4.3. Let (Tx\x£X) be an T-indexed family of ZJ-forests. For each 
Z^-tree t we define a forest t(x^Tx\x£X), mostly written simply t(x~Tf 
as follows:

1° If t = z£X, then t(x^Tx) = Tz.

2° If t = ado. then t(x - Tx) = a.
3° If .... S 1), then

t(x~ Tx)= {a(s1,...,sm)|si€fi(x- Tx) for i =

The forest product of the family (TjxCr) with the S^-forest T is defined as the 
ZX-forest

T(x *- TjxCX) = U(t(x - TjxC 201^7).

We shall usually write just T(x*- Tx). If T consists of a single ZT-tree t, then

T(x -Tx) = t(x - Tx).

The trees in t(x~TJ are obtained from t by replacing every occurrence of each 
letter x by a tree from the corresponding forest Tx. Different occurrences of the 
same letter x may be rewritten as different trees from Tx.

If xt,...,x^X, then we use the notation

/ (X) *- T\y , xn *" F„)

for the forest product T(x *- Tx), where

|T( for x = xt (i =
^“Ix for xC{xj.......xj
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If the letters x15 x„ and their order are understood, then this notation may be 
further simplified to T(7j,T„).

The comments presented at the beginning of the section show that the defini
tion of forest products also includes the cases, where TcFfX) and TzcFn(Y) 
(x€X) for any such alphabets that ZmrW„=0 whenever m^n. If T is a ZX- 
forest and the forests Tx are GT-forests, then T(x~Tx) is a (Z U G) T-forest.

Example 4.4. Let Z=Z0UZ2, Z0=M> X={x,y} and Y={y,z}. If
t=a{x, aly, x)), Tx= {a(y, z), z} and Ty= {cr(co, y), o{z, z)}, then t(x - Tx, y - TJ 
contains eight trees, among them the tree <r(ff(y, z), a(ff(w, y), z)). □

The following special type of forest products is important.

Definition 4.5. Let 5 and T be ZT-forests and z^X. The z-product of S and T 
is the forest product

S-ZT = T(x *- Tx\x£X)

where TZ=S and Tx=x for all x£X, x^z.

The trees in S' -z T are obtained by taking a tree t from T and substituting a tree 
from S’ for every occurrence of z in t. Different occurrences of z may be replaced 
by different trees from 5.

Theorem 4.6. If TgRec (I, X) and Tx CRec (Z, X) for all xd X, then Tlx*-Tx)e 
€Rec(Z, X). In particular, Rec (I, X) is closed under all x-products (x£X).

Proof. Here it is convenient to use regular tree grammars. Suppose Tand the forests 
Tx (x^X) are generated by the regular ZT-grammars G—(N, Z, X, P, a0) and 
GX=(NX, Z, X, Px, af) (x^X), respectively. We may assume that the grammars 
are in normal form and that their sets of nonterminal symbols are pairwise dis
joint. Construct a regular Z^-grammar

G' = (N', Z, X, P', a0)

with and

P' = P"U {a ~ ax\xdX, a -x€P)UU(^n

where P" is P with all productions of the form a-x (a£N, x£X) deleted.
We claim that T(G') = T(x — Tx). The idea is that every derivation a0=>a ...=>Gt 

of a tree t€ T can be imitated by the productions in P" up to the point where 
frontier letters x^X are to be generated. Instead of generating a leaf x one 
transfers then by a production a—ax to the beginning of a derivation which 
generates any tree txc Tx in place of the leaf. This means that G' can generate 
all of T(x— Tx). On the other hand, every derivation in G' can be brought into 
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this form by rearranging the applications of the productions suitably. Hence, 
T’(G') = T(x ♦- Tx). For a formal proof it suffices to show that

(*) a^*,p iff (3qeFAX))a^*cq,peq(x^Tx)

holds for all a^N and p^F^X). We proceed by tree induction on p. The fact 
that the grammars G and Gx are in normal form is used without comment.

1° Let p—y^X. Suppose there is a q^F^X) such that a^q and 
yZqtx — T.''). This is possible only in case q—z and y£Tz for some z£X. Then 
a—z£P and hence a-*az, az^y£P'. We get the derivation

a => caz gX-

On the other hand, all derivations of y from a in G' are of this form. Hence, if 
a^*,y, then a-^a., az^y£P' for some z^X. This means that a^z^P and 
az— y^Pz, and thus z is the required tree q.

2° Let p—G^F^.
(2a) If there is a q such that a=>*Gq and o£q(x^Tx\ then there are two 

possibilities. The first one is that q=a. Then P and P both contain and 
we get the required derivation in one step. The other possibility is that
q—x^X and Px contains ax-»cr. Then u-^^x and ax^a are 'n 7* and we get 
the derivation

a =>G'ax^G‘a-

(2b) Suppose a=>G-a- One possibility is that a-^o^P'. Then a+o is in P, 
too, and we may choose q=G. The only alternative is that the derivation is of 
the form a=>G.ax=>Go ^r some x£X. Then a^x^P and o^Tx, and we 

may put q=x.

3° Let p=o{plt -'PJ 0«>0)- , • u
(3a) Suppose we have a tree q such that a=**Gq and P^X^T^- A§ain there 

are two cases to consider. If q=z^X, then p£Tz, a-^z^P and a.=>0,P- N°w 

a—ax£P' and, since PZ^P', we get
*a ^G^t^cP-

The other possibility is that
q = a(qi,.... q^

for some qit.... qm^F^X). Then
(i = l,...,m)

and the derivation o=*Gq must begin with a step

a ^g0"^’ > am)
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such that
af=>G?< for i = t — ,m.

Our silent inductive assumption yields

ai=>G'Pi for i = l.

Combining these derivations with a—a(alt ..., a^P' we get a=>G,p.
(3b) Suppose a^G,p. This could mean that a^z^P and ax^*Gtp for some 

z^X. Then we may choose q=z. The other possibility is that the derivation 
takes the form

a =><P<r(ai, .... am) =>G<a(Pi, ■■■>Pm)-

Then there exist zy-trees qt such that

at=>iq{, P^qfx (i = l, ...,m).

Now we may put q=cr(q1,qm). □

Next we generalize the iteration operation taking the x-products as the starting 
point.

Definition 4.7. Let T be any T^-forest and let x^X. Put T°'x = {x} and

Tj+i.x _

for all y’sO. Then the x-iteration of T is the ZY-forest

T*x =U(TJ-X\j S 0).

The forest T*x is obtained as follows. First include x. New members of T*x 
are obtained by substituting in some T for every occurrence of x some tree 
already known to be in T*x. Note that Tl,x = TUx and 7'^'Icr',+l’x for 
every JsO.

Theorem 4.8. If T€Rec(I, X), then T*x€Rec(Z, X) for each x^X.

Proof. Let G=(N, Z, X, P, aj be a regular tree grammar generating the forest T. 
Construct an extended regular TT-grammar G'=(N', Z, X, P', A'), where

(l)JV' = #U{d} (d^N),

(2) P' = PU{d -x}U{a — r]a — x^P, a0 — r^P}, and

(3) A’ = {a0,d}.

It is not hard to see that T(G') = T*X. □

The following operation may be seen as a converse to the x-product.
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Definition 4.9. Let S and 7 be ZY-forests and let x$X. The x-quotient of 7 by S 
is the forest

S~XT = {p£FffX)\S-x{p}fYT*0}.

If S={j} is a singleton, then we write S~xT=s~xT.

A tree p is in S -x 7 iff one can convert it into a tree in 7 by substituting for 
every occurrence of x a tree from S. If 7 is unary and X— {x}, and if we iden
tify the tree ^(...^(x)...) with the word o1...ak, then

S~XT= {u£2*\SuC]T 0} 

is the usual (left) quotient language.

Theorem 4.10. If Rec (I, X) and S is any ZX-foreSt, then S~XT is recognizable 
for every x^X. Moreover, the number of different x-quotients S XT for any fixed 
Tc Rec (7, A") is finite.

Proof. Let A be a lA-recognizer for T. We define an NDF Z^-recognizer 

B = p, A')

which is identical to A (when states at A and singleton sets {a} are identified) 
except for the initial assignment which is defined so that

xp = S& 
and

zp = {za} for all z£X, z? x.

Here is the set of all states s& in which A may be after reading a tree s from S. 
By tree induction one verifies that

tfi = (S-xW

for all tt F^X). Hence
/€7(B) iff tPf\A'*0 

iff (S-xf)&r\A'*9 

iff S-xtD7^0 

iff tes-xT

for all t^F^X). This implies S-7= 7(B). The second statement follows from 
this construction as the number of possible p s is finite. □

Next we introduce the forest operation corresponding to the u-catenation of 

trees which was defined in Section 1.
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Definition 4.11. Let be an m-ary operator and let Tlt ..., Tm be m IT-forests 
for some m=0. The a-product of the forests Tlt ..., Tm is the forest

...,Tm) = {<r(h,..., UlGCTi. tmeTm}.

If m=0, then the cr-product is always {er}. In general,

<7^, ...,Tm) = {afe, ...,xm)}(xx - ...,xm - Tm)-

From Theorem 4.6 we get the following result which could easily be proved 
directly, too.
Corollary 4.12.// and Tu ..., Tm€ Rec(Z, X) (m^.thena^, ..., Tm)£ 
e Rec (2, X). n

We shall now consider some operations in which forests are generally trans
formed into forests over another ranked alphabet. The ranked alphabets will 
be 2 and Q. Moreover, we introduce for every msO a new alphabet

which is assumed to be disjoint from all other alphabets.

Definition 4.13. Suppose we are given a mapping

hx: X^Fa{Y)

and for each m=0 a mapping

hm: Im-Fn(TU5m).

The tree homomorphism determined by these mappings is the mapping

h: FAX) - FAY) 
defined as follows:

1° h(x) = hx(x) for each xeX.

2° h(a(ti»..., tj) = hm(a)(ii - h^), ...Am - W)

for all m^O, ae2m and ..., The tree homomorphism h is said to
be linear if no letter appears more than once in hm(a) for any m SO and at 2m.

To define such an h it obviously suffices to give hx and the mappings hm for 
which 2m^0.

Example 4.14. Let Z = Z2={|}, Ga={V} and X=Y=
= {x, y). Define hx and h2 by the conditions

hx(x) = x, hx{y) = y and ha(|) = V
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If we interpret | as the Sheffer stroke (i.e., the 2-place NAND), V as the symbol 
of disjunction and ' as the symbol of negation, then the tree homomorphism h 
defined by hx and h2 transforms |-expressions in variables x and y into equivalent 
expressions which use V and ' only. If the more customary way to write Boolean 
expressions is used, we get, for example,

= /i(x|y)'Vh(x|x)'
= (x'vyyvcwv)'.

This tree homomorphism is linear. □

Tree homomorphisms are not really homomorphisms in the sense of algebra. 
The concept is the result of the dual nature of words. When one generalizes from 
languages to forests, words are usually treated as unary terms. On the other hand, 
many concepts in language theory arise from the interpretation of words as 
elements of a free monoid. Here the initial concept was that of a homomorphism 
from the free monoid generated by an alphabet Z to the free monoid generated 
by another alphabet £2. Such a homomorphism rewrites every letter in a word 
over Z as a word over J2. When Z and f2 are now viewed as unary ranked alpha
bets, this means that every operator from Z is rewritten as a piece of J2-tree to 
be combined with other such pieces to form the image of a given Z-word. The 
generalization of such mappings to the case of arbitrary ranked alphabets gives 
tree homomorphisms.

The following example shows that tree homomorphisms do not always preserve 
recognizability.
Example 4.15. Put Z=Z1 = {a}, X= Y= {x} and f2=Q8={o>}. Define hx and 

hx so that
hx (x) = x and hk (er) = a) (&, &)•

All ZY-trees are of the type
tk = ... cr(x)...)) = ^(x) (k S 0).

Obviously, h(Q=hx(x)=x and, for all k^O, 
h(tk+1) = w(h(tk),

Thus h(Fx(X)) consists of the trees
s0 = x, Sj = w(x,x), ...,st+1 = co(sk, sk), ....

Suppose A=G4,42, r,a,Z) is an 12/-recognizer such that T(A)=h(FxWi). 
There must exist two integers such that s(<2—Sjfi. Butthen

w(s„ Sj)& = Sj&) = n'M, = sl+1&tA'

would imply m(s„ s^h^X)). Thus h(Fx(/)) cannot be recognizable. □
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The nonpreservation of recognizability in Example 4.15 is due to the ability 
of the tree homomorphism to create arbitrarily large identical subtrees by copying. 
No tree recognizer can check whether trees of unbounded height are identical 
or not. Such copying is precluded by linearity, and the following closure theorem 
holds.

Theorem 4.16.7/ h: Fz(X}^Fn(Y} is a linear tree homomorphism and 
T£Rec(S,X), then A(T)GRec(f2, T).

Proof. Let G=(N, X, X, P, a0) be a regular tree grammar in normal form gener
ating T. We may assume that G has no superfluous nonterminal symbols from 
which no T^-tree can be generated. Let S' and Q' be the ranked alphabets which 
are obtained by adding all nonterminal symbols a£N to Z and Q, respectively, 
as nullary operators. We extend A to a tree homomorphism

h': Fr{X} - FAY}

by continuing h0 to a mapping

hj: ^UN-FAY}

so that h'0(a}=a for all a£N. Now let

G' = (N, Q. Y, P', a0}

be the regular QT-grammar, where

P' = {a - h'{p}\a - pGP},

i.e., G' is obtained simply by replacing in every production a-p£P the right
hand side by the tree h'(p). The theorem follows when we show that T(G'}=h(T). 
This again is obvious once we have shown that

(*) a=>G'i (is^F^X}) h(s} = t, o=>qS

holds for all a^N and teFn(Y}. We prove the two directions of (*) separately. 
Suppose a Ay * for some a^N and We Prove the existence of the

required s by induction on the length of the shortest derivation of t from a.

1° If t is obtained by a one-step derivation, then P' contains the production 
a—t. Then P contains a production a—r such that h'(r}=t. If r does not con
tain any nonterminal symbols, we may put s-r. Otherwise we choose for every 
b^N appearing in r a tree r^F^X} such that Let 5 be the tree obtained
by substituting in r these trees for the corresponding nonterminal symbols. Then 
h(s)=h'(r}=t since h' deletes all nonterminal symbols from r. Moreover,

a =>ar =>qS, 
and s is the required tree.
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2° Suppose now that the derivation consists of k steps (&>1) and that (*) 
holds whenever a shorter derivation exists. The first step must be the application 
of a production a—h'(p), where a—p^P. Since G is in normal form,

p =

for some m>0, and alt ..., am£N. The derivation of t can now be written 
in the form

a^G-M^l * 01, *- =>G’■■■ =* G’*-

For each (i— 1, ..., m) which is present in hm(a) we have a subderivation

at ^G'^^nCn)

of length less than k. The linearity of h implies that such a & appears in hm(a) 
exactly once, and hence is unique. For every rf there is an s^F^X) such that 
h{s)=ti and If a certain does not appear in then we choose
any s^F^X) such that ai^Gsi and put With these choices we get
a tree

s = ...,s^Fs{X)
such that

a =>go(oi, •••> om) —>sm) = s 
and

h(s) = - h(sj.......- h(sm)) = t.

Now we shall prove the converse part of (*). Suppose a=>Gs and A(s)=f for 
some a^N, s^F^X) and t£Fn(Y). To show that this implies a^.t we 
proceed by induction on the length of the shortest derivation a=>G...=>Gs-

1° If there is a derivation of length one, then it consists simply of the appli
cation of the production a—s. Butthen a-^t is a production of G and a=>GT 
is the required derivation.

2° Suppose now that the derivation is of the form

a =*G*” ^G^l^l, •••> Sm) = S>

where and alt...,am^N. For every there is a shorter
derivation

a( =>g-" G^i‘

Hence, a^,h(s) for each /= 1,..., m. Moreover, P' contains the production

corresponding to the production a—a(ai< am) of G. Now the required deri-
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vation is
a =>G'hm(o)(^i *- Oi, ••• 5 am) ^G' •••

= h(s) = t.
This concludes the proof. □

Next we show that arbitrary inverse tree homomorphisms preserve recogniz
ability. We need the following technical lemma. Its proof is left as an exercise. 

Lemma 4.17. Consider a Z-algebra and a mapping a: X^A, where XPlA=0. 
Let

a:

be the unique homomorphism such that a|X=a and = 1^. Then alF^X) —& 
and

p^ - Pi,- PtW = P& - M)a

for all k^Q, p^F^XUSd and plt Pk^F^X). □

Theorem 4.18. Let h: F^X^F^Y} be a tree homomorphism. If T^ec{Q, T), 
then h-^TK^c^.X).

Proof. Let A=(A, £2, Y, a, Af be an £2 /-recognizer for T. We construct a ZX- 
recognizer B=(^4, Z, X, A') as follows. For any msO, aEZm and a^, am(z 
£A, we put

0®(Pi, = hm(CT)(^ - Oi, -,^m - om)a,

where a: Ffl(/U A)-A is the homomorphism for which a|X=a and a|zl = IA. 
In the special case m=0, we get oa=h0(p)ai=h^A. The initial assignment 
is defined by putting

xP = h(x)& for all x£X.

Now a proof by tree induction shows that 
s$ = h(s)&

for all s^FfX). Hence, x€T(B) iff h(s)eT(X). This means that h~1(T) = 
=T(B) is recognizable. □

(1) hx(x)£Y for all x€X.
(2) Am(ff)=co(ii, ....{J, where «€«,„, for all m^O, aeZn.

As a conclusion we consider a simple, but very important special type of tree 
homomorphisms.

Definition 4.19. A tree homomorphism h: F^^F^Y} is called alphabetic 
if the defining mappings hx and hm (msO) satisfy the following conditions:
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An alphabetic tree homomorphism FxfX)—Fa(Y) can be defined only in 
case for all such m^O that Ym^0. Alphabetic tree homomorphisms 
are often called projections.

Consider the general alphabetic tree homomorphism of the definition. For 
any t^F^X), the image hf) is obtained simply by rewriting every x in t as the 
letter hx(x) and every as the operator co, where hm(cb)=a^1, 
Hence h preserves completely the “shape” of the tree t. Obviously, h is linear. From 
Theorems 4.16 and 4.18 we get

Corollary 4.20. Let h: F^X)-^Fn{Y) be an alphabetic tree homomorphism.

(i) If Rec (£,.¥), then h(T)€Rec(Q, Y).
(ii) If T£Rec(Q, Y), then h-W^Rec^, X). □

5. REGULAR EXPRESSIONS. KLEENE’S THEOREM

Kleene’s theorem is of central importance in the theory of finite automata and 
it is quite natural that it was among the first results to be generalized to the theory 
of tree automata. Although the greater generality adds some technical complica
tions, the standard development of the theory can be followed quite closely here, 
too, once the right generalizations of the basic concepts have been found.

We fix again an arbitrary ranked alphabet Z and an arbitrary frontier alphabet X. 
It turns out that some additional frontier symbols are needed in the construction 
of regular forests. Therefore we will operate with an extended alphabet Z which 
contains X as a subset.

Definition 5.1.Thesetofregw/ar YZ-expressions RE(Z, Z) is defined as the smal
lest set RE such that the following conditions are satisfied:

1° 0€RE.
2° I0UZcRE.
3° If C j^RE, then (C-H)€RE.
40 If C^RE and z^Z, then (f-^CRE.
5° If f€RE and z£Z, then «**)€RE.
6° If m^O, th, then

Thus regular TZ-exprcssions are strings of symbols from TUZ, of commas 
etc. Parts 2° and 6° of the definition imply that every YZ-tree is a regular YZ- 
expression. Regular expressions are intended as representations of forests.

Definition 5.2. The forest |>/| represented by a regular expression f/CRE(Z, Z) 
is defined following the inductive form of Definition 5.1:
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1° |0|=0 (the empty forest).
2° If tjEZgUZ, then M = fr}-
3° KC+^^ICIUHI-

4° |(Un)l=ICKW-

5° KrOHCI*1.

6° |aOh, = -d’lml)-

Note that the operations in the right-hand sides of 3°-6° are forest operations 
which have been defined in Section 4. It is easy to see that every tree tCF/Z) 
represents, as a regular expression, the one-element forest {t}.

With this interpretation in mind we may simplify regular expressions by omitting 
parentheses that are not needed in order to specify the intended order of the 
operations. First of all, the outermost parentheses in G+n), and (f1) 
are obviously superfluous if the expressions do not appear as parts of other 
expressions. We may also agree that iterations precede products and that products 
precede unions. Then the parentheses around can always be omitted and, for 

example,
C+ri^’

is interpreted as a short form for

Example 5.3. Let Z=Z0UI2, and and Z={x,y}. The forest

represented by
r/ = wya(x, y)*'

contains the trees co, o(x, co), a(x, a(x, co)) etc. Note that y has a purely auxiliary 
function; it does not appear in any tree of the forest |>/|. □

In the following definition we make the formal distinction between letters that 
may appear in trees of the forest represented by a regular expression and those 
letters that are used just to mark leaves to be rewritten when products of forests 
are formed.

Definition 5.4. Suppose a regular ZZ-expression ( can be written in the form

C = mOM)”
where q, 0£RE(Z, Z) and z£Z. Then every occurrence of z within the string -,0 
is said to be bounded. An occurrence of a letter z^Z which is not bounded is/ree. 
A letter z^Z is bounded in RE (I, Z), if all occurrences of z in £ are bounded, 
and it is free in £ if it has at least one free occurrence in (. We denote by Z^ the 
set of letters z£Z free in £.
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In Example 5.3 Z,= {x} and y is bounded by the y-product.

Lemma 5.5. For any ?/CRE(Z, Z), |^|6Rec (Z, Z,).

Proof. We proceed by induction following the six parts in Definitions 5.1 and 
5.2.

1° Z0=0 and |0|=0€Rec (Z, 0).
2° For each z^Z, Zz = {z} and [z| = {z)€Rec (Z, {z}). For <t€Z0, Za—^, 

but still |o| = {o}C Rec (Z, 0).
3° If ti=£+0, then Z„=Z{UZe and H = l£|U|0|€Rec(Z, Z,) by Lemma 

4.1 and Theorem 4.2.
4° If then (if we omit the trivial case z$Z9, |?/| = 0) Z,=Z{U(Z9—z).

There are two cases to consider. If z^Z{, then Z,=(ZjUZ9)—z. From 
Theorem 4.6 we know that McRec (Z, Zc(TZfl). Thus it suffices to show that 
no tree 1/?| contains any occurrence of z. But this is obvious since every such 
t is obtained from some st |0| by replacing every occurrence of z by a tree from 
|C|, and no tree in |C| contains z. If z^Z^, then Z,=ZCUZ9 and |^|CRec (Z, Z,) 
follows directly from Theorem 4.6.

5° If then Z^Z^z. Thus |C|€Rec(Z, Z,) by Lemma
4.1. This implies |C*'|€Rec(Z, ZJ by Theorem 4.8.

6° If ^=0^, where m>0, a€Zm and |j/f|€Rec (Z, Z,() (i=
= 1, .... w). then Z=Z U...UZ, and every M is also a recognizable ZZ - 
forest. Corollary 4.12 yields now H£Rec (Z, Z,). □

The operations (finite) union, z-product and z-iteration are called the regular 
operations. A forest is regular if it can be constructed from finite forests by applying 
a finite number of regular operations. In view of the preceding discussion regularity 
can also be defined as follows:

Definition 5.6. A ZZ-forest Tis regular if there exist an alphabet Z (XcZ) and 
a regular ZZ-expression such that M = r.

Note that an unlimited number of auxiliary letters (zEZ-X) is allowed in a 
regular expression representing a regular forest, but that in any particular case 
just a finite number of them are needed. Lemma 5.5 implies now that all regular 
forests are recognizable. The next lemma contains the converse statement.

Lemma 5.7. For any EX-recognizer A one can construct a regular expression 
^RE(Z, YLM) (we assume ZA^ = 0> such that fo| = T(A).

Proof. The proof is modelled after the almost standard proof for the corresponding 
fact in the language case (due to R. McNaughton and H. Yamada (I960)). The 

85



notation can be simplified by assuming that

A = {1, 2,.... k} for some k S 1.

As in Lemma 4.17 let

a:

be the homomorphism such that a|y=a and a|.4=lx- For any KA, K^A 
and h, Q^h^k, we denote by T(K,h, i) the set of all KFS(XUK) such that

(1) ta.=i and
(2) sa€{l, ..., A} for all s£sub (^-(A'UZ'oUO-

Thus T(K, h, i) means that the leaves of t may be labelled, besides frontier 
letters and nullary symbols, by states from K. Moreover, the computation of A 
on t results in state i and the state of A at any node between the frontier and the 
root is in the set {1, ..., A}. Obviously,

r(A) = U(T(0, k, elic

it suffices therefore to show that all sets T(K, h, i) are regular. To do this we 
proceed by induction on the number h.

1° When A=0, no intermediate states between the frontier and the root 
are allowed. Every tree t in T(K, 0, i) must hence be of one of the following types:

(i) t=x£X and xa=i.
(ii) t=KK.

(iii) t=<K£0 with a^=i.
(iv) r=a(c71, ...,4) with m^Q, dj£XUZ0UK Q=l,...,m) and ta=i.

In each case a regular expression for {/} can be written. The number of such 
trees t is finite and we get a regular expression for T(K, 0, i).

2° Suppose we already have a regular expression for each T{K,j, i) such that 
j^h for some h^k. We show that

(*) T(K,h + l, i) =

= T(K, h, i)UT(K, h, h + 1)-h+J\KUh+l, A, h + l)*',+1-/l+1r(AUh + l, h, i)

holds for all K^A and KA. This will complete the induction because the 
ringht-hand side of (*) is obtained by regular operations from forests for which 
we already have regular expressions.

Let T be the right-hand side of (*). From the construction of T it is obvious 
that TsT(K,h+\,i). If K T(K, h +1, i), then either KT(K,h,i) or t has 
a proper subtree such that sa=A+l. In the former case we get KT 
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directly. In the second case we have

^{Pl, •••» Pd} •/i + l{?U, •••» 'h + l{?jl’ •••> ’*+i{r}>

for some

Pi, ...,p&T(K,h,h+\), qilt ...,qiee ■ ■■, qjefT(KL)h+l, h, h+V)

and T(KUh+1, h, i). But this means that t belongs to the second part of T. □

Combining Lemma 5.5 and Lemma 5.7 we get the following generalized form 
of Kleene’s theorem.

Theorem 5.8. A forest is recognizable iff it is regular. □

6. MINIMAL TREE RECOGNIZERS

The number of states is a simple and natural measure of the complexity of a 
finite automaton. In this section we consider minimal recognizers of forests. In 
the case of a recognizable forest minimality means simply a minimal number of 
states, and there is always a minimal recognizer which is unique up to isomorphism. 
All tree recognizers recognizing a nonregular forest must be infinite and counting 
the number of states does not make any sense. Nevertheless, the general defini
tion of minimality is such that the minimal recognizer of a forest remains unique 
even in such a case. The minimal recognizer of a forest can be derived from any 
recognizer of this forest. If the forest is recognizable, then the minimalization 
procedure is effective. Otherwise, the finiteness of the recognizers is not needed 
in this section. Also, some of the concepts and results presented here will be 
applied to infinite tree recognizers in the next section. Thus we will temporarily 
drop our general assumption that all tree recognizers dealt with are finite. In all 
other respects the earlier definitions and conventions remain valid.

We shall now define homomorphisms, congruences and quotients of tree recog
nizers The reader may find it helpful to review the corresponding material from 
Section 1.2 before going on. Algebraic functions and elementary translations 
(cf. Sect. 1.3) will also be needed.

Definition 6.1. A homomorphism from a EY-recognizer A to a ET-recognizer B 

is a mapping <p: A-^B such that

(1) <p is a homomorphism from the I-algebraa/ to the ^-algebra

(2) acp = p, and
(3) B'cp-^A'.
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If (p is a homomorphism from A to B, we write <p: A—B. A homomorphism of 
tree recognizers is an epimorphism if it is surjective, a monomorphism if it is injec
tive, and it is called an isomorphism if it is bijective. If there exists an isomor
phism <p: A—B, then we write A^B and say that A and B are isomorphic. 
If there exists an epimorphism <p: A—B, then B is said to be an epimorphic 
image of A. A monomorphism is also called an embedding.

Part (3) of Definition 6.1 means that the final states, and these only, map to 
final states in a homomorphism. If cp is an epimorphism, then (3) implies A' cp — B'.

Lemma 6.2. Let A and B be two LX-recognizers. If there exists a homomorphism 
<p: A—B, then T(A)^T(R).

Proof. The clauses (1) and (2) of Definition 6.1 imply together with Lemma I. 3.6 
that

t^(a)cp = ta(a<p) = t31^

for every t^F^X). Now clause (3) shows that

tgr(B) iff 1”^) = t^(a)(peB'

iff t^^A'

iff t€T(A)

for every t^F^X), and the lemma follows. □

Definition 6.3. A congruence of a IT-recognizer A is a congruence q of the algebra 
saturating A', that is, such that A' q = A'. The set of all congruence relations 

of A is denoted by C(A).

Lemma 6.4. C(A) is a principal ideal of the complete lattice and thus 
(C(A), c) is a complete lattice itself, too.

Proof. It suffices to verify the following simple facts:

(i) 5X€C(A) (which implies C(A)?*0).
(ii) 0£e€C(A) and imply 0£C(A).

(iii) V(C|C6C(A))€C(A).

In (iii) the supremum is to be formed in C(j/). It is the generating element of the 
principal ideal. □

In Theorem 6.10 we shall get a more useful description of the greatest element 
of C(A).
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Definition 6.5. The quotient XX-recognizer of a TY-recognizer A with respect to a 
congruence q is the ZT-recognizer

A/p = (^Iq, ae, A'Iq),

where ac is defined so that xat={xd)Q for each x^X.

The usual relations between homomorphisms, congruences and quotiens hold 
for tree recognizers, too. Some of them are listed in the following theorem. We 
omit the proofs since they can be constructed exactly as the corresponding proofs 
in algebra.

Theorem 6.6. (a) If q£C(A~), the natural mapping

o^: A — A/o, a ao {a^A),

is an epimorphism A—A/q {called the natural epimorphism).
(b) If cp: A-»B is a homomorphism, then the kernel (pep 1 is a congruence of A 

and the image
A(p = (j/<p, P, A'cp)

of A is isomorphic to A/(pep"1. (In Acp j^cp is the Xalgebra (Acp, Z) such that 
o^^cr^Acp and P is to be interpreted as a mapping from X to Acp.)

(c) If for some n, q£C(A), then A/q is an epimorphic image 
of A/n. □

From Theorem 6.6 and Lemma 6.2 we get

Corollary 6.7. If q£C(A), then T(A/q)=T(A). □

Thus any congruence of a tree recognizer yields an equivalent recognizer which 
is an epimorphic image of the original one. If the recognizer is finite and the con
gruence is nontrivial, then a real reduction in the number of states is achieved. 
Obviously, the greatest congruence gives the smallest quotient recognizer. The 
construction of the quotient recognizer involves a merging of states which are 
equivalent in the sense that one can be substituted for another in any computa
tion without affecting the end result. We shall now give a precise meaning to this 
equivalence of states and show then that the greatest congruence consists exactly 
of the pairs of equivalent states.

Definition 6.8. Two states a and b of a ZY-recognizer A are said to be equivalent 
and we write a~fb, or just a^b, iff

(VZ€Algl(^)) f^A' ~f(b)£A'.
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To get a better intuitive grasp of this definition we recall the fact that for each 
algebraic function /CAlg^a/) there exists a tree such that for

all a^A,
f(a) = t&a,

where ao: AO^A is defined by ^|aa=lA and (Lemma 1.3.14). This 
means that sd computes f(a) from the tree t when one assigns state fl to all leaves 
labelled by £. On the other hand, every tree defines this way a unary
algebraic function. Such a tree may be thought of as the unprocessed part of a 
jy-tree where a leaf labelled by a state c^A corresponds to a subtree S such 
that s&—c. Once a value a^A has been assigned to the leaves labelled by 
the computation may be completed. The equivalence of two states a and b means 
that the assignments ^=a and £=b give always the same result (mod A') 
when such a computation is completed.

Definition 6.9. The ZX-recognizer A is

(a) reduced if
(b) connected if every state of A is reachable, i.e., there exists for every a^A 

a tree t^F^X) such that t&=a, and A is
(c) minimal if it is connected and reduced.

That a recognizer is reduced means that no two distinct states are equivalent. 
To be connected means that every state is possible in some computation perform
ed by the recognizer on some tree. By Lemma L3.8, a tree recognizer A is con
nected iff Xa generates sd. In the case of a finite recognizer minimality really 
means a minimal number of states among equivalent recognizers. If a recognizer 
is not connected, then the nonreachable states can be discarded without changing 
the forest recognized. If A is finite and ~then A/~a *s a properly smaller 
recognizer equivalent to A. Hence, a finite tree recognizer can be minimal with 
respect to the number of states only if it is minimal in the sense of Definition 6.9. 
The converse will be established later.

Theorem 6.10. For any EX-recognizer A, ~ is the greatest congruence of A and 
A/~ is a reduced EX-recognizer equivalent to A.

Proof. It is obvious that ~ is an equivalence relation on A. Let a~b (a, b^A). 
For any two unary algebraic functions f, g^ Algj (j/), the composition

fog: ( - g(/(0) (KA)

is a unary algebraic function. Hence

g(f(a)^A' iff g(f(b))£A',
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and this implies f(a)~f(b). By Lemma 1.3.16, ~ is a congruence of j/. If a~b 
and a^A', then b=\A(b)QA'. Thus A'~=A' and ~ is a congruence of A. 
Let q be any congruence of A. If agb and /£Algi(X), then implies

Now A' q —A' implies

Aa^A' iff AbfrA'.

Hence a~b and we have shown that ~ is greatest among the congruences of A. 
Corollary 6.7 tells us that T(A)=r(A/~). That A/~ is reduced follows directly 
from the fact, well-known in universal algebra, that the lattice C(A/~) is isomor
phic to the principal dual ideal [~) generated by ~ in C(A). Since ~ is the gretest 
element of C(A), [~) is trivial and thus ~A/~ must be the diagonal relation of 
A/~. A more direct proof is possible, too. It is not hard to show that 
(a~)~A/^,(6~) implies a^b, and hence a~=b~. □

The quotient recognizer A/~a is often called the reduced form of A. It is clear 
from Theorem 6.10 that two tree recognizers having isomorphic reduced forms 
are equivalent. We show that the converse holds for connected recognizers. In 
other words, equivalent minimal recognizers are shown to be isomorphic.

Theorem 6.11. Let A and B be two minimal tree recognizers. If A. and B are equiv
alent, then they are also isomorphic.

Proof. Define tp’. A—B so that

(tty? = tp for all t^F^X).

We show that <p gives the required isomorphism from A to B. This involves the 
following seven points:

(i) <p associates with every a^A a state of B since A is connected.
(ii) To show that cp is well-defined we consider the possibility that s6t = tA 

for two ZT-trees X and t. If s^tp, then and tft are nonequivalent and there 
exists an algebraic function /€Algi W such that f(s^B' and
(or conversely). By Lemma 1.3.14 there exists a tree p£Fx(BW) (^BUX) 
such that for all b£B,

Ab) = p^fo,
where BUi — B is defined so that 0b\B=\B and &b=b. Since B is connected
there exists for each b^B a ZT-tree pb such that pbfl=b. Let

Consider the LY-trees q,=qd^-s) and q,=q(f-A Now

qj = pAP'l)
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and
q^ = Px^=f^B'.

If we assign in q to every letter x^X the value xa, we get a function g€ Algj (j/) 
such that for each a^A,

g(a) = q^M

where a„: XU^—A is defined so that a0[X=a and £aa=a. Applying Lemma 
1.3.6 we get now

g(s£)<p = q^(ixsa)cp = qs&(p = qs^B' 
and

g^cp = q^^q) = qt&(p = qt^B'.

This is in contradiction with our original assumption that s&=t&- Hence ?j€T(B), 
but ?,CT(B). On the other hand, s6l = t& implies qs& = qt&, and a contradiction 
with our assumption that T(A) = T(B) results.

(iii) Reversing the roles of A and B in Part (ii) one sees that sp = tp implies 
s& = t& for all IX-trees s and t. This means that <p is injective.

(iv) ip is surjective since B is connected.
(v) Let mSO, and alt..., am£A. There are trees 4, .... t^F^X) 

such that , am=tm&. Then

^(tfi, ...,a^(p = ..., tm&)(p

= afa,..., tm)&<p

= o-Gi. •••,

= ^(t^,...,tj)

= a^q), ...,amq>).

Hence <p is a homomorphism from j/ to

(vi) For each x£X, xa<p=x&cp=x^=xp. Thus a<p=p.
(vii) If t&£A' (teF^X)), then t&<p=t^B' since t€T(A)=T(B). Similarly, 

t6up£B’ implies t&^A'. Hence, B'(p~1 = A'. □

Corollary 6.12. //A and B are connected ZX-recognizers such that T(A)=T(B), 
then A/~a2‘B/~b. □

For every LX-forest T there is at least the infinite ZX-recognizer

Ft = (^(X), lx, T)
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where ^(X)=(FZ(X), Z) is the ZA-term algebra. Indeed, for each 
we have

twty = iff ter.

