
a

Akademiai Kiado, Budapest

F.Gecseg-M.Steinby
The aim of this book is to give a rigor

ous mathematical discussion of the theory
of tree automata, recognizable forests and
tree transformations using, primarily, the
language of universal algebra. This relative
ly new theory, besides its inherent inter
est, has opened new perspectives in vari
ous parts of mathematical linguistics. It has
also been applied to mathematical logic
and systematic pattern recognition.

The book consists of four chapters, a bib
liography and an index. Chapter I provides
an exposition of necessary topics of univer
sal algebra, lattice theory, finite automata
and formal languages to make the book
self-contained. The remaining chapters de
velop basic results of tree automata theory
(tree recognizers, tree grammars, the pro
perties of recognizable forests, the connec
tions between recognizable forests and
context-free languages, tree transducers
and tree transformations). Chapters II—IV
also contain some exercises, most of them
reviewing additional results in the field.
All these chapters close with a historical
survey and bibliographical comments.

This book may be recommended as a
systematic summary of the results of the

subject.

ISBN 963 0531704

AKADfiMIAI KIADO • BUDAPEST

TREE AUTOMATA

TREE AUTOMATA

FERENC GECSEG
Bolyai Institute

Jozsef Attila University
Szeged, Hungary

MAGNUS STEINBY
Department of Mathematics

University of Turku
Turku, Finland

akad£miai kiad6 • Budapest 1984

NITA
KIK

MA8YM
TWOMANYOS AOEMIA

KQNYVfARA

ISBN 963 OS 3170 4

© Akaddmiai Kiadd, Budapest 1984

Printed in Hungary

CONTENTS

Preface...

Notes to the reader ..

Chapter I PRELIMINARIES ..

1. Sets, relations and mappings ..
2. Universal algebras ..
3. Terms, polynomial functions and free algebras.......................................
4. Lattices...
5. Finite recognizers and regular languages ...
6. Grammars and context-free languages ...
7. Sequential machines..

References ...

Chapter II TREE RECOGNIZERS AND RECOGNIZABLE FORESTS 54

1. Trees and forests.. 55
592. Tree recognizers ..

3. Regular tree grammars ... 67
4. Operations on forests.. 72
5. Regular expressions. Kleene’s theorem.. 83
6. Minimal tree recognizers.................. 87
7. Algebraic characterizations of recognizability 94
8. A Medvedev-type characterization ... 102
9. Local forests .. 106

10. Some basic decision problems ... 108
11. Deterministic R-recognizers ... 1

„ . _ 119Exercises..
1 ? 1

Notes and references ..

5

Chapter III CONTEXT-FREE LANGUAGES AND TREE RECOGNIZ
ERS ... 125

1. The yield function .. 125
2. Context-free languages and recognizable forests..................................... 127
3. Further results and applications... 130
4. Another way to recognize CF languages ... 134

Exercises... 136
Notes and references .. 137

Chapter IV TREE TRANSDUCERS AND TREE TRANSFORMATIONS 138

1. Basic concepts.. 138
2. Some classes of tree transformations... 150
3. Compositions and decompositions of tree transformations.................... 155
4. Tree transducers with regular look-ahead ... 163
5. Generalized syntax directed translators ... 170
6. Surface forests.. 173
7. Auxiliary concepts and results .. 182
8. The hierarchies of tree transformations, surface forests and transforma

tional languages ... 198
9. The equivalence of tree transducers... 203

Exercises.. 213
Notes and references .. 215

Bibliography .. 216

Index.. 229

6

PREFACE

The purpose of this book is to give a mathematically rigorous presentation of
the theory of tree automata, recognizable forests, and tree transformations.
Apart from its intrinsic interest this theory offers some new perspectives to var
ious parts of mathematical linguistics. It has also been applied to some decision
problems of logic, and it provides tools for syntactic pattern recognition. We
have not even tried to discuss all aspects of the subject or any of the applications,
but enough central material has been included to give the reader a firm basis for
further studies. Being relatively new and very manyfaceted, the field still lacks
a uniform widely accepted formalism. We have chosen the language of universal
algebra as our vehicle of presentation. However, we have not assumed that the
reader is familiar with universal algebra; the preparatory sections in Chapter I
should make the book self-contained in this respect. On the other hand, it is
natural to assume that anyone interested in such a book has some general mathe
matical training and some knowledge of finite automata and formal languages.

The book consists of four chapters, a bibliography and an index. The first
chapter contains an exposition of the necessary universal algebra and lattice
theory, as well as a quick review of finite automata and formal languages. We also
recommend some books on these subjects. In Chapter II trees, forests, tree recog
nizers, tree grammars, and some operations on forests are introduced. Several
characterizations and closure properties of recognizable forests are presented.
Chapter III is devoted to the connections between recognizable forests and context-
free languages. Chapter IV deals with tree transducers and tree transformations.
Chapters II-IV contain some exercises. Each of these chapters is concluded with
some historical and bibliographical comments. We also point out some topics
not discussed in the book. We have tried to make the Bibliography as complete
as possible. Of course, it has not always been easy to decide whether a given item

should be included or not. .
We want to thank our colleagues and the staffs at our institutions for the good

working atmosphere in which this book was written. Dr. Andris Addm and
Professor IstvAn Peik gave the text a careful scrutiny. We gratefully acknowledge

7

their many remarks. We are also indebted to Dr. Zoltan fisik for his very helpful
comments on Chapter IV. We wish to express our warmest thanks to Mrs. Piroska
Folberth for performing very competently the difficult task of typing the manuscript.
Also, we want to thank our wives and daughters for their support and for putting
so gracefully up with the inconveniences inevitably caused by our undertaking.

The writing of the book has involved several trips between Turku and Szeged.
We gratefully acknowledge the financial support provided by the Academy of
Finland, the Hungarian Academy of Sciences, the Jdnos Bolyai Mathematical
Society, the University of Szeged, and the University of Turku. Our work was
also furthered by a possibility for the first-named author to spend a term at the
Tampere University of Technology. For this thanks are due Professor Timo
Lepistd.

8

NOTES TO THE READER

The theorems, lemmas, corollaries, definitions and examples are all numbered
by the same numbering within each section. The number of the chapter is mentioned
only in references to items belonging to another chapter. The end of a proof or
an example is indicated by the mark □. It appears immediately after a theorem,
lemma or corollary if this is not followed by a proof. The references to the liter
ature are by the author(s) and the year of publication, and they can be found in
the Bibliography. In a few cases we refer to a book mentioned at the end of
Chapter I.

9

CHAPTER I

PRELIMINARIES

In this chapter we shall review some basic concepts and results from the theories
of automata, formal languages, and universal algebras. It is reasonable to assume
that a potential reader of this book already knows something about automata
and formal languages. On the other hand, we do not presuppose any knowledge
of universal algebra. These two assumptions suggested the styles and extents of the
following seven sections.

Section 1 (Sets, relations and mappings) may be skimmed through for termi
nology and notation.

Sections 2 and 3 present the required universal algebraic concepts and results.
These are not many, but they should be mastered well as the very basic concepts
of the theory of tree automata are defined in terms of universal algebra. We have
tried to make the book self-contained in this respect, but a reader who wants to
pursue further the algebraic aspects of the theory should certainly consult one of
the references on universal algebra.

The lattice theory presented in Section 4 is less important here, and the reading
of this section may be postponed until needed.

Sections 5, 6 and 7 survey some of the most essential facts about finite recogniz
ers, regular languages context-free grammars, and (generalized) sequential ma
chines. A reader less familiar with these matters would do wisely to look up these
subjects in some of the references given at the end of the chapter.

1. SETS, RELATIONS AND MAPPINGS

The set theory needed here is very elementary and most of our set theoretic
notation is well-known. However, a few conventions should be pointed out:

(i) A S B means that the set A is a subset of the set B. Proper inclusion is
denoted by AcB.

(ii) 0 denotes the empty set.
(iii) |/<| denotes the cardinality of the set A.

11

(iv) The power set of a set A, i.e., the set of all subsets of A, is denoted by pA.
(v) The union of a family (A^itl) of subsets (indexed by I) of some set is

written as Similarly, is the intersection.
(vi) The set {x€/4|P1(x), Pt(x)} of all elements x in A with the properties

P1,...,Pk may also be written as {x|Pj(x), ...,P*(x)} when A is understood
from the context. We shall use this notation in the following more general form,
too. Suppose f(xx, ..., xm) is an object defined in some way in terms of the objects

..., xm. Then
{/(Xi, ...,xm)}

is the set of all such objects constructed from objects Xj, ..., xm satisfying the
condition P(xk, ...,xm). Furthermore, we use

{A(X1> Xm)> , ..., Xm)}

as a short form for the union

UIxbxj^, ...,xm)}U...UU(xlt ...,xm)|P(x15xj}.

(vii) If there is no danger of confusion, we may write simply a for the one-ele
ment set {a}. Of course, we should not write 0 for {0}.

Sometimes we employ some notation from logic as abbreviations:
(i) “(Vx€^t)P(x)” states that P(x) holds for all xtA.
(ii) “(3%e^)P(x)” states that there exists an x in A such that P(x) holds.

(iii) “P^Q" means that Q holds if P holds.
(iv) “PoQ” states that the conditions P and Q are equivalent, i.e., both of

them hold or then neither one holds.
(v) “PA Q” is the statement that both P and Q hold. Similarly, “P V Q” states

that at least one of P and Q holds.
The numbers dealt with here are always integers and mostly even non-nega-

tive integers. When we write “... for all nSl” we mean, in fact, for all
integers n£l”. The set of all integers is denoted by Z, the set of the natural
numbers 1, 2, ... by N, and the set of all non-negative integers by No.

Let A and B be sets andg£.4XPa (binary) relation from A to B. The fact that
(a, b)tg (a£A, btB) is also expressed by writing agb or a=b(g). The opposite
case may be expressed by agb or by a^b(g). For any atA, we put

ag = {i>€P|aeb}.

This notation is extended to subsets of A:

Atg = U(ae|a€^i) for Aj s A.

The converse of g is the relation

{(b, a)|(o, i>)€c} S B^A.

12

Obviously,
bp-1 = {a€?4|a0b}

and
£i0-1=

for all b£B and B^B. The domain of q is the subset dom (q)=Bq~1 of A,
and its range is the subset range (q)=Aq of B.

The product or composition of two relations qzAxB and tsBXC is the
relation

@ot = {(a, c)|(3b€5)ag&Tc} S AXC.

In this definition we used the short form apbrc to express the fact that aob and
bxc. Often we write qr for gor. The product of relations is associative. We note
also the equality (eoT)-1^-1©^1.

Consider now (binary) relations on a set A, i.e. subsets of AxA. These include
the diagonal relation bA= {(u, and the total relation ia=AxA. For
any relation q on A we define the powers qn (n^O) with respect to the product
of relations:

1° Q° = ^a and
2° g"+1 = g"o0 for nSO.

The relation q £ A X A is called

(a) reflexive if dA S q,
(b) symmetric if e-1 —
(c) antisymmetric if and
(d) transitive if g2 S q.
The intersection of any reflexive relations (on a given A) is reflexive, and the

intersection of transitive relations is transitive. Thus there exists for every
QSAXA a unique minimal reflexive, transitive relation q* containing q. It is
called the reflexive, transitive closure of q. One verifies easily that

q* = 5xUe Ue2UesU...,

i.e., for any a, b£A we have aq^b iff
a = aiQaiQa^... a^qa,, = b

for some n£l and ait a„tA.
A relation on A is called an equivalence relation on A, if it is reflexive, symmetric

and transitive. The set of all equivalence relations on A is denoted by E(A).
Clearly, bA£E(A) and iAtE(A). Let p be an equivalence relation on J. The e-
class (or the equivalence class modulo q) of an element at A is the set aq. Obviously,
aQb iff aq=bq. We shall also write a/q for aq and extend this notation to subsets
AtzA and n-tuples 8=^.......an) of elements of A (n^l): A1/q= {a/q^tAj

13

and ...,aje). The quotient set of A modulo to q is A/q. Obviously,
A/q is a partition on A, that is, every element of A belongs to exactly one g-class.
On the other hand, every partition on A can be obtained this way as the quotient
set from a unique equivalence relation and there is a natural one-to-one corre
spondence between the partitions on A and E(A). The cardinality of A/q is called
the index of q^E{A). If is finite, we say that q is of finite index. We say that
q^E{A) saturates the subset Hz A if Hq=H, i.e., if H is the union of some
g-classes.

A mapping or a function from a set A to a set B is a triple (A, B, ip), where
cpsAxB is a relation such that for every aQA there exists exactly one b£B
satisfying a<pb. As usual we write (p: A-^B and say that q> is a mapping from
A to B. If acpb (a^A, b^Bf b is called the image of a and a an inverse image of b.
This is expressed by writing b—a(p, b=(p(a) or <p: a^-b. For a subset At of
A we also use the two notations A^ and (pfA^ for the set {u<p|u€^i}. The
converse <p-1 of cp is always defined as a relation (s BxA), but it is usually not
a mapping from B to A. Again, <p~x{Bj) will sometimes be used instead of B^cp 1
when B^B. Note that dom(<p)=/l and range (<p)£.S. The set of all mappings
from A to B is denoted by BA.

The composition or product of two mappings cp: A-^B and i^: B-*C is
the mapping

: A -* C

where <pj/ is the product of cp and ip as relations. Clearly, acp\]s=(acp)\l/ for all
a^A.

The restriction of a mapping cp: A--B to a subset C of A is the mapping

cp\C: C^B

where cp\C=cpf)(CxB). If C-B is obtained from cp: A^B as the restric
tion of cp to C, i.e., Cs A and i]/=cp\C, then we say also that cp is an extension
of to A.

The kernel (pep-1 of a mapping cp: A — B is an equivalence relation on A and
a1=a2(cpcp~1) iff a^cp^a^cp (a^a^A). On the other hand, one can associate
with every 0^E{A) a mapping

0^:A-Aie, a^aO, (a^A)

such that the kernel of 0 is 0. This 0 h is called the natural mapping associated
with 0.

A mapping cp: A — B is called
(i) injective (or an injection), if cpcp~l = bA,

(ii) surjective (or a surjection), if range (cp) = B, and
(iii) bijective (or a bijection), if it is injective and surjective.

14

If <p: A^B is surjective, one says also that <p is a mapping of A onto B. It is
obvious that the natural mapping 0^ is always surjective (6£E(A)). The diagonal
relation of a set A defines the identity mapping A—A, a^a(a^A). It is denoted
by U-

We shall also meet partial mappings, that is, mappings for which the image
of some elements may be undefined. A partial mapping from A to B is defined by
a relation cpcAxB such that |a<p|gl for all a£,A. Again, we write rp: A^B.
If a<p = Q, then we say that (p is undefined for a(a€A). The notations and termi
nology introduced above for mappings apply to partial mappings, too, although
dom(<p) may be a proper subset of A when <p: A—B is a partial mapping.

It is convenient to think of the elements of a cartesian product A1X...XAn
as n-tuples (a^ ...,a„) with a^A^ an£An. We adopt the definition of an
ordinal number n as the set of all ordinals smaller than n: 0=0, 1 = {0}, 2 = {0, 1}
etc. and, in general, n= {0, 1, ..., n-1}. Then A^X... X A„ can also be defined as
the set of all mappings

(p: n—AiU... UA„

such that i(p£Ai+1 for i=0, 1, ..., n-1. Of course, we may identify such a rp
with the n-tuple (Ocp, l<p, ...,(n-l)(p). Now the cartesian power An=AX...XA
(n times) is the set of all mappings rp: n-A. In particular, ^°={0} since 0
is the only mapping from 0 to A. Note that the notation A" is consistent with our
earlier notation BA for the set of all mappings from A to B.

We shall also need countably infinite sequences of elements. Let a>= {0, 1, 2, ...}
be the smallest infinite ordinal and A any set. The elements of Am are called <u-
sequences. Thus an co-sequence of elements of A is a mapping

(p; co -* A
which we may also write as

(0<p, l(p, •••» tUp,

We conclude the section by considering operations. These are special mappings
and are among the most fundamental concepts of algebra. Let rn^O. An m-ary
operation on a set A is a mapping from Am to A. If rp: A --A is an m-ary opera
tion on A, then (p assigns to every m-tuplc (aj, ..., am) of elements of A a unique
element of A which we write as tp^, ..., am). The number m is called the arity
or the rank of <p. Most operations encountered in the usual algebraic systems
(groups, rings, lattices etc.) have rank 0, 1 or 2. A few comments on these special
cases:

(i) A 0-ary operation <p: {0}-^ is completely determined by its only image
(p(&), and often <p is given simply by naming this element. Note that here 0 may

15

also be seen as the empty sequence of elements, and often one writes (p(), or

just (p, for ^(0).
(ii) When m—\, we have a mapping from A to itself. Such operations are

called unary.
(iii) An operation of rank 2 is called a binary operation. For example, the

addition and the multiplication in a ring are binary operations. In most such
concrete examples one uses the infix notation for binary operations. Thus it is
customary to write the ring operations in the form a+b and a-b instead of

+(a, i) and • (a, b), respectively.
A partial m-ary operation on a set A is a partial mapping from A to A. For

any partial m-ary operation (p: Am—A and subset B of A we have a partial

where If (p is an operation and B is closed with respect to
(p, i.e., (p^, ...,a^B whenever alt ...,am^B, then cp\B is an m-ary opera
tion on B called the restriction of (p to B. Often the same symbol is used to denote
an operation and its restrictions.

Suppose we are given a set A, k m-ary operations <pr, ..., on A and a A-ary
operation on A (m, ksO). The composition of <plf ...,(pk with is the m-ary
operation i//(cpi,..., (Pk) defined so that

<Pk)(al> ■”» arn) =

for all alt ...,am€A. Note that the possibilities k=0 or m=0 are included.
If k—0, then the composition is an m-ary operation with the constant image
i^(0). If m=0, then the composition is a 0-ary operation with the single value

<A(<Pi(0), ..., <p*(0))-
Let <p be an m-ary operation on a set A and Alt ..., Am any subsets of A. Then

we write
<p(Alt ..., Am) = {<p(ai, •••»

Thus <p is extended to an m-ary operation on the power set pA. In general, there
is no need to introduce a new notation for this extension.

2. UNIVERSAL ALGEBRAS

In this and the next section some concepts and results from universal algebra
are surveyed. Universal algebra is an extensive field of mathematics, but we need
really just certain basic parts of it. On the other hand, a good grasp of the mate
rial of these sections is essential to an understanding of the rest of the book.

16

Generally speaking, an algebra (or a universal algebra) is a set together with
a set of operations on this set. There may be a finite or an infinite number of
operations, but we insist that they all are finitary, i.e., the ranks are finite as in
the definition of operations given in the previous section. As a first example we
consider the algebra of subsets of a given set U. In the power set pU we have
several naturally defined operations. For example, there is a binary operation U
that forms the union AUB of any two A, B^pU. Similarly, we have the binary
operation IT that forms the intersection of two subsets of U. A unary operation
is obtained if we map every A&pU to its complement AC=U-A. Further
more, we introduce two 0-ary operations, one that has 0 and one that has U as
its image. Of course, an infinite number of operations could be defined on pU,
but if we restrict ourselves to those defined above, we get the algebra

(pU, U, n,e, 0, U)

with two binary, one unary and two 0-ary operations. Note that we get such an
algebra for each set U. In fact, all of these algebras can be viewed as special
instances of a general class of algebras known as Boolean algebras.

The example brings forth an important point. In algebra, and this will be the
case here, too, one is generally not interested just in individual algebras, but
rather in whole classes of algebras. Algebras in such a class are all “similar”
in the sense that there is a natural correspondence between the operations of
any two algebras of the class. Such a correspondence of operations is needed
when one defines any concept, such as homomorphisms or direct products, in
volving more than one algebra. For example, the multiplications of any two
groups correspond to each other, and a homomorphism of groups should pre
serve the multiplication. We shall now introduce a convenient vehicle to define
such a class of similar algebras.

Definition 2.1. An operator domain is a set Z together with a mapping
r: Z — No

that assigns to every <7^ an arity, or rank, r(a). For any mSO,
Zm = = m}

is the set of the m-ary operators (or operational symbols).
From now on Z is an operator domain. The mapping r is usually not mentioned,

but we denote by r(Z) the set of all msQ such that Zm^9. One can write Z
as the disjoint union Z0UZxUZaU... from which the empty sets will be omitted.

Definition 2.2. A Z-algebrad is a pair consisting of a nonempty set A (of elements
of.s/) and a mapping that assigns to every operator a^Z an w-ary operation

a*: Am A,

2 G&MCg 17

where m is the arity of a. The operation is called the realization of a in sd.
The mapping will not be mentioned explicitly, but we write d=(A, Z).
The Z-algebra is finite if A is finite, and it is of finite type if Z is finite. When
Z is not specified, or not emphasized, we speak simply about "algebras”. An
algebra with just one element is called trivial.

In general, rf=(A, Z), &=(B, Z) and %=(C, Z), possibly equipped with
subscripts, will be Z-algebras. The realizations of an operator a€Z in these
algebras are denoted by a^, and a*, respectively.

In the previous example of subset algebras we would have Z = Z0UZjUZ2
with (for example) Z0={0, 1}, Z1={“|} and Z2={A, V}- The algebra of the
subsets of a set U is then the Z-algebra where A = p U and the operators are
realized as follows: 0^=0, l^=U, Y=c (complement in U), A^A
(intersection) and V — U (union).

Note that the possibility w = 0 is not excluded when we consider generally
an m-ary operation. For cCZo one often writes instead of) or a (0)
(this involves the harmless confusion of a 0-ary operation and its value). When
Z={<Ti, ..., trj is finite, one usually writes s2=(A, alt..., ok) instead of
rf=(A, Z).

We introduce now several concepts related to algebras.

Definition 2.3. The Z-algebra is a subalgebra of the Z-algebrast if Bq A and
aa=a^\B for all cr€Z.

If is a subalgebra ofj/, then B is a closed subset ofst, i.e., (bk, ..., b^^B
for all (wsO) and bt, ...,bm^B. For every nonempty closed subset
B ofst, there is exactly one way to realize the operators on B in such a way that
we get a subalgebra 26 of st'. obviously every a® should be the restriction a \B
of the corresponding operation of st to B. Hence, a subalgebra is completely
determined by its set of elements and one may call this subset a subalgebra. 11 a
is a 0-ary operator, then every subalgebra of st contains the element o*. If Zo
is empty, then 0 is a closed subset, but we do not count it among the subalgebras.

It is easy to see that the intersection of any family of closed subsets of a given
algebra st is again closed. Thus we have for any HqA a unique minimal closed
subset containing H:

[//] = n (B\H Q B Q A, B closed).

If HA0 or Zo^0, then [H] is also nonempty and thus a subalgebra. It is called
the subalgebra generated by H. If Zo=0, then [0] = 0. A generating set of st
is a subset He A such that [H]=A and is said to definitely generated if it
has a finite generating set. It is clear that every finite algebra is finitely generated.

18

Definition 2.4. A homomorphism from a ^-algebra sd to a ^-algebra is a mapping
<p: A^B such that for all m^, and ax, ...,a„fA,

...,a^<p = ^(a^,-,am<p).

We write then (p: sd-*lI6. This homomorphism is called

(a) an epimorphism, if tp is surjective,
(b) a monomorphism, if <p is injective, and
(c) an isomorphism, if <p is bijective.

If there exists an epimorphism from sd to then is said to be an epimorphic
image of j/. A monomorphism is also called an embedding. If there is an isomor
phism from j/ to 39, thensd and 0 are isomorphic and we write sd^39. Homo
morphisms are often also called morphisms.

If sd^39, then j/ and are the same algebra from the abstract point of view.
An easy computation shows that the composition of two homomorphisms
cp: sd-39 and 39-^^ is a homomorphism from.2/ to

A homomorphism is a mapping that is compatible with the operations of the
algebras. For example, let j/=(Z, +) be the algebra of the integers with the
usual addition as the only operation, n = l and ^=(Z„, +) the algebra where
Z„= {0, 1, ..., n —1} and the sum is formed modulo n. Then the mapping
<p:Z-Z„ that maps every aCL to its remainder r„(a) modulo n (0^r„(a)<n)
is an epimorphism from sd to 39. Of course, the homomorphisms defined in group
theory, lattice theory etc. provide further general examples.

The proof of the following lemma is straightforward and thus it is omitted.

Lemina 2.5. Let tp: sd - 39 be a homomorphism. If is a subalgebra of sd, then
C<p is a subalgebra of 39. If 39 is a subalgebra of 39 and Dtp-1 is nonempty, then
Dy"1 is a subalgebra ofsd. □

The following lemma contains an important observation.

Lemma 2.6. Let cp:sd^39 and \fi:sd^d9 be two homomorphisms and H a
generating set ofsd. If ip\H=^\H, then tp=^. In other words, a homomorphism
is completely determined by its restriction to a generating set.

Proof. Let C= {a£A\a<p=at}. Then H^C by the assumption. If m^O,
and ax,...,am^C, then 0"^, ..., am)€C:

a^(ax,am<p) = ^(a^, ...,am)ij/.

Hence C is closed and we get C—A. This implies <p — ^-

!• 19

We define now two concepts closely related to homomorphisms, namely
congruences and quotient algebras.
Definition 2.7. A congruence (relation) of si is an equivalence relation on A which
is invariant with respect to all operations (<r€Z). A relation q^AxA is
said to be invariant with respect to an m-ary operation f: Am^A if

Z(«i» -,am) =/(&., ...» ^(g)

for all elements alt am, blf ...,bm£A such that

th = bls ...,am = bm(Q).

The set of all congruences of an algebra^ is denoted by C(sf).

Every algebra st has at least the trivial congruences bA and iA. For q£C(s/),
the g-class aQ of an element a£A is also called a congruence class (modulo g).
The partition A/q of A defined by the congruence classes is compatible in the
sense that for all m^O, o^Zm and avo, ...,amQ^AlQ there is a class aQ such
that

...,amQ) £ aQ.

Obviously, we can choose 0=0^ (alf ..., am). It is also easy to see that an equi
valence relation q£E(A) is a congruence ofj/ only in case A/q is a compatible
partition. In fact, in automata theory it is usual to deal with compatible parti
tions (also called SP partitions) rather than with congruences, but both concepts
convey the same idea.

The fact that A/q is a compatible partition for any q£C(s/) also justifies the
following definition; the operations are well-defined.

Definition 2.8. The quotient algebra st/Q=(A/Q, Z) of a Z-algebra st by a cong
ruence q^Clst} is defined as follows. For any m^Q, o€Zm and alt ...,am^A
we put

cr^«(Uie, ..., amQ) = ^(ai, ..., a^Q.

The definition of a^lQ may be explained as follows. To compute
...,amQ) one takes a representative from each of the p-classes, say

...,am, computes o"** for the representatives and forms then the g-class of
the resulting element.

Homomorphisms, congruences and quotient algebras are closely related to
each other as the following three theorems show.

Theorem 2.9. Fer any Q^C(si), the natural mapping a^aQ is an epimor
phism st—st/Q (the natural homomorphism/

20

Proof. We know that 0^ is a surjection from A to A/q so it suffices to verify
that it is a homomorphism: for all m^Q, and alt ...,am£A,

^(a^ aje1’ = ^{a^,am)@ = ...» amQ) =

= ...,ame”). □

Theorem 2.10. The kernel (py^1 of any homomorphism (pi si—Si is a congruence
of st.

Proof. Consider any w^O, and elements a1,...,am, a[.......am€A such
that

a! = a{, ...,am = a'^qxp^).

Then a1q>=a'1(p, ...,am(p=a'm(p, which implies 0^(0^ ...,am)(p=ff^(a1(p, ...,am(p)=
=ox{a2cp. ...,am(p')=ait(a'1,...,am)(p. This means that a^{alt a„)=
= 0^^, a'^iqjcp-1) as required. □

Theorem 2.11. Every epimorphic image of an algebra si is isomorphic to some
quotient algebra of si.