Obviously FT is connected. Hence, Fr/~ is a minimal recognizer for T (the rela
tion ~ will be examined more closely in the next section). To show it we shall 
verify that every quotient recognizer of a connected tree recognizer is connected.

Let (p: A—B be an epimorphism of ZA-recognizers. If A is connected, then 
so is B. Indeed, let b be any state of B. There exists an a^A such that a(p=b. 
Since A is connected there is a tree t^F^X) so that a=t^(a.). Using Lemma 
1.3.6 we get

= /«(«<?) = t^(d)(p = a(p = b.

In particular, A/~a is connected for every connected tree recognizer A.
We now have everything needed for the main theorem of the section.

Theorem 6.13. For every forest T there exists a minimal tree recognizer, and it 
is unique up to isomorphism. If A is any connected recognizer of T, then the minimal 
recognizer is an epimorphic image of A. In fact, A/~ A is minimal. □

The theorem is valid for every forest. It suggests the following two-step proce
dure for finding the minimal recognizer for Tonce any recognizer A of Tis given:

1° Discard all nonreachable states from A. We get a connected recognizer B 
such that T(B)=T.

2° Reduce B by finding ~B and then constructing B/~b which is the required 
minimal recognizer.

Both of these steps become effective when T is a recognizable forest and the 
given recognizer A is finite.

The reachable states of A form the subalgebra of j/ generated by the subset Xa. 
This can be found as follows. Let /fo=AaU Zo} and put

.......aJI"1 >0> «i> •••>
Then

Ho S ... £ A

and (isO) if Such an i must exist since A is finite.
Suppose now that we have a finite connected ZA-recognizer B and consider 

step 2°. First one should find Algt (0). It is finite and can be formed repeating 
the inductive step of Definition 1.3.13 a finite number of times. Then ~B can be 
determined directly, using the definition. Although the minimal recognizer B/~b 
certainly can be found this way, the procedure would be quite tedious in most 
cases. A computationally simpler method can be derived from the following 

93



lemma. The proof is left as an exercise. The crucial aid is Lemma 1.3.16: an equiv
alence is a congruence iff it is invariant with respect to all elementary translations.

Lemma 6.14. Define a descending sequence ~02~12... of equivalences on B 
as follows: (i) B/~o= {B', B-B'} and (ii) for all i^O and a,b£B, a~i+1b 
iff a~ib and f(a)~tf(b) for all /€ET (^). Then ~f= ~B if ~i+i=~i> 
and this holds for some z<|5|. □

7. ALGEBRAIC CHARACTERIZATIONS
OF RECOGNIZABILITY

In this section two strictly algebraic characterizations of the recognizable forests 
are presented. First some ideas from the previous section are applied to derive 
a generalization of Nerode’s theorem on regular languages and right congruences 
of the free monoid (cf. Theorem 1.5.6). Then we show that the recognizable forests 
can be obtained by solving fixed-point equations of a certain kind. Again, there 
is a well-known precursor in the theory of finite automata. In fact, in the unary 
case the equations considered here reduce to Arden’s equations which give the 
regular languages as their solutions.

Let Z and X be fixed and denote the ZX-term algebra ^(X) by for short. 
In the previous section we noted that each ZX-forest T has the (infinite) ZX- 
recognizer Fr=(^, lx, 7). Consider any ZX-recognizer A such that 7(A) = 7. 
It is easy to verify that the extension of the initial assignment a: X-A to a 
homomorphism

&: SF sf

is also a homomorphism of ZX-recognizers from Fr to A. Indeed, lx<2—& and 
?1'<2~1 = 7(A) = 7. The kernel 1 is a congruence of Fr with a congruence class 
for each reachable state of A. If T is recognizable, A may be chosen as finite, and 
then &&-1 is of finite index. Now, suppose Fr has a congruence q of finite index. 
Then Tt/q is a finite ZX-recognizer such that 7(FT/g) = 7(Fr)=7 (by Corollary 
6.7). Hence T is recognizable. The congruences of Fr are simply the congruences 
of which saturate T. Among these there is one of finite index iff the greatest 
congruence of FT is of finite index. The congruence ~Ft (~r for short) 
is the Nerode congruence of T. These observations may be summed up as

Theorem 7.1. For every ZX-forest T the following three conditions are equivalent:

(i) 7£Rec(Z, X).
(ii) The term algebra ^(X) has a congruence of finite index which saturates T.

(iii) The index of the Nerode congruence ~T is finite. □
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The recognizer FT is connected and Theorem 6.10 implies therefore that Fr/~ T 
is the minimal recognizer of the forest T. To find ~T for a given ZA'-forest T 
one could try to apply Definition 6.8 to Fr: for any j, t^F^X),

s~Tt iff (Vp€Fx(JrUa)p«*s)€T-p(^-t)€r.

A part of Theorem 7.1 can be restated as follows.

Corollary 7.2. A ZX-forest T is recognizable iff there exist a finite Z-algebra sd, 
a homomorphism cp: and a subset A'^A such that T=A'(p~1. □

The corollary gives, in fact, just an obvious reformulation of the definition of 
recognizability. Without going into the subject any further here, we note that in 
this form recognizability may be defined for subsets of arbitrary algebras (and 
not just term algebras): a subset T of a Z-algebra j/ is said to be recognizable, if 
there exist a finite Z-algebra a homomorphism (p: sd—di and a subset H^B 
such that Hcp~1=T. If here s4=PffX), then we get the recognizable IX- 
forests, and ifsd is the free monoid X*, then we get the recognizable ^-languages.

As an introduction to the theory of fixed-point equations we first look at an 
example of Arden equations.

Example 7.3. Consider the two-state Rabin-Scott recognizer A defined by the 
state graph shown in Fig. II.5. The input alphabet is Z= {a, t}.

Fig. II.5.

Let Lx and L2 be the languages of all words taking A from the initial state 1 to 
state 1 and 2, respectively. Then the following equations hold:

Li =L1aUL2o’Ue

£j = L1tUL8t.

If we define a mapping

n -. wy-wr
SO that for all U, Ks E*.

ft(U, y) = (L/crU Ker Ue, CZtUKt), 

then (1) means that (£u £») is a solution of the fixed-point equation 

(2) (vn vj = vff
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Moreover, (Lt, Lg) is the least solution of (2) when (pZ*)2 is partially ordered in 
the natural way:

iff UksUa and £ Fg.

If we view Z as a unary ranked alphabet and identify E (xj-trees and 2?-words as 
shown in Section 2 (x=e, ffk(... Oi(x)...)=ai...Gk), then the term algebra 
^({x}) may be taken to be

= (E*, E), 
where

<r^(u) = US (o^E, u^E*).

In the corresponding subset algebra

p^=(pr, E)

we have the operations

a^(L) = La ^E, L s E*\

The mapping fl can be defined in terms of these operations, the empty word and 
unions:

fl(U,V) = T^(t/)UT^(K)).

Using forest products we may write this as follows:

(3) fl(U,V) = ({aM, aiv^x}^ - U, v2 - V),

{t(vi), T^IGh *- U, v2 - /)).

Finally, we write (2) in the more readable form

Vi = <rGh)+t7G>2)+*
(4)

V2 = tG’D + ^W

as a system of equations to be solved in the forest algebra p^ which is augmented 
by union as an operation. Union is denoted here by 4-. □

It is obvious that Example 7.3 could be repeated for any regular language and 
that the language itself is always the union of those components of the minimal 
fixed-point which correspond to final states. The interpretation of the equations 
in terms of forest operations serves as the starting point for a generalization to 
equations for regular forests.

Fix again a ranked alphabet E and a frontier alphabet X. For any /csl, let

Fk = (pfaxw
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be the set of ^-tuples of ZX-forests. We order Fk partially by componentwise 
inclusion:

(A,-.A) ^,...,1^ iff S1^T1,...,Sk^Tk.

Then Fk becomes a complete lattice in which least upper bounds and greatest 
lower bounds are obtained, respectively, by forming componentwise unions and 
intersections, thus:

V((5n.......WU) = (U(5n|i€Z), LWiez))

and

A((Sn,..., ^|i£Z) = (n(M€Z), lWi€Z)).

The least element is O=(0, .... 0). (We refer the reader to Section 1.4 for the 
lattice theory needed here.)

Let Fk={vlt ..., be a set of variables disjoint from Z and X. With every 
Z^U K^-forest P we associate the mapping

A Fk - pF^X) 
defined so that

P(Tl,...,Tk) = P{vl^T1,...,vk^-Tk)

for all (Ti, ..., T^Fk. A A-tuple n=(Plt ...,PJ of finite Z(XU PJ-forests 
is called a (Z, X, k)-polynomial and we associate with it the mapping

fl: Fk - Fk 
defined so that

A(T) = (A(T),...,A(n)

Lemma 7.4. For any (E, X^-polynomial II, the mapping ft: Fk^Fk is co- 
continuous.

Proof. Let n=(Pk, ...,P^ The mapping fl is isotone as

P(V1 - .... vk - Sk) £ P^ - T„ .... vk - Tk)

obviously holds for all PqF^XUVJ and ZT-forests A.......Tk
such that SksTk, A £7*- Let

To £ Tj £ Ts £...

be any ascending co-sequence of vectors

T(-(Tn.......Ttk)tFk (/SO)

of ZA'-forests. Now write

T = (U(Tn|i £ 0).......U(Ttt|i % 0)).
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In order to prove w-continuity we should show that
fl(T) = (U (AWIi s 0), .... U(A(T,)|i £ 0)),

or equivalently, that
(5) ^(T^U^/T^O) (j = l,...,k).

Every tree ^(T) is obtained from some p^Pj by substituting a tree from 
Uir- lisO) for every occurrence of each variable vm and each m— 1, ...» • e 
number of occurrences of variables in p is finite. Hence there exists an isO such 
that all trees used in this substitution appear in a component of Tj. Then t€ Pj(1 iL 
This shows that the left side of (5) is included in the right side of (5) for_each 
J=\, The converse inclusions are obvious since ft is isotone and 1^ 

for all ISO.

Now, using Theorem 1.4.8 we get

Corollary 7.5. For any (I, X, k)-polynomial ft, the mapping fl: Fk^Fk has the 

□least fixed-point
[fl] = V(0fl'|* s 0).

The corollary means that [fl] is the least solution of the fixed-point equation

(6) (vi,..., vk) = ft(vk,vft,

where the ^’s are “unknowns” that assume ZX-forests as their values. The equa
tion (6) can also be written as a system of equations

= Pi
(7) =

vk = Pk,
where the P’s are usually expressed as formal sums of their elements (as we did 

in Example 7.3).
The finiteness of the components P, was not used in the proof of Lemma l A. 

However, it will be essential for obtaining the main result of this section. In fact, 
it will be convenient, although not necessary, to work with an even more restricted 
class of fixed-point equations, which we shall soon introduce. Example 7.3 pro
vides us with a guideline here, too.

Let us extend the height function of Fr(X) to F^XU 1*) so that

hg(vi)= —1 (i = 1,.... k).

Then the Z(XU FJ-trees of height 0 are

(i) the frontier letters x£X, 
(ii) the 0-ary operators and
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(iii) the trees of the form cr^.......v{ ), where m>0, a£2m and

Definition 7.6. A (Z, X, ^-polynomial n=(Pt, Pf) is regular, if every 
S(XU FJ-tree of height 0 belongs to exactly one Pjt and the Pfs do not contain 
any other trees. If 17 is regular, then fl and the corresponding fixed-point equa
tion (6) are also said to be regular. A ZT-forest T is called equational if it can be 
expressed as the union of some components of the least solution of a regular 
fixed-point equation.

The fixed-point equation in Example 7.3 is regular. It is easy to see that the 
same procedure applied to any Rabin-Scott recognizer will yield a regular fixed- 
point equation. Hence, every regular language is equational when viewed as a 
unary forest. It is also well-known, and easy to prove, that the components of the 
least solution of a system of Arden equations are regular.

Example 7.7. Let Z=Z0UZ2, Z0={y}, ^={<4 and X={x,y}. Then

n = ({x, y, o-^i, vj, o(y2, t^)}, {y, a(yk, vj, a(v2, v2)})

is a regular (Z, X, 2)-polynomial. The corresponding regular fixed-point equation 
can be written as the system

ki = x+y+<T(i>i, v^+a(v2, vj 
b2 = j + <r(ui, + vf).

The least solution is the pair (Tk, Tf), where

Ti = {x, y, ofx, y), a(y, y), a(x, a(x, x)), ...} 
and

Ta = {y, <?(x, x), a(y, y), a(y, y),...}. □

Let [/^(Ti, ..., Tk) be the least fixed-point for a given (Z, X, ^-polynomial fl. 
We define a binary relation Qin) in F^X):

Q^n) = {(s, 0|s, for some •= L k}-

Lemma 7.8. If FI is a regular (Z, X, kfpolynomial, then q(JT) is a congruence of 
&i(X) with at most k equivalence classes. For each congruence q of ^(X) of 
index k (k^l) there exists a regular (E, X, kfpolynomial 11 such that Q(n) = Q.

Proof. Let H=(Plt ..., Pk) be a regular (S, X, ^-polynomial and [/)] = 
*(^1. .... Tk) the corresponding least fixed-point. From the definition of q(n)

is clear that the relation is symmetric. To prove that it is reflexive and transitive,
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too, we show that every Z^-tree t belongs to exactly one Tt. First we note that

(8) Ti = Pi(y1^T1,...,vk^Tk) (» = 1,-»k)

as [H] is a fixed-point of fl. We proceed now by induction on hg (f).
1° If hg(r)=O, then t is in exactly one of the sets (i=l, ■ ■■, k) because 

IT is regular. From (8) we see that t is in the corresponding and that it could 
belong to some other (J^i) only in case v£Pj. But hg(vf)=-l and vt 
does not appear in II.

2° Consider a tree ...» /m) (m>0) and assume that all trees of lesser
height belong to exactly one Then there exists for each /=1, m exactly 
one fy such that t^T^. Also, there is exactly one i(/^fsk) such
that Clearly,

Z€p(vi *- 2i,..., v* *- T») G Ti-

The uniqueness of the indices ij implies that p is the only tree of height 0 
in F^ GVU from which t can be obtained by the substitutions v^T^, ... ,vk^Tk. 
Hence t belongs to 7) only.

Now we know that q^E^X)). It is obvious that it has at most k equiv
alence classes. (There may be less than k classes as some T’s could be empty.) 
To prove that it is a congruence relation we consider any m£l, a^Zm and 
sk,..., sm, h.......tme F^X) such that

s1s?1,...,smstm(e(H)).

There are indices 4, such that

SjJj^ for J =

Let a(yie •••,%) he *• pi- Then

<r(si, a(tlt ..., tmKTt
by (8). Hence 

.... sm) = ....
as required.

Now, suppose q€C(^(X)) and let Slt...,Sk be the equivalence classes 
of g. We define a (Z, X, k)-polyncmial n=(Plt ...,Pk) so that

Pi = {ptF^XU I\)|hg (p) = 0, pt^ - Slt...,vk~ SJ £ S()

for all 1=1, ...,k. The fact that q is a congruence means that for each p of 
height 0 there is exactly one i (1 Si^k) such that

PtPi *- Si,.... vk — £ St.

100

TOnnMANYOS akadWIA



Hence 71 is regular. We claim that q(IJ)=q. Let [^]=(r15 Tk). In order 
to prove the second statement of the lemma we show by induction on hg(r) 
that for all i=l,

1° If hg(r)=O, then there is exactly one i such that t£Pt. This means t^S^ 
From (8) it follows that ZC Tt for the same i.

2° Let tm) (m>0) and suppose the claim holds for all trees
of height <hg (r). Then there are unique indices ilt ..., im such that

iffStjHTtj (j = 1, .... m).

Also, there is a unique i such that

P = .... vim)€Pt.
Then

r = P(V1 4, ...,vk ~ tJtSi

by the definition of Pt. On the other hand, (8) implies t£Tt. O

If we combine Lemma 7.8 and Theorem 7.1, we get

Theorem 7.9. A forest is equational iff it is recognizable. □

From the first part of this section it is clear that a ZY-forest T can be recognized 
by a Estate tree recognizer iff T is saturated by a congruence of ^(X) of index 
Sk. From Lemma 7.8 we get a similar connection between the number of states 
and the number of variables in a regular fixed-point equation which defines 
the forest.

There is also a very close connection between regular tree grammars and the 
fixed-point equations considered here. For example, the equations of Example 
7.7 can be converted into the following set of productions in which vk and v3 
are nonterminal symbols:

Vi-x, »!-?, vj, Vi - a(v3, vk),

V3 — y, Vs — Vi), v3 — <t(vs, v3).

The resulting regular tree grammar generates T\ if is the initial symbol, and it 
generates T3 if v3 is the initial symbol.

On the other hand, every regular F^-grammar with k nonterminal symbols 
can be converted into a fixed-point system with k equations. This system is not 
necessarily regular, but the components of the least solution are nevertheless 
the regular forests generated by the grammar from the different nonterminal 
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symbols. For example, if Z and X are as in Example 7.7 and the productions are 

a — x, a^-y, a—a(a,b), 

b^a(b, b),

then the corresponding equations would be

a = x+y + cr(a, b) and

b = tr(b, b),

where a and b now are the unknowns. The least solution is (T(Ga), T(Gb)), where 
Ga and Gb are the grammars which we obtain by chosing a and b, respectively, as 
the initial symbol.

8. A MEDVEDEV-TYPE CHARACTERIZATION

Our next description of the recognizable forests is a streamlined generaliza
tion of a well-known characterization of the regular languages given by J. Med
vedev in 1956. First we define the family of representable forests. The theorem 
states then that the representable forests are exactly the recognizable forests. 
The representable forests are defined collectively for all ranked alphabets as 
the definition involves tree homomorphisms and these may take us from one 
alphabet to another. Recall that r(T) is the finite set of nonnegative integers m 
for which Tm#0.

Definition 8.1. For every pair (Z, X) we define the “next-to-root function”

nroot: ^(^-(ToUX) - U((ZUX)"|m€r(Z)) 
so that

nroot ..., U) = (root(G),.... root (/J)

for all m>0, a€Zm and fj, ....

Definition 8.2. The elementary ZX-foreSts are the forests

(i) U(d) = rooted) (d€ZUX), and

(ii) K(d1,...,dm)-nroot-1(d1........dM),

where m^O, m£r(Z), and dlf ..., dm£Z[J X.

Note that the definitions of the U(d)- and K(dj, .... deforests presume 
a Z and an X although the notations do not show this. Clearly, l/(d) is the set 
of all ZX-trees with the root labelled by d, and K(dlt.... dm) consists of all ZX- 
trees of height £ 1 in which the nodes immediately above the root are labelled,
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from left to right, by dx,..., dm, respectively. Note also that U(d)={d} when 
c/CToUA; We need three more definitions.

Definition 8.3. The restriction of a forest T is the forest

rest(T’) = {r£T|sub(0 £ T}.

Definition 8.4. The elementary operations on forests are the formation of

(i) the union of two forests,
(ii) the intersection of two forests,

(iii) an alphabetic tree homomorphic image of a forest, and
(iv) the restriction of a forest.

Definition 8.5. A forest is representable if it can be constructed from elementary 
forests by a finite number of applications of elementary operations.

Now the theorem can be stated.

Theorem 8.6. A forest is representable iff it is recognizable.

Proof. To prove that the representable forests are recognizable it suffices to note 
that the elementary forests are recognizable and that the elementary operations 
preserve recognizability. Consider any X and X. If J€T0UA’, then U(d)= 
= {</}€ Rec (Z,*). If d^Xm (m>0), then

U(d) = d(ylf..., - FffX\.... ym - F^X))

is again recognizable. Similarly, 

r(dj........ dm) = U (aOh.....................................->ym *- UM\aeXm)

is recognizable for all m€r(Z) and dlt dm£XUX. We have already seen 
in Section 4 that unions, intersections and alphabetic tree homomorphisms pre
serve recognizability. Let T be the forest recognized by a TT-recognizer A. We 
construct a recognizer for rest(T). First define a Z-algebra = Z) {b^A) 
so that

if b^.-.b^A and ........ bmKA', 
a “lb in all other cases,

for all m^Q, aeXm and bt.......bmCAUb. The initial assignment 0: X-^AUb 

is defined so that for each x£X,

(xx if xa^A', 
x^=lb if xx^A'.
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Consider any ZT-tree t. It is easy to show that

. (t& if sub (t) S T,
tp = i ,

I b otherwise.

Hence, B=(^, P, A') recognizes rest (T).
We shall now show that every recognizable forest is representable. Let T = T(A)

for some ZA'-recognizer A. First define a new ranked alphabet Q such that

Qm = 2mX(A UXY for all m 5 0.

We construct two representable £2X-forests R and 5 as follows. For c^AUX 
we introduce the notation

_ (c if c^A, 
C tea if c^X.

Then
R = {xeyixaC^'JU

UU(tf((<r, cx, ...,cM))|(a, c1,..., c^Q, ..., ^A')t

The forest 5 is the union of all intersections

where for each 1=1, either

(i) u^X and Bt = uta, or

(ii) Uj = (t, ..., (k S 0) and bt = t*(cx,..., cj.

Note that the possibility m=0 is included at appropriate places in the defini
tions of R and S.

Define the tree homomorphism

h: FO(X) - Fx(X) 
so that

M(ff> - • bm^ = a^ (m- °> <ff’ bl,

and hx=\x. Clearly, A is alphabetic. We claim that

h(P)
for the representable forest

P = .RArest (SUfloUX).

Let p^P- If p=(cr, e)Cfi0> then p^R implies a^^A'. Hence h(p)=a£T.
If p=x£X, then p£R implies h(x)&=xa£A'. Again h(p)=x£T. Next we 
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show that for every p^rest (SU^Uy) of height si

(1) h(p)& = ^(Bl, ..., Bm\ where (a, bk,bm) = root (p).

We proceed by induction on hg(p).

1° If hg(p)= 1, then mil and

p=(<r,bi, ...,bj(ult ..., wm)

for some q,..., «mc£20UA'. Since p^S we have h(ui')&=Bi for all m. 
But this implies that (1) holds for p.

2° Now let

.......Pm)

and assume that (1) holds for the trees p^, ...,pm. As p is in 5 and

h(pm)6t),

it suffices to show that h(pi)&=Bi for every We should consider
three cases.

(a) If pt is of the form (r, q,..., q)(q,..., rk) (*>0), then the induction 
hypothesis yields

= ^(q, ...,q).

Moreover, r^(q, ..., c^=bi=Bi since p£S.

(b) If pt=(<r, e)€Q0, then h(p^&=ff^=bl=Bl.
(c) If p^x^X, then h(p^6.=xaL=Bi.

Now we have completed the proof of (1). Consider any tree

p = (a, bt, .... b^ip^ ...,p„KP.

By using (1) and the fact that p^R we get

h(p)& ■=

This implies h(p)£T and we have shown that h(P)cT.
In order to prove the converse inclusion we show first by tree induction how

to construct for each t£Fi(X) a tree purest (S(JQ0UX) such that h(p)=t:

1° If t=x£X, then we may choose p=x.
2° If t=a^Z0, put p=(cr, e).
3° Let t=a(tlt.... tm) (m>0) and suppose we have trees Pi,...,pm€ 

^stiSUQoUX) such that h(p^tt («=*1,.... m). If we put

P = (<b hi> •••» bm)(plt.... pm),
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where for then h(p)=t and purest (SU f20U^) as
required.

Let t^T and construct a p for t as above. To prove t£h(P') it suffices to 
show that p^R. This can again be done by tree induction:

1° If t-x^X, then xa^A' and hence p=x£R.
2° If t=a€r0> then rs^A' and p=(a, e)£U(a, e)cR.
3° Let t..., Q (w >0). If we use (1) and its notation, we get

^(51,...,5m) = h(p)S = t«€X/.
This shows that p£R. □

9 . LOCAL FORESTS

In this section a proper subfamily of the recognizable forests is introduced. 
We will then also get one more characterization of the recognizable forests, not 
quite unrelated to that given in the preceding section.

We need the following auxiliary concept

Definition 9.1. The set of forks fork (t) of a IT-tree t is defined as follows:

1° If then fork(r)=0.

2° If ...,U (w>0), then

fork (t) = fork (0 U... U fork (tm) U {<r(root (rO, .... root (tj)}.

The set of all forks of ZY-trees U(fork(r)|t€Fx(X)) will be denoted by 
fork (I, X).

Example 9.2. Let I^ToUTiUTa, ^o={?}> an^
For the ZJf-tree

t = cr(r(y), v(x, -cW), 
we have

fork (0 = {a(r, a), t(y), a(x, t), t (y)}.

Graphically these forks are represented by
ro Oo /q X<1 To !/<'

, V ond ।
<5 * r a r

respectively. Obviously, fork (Z, X) is always finite and here it consists of 
30 forks. □
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Local forests may now be defined.

Definition 9.3. A ZA^-forest T is local if there are sets U(sZUI) and 
F(c fork (Z, X)) such that, for each t^F^X),

t^F iff root (/)£/? and fork (t) £ F.

Then we write T=Loc (R, F).

Hence the membership of a ZZ-tree t in the local forest Loc (R, F)can bedecid- 
ed by testing for the local properties root(Z)CA and fork(z)cF.

A ZA-recognizer for Loc (R, F) can be constructed as follows. First we define 
a Z-algebra ^=(A,E). Let ^ = ZUAU0 (0$ZUA). For every put 

o’- For m^O, and alt am£A let

a^(a a)=la if 
” ’ m 10 otherwise.

Let a: A— A be the embedding x (xgA). It is easy to show that for all 
KF^X),

. f root (z) if fork (f) s F, to, = ) _ ,10 otherwise.

This readily implies T(A) = Loc (R, F) for A=(sfa,R). Hence, we have

Theorem 9.4. Every local forest is recognizable. □

The converse of Theorem 9.4 does not hold. For example, the forest consisting 
of the single tree of Example 9.2 is not local as there are many other trees with 
the same root and the same forks. However, the following fact can be proved.

Theorem 9.5. For every recognizable EX-forest T there exist a ranked alphabet Q, 
a frontier alphabet F, a local Y-forest S and an alphabetic tree homomorphism

h: F^Y^F^X) 
such that T=h(S).

Proof. Let G=(N, I, X, P, a0) be a regular ZA-grammar generating T. We assume 
that G is in normal form. A new ranked alphabet 12 is defined so that

Qm = {[a -cr(ai,.... am)]|a - ff(alt

for all mgO. Also, let

F = {[a -* x]|a x£X}.

The local 12 F-forest S=Loc(7?, F) is defined by the sets

R = {[a0 -*p]l«o -*PCP}
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and
F= {[a - a(a19...» am)]([ai - pj, [am - pj)^ > 0, 

a -erfo, a! - pn am - pm^P}.

Finally, define an alphabetic tree homomorphism

h: F^Y^F^X)
by the mappings 

hy-.Y^F^XY [a~x\~x 
and

hm- F^XUS^, [a -*a(a1, afa, ...,^m).

Now h (5) = T, and thereby the theorem, follows from (1) and (2):

(1) If a^t, for some a£N and t^Fz(XY then there is a tree s€Fn(Y) 
such that A ($)=/, fork (s)cF and root (s) is of the form [a— p],

(2) If s^F^Y) is such that fork(s)cF and root ($) = [«— p] for some 
pCFjCVUiV), then a=>gh(sY

Part (1) can be proved by induction on the length of the derivation of t and 
(2) by tree induction on s. □

Note that h (5) is always recognizable when S is a local forest and h an alpha
betic tree homomorphism (Theorem 9.4 and Corollary 4.20).

10. SOME BASIC DECISION PROBLEMS

In this section we shall show that some of the first questions one might ask 
about given tree recognizers are algorithmically decidable. To begin with, we have 
the emptiness problem: Is the forest recognized by a given tree recognizer empty? 
Or one may ask whether this forest is finite or infinite. This is the finiteness problem. 
Finally, we have the important equivalence problem: Do two given tree recogniz
ers recognize the same forest? In fact, the more general inclusion problem-. 
“HA) c T(B)?” is shown to be decidable. The problems are quite easy and the 
proofs follow the strategy familiar from finite automata theory with a “pumping 
lemma” as the key result. We have seen in Section 2 that any nondeterministic 
frontier-to-root, or root-to-frontier, tree recognizer can be converted into an 
equivalent deterministic F-recognizer. Hence we may again restrict ourselves to 
our basic type of tree recognizers.

We need the following special notation. Let Z and X be given. Introduce a new 
letter f and let T{ be the set of all Z(XU O-trees in which { appears exactly once. 
For any qZT^ and p^Fi(X)UTi we denote ?({*-p) by p • q. Also, we define 
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the powers qk as follows:

i° ?° = e,
2° qn+1 = q- qn (« s 0).

Using these notations we may formulate the pumping lemma of tree recognizers 
as follows.

Lemma 10.1. Let A be a k-state ZX-recognizer. If t£T(A) and hg (t)^k, then 
there are trees p^F^X) and q, r£T{ such that

(a) t=p.q.r,
(b) hg (q) s 1 and
(c) p ■ q'-r^A) for all /=0, 1, 2, ....

Proof. Suppose t£T(A) and hg (r)^&(= |J|). Then we can write t=(r(t1, ...tt^ 
(w>0, Choose some j such that hg(t;)=hg(r)~ 1. Then

where
Sj = erOi, ..., tJ^1, tJ+1,..., tm)£T{.

If hg (ty)>0, we may decompose tj the same way. Since hg (t)sk the process 
can be repeated k times and finally we obtain a representation

t = t • Sj • ... ■ S2 • Si,

where tfFfX) and sltsk^Tt. Moreover, hg(si)sl for every 
Let

«* + l = C Uk = t'-Sk, ..., Mi = f-S*-...-Si = t.

There must be indices h and j, k + \^h>j^\, such that

uh6i = Uj&.

Now let p=uk, q=sh-i-...-Sj and r=sJ_1 ■... -Sj (if j=l, then r={). Then 
t=p-q-r and hg (q)^ 1. Also, our choice ofp and q implies

(1) P& = (p-q)&.

We assume that AF\X—0, and extend <2 to a homomorphism

a: ^(XUA)

so that <2|^ = lx. By Lemma 4.17 sa=S& whenever s^F^X). We verify now 
by induction on i that

(2) (P^,)& = (p-q)&
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for every i^O. From (1) we know that this is true for z=0. Suppose (2) holds 
for a given i. This assumption and (1) imply

= q(£ - {p-q^a. = q($ - (p.?)d)a

= q(^ - p<2)a = (p-q)&.

Using (2) we get for each zsO,

(p-q'ffi = r(£ - {p-q^&^a.

= (p-q^a 

= (p-q-r)&.

Hence, p ■ q‘■ r^TtA) for all z'sO. □

Theorem 10.2. Let A be a k-state ZX-recognizer. Then T(X) is nonempty iff it 
contains a tree of height less than k. Hence the emptiness problem of recognizable 
forests is decidable.

Proof. Suppose T(A) is nonempty. Let t be a tree in T(A) of minimal length. If 
hg (z)^A, we apply the pumping lemma and write t=p-q-r. But then T(A) 
would contain the tree p ■ r which is properly shorter than t as hg (q)^ 1. Hence 
hg(t)<* must hold. The converse part is trivial. The emptiness of 7(A) can 
always be decided by going through the finite set of trees of height < k. □

Suppose two ZT-recognizers A and B are given. Clearly, 7(A) c T(B) iff 
T(A)—T(B)=0. But T(A~) — T(B) is recognized by

C = (^X^, y, A'X(B-B')),

where xy=(xa,x/3) for x£X. Thus the question “T(A) c HB)?” can be 
answered by deciding whether T(C) is empty or not. The equivalence problem can 
similarly be reduced to the emptiness problem. Of course, its decidability follows 
also from the decidability of the inclusion problem. We have justified

Theorem 10.3. The inclusion problem and the equivalence problem of tree recog
nizers are decidable q

Finally we consider the finiteness problem.

Theorem 10.4. It is decidable whether the forest recognized by a given tree recognizer 
is finite or infinite.

Proof. Let A be a Estate ZT-recognizer and write

T==T(A)-{'€W)|hg(0*4
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We claim that T(A) is finite iff T=9. Obviously the condition is sufficient since 
the set of Z^-trees of height is finite. If T#0 and t^T, then hg(r)g£ and 
we may apply the pumping lemma and write t=p-q-r so that

p-qt-rCT(A') for all i s 0.

These trees are pairwise distinct since hg(g)Sl. Hence T(A) is infinite. The 
forest T is recognizable and one can easily construct a recognizer for it. This means 
that the condition T=0 is effectively testable. □

The decidability of the finiteness problem may also be deduced from the following 
corollary of the pumping lemma. The proof is an exercise.

Lemma 10.5. Let A be a k-state tree recognizer. Then T(A) is infinite iff it contains 
a tree t such that

k S hg (t) < 2k. □

11. DETERMINISTIC R-RECOGNIZERS

In Section 2 it was shown that NDR-recognizers recognize exactly the family 
Rec, but that there are recognizable forests that cannot be recognized by any 
deterministic R-recognizer. The limited recognition power of DR-recognizers is 
due to the fact that they have no way of combining the information gathered from 
disjoint subtrees. This implies that a DR-recognizer will accept any tree in which 
every path from the root to the frontier appears in some tree accepted by the 
recognizer. It will turn out that this closure property characterizes the forests 
recognizable by DR-recognizers. Here a “path” contains, not only a list of the 
labels of the nodes traversed, but also the information about the directions taken 
at the nodes. In the later part of this section we shall consider the minimization 
of DR-recognizers. It will be shown that every DR-recognizer can be reduced to 
a canonical minimal form which is unique up to isomorphism.

Let Z be a fixed ranked alphabet. In order to avoid some troublesome techni
calities, we shall assume that Zo=0. We associate with Z a unary ranked alphabet

r = r, = u(r(<r)|a€i), 
where for all a, t£Z,

(i) r(ff)={fflt...,ffw} if (mSl), and
(ii) r(a)nr(T) = 0 if a^x.

The paths in Z-trees can now be defined as T-trees.
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Definition 11.1. Let X be any frontier alphabet. For each x^X the set of 
x-paths of a ZX-tree t is defined as follows:

1° gxW = and gx(y) = 0 for all y x, y^X.

2° If r = ...,Q m^O), then gx(t) = ... Uam(gx(U)-

We extend gx to a mapping from pF^X) into pFr(X) in the natural way. More
over, we put

g(n=U(gx(T)|x€X) 
for each Ts F^X).

Label the edges of the graph representing a tree t£Fs(X) so that the i‘h edge 
(counted from the left) leaving a node labelled by a symbol a always gets the 
label o-j. Then the elements of gx(t) (x£X) are spelled out by the paths leading 
from the root to a leaf labelled by x when we interpret a word au ...au x 
(^=0, ..., Vki^F) as the FX-tree tru (x)...). Moreover, every such
path gives an element of gx(t).

Lemma 11.2. If F^Rec (Z, X), then g(T)£ Rec (F, X).

Proof. Let G=(N, I, X, P, a0) be a regular LX-grammar in normal form generating 
F. The case F=0 being trivial, we may assume that every Ga=(N, Z, X, P, a) 
(a^N) generates a nonempty forest. Let G'=(N, F, X, P', a0) be the regular 
FX-grammar, where

P' = {a - ^.(a^a - ..., am)eP, m > 0, 1 s i m}U
U {a -* x\a — x€F, x£X}.

We claim that F(G')=g(F). This follows when we show that, for every tree

p = <7H1(... aklfx) ...)eFr(X) 
and every a£ N,
O iff p£g(T(Ga)),

where G'a=(N, r, X, P', a).
We proceed by induction on hg (p).

1° If hg(p)=0, then p=x. In this case (*) obviously holds as a-x is in 
P' iff it is in P.

2° Suppose hg (p)>0 and that (*) holds for all trees of lesser height.

If p^.T(G'a), then and -^W-) for some
and P contains a production a—.... am) such that By 

the inductive assumption there exists a tree tifT(Ga) such that
-Oh/*)-Moreover, we may choose for every i^ilt 

a tree t£T(G.). Then 1=0^.......Q^G,) and p€gx(/)£g(r(G.)).

112



Conversely, let p^g{T(Ga)\ Then p£gx(t) for some teT(Ga). Obviously, 
t is of the form , ..., tm), where i^m, and it has a derivation

« =»G^i(ai, a^ct.

This means that P' contains the production a^au (at). Moreover, tt £T(Ga ) 
and Hence, we get a derivation

a ^G'P)

which shows that XT(G'). □

Let g be the mapping of Definition 11.1 associated with a given frontier alpha
bet X. Then we write tx=gg-1. It is clear that is a closure operation in F^X), 
i.e., for all S, TqF^X),

(i) Sxx,
(ii) SsT implies SxxsTxx, and

(iii) Sxxxx=Sxx.

For any Tc Fx(X), Txx is the closure of T, and T is said to be closed if Txx — T.
Now, consider an arbitrary NDR ZX-recognizer A=(a/, A', a). For each 

a£A, let
T(A, a) = {teFx(X)laeta}.

A state at A is a O-state, if T(A, a)—0. We say that A is normalized if for all 
m>0, and atA one of the following two alternatives holds:

(1) Each component of every vector in o^(a) is a O-state.
(2) No component of any vector of cP*(a) is a O-state.

A normalized NDR ZX-recognizer A has the following important property. 
Let ptgx(s) (x£X) for some ZX-tree s such that A has a computation on s 
which begins at the root in an initial state and ends at the leaf corresponding to 
P in a state which belongs to xa. Then there exists a tree t in T(A) such that 

Such a t can be built around the x-path p by completing it with trees 
from appropriate a)-forests.