Proof. Let (pi si-Si be an epimorphism and its kernel. We claim
that Si^si/Q. The required isomorphism si/O-Si is shown to be given by

ad>—a(p (at A).

For any a1,a2€A,
a^ = a20\l/ iff u1<p = a2<p

iff cq = aa(0).

This shows that iA is well-defined (i.e., adt is independent of the choice of the
representative at A of the 0-class a9) and injective. Since (p is surjective, it is
clear that $ is surjective, too. It remains to be shown that is a homomorphism.
Let m^O, and alt ...,amtA. Then

= ...,a^(p

= aa(a2(p, ...,am(p)
= am0i]/). □

Taken together, Theorems 2.9 and 2.11 say that the epimorphic images of an
algebra are exactly its quotient algebras (when one does not distinguish between

isomorphic algebras).
Next, direct products of algebras are introduced. We may restrict ourselves

to the case of a finite number of factors.

21

Definition 2.12. The direct product of two Z-algebras and # is the Z-algebra

sdXdA = (AXB,Z),

where the operations are defined so that
b^, bj) = ...,am), ...,bm))

for all m^0,aeZm and (au b^,(am, bJ^AxB. The kth (Indirect
power sdk of the Z-algebra 3/ is defined inductively:

(i) j/° —({0}, Z) is the trivial Z-algebra.
(ii) sdk^=sdkXsd for all k^O.
It is easy to see that direct products are associative in the sense that

(jdX^X^sdX(^XV) for all sd, SA and Both of these products can be
written simply as sdX^X^ and their elements may be identified with the triples
(a, b, c) with a^A, b^B and c^C. More generally, one can define the direct
product jd^.-Xjdk of k (fcsO) Z-algebras as an algebra with A^.-XAk
as its set of elements and operations performed componentwise. It is easy to see
that the projections

Ttp AiX...XAk-At, (di, ...,ak)'—ai
(i= 1,..., k) are epimorphisms from^X... Xsdk to the respective factor algebras
jdi. Hence, every factor in a direct product is an epimorphic image of the direct
product.

We shall also need the following, perhaps, less usual, way to construct a new
algebra from a given one.

Definition 2.13. The subset algebra (or power algebra') psd={pA,B) of a Z-
algebraj/ is defined as follows. If msO, and Hi, ..., Hm£pA, then put

..., Hm) =

Note that the singleton sets {a} (a^A) form in pj/ a subalgebra isomorphic
to sd. If Zo=0, psd has the trivial subalgebra {0}.

We conclude this section with a simple example illustrating these constructions.

Example 2.15. Suppose Z consists of one binary operator a and a nullary operator
y. Let sd=({a, b}, Z) be a Z-algebra such that y*=a and a^(a, a)~a^{a, b)=
—a^(b,a)=a, a^(b,b)=b. Consider first the direct power sdz=sdXsd. If we

aa ab ba bb
aa aa aa aa aa
ab aa ab aa ab
ba aa aa ba ba
bb aa ab ba bb

22

write aa for (a, a) etc., then y^=aa and is given by the above multi
plication table. Let us now construct the subset algebra. The value of the 0-ary
operation is and the operation is given by the table below.

0 w {b} {a, b}
0 0 0 0 0

{«} 0 {a} W W
{b} 0 {a} (b} {a, b}

{a, b} 0 {a} {a, b} {a, b} □

3. TERMS, POLYNOMIAL FUNCTIONS AND FREE ALGEBRAS

The concepts “term” and “polynomial function” are all-important in our
modelling of the theory of tree automata. Let us consider an introductory example.
An expression like (x+yXy+z), such expressions are called terms represents
in a natural manner a function of the three variables x, y, and z. Two things should
be pointed out here. First of all, the term defines such a function in any algebra
with operations denoted by the operators appearing in the term. In our case
it could define, for example, a mapping Z^Z or a mapping R^R depending
on whether the addition and multiplication are interpreted as those of integers
or those of real numbers. Generally speaking, the terms are determined by the
operator domain, but they define operations in all algebras with that operator
domain. Secondly, we note that the term not only defines a function but it a so
describes a way to compute its values from the values of the variables once the
operations of the algebra in question are known. In fact algebras can be viewed
as devices that evaluate terms. When we interpret (in Chapter II) terms as trees,
the step from algebras to tree automata is not long.

From now on, Y will be a set disjoint from the operator domain Z."
of X are called variables. Other symbols used for sets of variables are Y and Z.

Definition 3.1. The set ^(Y) of E-termS in X, or EX-terms for short, is defined a

follows:

52 INFIX') whenever znsO, and F^CX), and

w be obtained by applyine the rules (i) and (ii) a Suite

number of times.
net bv rule (ii) the ZY-term cr(). It is convenient

Ifo is a 0-ary-opera 8 definition of F^X) may be reformulated
to write just <r for such a term. • nv
as follows.

23

Definition 3.1’. The set F^X) of L^-terms is defined as follows:

(i)
(ii) ..., t^F^X) whenever m>0, and tt.......t^F^X), and

(iii) every Z^-term can be obtained by applying the rules (i) and (ii) a finite
number of times.

When Z and X are unspecified or unemphasized, we shall speak simply about
terms. The inductive definition of F^X) suggests a useful method to deal with
terms. It could be called term induction. If we want to define a property or quantity
c(t) for every Zy-term t, it suffices

(i) to define c(t) for all t^X, and then
(ii) to give a rule how to determine ..., tmS) in terms of a (€Tm) and

cM, ...,c(tm) (m^O).
Sometimes the variation suggested by Definition 3. T is more convenient: in (i)

one defines c(t) for t£Z0, too, but in (ii) one can then restrict oneself to values
m>0. Proofs by term induction can be modelled according to the same pattern.

Note that F^X) is empty iff Zo=*=0- Since we do not want t0 consider this
uninteresting case separately every time, we shall tacitly assume that always
ToU^#0-

Example 3.2. Let where and I2={a}.
If X= {x, y, z], then x, z, p, a{z, and t=a(x, a(z, tQx))) are
some examples of Zy-terms. □

A Zy-term t is evaluated in a given T-algebra as follows. First we assign a
value xa£A to every variable x£X. Then the operations of zX are applied to
these elements as indicated by the form of t. For example, given a mapping
a: X—A, the r of the previous example would yield the element

(xa, o^(za, t-'^))).

Of course, the result depends on the choice of a, too. This evaluation process can
be formalized as follows.

Definition 3.3. With every T-algebra sd and iy-term t we associate a mapping

t": Ax -^A
as follows: for any a: X—A

(i) xJ*(a)=xa (x€X) and
(ii) t*(a)^<r,‘(tf(a), r^(a)) when t=cr(tl, ..., t„) (m^Q,
•••» ^C^rPO)- The mappings t* are called the polynomial functions of

in variables X and their set is denoted by Pa(j/).

24

It may seem strange that the polynomial functions t^^Px(sd) are evaluated
on mappings from X to A, but this is, in fact, just a modification of the usual way
to express polynomial functions. When one writes the value of a polynomial
function in the form p(at, a„), a given order of the variables is assumed, say
X= {xX) ..., x„}, and the n-tuple (an ..., a„) is just a convenient way to give the
mapping a: X^A such that xia=ai (i= 1, , n).

In a sense, the polynomial functions of an algebra are the operations one can
derive by composition from the basic operations o"^ of sd, and they share
many properties with these. This is exemplified by the following four lemmas.

Lemma 3.4. If 38 is a subalgebra of the Xalgebra sd and a. X—A a mapping such
that Xct^B, then t*(a)EB for all t^F^X). □

The lemma states, in other words, that subalgebras are closed with respect to
polynomial functions. The proof is a simple exercise in term induction quite
similar to that of the next lemma which expresses formally the fact that congru
ences are invariant with respect to polynomial functions.

Lemma 3.5. Let 0 be a congruence of the Xalgebra sd and a: X—A, /?: X—A

two mappings such that
xa = xP(0) for all X^X.

Then ^(a) ̂(f)(0) for all tMX).

Proof. We proceed by term induction on t. If t=x£X, then

^(a) = xa = xP = t ^(P) (0-

Let 1 = 0^, ..., tm) and suppose

(f)(0) for all i = l.......
Then also

<"<«) =w......................=
as 0 is a congruence. Here the possibility »t=0 can be allowed as a trivial special

case.
Lemma 3.6. Let be a homomorphism of Xalgebras. Then

t^(a)(p = t*(acp)

for each mapping a: X—A and each LX-tam t.
Umm.3.1.le,^<mdHbeMgebra1.«nd X-A and X-B an,mapplnls.
If we define a mapping y: X—AXB by putting

xy = (xa, xfi) for all x^X\

25

then
= ^(a), t^(fi)) for all t^Fx{X). □

Lemmas 3.6 and 3.7 can easily be verified by term induction.
The subalgebra generated by a subset can also be described in terms of poly

nomial functions.
Lemma 3.8. For any subset X of a X-algebrad we have [X] = {^(“xW^W}’
where ax= 1A|X i-e., ax is mapping from X to A such that xax=x for all

x€X.
Proof. Denote {^(MteW)} bY C- For every x^xax=x^^C.
Hence X^C. Also, C is closed under the operations of a/:

(tf (ax), ..., tm (ax)) = , • • • > O (axK C

for all m^O, and t^F^X). Lemma 3.4 implies that CzB
for every subalgebra which contains X. Hence C=[X]. Note that the result
is true even if Fo=X—0. In this case [Af] = 0. □

We shall now turn to the Z-algebra formed by the LT-terms.

Definition 3.9. The Z-algebra ^x(X)=(F1(X), Z) defined so that

for all m^O, oeFm and tlt.... t^F^X), is called the FX-term algebra or
the free F-algebra generated by X.

We shall first account for the name “free algebra”.
Definition 3.10. Let K be a class of Z-algebras. A Z-algebra P=(F, I) is said to
be freely generated over K by a subset X^F, if the following conditions are
satisfied:

(i^K.
(ii) X generates

(iii) Every mapping a: X--A of A into any algebra^/ in K has an extension
into a homomorphism &: —a/.

If these conditions are satisfied for some subset X ol F, then .F is called a free
algebra over K (with |X| generators), and X is called a/ree generating set.

A well-known example is provided by the free semigroup X + generated by a
set (alphabet) X. The elements of %+ are all the finite nonempty strings of ele
ments of X. The product of two such strings u and v is simply their concatenation
uv. The associativity of this product is obvious and thus X * is a semigroup. As
every string u£X+ is obtained by concatenating individual elements of A, it is
clear that X generates AT+. To prove that X+ is freely generated by X over the

26

class of all semigroups we consider any semigroup y and mapping a:y-S.

The required (unique) homomorphism
A: X+^S

is obtained by putting
(XiXj ... Xk)A = (%!«) • (*2a) • ■ fe7)

for all x1x2..xk^X+ (products to the right are formed in ^).
Free semigroups are considered later again, but we return now to our term

algebras.
Theorem 3.11. The ZX-term algebra is freely generated by X over the class

of all Z-algebras.
Proof. That X generates is quite obvious when we compare the definitions
of F^fX) and ^(X), but it follows also from the useful observation that

^£<«(ay) = t for all t^F^X)

(where ax = lF rf). The proof of (*) goes again by term induction. Let V
be any Z-algebra and a: X~A any mapping. We claim that the mapping

A-.F^X^A, tf+t^cL} {teF^X}}

is the required homomorphism. For every x^X xA=xy=xa. Hence, ^=a.
It remains to be verified that & is a homomorphism. Indeed,

......
= {tk {a},..., tm (.d)}

= 0*^, ...,tmA)

for all m^Q, a£Zm and ti, • ••> F^W- □
We add a few general comments on free algebras. First of all,

that the homomorphic extension d. a°„bras over a given class do not

is unique. This follows rom ” d t ined up t0 isomorphism by the
always exist, but when they do,•’ey ar following lemma,
cardinality of the free generating set. This is stated ioi y

Lemma 3.12. Any mo algebras freely generated over tbe same close of algebras by

sets of the same cardinality are isomorphic.
j uweh orp free over the same class K and that they have

Proof. Supposed and .' both .. Then js ,
free generating sets X and Y, resj Y bijection from Y to X.
bijection a: X~ Y. Th? converse of it, //-a »aem j

27

Now there exist morphisms

&: stf -* 38 and 38

such that (2|Y=a and ^\Y=p. Butthen

sd — and 38 — 38

are homomorphisms such that lx and jB<2|y=lr. This means by Lemma
2.6 that ^ = 14 and ^=\B. Hence, & and 3 are isomorphisms inverse to each
other. This implies ^^38. □

Lemma 3.12 allows us to speak about the algebra freely generated over a class
K by a set X.

We shall fix the notation <2 used above for the rest of the book: for any j/ and
a: X—A, &: .^(X)—^ is the homomorphism such that 6i|Y=a. To evaluate
a ZT-term t in a Z-algebra sd for a given assignment a: X—A of values to the
variables amounts to the computation of t&. Indeed, we showed in the proof of
Theorem 3.11 that t^(ai)=t& for all s4, a. and t.

The polynomial functions in variables X of an algebra d are the mappings one
can get from the “projections” xd (x£X) by iterated compositions with the
basic operations (<r£ 2j. If the generating set of functions is enlarged by the
set of all constant mappings (c£A)

yc: Ax — A, a»-*c (aC/4x),

then we get, in general, a larger class of functions. These are called algebraic
functions. We shall need just the unary (i.e., l-place) algebraic functions and these
only are defined below. In this special case X is a singleton {x} and we may iden
tify any mapping a: X—A with the element xa^A. Then the unary algebraic
functions can be defined simply as certain mappings from A to A.

Definition 3.13. The set of unary algebraic functions Algi (xa/) of a Z-algebra .a/
is defined as follows:

(i) l^Alg^).
(ii) For every c^A, Algl(j/) contains the constant mapping ye: A—A,

a—c (a£ A).
(iii) The composition ... ,fm) is in Algl (j/) whenever m^O,

and flt/^AlgJj/).
(iv) All members of Algl (a/) are obtained by the rules (i)—(iii).

The constant mapping (c£A) is usually denoted simply by c. It is intuitively
clear from Definition 3.13 that every /€ Algl (aa/) can be represented by an expres-

28

sion similar to the terms that gave the polynomial functions. Let X=a4U{x}
(x^). Following the inductive form of Definition 3.13 we associate with every
AAlgjlX) a ZX-term tf as follows:

(i) = x.

(ii) te = c for all c(= yc) (c^A).

(iii) If f = ^(/i, -Jm), then (f = bJ-

It is now an easy task to verify that the following lemma holds.

Lemma 3.14. For every /CAlgxfO there exists a term t^F^AUx) such that,

for all a^A,
f(a) = t^a)

when xa is the mapping such that aa|X —1^ and xaa a. □
The assignment aa depends on at A only. We may think of as a ZX-term

for a suitable X, in which all variables, save x, have been assigned constant values
from A In other words, the unary algebraic functions are obtained from polyno
mial functions by fixing the values of some variables. It is now obvious in view
of Lemma 3.5, that congruences of^ are invariant with respect to unary algebraic
functions. The converse of this observation holds also. In fact, it can be stated
in a stronger form in terms of the special unary algebraic functions introduced in

the following definition.
Definition 3.15. A mapping f. A-A is called an elementary translation of the
L-algebra if there exist an m>0. a til and elements

...,cm€A such that

f(a) = ^(q, cJ+1,.... cj for all atA.

The set of all elementary translations ofa/ is denoted by ET(j/).

It is obvious that ET(a/)S Algi(^)>

Lemma 3.16. An equivalence relation KEW is a congruence of si iffO is invariant
With respect to all elementary translations of st.

n » _ L/m imnlipc f(a} = f(b)(0) for all a, b^A and /£ET(a/).
Suppose «=1W>

“tae the foUowim m elementaty translations:

fj^ = ...» bj-i, i, aj+n •••> ~

29

Then
^(ai, a2, ...» am) =/i(ai) =/i(K)(0)

=f2(a2)=f2(b^(e)

= (bi, b2,..., b^.
Hence 0^, ..., a^^, ...,bm) and we have verified that 0€C(^- The

converse is obvious.

4. LATTICES

We shall need a few facts from lattice theory, and these are quickly surveyed here.

Definition 4.1. Let A be a set. A relation q^AXA is called a partial ordering

of A, if

(1) (q is reflexive),

(2) (e is antisymmetric), and

(3) qq S Q (q is transitive).

If q is a partial ordering of A, then (A, q) is called a poset.

The usual symbol for a partial ordering is S. Often a set A is called a poset
when a certain partial ordering of A is understood.

An example of a poset is (pS, £), where S is a set and S the usual subset
relation in the power set pS. Another simple example is (N, S) where a is the
“less than or equal” — relation of natural numbers. This S is a total ordering,
which means that any two elements of the poset are comparable, i.e., either aSb
or bsa holds for any two elements a and b. A poset CL S) in which S is a total

ordering is called a chain.
Let (A, S) be a poset and a, b^A. We may write a^b when bSa, a^b

when aSb and a^b, and a>b when a^b and a^b. Clearly S is a partial
ordering and the poset (A, s) is said to be dual to (J, S)- Each one of the rela

tions s, ■< and > determines S completely.
An element a^A is an upper bound of a subset H^A if bSa for all b£lL

An upper bound a of HqA is the least upper bound, or the supremum, of H,
if aSc for all upper bounds c of H. Lower bounds and greatest lower bounds
(infimums) are defined similarly. The least upper bound and the greatest lower
bound of a subset H are denoted, respectively, by VH and hH. In case of an

30

indexed family (a^iel) of elements the notations M^iel) and A^lid) may

be used.
An element c£A is a zero element of the poset A if c-^a for every at A.

If a poset has a zero element, it is unique and usually it is denoted by 0. Similarly,
the unit element 1, is defined by the condition that a^l for all at A . Clearly
kA exists iff the poset has a zero element 0, and then A^=0. Similarly, VA
exists, and then equals 1, iff A has a unit element 1.

Definition 4.2. A poset (A, ^) is a lattice, if V {a, b} and A {a, b} exist for all
a, be A. It is a complete lattice, if VH and AH exist for all subsets H of A.

In a lattice one usually writes a^b and a kb for V {a, b} and A{a b}, respec
tively. The element a\/b is also called the join of a and b, and a kb is the meet
of a and b. It is easy to see that VH and AH exist for every finite, nonempty
subset H of a lattice. However, V0 exists only in case the lattice has a zero ele
ment 0. Then V0=O. Similarly, A0 exists iff the lattice has a unit element 1;

then A 0 = 1. „ , . . , x.
The following lemma follows directly from the definitions of the jom and the

meet.
Lemma 4.3. If (A, S) is a tarto then and V satisfy the following identities:

(LI) xkx—x, xVx=x (idempotence).

(L2) xky=ykx, x\!y=yVx (commutativity).

(L3) xk(ykz)=(xky)kz, x^y^^y^z (associativity).

(L4) xk(x'jy)=x, x\/(xky)=x (absorption). □
The identities (LI)-(L4) are characteristic of lattices in the following sense.

If (A, A V) is an algebia with two binary operations that satisfy these identities,

then (A, s) is a lattice when S is defined so that

a g b iff = a (a> beA)-

, □ a for all a, beA. In lattice theoryIn this lattice V {a, b}=a\jb and A {a,) ets and as alee-
lattices arc usually defined and considered m parallelbo h as posets alg

bras. The two aspects of the theory complement eac t certain
The following lemma is often useful when one wants to show that a certam

poset is a complete lattice.
i a t (A is a complete lattice, if kH exists for each subset
Lemma 4.4. A poset (A s) » u q

HqA.
31

Note that the existence of A 0=1 should also be ascertained when Lemma 4.4
is used. We shall now apply the lemma to an important example. Let A be a set.
It is easy to see that the intersection /) of any equivalence relations et
(it I) of A is again in E(Af This means that

A(s(|i€Z) = A (e^iCZ)

always exists in the poset (E(A), c). (In particular, A0=U-) Hence, we get

Lemma 4.5. For each set A, (E(A), s) is a complete lattice. □

In general, the union of equivalence relations is not an equivalence relation
For any H^E(A\ VH is the intersection of all equivalence relations which
contain the union UH. A more useful description of the supremum is given in

the following lemma.
Lemma 4.6. Let H^E(A} and a,beA. Then a=b (V H} iff there exist an nsO,

£1.......En£H and alfa^A such that

a£iai£2^2 ••• ^n —

The lemma may be used to prove the following important fact.

Theorem 4.7. For any algebra ^=(.A, Z), CW forms a complete sublattice of
(E(A), £), that is to say, \H^CW and LH^CW whenever H^CW- □

The direct product (L1X...XLn, S) of posets S), S) is a poset
when we define 3 in Z^X...XLn so that

(ai,...,a„)^ iff at^bt for all i = l,...,«.

If the (Lt, ^)’s are lattices, then the direct product is also a lattice in which

(a15..., a„)V(bi, •••, bn) = («iVbi, ...» a^bn)
and

(«!,..., a„)A(bi,.... b„) = (cqAbi,...» anLb^).

An ideal of a lattice (X, S) is a nonempty subset I of A such that, for all a, be A,

(1) a, bed implies aVbel, and
(2) a^bel implies
A dual ideal of a lattice (A, S) is a nonempty subset D of A such that, for all

a, beA,

(!’) a,beD implies at\beD, and
(2’) a^beD implies a^D.

32

General examples are provided by the

(i) principal ideal (a]= generated by an element a£A, and by the
(ii) principal dual ideal [a)={x€^4|xSa} generated by an element a^A.

Let A and B be posets. A mapping <p‘. A-+B is said to be isotone, if

(yai, a^A^ ^a2- a1cp S a2<p.

Suppose now that A and B are complete lattices. The mapping cp is co-continuous, if

V(a(|i SO)9> = V^l' = °)

for every ascending <a-sequence

o0 S ai a2

of elements a^A (Osi<co). An co-continuous mapping is always isotone, but
the converse is false.

Let A be a poset and <p: A-^A a mapping. An element a^A is a. fixed-point
of cp, if a(p=a. It is the least fixed-point of cp, if all other fixed points of cp are
above it. Of course, there can be at most one least fixed-point. A well-known
theorem by A. Tarski states that every isotone mapping in a complete lattice
has a fixed-point. For co-continuous mappings the following stronger result holds.

Theorem 4.8. Let (A, be a complete lattice and <p: A—A an m-continuous

mapping. Then
[p] = V(O<p |i S 0)

is the least fixed-point of (p.

Proof. Since (p is isotone, implies

0 S 0<p S 0<p2 o^p3 s....

By co-continuity, we get now

= V(0^'+1|i * 0) = V(0<p'|i S 0) =

For any fixed-point a of (p, OS a implies

Qcp ^acp - a,

■ . Om^a Hence [o>]Sa, and [<p] is theand in general by induction on itU, U(P —a-
least fixed-point of (p.

3 G&scg 33

5. FINITE RECOGNIZERS AND REGULAR LANGUAGES

In this section several basic concepts and facts from the theory of finite automata
are reviewed. For many readers there is probably nothing really new. The pre
sentation is quite telegraphic and proofs are sketched at most. Much of the mate
rial will be generalized to tree automata in Chapter II, and the present section
is intended mainly as an outline of the proper background scenery.

An alphabet is a finite nonempty set of symbols which are called letters. We
shall usually use the letters X, Y and Z to indicate alphabets. A finite string of
letters from an alphabet X is called an X-word or a word over X. Consider an arbi
trary y-word

w = xxx2... x„ (n S 0, Xi, ..., x^X).

Here x—Xj is possible even for i^j. If n=0, then w is the empty word which
is denoted by e. The length of w is n and we write it |w|. Obviously, |w|=0 iff
w=e. The set of all y-words is denoted by X*, and the set of all nonempty X-
words is denoted by X+. The letters of an alphabet are viewed as indivisible
symbols. This means, in particular, that for any msO, n=0 and
Xi, -,xm, ylt ...,yneX,

x1x2...xm = y1y2...yn

holds just in case m=n and x(=y(for all i=l,...,m. Letters are considered
words of length 1. Hence, we may write XcX+aXi and X^=Xi'\Je.

In Section 3 we noted that X+ is the free semigroup generated by X, when the
product of two words is defined to be their catenation. Similarly, X* is the/ree
monoid generated by X. The identity element is the empty word: ew=we=w
for each

A language over X, or an X-language, is simply a subset of X*. An ^-language
is e-free if it does not include the empty word. Of course, formal language theory
concerns itself with such languages only that can be specified in some effective
manner.

A family of languages & is defined by indicating for each alphabet the set
(JV) of ^-languages belonging to the family. For example, if (%) could consist

of all languages recognized by automata of a given type with input alphabet X.
If LEifCV), one may write just Two families of languages and
are equal, which we write Jf = if, if XC{X')=i£fX} for every alphabet X.
Similarly, the inclusion Jfsif means that X (A3 £ if (X) for every X.

One way to specify a language LsX* is to give an automaton that can exam
ine any given A"-word and then tell whether the word is in L or not. Such autom
ata are called recognizers. The most basic type of recognizers is the following:

34

Definition 5.1. An X-recognizer (also called a Rabin—Scott recognizer) A consists of

(1) a finite (nonvoid) set A of states,
(2) the input alphabet X,
(3) a next-state function b: AxX—A,
(4) an initial state a^A, and
(5) a set A' £ A of final states.

We write A=(^, X, S, a0, A').

If the y-recognizer A of Definition 5.1 is in state a (fA) and receives the input
x (fX), it enters state <5 {a, x) and remains in this state until it reads the next
input letter. The next-state function is extended to a function

a: AxX* -A
as follows:

1° ^(a, e) = a for each a£A, and

2° §(a, wx) = 5(^(a, w), x) for all a^A,

w£X* and x^X.
We will omit the cap from & For any a^A and w£X*, 5 (a, w) is the state of

A when it has read the whole input word w, from left to right, and the state in the
beginning was a. As a language recognizer A operates as follows. The word w to
be tested for membership is entered to A so that the state of A initially is a0.
Now w is accepted by A if <5(u0, w) is a final state. Otherwise w is said to be rejected
by A. The language recognized by A consists of all y-words accepted by A, i.e.,
it is the y-language

L(A) =

An y-language L is called recognizable, if there exists an y-recognizer A such
that L=L(K). The family of recognizable languages is denoted by Rec, and
Rec X denotes the set of all recognizable y-languages.

In the definition of y-recognizers the finiteness of the state set is essential.
Otherwise, every y-language would be recognizable.

We shall now prepare for the first of the many characterizations of recogniz
able languages.

The product of two y-languages U and V is the y-language

UV = {Mv|u€tf, v€R}-

The product is associative:

U(yW) = (UV)W for all U, V, W £ X*.

3’ 35

Furthermore,
[70 = 0[/ = 0 and U{e}= {e}U = U

for every X-language U.
The powers Un (n^O) of an X-language U are defined inductively:

1° U° = {e} and

2° Un= U^U for n > 0.

By means of the powers we may define the iteration of U

U* = U(U"|n = 0).

Excluding U°, we get the language

U+ = U(U"|n S 1).

Clearly, U*=U + \J{e}, and U + = U* iff e^U. A word w^X* belongs to (7*
iff it can be expressed in the form w=u1ui...u„, where nSO and ulf ..., u„£ U.

Note that X" is the set of all X-words of length n (n^O) and the set X* of all
X-words really is the iteration of X (when X is viewed as the set of X-words of
length 1).

Union, product and iteration are called the regular language operations.

Definition 5.2. The set Reg X of regular X-languages is the smallest set R such
that

1° 0£R and {x)CR for each x£X, and

2° U,V^R implies CUE, UV, U\R.

Regular languages are also called rational languages. All finite languages are
regular. Hence Reg X is the smallest set of X-languages containing the finite
X-languages which is closed under the three regular operations.

The form of Definition 5.2 implies that every regular X-language can be repre
sented by a regular expression which shows how the language is obtained from 0
and the languages {x} by forming unions, products and iterations.