An NDR ZZ-recognizer A becomes normalized if we omit from each set a^(a) 
every vector which contains a O-state. This does not change T(A) because the 
use of a vector containing a O-state cannot lead to an accepting computation. 
Hence, we have

Lemina 11.3. For every N D R-recognizer there is an equivalent normalized NDR- 
recognizer. □
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We associate with each NDR Zy-recognizer A a DR ZA^-recognizer pA= 
=(pa/, A', P) defined as follows:

(i) pj^=(pA, Z) is the deterministic root-to-frontier algebra such that

= (U(n1(^(O))|fl€7Z), ... ,U (Km(^(a))|a€/Z))

for all H^pA, m>0 and ff£Zm. Here ni is the z‘h projection.

(ii) For each x^X, {/f£p^|Hrixa^0}.

Lemma 11.4. For every normalized NDR ZX-recognizer A, T(pA) = T(A)Tx.

Proof. In order to prove the inclusion T(pA) £ T(A)tx, we consider an arbitrary 
tree sC^pA) and an x-path p€gx(s) (x£X). We should show that p€g(T(A)). 
Let p=o,ii (...(o*; (x))...). By the definition of pA there are states a0, alt ...,ak€A 
such that

(i) a0£A' and ak£xa, and
(ii) for y=l, ...,*.

Since A is normalized, this implies that there is a tree t£ T(A) such that p^gAt). 
Hence pCg(T(A)). Now, let s^T(A)tx and consider any x-path

P = (• • • Ouk W • • •)€ Ex(«) (*€*)•

Then p€gx(f) for some t^T^A) and there are states a0, ax, ..., ak£A such 
that the above conditions (i) and (ii) hold. But the definition of pA implies that 
the state of pA at the leaf corresponding to p includes ak for any tree in which p 
is an x-path. Hence pA arrives at the leaf of s corresponding to p in a state belonging 
to xa. This holds for every leaf of s and therefore s€T(pA). □

Corollary 11.5. If Rec (Z, X), then Trx€Rec(Z, X). □

Lemmas 11.3 and 11.4 also imply that every closed recognizable forest is 
recognized by a DR recognizer. But it is easy to see that T(pA)=T(A) if A is 
deterministic. Hence we may state the following result.

Theorem 11.6. A recognizable forest can be recognized by a DR recognizer iff 
it is closed. □

The rest of this section deals with the minimization of DR-recognizers. First 
two general remarks. When A=(.s/, a0, a) is a DR ^-recognizer, then the NDR 
algebra j^=(A, Z) is deterministic and we may view each {a^Zm, m>0) as 
a mapping

a": A ~Am.
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Hence we write (a)=(«!,..., am) rather than o-*(a)={(a1, ..., aj}. The 
second remark concerns normalized DR recognizers. If the DR LT-recognizer 
A is normalized, one of the following conditions holds for each pair (a, o)£AxZ:

(1) Every component of (a) is a O-state.
(2) No component of a^(a) is a O-state.

Of course, Lemma 11.3 and the construction which led to it are valid here, too, 
but we define a “standard” normalized form A*=(j/*, a0, a) of A as follows:

(i) If A has no O-state, then put A*=A.
(ii) If A has a O-state, choose one of them, say d, and define then for all m>0, 

and a^A,
. 1(d.......d)(EAm) if contains a O-state,

I a0' (a) otherwise.

It is easy to prove that A* is normalized and deterministic, and that T(A*) = T(A). 
Normalized DR recognizers have also the following useful property.

Lemma 11.7. Let A and B be normalized DR LX-recognizers, and let a£A, b^B, 
a^{a) = {ai,...,am) and ^(b)^, ..., bm). If T(A, a)=T(B, b), 

then T(A, Oi) = T(B, b() for all i=l,...,m.

Proof. If one of the states at (i^i^m) is a O-state, then all of them are. More
over, T(A, a)=T(B, t) does not contain any tree of the form off,..., tm). 
Hence, one of the forests T(B, b^ (l^z’Sm), and therefore every one of them, 
is empty. Thus T(A, a^KB, bt)=& for all i=\,...,m.

Suppose now that T(A, a^W and T(B, b^td for all i=l, ...,m. Consider 
anyi (l^iSm) and tfT(A, af Choose any t1^T(A,a1),...,tl_l^T{A,ai^), 
ti+i£T(A,al+1).......tmeT(A,am). Then a(tlt .... tm)£T(A, a)=T(B, b) implies 
t& T(B, b^. By a symmetrical argument, T(B, b^ £ T(A, a^ holds for every 
' = 1, ...,m. Hence, T(A, a^Tifi, b^ for every i=l,...,m, as required. □

We shall now define a few algebraic concepts for DR recognizers. Let 
A=(^, a0,a) and B=(di,bo,0) be DR ZX-recognizers.

A homomorphism from A to B is a mapping tp'. A-*B such that

(0 for all m^O, and a^A, alll(a<p)=(.a1(p, ..., amcp), where
0^=0^(a),

(ii) a0(p—b0, and
(iii) for every x^X, xp(p~1=xa.

is a homomorphism from A to B, we write <p: A-*B. If such a <p is surjec
tive, it is called an epimorphism. For an epimorphism condition (iii) implies 
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xa<p=xP, too. If there exists an epimorphism <p from A onto B, then B is an epi
morphic image of A. If cp: A—B is bijective, then A and B are isomorphic, and 
we write A=B.

A congruence on A is an equivalence relation q on A such that

(i) for all m>0, and a, a'^A, ap—a'Q implies a^(a)lQ = c*(a')lQ 
(recall the notation from Section LI), and

(ii) q saturates every set xa {x^X).

If q is a congruence on A, then the quotient recognizer determined by q is the 
DR ZT-recognizer

A/g = WIQ,

where sd/q — {A/q, L) is defined by

c^te^ao) = 0s* (afp (<r€£m,m>0, a^A),

and ae: X^A/q is defined by xae=xa/g {x^X). It is easy to see that X/q 
is well-defined.

The following theorem is easily obtained by modifying the proofs of the corre
sponding facts from algebra.

Theorem 11.8. Let X and B be DR LX-recognizers.

(a) If q is a congruence of A, then the natural mapping q : A—A/q defines an 
epimorphism of A onto X/q.

(b) If <p‘. A—B is an epimorphism, then Q — qxp^1 is a congruence on A, and 
X/q^B. □

The following fact will be needed later.

Theorem 11.9. IfB is an epimorphic image of A, then T(X)=T(B).

Proof. Let cp: A—B be an epimorphism. We verify by tree induction that

(*) tol = tPy"1 and tarp = t^,

for every t^F^X).

1° For t=x£X, (*) follows directly from the fact that (p is an epimorphism.
2° Let t=a(t1, tm) and assume that (*) holds for t1,...,tm. Suppose 

a£t&. If o"rf(a)=(a1, am), this means that a^t^, ..., am^tmci. Hence, 
G ft • • •, am <p£ tm 0. This implies

^(atp) = (w.......amcp)etiliX...Xtm^

Hence, aq>^tfi Suppose now that acp^tji, and let a^(a)=(ait ..., a„). Then
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which implies aj€Ga, ..., a. Hence, a^ti. The 
equality Za=t^<p-1 implies tx(p = t^ as <p is surjective.

Now, (*) implies that for every t^Fs{X), 
t£T(A) iff a0^tx 

iff a0(p{= b^tx<p{= t^) 
iff teT(B). □

We call two states a and a' of a DR ZY-recognizer A equivalent, and we write 
a~Aa' (or just a^a'), if T(A, a) = T(A, a'). Obviously, ~A is an equivalence 
relation on A. We say that A is reduced, if ~ a-

Lemma 11.10. If A is a normalized DR ZX-recognizer, then ~ is a congruence on 
A and A/ ~ is reduced.

Proof. First we show that ~ is a congruence relation.

(i) Consider any w>0, and a, a'^A such that a~a'. Let 
a^(a) = (ai,.... am) and o^(a') = (a^,..., a'm).

But a~a' means that T(A, a) = T(A, a'), and Lemma 11.7 implies that 

T(A, af) = T(A, a[) for all i = 1,

Hence, a^a, for all i=l,...,m.

(ii) If a£xx and a^a', for some x£X and a, a'^A, then x^T(A,a)= 
= T(A,a") implies a'^xx. Hence, ~ saturates xx.

Now we know that the quotient recognizer A/~ can be defined. It is reduced as 
(a~)~A/^(a'~) implies a~=a’~ (a,a'£A) because, by Theorem 11.9,

T(A, a) = T(A/~, a~) = T(A/~, a'~) = T(A, a'). □

Let a, a'^A. We write a\-a' if there exist an m>0 and a such that 
a' appears in a* (a). The reflexive, transitive closure of H is denoted by H *. 
If ah*a', we say that a' is reachable from a. The DR recognizer A is said to be 
connected if every state is reachable from the initial state.

The connected component
Ac = (rfc, a0, xe)

of a DR ZT-recognizer A is defined as follows:

(i) ^C=(AC, I), where Ac= {a€^|fl0H*a} and for all
and a£Ac.

(ii) xac = xaAAc for each x^X.
Clearly, the operations A'-^A'y are completely defined (ffl*0, ffCTJ.
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The proof of Lemma 11.11 is quite straightforward and we shall omit it.

Lemma 11.11. Let A be any DR ZX-recognizer. Then

(a) Ac is connected and deterministic,
(b) AC=A iff A is connected,
(c) and
(d) if A is normalized, then so is Ae. □

We are now ready to present the main theorem of the minimization theory of 
DR recognizers.

Theorem 11.12. Let A and B be connected, normalized DR ZX-recognizers. Then 
T(A)=T(B) iff A/~a-B/~b.
Proof. If A/~a and B/~b are isomorphic, then

TW = HA/-*) = T(B/~B) = T(B)

by Theorems 11.8 and 11.9.
Assume now that T(A) = 7’(B). We define a mapping

(p: 
by the condition that

(u~A)9> = b~B if T(A, a) = T(B, b) (a£A,b<iB).

The following steps (i)—(v) show that <p is the required isomorphism.

(i) (a^f)(p is defined for all a~pfA/~A. Since A is connected, there exist 
for every a^A a k^O and states alt ..., ak£A such that

u0H Ui I— UjH... H ak = a.

Using Lemma 11.7 one shows by induction on the smallest k (corresponding to 
the given a) that there is a b such that T(A, a) = T(B, b).

(ii) (P is well-defined. If T(A, a)= T(B, b) = T(B, b') for some at A and 
b,b'^B, then b~B—b'~B.

(iii) (p is injective. Similarly as (ii).
(iv) rp is surjective. If we exchange the roles of A and B in (i), we see that there 

exists for every b^B an a^A such that T(A, a) = T(B, b).
(v) ip is a homomorphism. That <p preserves the operations follows from Lemma

11.7. If o~A€xa/~A (x£X) and (a^Jcp^b^, then x£T(A, a)=T(B, b) 
implies i~B€x^/~B. Likewise, (a^ implies o~A€xa/~A.
Thus x^~B<p-1=xa~A for every x£X. □

ADR recognizer A is said to be minimal if no DR recognizer with fewer states 
recognizes T(A). If A is minimal, then it is connected by Lemma 11.11. As 
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7'(A*)=7'(A) we may also assume that A is normalized. Then T(A) = T(A/~ A) 
implies that A should be reduced, too. Conversely, if A is connected, normalized 
and reduced, then it is minimal and every normalized minimal DR recognizer is 
isomorphic to it (Theorem 11.12). These facts imply that the following three steps 
yield for any DR recognizer A an equivalent minimal DR recognizer B. More
over, this B is normalized.

Step 1. Form A*.

Step 2. Form A*c.

Step 3. Form ~ for A*e, and put B=A*7~.

It is not hard to see that these steps are effectively realizable.

EXERCISES

1. Let leaf(t) denote the set of symbols which label the leaves of a given ZZ-tree 
t. Define Ieaf(/) by tree induction.

2. (a) Define the length |z | of a ZZ-tree t (as a word) by tree induction.
(b) For the sake of simplicity, let Z=Za. Derive an upper bound for |z| 

in terms of hg (/). Give also a lower bound for |z| in terms of hg(r).
3. Let Z=Z0UZ2, Z0={w}, ^2=W> and let Construct a CF

grammar which generates the set F^X) of all ZZ-trees (when these are viewed 
as words). Is the set of all ZZ-trees still a CF language if we use the Polish nota
tion for ZZ-terms?

4. Let Z and X be as in the previous exercise. Decide which ones of the ZZ- 
forests, R, S, and T are recognizable, when these are defined as follows:

(i) t^R iff the number of cr’s in t is odd.
(ii) te S iff all paths from the root to a leaf are of the same length.

(iii) t^T iff no leaf labelled by y appears to the left of a leaf labelled by x.
5. Let A be an NDF ZZ-recognizer and B an NDR ZZ-recognizer which are 

associated in the sense of Section 2. Prove the equality by tree induction.
6. Use regular tree grammars to prove directly that Rec (Z, X) is closed under 

c-products (Corollary 4.12).
7. Let us change the definition of the forest product T(x*~ Tx) (cf. Definition 

4.3) in such a way that every occurrence of each letter x£X should be rewritten 
as the same tree Tx. Then we get the new product

Hx - Tjx€X] = {/(x - rJxCZ)^!', tx^Tx (x€Z)}.

Is Rec (Z, X) closed under this product?
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8. Let T be a iT-forest and let x^X. Describe the forests 7\0 and 0-xT.
9. Do the following laws hold for x-products?

(a) R-X(SUT) = (R.XS)U(R.XT).

(b) (RUS)-xT=(R-xT)U(S-xr>.

(c) R-x(SyT) — (R-XS)-yT.

10. Let us change Definition 4.7 so that TJ+1‘X=T-XTJ‘XUTJ'X for all j^O. 
Does the new x-iteration coincide with the original one? If not, does it preserve 
recognizability?

11. Let x^y (x,y£X). Is it possible that for some EX-
forest T?

12. Show that the construction of the tree recognizer for the forest S~XT 
given in the proof of Theorem 4.10 is effective when S is recognizable (and given 
by a tree recognizer).

13. Prove Lemma 4.17.
14. Prove Corollary 4.20 directly without using Theorems 4.16 and 4.18.
15. Let (p: ^(X^^X) be a homomorphism of ^-algebras. Prove that 

if T^Rec^, X), then (a) T<pCRec(E,X) and (b) Ttp-^Rec (E, X).
16. The set of atomic ZT-trees is defined as

A(E,X) = {a(x(1,.... xu)|m S 0, atEm, xh, ..., xlm£X}.

For the sake of definiteness, let JT={xi, ...,x„} (»S1). Prove that

(•••(^(T, X)**.)**. ...)*«» = F^X)

(cf. THATCHER and WRIGHT (1968)).
17. Let E=E2={o} and Z={x}. Write a regular expression for the forest 

of all zy-trees which contain an even number of a’s.
18. Let E and X be as in Exercise 3. Construct a ZZ-recogmzer for the forest 

represented by the regular expression <r(x,y) a(w, z))*1.
19. Prove Theorem 6.6.
20. If A is a EX-recognizer and T(A)=T, then di is a homomorphism from 

Fr to A. Prove Lemma 6.2 using this observation.
21. Prove Lemma 6.14.
22. In Section 7 we noted that one may define recognizability for subsets of 

algebras. We call T (gA) a recognizable subset of the Z-algebra s/=(A, E), 
if there exists a congruence 0 of finite index which saturates T. Denote by RecW 
the set of all recognizable subsets of j/. Prove the following facts:

(a) If S,TeRec^, then SUT, SHT, S-T^Recj^.
(b) If is a homomorphism and TfRec^, then Tip-^Recssf.
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(Note. TgRec^/ does not imply T^CRec^. A counterexample where and 
are monoids can be found in Eilenberg’s book (Vol. A) mentioned among the 

references of Chapter I.)
23. Let S=E2={g} and X={x,y}, and let (JU, V) be the least fixed-point 

of the system
u = x + a(a(u, v), y) 

a(y, u).

Find a regular (I, X, ^-polynomial 77 (k^2) such that U and V can be repre
sented as unions of some components of [^]. (For a general treatment of such 
questions see Mezei and Wright (1967).)

24. Show that every local ZA'-forest Loc (R, F) can be represented in terms 
of the elementary forests and the elementary operations intersection, union, and 
restriction. Note the resulting connection between the Theorems 8.6 and 9.5.

25. Show that the decidability of the equivalence problem of tree recognizers 
follows from the results of Section 6.

26. Prove Lemma 10.5.
27. Prove that it is decidable whether a recognizable forest can be recognized 

by a DR-recognizer.
28. Are all local forests recognizable by DR-recognizers?
29. Present algorithms for carrying out Steps 2 and 3 of the minimization 

algorithm for DR-recognizers which was outlined in Section 11.

NOTES AND REFERENCES

The observation (made about 1960) that finite automata may be defined as unary algebras 
is attributed to J. R. Buchi and J. B. Wright (see Mezei and Wright (1967), Thatcher (1973)). 
The generalization to tree automata was suggested independently by Doner (1965, 1970) and 
by Thatcher and Wright (1965, 1968). Many of the basic results presented in this chapter were 
obtained in various forms by several authors, and often it would be hard to establish any priori
ties. Most of the important early contributions can be found in Mezei and Wright (1967), 
Eilenderg and Wright (1967), Thatcher and Wright (1968), Doner (1970), Thatcher (1970), 
Pair and Quere (1968), Brainerd (1968,1969a), Arhib and Give’on (1968), and Magidor and 
Moran (1969).

Already in many of these papers trees were defined as terms, and this formalism is now very 
common. However, most authors use no separate frontier alphabet. Also, often operators may 
have more than one rank. The original reason for our use of frontier alphabets was to keep 
the character of the algebras independent of the number of frontier symbols. Another popular 
formalism defines a tree as a pair (D, A) consisting of a "tree domain" D and a labelling mapping 
A. Each element d of D specifies a node of the tree and Md) is the label of this node. This defi
nition is quite convenient for discussing concepts and operations which involve specific occur
rences of subtrees. Tree domains were introduced by S. Gorn in 1965 (for a reference, see 
Brainerd (1969a)).
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Deterministic and nondeterministic frontier-to-root tree recognizers were defined, and their 
equivalence was established, by Thatcher and Wright (1968), Doner (1970), and Magidor 
and Moran (1969). Root-to-frontier tree recognizers were introduced by Rabin (1969), and 
Magidor and Moran (1969). Magidor and Moran showed the equivalence of NDF and NDR 
recognizers, and they also studied DR recognizers.

Regular tree grammars and the results of Section 3 are due to Brainerd (1969a). In Brainerd’s 
grammars the form of the productions is quite general, but he shows that they can be reduced 
to, what we call, regular tree grammars.

The Boolean closure properties of Rec (X, X) were noted in many of the early papers mentioned 
above. The Kleene theorem (Theorem 5.8) was proved by Thatcher and Wright (1968) and 
by Magidor and Moran (1969). A simplified proof was given by Arbib and Give’on (1968). 
Alphabetic tree homomorphisms (called there projections) and Corollary 4.20 appear in That
cher and Wright (1968). General tree homomorphisms arose as special cases of finite-state 
tree transductions (see Thatcher (1970, 1973) and Engelfriet (1975b)). Tree transductions 
and tree homomorphisms will be considered in Chapter IV. Forest products (or "substitutions”) 
were also introduced in this context. ITO and ANDO (1974) present a complete axiom system 
for the equality of regular expressions (cf. also Esik (1981)).

Minimal tree recognizers and Nerode congruences are discussed in Brainerd (1968), Arbib 
and Give’on (1968), and Magidor and Moran (1969).

The theory of equational forests is from Mezei and Wright (1967). We have simplified the 
exposition by considering only regular fixed-point equations. Mezei and Wright considered 
also equational and recognizable subsets of general algebras (cf. Exercise 22). They proved 
that the equational subsets of an algebra (of finite type) are the homomorphic images of the 
recognizable subsets of term algebras. Applied to term algebras this result gives our Theorem 
7.9. Eilenberg and Wright (1967) present these results in a category theoretic form. For var
ious classes of subsets in general algebras we refer also to Wagner (1971), Lescanne (1976), 
Marchand (1981), Shepard (1969), and Steinby (1981). Dubinsky (1975) discusses equational 
and recognizable subsets of nondeterministic algebras. Maibaum (1974), and Engelfriet and 
Schmidt (1977, 1978) extend the subject into another direction by considering many-sorted 
algebras.

The material of Section 8 is from Costich (1972). Local forests, or similar concepts, and 
results related to Theorems 9.4 and 9.5 can be found in Doner (1970), Thatcher (1967, 1970), 
and Takahashi (1975a).

The characterization of the forests recognizable by DR recognizers is from VirAgh (1981), 
although the basic idea is discernible already in Magidor and Moran (1969) (cf. also Thatcher 
(1973)). The minimization theory of DR recognizers appears in Gecseg and Steinby (1978a).

We should also mention an alternative approach, originating with Pair and Quere (1968) and 
popular among French writers, in which the basic objects are tuples of trees rather than trees. 
The usual tree operations are then augmented by operations which catenate tuples of trees 
or form a tree from an m-tuple by creating a new root labelled by an m-ary operator. As an 
abstract framework for their study Pair and Quere introduced "binoids", the tuples of trees 
form such a binoid. Their results include the basic closure properties and a Kleene theorem. 
This formalism has been developed further by Arnold and Dauchet (I978d, 1979) to a theory 
of "magmoids” which also embodies many of the ideas of Eilenberg and Wright (1967). 
Arnold (1977a, b) discusses many topics relevant to this chapter within the framework of 
magmoids.

We shall now discuss briefly some topics and applications of the theory not covered by this 

122



book. The survey is by no means complete, and in many cases the choices were dictated by 
personal preference. Some more remarks will be made at the end of Chapters III and IV.

The category theoretic treatment of recognizable and equational subsets by Eilenberg and 
Wright (1967) was already mentioned. It is based on Lawvere’s "theories”. This approach 
was developed further by Give’on and Arbib (1968), and others. The theory of magmoids has 
also evolved from the same ideas. We have avoided the use of category theory altogether, but 
the bibliography contains a sample from the extensive and highly diversified literature on the 
subject. The items of interest include Alagic (1975a, b), Arbib and Manes (1974), Bobrow and 
Arbib (1974), Goguen (1975), Goguen et al (1974, 1977), Horvath (1979,1981) and Trnkova 
and Adamek (1979).

The structure theory of tree automata has received little attention although some initial steps 
were taken already by Magidor and Moran (1969). Ricci (1973) considered cascade products 
of tree automata. Iterative realizations and general products of tree automata are studied in 
Steinby (1977b). Two sections of Gecseg and Steinby (1978b) are devoted to the subject. It is 
evident that generalizations from the unary case will usually not be easy in this area.

Transition monoids have proved very useful in finite automaton theory and some equivalents 
of them for tree automata have been suggested. The "m-ary monoids” of Give’on (1971) and 
the "substitution algebras” of Yeh (1971) are in fact special Menger algebras. The same idea 
reappears in the "clone algebras" of Turner (1975). Sommerhalder (1974) develops the concept 
further and associates with an algebra a sequence ... of monoids. Here M„ consists
of all n-tuples of n-ary polynomial functions of the algebra. It would be easy to define syntactic 
monoids of forests along these lines, but no such theory seem to have evolved yet. Another 
variant of the transition semigroup concept has been studied by Helton (1976).

We shall mention some other algebraic topics of potential interest. A ZX-forest T is said 
to be recognizable by a 27-algebra s^=[A,X) if one may choose a: X-*A and A'( — A) 
in such a way that (j/, X, A') recognizes T. Families of forests recognizable by algebras belonging 
to a given variety (equational class) were considered by Steinby (1977a) and by Gecseg and 
Horvath (1977). For a further study in this direction it would probably be advantegeous to 
follow the example of Eilenberg’s theory of M-varieties and varieties of recognizable languages 
and consider "co-varieties” (usually called pseudovarieties) of algebras and the families of forests 
corresponding to them; an ©-variety is a class of finite algebras closed under the construction 
of subalgebras, homomorphic images and finite direct products. In Steinby (1979) it was shown 
that Eilenberg’s basic variety theorem can be extended to ©-varieties and varieties of recogniz
able subsets of free algebras (suitably defined). A specialization of this result to term algebras 
gives a correspondence between ©-varieties and varieties of recognizable forests. A YY-forest 
T is said to be rationally represented by an I2Y-recognizer A if there exists an embedding 
p: F^X)-*Fa(X) of a certain kind such that T<p = T(\). A variety of algebras is said to 
be rationally complete if every recognizable forest can be rationally represented by a recognizer 
based on a finite algebra belonging to Jf. Gecseg (1977) studies the rational completeness of 
varieties and the equivalence of tree recognizers with respect to rational representation. Further 
results can be found in Mar6ti (1977), and Marchand (1979) also contains some related ideas.

We shall now list a few references to some more topics. Probabilistic tree automata and related 
topics have been discussed by Magidor and Moran (1969, 1970), Ellis (1970) and Karpinski 
(1974b, 1975). Forests of infinite trees appear in Rabin (1969), Engelfriet (1972), Casteran 
(1978) and Courcelle (1978). An alternative way to generate forests is provided by the tree 
adjunct grammars studied by Joshi, Levy and Takahashi (1973, 1975), Levy (1973), and Levy 
and Joshi (1973). Also Lindenmayer systems (L-systcms) for trees have been considered; see 
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Culik (1974), Culik and Maibaum (1974), Engelfriet (1976a, 1977), Karpinski (1977), Steyart 
(1978), and Szilard (1974).

Although we present our subject as a part of pure automata and formal language theory, 
it should be clear that it has many connections to the more applied aspects of language specifi
cation, translation and semantics. As a conclusion we would like to point out some less obvious 
areas of application.

When Doner (1965,1970) and Thatcher and Wright (1965, 1968) introduced tree automata 
their goal was to prove the decidability of the weak second order theory of multiple successors. 
Further applications to logic can be found in Rabin (1969, 1970).

In syntactic pattern recognition patterns are decomposed into simple basic elements which 
are represented by letters of an alphabet. A pattern is then represented, for example, as a word. 
However, essential information about the relations between the basic elements may be lost if the 
corresponding letters are simply concatenated to form a word. It is possible that these can be 
described adequately by representing the pattern as a tree, and then tree automata theory may 
be used. For example, the considered class of patterns may be generated by a tree grammar or 
recognized by a tree recognizer. One specific problem prompted by syntactic pattern recognition 
is the inference of forests from samples. The interested reader may consult the books by Fu 
(1982) and Gonzalez and Thomason (1978). Some papers from this area are Berger and Pair 
(1978), Brayer and Fu (1977), Fu and Bhargava (1973), Gonzalez, Edwards and Thomason 
(1976), Lu and Fu (1978), Pair (1976), Tai (1979), and Williams (1975).
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CHAPTER III

CONTEXT-FREE LANGUAGES AND 
TREE RECOGNIZERS

The words generated by a context-free grammar can be read from derivation 
trees. The connection between forests and languages implied by this fact is the 
subject matter of this chapter. In the first section we define the yield-function by 
means of which a word is extracted from a tree. In Section 2 the basic relations 
between recognizable forests and context-free grammars are established. The 
usual definition of derivation trees must be modified slightly as to make them 
“trees” in our sense of the term, but the difference is inessential. The forest of 
derivation trees of any CF grammar is shown to be recognizable. On the other 
hand, we shall see that the yield of any recognizable forest is a CF language. 
Hence tree recognizers may also be viewed as recognizers of CF languages. The 
section is concluded by showing that every CF language is the yield of a local 
forest recognizable by a deterministic R-recognizer.

The inverse image of a CF language under the yield-function is not always a 
recognizable forest, but we show in the beginning of Section 3 that the inverse 
image of a regular language is a recognizable forest. Also, a slightly restricted 
converse of this fact is presented. Then we show that every CF language can be 
obtained from a recognizable forest with a fixed and very simple ranked alphabet. 
Section 3 is concluded by some examples which show how facts about context- 
free languages can be proved using the theory of recognizable forests.

In Section 4 another, less well-known, way to obtain the context-free languages 
from recognizable forests is presented.

1. THE YIELD FUNCTION

We shall now formally define the function that extracts a word from the fron
tier of a tree. This will also give a function that associates a language with every 
forest.

Definition 1.1. The yield yd(l) of a TY-tree t is defined inductively as follows:
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1° yd(x) —x for all x£X.
2° If then yd(t)=yd(rj...yd(tm).

The yield of a ZZ-forest T is the X-language yd(T)= {yd(t)|t€T}.

To obtain the yield of a tree tm) one concatenates the yields of the
subtrees In particular, yd(cr) = e for all a£Z0. More generally,
yd(/)=e iff t^FffQ). The mapping

yd: FffX)+X*

is not injective; in general, a word is the yield of several trees.
We use the same symbol yd for its extension to forests. Of course, yd presupposes 
a Z and an X although our notation does not show this.

Example 1.2. Let ca€Z0, <t€Z3 and x,y^X. For s=o(x, o(y, co, y), co) and 
t=a(co, x, o(y, y, co)) we have yd(s)=yd(t)=xyy. □

Whether or not a given word w^X* is the yield of some ZY-tree depends 
on the length of w and the arities of the operators in Z.

Lemma 1.3. Let r(Z)={mL, mk}. For a word w^X* there exists a tree 
t^F^X) such that yd(/) = H’ iff the length of w can be expressed in the form

|w| = h1(m1-l) + ...+/ik(mt-l) + l

for some (integers) hlt...,hm^0. □

The proof of the lemma is an exercise. It is easy to see that yd(FI(Z))=Z* 
iff Zo^0 and Z—(Z!UZo)#0. When this is the case, there exists for every 
Z-Ianguage L a ZZ-forest T such that yd(7’)=L. The greatest among these is 
the forest

yd-^I) = {^(ZjlydWCL}.

In general, we know just that ydfyd-^L^sL. From Lemma 1.3 one easily gets

Corollary 1.4. For a given LzX\ there exists a forest TcF^X) such that 
yd(T)=L iff

{HHL} £ {M'«i-1)-I---- + M'M*~1) + I|/J1, .... hk » 0), 

where {mltmk}=r(Z). □

In the following lemma we list some obvious properties of yd and yd-1.
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Lemma 1.5. Let S and T be LX-forests, and K and L X-languages. Then

(a) yd(SUT) = yd(5)Uyd(T),

(b) yd (SAT) c yd (S) A yd (T),

(c) yd-^AUZ) = yd-HWyd-VL),

(d) yd-^AfU) = yd-Wnyd-^L), and

(e) yd-^A-L) = yd^^-yd-^L). □

2. CONTEXT-FREE LANGUAGES AND RECOGNIZABLE
FORESTS

In the customary definition of derivation trees the inner nodes are labelled by 
nonterminal symbols and a nonterminal may appear at nodes with different 
numbers of outgoing edges. Since we allowed a symbol of a ranked alphabet 
to have just one rank, the definition of derivation trees should be modified accord
ingly.

Let G=(N, X, P, a0) be a CF grammar as defined in Section 1.6. We associate 
with G a ranked alphabet ZG thus: for each

2m = {(«. w)|(3a - = «}•

Definition 2.1. Let G and ZG be as above. For every dO.NUX the set D(G, d) 
of derivation trees with d as the root is defined by the following conditions:

1° D(G, x)={x) for each x£X.
2° For a^N, (a, 0)£D(G, a) iff a-e^P.
3° Suppose a-*d1...dm£P, with a£N and dt, ..., dmcNJX. If 

t^D(G, dj, ..., t„fD(G, dm), then (a, m)(tlr tm)^D(G, a).
4° Nothing is in any D(G, d) unless this follows from a finite number of appli

cations of the rules 1°, 2° and 3°.
The derivation foreSt of G is the ZG X-forest D(G)=D(G, a0).

Exactly as in the case of conventional derivation trees, every t in D(G, d) 
(d^NUX) corresponds to a unique leftmost derivation in G of the word yd(r) 
from d. Also, every derivation

d qUi =>q ...=* G^k-l qW>

with d^NUX and w€A*, can be described by a tree t£D(G, d) such that 
yd(t) = w. This is easily shown by induction on the length of the derivation. 
Hence, L(G)=yd(D(G)).
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Theorem 2.2. The derivation forests of CF grammars are local and, therefore, 
recognizable.

Proof. Let G-(N,X,P,a^ be a CF grammar. It is obvious that D(G) is the 
local ZG^-forest L(R, F) (in the notation of Section II.9), where

R = {(a0, m)\m £ 0, (a0, m)£E°}

and the set Fof the allowed forks is defined as follows. If and a—di...dm^P,
then we include in F every fork (a, m)^, .... c^ such that for all i=l, ..., m,

_(dt, if
C‘ I (dt, k) with k&O and (d^k^Xf if d^N.

Nothing is in F unless this follows from the construction described above. □

It is also easy to see that D(G) is generated by the regular iV-grammar 
Gd=(N, Xg, X, PD, a^, where

PD = {a-^(a, m)(dlf ..., dm)\m Q, a^-d^.-.d^P, dlt dm€NUX}.

Example 2.3. Consider the CF grammar

G = ({a0, b}, {x, y}, {a0 -* xaob, a0 — e, b -* xyb, b -* y}, a0)-

In this case ZG=TGUZf UZG where XG = {(a0,0)}, T®={(b, 1)} and 
ZG = {(a0, 3), (b, 3)}. The productions of the grammar GD=(N, XG, X, PD, a^ 
generating D(G) are a0->(n0, 3)(x, a0, b), a0~-(a0, 0), b-*(b, 3)(x, y, b) and 
b—(b, l)(y). The allowed roots of the local forest D(G) are (a0, 0) and (a0, 3), 
and the possible forks are (a0, 3)(x, («0, 0), (b, 1)), (n0, 3)(x, (a0, 0), (b, 3)), 
(a0, 3)(x, (a0, 3), (b, 1)), (a0, 3)(x, (a0, 3), (b, 3)), (b, 3)(x, y, (b, 1)), (b, 3) •
• (x, y, (b, 3)) and (b, l)(y). □

Theorem 2.2 yields immediately

Corollary 2.4. Every CF language is the yield of a recognizable forest. □

The converse is also true:

Theorem 2.5. The yield of any recognizable forest is a context-free language.

Proof. Let G=(N, X, X, P, a0) be a regular ZA'-grammar generating the given 
recognizable LZ-forest T. To simplify matters we assume that G is in normal 
form. Now we construct the CF grammar Gt=(N, X, Plt a0) with

Pl = {a -yd'(p)|a -*p€P).
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Here yd' is the yield-function corresponding to the extended frontier alphabet 
XUN. Inductions on the lengths of the derivations show that

(1) a=>£t implies a^^yd^X for all a^N, t^F^X), and that
(2) for all w^X* and a^N, a^w only in case there exists a tree t^F^X) 

such that a^t and yd(t) = w. These two facts imply that yd (T)=L (GJ 
is CF. □

In view of Theorem 2.5 any tree recognizer may be seen as a device which recog
nizes a CF language by checking the possible syntaxes of given words; a word is 
accepted iff it is the yield of at least one tree accepted by the tree recognizer.

Definition 2.6. The language recognized by a TJV-recognizer A is the ^-language 
L(A)-yd(T(A)).

The previous results can now be expressed as follows.

Theorem 2.7. A language is recognized by a tree recognizer iff it is context-free. □

The equivalence expressed in Theorem 2.7 is effective both ways; for any CF 
language given by a CF grammar we can construct a tree recognizer, and for 
any tree recognizer A we can construct a CF grammar generating A (A).

By Theorem 2.2 every CF language is the yield of a local forest. We shall now 
show that even a smaller class of forests will suffice. To this end we replace deri
vation trees by trees in which the inner nodes are labelled by complete produc
tions.

With every CF grammar G=(N, X, P, aj we associate another ranked alpha
bet EF defined as follows. For each mgO, let

Em = {(a - 7)|a -* 7 is in P and M = m},

i.e., the m-ary symbols correspond to the productions with right-hand sides of 
length m.

Definition 2.8. Let G and EF be as above. For every d^NUX the set P(G, d) of 
production trees with d at the root is defined by the following conditions:

1° P(G,x)={x} for each xQX.
2° For aCN, (a-e^Plffa) iff a-e^P.
3° Suppose a-*di ■ ■■dm£P (w>-0, a£N and dlt ..., d„(iN\JX). If 

p^PiG, dj.......pm£P(G,dm), then (a-^ ...d^Pt........pm)^P{G,a).
4° Nothing is in any P(G, d) unless this follows from a finite number of 

applications of 1°, 2° and 3°.
The production forest of G is the J/X-forest P(G) = P(G, aj.
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Theorem 2.9. The production forest P(G) of any CF grammar G is local and it is 
also recognizable by a deterministic R-recognizer.

Proof. Let G=(N, X, P, a0) be a CF grammar. The presentation of P(G) as a 
local forest is similar to that of D(Gf We construct a DR 2/Y-recognizer 
X=(A, X, X, A', a) as follows. Put /1 = 7VU.W {d} (d^NUX), A' = {a0}, and 
for each x€X, xa={x}. Next, the underlying root-to-frontier algebra d=(A, Zp) 
is defined. If a=(a^e)€Z£, then 0^=0. Let (r = (u-c1...cm)€^ with m^Q. 
Then we put XXCci-•••> and a^lb^d, ...,d) for all b^a. It is 
easy to show by tree induction that for all t^F^ifX) and a^N^dX,

a^ta. iff t£P(G, af

This implies that A recognizes P(Gf □

The language recognized by an R-recognizer is defined in the natural way. As 
it is obvious that yd (P(G))=L(G) for every CF grammar G, we may state

Corollary 2.10. Every CF language is recognized by a deterministic R-recognizer. □

3. FURTHER RESULTS AND APPLICATIONS

Every CF language L is the yield of many different forests. Such a forest is 
not necessarily recognizable. In particular, the greatest ot them (for a given L) 
yd'1 (L) may be nonrecognizable.

Example 3.1. Let and X={x>y}- Consider the (minimal linear)
CF language £= {x"/|nsl}. If yd-1 (L) were recognized by a IX-recognizer A, 
then A would accept all trees a^s^tj) G—1), where (i) s^x, ti—y and (ii) 

and fora11 As A is finite, it would then also
accept some tree ofsi,tj) with i^j. But this is a contradiction, because 
yd(o(s„ D

In contrast to Example 3.1 We have

Theorem 3.2. If L is a regular X-language, then yd-1 (L)€Rec (I, X) for any 
ranked alphabet Z.

Proof. Let Jt be a finite monoid, <p: X*~M a homomorphism and H a subset 
of M such that L=H(p~1. Let j/=(M, Z) be the I-algebra defined so that

0^(0^ ...,am) = afaa-...-am (product in ^) 
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for all m^O, o^Xm and alf ...,am£M. In particular, o^=l when a£X0. 
If we put

a = (p\X: X—■ M, 
then

t& = yd(t)(p for all t£Fz(X).

This implies that yd-1 (£)=7’(A) for the ZT-recognizer A=(j/, a, H). Indeed, 
for all t^F^X),

t£T(A) iff t& = ydeepen 

iff yd(t)€£
iff t€yd-1(L). □

The full converse of Theorem 3.2 is not valid, but the following result will be 
proven in Exercises 6 and 7.

Theorem 3.3. Let L(sX^ be a language and X a ranked alphabet such that 
yd (yd"1 (L))=L. Then yd-^^CRec (Z, X) implies L^ec X. □

The ranked alphabets XG and Xp depend on the given CF grammar. We shall 
now show that every CF language is the yield of a recognizable forest over a fixed 
ranked alphabet. In fact, a very simple alphabet will suffice.

Theorem 3.4. Let X be a ranked alphabet which contains a binary operator and a 
nullary operator. Then every CF language is recognized by a X-recognizer. For 
e-free CF languages the binary symbol alone is enough.

Proof. Let us consider the e-free case first. Every CF language LcX* is gener
ated by a CF grammar G—(N, X, P, a0) in Chomsky normal form, where each 
production is of the form a—be or a—x (a, b, c£N, x^X). By Lemma II.4.1 
we may assume that Z=Z2={cr}. Let G1=(N, X, Plt aj be the regular XX- 
grammar, where

Pj = {a o(b, c)|a -* bc£P}U {a -* x\a -* x£P}.

Adjoin N to the frontier alphabet and let

yd': Fz(XUN)-^(XUNy

be the corresponding yield-function. By induction on the length of the derivation 
°ne can verify that for every derivation

a =*cWi =>0...=*G«* (a^N, k S 1) 

there is a derivation

O a ~OlP1 (P>, ...,P^FdXUN)) 
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such that yd'(p^=Ui for i=l, ...,k. This implies L(G)syd (HGO) as 
yd'|Fj(y)=yd. The converse inclusion follows from the fact that for every 
derivation (*) we have the derivation

a =>oyd'(Pi) =>G---=>Gyd'(P*)-

If L^X* and e^L, then we find, as above, a recognizable Zy-forest T such 
that yd (T)=L-e. Now add a nullary operator co to I and let T' = TUco. 
Then T' is recognizable and yd(T')=£. □

The connections established above suggest the possibility of developing, or 
just interpreting, the theory of context-free languages in terms of tree automata 
and recognizable forests. We shall illustrate this by a few examples. The results 
themselves are well known.

Theorem 3.5. The intersection of a context-free language with a regular language 
is context-free.

Proof. Consider a CF language L c X* and a regular language U over the same 
alphabet. Choose any ranked alphabet Z and recognizable Zy-forest R such that 
yd (R)=L. Then

LOU = yd(RA yd-1 (C/)).

Since RAyd-^GjCRec (Z, y) by Theorem 3.2 and Theorem II.4.2, this 
means that £ A G is context-free. □

The next example shows how the regular forest operations relate to language 
operations.

Definition 3.6. Let U and V be y-languages and x£X. The x-substitution of U 
into V is the language U -x V of all words

woukwku2... Wk-iUkWk,

where k^O, ...yU^U, waxw1x...xwk-.kxwk£V and x does not appear in the 
word w0 . Wn.

The x-substitution closure of U is the language

[/** = U(G''x|i SO),

where and U,’X=U‘-1-X for i^Q.
Consider two Zy-forests S and T and a symbol x€X. Every tree p£S’xT 

is obtained from some tree t£ T by replacing each occurrence of x by some tree 
from 5. Suppose x appears k times (AsO) in t and that we get p by replacing 
these occurrences, from left to right, by the trees st, ...,sk£S. If

yd(/) = WOXW1X ... xwk,
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then

yd(p) = woyd(si)wjyd(s2)... yd (s^w^yd (S) -,yd(r).

Conversely, if w£yd (S) ^yd (T), then we may write w in the form

w = w^w^... wk^ukwk

so that k^O, woxw1x...xwk^,yd (T) and uk€yd (S). Then there are 
trees t^T and such that yd(r) = woxw1x...xwk and yd($x) =
=«i...... yd (sk)=uk. If we replace the occurrences of x in t by the trees slt ...,sk, 
then we get a tree p£S-xT such that yd(p)=w. An easy induction on i shows 
now that

yd(T,,x) = yd(T)i,x for all i s 0.

Using these observations we get

Lemma 3.7. For any two EX-foreSts S and T, and any letter x^X,

(a) yd (S.,n=yd W^ydCT)

and

(b) yd(T*x)=yd(T)*x- □

Now we can derive the following well-known description of the family of 
context-free languages.

Theorem 3.8. The context-free languages form the smallest family of languages 
which contains the finite languages and is closed under (finite) union, x-substitu- 
Hons and x-substitution closures.

Proof. Clearly, all finite languages are context-free. Let U, Ks X* be CF and 
x£X. There exist recognizable forests S, T^FfX} such that yd (S’) = U, 
yd(T)=K Now UU K=yd (SUT), U-xV=yd (S)-Xyd (T) and F*x=yd(rx) 
are all seen to be context-free. On the other hand, the Kleene theorem (Theorem 
H.5.8) together with Corollary 2.4 and Lemma 3.7 shows that every CF language 
can be obtained from finite languages by forming unions, x-substitutions and 
■^-substitution closures. □

Note that when a CF J-language is expressed in terms of finite languages, 
unions, substitutions and substitution closures, symbols not in X may be used 
as auxiliary symbols in substitutions.

As an example we consider the language L— {xypiSO}. Let and 
«r€T3. Then L is the yield of, for example, the recognizable ZX-forest

T = {a>, <r(x, co, y), a(x, a(x, co, y), y), ...} 
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which has the regular expression co -zo(x, z, y)*z. From this we get for L the 
representation

L = {e}-z{xzyYz.

Here z is an auxiliary letter which does not appear in the language represented.

4. ANOTHER WAY TO RECOGNIZE CF LANGUAGES

If an ordinary finite automaton is viewed as a unary algebra, then its input 
symbols form a ranked alphabet. There is a way to interpret ZY-trees as words 
over Z in the general case, too. When this is done, recognizable forests become 
CF languages. Moreover, every CF language can be obtained this way as a recog
nizable forest once its alphabet is suitably ranked.

We consider the unary case as an introduction. The word

= <h — ^X*
can be obtained from the corresponding Z{x}-tree

^^(...^(x)...) 
recursively as follows:

1° xr]=e for all x^X.
2° if t=cr(s) (a^X).

Another way to get tr] would be to erase the parentheses and x and then reverse 
the resulting word. Both of these constructions can serve as the basis for the 
generalization to the case of an arbitrary ranked alphabet. The reversing of the 
order of the word is an inessential step due to our way of writing trees, and it 
will be omitted in the generalization.

Let X be an arbitrary ranked alphabet and X any frontier alphabet. We shall 
treat Z as an ordinary alphabet, too. We assume that Z and X are disjoint and 
that they do not contain (,) or the comma. Let

r=WYU{(, ),,} 
and define

n: Y* ^Z*

as the monoid homomorphism such that

_ I y for y£X, 
for y^Y-X.

Applied to a ZY-tree 11] erases all frontier letters x£.X, the parentheses and 
the commas leaving the symbols a^X intact. It is easy to see that this can be 
carried out as follows, too.
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Lemma 4.1. The words tr) (t^F^X)) can be found recursively as follows:

1° xtj = e for x^X.

2° If t = ff(t1,...,tm') (msO,aeTm), then ty = atrf... tmri. □

We have already noted that every regular ZY-grammar may also be viewed as 
a CF grammar generating a /-language. Moreover, it is well-known that the 
family of context-free languages is closed under homomorphisms. Hence we have

Lemma 4.2. If T^cfT,X), then Tfi£CF(Z). □

Next we prove the following converse of Lemma 4.2.

Lemma 4.3. Let Z and X be alphabets. If Z is ranked so that Z2=Z, then there 
exists for each CF language L^Z* a recognizable ZX-forest T such that Tr^L.

Proof. First, let L be e-free. Then L is generated by a CF grammar G= (N, Z, P, a0) 
in Greibach 2-form, where each production is of the form (i) a^obc, (ii) a—ah 
or (iii) a—a (a, b, c^N, a^Z). We convert G into a regular ZY-grammar 
G1=(N, Z, X, Plf a0), where the set A of productions is defined as follows. Fix 
any x£X and put then

Pt = {a — a(b, c)|n -* abetP}U{a — a(b, x)|a — ah€P}U 

U{u — a(x, x~)\a — <r€P}.

In order to show that is the required recognizable forest we extend t] to 
a homomorphism

(KUY)* - (£U.V)*

so that ih\Y=t] and th\N= 1N. It is easy to see that to every derivation

a =>c«i k S 1)

there corresponds a derivation

(*) a=>G1v1=>Gl...=>Glvk

such that v^^u, (i=l,...,k). Conversely, every derivation (*) is matched 
by the derivation

a =W1 =>G---=>

Since Y*=n, this implies T(G^=L(G)=L. If e^L, we apply this construc
tion to L-e and add then the tree x to T{G^. □

In the representation of Lemma 3.3 the frontier alphabet A can be fixed in ad
vance independently of Z and the language L. A one-element alphabet X= {x} 
suffices always.
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We say that a Z-Y-recognizer A ^-accepts a word w€Z*, if it accepts at least 
one ZA-tree t such that tr] = w. The Z-language ^(A) rj-recognized by A is the 
set of all words ^/-accepted by A. In this terminology the previous results may be 
summed up as follows.

Theorem 4.4. A language is rj-recognized by Some tree recognizer iff it is a context- 
free language. □

EXERCISES

1. Is it possible that yd-1 (w) is infinite for some word wl
2. Prove Lemma 1.3.
3. Find an example of a nonrecognizable forest T such that yd (T) is a recog

nizable language.
4. Show that for every CF grammar G, D^G) is the image of P(G) under an 

alphabetic tree homomorphism.
5. Recall that a groupoid is an algebra with one binary operation (and no 

other operations). For Z — Z2—{a}, FffX) is the free groupoid generated by X. 
Verify that yd: FS(X)~-X+ is a groupoid epimorphism. Then prove that a 
language L £ X+ is context-free iff it is the homomorphic image of a recogniz
able subset of the free groupoid generated by X (cf. Exercise 11.22, and Mezei 
and Wright (1967)).

6. The set Comb (Z, X) of “comb-like” ZV-trees is defined as the smallest 
set 5 satisfying the conditions 1° and 2°:

1° ZUFoSS.
2° If m>0, xit ...,xm^X and t^S, then a(xx, x,^, t)£S.

(a) Prove that Comb (Z, X)£ Rec (Z, V).
(b) Let T be a recognizable forest such that TsComb (Z, X).

Show that T is generated by a regular ZY-grammar (N, Z, X, P, a0) in which each 
production has the form a-*a{xlt xm_lt b), a—a> or a—x (a,b£N, m^O, 
<r€Zm, Xi, ...,xm_ffX, a?€Z0, x£A).

(c) Infer from (b) that yd(F)CRecA' for every recognizable T, Tq 

cComb (Z, X).
(d) Prove that for every ZY-tree t there exists a comb-like EX-tree s such 

that yd (s)=yd (r). Deduce from this fact that if yd (yd-1(L))=£ for some 
LcXf then

yd(yd-1(L)AComb (Z, V)) = L.
7. Prove Theorem 3.3 using the results of the previous exercise.
8. Give another proof for Theorem 3.4 using the fact that every CF language 

can be generated by an invertible CF grammar in Chomsky normal form.
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In Exercises 9—12 the theory of recognizable forests should be applied.
9. Prove that the language U— Vis CF if Uis CF and Eis a regular language.

10. Let epi X*—Y* be a homomorphism of monoids. Prove that L<p“1€CF(A') 
for every L^CF^Y).

11. Let h(t) denote the tree which is obtained from a given tree by rewriting 
every operator a as its rank r(a). Obviously yd (A(r))=yd (r). Show that h 
can be defined, for any given Y and X, as an alphabetic tree homomorphism. 
Two CF grammars G1 and G2 are said to be structurally equivalent if h^DlG^— 
=h(D(G$. Prove that there is an algorithm to determine whether or not two 
CF grammars are structurally equivalent.

12. Prove Bar-Hillel’s pumping lemma (Lemma 1.6.13).
13. Let G be a regular Zy-grammar. Construct a CF grammar G' such that 

L(G')= T(G)q. Note that Lemma 4.2 follows as a result.

NOTES AND REFERENCES

The basic connection between recognizable forests and context-free languages has been estab
lished in various ways. Mezei and Wright (1967) proved that the equational subsets of an algebra 
of finite type (in the monoid X* these are the CF languages) are the homomorphic images of 
the recognizable subsets of term algebras, i.e., recognizable forests. Applied to groupoids this 
theorem gives the result of Exercise 5 (credited to D. Muller). It also implies Theorem 3.4 which 
was explicitly formulated by Magidor and Moran (1969). The proof using derivation forests 
goes back to Thatcher (1967, 1970) and Doner (1970). Various forms of production trees have 
been used in this context by Engelfriet (1975a), and Steinby (1977a). Theorem 3.2 appears, 
for example, in Rounds (1970b). It is a special instance of the fact that the Inverse homomorphic 
images of recognizable subsets of algebras are recognizable (cf. Exercise 11.22). Theorem 3.3 
appears to be well-known. The proof outlined in Exercises 6 and 7 is from Steyart (1977b). The 
idea to use tree automata in the theory of CF languages was proposed by Rounds (1970a). More 
examples of such applications can be found in Thatcher (1973) and Engelfriet (1975a). The 
results of Section 4 are due to Ferenci (1977). The interested reader may also consult Ferenci 
(1980) for further work in this direction.

As a conclusion we mention a few other topics. Using a ranked nonterminal alphabet it is 
possible to define context-free tree grammars. Rounds (1969, 1970a, b) shows that the yield- 
languages of CF forests are exactly the indexed languages. Arnold and Dauchet (1976d, 1977, 
1978a), and Engelfriet and Schmidt (1977, 1978) arc some further references.

Possibilities to extend some of the results of this chapter to type 0 or context-sensitive lan
guages by generalizing the tree-concept have been investigated by Benson (1970), Buttelman 
(1975a, b). Hart (1974, 1976), and Rfvfsz (1977). Hierarchies of term languages obtained by 
iteration of the yield-forming process have been studied by Maibaum (1974), Engelfriet and 
Schmidt (1977,1978), and Turner (1973,1975). Families of languages defined by tree recogniz
ers based on aJgebias belonging to a given variety of algebras were considcicd in Steinby 
(1977a). GtcSEG and Horvath (1976) showed that a proper variety may be complete in the sense 
that every CF language is recognizable by a finite algebra of the variety (cf. the Notes and refer
ences section of Chapter II).

137



CHAPTER IV

TREE TRANSDUCERS AND TREE 
TRANSFORMATIONS

In this chapter we shall deal with systems transforming trees into trees simi
larly as generalized sequential machines transform strings into strings. There 
are two main categories of such systems: frontier-to-root tree transducers which 
process a tree from the leaves down towards the root, and root-to-frontier tree 
transducers which work in the opposite direction. Special classes of tree trans
ducers will play a basic part in decomposing tree transformations into simpler ones.

1. BASIC CONCEPTS

Throughout this chapter Z, Q and A will stand for ranked alphabets. It will 
be assumed that whenever an operator belongs to more than one ranked alpha
bet, then it has the same rank in all of them. Moreover, X, T and Z will always 
stand for (finite, nonvoid) frontier alphabets.

Let us recall that F^S) as defined in II. 1 denotes the set of Z-trees over the 
frontier alphabet S. Here we shall allow S to be a possibly infinite set of trees 
and then use the notation for F^S). One can easily see that in such a 
case there always exist a ranked alphabet Q and a frontier alphabet Y such that

Binary relations tsF^XjXF^Y) will be called tree transformations. An 
inclusion (p, is interpreted to mean that t may transform p into q. Because 
tree transformations are binary relations, we can speak about compositions, 
inverses, domains and ranges of tree transformations as defined in Section 1.1.

With each tree transformation re F^XyxF^Y) we associate the translation 
{(yd (p), yd(i?))|(p, ^)Ct} from X* into Y*.
The important tree transformations are those which can be given in an effective 

way. Next we define two general systems (tree transducers) inducing such trans
formations. We shall need a countably infinite set

s=Ko^,...} 
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of auxiliary variables. The subset of S consisting of its first n^O elements will 
be denoted by S„, i.e., The role of an auxiliary variable is to
indicate an occurrence of a subtree in a tree.

If all variables occuring in a tree q are among ..., then the notation 
?(£i> •••> ^n) may be also used for q. Moreover, if qlt ..., qn are arbitrary trees, 
then we generally write q^, ..., qn) for qi^q^

Definition 1.1. A frontier-to-root tree transducer (F-transducer) is a system 
21=(T, X, A, Q, Y, P, A'), where

(1) X and Q are ranked alphabets,
(2) X and Y are the frontier alphabets,
(3) A is a ranked alphabet consisting of unary operators, the state set of 91. 

(It will be assumed that A is disjoint with all other sets in the definition of 91, 
except A')

(4) A' e A is the set of final states, and
(5) P is a finite set of productions (or rewriting rules) of the following two 

types:

(i) x-afa) (x€X aEA, q^Fa{Y)\

(ii) v(ax^, ...,am^^ m^O, a1,...,am, a^A,

(In the sequel we shall write simply a(alf ..., af) for a^af^), ..., am(^m)).)

We shall use also the notation (p, q) for a production p^q- Moreover, if a^A 
is a state and t is a tree, then we generally write at for a(f). Similarly, if T is a 
forest, then AT will denote the forest {at^aCA, t^T}. Furthermore, for any 
a^A, we put 9I(a)=(Z, X, A, Q, Y, P,a).

Let us note that in the above definition it would be more exact to speak about 
production schemes instead of productions. Indeed, soon we shall see that they 
define patterns for rewriting trees.

Next we define the transformations induced by F-transducers. Consider the 
F-transducer 91 of Definition 1.1 and, for every pCFJTLMH], let be the 
subset of >(Fn(yUS) given as follows:

(1) if p = ai (a^A, ^B), then

(2) if pgXUIo. then for all (p,aq)£P,

(3) if p = a(p1.......pm) m >• 0) then aq^,..., qm)epTv for all 

(<r(ai.am), aq){P and a^^pit^ (a, a^A, i = 1, .... m), and

(4) nothing is in any pt* unless this follows from (1)—(3).
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Definition 1.2. Take an F-transducer UI=(Z, X, A, Q, Y, P, A'). Then the relation

— {(P, ^P^F^^X), q^Fn^Y), aq^px^ for some a^A'}

is called the transformation induced by 21.

For Definition 1.2 it would be enough to apply r* to trees from K(y). The 
above more general case will be needed later.

Sometimes in our proofs we should know how an input tree is transformed 
step by step into an output tree. Again, let 21 be the F-transducer of Definition
1.1, and consider two trees p, qtFAXUAF^YVZ)]. It is said that p directly 
derives q in 21 if q can be obtained from p by

(i) replacing an occurrence of an x^X in p by the right side aq of a produc
tion x—aq from P, or by

(ii) replacing an occurrence of a subtree afoft, ...,amqm) ak,

a^A’ qlt ..., in p by aq(qk, ..., q^, where a{alt ..., am)-aq is

a production from P.
Each application of rule (i) or rule (ii) is called a direct derivation in 21. If q 

is obtained from p by a direct derivation in 21 (i.e., p directly derives q in 21), 
then we write p^q. Therefore, =>a is a binary relation in ^[AW/t/FUS)]. 
If there is no danger of confusion, we generally omit 21 in =>M.

By finitely many consecutive applications of direct derivations we get derivations. 
Accordingly, for any two trees p, JFn(FUS)] we say that

W P = Pa => Pi =*■■■■ =>Pi =>■■■=> Pj=>...=>pk = q

(k S 0, MFHyU^TUS)], I = 1, .... k, k)

is a derivation of q from p in 21, k is the length of this derivation and p^.-.^pj 
is a subderivation of (1). In this case we write p^q, or p=>*q if 21 is understood, 
and say that p derives q in 21. Therefore, =>* is the reflexive-transitive closure 
of =>. Obviously, when p=Sq, there could be several (but finitely many) deriva
tions of q from p. However, when we write p=Sq, we usually have in mind, at 
least implicitly, a certain well-defined derivation of q from p. Consequently, we 
may say that p=>*q is a derivation.

Using the notation =>* the transformation tm induced by an F-transducer 
®“(^, X, A, Q, Y, P, A') can also be given thus:

T« — {(P, f)\p£Fs(X), q^Fn(Y), p=>*aq for some a^A'}.

As 21 may have different productions with the same left side, there could be 
more than one qeFn(Y) such that (p, q)exn for a given p in F^X), i.e., 21 is in 
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general nondeterministic. However, at each step of a transformation we have 
only finitely many choices. Therefore, is finite for every Ti W.

A tree transformation is an ^-transformation if it can be induced by an F- 
transducer. The class of all F-transformations will be denoted by

Take an arbitrary set A. The ith component of a vector a^A" will be denoted 
by a^ i.e., a=(u1, ..., a^. If a1 = ...=a„=a then for a we write an. If a^A" and 

are arbitrary two vectors, then (a, b) will stand for fa, blt ...,bm). 
Assume that k=min(m, ri). Then ab stands for (a^, ...,akbk) or 

(ak> ^k))> depending on the context.
Consider a p^F^X^B^, and let p=(pn ...,pn) be a vector of trees. Then 

we shall write p(p) for p(P1, ...,p„). Moreover, if p£FI(A'U3n)n’ and 
Q=(?i,is a vector of trees, then p(q) will stand for (^(q), ...,pm(q)).

Consider the homomorphism tp: (XUBf^B* given by xtp=e (x^X) and 
Set

F^fX^E^) = {p€FJ(A'U£„)|yd(p)<p is a permutation of 

and

WW = {peFXWSJIyd^ip = & ... Q.

Moreover, if m>0 then let

= {pCF^XUSZIyd^)^ ... yd^tp is a 
permutation of

Now let 2I=(Z, X, A, Q, Y, P, A') be an F-transducer, and consider a deri
vation

a: (p, ^F^XUAF^Y)]).
Let
(2) r(plt p^ =>r^, p^ =>... =>rfak, p2) =► r(plk, p2)

(r€fs[XUAFo(Y)U3J)

be a subderivation of a, where the first £ direct derivation steps apply to the 
subtree plt and then the (A:+l)th step concerns the subtree p2. Replacing the 
subderivation (2) in a by

<3) rfa, pt) =>r(plt pl) => r(plp p2) =*...=> r(pik, p'2)
we obviously get a new derivation

p^‘q.
The replacement of (2) in a by (3) is called an inversion of direct derivations. 

Finitely many inversions of direct derivations is a reordering of direct derivations.
In the sequel we do not distinguish between derivations obtained from each 

other by reorderings of direct derivations.
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Again, consider the above F-transducer 21 and a tree p^F^X). Then by 

P =P(Pi, -,P^ amqm) =>* aq^, qm)
(p^XUEJ, Pi^*aiqi, i = p(a1^,...,am^^aq)

we mean the derivation

P(P1, Pm)^^, Pm)^...=>p(plki, ...,p^^,„

■■■^p(PlkiPmJ =^-=^p(Plki, PmkJ =

^P^qi,-,amq^ =^aq{qlf..., qm)
if Pi^atq{ is the derivation Pi ^p^ => ... =► p.* = (a£A, q^F^Y),
i = 1, ..., m), and p(a1q1, ..., amqm)=>*aq(q1, ..., qm) is obtained by replac
ing in pia^, ..., am^^*aq by qt (i=\,

If we say that we write the derivation

a: p^aq (a^A, p^F^X), qtFa(Y))
in the (more detailed) form

P- P=P(Pi,-^Pm^^P^q^ amqm) =>*aq(qlt .... 9m)
(pEF^XUSJ, Pi^a^t, i = 1, p(ai^,...,am^m)^aq),

this also generally means that is a reordering of a. Of course, such a reordering 
always exists.

In the special case p=a(^1, ..., £m) (trgZJ we write 0 in the form

P- v(Ji,-,Pm)=>^(a1q1, ...,amqm)^*aq(q1,..., qm)
(Pi^a^i, i = (cr^, aq)^P).

We illustrate the concepts of F-transducers and F-transformations by

Example 1.3. Let 2I=(T, {x}, K aJ, Q, {>>}, P, fo}), where £=£2= {a}, 
and P consists of the productions x-^^y and a(alt aO-Uotu^i).

Consider the tree cr(x, x). One of the possible derivations

<r(x, x) => ff(a1y, x) => cr(aly, aky) => a0co(y)

is illustrated by Fig. IV. 1.

Fig. IV.l.
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Thus (a(x, x), a>(y)) is in In fact, ta consists of this single pair 
(<7(x,x),m(y)). Indeed, the only Z^-tree of height 0 is x, which obviously is 
not in dom(TM). If p^F^X) is a tree with a height greater than 1, then it should 
contain at least one of the following trees as a subtree:

a(a(x,x), a(x,x)\ a(v(x,x),x) and a(x, <r(x, %)).

One can easily see that none of these subtrees can be transformed by 21. □

F-transducers transform a tree from the leaves of the tree towards the root 
of the tree. Now we define a system which works in the opposite direction.

Definition 1.4. A root-to-frontier tree transducer (R-transducer) is a system 
(T, X, A, Q, Y, P, A'), where

(1) Z, X, A, Q, Y and A' are specified the same way as in Definition 1.1, but 
here A' is called the set of initial states,

(2) P is a finite set of productions (or rewriting rules) of the following two types :

(i) ax - q (a^A, x^X, q^F^Y)),
(ii) aa^, ...,£„) ~ q (a^A, m^O, q£Fn[YUAEm]).

In the sequel we shall write simply aa for aa^, Moreover, for a pro
duction p-q we shall use the notation (p, q), too.

Obviously, a production of type (ii) in Definition 1.4 can be written in the form

mr - q(a1^', ...,am^)

where a^A^, n^O, z=l.......m, n1 + ...+nm=n, and qe^XUBJ. In the 
sequel we shall assume that whenever 1 sism and n1 + ...+n(_1 + lSz1-czgs 
—ni + --, +«i, precedes in yd (q)<p. Here <p is the homomorphism defined 
on p. 141.

Next we define the transformations induced by R-transducers. Let 91 be the 
R-transducer of Definition 1.4. For any a^A and p£F£(X) we define the sub
sets as follows:

(i) if pCZoUT and (ap,q)£P then q^ptti a,
(ii) ifp=<t(plt ...,pm) (<s^Xm, m^O), then for any (aa, qfal;"',a^^zP 

and (l^i&m, l^Jsnt), ^(q^ .... qm)€pr„ a where q(=
“(?<.. -,?l) 0=1, ,„,m),J nt

(iii) nothing is in anypt„ „ unless this follows from (i) and (ii).

Definition 1.5. Let 2l=(Z, X, A, Q, Y, P, A') bean R-transducer. Then the trans
formation induced by 21 is the relation

T« = {(P, ^IpS^OT), q£Fa(Y), q^px^ for some a^A'}.
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A tree transformation is an ^-transformation if it can be induced by an 
R-transducer. The class of all R-transformations will be denoted by

For R-transformations we also give another definition which shows how a 
transformation is carried out step by step.

Let p, 9€Fn[FUy4FJ(ArU3)] be trees, and consider the R-transducer of 
Definition 1.4. It is said that p directly derives q in 21 if q can be obtained from p by

(i) replacing an occurrence of a subtree ax (at A, xtX) in p by the right 
side q of a production ax^q in P, or by

(ii) replacing an occurrence of a subtree aa(p1, ...,pm) (at A, at^m, m^O, 
Pi, ■■■,Pm^FI(XU2)) in p by q(pv ...,pm) where aa-^q is in P.

Each application of steps (i) and (ii) is called a direct derivation in 21. The 
relation expressing the direct derivation will be denoted by =>a, i.e., we write 
p=>^q if q is obtained from p by a direct derivation in 21. Frequently, 21 will be 
omitted in =>a. Any finite sequence of consecutive direct derivations defines a 
derivation. More precisely,

(4) p = Po^P1 =>...=>Pi q

(k?=0, p^F^YUAF^XUS)], 1 = 0, ...,k, O^i^j^k)

is a derivation of q from p in 21, k is the length of this derivation and p^.-.^-pj 
is a subderivation of (4). If q can be obtained from p by a derivation, then we 
write p=^q, or simply p=>*q if 21 is understood from the context. Thus, =>* 
is the reflexive-transitive closure of =>. Similarly as in the case of an F-transducer, 
we suppose that the notation p=»*q implies a certain derivation of q from p in 21.

Using the notation =>*, the transformation tsi induced by an R-transducer 
21=(27, X, A, Q, F, P, A') can equivalently be defined thus:

= {(P, Q^P^F^X), q^F^Y), ap =>* q for some atA'}.

Let us note that although an R-transducer 21 is generally a nondeterministic 
system, pt^ is finite for every input tree p of 21.

Let 2I=(27, X, A, Q, Y, P, A') be an R-transducer. Consider some n>0, 
^An, ptFz(X)n, qtF^Y)” and derivations atpl=>*ql (i=l,..., n). Then 
ap=>*q will denote the vector of these derivations. Moreover, we assume that 
ap=>*q implicitly expresses the n derivations alpi=f*ql (i=l, ...,n).

Take the above R-transducer 21 and a derivation

a: p^?(p,?Efn[ruw)]).
Let
(5) r (Pi > Pa) =* r (Ph. Pa) =» • • • => r (Pik, pj =* r(pu, pj)

(rC/^rU/fF^US,)])
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be a subderivation of a, where the first k direct derivation steps are carried out 
in the subtree plt and then in the (& + l)th step we apply a production in the sub
tree p2. Replacing the subderivation (5) in a by

(6) r(plt pj => rfa, p'i) => r^, p0 =>... => r(plk, p'2)

we get a derivation
0: p q.

The replacement of (5) in a by (6) is called an inversion of direct derivations. 
By finitely many applications of inversions we get a reordering of direct deriva
tions. We shall not distinguish between derivations in an R-transducer if they 
are reorderings of each other.

Again, take the above R-transducer 21, a state a^A and a tree p^F^X). 
Then by

up = ap(P1, ...,Pm) =>* q^p”1, ...,Ampnm^ =>* q^lt.... qm)

ni — ®> i = l, «!+... + nm = n, qeFa(YU3n), 

we mean the derivation

ap(pi, ...,Pm) =>* amp^) =>

=* al2Pl> al„tPl^ •••» am1Pm, •••» Qm^Pm) =>••■

...^(Pi^), ai2Pi. aln Pi, ...,amjpm,a^pn,) =>... 

... =>q(pil(kl), ■ Pi^k^ ), —,a„tpm.......am„mPm) =>— 

...=>?(Pl1(*t), .... Pl„t(klnh ■■■’Pm, (k^), ...,a„nnPm) =>... 

•••^qiPl^k^, •••» Pl„ (k, )> Pm^k-), •••» Pm (km )) =
1 1 m nm

■ •••> 91^. ■••> •••> <7mnm)> assuming

that a(p"‘=>*q( (ISZSw) has its component derivations 

ai}Pi => PijW^-^ Pi^) = J = •••> ”<)»

and ap(plt , p^^q^Pi', ..., a,„p^) is obtained by replacing (f=l, ...,m) 
in ap^*q(^, ..., am^-) by p(.

When we say that we write the derivation

a: ap=>*q (a^A, p^F^X), qQFa(Y)) 
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in the (more detailed) form

0: ap = ap(P1, ...,pm) ^q^p”', ...^p”̂) ^q^,.... qm) 

(p^AXUEJ, ap^q^"1, a£A\ nt S 0,

i = ni + ... + nm = n, q^F^YUS^, ajP^^Hj,
it generally also means that /? is a reordering of a. Obviously, such a reordering 
always exists.

In case p—a^, (aEYm), we write P in the form

P: aa^, p^^q^p"1, ...,ampn”) ^q^, ...,qm) 

((ao-, q (a^1, ..., am£”m))eP, *£An‘, nt S 0, n1 + ...+nm = n,

q^YUE^, j = 1, ..., m).

Example 1.6. Let 2l=(Z, {x}, {a0, alt a2}, <2, {j^, y2}, P, a0) be the R-trans
ducer, where I2=I21U<22, O1 = {co1}, I22 = {co2} and P consists
of the productions

aoa - CDiCa^, a2^,
«i (fli ^i), a2 a - coj (a2 {J,

a2x-y2.

Consider the trees p=o-(cr(<r(x))) and ^(^(ya)))- Then
a derivation of q from aop is illustrated by Fig. IV.2.

Fig. iv.2.
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By induction on the heights of input trees one can easily prove that

= {(*"(*)> <»;_1Oa))) l«= 1, 2, ...},

where <t°(O=^ and <rn(O = o-(o-"-1(i)) if n>0. □

Both F-transducers and R-transducers generalize generalized sequential ma
chines from strings to trees (or from unary polynomial symbols to polynomial 
symbols of arbitrary finite type if strings are interpreted as unary polynomial 
symbols, as we did in Section II.2). At the same time there are the following main 
differences between F-transducers and R-transducers:

(1) An F-transducer first processes an input subtree nondeterministically 
and then makes copies of the resulting output subtree.

(2) An R-transducer can first make copies of an input subtree and then pro
cess each copy independently in a nondeterministic fashion.

(3) F-transducers should process even those subtrees which are deleted after
wards.

Before ending this section we state and prove some simple general results.
The concept of tree homomorphism was introduced in Section II.4. It is easy 

to see that the tree homomorphism h: F^X^-'-F^Y), given by the mappings

hm: (meO)
and

X^Fa(Y\

can be induced by the one-state F-transducer ill=(F, X, {a}, 12, Y, P, a) where

P = {* - {<r(a, ..., a) - ahm(d)](?eEm, m S 0).

Definition 1.7. A one-state F-transducer X, {a}, 12, Y, P, a) is an HF- 
transducer if for every x£X, resp. aCZ, in P there is exactly one production 
with left side x, resp. a (a,

We have seen that every tree homomorphism can be induced by an H F-trans
ducer. The converse is also true: transformations induced by HF-transducers are 
tree homomorphisms.

We now introduce the R-transducer counterpart of HF-transducers.

Definition 1.8. A one-state R-transducer 9l=(Z, X, {a}, 12, Y, P, a) is an HR- 
transducer if for each d^XUY in P there is exactly one production with the 
left side ad.
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Next we prove that the class of all tree homomorphisms coincides with the class 
of all transformations induced by HR-transducers.

Theorem 1.9. The class of transformations induced by HF -transducers coincides 
with the class of all transformations induced by HR-transducers.

Proof. Let X, {a}, Q Y, P, a) be an HF-transducer. Consider the
R-transducer iB — (Z, X, {a}, Q, Y,P',a), where P' is given in the following 
way:

(ax, q)£P' (x, aq)^P (x£X)
and

(aa, q^,..., al^P' q^F^YU-^.

It is obvious that ® is an HR-transducer.
By induction on hg (p), we show that for arbitrary p^F^X) and q£Fa(Y) 

the equivalence

O ap =>» q op aq

holds. This obviously implies tw=t8.
If hg(p)=0, then (7) holds by the definition of P'.
Let p—c(pl, ..., pm) (a^Em, m>0), and assume that (7) has been proved 

for all trees in F^(X) with heights less than hg (p).
Suppose that the left side of (7) holds, i.e., we have ap=aa(p1, ■■■,pm)=>9 

^n^api, ■■■,ap^lq(qi...... qm^q, where (aa, q(a^, ..., a^)£P' and 
aPi^^i Then, by the definition of P', the production o(a, ..., a)-

— ,&) is in P. Moreover, by the induction hypothesis, pi^aqi is 
valid for each i (\^i^m). Therefore, we have a desired derivation

P = •••» Pm) aqm) =o-naq(ql,..., qm) = aq.