Example 5.3. Let X={x, y}. Some members of RegX are 0, {x}, {y}, {xy}=
= WW> {xy,yy}= WWU{y}{y}=({x}U{y}){y} and

U = {x'y^i S 1, j £ 0}U {yx^lfc S 0}.

A possible regular expression for the language U would be »/=(x(x)*(y)*) +
+(y(xx)*) (usually ‘ + ’ is used for union). If we agree on the usual hierarchy of
regular operations (first iterations, then products, and unions last), then some
parentheses can be omitted and t] becomes xx*y*+y(xx)*. The language U is

36

recognized by the T-recognizer defined by the state graph of Fig. LI (the initial
state is a0 and the final states are a, b and c). □

The following theorem is one of the cornerstones of finite automaton theory.

Theorem 5.4. (S'. C. Kleene 1956). Rec = Reg. □

The theorem is effective in the following sense. There are algorithms to construct
a recognizer for any regular language given by a regular expression. Conversely,
a regular expression representing L(A) can be found for any given recognizer A.

Kleene’s theorem implies also that the family Rec is closed under the regular
operations. We shall present some more closure properties of the family Rec.

Theorem 5.5. Let X and Y be arbitrary alphabets.
(a) If U.V^ecX, then 1707, U-V^ec X.
(b) If U is a recognizable X-language, then so is its mirror image (or reversal)

mi (t/) = {%„... x2%i|n SO, x^.-.x^U (*;€%)}.

(c) IfUandV are recognizable X-languages, then so are the quotient languages

U-iy = = v for some u^U, v£V}
and

UV-1 = {w€y*|wa = u for some u^U, v£V}.

(d) Let <p: X* — Y* be a homomorphism (of monoids). If U^ecX, then
Ucp^ecY. If F£ Rec T, then V(p~r^ccX.

(e) If t/gRecT and <p: p%*-pK* is such a substitution mapping that
xtp^ec Y for all x^X, then Utp^ec Y. □

Recall that a mapping <p: pT+-»pr+ is a substitution, if

1° {e}<p = W.
2° {wx)(p = (wtp^xtp) for all w^X*, x£X, and
3° U<p =U(ucp\u£U) for all U G X*.

37

Obviously, the substitution is completely defined when the languages x<p (x^X)
are given. Extended to mappings of languages, homomorphisms (p: X* — Y*
are special substitutions for which every x<p (x£ X) consists of exactly one word.

Often it is convenient to allow a recognizer to be nondeterministic. In a non
deterministic X-recognizer A=(A, X, d, Ao, A') the next-state function is a
mapping

d: AxX-pA.

Also, the recognizer has a set Ao s A of initial states. If A receives in state a the
input letter x, then it may enter any one of the states in S(a, x). The operation
of A may be started in any initial state a0£A0. A word w=x1x2...xn (n^O,

...,xn£X) is accepted by A if there is such a choice of states a0, alt ..., a„
that

(i)
(ii) x^ for all i=l,...,n, and

(iii) a„£A'.

The mapping 5 extends to a mapping

5: pAxX* - pA
as follows:

1° ^H,e}=H for all He A, and

2° ^(H, wx)= U(^(a, x)|a€^(/f, w)) for all He A, w£X* and x£X.

Obviously, S(H, w) is the set of states A may reach under the input word w
from at least one state in H. The language recognized by A can now be defined
formally as

E(A) = {w€y*|S(J0, w)n/ # 0}.

Every ^-recognizer may be interpreted as a nondeterministic A-recognizer A,
where Ao and the sets <5 (a, x) all are singletons. On the other hand, every nondeter
ministic A-recognizer A may be turned into the equivalent ^-recognizer

B = (pA, X, 5, Ao, A"),

where A" = {H^pA\HClA'^0}; this is the well-known „subset construction".
Hence, a language can be recognized by a nondeterministic recognizer iff it is
recognizable in our original sense of the word.

Now we recall some algebraic characterizations of Rec.
An equivalence relation q on a semigroup if is a right congruence, if agb

implies aepbe for all a, b, S. Every X-recognizer A = (A, X, 5, a0, A') defines
a right congruence of the free monoid X* as follows:

iff <5(a0, u) = 5(a0, v) (u, v£X*).

38

The index of is at most |^4| and

£(A) = U(m^aI«€A'*, 5{a0, u^A’).

This shows that every recognizable ^-language is saturated by a right congruence
of X* of finite index.

Suppose now that the ^-language L is saturated by a right congruence q of X*
of finite index. The Z-recognizer

A = (X*Iq, X, <5, eq, L/q),

where 6 is defined by the condition

8(uq, x) = (ux)q (u^X*, x£X),

is then well-defined and
3 (eq, u) = uq

for each u^X*. This implies L(A)=L€Rec X. Among all right congruences of
X* saturating a given ^-language there is a greatest one which is called the Nerode
congruence of L. We denote it by Ql and it can be defined by the condition that

u = v(qL) iff (Vw€^*)(ww€L o vw^L)

for all u, v£X*. From these observations it is easy to construct a proof for the
following theorem.

Theorem 5.6. (A. Nerode 1957/ For any X-language L the following three condi
tions are equivalent:

(1) LCRecy.
(2) L is saturated by a right congruence of X* of finite index.
(3) The Nerode congruence qL is of finite index. □

There is a similar characterization which uses congruences of X*. Every X-
recognizer A defines a congruence 0A of X* of finite index which saturates L(A):

u = u(0A) iff (fia£A)3(a,u) = 3(a,v).

If L £ X* is saturated by a congruence, then a recognizer for L can be construct
ed as above in the case of right congruences. The greatest congruence 0L saturating
L is called the syntactic congruence of L. It may be defined by the condition that

u = v(0L) iff (fw, wfiX^(wuwfiL o wvwfiL)

for all u, v£X*.
Theorem 5.7. (J. R. Myhill 1957)’For every X-language L the following three con

ditions are equivalent:

39

(1) LCRecy.
(2) L is saturated by a congruence of X* of finite index.
(3) The syntactic congruence 0L is of finite index. □

Let 0 be a congruence of X* saturating an y-language L. Then L=(L0 ^0 -1,
where

0”: y* - y*/0

is the canonical homomorphism, and X*/0 is finite iff 0 is of finite index. This
applies, in particular, to the syntactic congruence 0L. The monoid X*fiL is called
the syntactic monoid of L. On the other hand, if we have a finite monoid JI, a
homomorphism

cp: X* - M

and a subset H^M for which L=Hcp~\ then cpcp^ is a congruence of X* of
finite index saturating L. It is now clear that Myhill’s theorem can be reformulated
as follows.

Theorem 5.8. For any X-language L the following three conditions are equivalent:

(1) LCRecy.
(2) There exist a finite monoid JI, a homomorphism cp: X*—M and a subset

HcM such that L=Hcp~\
(3) The syntactic monoid of L is finite. □

An y-language L is called local, if there exist sets H,KqX and X2 such
that

L~{e} = (HX*QX*K)-X*IX*.

The membership of a nonempty word w in such an L can be tested by checking
that the first letter of w is in H, the last letter of w is in K, and that no two con
secutive letters of w form a pair belonging to I. Note that a local language may,
according to our definition, contain the empty word.

A homomorphism cp: y*—T* is called length-preserving if |w^>| = |w| for
all w^X*. Obviously cp is length-preserving iff XcpcY.

In terms of these concepts one more characterization of Rec can be given.

Theorem 5.9. An X-language L is recognizable iff L=Ucp for some alphabet Y,
local Y-language U and length-preserving morphism cp: Y*—X*. □

An y-recognizer A is said to be minimal, if no y-recognizer with fewer states
recognizes £(A). It is obvious that every regular language has a minimal recognizer.
To say more than that, we need a few concepts.

40

Let A=(A, X, 5, a0, A') be an Y-recognizer. It is said to be connected, if there
exists for every a^A a word w£X* such that a=S(a0, w). Two states a and b
of A are said to be equivalent, and we write a^b, if

(Vw€X*)(^(a, w)£A' o 5(b, w^Ay

The recognizer A is reduced, if a^b implies a~b.
A relation 0££(A) is a congruence of A, if

(1) aOb implies 5{a, x)03(b, x) for all a, b£A and x^X, and
(2) 0 saturates A'.

Let C(A) be the set of all congruences of A. It is not hard to prove that ~ is a
congruence of A. In fact, it is the greatest congruence of A.

If 0£C(A), then one can define a quotient recognizer

a/0 = (aio, x, y, aoe, A'/e)
by putting

5'(a9, x) = b(a, x)9 for all a^A and x€X.

The congruence property (1) guarantees that <5 is well-defined. An easy induction
on |w| shows that

b'(a0, w) = 3(a, w)0 for all a^A and w^X*.

This implies L(A/0)=L(A). In particular, L(A/~)=L(A). It is now obvious
that a minimal recognizer should be reduced and, of course, connected.

Let A=(A,X,6,a0,A') and B=(B, X, q, b0, B') be two ^-recognizers.
A homomorphism <p: A-B is a mapping <p: A^B such that

(1) b(a, x)<p — q(a<p, x) for all a^A and x£X,
(2) a0(p=b0, and
(3) B'qr^A'.

Epimorphisms and isomorphisms of ^-recognizers are, respectively, surjective and

bijective homomorphisms. .
Homomorphisms, congruences and quotients of X-recogmzers are related to

each other the same way as the corresponding concepts in algebra. Hence, for
any the natural mapping de is an epimorphism A-A/ll. If <p:
is an epimorphism, then W is a congruence of A and A/W- is isomotphtc

to B. Moreover,
3(a,w)<p for all a£A, w£X\

This implies L(A)=L(B).

41

The Z-recognizer B is a subrecognizer of A if Be A, b0=a0, B'=A'P\B and
q—b\BxX. The subset B determines such a subrecognizer completely. The
connected part

Ac = {<5(a0, w)|w€y*}

of an Z-recognizer is the state set of a subrecognizer

Ac = (Ac, X, bc, a0, A'QAC)

where bc=b[AcXX.
The following theorem summarizes the main facts concerning minimal and

reduced recognizers.

Theorem 5.10. (a) The minimal recognizer of a regular language is unique up to
isomorphism, i.e., if two recognizers are minimal and equivalent to each other, then
they are isomorphic.

(b) A recognizer is minimal iff it is connected and reduced.
(c) For any recognizer A, the quotient A/~ is reduced and its connected part

(A/~)c is minimal. The recognizer AJ~ is isomorphic to (A/~)c.
(d) If A is minimal, B is connected and L(A')—L(S), then there exists a unique

epimorphism (p: B-*A. □

Theorem 5.10 implies that one can find a minimal recognizer for a regular lan
guage L by starting with any recognizer A of L; first one finds the connected part
Ac and then one has to determine the equivalent pairs of states in Ac. For both
tasks there are simple algorithms. The order may also be reversed; first form A/~
and then find the connected part of this reduced recognizer.

The decidability of the emptiness, finiteness and equality questions for regular
languages follows from the following simple observation.

Lemma 5.11. Let A be an X-recognizer with n states.

(a) If L(A) contains a word w of length ^n, then one may write w = uvz so that
and uvkz£L(X) for all k^O.

(b) L(A) is nonempty iff it contains a word of length ^n.
(c) L(A) is infinite iff it contains a word w such that n^ □

Statement (a) is often referred to as the “pumping lemma” for finite recognizers.
To test whether L(A) is nonempty it suffices to try all input words of length

<|J|. Similarly, the finiteness of L(A) can be checked by applying all input
words w such that]A|s2|. From any two ^-recognizers A and B one
can construct a recognizer for (L(A)-L(B))U(L(B)-L(A)). But this language
is empty exactly in case L(A) = L(B). Hence, the equivalence of A and B can
also be decided.

42

6. GRAMMARS AND CONTEXT-FREE LANGUAGES

We shall now consider the most important tools of formal language theory,
Chomsky’s grammars. A grammar is a device to define a language by showing
how to generate the strings of the language. The concept is very flexible, and by
imposing various restrictions on grammars several interesting families of languages
can be obtained. A good example is provided by the celebrated Chomsky hierarchy
consisting of four families of languages. At the bottom of the hierarchy we find,
once more, the recognizable languages. However, most of this section will be
devoted to context-free languages. These form the second step in the hierarchy.

Definition 6.1. A grammar is a 4-tuple (N, X, P, a^, where

(1) A is a finite nonempty set of nonterminal symbols,
(2) X is the terminal alphabet,
(3) P is the finite set of productions, and
(4) a^N is the initial symbol.

It is required that AAA=0. Every production is of the form P-y, where p, y€
€(AUAy and p contains at least one nonterminal symbol.

Let G=(N X P a0) be a grammar. For we write u=>Gv
(or just u^v, whenG is understood) if there exist u', H"€(AUy)* and a produc
tion p^P so that u=u'Pu" and v=u'yu". If u^Gv, then u is said to gener
ate v directly in G. If there exists a derivation

Uo^ G«l=* G^^ G---^ GUn (" — °)

such that m0=u and un=v, then we write u^Gv (or just u^d). The language

generated by G is the ^-language

L(G) = {w€X*|flo=*Gw}-

Two grammars are equivalent, if they generate the same language.
The grammars of Definition 6.1 are very general and every recursively enumer

able language can be generated by such a grammar.

Definition 6.2. A grammar (N, X, P, a.) is called right linear, if each production

is of the form
a - xb, a - x or a - e,

where a,b£N and x^X. A language is right linear, or of type 3 (in the Chomsky
hierarchy), if it can be generated by a right linear grammar.

43

A right linear grammar G=(N, X, P, a0) can be converted into a nondeter
ministic T-recognizer

A = (7VU {c}, X, 8, {a0}, A') (c $ A)

which recognizes L(G) as follows. For any a, b£N and x£X, put

(i) b£b(a, x) iff a —xb^P,
(ii) c£b(a,x) iff a-*x^P, and

(iii) 8(c, x) = 0.

Finally, let A'= {c}U {agA|u—egF}. Conversely, every T-recognizer
X=(A, X, 8, a0, A') can be replaced by the right linear grammar G=(A, X, P, a0),
where

P = {a ->■ xb|<5(a, x) = ft}U{a — e[a€A'}.

These observations lead to one more characterization of Rec:

Theorem 6.3. The type 3 languages are exactly the regular languages. □

Now we proceed to the main topic of this section.