The fact that p=>^aq implies ap=>^q can be shown by reversing the above 
argument.

To see that every HR-transformation is induced by an HF-transducer, it suf
fices to observe that every HR-transducer SB arises from an HF-transducer 91 by 
the above construction. Hence HR- and HF-transducers appear in equivalent 
“associated pairs”. q

We prove two more results.

Theorem 1.10. The following statements hold.
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(i) For every ¥-transformation tcFs(X)XFB(Y), dom (r)CRec (Z, X).
(ii) There exists a tree homomorphism h: F^xy^F^Y) such that range (A) 

$Rec(&, K).

Proof. In order to show (i) consider an F-transducer 91-(Z, X, A, Q, Y, P, A'). 
Construct an NDF Ty-recognizer B=(^, /?, B'), where @=(A,Z), B'=A', 
and, for all m^Q, ff£Zm and a1,...,amEA,

^(«i. ...,am) = .... a^, aq^P}}.

Finally, let
xp = {u€^|(3^Ffl(K))((x, aq^P)} (x^X).

We end the proof of (i) by the observation that for all a£A and p^Fz(X) the 
equivalence

a^o^F^Y^p^aq)

holds. This can be shown by induction on hg(p).
For a proof of (ii), see Example II.4.15. □

Example II.4.15 shows also that the translation of a context-free language 
by a tree transducer is not always context-free. In fact, in this example the finite 
language {x} is translated into the non-CF language {x2"|ns0}.

Lemma 1.11. For each T$Rec(Z, X) there exists an F-transducer 91 such that 
dom (tm)=range (r9I)= T and r3J is the identity mapping of T.

Proof. Let B=(^, p, B') be a DFR ZW-recognizer with 38=(B, Z) and T(B) = T. 
Take the F-transducer 9l=(T, X, B, Z, X, P, B') where

P={x- p^x^X}^^.......bm) - bt^,.... Cm)|

m^O, b, bltbm£B, tr*^,.... bj = b}.

Obviously, 91 has the desired properties. □

We end off this Section with

Definition 1.12. Two R- or F-transducers 91 and 91 are equivalent if t81=tb holds.
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2. SOME CLASSES OF TREE TRANSFORMATIONS

In this section we shall define several classes of F- and R-transformations and 
then compare them with each other with respect to set theoretic inclusion. It 
will turn out that in most cases the classes to be investigated are incomparable.

Definition 2.1. Let 2l=(r, X, A, £2, Y, P, A') be an F-transducer. Then:

(1) A production of 21 is linear if each auxiliary variable occurs at most once 
in it. Moreover, 21 is a linear F-transducer (LF-transducer) if all of its produc
tions are linear.

(2) 21 is a totally defined F-transducer (TF-transducer) if
(i) for each x^X there is a production in P with left-hand side x and

(ii) for all and alt ...,am€A there is a production in P with
left-hand side ..., am).

(3) 21 is a nondeleting F-transducer (fiAF-tranSducer) if for every production 
<r(ai, ..., am)—aq (a££m, m^O) from P each ^Bm occurs at least once in q.

(4) 21 is a deterministic F-transducer (DF-transducer) if there are no two distinct 
productions in P with the same left-hand side.

(5) 21 is an F-relabeling if each of its productions is of the form
(i) x-ay (x^X, a^A, y£ Y) or

(ii) where aeEm, alt am, a^A, coeQm.
Transformations induced by F-relabelings are also called F-relabelings.

To illustrate the above concepts, let us take the following example.

Example 2.2. Let 2(=(Z, {x}, {n0, a^, £2, {y}, P, {a*}) be the F-transducer with 
W and £2=Q2= {a)}, where P consists of the productions

x -* a^y,

a0) - a^!, a(a0, aj - a0co(^, a(alt a0) - f2),

cr(ai,ai) -

Then 21 is a linear, totally defined, nondeleting and deterministic F-transducer.
Moreover, 21 is an F-relabeling. pg

Example 1.3 gives an F-transducer which is linear and deterministic, but it is 
neither totally defined nor nondeleting.

Let us note that F-relabelings are always linear and nondeleting F-transducers.
We now define the R-transducer counterparts of the above classes of F-trans

ducers.
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Definition 2.3. Let X, A, Q, Y, P, A') be an R-transducer. Then:

(1) A production of 31 is linear if each auxiliary variable occurs at most once 
in it. Moreover, 21 is a linear R-transducer (LR-transducer) if all of its produc
tions are linear.

(2) 21 is a totally defined R-transducer (YR-transducer) if
(i) for all a£A and x^X there is a production in P with left-hand side ax, 

and
(ii) for all a^A and (m^O) there is a production in P with left-hand 

side aa.
(3) 21 is a nondeleting R-transducer (NR-transducer) if for every production 

aa—q (a£Em, m^O) from P each occurs at least once in q.
(4) 21 is a deterministic R-transducer (DR-transducer) if A' is a singleton and 

there are no distinct productions in P with the same left-hand side.
(5) 21 is an R-relabeling if each of the productions of 21 has the form
(i) ax^y (a^A, x£X, y^Y) or

(ii) aa—a)(a1^1,...,am^m), where a, alt ..., am£A, a>£Qm. Trans
formations induced by R-relabelings will also be called R-relabelings.

Example 2.4. Let 2I = (T, {x}, {a0, ^i}, {A. P, fao}) be an R-transducer
with X=X2={(t} and Q=Q2= {co}. Moreover, P consists of the productions

aoX-ji, a1x-^y2,

aoa - coCa^i, a^a), Oja - m(a0£i, a0^.

Then 21 is a linear, totally defined, nondeleting and deterministic R-transducer. 
Moreover, 21 is an R-relabeling. □

The R-transducer of Example 1.6 is deterministic and nondeleting, but it is 
neither linear nor totally defined.

Let us note that R-relabelings are linear and nondeleting R-transducers.
The abbreviations introduced above for classes of tree transducers can be 

combined to indicate further subclasses. For instance, an LNF-transducer is a 
linear nondeleting F-transducer. Moreover, a transformation is a R-transforma
tion if it can be induced by a K-transducer. The class of all K-transformations 
will be denoted by X. Thus, for example, is the class of all LNF-transfor- 
mations, i.e., the class of all transformations induced by linear nondeleting F- 
transducers. By Theorem 1.9, we shall write simply Jf instead of MP and XX 
Moreover, .Frei, resp. Frei, will denote the class of F-relabelings, resp. R-rela- 
belings.

We now prove

Theorem 2.5. F and 31 are incomparable.
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Proof. In order to prove Theorem 2.5, we give (i) an F-transformation which is 
not in and (ii) an R-transformation which cannot be induced by any F-trans
ducer.

(i) Consider the LDF-transducer 21 of Example 1.3. If for an R-transducer 
® = {x}, B, Q, {y}, P', B') we have (a(x, x), ©(y))^, then at the first
step of a derivation bo(x, x)=>^(a(y) (b^B') we should apply a production 
of the form bo—b'^, ba^b'^2, bo-^a>(b' ba—(o(b' or bo-^w^y), where 
b'^B. In each of the above cases one of the auxiliary variables and £2 is deleted. 
Therefore, dom (rB) is infinite.

(ii) Take the DR-transducer 21 of Example 1.6. Assume that an F-transducer 
® = (T, {x}, B, Q, {yj, y2}, P', B') induces th. Obviously, P' should then con
tain a production of the form

0(b) - ^(0^, q2) (b,b£B).

We may confine ourselves to the following cases:

(I) ft^Ch) and q2^ak(y^,
(II) q^a^Q and q2=ck(y£,

(III) q^ffy^ and q2=a1^},
(IV) q1 = am^1') and q2=on(^.

Obviously, in a derivation <r,(x)=>*6/(B2(tDl-1(y1),coj-^yg)) (r>l, b'^B') the 
last application of the above productions can be followed by applications of 
productions of the form (5, b^B) only. Let t denote the maximum
of exponents in (I)—(IV). If r>r+l and Ts(ar(x))=ca2(cor1-1(y(), coj-^yp) 
(1S i, js 2) then i = j. n

From the proof of Theorem 2.5 we directly get

Corollary 2.6. and 3 St are incomparable and so are 3& and St, and P and 
3>&. n

As we have mentioned one of the main differences between F- and R-transdu- 
cers is that while F-transducers first process an input subtree and then copy the 
resulting output subtree, R-transducers first copy an input subtree and then treat 
these copies independently. In the case of an LR-transducer none of the input 
subtrees of a tree is copied during the translation of the tree. This property leads to

Theorem 2.7. is a proper subclass of

Proof. By (i) in the proof of Theorem 2.5, is not a subclass of Thus, 
it is enough to show the validity of
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Let 9I=(Z, X, A, Q, Y, P, A') be an LR-transducer. Then the productions 
from P can be written in the form

(i) ax-q (a^A, x$X, q£Fa(Y)), or
(ii) am£„) (a, alt am^A, q^

^FO[Y^AB^.

Now take the following R-transducer 21. If 21 is nondeleting, then 91=91. 
In the opposite case ST=(Z, X, A, Q, Y, P, A') is given as follows. Let A—A U { * } 
(*^T). Fix any y^Y and enlarge P by all productions**—y (x^X) and*a—y 
(msO, a€Tm). Denote by P the resulting set of productions. Obviously, 91 is 
linear and equivalent to 91. The only difference between 91 and 91 is that 9l trans
forms (in state*) even those subtrees of a tree p^ F^X) which are deleted during 
the corresponding derivation of p in 91.

Next, construct the F-transducer ®=(I, X, B, 12, Y, P', B'), where B=A 
and B'=A'. Moreover, given any x£X, b^B and q£Fa(Y\ x—bq is in P' 
iff bx-^q is in P. Furthermore, the production

<7^.......b^-bq^,...,^^, b1,...,b„, b^B, q^F^YUB^

is in P' iff P contains a production

ba - q^c^,

such that for each i = 1, ..., m,

_ (ct if £, occurs in q, 
‘ I * otherwise.

Obviously ® is linear.
In order to complete the proof of Theorem 2.7, it is enough to show that the 

equivalence

(1) P=>vbq o bp =>S q

holds for all b^B, p^F^X) and q^Fa(Y). We shall proceed by induction 
on hg (p).

If hg(p)=0, then (1) obviously holds by the definition of P'.
Now let p =a(plf ...,pm) (a£Ym, m>0), and assume that (1) has been proved 

for all trees in FZ(X) of lesser height.
(I) Let p=>^bq hold. More in detail, let

p = a(plt.... pm) =>Jff(Mi» .... b„qm) =>»bq(q^ .... qm) = bq

where p^^b^ (i=l,m). Then by the induction hypothesis, we have
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biPi^Qi 0 = 1 > Moreover, by the definition of P', ba—qty^, ...,bm^m)
is in P. Therefore,

bp = ba(plt ...^^(b^, .... bmpm) ^q^, ...,qm) = q

also exists in 21.

(II) Assume that in 21 we have a derivation

bp = ba(plt ....p^^-q^Pi,.... bmPm) ^q^, qm) = q

where each qt (i=l, is obtained by a derivation bipi^*qi in 91. Moreover, 
let Z>i=*and qt=y if does not occur in q. Then a(blt bm~)-<-bq is in P'. 
Furthermore, by the induction hypothesis, there are derivations Pi^b^j 
0=1, Therefore, the derivation

P = ... ,pm) =^«a(blq1, ....,bmq^=^9bq{ql, ...,q^ = bq

is also valid. □

For linear nondeleting tree transformations we have the following stronger 
result.

Theorem 2.8.

Proof. The LF-transducer ® constructed to the LNR-transducer, 91 in the proof 
of the previous Theorem is obviously nondeleting.

Conversely, let ^—(Y, X, C, Q, Y, P", C') be an arbitrary LNF-transducer. 
Construct the R-transducer 21-(Z, X, C, Q, Y, P, C'), where P is defined as 
follows:

(ax, q)EPo (x, aq)EP" 
and

(ucr, q(a^ltam^m))^P

^(a(a!, aq^,..., <□)£P",

where xQX, a, alt ..., am£A, Ym (m^Q) and qtF^YUSJ. Obviously, 
21 is an LNR-transducer.

Now to 21 construct the F-transducer ® as in the proof of Theorem 2.7. Then 
®=C. D

The LF-transducer ® constructed to an R-relabeling in the proof of Theorem
2.7 is obviously an F-relabeling. Moreover, the R-transducer 21 given to an F- 
relabeling (£ in the proof of Theorem 2.8 is an R-relabcling. Thus, we have

Corollary 2.9. jFrel = rel. n
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According to Corollary 2.9, we may speak simply about relabelings.
One can easily show the existence of an LNF-transformation which is not a 

relabeling.
Our comparison results can be summarized by the diagram below.

( 5*! ^-rel

3. COMPOSITIONS AND DECOMPOSITIONS OF TREE 
TRANSFORMATIONS

Let X be a class of tree transformations. We say that X is closed under com
position if r1oT2€Jf whenever Tj,t2£X. As we shall see, some of our classes 
of tree transformations are closed under composition while others are not. On the 
other hand, in many cases it is possible to decompose a tree transformation into 
a composition of simpler ones.

For any two classes X and X of tree transformations, we introduce the 
notation X> rs£X}- Using this notation, the closure
of a class X of tree transformations under composition can be expressed by the 
inclusion Xc/c/. Similarly, the fact that all transformations in X can be 
given as compositions of a transformation in X by a transformation from X2 
can be expressed by X sX°X- Finally, if X is a class of tree transforma
tions, then let X*=X and X"=XoX"-1 (n>l). All of the classes defined 
in the previous section (di, £0, X etc.) include all identity transformations 
{(r, t)|z€Fx(y)}. Hence, if X is any one of these classes, then we know that

Xc Xa £ Xa S....

First we prove a decomposition theorem concerning F-translbrinations.

Lemma 3.1. .F s oX and & S ^oX.
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Proof. Let 91 = (27, X, A, A, Z, P, A') be an arbitrary F-transducer. Arrange the 
productions from P in a fixed order and number them from 1 to |P|. For all 
z(=l,|P|), if the left side of the ith production is x£X, then let be a 
new letter. Denote by Y the set of all such x^. Moreover, for all /(=1, ..., |P |), 
if the symbol (wsO) occurs in the left-hand side of the /th production, 
then will be a new m-ary operator. The set of all such operators will bedenoted 
by £2.

Now we introduce the F-transducer ®=(Z, X, A, £2, Y, P', A'), where P' 
is defined as follows:

(i) x-^-ax^ (x£X, a^A) is in P' iff the ith production in P is x-^-ar for 
some r,

(n) a(a1,...,am)^aa^(^1,...,^m) m^O, alf ..., am£A) is in P'
iff the ith production in P is cr^, ..., a^-^ar for some r.
Obviously, SB is linear and nondeleting. Thus, by Theorem 2.8, r8 is a linear 
nondeleting R-transformation, as well.

Next define the F-transducer C=(£2, Y, {c0}, A, Z, P", c0) in the following 
way:

(i) x(O-*cor is in P" iff the ith production in P is x—ar,
(ii) ^'’(co,..., c0)—cor is in P” iff the ith production in P is a(alt ..., am)—ar. 

Then (£ is an HF-transducer.
We prove that Ta=TBoTe. For this it is enough to show that, for all p^F^X), 

rdF^Z) and a£A, the equivalence

W P =*«ar (3?€FQ(F))(p aq\q cor)

holds. We proceed by induction on hg (p~).
If hg(p)=0, then (1) obviously holds.
Assume that p=a(plt ...,p^ and that (1) has been proved

for all trees from F^X) of lesser height.

(I) Let

P •••» amrm) ^arfa,..., rm) = ar,

where p^a^ faF^Z)) holds for each /(=1, .... m). Then, by the indue 
tior^hypothesis, there are trees q^F^Y) (i=\, such that Pt=>^alql and 

hold. Assume that the production a^, ..., am)-ar last applied in
(2) is the ith one in P. Then

...,am), aa^^,..., ^m))£P' and (c0........ c0), cof)6P".

Therefore, taking q=ai‘\ql, ...,qm), we have the desired derivations

p .... amqm) =>vaafl>(qx, .... qm) = aq
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and
q =►£ (c0 ,..., c0 rm) =*c cor (^,..., r„) = c0 r.

(II) The fact that the right side of (1) implies its left side can be proved by 
inverting the above computation. n

Lemma 3.2. Xf c

Proof. Let 2l=(T, X, A, Q, Y, P, A') be an F-transducer and 23 = 
= (&, Y, {i0}, A, Z, P', bo) an HF-transducer. We shall construct an F-transducer 
C whose productions will be composed of productions of 91 and derivations in 
93. For this, using the fact that derivations in 23 can be started from trees in 
Fn[yUi>0S] (see p. 140), we define derivations in 23 for trees in Fn(TUS). Take 
two trees q^F^YUE^ and r£FA(ZUEm). We write q=>%bQr if

?(Mi> bor

holds. Now define an F-transducer E=(Z, X, A, A, Z, P", A'), where P" is 
given as follows:

(i) x-^ar (x€Z, a^A, r£FA(Z)) is in P" iff there is a production x—aq 
in P such that q=^bor holds,

(ii) afo, ...,am)-ar wsO, ait ..., am, a^A, r£FA(ZUEm)) is in
P" iff there is a production o-^,... , a^—aq in P such that q=>%bor holds. 
Since at each step of the transformation of a tree the number of applications is 
finite, P" is finite.

We prove that for all a^A, p^F^X) and r£FA(Z) the equivalence

(3) p *>(3qeFa(Y))(p ^aq\q=>lbor)

holds. We proceed by induction on hg (p).
If hg(p)=0 then (3) obviously holds.
Assume that p=a(p1, ...,pm) (a£Zm, m>0) and that (3) has been proved 

for all trees from F^X) of lesser height.
(I) First we show that the right side of (3) implies its left side. For this assume 

that the derivations

p =**0(0^1, ...,amqm) ^vaq(qlt.... qm) = aq

1 = 1, 
and

<7 q(bor1, • • • > b0 rm) =>» bor (fj, ..., rm) — bor

(?< =>tAri. i = 1.......m)

157



are given. Then, by the induction hypothesis, the relations pp^a^ (z= 1,..., m) 
also hold. Moreover, by the definition of P", ..^aj—ar is in P". Thus, 
we have the derivation

(4) •••> amrm) ^ar^, ...,rm) = ar.

(II) Suppose that (4) and the derivations Pr^ast (z=l, ...,m) are valid. 
Then, by the induction hypothesis, there are trees q^Fa{Y} (f=l, ..., m) 
such that Pi^^a^ and qc^h^ hold. Moreover, by the definition of P", 
there exists a with , am\ aq)^P and q^bfi. There
fore, for q=q{q1, ...,qm)

p =>t<^(.a1q1, ...,amqm) ^aq^, ..., qm) = aq 
and

bor„^ ^bgr^, .... rm~) - bor
hold. U

From Theorem 2.7 and the Lemmas 3.1 and 3.2 we directly obtain

Theorem 3.3. . □

The constructions in the proofs of Lemma 3.1 and 3.2 preserve determinism. 
Thus, we have

Corollary 3.4. <3) SPQ) &o &. q

Now we investigate some special classes of F-transformations for closure 
under composition.

Lemma 3.5. Let 9l=(Z, X, A, Q, Y, P, A') be an F-transducer. Then there exists 
a totally defined F-transducer & = (£, X, B, Q, Y, P', B') such that Tw=ro. 
Moreover, ifH is linear, then ® can be chosen linear, too.

Proof. Let 5=^4U{*} and B’=A'. The required ® results if we put

P' = PU{x ^*y\x£X, .... bm) - *

m SO, b^.^b^B, y^Y}.

If 91 is linear, then so is 23. g

Theorem 3.6. The following equalities hold:
(i)

(ii) && a

Proof. In order to show (i), take two LF-transducers 91=(I, X, A, Q, Y, P, A') 
and S = (I2, Y, B, A, Z, P’, B'). In view of Lemma 3.5, we may assume that 
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® is totally defined. Construct an F-transducer C=(T, X, C, A, Z, P", C') 
with C=AxB and C' = A'xB'. Furthermore, P" is defined as follows:

(I) x—(a, b)r (x^X, (a,b)£C, r^F^Z)) is in P" iff there is a production 
x—aq in P such that q=>^br holds,

(II) a((a1,b1'),...,(am,bm)^a,b)r

m S 0, (alt bm\ (a, b^C, r^F^Ej)

is in P" iff there is a production a(alt ..., a^—aq in P such that 
q{b^, ...,bm^^br holds.

We shall prove that for arbitrary p^F^X), r£FA(Z) and (a, b)£C the 
equivalence

(5) p =>J (a, h)r o(3?€Fn(y))(p =4aq\q =>%br)

holds. We proceed by induction on hg (p).
If hg(p)=0, then (5) obviously holds.
Now let p—o(pl,...,p^) and assume that (5) has been proved

for all trees of lesser height.
First we show that the right side of (5) implies the left side. Suppose we are 

given derivations
p^a^a^, ..., qm) = aq

and
q^lq^r^.... bmrm) ^br^, = br

where and qi^^,blri (i=l, ...,m). (Observe that for each
there exists an rt such that qi=>^biri holds since 23 is totally defined.) Then, by 
the induction hypothesis, the derivations p^Ka^ bi)rl (i=l, are also 
valid. Furthermore, by the definition of P", the production

*((<*!. W.......(am, bm)) - (a, b)r

is in P Therefore, we get the derivation

P bi)^.......(am, bm)rm) ^^(a, b)r(rlt ..., rm) = (a, b)r.

The fact that the left side of (5) implies its right side can be shown by reversing 
the above argument.

In order to prove (ii) it is enough to note that the HF-transducer C constructed 
to the LF-transducer 21 in the proof of Lemma 3.1 is also linear. Moreover, by 
Theorem 2.7, the inclusion BCJl £ holds. □

Using an argument similar to that used in the proof of Theorem 3.6 (i), one 
can prove
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Theorem 3.7. The classes and are closed under composition. □

From Theorem 3.7, by Theorem 3.6 (i), we get

Corollary 3.8. The class is closed under composition. □

Using our decomposition results, one can prove

Theorem 3.9. . □

Now we turn to decomposition of R-transducers.

Lemma 3.10.

Proof. Let 9I=(Z, X, A, A, Z, P, A') be an arbitrary R-transducer. Let n be 
the greatest integer with Tn^0. For any production dtP and natural number 
i (i^i^n), denote by k(d, i) the number of occurrences of in the right-hand 
side of d. Set £=max {k(d, i^dtP, 1=1,..., n}. Furthermore, take the ranked 
alphabet Q given by Q~ U(Qm.k\m^&) and Qmk= {a'\v€Em} (m^O).

Let X, {h0}, Q, X, P', be the HR-transducer where P’ consists of 
all productions

box -■ x 
and

.......b^ (at£m, m^O).

Next define an LR-transducer C=(12, X, A, A, Z, P", A'), where P" is given 
as follows:

(i) ax-^r (x£X) is in P" iff it is in P.
(ii) Let (m^O) and ^Ek with (i=l, ...,m, j=l, ...,k).

Then is in P" iff aa-r^Q,..., «,£) is in P (for
some nk, ..., nm).

For each p^F^X) let us denote by p’^F^X) the tree given as follows:

(I) if p=xCX then p'=x,
(II) if p=a{pk,...,pm) ^Zm, m§0), then p'=a\p'k,...,p'*).

It is easy to show that the transformation is exactly the mapping p—p' 
(p^FsW).

In order to prove TH=TBoTtt it is enough to show that for all at A, ptF^X) 
and rtFd(Z) the equivalence

ap =>^r o ap'

holds. We proceed by induction on hg (p).
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If hg(p)=O then, by the choice of P", (6) is obviously valid.
Now let ...pm) (<r£Em, m>0), and assume that (6) has been proved 

for all trees of lesser height.
First we prove that the left side of (6) implies its right side. Assume that

ap ^r^p"', ..., ...,rm) = r

where (1=1, Then, by the definition of P", the production
aa' — rCa^, ...,am^m) is in P". Moreover, by the induction hypothesis, there 
are derivations aip'",=>^ri for all ;(=1, ....m). Therefore, we have the de
sired derivation

ap' ........amp^m) ..., r„) = r.

The fact that the right side of (6) implies its left side can be proved by the con
verse of the computation above. □

Lemma 3.11.

Proof. Let 91—(Z, X, {a0}, Q, Y, P, a0) be an HR-transducer and ® = 
=(Q, Y, B, A, Z, P', B') an arbitrary R-transducer. Take the R-transducer 
G=(T, X, B, A, Z, P", B'}, where P" is given in the following way:

(i) bx—r (b^B, x^X, r£FA(Z)) is in P" iff there is a production aox—q 
in P such that bq=>£r holds;

(ii) ba—r (b^B, a£Em, r£FA[ZUBBm]) is in P" iff there is a pro
duction (^€Ffl(FU3m)) such that bq=>£r holds.

To show TSIorffl=T(E it is enough to prove that for arbitrary b^B, p^F^X) 
and r£FA(Z) the equivalence

bp =>$ r <> (3q£ Fn(Y))(aop =>£ qh bq =>» r)

holds. This can be carried out by induction on hg (p). □

From Lemmas 3.10 and 3.11 we directly get

Theorem 3.12. □

Using Theorems 3.3 and 3.12 we obtain

Theorem 3.13. For each nsl the inclusions .^"a^n+1 and hold. □

Taking n=l in Theorem 3.13, we sec that every F-transformation can be 
given as the composition of two R-transformations, and each R-transformation 
can be obtained as the composition of two F-transformations. Thus, taking 
Theorem 2.5 into account, we get
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Corollary 3.14. Neither SF nor SR. is closed under composition. □

One can show that is not closed under composition by LNF-transformations 
either. For we have

Theorem 3.15. SR a SFAX SR=SR.

Proof. By Theorem 3.12, it suffices to show that SFSR is closed under composi
tions by LNR-transformations.

Let 9l=(Z, X, A, £2, Y, P, A') be an LR-transducer and SB = (12, Y, B, A, Z, 

P', B') an LNR-transducer. Take the R-transducer G = (T, X, C, A, Y, P", C') 
with C=AxB and C'—A'xB'. Moreover, P" is given as follows:

(i) (a,b)x—r ((c^b^C, x£X, rZF^Z)) is in P" iff there is a production 
ax^q in P such that bq=**r holds.

(ii) {a, b^rfa, bi)^, ...,(am, bjQ

(l.a,b),(a1,bi),...,{am,bm^C, a£Zm, m^O, r£FA[ZUC3m])

is in P" iff there is a production aa^qia^, (q£Fa(YVa,$ in P
such that bq^r^, ...,bm^ holds.

In order to show Tffi=TaoTs it is enough to prove that for arbitrary (a, b^C, 
p^F^X) and qFFA(Z) the equivalence

(a, b)p Fn(Y))(ap =>« q^bq =>» r)

holds. This can be done by induction on hg (p). □

Later on we need the following results.

Lemma 3.16. Let rcFs(X)y.Fa(Y) be an arbitrary ^-transformation and 
T^c(Q,Y). Then Ff-^Rec (T, X).

Proof. By Lemma 1.11, there exists an F-transducer 91 with dom(T„) = 
— range (t^^ T and ta is the identity mapping on T. Moreover, by the proof 
of Lemma 1.11, we may suppose that 91 is deterministic. Furthermore, by Theo
rem 3.9, Thus, since Fr-1=dom (totm), in order to prove Lemma
3.16, it is enough to show that the domain of an F-transformation is recogniz
able. But this is true by (i) of Theorem 1.10. □

From Theorem 1.10 and Lemma 3.16, using the inclusion (see Theo
rem 3.13), we get

Corollary 3.17. Let r g FZ(X)XFn(Y) be an arbitrary ^-transformation. If 
Ft Rec (12, F), then Ff^Rec (Z, X). In particular, dom (r)€ Rec (Z, X). □
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4. TREE TRANSDUCERS WITH REGULAR LOOK-AHEAD

Consider an F-transducer 9I=(Z, X, A, Q, Y, P, A'). Take a tree p= 
=a(plf ...,pm)^F^X) (aeSm, m>0) and a derivation <t(a> ■••>Pm)^* 

amqm) (a^A, q£Fa(Y), p^aft, i=l, ...,m). Then, knowing the 
states at, ...,am, our transducer can decide which production ...,am)—q 
to apply next. In other words, after inspecting the properties of the subtrees 
Pi, ..., pm, the F-transducer 91 can select the production to be applied in the 
next step of the translation of p. Moreover, these properties of subtrees are regu
lar in the sense that dom (ta( >) is a regular forest for each i(=l, ..., w)- Ob
viously, R-transducers lack this possibility. This observation leads to the idea 
to provide R-transducers with regular look-ahead as follows.

Definition 4.1. A root-to-frontier tree transducer with regular look-ahead (Rr- 
transducer) is a system 91=(2, X, A, Q, Y, P, A'), where

(1) Z, X, A, Q, Y and A' have the same meanings as in Definition 1.4,
(2) P is a finite set of productions (or rewriting rules) of the form (p—q, D), 

where p—q is an R-transducer production and D is a mapping of the set of all 
auxiliary variables occurring in p into Rec (Z, X).

If p is of the form ax (x£X) or aa with o-CZ0, then the domain of D is empty. 
We write such rules generally as ax—q and aa^q, respectively. Moreover, for 
any a^A, we put 9l(a)=(Z, X, A, Q, Y, P, a).

Definition 4.2. Let 91 be the RR-transducer of Definition 4.1. 91 is called deter
ministic if the following conditions are satisfied:

(i) A' is a singleton.
(ii) If (pi—qlt DJ and (p2 —q2, D2) are two productions in P with Pi—p2, 

and qi^q2, then there exists an i (i^i^m) such that A(^) AD2«;) = 0, 
where m is the number of auxiliary variables in Pi(=p2)-

Linear and nondeleting Rr-transducers are defined in the same way as their 
R-transducer counterparts.

Definition 4.3. Take an Rr-transducer 9( = (Z, X, A, Q, Y, P, A'), and let 
p, ?CFn[FU^FI(A')] be two trees. It is said that p directly derives q in 91 (in 
notation, p^^q) if q can be obtained from p

(i) by replacing an occurrence of an ax (a^A, x£X) in p by the right side 
q of a production ax—q in P, or

(ii) by replacing an occurrence of a subtree aa^Pi, ...,pm) (at A, 

feO, Pi,-,P^FSW) in p by where (aa^q,D) is in P and

P&D(ti) for each i(=A,...,m).
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A. sequence

P = Po=*a Pi =>« •••=>« Pk - q (k^O) 

obtained by consecutive applications of direct derivations is a derivation of q 
from p in 21. When such a derivation exists, we write p=>^q. Again, this nota
tion will also be used to indicate a certain derivation.

If there is no danger of confusion, then we generally omit 21 in =>9t and .

According to Definition 4.3, the difference between derivations in R-trans- 
ducers and Rr-transducers is that in case of an Rr-transducer 21 a production 
ao-^q can be applied to a tree ao(pY, ...,p^ if and only if there is a production 
(aa-*q, D) of 21 such that each subtree pt (l^i^m) is in the recognizable 
forest

Definition 4.4. Let <H=(E, X, A, Q, Y, P, A') be an Rr-transducer. Then the 
relation

Ta = {(p, q^p^F^X), q£Fa(Y), ap=>*q for some a^A'}

is called the transformation induced by 21.
A relation t is an ^-transformation if there exists an Rr-transducer 21 such 

that T=ta.
Linear, nondeleting and deterministic ^^-transformations are defined in an 

obvious way.
The class of all Rr-transformations will be denoted by SiR.

Let us note that there exists a recursive definition of transformations induced 
by Rr-transducers. This can be obtained by an obvious modification of the 
corresponding definition of transformations induced by R-transducers.

Moreover, for Rr-transducers the notion of a reordering of direct derivations 
can be defined in the same way as in the case of R-transducers. Furthermore, 
the remarks concerning different forms of derivations in R-transducers are valid 
for Rr-transducers, too.

To illustrate the concepts of Rr-transducers and Rr-transformations, consider

Example 4.5. Let ^{x} and Z=Z1Ur8, where Zt= {aj (i= 1,2). Take 
the forests T, = (x)}*’ and T2={a1(x)}. Let 21=(Z, X, {a0, aj, Q, Y, P, o0)
be the Rr-transducer where £?=C1 = {a>}, Y={y} and P consists of the pro
ductions

(a^ - co^), Dj = 7g),

Da) (Dgfo) = Tj,

- y.
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Then ra={(<r2«(x), ^W)> co"+1 (t))l«=0, 1, ••■}• Observe that (without regu
lar look-ahead) the corresponding R-transducer would induce the transformation 
{(aa(^(x),p), co’^^Ipg^W, n=0, 1, ...}. □

Obviously R-transducers are special cases of Rr-transducers. On the other 
hand, RR-transducers can restrict the domain of possible subtrees of input trees 
even if these are deleted. In fact, no R-transducer could induce the ra considered 
in the above example. Assume that such an R-transducer

S = (I, X, B, Q, Y, P', B')

exists. Then for every n(^0), the production applied first in a derivation 
^B') should be of the form

(i) boO^qib^ or
(ii) ^--/(^a) (b^B, q^^), mSO).

Let k be the maximum of the heights of right sides of productions from P and 
n^3k. Then the considered production should be of the form (i). But in this 
case all pairs co"+1(y)) (p^F^X)) are in ?B, which is a contradic
tion. □

Theorem 4.6. The following inclusions hold:

(i) &R £ ^^"relo^,
(ii) ^R£^relo^,
(iii) 23tR £ ® J^rel o
(iv) ^^E^relo^^.

Proof. Let 91 = (Z, X, A, A, Y, P, A') be an arbitrary Rr-transducer. Let 
Tt, ...,Tk (sFI(A')) be all regular forests which appear as images in the D- 
mappings of the productions in P. Denote by V the set of all ^-dimensional vec
tors with components 0 or 1. Now take a ranked alphabet Q, where I20=Z0, 
and for each m>0, Qn=ZmXVm. Thus, the elements from Qm (w>0) can 
be given in the form (cr, (vn ..., vm)), where <r€lm and v1( v„f K

Let A(=(j/(, a(, A,) be TZ-recognizers with =(Ah Z) and T(A() = T( 
(Z= 1,..., k). We introduce the F-transducer ®=(Z, X, B, Q, X, P', B') where 
B=B' = AiX... XAk and P' consists of the following productions:

(I) x—(xalt.... xa*)x (xC-Y),
(II) .... (^o).

(Ill) <7(8!........aj-afer, (vt......... vm))({n .... W

(atZ„, m>0; a,^B, vfV, ' = 1.-. ™).
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where 
a = o^(alk,

and ^=1 iff a^A'j. Obviously, SB is a deterministic F-relabeling.
One can easily show that SB relabels every Zy-tree p in the following way:

(a) if p^XUZg, then ts(p)=p,

® if P~°(Pi, ■■■,P^ m>G) then Ts(p)=(cr,(v1,...,vm))-
■(x^p^where ^=1 iff p.^Tj

Next construct the R-transducer £=(Q, X, A, A, Y, P", A') where P" con
sists of the productions below:

(a') ap+r (a^A, ptXUQ,, r^F^Y)) is in P" iff it is in P, 
vm))-r (a€A;ffeYm,m>O;v£V,i=l, r£ FA[Y\J ASm])

is in P" iff (a, (vn .... vj) occurs in a tree t8(P) (p^F^X)) and P contains 
a production (ao-^r, D) such that p, =1 whenever D(^=TS 
l^k). J '

In order to prove it is enough to show that for arbitrary a£A,
p^F^X) and r^F^Y) the equivalence

ap =>£ r o ac9(p) =>£ r

holds. This can be carried out by induction on hg (p).
It is also easy to show that C is deterministic (linear) if 91 is deterministic 

(linear). n

Theorem 4.6 (iii) shows that DRr-transducers induce (partial) mappings. 
Next we show that ^R is closed under certain special F-transformations.

Theorem 4.7. The following inclusions hold:

(i)
(ii) 3MRo3><F3F<=®gtR,

(iii) 3)^Ro3>^cQ)StRy
(iv) 3>^roj^cQ^r.

Proof. Let ^(Z, X, A, Q, Y, P, A') be an Rr-transducer, and take an LF- 
transducer ® = (Q, Y, B, A, Z, P', B').

We want to treat cases (i) and (ii) together. Since the set of initial states of a 
DRr-transducer should be a singleton we shall use the LF-transducer 
» =(I2 F, 5, A,Z, P',b0) instead of ®, where B = BUbu (MB) and P' is 
obtained by enlarging P' by the following productions: if y^bq (y^Y), is in 
P and b^B', then y~boq is in P'. Similarly, if o(blt.... bj-bq (^In, 
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is in P' and b^B’ then the production o-^, b^-b^q is in P'. It is obvious 
that

Construct the Rr-transducer &=(£, X, AxB, A,Z, P", A'X {io}), where P" 
is given as follows:

(I) (a, b)p^r (a^A, b^B, p£XU20, r^F^X)} is in P" iff there exists a 
production ap^q in P such that q^^br holds.

(II) Assume that the production (ao —q^^, a^™), D) (a^A;
w>0; 8^^"', i=l, w; «! + ...+«„=«, ?€/n(yU3n)) is in P and 

that there is a derivation ..., bm£m)=>|ir(?i, ?m) with b^.B', b^B"*
^=^1+„.+B).l+P and rtFA(ZUBn). Then

P" contains the production ((a, i)u^(ajb^s ••■, a^^™), £>'), where 
(f=l,.If b^B', then

((a, ..., ambm^-), D’) is also in P".
By Corollary 3.17, the domain of an R-transformation is regular. Moreover, 

also by Corollary 3.17, the inverse of an R-transformation preserves regularity. 
Thus, by Corollary 2.9 and Theorems 4.6 and II.4.2, (1 SiSm) is regular.

In order to show ^01-=^ it is enough to prove that for all (a, b)^AXB, 
p^F^X) and r£FA(Z) the equivalence

(a, b)p =4 r <> (3?€ Fn(Y))(ap qK q =>® br)

holds. This can be done by induction on hg (p).
One can easily check that if 91 and ® are deterministic, then so is G. Thus, (i) 

and (ii) are valid.
For (iii), take a DRr-transducer 9I=(Z, X, A, Q, Y, P, and a DLR- 

transducer ® = (I2, Y, B, A, Z, P', b^.
Consider the RR-transducer G=(T, X, A XB, Q, Y, P", (a0, b^), where P" 

is given in the following way:
(I) If ap-q (a€/I, pEA'UIo. q^Fn^ is in Rand bq=^r (b£B, reFA(Z)) 

holds, then {a, F)p—r is in P”.
(II) Suppose that aX")> p) (a^A, aeZm, m^Q, a£A\

nl + ...+nm = n, qefn(YUSn)) is in P and there is a derivation 
.......Mm) with heB^^B"', ^Sn‘,

j = l.......m and r€F4(ZUSB). Then the production

.......ambm(H D')

is in P", where for every /(= 1,

D'd) = n(dom(tW(<9)R(, (1 does not occur in r)^).
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Obviously, G is a DRR-transducer. Moreover, for all a^A, b^B p^F (X) 
and r£ FA (Z) the equivalence

(a, b}p r o (^F^Y^ap =>* qK bq r)

holds. This can be proved by induction on hg(p). Therefore, t<=thot1b. Thus 
we have shown that

To show (iv), let 21=(f, X, A, Q, Y, P, a0) be a DRr-transducer and ® = 
— Y. {^oL A, Z, P', b0) an HF-transducer.

Construct an RR-transducer G=(Z, X, A, A, Z, P", n0), where P" is given 
as follows:

(I) ap-r (a^A, p^X, r^F^ is in P" iff there is a production ap-^q 
in P such that q^bor holds.

(H) Suppose that the production
a^A <, 1 = 1, .... m, ni+...+nm=n, q^Y^B^ is in P and there is 

a derivation ...,b^1^^ where

^11' ^-’^'^1 + -+^ +...+^+...
■■■+kmnm—k, r£FA(ZUBk). Then the production

.............................

is in 7”, where for every «= 1.......m), />-«,) = n(dom (.)K, occurs in ,
but it does not occur in r)FlD(^). J

Using a similar argument as in the proof of (ii), we get that is a regular 
forest. It is obvious that (£ is deterministic.

Finally, to show ^0x^=1^ it is enough to prove that for all a^A pfF (X} 
and r^.FA(Z) the equivalence

ap =>tt r <=> pTV(a) =>&bar

holds. This can be done by induction on hg (p). n

From Theorem 4.7 we get

Corollary 4.8. The inclusions
(i) ^Ro ^relc^,

(ii) ^^o^^relg^^, and
(iii) ^jto^relg^. 

hold.
□

Sh0W a181 thC Classes Of ^-‘"“formation, and LR„.transformations
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Theorem 4.9. EP^R—E£^.

Proof. The inclusion SP3tRc^ is implied by Theorems 4.6 (ii), 2.8 and 3.6 (ii).
In order to prove c &&R, take an LF-transducer 91=(Z, X, A, Q, Y, P, A').

Consider the Rr-transducer ®=(Z, X, A, (2, Y,P',A'), where P' is given as 
follows:

(i) If x^aq (xEX, a^A, q^F^Yf) is in P, then ax—q is in P'.
(ii) If afo, ...,am)+aq m^O, a1,...,am, a^A, q^F^YUSj) is

in P, then (aa—q(a1^1, , am^m), D) is in P', where for every i(—l,...,m), 

domfr^,) if does not occur in q, 
F^X) otherwise.

Obviously, ® is an LRr-transducer. To prove t9i = t<b it is enough to show 
that for each a£A, p^Fx(X) and q£Fa(Y) the equivalence

p^aq^-ap =>® q

holds. Again, we omit the straightforward inductive proof. □

In the proof of the above theorem we used look-ahead to ensure that the LRr- 
transducer will not transform any tree which contains a subtree for which the 
LF-transducer has no transform but which it would later delete.

From Theorem 4.9, by Theorem 3.6 (i), we get

Corollary 4.10. ^3tR is closed under composition. □

Next we show that 01R is closed under LRr-transformations and 2)3tR is closed 
under composition.

Theorem 4.11. The following equations hold:
(i) 0lRo&gtR=0tR,

(ii) 2(XRo3>3tR=Qi^.R.

Proof. 0tRo^3lR=3lR follows from Theorem 4.7 by Theorem 4.9.
Since, for each E and X, the identity mapping on F^fX) is in in order

to prove (ii) it is enough to show the validity of the inclusion £ 23# R.
By Theorem 4.6 (iii), the inclusion ^3tRo^3tR sS3tRoQ>.^re\oQ)0t holds 

from which, using Corollary 4.8 (ii), we get 2>3lRo&0tRc@giRoQ>0t. This 
latter inclusion, by the proof of Lemma 3.10, implies ^3tRo^3fRs 
^3>3lRoJfoQ)^^. Now, using Theorem 4.7 (iv), we get
£0^?Ro&<P0t, from which by Theorem 4.7 (iii), we arrive at the desired inclu
sion □

To end this section we prove the analogue of Theorem 3.12.
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Theorem 4.12. 01 „ = JP o . K. K

Proof. The inclusion 3iPo£PSiRc.^R directly follows from Theorem 4.11 (i).
To show SiR £ Xf o SP0lR, consider an Rr-transducer 2l=(Z, X, A, A, Z, P, A'). 

Omit regular look-ahead in 31 and for the resulting R-transducer consider the 
H-transducer 93 and LR-transducer C given in the proof of Lemma 3.10. Now it 
is impossible to provide (E with a suitable regular look-ahead in an obvious way 
since H-transducers do not preserve regularity. We shall solve this problem in 
the following way.

Take the tree homomorphism h: Fa(X) — F^X) given as follows:
(i) hx(x)=x (x^X),

(“) .... 1)^+1) msO).
One can easily verify that for every p^F^X) the equality h^x^p^^p holds, 

i.e., h{p')—p (for p', see the proof of Lemma 3.10).
Now replacing each production aa'—/-(aifj, ..., am£m) (crC^, 

(ao^r^^p, am^-), D^P) in P" by (aa-^r^i, ..., aX), £'), where
^(^^•^(.D^)) (z=l, ...,m,j=l, ...,k), from C we get an LRr-transducer 
since, by Theorem II.4.18, A-1 preserves recognizability. Let us denote the 
resulting LRr-transducer also by C.

Using tree induction, it is easy to prove that □

5. GENERALIZED SYNTAX DIRECTED TRANSLATORS

In studying certain properties of tree transformations it is technically useful 
to consider systems that translate trees into strings. Such systems are also of 
interest as mathematical models of syntax directed translations of context-free 
languages.

Definition 5.1. A generalized syntax directed translator (GSDT) is a system 
2l=(T, X, A, Y, P, A'), where

(1) Z is a ranked alphabet,
(2) A is a unary ranked alphabet (the state set),
(3) X and Y are alphabets.
(4) A’ g A is the set of initial states, and
(5) P is a finite set of productions (or rewriting rules) of the following two 

types:
(i) ax^w (a£A, x^X, w^Y*),

(ii) ao^w (a£A, m^O, w^(YUA3m)*). (Here ASm is treated as an 
alphabet; the elements of it are the trees of the form with at A and teSm.)
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For ap—w we shall use the notation (ap, w), too. Moreover, for any at A, 
we put 9l(a) = (I,X^,y,P,a).

Next we define translations induced by a GSDT 91. To this end, we associate 
with each at A and ptFz(X) a subset pr^ a as follows:

(i) if pefXUZo), then p-^^ {w|(up, w)tP};
(ii) if p = a(p!, ...,pm) (otYm, then for all

(aa, Wja^w2...wkawwk+1)tP

j=l, ...,k, wlf ...,wk+1tY*) and (7=1.-, ^) the
word w1viiw2...wtv(kH’i+1 is in pr%a, and

(iii) nothing is in any pv^ unless this follows from (i) and (ii).

Definition 5.2. Let 91=(Z, X, A, Y, P, A') be a GSDT. Then the translation in
duced by 91 is the relation {(p, w)\ptFz(X), wC Y*, wtprv a for some at A'}.

The class of all translations induced by GSDTs will be denoted by

For translations induced by GSDTs we give another definition showing how a 
translation is carried out step by step.

Let 91 be the GSDT of Definition 5.1. Take two words v, w^YUAF^XUFty*. 
(Here again each element of JFjQfUS) is considered a symbol, i.e., we ignore 
the fact that these elements are composed of simpler objects.) We say that v 
directly derives w in 91, and write v=>slw, if w can be obtained from v by

(i) replacing an occurrence of ax (atA, xtX) in p by the right side w of a 
production ax-*w from P, or

(ii) replacing an occurrence of an aa(plf ...,pm) (atA, otYm, 
Pi.......pmtF^XUa)) in p by wlaimpiwi...wkawpiwk^ where

aa - w1a((1)^iw2...w*aw^)(H'lt+1 (1 S ij m, j = 1, ...,k, wt, ...» K*)

is a production in P.
Each application of a step (i) or (ii) is called a direct derivation in 91. A sequence 

v = v0 =>« Vt =>«...=>« vk = w (k 0, t>(€(yU.<4Fj(XUS))*, i = 0, k) 

of consecutive direct derivations is a derivation of w from v in 91, and k is the length 
of this derivation. If w can be obtained from v by a derivation in 91, then we 
write Thus =>J( is the reflexive-transitive closure of =>„. Again, we sup
pose that the notation implicitely includes a given derivation of w from v.

Using the notation =>J > the translation induced by a GSDT 
9I=(T, X, A, Y, P, A') can be given by

r„ = {(p, w^ptF^X), wt Y*, ap =»J w for some at A'}.

In the sequel we shall generally omit 91 in =>„ and =>J.
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The concept of a reordering of direct derivations in GSDTs can be defined in 
a similar way as in the case of an R-transducer. Moreover, different forms of 
derivations can be introduced in an obvious manner.

Deterministic, linear, totally defined and nondeleting GSDTs are defined in a 
natural way. Moreover, a one-state totally defined deterministic GSDT is a GSDH- 
translator. The translation induced by a GSDH-translator is called a generalized 
syntax directed homomorphism (GSD homomorphism). The class of all GSD homo
morphisms will be denoted by ^hom.

Example 5.3. Let 23=(Z, {x}, {50, bx, b2}, {yi, y2}, P', b0) be a GSDT, where 
2?=!!={&} and P' consists of the productions

boff b^b^,

b^a-b^, b2a^b2^, 

bix-^yr, b2x — y2.

Then 23 is deterministic, totally defined and nondeleting, but it is not linear.
Take the tree p=a(a(<T(x))) and the word w=y^. Moreover, consider the 

derivation

p =>s b1£r(cr(x))b2cr(<T(x)) =>s b1<7(x)b2a-(o-(x)) =>$ b1xb2o(a(x')')

=>*yib2<T(x) =>vyib2x=>v yiy2 = w,

i.e., T!B(p)=yd (ts(p)), where 91 is the R-transducer of Example 1.6. One can 
easily show that the previous equality holds for every p€Fj({x}). □

The above relation generally holds between GSDTs and R-transducers as it 
is shown by

Theorem 5.4. For each GSDT 9l = (Z, X, A, Y, P, A') there exist a ranked alpha
bet Q and an R-transducer ®=(Z, X, A, Q, Y, P', A') such that rB= 
= {(p, yd (^))|(p, Moreover, if 91 is linear, deterministic, nondeleting or
a GSDH-transducer, then 23 can also be chosen, correspondingly, as a linear, deter
ministic, nondeleting or an RH-transducer.

Conversely, for every R-transducer 23 there exists a GSDT 91 such that 
{(p> yd q)S.t®}=Ta. If 23 is, respectively linear, deterministic, nondeleting
or an RH-transducer, then 91 is linear, deterministic, nondeleting or a GSDH- 
translator.

Proof. Let 9(=(T, X, A, Y, P, A') be a GSDT. To define 23, for each 
production ap-w (a£A, p^XUZ, w£(YUA3)*) in P, let m(8p,w) be an opera
tor with rank |w|. Let Q be the resulting ranked alphabet. Moreover, P' is defined 
as follows:
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(i) If ap—w (a^A, is in P and |w|=fc, then the produc
tion ap*<<>(«,,w)(?i, •••.ft) 1=1,...,^ with yd^p,^, ...,?*))=w 
is in P'.

(ii) If aa-w (a^A, m>0, w6(rU^3,„)*) is in P with |w|=&, then
the production ncr—oj^^fq^, ..., qk) (q^YUA3m, i=l,...,k) satisfying 
yd qki)=w is in P', where yd is taken over the frontier alphabet
YUASm.

In order to prove Ta={(p, yd (?))|(p. it is enough to show that, for 
all a^A, p€Fz(X) and w^Y*, the equivalence

ap =>« w o (3q€Fa(^))(aP =*® ?Ayd(?) = w)

holds. This can be done in an obvious way by induction on hg (p).
It is also obvious from the construction of ® that the remaining conclusions 

of the first part of Theorem 5.4 hold, too.
Conversely, consider an R-transducer ®=(Z, X, B, £2, Y, P', B'). The pro

ductions of the desired GSDT 2l=(Z, X, B, Y, P, B') are given as follows:
(I) For all b^B, peXUE0 and q£Fa(Y), if bp-q is in P', then bp- 

-*yd (q) is in P.
(II) For all b^B, (m>0) and qeFa(YUB3mf if ba-q is in P', 

then ba—yd (q) is in P, where yd is again taken over the alphabet TUP3m.
To prove ra={(p, yd (?))|(p, q)^^} it is enough to show that the equivalence

bp =>«w =>s^Ayd(g) = w)

holds for arbitrary b^B, p^F^X) and w€T*. This can be carried out by 
induction on hg(p). Moreover, the remaining conclusions of the second part 
of Theorem 5.4 are obviously valid. □

6. SURFACE FORESTS

The images of regular forests under tree transformations are called surface 
forests. In this section we compare classes of surface forests belonging to differ
ent classes of tree transformations.

Definition 6.1. Let X be a class of tree transformations. A forest S^Fa(Y) 
is called a AY-surface forest if there exist a ranked alphabet I, a frontier alphabet 
X, a forest R^Rec (Z,X), and a Jf-transformation ictfX)xFn(Y) such 
that S—Rt. The class of all Jf-surface forests is denoted by Surf(Jf).
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The following lemma is obvious

Lemma 6.2. If is a class of tree transformations which contains all identity 
transformations, then Rec is included as a subclass in Surf (jf). □

Of course, this lemma applies to all of the classes of tree transformations which 
we have considered (^, di, FPS', SP etc.).

Next we characterize F-transformations preserving regularity. For this we 
should introduce some more terminology.

Definition 6.3. A tree transformation t c Fz(X)XFS)(Y) is said to preserve 
regularity if RrCRec (£2, T) whenever Rec (Z, X). Moreover, a class 
of tree transformations preserves regularity if every t in X preserves regularity.

We say that an F-transducer X, A, Q, Y, P, A') is connected if for 
each a^A there are p^F^fX) and q£Fa(Y) such that p=>*aq holds.

Definition 6.4. For each p^F^X^dE^, path;(p) (l^i^n) is given in the follow
ing way:

(i) if p^YffdX, then path;(p)=0,
(ii) if P=^i, then path; (p)= {e},

(iii) if p=£j (J Ai) then, path;(p)=0,
(iv) if p=a(p1, ...,pm) (a^Em, m^O), then

path; (p) = {>,>,€ path; (pj, j = 1, ..., m}.

Thus, path; (p) is a language over the alphabet {1, ..., m), where m is the maxi
mal integer with Tm^0.

Obviously, the elements of path; (p) describe paths leading from the root of p 
to a leaf labelled by .

If pathj(p) consists of a single word, then /(pathf(p)) denotes the length of 
this word.

Lemma 6.5. FPS' preserves regularity.

Proof. Since the F-transducer given in the proof of Lemma 1.11 is linear, by 
Theorem 3.6 (i), it is enough to show that for each LF-transducer *21 = 
=(£, X, A, Q, Y, P, A'), range (tw) is regular. Without loss of generality, we 
may assume that *21 is connected.

Consider the regular £2T-grammar G=(A, Q, Y, P', A'), where P' is given 
as follows:

(i) if x—aq (x£X, a£A, q€.Fa(Y)) is in P, then a—q is in P',
(ii) if <7^, ...,am)-*aq m^O, a., ...,am, aCA, q€Fn(YUE„)) is in 

P, then a^q(at, .... am) is in P'.
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In order to prove the ’emma it is enough to show that the equivalence

(1) a=*G?<*(3p€Fx(X))(p=>«a?)

holds for all atA and qtF^Y).
(1) First we prove that the left side of (1) implies its right side. For this, assume 

that a^q is valid. We shall proceed by induction on the length I of a^q.
Let /=1. Then a—q is in P', and the following two cases are possible:
(la) There is a production x—aq (xtX, atA, qtFSi(Y)').
(Ib) There is a production ..., a^^aq (otYm, altam, atA) 

such that in q no auxiliary variables occur, i.e., qtFn(Y).
In case (la) take p=x.
In case (Ib), since 91 is connected, there are p^F^X) and q^F^Y) 

(i=l, ...,m) such that Pt^aph hold. Now taking p=o(ply ...,pm) we have 
p=a(Pi, ..^P^^^q!, ...,a^q„)^uaq(qlt ...,qm)=aq.

Next, assume that 1 and that our statement has been proved for derivations 
of length less than /. Then a=>^q can be written in the form a=>Gq(ai, ..., 
=>*q(g15 — , where am)-~aq is in P for some atYm (m>0)
and a^^ (l^i^m) if occurs in q. By the induction hypothesis, for all 
such i there exists a pitF1(X) with Pi^a^t. In the remaining cases, i.e. if 

does not occur in q, let PitF^X) and qitFn(Y) be arbitrary
such that Then p=a(p1, ...,p^) satisfies p=»^aq.

(II) Assume that p^^aq holds. We shall show by induction on hg (p) that 
the left side of (1) is also valid. If hg (p)=0, then, by the choice of P', the right 
side of (1) obviously implies its left side.

Now let p=a(pt, ...,pm) (at£m, m>0), and assume that our statement 
has been proved for all trees from F^X) with height less than hg(p). Moreover, 
let us write p=^aq in the form p^a^qi, ■■■, a^J^aq^, ..^q^, where 
a{ax, ...,am)^-aq is in P and p^^a^ (1=1, ...,m). Then, by the definition 
of P' and the induction hypothesis, we have a=>c§(ax, ..., am)=>gq(qlt -..,q„)= 
=q. . □

From Lemma 6.5, using Theorems 2.7 and 4.9, respectively, we get the following 
results.

Corollary 6.6. ^£31 preserves regularity. □

Corollary 6.7. preserves regularity. □

A state at A of an F-transducer 9I = (I, X, A, £2, Y, P, A') is nondeleting 
if there exist two trees pt^xiXUS^ and ^£Fn(TU^i) such that p(a£i)=>*aq 
for some a'tA' and ii occurs in q. Otherwise a is deleting. The state a is copying 
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if there are two trees p€FI(A'US1) and g€Fn(TUS1) such that pfal^^a'q 
for some a'^A' and occurs at least twice in q.

Lemma 6.8. Let 21 -(Z, X, A, Q, Y, P, A') be a connected F-transducer. If 
preserves regularity and a^A is copying, then range (t^)) is finite.

Proof. Assume that preserves regularity. Let a^A be a copying state, and 
take two trees p^F^X^ay) and q^Fa(Y^3„) such that piatf^a'q^ 
where afiA’ and n>l. Suppose that range (r^) is infinite. Then there is an 
sCrange (ra(a)) with hg(s)>k-|^|, where k is the maximum of the heights of 
the right-hand sides of the productions in P. Let r^F^X) be a tree such that 
r=>*as. Since hg (s)>k ■ |^|, there are trees rt, r^F^^XUEi) and r^F^X) 
such that the following conditions are satisfied:

(i) r^r^r,
(ii) r3=s*bs3, r^b^^bSi and r^b^^as,. for some b^A, s^s^ 

tF^YUBJ and s3tFa(Y),
(iii) hg (s2)>0, and & occurs in Sj and s2,
(iv) Ji(s2(s3))=^
Therefore, for each z(=0, 1, ...), there is a derivation pi=p(rfri3(r3)))=>* 

=>*a'^(z?)=^ where ^=^1(53(53)) (the powers t‘ of any tree rCFjCXUSO 
are defined thus: 1°=^, and t,+1=t(t') for each zsO). Obviously, hg(^f) 
increases with i when i is large enough.

Now consider the forest T-{pi\i=0, 1, ...}. Obviously, T is regular. Since 
T.a preserves regularity, this implies that T'—Tr is also regular. Take an QY- 
recognizer B=(B, Q, Y, 0, B') with T'=T(B). Choose an

i a (2&(hg(Xr))+l)+2|F|)£(hg(p(r)) + l).

Then there exists a tree t£Fa(Y) with k(hg (p(r))+1) +|B|Shg (r)< 
<&(hg (p(r)) + l)+2|F| such that

(2) q = ‘t *)
is also in T'. To prove the lemma it is enough to show that there exist no j and 
a'fiA' such that pj^a'q. Suppose

Pj =>* a"q'(t'm) = a"q

holds, where a'fiA', q'efia(YUSm), r3=>*b1j', r2(b^l)=>*bl+ts'l+1 (bltbi+^A, 
Jz+i^^n(LUai), /=!,...,j, s^Fq(F)), ri(b/ + i£i)=>*b/+3‘^ + 2
^F^YUSS), p(bj+^l)^*a"s'j+3=a"q' and t'=Sj+i(sj+1(...(s'J...)).

By the choice of i, there exists a u (2smSj+3) such that occurs 
in s', s'+1,..., s'J+3 but does not occur in s'^. Moreover, let u— 1S 
■^Ui^...^u„^j+3 be a maximal sequence with 1 Shg (s„ )-<...•«hg(s„ ), 
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where s(=5/'(jj'_1(...(jO - )) (/=1,--,7+3). Then vg2fc(hg (p(r)) + l)+2|B|. 
Taking into consideration that hg (Z)sA:(hg (p(r))+l)+|B| (and |2?|sl), for 
an I (2Sv), the word w forming pathL (q) is a subword of a word in pathj • 
• (jj+3(jj+2(...(j'i)...))). (Informally speaking, this means that there is a word in 
path1(jy+3(jj+2(...(^)■••))) going through the root of t.) Therefore, we have 
Z(pathi(^)) + hg (r)^2A:(hg (p(r))+1)+2|B|. But, by (2) and the choice of t, 
/(pathxGy^+hg (Z)<2£(hg (p(r)) + l)+2|jB|, which is a contradiction. □

Lemma 6.9. Let X, A, Q,Y, P, A') be a connected F-transducer such
that for each copying state a^A, range is finite. Then 21 is equivalent to a 
linear Y-transducer.

Proof. Suppose that at,...,ak are all the copying states of 91. Let Tp* 
= range(t,,^) (i=l,..., k). Moreover, set T=U(7’j|i=l,...,k). By our as
sumptions, T is finite.

Define an F-transducer ®=(Z, X, B, £2, Y, P', B'), where

B = (A-{at\i = l,...,A:})UU({«i}XTi|f = 1, ...,k) 
and

B' = (A'UA'XT)nB.

Moreover, P' is given as follows:
(i) If p^aq {p^Y^X) is in P and a=at for some i (l^isk), then 

p-^(a,q)q is in P'. If a$ {alt ..., ak}, then p-^aq itself is in P'.
(ii) Let

<r(h1,...,hm)-ag(^,...,^m)

(a€lm, m>0, bk, ..., bm, a^A, q^Pn(YUSm)) be in P. We distinguish the 
following cases:

(iia) The state a is deleting. Fix any ?€FD(FU5m) such that every occurs 
at most once in q. Then P contains every linear production a(q,....c„)— 
-aq^i, ...,^ such that

_ ((bJ< 9j) if bj is copying and bj=a„ 
Cj I bj otherwise.

(iib) The state a is nondeleting but not copying. Then all productions

-,cm) aq(tii, ...,rim)

are in P' where for each _/(=!, ■ w),

f(bj,qj) (q^T^ if bj is copying and bj=a„ 
otherwise
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and

{^j if occurs at most once in q, 
q. ( = 7t2(Cj)) otherwise.

(Observe that if occurs at least twice in q then bj is copying.)
(iic) The state a is copying. Then P' contains all productions

or(Ci,...» cm) ~-(a,q)q

where q=q(rh, ..., rim) and for each y(=l, ..., m),

_ ((fy. <Ij) if bj is copying and bj=a,,
J I bj otherwise

and
(q} if occurs in q,

~ (any fixed tree from Fn(Y) otherwise.

(Note that bj is copying if occurs in q.) This ends the construction of P'. Ob
viously, 33 is an LF-transducer.

We show that 21 is equivalent to ®.

(I) Assume that p^aq {p^F^X), q£Fa(Y), a€A) holds. We prove that 
(la) p^aq if a is nondeleting but not copying,
(lb) p=>^(a, q)q if a is copying,
(Ic) p=A^aq for some q£Fa(Y) if a is deleting.

We shall proceed by induction on hg (p). If hg(p)=0 then, by (i), (la), (lb) 
and (Ic) obviously hold.

Next let p=ff(p!, ...,pm) (tr£Em, m>0), and write p^aq in the more 
detailed form

<r(Pi, , bmq'm) =*vaq'(q{, ..., q'm) = aq

where a(bx, ..., bm)-<-aq' is in P and for each j (X^j^m), Pj^bjq'j. Then, 
by the induction hypothesis, for all J(=l,...»m), we have Pp^cfij, where

(la') Cj=bj and q1=q'j if bj is nondeleting and not copying,
(lb') Cj=(bj,qj) and qj=q'j if bj is copying,
(Ic') Cj=bj and qj=qj for some qj£Fa(Y) if bj is deleting.

Therefore:

(la") If a is nondeleting but not copying, then the production 

a(c1,...,cm)-*aq'(f]1,...,rim)

is in P', where rjj (j—X, m) is given by (iib).
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(Ib") If a is copying then the production

....cj ^(a,q')q'

with q'=q'(th, is in p'> where ijj (j=l,m) is given by (iic).
(Ic") If a is deleting then the production

— .cm) -aq' 
given by (iia) is in P'.

Thus, in all three cases the required derivations in ® exist.

(II) Assume that one of the following relations hold:
(Ila) p=>^aq or
(lib) p^(a,q)q

where p^F^X), q^Fn(Y) and a^A.
Then, by reversing the above computation, one can show that the desired 

derivations

(lie) p^aq if a is nondeleting,
(lid) p^aq for some q£Fa(Y) if a is deleting

exist. Since the final states are nondeleting, this ends the proof of the lemma. □

We can now state and prove

Theorem 6.10. Let 91 = (I, X, A, (2, Y, P, A') be an arbitrary F-transducer. Then 
rM preserves regularity iff 91 is equivalent to an YF-transducer.

Proof. If 91 is equivalent to an LF-transducer then, by Lemma 6.7, preserves, 
regularity.

Conversely, let t8I preserve regularity. We may assume that 91 is connected 
Then by Lemmas 6.8 and 6.9, 91 is equivalent to an LF-transducer. □

From Example II.4.15, we directly obtain

Theorem 6.11. Neither & nor di preserves regularity. □

The following result shows that Surf (^)c Surf (di). More precisely, we have 

Theorem 6.12. Surf (.F)=Surf QO and Surf (JO is a proper subclass of Surf (£). 

Proof. The first statement of Theorem 6.12 follows from Theorem 3.3 and Lemma 
6.5.

It is obvious that Surf (JO £ Surf (Jf). We show that the inclusion is proper. 
For this, consider Example 1.6. Moreover, let 5= {a>2(u>"()’1), coj(j’2))|n=0, 1,—}•
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If P denotes the regular forest {a(x)}-x{o-(x)}*x then Jit - V T^r r 
5CSurf(^). 1 ‘ 1 01611 Therefore,

Assume that for an HR-transducer ^B=(A Z (b } (2 Y P' h \ ,
forest T^FAZ) we have K-Tr « ’ v ’ P ’ bo) and regu)ar 
opposite case in T? th ®' Then ® Can be chosen linear since in the
Therefore, by Theorem'll 4 occurrences °f a subtree,

in Example “

Section'? - °f SUrf““ needed

andlet T be a recognizable forest. Then 

^Recf^ 311 F’transformation S-Jl^ where

Denote by 
- ay the DF-transformation given in the nmnf A.

□
For R-surface forests we have a similar result.

» a rts^forat I

'hat °f previous th“rem’ to "« »« shall 
MXT^Se" sVr °f L“ 1H 'S “

-sformatron by an LNR-tran^a^^  ̂ “ -

- shad show that Surf(9a) is d J

Theorem 6.15. Let 2t=(r Y j o v d

any DR-transducers. Then there exists a DR d" B' A' Z' P ' be
such that for every R c f (Xi Vr p DR’Zww^ C=d, C, A, Z, P", c0)

ery PSF^X), where 5=Andom (r„orB).

Want t0 define in such a way that hold, then [afyy ^(f) and b,^r

^P~r in r. . wih have Jhe desired
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Now let p—c(pj, m^O) and suppose

ap = ...,p^ ^q^..., a^,...) ^q(-, qij, -) = q,

where (aa, q(..., ...))tP (5€/fl(yUS„) for some ri) and a^p^^q^, i.e.,
the considered copy of pt is translated by 21 starting in state atJ into q^. Further
more, suppose that applying to q the transducer 23 starting in b, we get

b? = bq(..., qtj,...) =>®r(..., b^qy, b^q^, ...) =>8

=>»r(..., r^, ...) = r

(bq=^r,feFA(ZUE^, bijtqij^lr^, / = 1, ...,k)

(meaning that the given occurrence of qtJ in q has k translations by 23 starting 
the translations in states b^, biJk). Thus, if we have the production

(a, b)a b^i, (a^, b,^,...)

in P" and suppose that C has the required property for trees with height less 
than hg(p), then (a, b)p^r also holds. Accordingly, the formal definition of 
P" reads as follows:

(i) The production (a, b)x--r (ia,b)£C, x^X, r£FA(Z)) is in P” if there 
is an ax—q in P such that bq=>*r.

(ii) If the production aa-qta^"1, .... am^m) (a^A, msO, a^A"1,
i=l,...,m, n1 + ...+nm=n, q^F^YUS,,)) is in P and

bq =w(bn^}1,...» b.„ ..., bml^\..., bmn C?™)
i io ' 11’11 ’ ’ in^’lUj ’ ’ ml “Wil ’ ’ mnrnmnm '' IJ 7

^=^1+...+1.,.1+P j=l, nn+... + n;„m=n', r£?A(ZUS„,)

holds, then the production

(a,b)<T-r((<“b11, ...,^*blni)^,.... (a^b^,

is in P", where •••+ «;„, (i=l,...,m).

Obviously, G is a DR-transducer. Moreover, to prove the theorem it is enough 
to show that for arbitrary (a, b)^.C, p£Fx(X), q£FQ(Y) and reFA(Z), ap=>*q 
and bq=>*r jointly imply (a, b)p=>^r. This can be proved by induction on 
hg (p). □

Let us note that the d constructed above may delete certain subtrees of input 
trees so that dom (tc) becomes larger than dom (t1(otw).

If R in Theorem 6.15 is regular then, by Corollary 3.17 and Theorem II.4.2, 
S is also regular. Thus we have

Corollary 6.16. Surf (SJ?) is closed under DRAransforniations. □
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7. AUXILIARY CONCEPTS AND RESULTS

In Section 3 it has been shown that neither S' nor 5? is closed under composi
tion. In the next section we shall prove that compositions of n F-transformations 
or n R-transformations lead to proper hierarchies when n assumes the values 
0, 1,2,....

The purpose of this section is to introduce concepts and present results needed 
in Section 8.

Let K be a class of forests and S’ a class of tree transformations. Then S^K) 
denotes the class {7/TCX, t€^}. Moreover yd^(X) will stand for 
{ydcnir^X)}.

Definition 7.1. Let Z be a ranked alphabet and X an alphabet. Let f be a mapping 
which associates with each d^ZUX a nonvoid recognizable forest
where Q(d) is a ranked alphabet consisting of unary operational symbols only.
It is also supposed that Q(d) is disjoint with Z.

Now define the mapping /from the set of all ZY-forests into the set of subsets
°f (12= U(12(cl)\d^ZUY)) in the following way:

(i) if X^oUY, then f(p)= {q(p)\qeTp},
(ii) if p=o(p1,...,pm) (aeZm, A, ...,p^F^X)), then

7(p)={?(a(^,.... /=!, m), and

(iii)if T^F^X), then U(/(p)|p€T).

The mapping / is called a regular insertion.
In the sequel we shall write simply/for /
The above regular insertion can be interpreted as follows :f inserts directly 

cart node of a tree piF^X) a unary tree from the re8ular forest T. if 
the label of the node in question is d. The insertion of {, means that the given node 
IS unchanged. The name “regular insertion” is more expressive if trees are given 
in Polish prefix form. In this case / inserts a word from Td directly before an 
occurrence of d in the word p.

Lemma 7.2. Rec is closed under regular insertion.

f(^r a regUlar forest and/a re«uIar inscriion given by

r'r Consider a regular tree grammar G=
eve^T ‘V??1 fOFm SUCh that T^=T' for
every T mUY) let ^=(^,12,^,^,^ be a regular tree ar in 
normal form generating 7L. For each iff Fl J Y nnd m -j t.

and a^N consider the tree gram
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mar Gd=(Nd, Q, Pd, (a%, a)), where Nd=NdX{a} and

P„ = {(</, a) — co^b*, u))^ — co^jCP^U

U{(^, 67) <?iePd}.

Obviously, T(Gda) = Td holds for each d€EUX and a^N.
Assume that the sets of nonterminal symbols of the tree grammars G* (dtEUX) 

are pairwise disjoint and also disjoint with N and NX^EUX). Construct the tree 
grammar G'=(N', E^Q, X, P', a0), where N'= U(Nd\deEUX, a^UNUNX 
X(EUX) and P'is given as follows:

P' = {a - (ag, a)|a6M d€ZUy}U

d€EUX)U

U {(ad, a) (a, d)jad — ^EPa, aW, a^N, d£EUX}U

U{(a, er) - a^j,..., am)|a -,a^P,
a€Em, m > 0, a, alt..., am£NjU

U{(a, d) - d\a - d^P, a^N, dCE0UX}.

From the construction of G' it is obvious that the following statements are 
valid:

(ia) For any production a-*a(ax,..., a^P {a£.Em, m^G) and tree q£Ta 
there exists a derivation in G'

a => (a J, a) =>* q((a’, a)) => q((a, a)) =► q(a..., um))

(a^N").

(ib) For any production a-*d^P (d^E^UX) and tree q£Td there exists 
a derivation in G'

a => (do, a) =>* q((ad, a)) => q((a, d)) =* d (ad£ N^.
Conversely,

(ii) for any a£N and p^.FI^n{X') each derivation a=>^.p should have the 
form

(iia) a =>(aS, a) => qt((af, a)) =>... => q„((aS, a)) =* q„((a, a)) =►

for some a-^a(alt ...,am)eP, qn^Ta, o^Em, m^O and a^, .... d^N’, or 
the form

(iib) a =► (a^, a) => ?i((aj, a)) =>... => a)) =♦

=* ?»((«, ^)) =*

for some a—d(-P, d£Ea{JX and d^,..., adn^.Nd.
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Properties (ia), (ib) and (ii) obviously imply that T(G')=f(T). □

Lemma 7.3. Let K be a class of forests closed under regular insertion. Then 
is also closed under regular insertion.

Proof. Let R^K be an arbitrary IT-forest and take an R-transducer 91= 
=(Z, X, A, £2, Y, P, A'). Set S^Rt^. Moreover, for every d^ZUX take a 
unary operator #d, and let /be the regular insertion given by /(d)^#/^)}**1.

First we shall show that if g is a regular insertion for which g(d) = { #(£1)}*^ 
(</€OUn then g(S)e^(K).

Construct the R-transducer ®=(ZU {*d|d€Z'UJV}, X, B, £2U {*}, Y, P', A') 
with B=AUC, where C= {p|p€(U (sub is the right-hand side of a rule in 
P)—S)}. Moreover, P' is the union of the following ten sets of productions:

Pi = {«*d — *(afi)> d^ZUX},

Pz= ...,qm^\adq is in P for some

d^ZUX,

a^A, q = (0^, ...,qj, (o€S2m, m > 0},

P3 = {a #d — — q is in P for some d^Z,

q = a'^, a,a'£A},

Pi = {a*d — q is in P for some d£Z\dX, a^A,

q = £20},

P^ = {a/ — — q is in P for some d^ZVdX, a^A,

q = ytY},

Pi = {q^d- #(^i)> q#d -,qmG, q#d^q£i\

q = m(?i, ..., qm\ m >0},

Pi = W»#d ®#d - *(<%). "*d -©Ji,

y#d -* #(Ki)> J*d — Xi|l — ‘ — r(P\ r(P) is the maximum of ranks 
of the operators appearing in the left-hand sides of productions from P, a^A 

y^Y},

P& = — a<u|a€/L m > 0, 1 S i S m),
P9 = (cod — ct)|co£<20, dCZ'UA'} and
Pv>= dewy}.