Definition 6.4. A grammar (N, X, P, a0) is context-free (CF, for short) if each pro
duction is of the form

a -* y

where a^N and yC(AUT)*. A language is context-free (CF) if it is generated
by a CF grammar. The family of all CF languages is denoted by CF and the set
of CF T-languages by CF(A).

The CF languages are the type 2 languages in Chomsky’s hierarchy. Every
right linear grammar is CF. Hence RecgCF. If |A| = 1, then Rec JV=CF(A"),
but in all other cases the inclusion is proper.

Example 6.5. Suppose X contains two distinct letters x and y. Every derivation
in the CF grammar

G = ({a}, X, {a -► xay, a — xy}, a)

is of the form

a =>xay =>xxayy =>...=> xn~1ayn~1 =>xnyn (n S 1).

Hence, L(G) is the nonregular language {x"y|n £ 1}. □

The main fact to connect CF languages with tree automata is that context-free
derivations can be represented by derivation trees. A derivation tree is a descrip
tion of the syntax of a word of the CF language. (Here it would be more natural

44

to speak about “sentences” of a language.) Derivation trees have proved very
useful tools in the theory of CF languages. Later we shall define “trees” in a
way suitable for our purposes, but here there is no need to define the concept too
formally.

Let G=(N, X, P, a0) be a CF grammar. The derivation tree representing a
derivation of a word u£(XUN)* from a symbol aZXXUN) in G is defined by
induction on the number k of steps in the derivation:

1° If k=0, then u=a and the derivation tree consists of a single node
labelled by a.

2° Consider a derivation

(*) a => uL => =>...=► uk-! => u

where itsl. Suppose u1=d1...dm, where msO and dltdm£N\JX. At
this point the context-freeness of G becomes essential. Every application
of a production in (*) rewrites exactly one d(or a nonterminal derived from
exactly one dt. This means that (*) may be decomposed into a number of sub
derivations”

dt =>... =>vt (i = 1,

each of which yields a segment vt of u and u=v1v2...vm. If the derivation trees
of the subderivations are tlt tm, respectively, then the derivation tree of ()
is that shown in Fig 1.2.
The possibility m—0 was not excluded. Then k= 1, u=e and the derivation
tree reduces to a single node labelled by a.

The word xxxyyy has the derivation

a => xay => xxayy => xxxyyy

in the grammar of Example 6.5. The corresponding derivation tree is shown in

Fig. 1.3.
Consider any derivation

a0=>... =>w

of a terminal word w£L(G) from the initial symbol. The corresponding deriva
tion tree is also called a derivation tree of w, and w can be read from the “leaves”
of the tree.

The grammar G of Example 6.5 has the rather special property that every word
in L(G) has just one derivation in G.

Example 6.6. Consider the CF grammar

G = ({a0, a, b}, {x, y}, P,

where P consists of the productions

a0 ab, a - xay, a xy, b ybx and b - yx.

Obviously, L(G)= {xmym+"x"|m, nsl}. The word xyyx^L^G) has the two
derivations

a0 ab => xyb =► xyyx
and

a0 => ab => ayx =► xyyx

both of which are represented by the derivation tree shown in Fig. 1.4. In general,
the word xmym+nxn has (m + ”| different derivations all of which are represented

f n)
by the same derivation tree. □

Fig. 1.4.

In Example 6.6 the different derivations of the same word do not represent
different syntactic descriptions of the word. In fact, they can all be obtained from
each other by changing the order in which the individual steps are carried out.
If we agree on some fixed order in which the subderivations are to be carried out,
then there would be just one derivation for each derivation tree of a word in the
language.

Definition 6.7. A derivation

Uq => Ui => Ug =>... =>uk

46

in a CF grammar G=(M X, P, u0) is called a leftmost derivation, if we can write,
for every i=0, k—1,

= WjdM- and ui+1 =

so that wfX*, a^N and a--y€P. The grammar G is ambiguous if some word
w in L(G) has two different leftmost derivations from a0. Otherwise G is unambig
uous. A CF language generated by at least one unambiguous CF grammar is
said to be unambiguous. If all CF grammars generating a given CF language are
ambiguous, then the language is said to be inherently ambiguous.

A CF grammar G is unambiguous if every word w£L(G) has exactly one deri
vation tree. It is ambiguous, if at least one word w£L(G) has more than one deri
vation tree. The grammars of Examples 6.5 and 6.6 are unambiguous. Every regular
language is unambiguous. Of course, a language generated by an ambiguous CF
grammar may be unambiguous. The language

{x{yJzk\i=j or j = k (i,j,k^l)}

is a well-known example of an inherently ambiguous language.
There are many simplifying additional conditions that a CF grammar may

always be assumed to satisfy. Some of these are listed below.

Definition 6.8. Let G=(N, X, P, a0) be a CF grammar-
(a) G is reduced if either P=9 and N={a0}, or then for every a^N,

a0 =>* uav =>*w

for some u,v£(N\JXf and w^X*.
(b) G is in Chomsky normal form if each production is of the form

(i) a - be {a^N, b,c^N-a0\

(ii) a -* x (a^N, x£X), or

(iii) a0 -* e.

(c) G is in Greibach normal form if each production is of the form

(i) a -^xa1...am (m ^0, atN, altam£N-a0, xtX), or

(ii) a0 - e.
If mst for all productions of type (i), then G is said to bo in Greibach k-form

(tso>.
Proofs for the following facts can be found in the references given at the end

of the section.

47

Theorem 6.9. (a) Every CF grammar (N, X, P, a^ can be converted into an equiva
lent reduced CF grammar (N', X, P', a^, where N' cN and P' ^P.

(b) Every CF grammar can be converted into an equivalent CF grammar in any
one of the following normal forms: Chomsky normal form, Greibach normal form,
and Greibach 2-form. In all cases the grammar can be made reduced. □

We recall now some of the closure properties of the family CF.

Theorem 6.10. If the languages U and V are CF, then so are t/U V, UV and U*.
□

The languages U — {Xnynzn\m, n S 1} and V={xnynzm\m, nsl} are CF, but
UnV={xnynzn\n^l} is not. This observation implies also that the difference
U— F of two CF languages U and V may be noncontext-free. However, the
following theorem holds.

Theorem 6.11. If U is a CF language and V is a regular language, then UCV and
U— V are CF languages. □

The following theorem implies, as a special case, that CF is closed under mor
phisms.

Lemma 6.12. Let (p: pF*—pF* be a substitution mapping such that x<pCCF(F)
for all xeX. If U£CF(X), then U(peCF(Y). □

The following useful lemma is obtained most naturally by considering deriva
tion trees.

Lemma 6.13. (Bar—Hillel's pumping lemma). For each CF grammar G one can
find two natural numbers p and q such that the following holds for every
word w^L(G)'. if |w|>p, then we may write w=ulv1w'v2u2 so that

(i) ^w'v^q,
(ii) v^^e, and

(iii) upv^w'v^u^HG) for every i^O. □

Next we recall some decidability properties of CF languages. A CF language
is always assumed to be given by a CF grammar generating it.

Theorem 6.14. There are algorithms for deciding the following questions:

(1) Is a given word in a given CF language ?
(2) Is a given CF language empty?
(3) Is a given CF language finite? □

The decidability of the finiteness problem follows from Bar—Hillel’s lemma.
The other two statements can be justified quite directly.

48

Theorem 6.15. The following questions are undecidable:

(a) Are two given CF languages equal?
(b) Is the intersection of two given CF languages empty? | finite? | regular? |

context-free?
(c) Is the complement X* — U of a CF X-language U empty? \ finite? | regular? [

context-free?
(d) Is a given CF grammar ambiguous?
(e) Is a given CF language inherently ambiguous? □

In the previous section we noted that every regular language has a minimal
recognizer. One might want to find a CF grammar equivalent to a given one with
the smallest possible number of nonterminals (nonterminal minimization problem)
or with a minimum number of productions (production minimization problem).
However, the following theorem holds.

Theorem 6.16. Both the nonterminal minimization problem and the production mini
mization problem are unsolvable. C

Let n be a fixed natural number. The sum of two n-tuples of nonnegative integers

a = (a1(.... a„) and b = (b^,.... b„)

is formed componentwise:

a + b = (ai + bl> •••• +

Similarly, we put
ka = (kat, ka„)

for all £€N„ and a€NJ.
A subset K of NJ is called linear, if there exist an mSO and n-tuples alt ..., am,

b€ NJ such that
K= {fciaj + ... + kmam + blfcl.......fcmeNo}-

A subset of NJ is Semilinear if it is the union of finitely many linear sets.
Let X be an alphabet with n letters (nil). It is convenient to think that the

letters of JTare listed in some fixed order, xn xB. The Parikh vector of a word

w^X* is the n-tuple
Par (w) = (an .«» a«)

where at is the number of occurrences of xt in w (i=l, • ••.«)• The resulting

Parikh mapping
Par: X^ NJ

4 Gdcieg 49

satisfies the conditions

(i) Par(e) = (0, ...,0)
and

(ii) Par (wt>) = Par (u) + Par (a) (u, v€X*).

The mapping Par is extended to X-languages in the natural way:

Par (L) = {Par (w)|w6L}
for all L^X*.

Theorem 6.17. For every CF language L, the Parikh set Par (L) is semilinear. □

7. SEQUENTIAL MACHINES

Automata that produce outputs in response to inputs are generally called se
quential machines. The basic example of these is provided by the Mealy-machine
which arose as an abstract model of digital circuits with memory. A Mealy-
machine is a system A=(X A, Y,a0, 5, A), where

(1) X is the input alphabet,
(2) A is a finite, nonempty set of states,
(3) Y is the output alphabet,
(4) a0£A is the initial state,
(5) 5: AxX—A is the next-state function, and
(6) A: AxX—Y is the output function.

In many applications there is no fixed initial state, and a0 is then omitted from the
definition. The operation of A can be described as follows. If A is in state a (€ A)
and receives an input x(CA'), then it enters state 3 (a, x) and emits the letter
2 (a, x). In order to describe the behaviour of A under an arbitrary input word
w^X* we extend 3 and 2 to mappings

AxX* * A, 1: AXX* — T*
as follows:

1° 3(a,e)=a and X(a,e)=e for every a£A.
2° 3 (a, wx)—3(3(a, w), x) and 3(u, wx) = 3(a, w)2(<$(a, w), x) for all a^A,

wex*, xex.

If A receives in state a the input word w, it emits the word X(a, w) (C T*) and
ends up in state 3 (a, w). The translation induced by A is defined as the relation

tA = {(w, X(a0, w))\weX*}(sX*XY*).

Two Mealy-machines are said to be equivalent if they define the same translation.

50

In the case of a Mealy-machine A every input word w has exactly one transla
tion l(a0, w) and this has the same length as w. Mealy-machines enjoy a number
of desirable properties and they have a well-developed theory. For example, the
following facts are known:

(a) The translations induced by Mealy-machines have a very simple character
ization.

(b) The equivalence problem of Mealy-machines is decidable.
(c) For any Mealy-machine one can find an equivalent minimal Mealy-

machine and this is unique up to isomorphism.
(d) Let A be the Mealy-machine defined above. If L6Rec X, then LrA6Rec K

If LCRec Y, then Lr^eRec X.

There are several ways to generalize Mealy-machines. First of all, both the next
state and the output behaviour may be nondeterministic. Another generalization
allows the sequential machine to emit a word in response to each input letter.
Moreover, one may add a set of final states. Then a translation of a word is
accepted just in case it leaves the machine in a final state. We shall now define
a generalized sequential machine which includes all these features. It is now con
venient to use a set of productions which will account both for the next-state
behaviour and for the outputs. We arrive at the following concept.

Definition 7.1. A (nondeterministic) generalized sequential machine (gsm) is a
system A=(A, A, Y, a0, P, A') where

(1) X is the input alphabet,
(2) A is a finite, nonempty set of states,
(3) Y is the output alphabet,
(4) a0 (£A) is the initial State,
(5) P is a set of productions of the form ax^wb with a,b^A, x^X and

MEF*, and
(6) A' c A is the set of final states.

It is assumed that A A (AU F)=0. The gsm A is said to be deterministic if there
exists for each pair (a,x)(AXX exactly one production of the form ax^wb.

Let A be the above gsm. A production ax—wb is interpreted as follows. If A
>s in state a and receives the input x, A may enter state b and simultaneously
emit the word w. We shall now define the translation performed by A. For any
two words p q^A^X^Yy, we write p^q if there exist a production ax^wb
in P and words p' and p" such that p=p'axp" and q=p'wbp". The reflexive
transitive closure of =>A is denoted by =>A. Thus p=>\q (p, ?€(AUAU F)*)

4* 51

holds iff there exists a derivation of the form

P = K-'-^kPk-q (ksO).

Now, the translation induced by A is defined as the relation

tA = {(w, tOluCJV*, aou=>A^ for some

If (u, v)^Tk, then v is a translation of u. If A is deterministic, then each AT-word
w has at most one translation. Two gsm’s are equivalent if they induce the same
translation.

The tree transducers, which form the subject matter of Chapter IV, may be
viewed as further generalizations of gsm’s in which trees replace words as inputs
and as outputs. The following two theorems may be compared with some of the
results to be presented in Chapter IV.

Theorem 7.2. Let A=(y, A, Y, a0, P, A') be a gsm. If L^Rec X, then LrA£Rec Y.
If L^RecY, then Lt^RecX. □

Theorem 7.3. The equivalence problem of deterministic gsm’^ is decidable, but the
equivalence problem of nondeterministic gsm’s is undecidable. □

The next-state behaviour of a gsm is identical to that of a nondeterministic
Rabin—Scott recognizer. Thus the following fact, which will be needed in Chap
ter IV, is obvious.

Lemma 7.4. Let A be a gsm as defined above. For any two states a, b£ A, the
language

L(a, b) = {u£X*lau =>kbv for some
is regular. □

REFERENCES

Extensive treatments of universal algebra can be found in the following two standard references:

P. M. Cohn, Universal algebra, D. Reidcl, Dordrecht (2. ed. 1981).
G. Gratzer, Universal algebra, Springer-Verlag, New York (2. ed. 1979).