One can easily see that ® works as follows: assume that for some a^Ayp^F^X) 
and q^Fn(Y) a derivation ap=Y^q exists. Let q' be a tree obtained by inserting 
in q arbitrary trees from {#(fi)}**‘ below symbols from Q (J Y. Then for a 
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p'^f{p\ ^p'^vQ' holds. Conversely, if for some a€A, p^F^X), p'€f(p) 
and q'£Fau{#}(Y) a derivation ap'^q' holds then there is a qeFa(Y) such 
that q'€g(q) and ap^q.

Now, consider an arbitrary regular insertion h (into OK-trees). For each 
c/€f2UF, there is a regular tree grammar Gd=(Nd, Q(d),BuPi, {ado}) such 
that h^d^T^Gi). We may assume that every Gd is in normal form. Since Q(d) 
is unary, this means that the productions of Gd are of the form ad —cod(ad) or

(ad, ad^Nd, cod€Q(d)). Furthermore we may assume that the sets Nd 
are pairwise disjoint. Now construct the R-transducer

G = (f2U{#}, Y,C, J, Y,P",C') 
with

c = u(wun c’ = 
and
A =U(<2(4/)|J€£2UF)Uf2 (4 = U(fl(4fcflUy)Uflb Am = Qm (m#l)).

Furthermore, P" is given as follows:

(I) ad# — ^(aj^) (ad,ad£Nd, cod£Q(d), d£QUY)

is in P" if is in Pd,

(II) aom co^a^, is in P" for (o£Qm, m 0, dr, ...,dm£QUY

and aa€Na, if ao—Ci is in Pa-

(III) For each y€K and ay£Ny, ayy-^y is in P' if ay-*^i is in Py.

Obviously, C is an R-relabeling. Therefore, by Theorem 3.15, TgOTj-—t is an 
R-transformation. Moreover, by the constructions of ® and S, it is clear that the 
equality h(S)=f(R)T: holds. □

In the next section we shall need

Theorem 7.4. Let t: X*-Y* be a mapping induced by a deterministic gsm and 
I a ranked alphabet. Then there exist a ranked alphabet Q and a DRR-transducer 
H5=(£,X, B, Q,Y, P',b0) such that the equality yd (T)r=yd (Tts) holds for 

every TqF^X).
Proof. Consider the deterministic gsm A=(X, A, Y, a0, P, A') inducing r. We 
shall show the existence of a ranked alphabet 12 and that of a DR R-transducer 
»=(£, X, B, Q, Y, P', b0) such that for any p^F^X),

(i) yd(pr») = yd(p)r if yd(p)€dom (t), and
(ii) p€dom(T») if yd(p)€dom (r).

These obviously will imply the validity of Theorem 7.4.
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For each ai,a2€J, let T^,^) denote the set of all such trees p^F^X) 
that «iyd(p)=>*w2 holds for some w^Y*. By Lemma 1.7.4 and Theorem 
III.3.2, every T(aly u2)=yd-1(L(a1, a2)) is a regular forest. Now let B=(AXA)U 
U {h0} (b0^A) and {cOax^EA, x£X}, where r(coax) equals the length
of the word w obtained from the production ax—wa'^P (a%A). (The ranks of 
symbols from Z are unchanged.) Moreover, P' is given as follows:

(I) For arbitrary and alf a2, ..., am+1£A, P' contains the
production ((ax, am+J a—a( , a2) , ..., (am, am+J ^m), D) where D (6) = 
=T(ai,at+1)

(II) If a^Za and at A, then the production (a, a)tr — cr is in P'.
(Ill) For arbitrary x£X and (aj, ^AXA, P' contains the production 

(«i> as)x—q, where atx=>Awa2 (w£Y*) and q^pQ^Y) is a fixed tree with 
yd (q)=w (such q exists by the definition of ma x).

(IV) For arbitrary and a19..., am+1CA, if ai=a0 and an^A',
then the production (bg^^, a^,..., (am, am+1)£m), D) is in P', where 

ai+1) (i=l,..., m).
(V) For arbitrary x^X, if (w€T*) and a^A', then the pro

duction bgx—q is in P', where q^Fo{Y) is a fixed tree with yd(^)=w (again, 
by the definition of such q exists).

(VI) If a0^A' and o^Xg, then the production bgff^o is in P'.

In order to prove Theorem 7.4 it is enough to show that for arbitrary a2E 
EAXA, p€Fz(X) and q£Fn(Y) the implication

(an «2)p =>»?=> Oiyd(p) =>Ayd(^)a2

holds. This can be carried out by induction on hg (p). □

We shall now introduce some more concepts that will be needed in the next 
section.

Let 2I=(Z, X, A, Q, Y, P, A') be an R-transducer. Take a tree p^F^X) 
and a node d of p. Denote by j the subtree of p at this node d. Consider a state a 
and a derivation a: ap=Sq (,q£Fa(Y)). Suppose exactly k copies of this occur
rence of s are created during a and that these are translated into the trees llt...

(^^n(Y)) starting the translations, respectively, in states al,...,ak. 
In the next definition we distinguish a sequence of these states which will be 
called the state-sequence of a at d.

Definition 7.5. Let = (27, X, A, Q, Y, P, A') be an R-transducer. Take a deri- 

a:aP=>*q (a€A, p^F^X), q€Fn(Y)).
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Let d be a node of p and 5 the subtree at this node d. Replace the given occurrence 
of s in p by and denote by r the resulting tree. Write a in the form

ap = ar (s) =>*q (as") =>*q(t),

where ^/o(yUS„), a^", ar^q{^, as"=>*t and t€Fo(^)"- Denote by 
a^i-qt (afA, dfYt)X) the production applied first in the derivation a^^tt 
(z = 1, ..., ri). Then , a„) is the state-sequence and

(akdk - qk, ...,andn - qn)

is the production-sequence of a at d.

Often we shall speak about the state-sequence and production sequence of a 
at a subtree J. In such cases the node to which the given occurrence of s belongs 
will be clear from the context.

We now define state-sequences for derivations in GSDTs.

Definition 7.6. Let 2l=(I, X, A, Y, P, A') be a GSDT. Take a derivation

a: ap =>* w (atA, p^F^X), w^y*).

Let J be a node of p and s the subtree of p at d. Replace the given occurrence of 5 
in p by & and denote by r the resulting tree. Write a in the form

ap = ar(s) =>* w1a1sw2...w.aBswB+1 =>*

=>* w^Wg... wnvnw„+1,

where ar=»*Wia1{1w4...M'BaB^1w,B+1 (w^y*, i=l, n+1, alt..., antA) and 
ats^>*vt (v£Y*, i=l, ..., n). Then a=(a1,a„) is the state-sequence of a at d.

Like in the case of R-transducers, we shall also speak about the state-sequence 
of a at the subtree s.

Definition 7.7. Let 21 be an R-transducer 2I=(I, X, A, Q, Y, P, A') [a 
GSDT 2l=(Z, X, A, Y, P, .4')]. Then a derivation a: ap=>*q (atA, ptF^X), 
q£Fa(Y)) [p: ap=**w (at A, ptF^X), w^Y*)] is k-copying if for every node 
d of p the length of the state sequence of a [p] at d is at most k. Moreover, 21 is 
k-copying if every derivation a: ap^q (pt F^X), qt Fa(Y)) [p: ap =^* w 
(ptFx(X), w6T*)] with at A' is k-copying. Finally, 21 is finite-copying if it is 
k-copying for some k.

We shall use the notation 0tk for the class of all transformations induced by 
k-copying R-transducers. Similarly, 9k denotes the class of all transformations 
induced by k-copying GSDT’s. Moreover, 01, and 9, will stand for the classes 
of transformations induced by finite-copying R-transducers and finite-copying

187



GSDT’s, respectively. Corresponding notations will be used for the classes 
etc.

The next result shows that R-transformational languages can be studied through 
generalized syntax directed translations.

Theorem 7.8. For every k-copying GSDT 2I=(Z, X, A, Y,P,A') there exist a 
ranked alphabet £2 and a k-copying R-transducer 23 = (Z, X, A, £2, Y, P', A') such 
that tn={(p,yd(q)j\(p,q^T:K}-

Conversely, for every k-copying R-transducer 23 there exists a k-copying GSDT 
21 such that ^={(p, yd (?))|(p,

Proof. The R-transducer and GSDT constructed in the proof of Theorem 5.4 
obviously have the required properties. □

The following theorem gives sufficient conditions under which ^k(K~)= 
—Q&lffK) holds for a given class K of forests.

Theorem 7.9. Let K be a class of forests closed under relabeling and regular in
sertion. Take an R-transducer 2I=(Z, X, A, Q, Y, P, A'), an R£K and a pos
itive integer k. Then

S = there is a k-copying derivation ap =>* q for some a£A' andp^R}

is in

Proof. Since K is closed under regular insertion, we may assume that A' is a 
singleton. Indeed, in the opposite case enlarge A by a new state a0, Z by a new 
unary operational symbol a and P by all productions ana—a^ (a^A'). Let 21 
be the resulting R-transducer with initial state a0, and let R=f(R), where f is 
a regular insertion given by f(d) = {oC^)} (d€LU£). Then R^K and tj(R) = 
= tm(R). Furthermore, a derivation ap=>^q (a^A', p^R, q$Fo(Y)) isfc-copying 
if the corresponding derivation aoa(p)=>-^q is /c-copying, and conversely. Thus, 
we shall assume that J'={a0}.

Now we introduce the alphabet

y = {(fox, qj, ...,(a,x, 9,))|t s k, xex, aiX - q£P (i = 1, ..., /)}

and the ranked alphabet A with

qj,..., (a,a, 9())|t £ k, a£Zm, ata - q^P (i = 1, .... /)}

(w=0, 1,...). Consider the R-transducer ®=(I, X, fo), A, X, P', b^ where P' 
consists of the productions

V - ((^iX, 91),..., (a,x, qt)) (x£X, (fax, qj, ..., fax, qty)t.X)
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and
boa - ((^cr, qj, q^b^, ...,b0^

(aHm, ((a1Cr, qj, q^Am, m = 0,1, ...).

Obviously, ® is an R-relabeling which relabels trees in the following way: 
if [resp. x£X] is a label at a node d of a tree p^F^X), then ® relabels dby 
a sequence of productions qj, q,)} [resp. ((axx, qj,..., (atx, ?,))] 
from P with length at most k.

Next define an R-transducer C=(d, X, C, fl, Y, P", c0) with

C = {(u; Oj,..., s u S t S k, a^A (z=l, ..., r)}

and c0=(l;a0). Moreover, P" is defined as follows:
(i) For each (u; alf..., a^C and

(w; ..., a,) (fap, qj, ...,fap, qt))^qu is in P".
(ii) Let (m; a1; ..., a^C and (fac, qj,..., fac, qt')}eAm (m>0). Write 

(^o-, qd in the more detailed form a^-q^a.^,..., a/m£» (aye^"u, J=l, 

..., m; nn + ...+nim = nf, ^^(YUS^), i = 1, ..., t). Then the production

(u; alt .... ft), ...,faa, q^ -

- qu^Un, b,)........(M1„ui; K))^’, .... ((uml; bm), ..., (zz^j bm)X»

is in P', provided that ny+...+ntJ^k (;=1, ..., m), where 1^=^+...+ 
+ ...+nM_y+/, bj=(aiy, a,y) and j= 1, ..., m.

Obviously, (E is a deterministic R-transducer. Furthermore, one can easily see 
the following connection between derivations in 21 and (E:

Let p^F^X) and q^Fn{Y) be arbitrary trees, and take a fc-copying deri
vation

a: aQp =>« q.

Consider the tree p with (p, £)€ Tffl which is the result of relabeling each node d 
of p by the production-sequence of a at d. Then in C we have a derivation

P- (i j ao)p q

such that if a=(a1( ..., a„) (n^k) is the state-sequence of a at d then 
((1; a), a)) is the state-sequence of [i at d. Conversely, if for a p\FA(X)
and q\Fn(Y) there is a derivation

P'- (i; a0)p'^q',

then for the (uniquely determined) tree p'^F^X) with (p',p')£iv we have the 
derivation

a': aop' q'.
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Moreover, the state-sequence of at a node d of p' is of the form 
((1; a'), a')) (a'=(aj, ...,*0) wlth and a' is the state-sequence
of a' at d. Therefore, C is A:-copying and S—Rr^or^ holds. Since K is closed 
under relabelings, this implies S£@$?k(Kf □

From Theorem 7.9, by Theorem 7.8, we get

Corollary 7.10. Let K be a class of forests closed under relabeling and regular 
insertion. Take a GSDT 91=(I, X, A, Y, P, A'), a T^K and a positive 
integer k. Then the language

L = {w€T*| there is a k-copying derivation ap =>* w for some a^A' and p£T}

is in 3>^k{K). □

Three more language operations will be needed.

Definition 7.11. Let X be an alphabet and # $X a symbol. For each L^X*, 
res(L, #) (regular substitution) denotes the language defined as follows:

(i) if L = {e}, then res (L, #) = #*,

(ii) if L = {x}(x€^), then res {L, #) = #*x#*,

(iii) if L = {ux}(u£X*, x£X), then res (L, #) = 

=res (w, #) res (x, *),
(iv) if L is arbitrary, then res (L, #) = U(res(w, #)|w£L).

Theorem 7.12. Let K be a class of forests closed under regular insertion. For each 
R^K there exist a linear nondeleting GSDT 91 and a forest S^K such that 
res (yd (R), #)=5Ta.

Proof. Let RcF^X), R^K, and denote yd (ft) by L. Let A=Ak = 
= {<?|d€SUA'} and let f be the regular insertion defined by f(d)= {3(^i)}*{1 
WCZUy). Define the GSDT 91 =(Q, X, {u0}, { # }, P, a0) with Q=ZUd
(D^IjUd, Qm=Ym, so that

P = { aox -*a0£i, - ao^i#l^€^}U{ao^ -

- *o0<u|tf€ro}U{a0* ^4*€^}U{ao<7 0).

Obviously, 91 is a linear nondeleting GSDT satisfying res (L, #)=f(R)rM. 
Moreover, by our assumptions, f(R)=S£K. □

Theorem 7.13. Let Y be an alphabet and # $ Y a symbol. Take a language L^Y* 
and a class K of forests closed under relabeling and regular insertion. If res (L, # )€ 

then
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Proof. Let res(L, #)=7T9I where 9I=(T, X, A, LU {*}, P, a0) is a deter
ministic GSDT and Tc F^X) is a forest from K. Moreover, let A = {fij, ..., ak}. 
A word y^ #"■- (c res {L, *), , ..., y^ T) is called proper
if n15 n2, •••, «r-i are pairwise distinct.

Consider a derivation

a: aop =>* w1b1p1w2b2p1w3 ... wllb,p1w,l+1 =>*

=>* w1v1w2u2w3... w,v5ws+1 = w,

where p^T, pk is a subtree of p, (b1,b2,..., bs) is the state-sequence of a at pk, 
bip1^>*vi (i=l, ..., s) and wx, ..., ws+1, ..., usC(TU {#})*. If wisproper
and bi—bj (iAj), then in vt (and thus in Vj) at most one symbol from Y may 
occur.

Now for each a€Zm (m>0) take all pairs (a, M), where M is a matrix of 
typekXm whose elements are from YUAPm. Moreover, let Q be a ranked alpha
bet with Q0=Z0 and Qm= {(a, (m>0).

Let Y={yk, ...,yt} and denote by (i=l,..., k, J=l,..., I) the set of 
all trees ptF^X) for which v£#*yj#*, where v is the word obtained from 
the derivation aip=>*v. Moreover, let Ttl+l (i=l, ..., k) be the forest of all 
trees p^Fz(X) satisfying v£ #*, where v is obtained again by the derivation 
aip=>*v.

By Theorems 5.4 and III.3.2 and Corollary 3.17, the (i=l,...,k, 
y=l, ...,/+1) are recognizable forests. Therefore, there are ZZ-recognizers 

Ay) (i=l,..., k, j=l, ..., l+l) with j^lJ=(Aij, Z) such that 
T(Av)=ry. Consider the DF-relabeling ® = (Z, X, B, Q, X, P', B) where

B= {(Ai.Ai+i....»Ai. •••> Ai+i)Ip€^(*)},

and P' is given as follows:
(i) For each x£X, the production

x - (xau,..., xa1J+1-, xaH..., xaw+1)x 
is in P'.

(ii) For every aCTo, the production

O’ -♦ (<rrfu, o-^n + i, CT'Ai, ..., <Tj/kl + i)(T 
is in P'.

(iii) For each a£Zm (m*0) the productions

<7(b1,...,bm)-b(<7,4/)(i1........ {„)

are in P', where bt=(b^, --^b^, .-,b^+1'), b = (bn, ...,bu+1, ....
bkl....... bkl+i)eB (t = I, bu^a-^o^, ...,b\^) (i = l, j=l,
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...J+l) 
given by

and the element mit (i=l, —1, ...,m) of matrix M is

e if b^+1eAu+1,
yu if b&^Ai, (1 S u Si I),
a^t otherwise.

Obviously, mit is well-defined since there are no two components b^ 
and b^^i^k, X^AJ^l+Y such that b^A^ and b^A'iJt 

both hold.
By the definition of®, it relabels trees in the following way: take a tree pt F^X), 

and let 0^, ...,pm) (m>0) be the subtree of p at a node d. Then ® provides 
us with the information about which of the subtrees p±, ■ ■■,pm is translated by 
21(0^ (i=l,..., k) into a word from (FU {#})* with

(I) no occurrence of letters from Y,
(II) exactly one occurrence of letters from Y,

(Illa) at least two occurrences of letters from Y, or
(Illb) the given subtree is not in dom (ra(a|)).

Next take the GSDT G=(fl, X, A, Y, P", a0) where P" is given as follows:
(a) If ap^w (atA, ptXU£0, ^(fU{#}D is in P, then the production 

obtained from ap-w by replacing all occurrences of * in w by e will be in P”.
(b) Let aa^ ^A, w€(TU{#}U^3m)*) be in P. Then all

productions a{a, M)^w' are in P" where w' is the result of replacing all occur
rences of a^j in w by (X^i^k, X^j^ni) and all occurrences of # by e.

It is clear that G is deterministic. Moreover, one can show by induction on 
hg (p) for arbitrary atA, p^F^X) and w((yU{#})* the implication

ap^w=> atv(p) =>£<p(w)

holds, where <p: (TU{#})*-F* is the homomorphism given by (p(y)=y (y^Y) 
and <p(#)=e. Thus

(1) L = {w'€y*|a0T8(p) =>a w', aop =>« w, 

ptT, w€(TU{#})* and w is proper if |w'|>2}.

Furthermore, by our remark concerning state-sequences of derivations yielding 
proper words and the construction of S, the elements of a state-sequence of a 
derivation aoTB(p)=*aw' from (1) are different at any node of *$(/>). 1 herefore, 
since £ has k elements, each element of L can be obtained by a ^-copying deriva
tion in CL Finally, since by our assumptions TrvtK, using Corollary 7.10 we get 

□
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Definition 7.14. Let X be an alphabet and # $X a symbol. For each language 
LcX\ the language c^L, #) is defined by

c^L, #) = {(w*)”|w€L, n=l,2,

Theorem 7.15. Let K be a class of forests closed under regular insertion. For each 
R^K there exist a DGSDT and a forest S^K such that c*(yd(R), *)=S'Ta.

Proof. Suppose RcF^X) and let L—yd (7?). We introduce the ranked alpha
bet A — = {J|J6ZUA'} and define a regular insertion f by f{d) = {3(£1)}**' 
(3CTUJV). Moreover, let 12 be the ranked alphabet for which I21=2'1Uz1 and 
Qm=Zm (m=0, m^l). Consider the GSDT

91 = (Q, X, {a,, a2), XU { # }, P, aj 
where

P = {a^ —

U{a23-aa^|d€lUy}U

U {atx — e[x€{ui<r — e|a€Lm, m S 0}U

U{a2x - x|x€y}U {a2a — ... a2^JaeZm, m S 0}.

It is obvious that 91 is a deterministic GSDT satisfying c^L, #) = 5ra, where 
S=f(R). Moreover, by our assumptions S^K. □

Theorem 7.16. Let U^c^L, *) (L^Z*, be a language containing
infinitely many words (w # ffor each w^L. Furthermore, let K be a class of forests 
closed under relabeling and regular insertion. If then

Proof. Let 9l=(I, X, A, Q, Y, P, A') be an R-transducer and ® = (Q, Y, B, Z 
U {# }, P', b0) a L-copying deterministic GSDT. Moreover, take a forest R £ F^X) 
from K satisfying U=(Rt21)t9. Since K is closed under regular insertion, we 
may, without any loss of generality, assume that A' is a singleton, say A' = {a0}. 
First we shall construct an R-transducer 91 = (Z, X, A, Q, Y, P, a^ which 
translates every p^F^X) into a tree q£Fn(Y) in the same way as 91 provided 
that $€dom(re). In addition, if during the translation of p into q by 91, an 
occurrence of a subtree p' in p is translated starting in a state a into a tree q', 
then during the corresponding translation of p by 91, p’ will be translated star
ting in a state consisting of a and the state-sequence of the derivation of q in 93 
at the subtree q'. Thus, 91 will have the property that if during the above trans
lation of p by 91, two copies of an occurrence of p’ are translated starting in 
states ax and a,, respectively, into the trees qx and q2 such that ax=a2, then 
the state-sequences of the derivation of q in 23 at q^ and q2 coincide.
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Let T^B(^)=(w*)^, If m is large enough, then the properties of 21
will make it possible to replace in a derivation different derivations of
p' starting from the same state by one of them such that for the resulting output 
tree q we shall have TB(g)=(w #)m' with m'^m. By prescribing the applications 
of productions of 21 in this manner we shall arrive at a DR-transducer 2L such 
that (S’t2I)tsb contains infinitely many words (w#)'” for each w^L and S is 
obtained from R by a relabeling. Afterwards applying a deterministic gsm to

)ts, we shall get L.
Thus construct the R-transducer 2l=(Z, X, A, Q, Y, P, u0) where

A = {(a, b€5n, n = 0, 1, k}

and a0=(a0, (h0)). Moreover, P is given in the following way:
(i) Let ap-q (a^A, p^X^Z0, be in P and take a vector b^jB"

(OSnSk). Then the production {a, b)p —q is in P.
(ii) Let aa-^a^*, ..., a^"-") (a^A, m>Q, a^A"1,

nt+...+nm—n, q^F^YUE^ be in P and b=(h1, ..., bs)£Bs. Moreover, for 

every u (l^u^j), and every j take the derivation

buq =>s Wuj.buj^jWuj, ■■■ wujubujUjijWujUj+1

..., w7;j+1€(ZU{#}UB^ bujl, ..., buJ^B).

Set Then the production

(a, b)o- - ?(((au, bi), ...»(ai^, b^))#1, ((aal, b^+i), ...
... , . bBl + B1)) £2*5 ■ * •, ((Um,, bn, + ... + nm_1 + l)s • • • , 5 b,,))

is in P, provided that for each j=\, ..., n the length of the sequence b7 is not 
greater than k.

From the construction of 21, one can easily see the following connection bet
ween 21 and 21. Take a tree p^F^X), a node d of p and let p' be the subtree of 
p at d. Moreover, write p=r(p') and consider a derivation

a: a^p') ^q(ap'n) = q

feF^Y), qeWUSn), ap* =>U t€Fn(T)")

with g£dom(Te). Then in 21 we have a derivation

P- («o, (b^r^p') ^q^, bj,.... (a„, bjlp'") =>*q(t) = q, 

where b, (Isi^n) is the state-sequence of the derivation

r- boq^w^(ZU{*}Y)
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at the subtree rf. Therefore,if(a;, bi)=(a;, by) (l^z, j^n), then the state-sequences 
of y at the subtrees r; and tj coincide. We can assume that 21 itself has this prop
erty, because the equality obviously holds.

Consider a word (w *)m€(-Rrsl)tiB with m>2£+l. More exactly, let p^R 
be a tree for which under the derivation aop=^q(£Fa(Y'j) the equality 
=(w#)m holds. Let r€^(XUSi) and p'^F^X) with r(p')—p. Moreover, 
write the above derivation in the form

a': aor(p') =>^q(ap'") =>aq(t) = q

^Fa{Y), aar^q^, qd^En\ ap'” =>Jt, KF^Y^.

Assume that a state a^A occurs more than once in a, and let a.,..., a, ‘1 ‘3
be all occurrences of a in a. Then the state-sequences of

p'-. boq^(W^y^(zu{*}y)

at the subtrees t^, ..., coincide. Let (&n ..., bs) be this common state-sequence.
Among ..., let be the tree for which has a

maximal number of occurrences of #. Replace the considered occurrences of 
..., ttj in q by and denote by q' the resulting tree. We claim that for q' 

we have tb(/)=(w #)m' with m^m. To prove it let us distinguish the following 
two cases:

(I) There exists an r (l^rSs) such that * occurs at least twice in the word 
T® <b >0i) Then our claim obviously holds.

(II) ft occurs at most once in each word TB(h }(r;), ..., tB(1j ). Take a fixed 
r (l<r^j), and write ft' in the form

bo q =>B WX bt tlr »v2... ws b, tlr w,+! =>£

WjPiW, ... w,t>,wj+1 = (w#)m.

Since m>-2it+l and s^k, there exists a m’„ (ISk^j+1) such that # occurs 
at least twice in w„. This also implies our claim.

Thus we have got the following result. If we replace in a' every subderivation 
arp'=>*tr (ar=a, r=ilt...,ij) by ap'^t^, then boq'=>^(w #)m' with 
holds for the resulting output tree q’. Therefore, prescribing the applications of 
the productions of 91 in this way, we arrive at a deterministic R-transformation 
whose composition by r®, applied to a suitable forest from K, for each w^L 
yields infinitely many words (w #)" (m : 1), and only such words. Next we show 
how this can be carried out. First we define a deterministic R-transducer 'Jlj.

Let A = (ai,..., a,}, and define a set X of variables by

X = {(*» (ci......................... ct = («ix, q^P or *, i = 1, .... s} 
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where * is a new symbol. Moreover, define the ranked alphabet A, where for 
each m(sO),

Am = {(a, (q, .... q))|cr€Zm, = (attr, q^P or q = *, i = 1,s}.

Now take the R-transducer = (A, X, A, <2, Y, Plf a0) for which Pr is given
as follows:

(a) For each a£A and (x, (q,q))cX if c—^x, q^, then the pro
duction

a((x, (q,..., q)) - qi 
is in .

(fi) For each a^A and (a, (q, ..., q))€dm, if q=(qq^), then the 
production

ai(q (q, ...,q))-q 
is in Pi.

Obviously, is a deterministic R-transducer.
Next, let D=(Z, X, {dQ}, A,X, P",d^ be the F-relabeling where

P" = {x - d^x, (q,..., q))|x€X, (x, (q,...,

U{a(d0,d0) - (q, ..., qM, I.,

(q(q, .... q))€dm, m 0}.

Put Since K is closed under relabeling, S^K. Moreover, taking
into consideration the remarks proceeding the construction of Six, one can easily 
see that, for each w^L, (St^ )ts contains infinitely many words of the form 
(w#)m (msl), and only such words.

Finally, take the deterministic gsm C=(ZU { #}, {q>, q}, Z, q>, Pc, {q}) 
where

Pc = {qz ■* zc0|z€Z}U {c0# —eq}U{qz -* eq|z£ZU{#}}.

Obviously, (w’#)mrc=H' for all and mSl.
Denote by ®t the deterministic ^-copying R-transducer obtained from ® 

by Theorems 5.4 and 7.8. Moreover, let Cq be the DRR-transducer given to C 
by Theorem 7.4. Then the equality L=yd (Sq, ore otc ) holds. Thus, by a 
repeated application of Theorem 4.6 (iii) and Corollary 4.8 (ii) and using Theorem 
6.15 and Corollary 3.17, we get for a suitable deterministic R-transformation t 
and a suitable T^K the equality Tt = St,( ot,, oTff . (Observe that the F- 
transducer '21 given in Lemma 1.11 is an F-relabeling. Hence, closure under rela
beling implies closure under intersection with regular forests.) Finally, again by 
Theorem 5.4, we have ££0#(r). □ 

196



Definition 7.17. Let X be an alphabet and a symbol. Then for L^X* 
the language c^L, #) is defined by c2(L, *)={w*w|h'6L}.

Theorem 7.18. Let K be a class of forests closed under relabeling and regular 
insertion. If R^K, then there exist a 2-copying GSDYf-transducer 21 and a forest 
T^K such that cfyd(R), =

Proof. Suppose R^F^X) and let L—yd(R). Moreover, take the ranked 
alphabet d =dj = ZUJf}, and consider the regular insertion defined by 
ffd)={d^}*^ (df£GX), and set S=f[R). Then S^K. Finally, let Q— 
= ZUd be the ranked alphabet with Q1=Z1UA and (m^O, m^l).

Now consider the R-relabeling 23=(Q, X, {b0, bj, Q, X, P, b0\ where 

p=

U{M ..., b1^\a£Xm, m s 0}U

U^x — x|x€JT}.

Obviously, T—St^ consists of all trees of the form 3(f), where r^R and 
J=root(r). Since ® is a relabeling, T^K. Now we construct the required 
GSDT 21 = (Q, X, {u0}, XU { * }, P', aQ), where

P' = {a03 -

U{u0o- a0^mk€Tm, m S 0}U {aox - xjxCA'}.

It is clear that 21 is a 2-copying GSDH-transducer and that c2(L, *) = 7t8i 
holds. □

Theorem 7.19. Let Y be an alphabet and # $ Y a symbol. Take a language L^Y* 
and a class K of forests closed under relabeling and regular insertion. If c2(L, #)€ 
^(K), then Le&<0(K).

Proof. The idea behind the proof is similar to that of Theorem 7.16, but this 
is much simpler.

Let 'il=(Z, X, A, YG {#}, P, A') be a GSDT and R^K a LX-forest such 
that Rtv=c2(L, #). Since K is closed under regular insertion, we may assume 
that A’ is a singleton, say A'= {o0}.

Take a tree ptR, a subtreep' ofp and let p=r(p') (rS/j^USi)). Consider 
a derivation

a: a^r{p')=s*wlaxp’w2... wkakp'wk+1 wkvkwk+1 = w#w,

where .......^+1, fi, ...» v*€(TU{#})* and
atp’=>*vt (1 = 1, ..., k). Then (an .... ak) is the state-sequence of a at p'. Assume 
that a state at A occurs at least twice in (at,...,ak), and let at and ait 
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(1 ^i^i^k) be two such occurrences of a. Then, taking the relevant occurrences 
of V/ and v; in w#w, we have the decomposition w # w=u1v1]m2i>Jim3. On 
the other hand the words Wifj u2l’iJMs O=l»2) are also in Rtv. Hence, 1^ = ^ 
must hold. This implies that if we replace for each t (1 ^t^k) such that at=a, 
a,p'^*vt by atp’=>*vi , we get the same word w # w. Therefore, prescribing 
accordingly the applications of productions from R, we arrive at a deterministic 
GSDT yielding cfL, #). This can be carried out in the same way as in the proof 
of Theorem 7.16, but here the resulting 21 j is a DGSDT. Thus, taking the F-rela- 
beling T> defined in the proof of Theorem 7.16, for S=RrSl, we have S^K and 

=c2(L, #). Moreover, by Theorem 5.4, there exists a DR-transducer Kj 
with c2(L, #)=yd (St^ ). Finally, consider the deterministic gsm C of the 
proof of Theorem 7.16 with Y instead of Z, and let be the corresponding 
DRr-transducer. Then the equality £=yd (St^ot^) holds. Thus, by Theorem 
4.6 (iii), Corollary 4.8 (ii), Theorem 6.15 and Corollary 3.17, for a suitable DR- 
transformation t and a TQK, we get This, by Theorem 5.4,
implies □

8. THE HIERARCHIES OF TREE TRANSFORMATIONS, 
SURFACE FORESTS AND TRANSFORMATIONAL LANGUAGES

In this section we prove that the compositions of n F-transformations or n 
R-transformations form proper hierarchies when n=0, 1,2, .... Similar results 
will be shown for the classes of forests (n-surface forests) which can be obtained 
from regular forests by compositions of n F- or n R-transformations. All these results 
will follow from the fact that the classes of languages (n-transformational lan
guages) obtained by taking the yields of n-surface forests form a proper hierarchy.

Definition 8.1. A forest T is an (n, Resurface forest if TCSurf(^"). (n, F)- and 
(n, Resurface forests are defined in a similar way.

Definition 8.2. A (string) language L is an (n, ^-transformational language if 
£=yd(T) for some (n, Resurface forest T. (n, F)- and (n, Rg)-transformational 
languages are defined similarly.

If n = l then we shall speak about R-, F- and Rr-transformational languages, 
as well.

The following results show that in studying (n, R)-surface forests and (n, R)- 
transformational languages we can use Rr-transformations, too.

Theorem 8.3. For each natural number n, the equality Surf (^") = Surf (i#R) holds.
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Proof. This follows from Theorems 4.6 (i) and 3.15 and Lemma 6.5. □

From Theorem 8.3 we directly get

Corollary 8.4. For every natural number n, the class of (n, ^-transformational 
languages coincides with the class of (n, ^^-transformational languages. □

Using Theorems 4.7 (i) and 2.7, from Theorem 8.3 we obtain

Corollary 8.5. For every natural number n, Surf (.^") is closed under LF-transfor- 
mations and LR- transformations. □

Now we can state and prove a result giving a recursive procedure by which 
the hierarchy theorems can be proved easily. The procedure will be based on the 
“bridge theorems” of the previous section which concern the operations res, 
c2 and c*. These associate with each language which is not in a given class another 
language which is not in another, larger class.

Theorem 8.6. Let K be a class of forests closed under relabeling and regular inser
tion. If yd 2^tf(K)c:yd then for each integer nSl,

yd^CAi) c yd (#"(£)) C yd^^W) c yd ^n+\K).

Proof. By Theorem 3.15 and Lemma 7.3, is closed under relabeling and 
regular insertion, for every nsl. In the sequel these facts will be used without 
further mention.

We shall proceed by induction on n. Let n=l. Take a forest R such that 
R£$t(K) and yd (R)$.yd&$tf(K). Then by Theorems 7.12,5.4 and 2.8 there exist 
an LNF-transformation t and a forest S£0V(K) such that res (yd (A), #) = 
=yd(Sr). Moreover, by Theorem 3.15, Sr€^(X). On the other hand, since 
yd (R)<yd by Theorems 7.13 and 5.4, res (yd (A), #)$yd
Thus, the proper inclusion yd @0l(K)cyd holds.

Next take an with yd (A)$yd Then, by Theorems 7.18
and 7.8, there exist a 2-copying homomorphism t and a forest such
that c2(yd(A), #)=yd(ST). On the other hand, since yd (A)£yd by 
Theorems 5.4 and 7.19, c2(yd (A), #)<yd^(X). Therefore, the inclusion 
yd^(K)cyd^^f(^(K)) is valid.

Again take an R^tH(K) with yd (A)<yd ®^(X). By Theorems 7.15 and 5.4 
there exist a DR-transformation r and a forest SC^A) such that, 
c*(yd(A), #)=yd(Sr). Moreover, since yd (A) yd (A), by Theorems 7.16 
and 7.8, c„(yd(A), #)$yd Thus we have got that

yd c yd
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Finally, take an R^\K) with yd (7?)^ yd Then again by
Theorems 7.12 and 5.4, there exist an LNF-transformation t and a forest 

such that res (yd (J?), #)=yd(5r). Moreover, by Theorem 3.15, 
S^\K). On the other hand, since yd (^)^yd ^z(^(^)), by Theorems 7.13 
and 7.8, res (yd (R), *)$yd Therefore, yd £^?(^?(7Q)cyd 3i2(K).

Summarizing our results, we have

yd ^(7T) c ydc yda yd &2(K) 

which completes the proof for n—1.
The transition from n to n+1 is illustrated by Fig. IV.3. □

Fig. IV.3.

According to Theorem 8.6, to show that the classes of (n, R)-transformational 
languages form a proper hierarchy it is enough to prove the properness of the 
inclusion yd ^z(Rec)cyd ^(Rec). For this we need

Lemma 8.7. For each k-copying DGSDT 91=(2, X, A, Y, P, a.) there exists a 
linear DGSDT SB—(27, X, B, Y, P', b0) such that Par (TT9)=Par for every 
jorest Ts— F^^X^.