The following more concise texts may also be recommended:
H. Lugowski, Grundziige der universcllcn Algebra, Teubner, Leipzig (1976).
H. Werner, Einfiihrung in die allgemeine Algebra, Bibliographischcs Institut, Mannheim (1978).

A good introduction to lattice theory (available in German and in French, too):
G. Szasz, Introduction to lattice theory, Academic Press, New York (1963).

Two general texts on finite automata and regular expressions:
F. G£cseg and I. Peak, Algebraic theory of automata, Akadimiai Kiad6, Budapest (1972).

52

A. Salomaa, Theory of automata, Pergamon Press, Oxford (1969).
An extensive algebraic treatment of the theory of finite automata can be found in the follow
ing two volumes:

S. Eilenbero, Automata, languages, and machines, Academic Press, New York (Vol. A 1974,
Vol. B 1976).
The general area of formal language theory is covered, for example, by the following books:

A. V. Aho and J. D. Ullman, The theory of parsing, translation, and compiling, Prentice-Hall,
Englewood Cliffs, N. J. (1972).

M. A. Harrison, Introduction to formal language theory, Addison-Wesley, Reading, Mass.
(1978).
J. E. Hopcroft and J. D. Ullmann, Formal languages and their relation to automata, Addison-

Wesley, Reading. Mass. (1969).
A. Salomaa, Formal languages, Academic Press, New York (1973).

A highly recommendable classic on context-free languages is:
S. Ginsburg, The mathematical theory of context-free languages, McGraw-Hill, New York

(1966).

53

CHAPTER II

TREE RECOGNIZERS AND RECOGNIZABLE
FORESTS

This chapter is devoted to finite-state tree recognizers and the family of forests
recognizable by them. Here trees are defined as terms over a finite operator domain,
and a forest (or tree language) is just a set of trees. As in the case of formal lan
guages, there are two particularly natural ways to effectively define a forest; a
forest can be recognized by an automaton, or it can be generated by a grammar.
In Section 2 we introduce the tree recognizers which correspond to Rabin—Scott
recognizers. It does not make any difference whether Rabin—Scott recognizers
are defined to read words from left to right or from right to left, but here we should
consider both recognizers that read trees from the leaves down towards the root
(frontier-to-root tree recognizers) and recognizers which work in the opposite
direction (root-to-frontier tree recognizers). In both cases the recognizer may be
either deterministic or nondeterministic. This gives us four types of finite-state
tree recognizers. Three of these define the same family of forests, the family Rec
of recognizable forests. Deterministic root-to-frontier recognizers are essentially
weaker and they define a proper subfamily of Rec. In Section 3 we define regular
tree grammars. After having shown that these can be reduced to a very simple
normal form, we prove that regular tree grammars generate exactly the recogniz
able forests. Often it will be convenient to use regular tree grammars in the
study of recognizable forests. In Section 4 several operations on forests are con
sidered. Many of these arise as a generalization of some basic language operation.
Usually Rec can be shown to be closed under such operations. However, one
should note that there are often many ways to generalize from languages to forests,
and a right choice among the alternatives is essential if one wants to generalize
the corresponding results, too. For example, there is a natural generalization of
the product of languages with respect to which Rec is not even closed. A related
point is demonstrated by the case of tree homomorphisms. Here the greater gener
ality of trees compared with words admits of some entirely new phenomena, such
as the copying of subtrees.

In Section 5 regular expressions to denote forests arc defined, and the appropriate
generalized Kleene theorem can then be proved. Section 6 contains the minimi

54

zation theory of deterministic frontier-to-root tree recognizers. In Sections 7 to 9
the family Rec is characterized in some further ways. Recognizable forests are
described by means of congruences of the term algebra, as solutions of fixed-point
equations, and in terms of local forests. Moreover, a Medvedev-type character
ization in terms of certain elementary forests and elementary operations is given.
In Section 10 we show that the emptiness, the finiteness, and the equivalence
problems of recognizable forests are decidable. Section 11 is devoted to determin
istic root-to-frontier recognizers. The forests recognizable by them are charac
terized by means of a certain closure property. Furthermore, we show that
these recognizers have canonical minimal forms.

In this chapter we try to cover the central parts of what could be called the
generalized theory of finite automata”, but many topics had to be excluded.
Some of these are mentioned in the Notes and references. There we shall also
indicate a few other developments not directly related to this chapter as well as
some applications of the theory of tree automata.

1. TREES AND FORESTS

The “trees” which appear in tree automata theory may be visualized as tree
like directed labelled graphs. Such a tree has exactly one node, the root, to which
no edge enters. From the root there is exactly one path to every node. Moreover,
it is essential that the edges leaving a given node have a specified left-to-right
order. This concept has been formalized in several ways, but the variations in
the definition are of little or no consequence. We shall choose a definition that
suits well an algebraic treatment of the theory.

For the labelling of the nodes of a tree we need two alphabets of different kind,
a ranked alphabet and a frontier alphabet. As a rule, these two are assumed to be
disjoint. A ranked alphabet is a finite nonempty operator domain (cf. Sect. I. 2).
From now on I always represents a ranked alphabet. Other symbols to be used
for ranked alphabets include Q and r. The inclusion l£ 12 means that I £ Qm
for all wsO. If ImAf2„ = 0 whenever m^n, then IUQ may be defined:

(lUI2)m = ImUf2m for all msO.

* frontier alphabet is simply an alphabet in the usual sense, but sometimes we
should let it be empty. In fact, in most cases there is no need to exclude this possi
bility. Our usual symbols for frontier alphabets are X, Y and Z.

For any I and X, a EX-tree is simply a ZiV-term. Thus the set of Tyrees is
FAX). In many cases I or X, or both, are either understood or unspecified. In
such cases we often speak about X-trees, X-trees or just trees. A similar situation

55

will arise whenever a concept involves a ranked alphabet and a frontier alphabet.
We shall not lengthen such definitions by listing the modified names, but they
will be used without explanation whenever convenient.

The letters p, q, r, s and t are reserved for trees.
Although trees are defined as strings, they can be visualized as, and are in fact

intended as representations of, such tree structures as described above.

Example 1.1. Let I—be a ranked alphabet, where Z0={y},
and Za={o}. As the frontier alphabet we take X={x,y}. Then
t=co(a(y, x))) is the ZY-tree shown in Fig. II. 1. □

u

Fig. II. 1.

Any other way of writing ZY-terms would suit our purpose equally well. For
example, in Polish notation the tree t of Example 1.1 would be written as mayayx,
but it would still be treated in tree automaton theory as the “tree” shown in Fig.
ILL

Term induction will now be called tree induction. Below some important con
cepts are defined by tree induction.

Definition 1.2. The height hg (Z), the root root (t) and the set of subtrees sub (Z)
of a ZY-tree t are defined as follows:

1° If Z€YUT0, then hg(z) = O, root(z) = z and sub(z) = {z}.

2° If t = <r(Zi, ...,t^{m>- 0), then

hg(7) = max(hg(Z()|i = 1,.... m)+l,

root (0 = a, and

sub (t) = U(sub (Z^l S i s m)U t.

For the tree of Example 1.1 we get hg(z) = 3, root(z)=co and sub(z) =
= {t, a(y, o(y, x)), y, a(y, x), y, x}.

Subtrees of height 0 are referred to as the leaves of the tree. A leaf is labelled
by a letter from the frontier alphabet or by a nullary operator. The length |z|

56

of a tree t is simply its length as a word. The leaves of tree t of our example are
y, y and x. Its length is 15 (when parantheses and commas are counted, too).
Of course, one can define and prove things about trees by induction on the length;
but in practice this mostly reduces to tree induction. Induction on the height
hg (?) is equivalent to tree induction.

We shall use the term frontier in a rather informal way to designate the part
of a tree consisting of the leaves. The frontier of the tree of Example 1.1 consists
of the nodes labelled by y, y and x. The same letter or nullary operator could
appear several times as a leaf in the frontier. The visual picture of a tree also
suggests the notions of a branch and that of a path. In our t there are two main
branches leaving the lower a. They correspond to the subtrees y and cr(y, x).
There are three paths from the root to the frontier. They spell out the words
copy, way and coaax, respectively. These terms are used in a descriptive manner
to aid the intuition and no precise definitions are needed.

Note. In the literature the root is often called the “top” of the tree, while its
frontier is referred to as the “bottom”. Then “top-down” indicates the direction
from the root towards the frontier, and “bottom-up” means the opposite
direction. This terminology is connected with the common practice of drawing

trees upside-down.
The same tree may occur several times as a subtree of a given tree and one

should distinguish between a subtree and an occurrence of a subtree. It is possible
to assign coordinates to the nodes of a tree and then indicate a certain occurrence
of a subtree by the coordinates of its root. However, the following ample device
to specify an occurrence of a subtree will suffice. For any occurrence of a sub
tree , of a tree t, there is a unique way to write t^usv. Here u and a are just
words and the occurrence of s is uniquely determined by u

Wc shall now consider some ways to construct new trees from g,ven ones. The
very definition of suggests such a construction If rnsO and
1........ then »«............................. is > b
Tateno,ton of ,.........V » is X £ % ™

, t„ a new root labelled by o. The constructton is illustrated by Fig. 11.2.

Fig. II.2.

57

Note that the a-catenation is the cr-operation of the ZY-term algebra ^(X):

Let t be a TX-tree and suppose we are given a tree sx for every x£X. The tree
denoted by

t{x — sx|x$X), or just t(x *- sx),

is obtained by substituting in t, simultaneously for every x£X, sx for each occur
rence of x. The formal definition by tree induction reads as follows:

1° If r = z^X, then t(x sx) = sz.

2° If t = o-CZq, then t(x *- sx) — a.

3° If / = <7^,rm), then

Z(x - Sx) = - Sx), tm(x - sj).

If the trees are TX-trees, then t(x+-sx) is also a ZX-tree. However, the con
struction works also in the more general case where the trees sx are fiX-trees for
some Q and Ysuch that Zmni2n=0 whenever m^n. Then

Suppose X= {xlt , x„}. One may then write t(x*-sx) in the more explicit
form

- sX1, -,xn - sXn).

If the order xb ..., xn is understood, we may write simply l(sx , ...,sx).
A letter x may be left unrewritten by choosing sx=x. The notation

r(x1-^51, ..., x„ —sn) is used more generally to indicate a substitution where the
letters x(are rewritten as the corresponding st,s (i= 1, ..., n), but all other letters
of X are left unchanged in the tree t.

Example 1.3. Suppose ycTg, and x, y, zeX. If t=cr(y, <r(y, x, y), z), then

r(y-x, z*-c(x, x, z)) = u(x, a(y, x, x), a(x, x, z)).

The tree is shown in Fig. II. 3. q

Often a certain occurrence of a subtree s of a tree t should be replaced by a
tree r. If the presentation t=usv indicates the particular occurrence of s, then
the result is urv. It is easy to show that urv is also a IX-tree whenever t, re F^X).
The operation may also be described as follows. Let { be a new letter. There is a
unique tree FeF^XU® with exactly one occurrence of £ such that t=t'(^s).
Then urv=t'(i^r). Other ways to operate on trees will be encountered later on.

Trees define polynomial functions in algebras. These will be very important,
and we shall now see how the basic tree operations are reflected in them. Let

58

rf=(A, Z) be a Z-algebra. If t^F^X) is obtained by ^-catenation from the trsee
G, tm OsO, aCEm), then

t^ = o^tf,

is simply the composition of tf, ..., with Now consider the substitution
operation. Let X={xlt ...,x„} and t, ...,s„eF^X). The polynomial func
tion

Ax - A

is computed as follows. For any a:X—-A,

where P:X-*A is defined so that XiP=sf(cc) for all i=l,...,n.
Finally, consider the replacing of an occurrence of a subtree s of a ZA'-tree

t by a ZA'-tree r. Write t=t'(^s) as explained above. For any a: X-^A,
we get then

- rH(a) = t^(a')

where a': A is defined so that a'|y=a and £a=r (a).
A EX-forest is simply a subset of F^X). Many authors call forests tree lan

guages. In general, we use the letters R, S and T for forests
If EQ Q and XQ Y then all ZT-trees are <2/-trees, too. Thus every EX-

forest may be viewed'as an flK-forest. In most cases this can safely be done.
For example, a ^-forest is recognizable (in the sense defined in the next section)
as a ZT-forest iff it is recognizable as an I2F-forest.

Of course, those forests only are of interest that can be defined in some nat
ural way. This chapter is devoted to a family of such forests, the forests recogniz
able by finite tree automata. In the theory of these forests many concepts and
results familiar from the theory of recognizable languages can be perceived The
generalization from words and languages to trees and forests will be considered

in the next section.

2. TREE RECOGNIZERS

In this section we introduce tree recognizers, that is, tree automata which
deline forests. There arc four basic types of these recognizers. A tree recognizer
may be defined in such a way that it reads its input trees from the fronfer toward
the root. Then it is called a fnmler-io-rool recognizeror an F-reeogmzerfor
Short. A tree recognizer which reads the trees starting al the root proceeding the
towards the frontier is called a mt-lo-frontier recognizer. or simply an R-recog-
nlzer. In both cases the recognizer may be either Merlin: or nondnermmMc.

59

As a rule, all tree recognizers considered here are finite, i.e., they have a finite
number of states.

Our first task will be to compare the families of forests recognizable by these
four types of tree recognizers. It turns out that we get just two families. Deter
ministic F-recognizers, nondeterministic F-recognizers and nondeterministic F-
recognizers all have the same recognition power. The forests recognized by them
are termed recognizable. Deterministic F-recognizers are considerably weaker
and they yield a rather special subfamily of the recognizable forests.

As stated in the previous section, Z is always a ranked alphabet and X is
a frontier alphabet.

Definition 2.1. A frontier-to-root ZX-recognizer or an (F)ZX-recognizer, for
short, A consists of

(1) a finite Z-algebra j^=(A, Z),
(2) an initial assignment a:X-*A and
(3) a set A'QA of final states.

We write A = (j/, a, A') or A=(A, Z, X, a, A'). The forest recognized by A
is the ZX-forest

7(A) = {/^(X)!^)^'}.