Proof. For each HOKUMS)*, 
all a^s (a£ A, ^B).

let w denote the word obtained from w by erasing

Let 5_{(ai ...,a„)|n^*, a£A (/=!, ...,«)} and b0=(a0). Moreover, P' is 
dehned m the following way:

(i) Let a-fa, ...,a„)eB and x£X be arbitrary. Assume that the produc- 
'°ns aix-^vl (afA, v^Y*, i=l,...,n) are in P. Then the production ax- 

—v1...v„ is in P'.
(ii) Take an arbitrary a=(an ..., a„^B and (mSO). 

tains, for each f=l, ..., n, a production Suppose P con-

- w^a^jw^ ... wtj.a^ijwtj^ = w,

•••» wijlj+1€ (TUT(.2m — {£/}))*, atJi,... aiJt£A, 1 Sm).
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Then the production

a<T -* ... , <111^ » •••» Quip •••»

••• Ghmp •••> ...j ^nntp •••» ^nmn Km*!--- W„

is in P', provided that ly+...+nysA: 0=h ■ ■•,m).
Obviously, SB is a linear DGSDT. Moreover, the derivations in 21 and in SB 

are related as follows. Take a vector aCJ" (n^k) and a tree p£F2(X). Con
sider the derivations a: apn=>^w, where w=w1...w„^Y* and a;:
(i=l, ..., n). By the state-sequence of a at a node d of p we mean (a^ ..., a„), 
where a; is the state-sequence of af at d. Furthermore, we say that a
is ^-copying if the length of the state-sequence of a at any node of p is at most k. 
Assume that a is ^-copying. Then for some wfY*, p\ ap"=>^w' exists. One 
can easily show by induction on hg (p) that the state-sequence of ft at any node 
d of p is of length one (if it exists) and coincides, as a sequence of states of 21, 
with the state-sequence of a at d. Finally, w is a permutation of w'. Therefore, 
the equality Par (Trw)=Par (Prs) holds. □

From Lemma 8.7, by Theorem 1.6.17 and Corollary 6.8, we get

Corollary 8.8. Let T^F^X) be a recognizable forest and <H—(Y,X,A,Y,P,a0) 
a finite-copying DGSDT. Then Par is semilinear. □

We now can state and prove that the hierarchy of (n, R)-transformational 
languages is infinite.

Theorem 8.9. For every natural number n, the inclusions

yd ^"(Rec) c yd £^?z(^"(Rec)) c yd ^^(^"(Rec)) c yd ^n+1(Rec) 

hold.

Proof. By Lemma 7.2 and Corollary 6.6, Rec is closed under regular insertion 
and relabeling. Thus, by Theorems 8.6, 5.4, and 7.8, and Corollary 8.8, it is 
enough to show that there exist a regular forest TcF^X) and a GSDT 21 = 
= (I, X, A, Y, P, a0) such that Par is not semilinear. For this let Z=Zj = 
= {<?}, /f = {a0}, ^{x}, and P={a0<r-a0^a^1, a^x-^y}. Moreover,
let T={ff(x)}**. Then 7tw = {/>=0,1,...}. Thus, Par(Tra)= 
= {(2")|n=0, 1,...}, which obviously is not semilinear. □

From Theorem 8.9 we directly get
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Corollary 8.10. For every natural number n the inclusions

(i) yd ^"(Rec) c yd +1(Rec),

(ii) ^"(Rec) c <r+1(Rec),

(iii) c ^B+1
hold. c

Finally, we give two more hierarchies of transformational languages, surface 
forests and tree transformations.

Theorem 8.11. For every natural number n the inclusions

yd (Rec) c yd +1 (Rec) c yd +1 (Rec) 
are valid.

Proof. By Theorems 3.3 and 3.12 and Corollary 6.6, the inclusions yd ^"(Rec) c 
cyd^+1(Rec)cyd^+l(Rec) hold. By the proof of Theorems 8.6 and 8.9, 
yd 5?" (Rec) is a proper subclass of yd ^(^"(Rec)). Moreover, by Theorems 3.3 
and 3.12 and Corollary 6.6, the equality ^’(^”(Rec))=J5',,+I(Rec) holds 
Thus, the inclusion yd^"(Rec)cyd^"+1(Rec) is valid. Finally, by Theorem 
8.9, yd^(0"(Rec))Syd<^(^"(Rec))cyd Therefore, the inclu
sion yd^"+1(Rec)cyd;r+1(Rec) is also valid. □

From Theorem 8.11, using Theorems 3.3 and 3.12 and Corollary 6.6, we get 
the following results.

Corollary 8.12. For every natural number n the inclusions

^"(Rec) c ^^(Rec) c ^n+1(Rec) 
hold.

□
Corollary 8.13. For every natural number n the inclusions

(i) yd ^"(Rec) c yd^"+1(Rec),

(ii) ^"(Rec) c ^""“(Rec),

(iii) dFn c ^"+1 
are valid.

□
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9. THE EQUIVALENCE OF TREE TRANSDUCERS

Since the equivalence problem for (nondeterministic) generalized sequential 
machines is undecidable, there exists no algorithm to decide for arbitrary two 
tree transducers whether or not they are equivalent. In this section we show that 
there is an algorithm for deciding the equivalence of two tree transducers when at 
least one of them induces a partial mapping. Moreover, we shall prove that it is 
decidable whether the tree transformation induced by a given tree transducer is 
a partial mapping when restricted to a given recognizable forest.

We start by introducing a concept.

Definition 9.1. Let p^FfiX). A tree is called a supertree of p
if there are trees plt ...,pn^F^X) such that p=p'(Pi, ...,p„).

To prove the decidability results we shall give five reduction rules formulated 
in the following five lemmas. In these lemmas X, A, Q,Y, P, A') will 
be a fixed R-transducer and B = (^, p, B') will be a fixed ZV-recognizer with 
^=(B, Z) and T(B)=T. Furthermore, set Q={p£T\ i.e., g con
sists of all trees from T which are translated into at least two different output trees 
by 91.

Lemma 9.2. Let Pi,Jp2€Fi(VU.2O, PaCF^AJ, nj, n^, n%, n2 —0, <7i^F^(yU^nJ, 
^(FUS/J, q^WUS,,), q^Z/^FU^;), q^F^F)"*, q^Fn(F)B«, 

a^a'^A' and a^A"1, a-EAn‘ (i=l,2). Moreover, set ^={^17=1, ..., nJ 
and A{ = {oj |7= 1, ..., n{) (i= 1, 2). Assume that the following conditions are 
satisfied:

(0 pApAp^t,

(ii) a^ =►* ^(a^J), aJP1 =>* JaRJ),

(iii) a1P"> =>*q2(a2^.), a(p< =>*qjaj^),

(iv) a2pj. =>*q3, a^i=>*qj

(v) p3fl = pM^, Ar £ At, A[ £ A'i,

(vi) for all r€Fn(F)"i and r'€Fn(F)"i, qx(r)#^i(r').

Then pAp^Q.

Proof. First let us note that the conditions of Lemma 9.2 imply p^Pikp^Q.
Next take two mappings f: {1, ..., nJ — {1,..., nJ and g: (l,...,nj — 

-{!»•••.nJ such that ^=0^ (/=!,...,nJ and ^,=o;,(1> (f=l.......nJ.
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By (v), there are such mappings f and g. Thus, by (iv), we have and
a^=>*r' with r=(q3fw,...,q3fM) and r' = (q'3gm, q'^). This, by (ii)

implies o0p1(p3)=>*</1(r) and By (vi), ?i(r)#^(r'). Moreover
by (v), PAP^T. Therefore, pAPzKQ- □

Lemma 9.3. Let pAFAXVSA, P&FS(X\ n,n'>Q, qAFn{Y\JBn\ q'A 
q3CFa(Y)n, nAFn(Y)n, a0, aAA', a^A" and afA"'. Further

more, let K be the maximum of the heights of the right-hand sides of the productions 
from P. Assume that the following conditions are satisfied:

(i) pApACT,

(ii) aoPi=>*?i(a^). ^Pi^tfKa'ft'),

(iii) a^=>*q2, a'pg'=>*q2,

(iv) pathx (qA is an initial segment of pathj {q'A, and 

I(path1(9;))-Z(path1(91)) > MW, hg(P2) s M2|B|.

Then there exists an A FAX) with |r|<IP2l such that pA^KQ.

Proof. Set R = {r^FAX)\pAr^T, MLpa|, ar"=>*s, a'P'^s' for some 
s^FfAYy and s'CZ^y)"'}. Obviously, R is nonvoid. Denote by r an element 
from R with minimal length. We prove that pAr)£Q and hg(r)<|pj|2|B|.

First assume that hg (r)s|p^|2|5|. Then there are

ri> rAFAXUEA, rAFAXf m^mAm^m'^O, sAF^YUSmA, 

sAF^YUS^), saF^AYUS^, ^F^(YUBm^

^FAY^, s'AFAYff bfAm<, b'AAm'‘ (i = 1, 2) such 
that

(I) r = r^rArA), r^^,

(II) ar? =>* S1 (b, ^9, a' =>* sj (b( T1),

(III) bxrf* =>*si(ba^’)> =►* s£(b;^),

(IV) b2r^“ =>* s3, bjrj-i^,

(V) r3^ = rAr3)^, Bi S B3 and B{ c BA where

Fi — {\J1 Sjs mt}, B{ = g i g (i = 1, 2).

Take two mappings/: {1,..., mJ-{1, ..., and g: {1, .... mJ-U, 
such that (fsi^mA and (1 siSm'A. Obviously, atn^
^sAs»f(W-,s3/(miA and ar^s;^,...,.^^ where t=rAr3).
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Moreover, rfir3)p=rp also holds. Therefore, r^r^R, which is a contradic
tion since |ri(rs)|<|r|.

Thus, we got that hg (r)<|p^|2|5|. Therefore, for arbitrary vectors s£Fn(T)" 
and s’eFa(Y)n' satisfying ar"=>*s and a'r"'=>*s', the inequalities 
hg (■s'i), hg(jj)s hold. This, by (iv), obviously implies the conclusion
of Lemma 9.3. □

Lemma 9.4. Let Pi, Pi, P^F^XUEfi, P^F^X), nt, n't, m^O (z=l,2,3), 

^(rus^), ^(ru^), /^(yu^), 

q2€WU3St), r^/^TUS^),

q8€Wusnj), q^Wus,;), r3e^”(rU3ms), 

q^r^r)"’, q^UT, r^F^Yff

ao,a'oeA', A, *&A\ , b^”'1 (z=l,2,3).

Moreover, take an r^Fn(Y\ and let r^ri^^rj)). Finally, set A~ 
= {%\J=^, A'i = {a'ij\j=l, ...,«?} and {1^=1, ..., mJ (z = l,2,3).
Assume that the following conditions are satisfied:

(i) pAPi^P^T,

(ii) a^^qfa^, a^ji),

(iii) at p^ =>* q2 (a2 ft’), a[ p< =>* q2 (aj ft’), 

ap2^a^,

(iv) a2pp =>*q3(a3fp), a£=>*q3(a;^’), 

ap3^ailt b2p?«=>*r3(b»^«), 

(v) a3pj’=>*q4, aipj’^q;, apt =>* r, b3p^»^rit 

(vi) PiP = P-MP = Pi(p3(P^P, £ A2c At, 

Ai S AS A^y Bi B^ — B^, 

(vii) r jt r', pathx (qj = pathi (q'i).

Then at least one of the trees Pi(p3(p^), pfipfip^) and pfpfi is in Q.
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Proof. First note that the conditions of Lemma 9.4 imply Pi (Pa(P3(P4) ))£(?•
Indeed, let q2(q3(q4))) and Qa(^(ql)))- Then

OoPl^PziPz^Pi))) ^Pl^CPs^))) =** Z (r )

and t(r)^t(ry
Take six mappings f: {1, nJ—{1, nJ+i}, Si'- {!>•••> M-*”, •••’”n-i)

and
hp {1, ...,mj-{1, 0 = 1,2)

such that

Furthermore, set /3=^o/a, ga—gi°&2 and h3=h1o/i2. Moreover, introduce 

the notations
Si = ($3,^, - ^V(l)’ - ’

*1 “ O^i),

Sa = «; = q^^, —

*2 = ^O^y), •••» r4*1(m,P’

S3 = (?4/>(lf - > ’ ?<(<?’

*3 = (1)’ •••’ r4M'"l)}‘

Then the following derivations obviously hold:

aoPi(P3(Pt)) =** 9i(r> Si), «oPi(P3(P<)) =** 9i(ri0i), sj,

«oPi(Pa(P4)) =** ?i(r> sj> «oPi(Pa(P4)) =** di^iOa). sj, 

^oPiCPi) =** ?i(r» aoPi(Pt) =*+ Ss)-

It is also obvious that Pi(p3(P4))> Pi(.Pa(Pi)\ PitPiKT.
Now assume that Pi(p2(P4))C Q- Then, by (vi) and (vii), mlt m2, m3>-0 and 

there exists an i such that (()* We can choose ht in such a
way that for some j hl(j)=i holds. Now assume that, under the
latter choice of ht, none of Pi(p3(P4)) and Pi(p4) are in Q. Then we get ri(tj= 
=ri(t3)=r. But this is impossible since □ 
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Lemina 9.5. Let P1, p2, pA^A^EA, pAFAXY n^m^O (* = 1,2,3), 

91£/n(rUS„i+i), ^€^(KU3n;+1), r^FAYUE^, 

q2€^(rusnt), q^^crus/,), r2€Fnm*(yU3mt), 

qs^’CrUS,,), qM^US,;), r8€/fl’(rusmt), 

q^FnCn"’, q^C^A rAF^Y)^, 

a^A', *AA\ ^AA^, ^Am‘ (i=lA3).

Moreover, take an rAF^Y), and let r^A^)). Finally, set At= 
= {ai\J=i,-,ni}, A'i = {a'ij\j=i, ■■•,n'i} and B={btj\j=l, ...,mA (*-1,2,3). 
Assume that the following conditions are satisfied:

(i) pApApApAW,

(ii) OoPi =>* qArA*^ a«Pi =**

(iii) HA^\ Q^?)’ M?1 =>* r2(b2^’),

(iv) a2pS’ =>* q2M’). W>’ r3(b3^)>

(v) a3pj’=>*q4, ajp^=>*q4, b3p?’=>*r4, 

(vi) Pi^ = PstP^fi = P2(P»(P4))^’

A^A2^ A3, A{ S A'2 £ AA Bl = B2S b3,

(vii) r r', path! (^4) = path^i).
Then at least one of the trees pfipAp A), pApApA) and pAp A Q-

Proof. The proof of this lemma is similar to that of Lemma 9.4.

Lemma 9.6. Let
P^PA^SA, PAFAX), k,l,m,k',r,m'^0, 

qA^YUEk^), q'Afa(YUEk.^, qA^YUE^A, q'A^Y^^+A' 

re/nCrUSJ, r'€/n (TUSm.), q3^^YUEA, q3,r^la(Yf 

^Fa{Yt MMY)1’, AFa{YT, t'eFAYf, aQ,aAAr a,^A, 

^A\ ^Y^AV, b^1, b'U'', ^Am and cfiAn’.

Moreover, set 
/i; w-k

Al = {at\i=\,..A}, 
k'}, b;=o=1-

B^{b,\i=l......... /}, C1={cl|(=l,
...,/'} and C;={<|f=l,Assume 
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that the following conditions are satisfied:

(i)
(ii) a0Pi =>* a^)> a'^ a'^')’

(iii) ap2 =>* <72Wi> b£i)> a'Pi =** ?2(a^i> 
ap^*r(c^)» a'pj'^r'(c'ff'),

(iv) aps =** ?s(O> a'Ps =** ^3’ hPs^*9* b'Pa^s'’, 

cp3 =>* t, c'p?' =>* t',

(vJAs^UQ, pj = PitPz'rf,

(vi) pathj^i) — pathiG/Dpath^g) and r # q3.

Then pAp^Q.

Proof. Introduce the notations d=(b, c), d'=(b', c'), u=(s, t) and u=(s,t). 
Moreover, take two mappings f: {1, ..., ..., l+m} and g: {1, —
— {1, ..., l'+m'} satisfying the equalities at=dfW (i^i^k) and at=ugW 
(i^i^k'). Obviously, there are derivations a0pi(p3)^>*qi(q3(.r), UfW, ...,ufW) 
and a^pM^q'fiqi ti'gW, ...,u'gm). Moreover, p^^T. Since

path^C/sO u/w, = path^^, u'(1),..., «'{V)))

and q3^r, qi^r), ufm,, Uf^^q'^q'a, ugW, Hence, p^p^Q- □

Now we are ready to state a theorem from which the main decidability results 
of this section easily follow.

Theorem 9.7. There exists an algorithm to decide whether Q is empty.

Proof. Let K denote the maximum of the heights of the right-hand sides of the 
productions from P, 11^11=2^1 and let L be the number of all words over 
{1, ...,Fj} with length at most ||JH2I^I^. where r^ is the maximal m for which 
Zm^0. Moreover, let l=k + (2|MI|SM||B|)(M||W+1)
and m = Z+2M||3|B|.

We shall show that Q is nonvoid iff it contains a tree with height less than m. 
The case K=0 being obvious, we assume that K^O.

Let p be an element of Q with minimal length, and q, qfiFa(Y) trees such 
that q^q' and (p, q), (p, q'K^v. Assume that hg(p)£m. Then there 
are a0, a'€Z, p0, ...,pme/'I(A'U31), pm+i£Fi(X), nt,n'^0 (i=0,...,m), 

q'^YUB^^^-'iYUE^ q^^'-XTUS,;) (Z=l, ..., m). 
qm+i€Fn(T)'’m, qm+i€F0(r)<, a^"*, (i=0, ...,m) such that the
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following conditions are satisfied:

(1) P = Po(Pi(-(Pm+i) •■•))> Pi^£i (i-L--,™),

(2) q = 9o(qi (-fam+i) •••)), (?'= ^(qK-C^+i)-)),

(3) floPo 9o(®o^i°)> aoPo=> qo^^h

a;P^i =>*qi+1(ai+1^+'), ^P-^ =>* q^+i^1)

(i = 0, —1), ampm"+i q„,+i’ amP^.i^qm+1-

For i=0, introduce the notations Pi=Po(Pi(-(Pi)"-))’
=?o(q1(-(qi)-)) and Moreover, let p^pi+1-
•(-(pm+i)-), ?i=ql+i( -(qm+i) -) and ^=q;+iC-(qm+i)-) 0-0, 
Finally, set ll^n,} and A- = {a.^j^n.}

If ^(r)^^(r') holds for all and r'€Fn(T)% then the fact that
w_/+l>|p^|2|5| makes Lemma 9.2 applicable and hence there are i and j 
with l^J^m such that p^p^Q. This is obviously a contradiction since 

|pi(p/)|< |p|- . _
Thus, we way assume that at least one of n, and n,, say n(, is greater than 0. 

Moreover, it can also be supposed that there are an i, an r't,
and an s'tFn(Y) such that q’=r\s'), path1(r')=pathii($l) 

and s'^q,.. Then for each j<l, n^O. Now let ij be
those uniquely determined integers for which pathfj(^) are initial segments of 
path^^). Without loss of generality, we may assume that i0=...=z(=l.

Now suppose that there exists no {path;(^')|l such that pathj (9,)
is an initial segment of w or w is an initial segment of path^q,). Then for each 1 

set
Bt = {oijpath!^) is an initial segment of path/^)} 

and „ .
C( = {a( Ipath^qO is not an initial segment of path/qj).

Since the cardinality of {/,.... ™) is 2MW 1 + 1. to ’re? 
< i. S m) such that the following conditions are satisfied. P^P-P^P-P^P, 
B, =B, SB, , C, sC, fiC. and A'sA',^. From this, by Lemma 9.5 
we get'that at least one of the trees fc/A,) and >s in 2, which is 

again a contradiction. , .
Therefore, for an i, (lsf^«;), pathl((^) is an initial seement of Pa**(™ 

or path,(3,) is an initial segment of path,/^)- Let ij (P&M’ be
those uniquely determined integers for which path(j(9;) are initial segments of
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path^'). Without loss of generality we may assume that i0=...=z/=l. We 
can also assume that path^,) is an initial segment of pathj^).

Now let us distinguish the following two cases:

a) pathj(^) is an initial segment of path^^). If in addition for some i 
(O^iSk), abs^pathiO-Ztoath^i?;))^^ then, by Lemma 9.3, 
there exists an r£Fn(Y) such that q^r^Q and |r|<IPil- (Here abs stands 
for absolute value.) This obviously is a contradiction. Therefore, for each i 

abs(/(pathi(^))-Z(pathi(^)))sMII2l^l^- Then, since the cardi
nality of {1, ..., k} is M||2|^|2\B|2L+1, for some integers i and; (l^i<jsk), 
we have:

(I) path^i) is an initial segment of path^^-), path^^) is an initial segment 
of pathx(^), pat^ (^)/pathj (;?,)=pat^ (^/pathj^ or

(II) pathi(^-) is an initial segment of path^), pathiQy) is an initial segment 
of pathi(^), pathi($i)/pathi(gI')=pathi(g;)/pathi(^). (Here uv/u—v for any 
two words u and v.) Moreover, Pj^=P^, ail=aj^ Bt—Bj and
B'^B], where B= {asJ2sr^ns} and B',=: (s=i,J). Then, by
Lemma 9.6, pApjKQ, which is a contradiction since ^(A^HIpI-

b) pathi(^() is an initial segment of pathi(^). We shall show that

Z(path1©)-Z(path1(?Jk))* Mil2 \B \K.

Then /(path^))-Z(pathi(?*))>Mil2 \B|K will also hold, which, by Lemma 
9.3, will be a contradiction.

Thus, assume that Z(pathi(^)) — Z(pathi(^))^MII2|5 1^- Then, since the car
dinality of {A:+1,..., Z} is ^MII’MII^IXMIPI-Bl^+O. there are Zj and i2 
(fcSii<iasZ) such that Za —Z1=2MIISHI I-® I and path1(?<|)=...=pathi(0li), 
i e., ?((i+1)i = ...=<?(> =<!• Now for each./ (Z1^j^f2) set

Bj = {a'j\ 1 S t n], path^;') is an initial segment of pathi(^j)} 
and

Cj = {a'j |l S t § n'j, pathi(^') is not an initial segment of pathj(^)}.

Since the cardinality of {Zi,...,Z2} is 2MII3MI|£| + h there are integers j\, j\ 
and y3 (ZiSJi^’-A^) such that =ah=ah,
sAjteAJt, Bj^B^sB^ and CjUCjSCj, where = {aJt |2s$Sn7i} 
(/=1, 2, 3). Therefore, by Lemma 9.4, at least one of the trees Pj^Pj,) 
and Pj^j^f is in Q which is again a contradiction. □
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Now we are ready to prove

Theorem 9.8. For any two R-transducers 9I = (Z, X A, QY, P, A') and 
® = (I, X, B, Q, Y, P',B') and any recognizable ZX-forest T it is decidable

(i) whether is a (partial) mapping,
(ii) whether vn\T^Tv\T, provided that is a (partial) mapping,

(iii) whether 91 is equivalent to ®, provided that r>a or rB is a (partial) mapping, 
and

(iv) whether 91 is equivalent to 9?, provided that at least one of them is deter
ministic.

Proof. By Theorem 9.7, (i) is true. Moreover, (iii) and (iv) follow from (ii) since 
the domain of an R-transformation is regular and, by Theorem II.10.3, it is 
decidable for two regular forests whether one of them contains the other one. 
Therefore, it is enough to prove (ii).

We may assume that AOB=9. Let us construct an R-transducer C = 
=(T, X, C, Q, Y, P", C') with C=AUB, C'=A'UB' and P"=PUP'. Ob
viously, Thus holds iff dom^nTs
cdom(Te)nr and tc|T is a partial mapping. □

Before stating the analogous result for F-transducers we prove a lemma.

Lemma 9.9. For any F-transducer 9l=(T, X, A, A, Y, P, A ) and FCRec (Z, X) 
one can effectively give an R-transducer ®=(f2, X, B, A, Y, P', B') and a forest 
SC Rec (Q, X) such that is a partial mapping iff is a partial mapping. 

Proof. Construct an RR-transducer ®=(Z,X A, A, Y, P, A') where P is given 

as follows:
(i) If x-ar {x^X, atA, r^F^ is in P, then ax^r is in P. .
(ii) If <r(ai, ..^aj-ar m^O, a1,...,am, a^A, r^.FffY\da^) is

in P, then (aa-^r^,, am^, D} is in P, where D^dom^ () 
(f=l, Since, by Theorem 1.10 (i), dom (t9)(o)) (atA) is regular, 91 is 
an RR-transducer. Observe that r,I(a)£T91(o) holds lor every atA.

We shall show that for all {a, a'}sA and p^F^X) the equivalence

(1) |t«(4)(p)UTa(«')(p)| * 1 ** |tmw(p)Ut«(«-)(p)I * 1

holds (Note that a and a' are not necessarily distinct.)
Since the left side of (1) implies its right side
The converse will be proved by induction on hg(p). If hg(p)-0, then our 

statement obviously holds. Now let p=a(p........pj w*0, p^F^X))
and r, r'ZFffY) be such that ap^r, a'p^r' and r^r'. Moreover, assume 
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that the right side of (1) implies its left side for every state and every Z^-tree of 
height less than hg (p).

Let us write the above derivations in the form

, a"^(i = l, ...,m) 
and

b^p”'^

where a, a', at, b^A, i = 1, ...,m, n1+... + nm = n, nJ + ... + nm = n , 

r^, ....rj = r and

^(rj, rm) = r'. Moreover, um), ar(£?, C”))>

^b., ...,bm),

Now distinguish the following two cases:

(I) There exists an i with n^O and 1 or there exists
aj (i^jSm) with n'>0 and 1- Then, by the induction hypothesis,
|tB(0()(A)> 1 or Therefore, by the definition of P, k2(a)(p)|>l
or |t2(o9(p)|> 1 also holds.

(II) Assume that there are no i and J satisfying (I). Then, r^... =rln=ri 
(l^iSm) if ^>0. For all such i, by r2(aj)£t2(B() and the choice of D, we 
have Pi^^a^p Moreover, again by the choice of D, if «;=0 then also there 
exists an r^FA{Y) such that Pi^a/i holds. Thus, we have the derivation 
p=>^ar. Using similar arguments, one can show that p=>^a'r' is also valid. 
Therefore, |ra(a)(p) U n^afp)| > 1.

Thus, we have proved that ra |R is a partial mapping iff Ta1R is a partial mapping. 
By Theorem 4.6 (i), there exist a deterministic F-relabeling t: F^X)-^Fa(X) 
and an R-transducer SB=(Q, X, B, A, Y, P ", B') such that T5 =totb. More
over, by Lemma 6.7, Rt=S is in Rec (Q, X) and S can be obtained effectively 
from R. Therefore, rj |R is a partial mapping iff is a partial mapping. □

Now we state and prove

Theorem 9.10. For any two F-transducers 9l=(Z, X, A, Q, Y, P, A') and 
33=(Z, X, B, Q, y, P', B') and recognizable YX-forest T, it is decidable

(i) whether tm|T is a partial mapping,
(ii) whether T^lTcr^ir, provided that tb|T is a partial mapping,
(iii) whether 91 is equivalent to ®, provided that or Ta is a partial mapping, and
(iv) whether 91 is equivalent to SB, provided that at least one of them is deter

ministic.
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Proof. Obviously, (i) follows from Theorem 9.8 by Lemma 9.9. Moreover, (ii) 
implies (iii) and (iv) since, by Theorem 1.10 (i), the domain of an F-transfor- 
mation is recognizable. Thus, it suffices to prove (ii).

Assume that ^405=0, and construct the F-transducer

E = (Z, X, C, Q, Y, P", C')

with C=AUB, C'=A'UB' and P"=PUP'. Obviously, Tc=TaUTB. There
fore, iff dom^DTsdom^nr and xc|r is a partial map
ping. D

EXERCISES

1. Define generalized sequential machines as tree transducers when strings 
are interpreted as unary trees in the usual way.

2. Let t be a DR-transformation. Then dom (t) can be recognized by a 
DR-recognizer.

3. Show that the classes and and similarly the classes
and are incomparable.

4. Let us call a DR-transducer SM=(27, X, A, Q, Y, P, A') simple, if for 
every au-q^P, whenever and a^, occur in q, then If 91 is a simple 
DR-transducer, then ra can be induced by an F-transducer.

5. Prove that St tit is not closed under composition.
6. The composition of a totally defined DR-transformation by an R-trans- 

formation is an R-transformation.
7. Is closed under LR-transformations?
8. Show that is not closed under LNF-transformations.
9. Prove Theorems 3.7 and 3.9.

10. Find two R-transformations Tj and x2 such that Ti°t2 is the F-transforma- 

tion given in Example 1.3. ... .
11. Give two F-transformations whose composition is the R-transformation of 

Example 1.6.
12. Show that.^ and &K are incomparable.
13. Prove that SH0lR is closed under DF-transformations.
14. An F-transformation (or an R-translormation) is a partial mapping iff 

it can be induced by a DR R-transducer.
15. Find a DRR-transducer which is not equivalent to any DR-transducer.
16. The equivalence problem of two Rr-transducers is decidable, provided 

that at least one of them induces a partial mapping.
17. Find an algorithm to decide for an F-transducer whether it is equivalent 

to an LF-transducer.
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18. Let 9I=(Z, X, A, Y, P, A') be a GSDT and 12 a ranked alphabet. Let 
{n^ ...,nr} be the set of lengths of right-hand sides of all rules from P (each 
element of A3 is counted as one symbol). Moreover, let r(£2)={m1, ...,m,}. 
Assume that there exists a mapping f: {«i, ..., n,}—r(12) such that the equality

nk = mf(k) + ll(.ml~ 1)+... + ^(Ws— 1)

holds for every k(=l, where 4, ...,/ss0. Then there is an R-transducer 
S=(Z, X, B, Q, Y, P', B') with Ta = {(p, yd (q))\(p, q)^}.

19. Find an R-transducer 91 such that preserves recognizability, but 91 is 
not equivalent to any LF-transducer.

20. An R-transducer 9l=(Z, X, A, Q, Y, P, a0) is called k-metalinear if the 
following conditions are satisfied:

(1) a0 does not appear in the right-hand sides in rules from P,
(2) for each rule aoa^q (adj in P every & can occur in

q at most k times, and
(3) for each rule aa^q (a#a0> in P the number of occurrences 

of each (Isi^m) in q is 0 or 1.
Let 91 be a fc-metalinear R-transducer. Does Ta preserve recognizability?

21. For a ranked alphabet Z let be the ranked alphabet with Zo=
=Z0 and I1={a|<TCZm, m>0}. Define the mapping ph: F^X}-pF-s{X)

by ph (d)= {4} (t/CToUT) and

ph(a(pj, ...,pm)) = {5(t)|r€ph(p1)U...Uph(pm)}

Pk, ...,pm^Fs{X)}. Show that if T£Surf(«) then ph(T)= U(ph (O|r€T) 
is recognizable.

22. Is Surf(^?) closed under intersection?
23. Give a recursive definition of the concepts of state-sequence and production

sequence.
24. For every F-transducer there is an equivalent totally defined F-transducer 

with a single final state.
25. For every DF-transducer (DR-transducer) one can effectively give an 

equivalent DF-transducer (DR-transducer) with a minimal number of states.
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NOTES AND REFERENCES

The concept of the R-transducer was introduced by Rounds (1970b) and Thatcher (1970) 
thus extending generalized sequential machines from strings to trees and to give a tree automaton 
formalism for parts of mathematical linguistics (in particular, for the theory of syntax directed 
compilation). The F-transducer is due to Thatcher (1973). As in the case of tree recognizers, 
many of the authors dealing with tree transducers allow a symbol from a ranked alphabet to 
have more than one rank, and most of them use no separate frontier alphabets.

The results of Section 2 can be found in Engelfriet (1975b), and most results of Section 3 
are also from this work. Theorems 3.3, 3.12 and 3.13 were obtained by Baker (1973).

Tree transducers with regular look-ahead are defined and investigated in Engelfriet (1976/77). 
Generalized syntax directed translations were introduced by Aho and Ullman (1971) in the 
special case where the domain of the translation is the forest of all parse trees of a given context- 
free grammar. (Parse trees are almost the same as our production trees.) Applying a generalized 
syntax directed translation in the sense of Aho and Ullman is equivalent to applying a DGSDT of 
Section 5 which, by Theorem 5.4, is equivalent to applying a DR-transducer and then taking the 
yield of the resulting tree. The more general concept of a GSDT was introduced in Baker (1978b). 
In the same work she proved that for each n, ydSurf (^") and ydSurf (^'") are properly 
contained in the family of deterministic context-sensitive languages.

The results of Section 6 are from Engelfriet (1975b), Gecseg (1980) and Rounds (1970b).
The first result about the Surf (^")-hierarchy can be found in Ogden and Rounds (1972), 

where they proved that Surf (^) is a proper subclass of Surf (^2) and conjectured the properness 
of the hierarchy. It was Engelfriet (1978a, 1982) who succeeded in proving that the &n-, Surf 
(^")-,and ydSurf (^-hierarchies (and their F-transducer counterparts) are proper. Section 7 
and 8 are based on his work.

The decidability results of Section 9 are from feiK (1980). Using a different technique Zachar 
(1980) also proved the decidability of the equivalence problem of DF-transducers.

As a conclusion we mention some other topics relevant to the subject matter of Chapter IV.
A sequential program machine (sp-machine) introduced by Buda (1979) is such a generaliza

tion of a gsm whose inputs are strings and whose outputs are n-tuples of n-ary trees. Buda showed 
that the equivalence problem of sp-machines is solvable and that this implies that the equivalence 
of certain program schemes is also decidable.

Engelfriet and Fild introduced a new type of tree transducer called macro tree transducer which 
is a combination of the R-transducer and the context-free tree grammar (see ENGELFRIET 
(1980)). They propose to use macro tree transducers to model attribute grammars of 
D. E. Knuth (Math. Systems Theory 2 (1968), 127—145: Correction: ibid 5 (1971), 95-96). For 
tree transformations in terms of magmoids we refer the reader to Arnold and Dauchet (1976b, e), 
Dauchet (1977a, b), and Lilin (1978a, b).

Finally, we note that much of the category theoretic work mentioned in the Notes and refer
ences to Chapter II deal with tree transductions.
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Greibach k-from, 47
groupoid, 136
GSD homomorphism, 172
GSDH-translator, 172
GSDT, 170

deterministic, 172
finite copying, 187
k-copying, 187
linear, 172
nondeleting, 172
totally defined, 172

gsm, 51
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XX-recognizer, 60 
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R-transducer, 187

231



kernel of mapping, 14
K-transformation, 151
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e-free, 34
F-transformational, 198 
generated by grammar, 43 
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(„,F)-transformational, 198 
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recognized by recognizer, 35, 38 
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regular, 36 
right linear, 43 
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production of
F-transducer, 139
grammai, 43
GSDT, 170
gsm, 51
regular 27X-grammar, 67
RH-transducer, 163
R-transducer, 143 

production-sequence, 187 
product

forest, 73
of languages, 36

of mappings, 14
of relations, 12
of tree automata, 122
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realization of
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recognizer, 35
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Rabin-Scott, 35
reduced, 41
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GSDT, 170
RR-transducer, 163
R-transducer, 143

root of tree, 56
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R-relabeling, 151
RR-transducer, 163

deterministic, 163
linear, 163
mondeleting, 163

RR-transformation, 164
deterministic, 164
linear, 164
nondeleting, 164

R-transducer, 143
deterministic, 151
finite copying, 187
k-copying, 187
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linear, 150
nondeleting, 151
totally defined, 150

R-transformation, 143

set
free generating, 26
generating, 18
Parikh, 49
power, 12
quotient, 13

sp-machine, 215 
state

copying, 175
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nondeleting, 175
of F-transducer, 139
of GSDT, 170

of gsm, 51
of Mealy machine, 50
of NDR rA'-recognizer, 65
of recognizer, 35
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state-sequence of
GSDT, 187
R-transducer, 187
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subalgebra, 18

generated by a set, 18
subderivation in

F-transducer, 140
R-transducer, 143

subrecognizer, 41
subset

closed, 18
closed with respect to operation, 16
linear, 49
recognizable, 120
semilinear, 49

subset construction, 38
substitution, 123
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supremum, 30
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syntactic pattern recognition, 124

term, 24
TF-transducer, 150
theories, 122
transformation induced by
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RR-transducer, 164
R-transducer, 143

translation, 50
elementary, 29
induced by GSDT, 178
induced by gsm, 51
induced by Mealy machine, 51
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tree, 55
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tree transducer 
frontier-to-root, 139 
macro, 215 
root-to-frontier, 142 

tree transformation, 139
preserving regularity, 174

TR-transducer, 150

variable, 23

word, 34
accepted by recognizer, 35 
empty, 34
proper, 191
//-accepted, 136

x-iteration, 76
X-language, see language 
x-path of XX-tree, 112 
x-quotient, 77 
X-recognizer, see recognizer 
x-substitution, 132
X-tree, 55
X-word, see word

yield of
forest, 126
tree, 125

z-product, 74
O-state, 113

p-class, 13

X-algcbra, see algebra
^catenation, 57
<7-product, 78
X-term in X, 23
X-tree, 55
XX-forest, 82, see also forest
(X, X, A-)-polynomial, 97

regular, 98
XX-recognizer

connected, 90
connected DR, 117
deterministic root-to-frontier, 67
DR, 67
frontier-to-root, 59
minimal, 90
minimal DR, 118
NDF, 64
NDR, 65
nondeterministic frontier-to-root, 64
nondeterministic root-to-frontier, 65
quotient, 89
quotient DR, 116
reduced, 90
reduced DR, 117

XX-term, 23
XX-tree, 55

atomic, 120

<o-sequence, 15
co-variety, 123
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