A ZX-forest T is said to be recognizable, if there exists a ZX-recognizer A such
that F=F(A). The family of recognizable forests is denoted by Rec, and
Rec (Z, X) denotes the set of all recognizable ZX-forests.

The recognizers defined above are finite and deterministic although this has
not been emphasized in the name. They are our “basic” type of tree recognizer
and we shall usually omit the label “F” which distinguishes them from root-to-
frontier tree recognizers. The elements of the underlying algebra are called the
states of A and A is its state set.

If not otherwise specified, A will be the ZX-recognizer a, A'). Also,
B and C will usually be the ZX-recognizers (^, p, SB') and (W, y, C'), respectively.
Here ^-(B, Z) and V=(C, Z) are Z-algebras, [kX-B and y:X-C are
the initial assignments, and B’QB and C'gC.

In algebraic terms the operation of the ZX-recognizer A can be explained
as follows. Given an input tree t^F^X) the polynomial function /■* is evaluated
on the initial assignment a. The tree is accepted exactly in case the result t*(a)
is a final state. If

60

is the extension of a to a homomorphism, then

^(a) = t& for every teF^X),
and we may write

T(A) = {t^F^^A'} = A'&~\

A more pictorial description of the operation of A in automata theoretic terms
is also possible. Given an input tree t, A starts reading it from the leaves in states
that depend on the labels of the leaves. If a certain leaf is labelled by a frontier
letter x, then A is in state xn at that leaf. If the label is a nullary operator <r, then
A starts from that leaf in state a3*. Now A moves down all the branches towards
the root step by step as follows. If a given node v is labelled by the m-ary operator
<r (w>0), then A enters v in state where a1(am are the states
of A at the nodes immediately above v, listed in order from left to right. The tree
is accepted if A enters the root in a final state.
Example 2.2. Let Z=ZiUZ2, Zx={~}, Z2= {A, V} and X={x,y}. Define
the operations of the Z-algebra = ({0, 1}, Z) by the tables below:

a ^(a) a b (a, b) b)

0 1 oo
10 0 1

1 0
1 1

Define an initial assignment so that xa
tion of our TA"-recognizer A we choose
tion of A on the tree

t = A(~(A(y,-

is shown in Fig. II.4, The states of A at
tree is accepted since the state at the ro

0
0
0
1

= 1 and
1} as the

v)), V(~

the node,
ot is 1. Le

0
1
1
1

ya=0. To complete the defini-
set of final states. The computa-

(y), *))

are shown in parentheses. The
:t A and V have their usual

Fig. H.4.

61

meanings as symbols for the logical connectives “not”, “and” and “or”. Then
LA-trees are expressions of propositional logic in the two propositional variables
x and y. If 0 and 1 are interpreted as the truth values “false” and “true”, respec
tively, then A computes the truth values of propositions, when the truth values
of the variables are given. The forest recognized by A consists of the propositions
(in variables x and y) that are true when x is true and y is false. □

Example 2.3. Let £=£,= {+,.} and A={xj, x„} for some n^l. The
TA-trees may now be interpreted as arithmetic expressions in variables Xj, ..., x„.
Using the customary infix notation one would write, for example, x1+x1-x2
rather than +(x!, Let and define the Z-algebra
•^=({0, L m — 1}, L) so that

a+sib = a + b (modm)
and

a • ^b = a • b (mod m)

for all a, b=0, 1, ..., m — 1. If t is a TA-tree and a: A—A is any mapping, then
^(a) is the value of the expression t (mod ni) when the variables are assigned
values according to a. Thus any TA-recognizer A=(^/, a, A') based on the al
gebra si recognizes a set of arithmetic expressions which get a value (mod w) in
A’ when each variable x(is given a certain value x(a (i=l, ..., n). □

The examples suggest some useful general observations on tree recognizers.
A tree recognizer is a device that evaluates an expression (a tree) for given values
of the variables (given by the initial assignment) and decides then on the basis of
this value whether the expression belongs to given set or not. Since the state set
is finite such an evaluation is always “modulo something”. For example, we could
not construct a tree recognizer which would find out whether the value of an arith
metic expression is a prime or not. Similarly, there is no tree recognizer that recog
nizes the set of all trees in which two given operators appear the same number
of times. The following example discusses another manifestation of the same
phenomenon.

Example 2.4. Let T=T2= {o’} and let A be an arbitrary nonempty frontier alpha
bet. Then the forest

T=

is not recognizable. For suppose 7’=7'(A) for some TA-recognizer A. Since A
is finite, there must exist two different TA-trees s and l such that s&=t&. But
then we would have that

= a“(s&, t&) = ^(s&, s&) = a(s, s)&£A',
which implies the contradiction a(s, t)£T. □

62

Let us now look how tree recognizers arise as generalizations of the Rabin—
Scott recognizers through a universal algebraic interpretation. First, let
A=(J, I, <5, a0, A') be an /-recognizer as defined in Sect. 1.5 (to avoid confusion
we use I as the input alphabet). Define a ranked alphabet Z such that Zk=I and
Zm = 0 for all The next-state mapping of A is completely determined by
the Z-algebra sd=(A, T) which is defined so that

tr^a) = 5{a, a) for all a^A and

If we put X= {x}, then /-words and TX-trees can be identified as follows. The
empty word e corresponds to the tree x, and a nonempty word ... crk (k = 1, ex /)
may be interpreted as the tree crft(...<r1(x)...) (the reverse Polish notation for trees
would make the identification even more natural). Define a. X-*A so that
xa=a0. Then

S(a0,t) = for all ?€/*(= Fj(Z)l).

This implies that the forest recognized by the £A-recognizer (j/, a, A) is, inter
preted as an /-language, the language recognized by A. Hence a Rabin Scott re
recognizer may be viewed as a tree recognizer over a unary ranked alphabet and
a one-element frontier alphabet. The general T^-recognizers result when one does
not require I to be unary and allows also an arbitrary frontier alphabet X.

The nondeterministic frontier-to-root tree recognizers that we soon shall define
may be viewed as generalized F-tree recognizers in which nondeterminism is
allowed both in the Assignment of states to the leaves and in the next-state behav
iour. First we have to introduce nondeterministic operations and nondetermin

istic algebras. .
An m-ary nondeterministic (ND) operation on a set A is a mapping from A

to pA (msO). Thus an m-ary ND operation

/: Am -* pA

assings to every m-tuple of elements from A a subset of A. A nullary ND operation

/: {0} * PA

fixes a subset of A. and/may be identified with this subset/®. A
(ND) Z-algebra jJ=(A, I) consists of a nonempty set A and a family k H 2.}
of ND operations on A such that for each o^Z, <r is m-ary if The N
Z-algebra is finite if A is finite. A Z-algebra may be viewed as an ND Z-algebra
when elements of J are identified with the correspond,ng smsktons {«}.

On the other hand, we associate with every ND Z-algebra d-(A, Z) an ordi-

nary Z-algebra, namely the subset algebra

psd = (pA Z)

63

where
...,Am) = U(o^(a1,..., a^a^At, ...,ameAm)

for all msO, aeZm and Alt ..., Amf= A. Now any mapping

a: X-pA

may be extended to a homomorphism

&: ^(X) - psi.

Consider a ZT-tree t. The computation of the set t& may be described in automata
theoretic terms as follows. If a leaf is labelled by a letter x, then the automaton

may start at that leaf in any one of the states in xa. If a leaf is labelled by a
nullary operator, then is the set of the possible starting states. Let v be any
node in the tree labelled by an m-ary symbol a (m>0). Let <r(ti, ...»tm) he the
subtree of t which has v as its root. Then t^, ..., are the respective sets of
possible states of at the nodes immediately above v. Now may enter v in
any one of the states from ..., tm&). Clearly, t& is the set of all states in
which si may be at the root of t.

Definition 2.5. A nondeterministic frontier-to-root ZX-recognizer, or an NDF
ZX-recognizer for short, A consists of

(1) a finite ND Z-algebra si=(A, Z),
(2) an initial assignment a: X—pA and
(3) a set A'£ A of final states.

We write X=(si, a, A') or A=(A, Z, X, a, A'). The forest recognized by A is
the ZT-forest

T(A) = # 0}.

The definition of T(A) means that a tree t is accepted by A iff there is a set of
choices of initial states for the leaves and next-states for the other nodes such that
A enters the root of t in a final state. It is rather obvious that the ZA-recognizer

pA = {psi, a, A"),
where

A" = {^jCpXMiCU' # 0},

recognizes the same forest as A. Indeed, for any t^F^X),

t£T{pX) iff t^{^A" iff t^A"

iff tAHA'^0 iff t£T{X).

This is the natural generalization of the usual subset construction as applied to
ND Rabin—Scott recognizers, and pA is the “subset recognizer” corresponding

64

to A. Since every ZA-recognizer may be viewed as an equivalent NDF 2T-recog-
nizer we have verified the following theorem.

Theorem 2.6. The forests recognized by nondeterministic frontier-to-root recognizers
are exactly the recognizable forests. □

We begin the discussion of root-to-frontier tree recognizers with the nondeter
ministic version. In a nondeterministic root-to-frontier Z-algebra (NDR Z-algebra,
for short) st=(A, Z), A is a nonempty set and every with m^l is realized
as a mapping

o-*: A -p(^m).

For o’C^'o, is a subset of A. We call st finite, if A is finite.

Definition 2.7. A nondeterministic root-to-frontier ZX-recognizer A, or an NDR
ZX-recognizer, consists of

(1) a finite NDR Z-algebra st=(A, Z),
(2) a set A' c A of initial states, and
(3) a final assignment a: X—pA.

We write X=(st, A', a) or A=U, Z, X, A', a). The elements of A are called
states.

In order to make the formal definition of the forest recognized by such an A
easier to understand, we shall first describe its intended operation. At the root of
a given ZJV-tree t, A may be in any initial state a(:A'. Consider now any node
v of t labelled by some a£Zm with msl. If a is a possible state of A at v and
(a1(..., aj^a^a), then A may assume state Ol at the leftmost node immediately
above v, state u2 at the node immediately to the right of this node etc. For every
w-tuple in a"(a), A has such a sequence of possible next-states for the nodes
directly above v. Note that the possible states at these nodes are connected
with each other: (at, (a{.......a^Ka^^ does not imply, for example,
(aj, a2, ..., am)e<7^(,d). The tree t is accepted by A if it is possible to choose the
initial state for the root and then make the consecutive choices of next-state
vectors in such a way that A arrives at each leaf labelled by a frontier letter x in
a state belonging to xa, and at each leaf labelled by a 0-ary symbol a in a state
belonging to It is easier to formalize this recognition process by tracing it
from the leaves back to the root. The idea is to see which states at each node can
lead to acceptance. For the leaves this is clear. If a leaf is labelled by x£X, then
the accepting states for that leaf form the set xa. If a leaf is labelled by a^Z,,
then the accepting states are those belonging to of Now one can infer the states
that are accepting at the nodes immediately below the leaves. When these have

5 G&seg 65

been found, we may determine the states in which A should be at nodes one level
deeper in the tree. Finally one finds out the accepting states for the root. The tree
is accepted iff at least one of these is an initial state.

Definition 2.8. Let A=(^, A', a) be an NDR ZA-recognizer. A mapping

a: F^X^pA
is defined as follows:

1° If x^X, then xa. = xa.

2° If then =

3° If t = a(ti, ..., Q(m S 1). then

ta = {aC^lo-^^A^iaX.-.X^a) X 0}.

The forest recognized by A is the ZX-forest

Example 2.9. Let us consider again the arithmetic expressions defined in Example
2.3. We shall construct an NDR Z^, x2}-recognizer which accepts an expression
in variables xx and x2 iff the value of the expression is divisible by 4 when x^O
or 2 (mod 4) and xa=3 (mod 4). An obvious choice for a state set is
A = {0, 1, 2, 3}. The set of initial states is {0}, and the final assignment is defined
by Xia={o, 2} and x2a={3}. The next-state behaviour is determined by in
fering the possible summands or factors from the sum or product, respectively.

We get
4-^(0) = {(0, 0), (1, 3), (2, 2), (3, 1)}

+x(i) = {(0,1), (1, 0), (2, 3), (3, 2)}

etc., and

• ^(0)= {0}XXUXx{0}U{(2,2)}

•*(1)={(1, 1). (3,3)}

etc..

Note that we would get an equivalent NDF-recognizer by ‘ inverting these oper
ations (0+J/0=0 etc.), and making (0} the set of final states and a the initial
assignment.

The concluding observation of Example 2.9 can be generalized as follows. We
say that the NDF ZA-recognizer A=(J, I, X, a, A') and the NDR 2 A-recognizer
B=(B, Z, X, B', (1) are associated if

66

(1) A=B, A'—B' and
(2) (a) iff a^a^^, ..., am), for all m^l, cr€Zm and

ax,..., am, a£A, and
(3) cr^a® for every <r£Z0.

It easy to see that &=^ if A and B are associated. Since every NDF tree recognizer
has an associated NDR tree recognizer, and conversely, we get

Theorem 2.10. The forests recognizable by NDR tree recognizers are exactly the
recognizable forests. O

A deterministic root-to-frontier ZX-recognizer, or a DR ZX-recognizer, is a
NDR ZX-recognizer A=(a/, A', a) such that A' and all of the sets a^(a) (aEZm,
m&l, a^A) and with <7£Z0 contain exactly one element. Thus a DR ZX-
recognizer A has exactly one initial state and in every situation there is exactly
one choice of next-state vector. Moreover, there is exactly one final state for each
leaf labelled by a nullary symbol. The forest recognized by A is defined the same
way as in the general case.

That determinism is a real limitation in the case of root-to-frontier recognizers
is shown by the following example.

Example 2.11. Suppose o^Z2 and x,y£X. If a DR ZX-recognizer accepts the
trees u(x,y) and a(y,xf then it must accept o(x, xf too. Hence, the forest
T= {a(x, y), a{y, x)} cannot be recognized by any DR ZX-recognizer. On the
other hand, it is obvious that TfERec (Z, X). □

The inability of these recognizers to cope with situations such as that in Example
2.11 is due to the fact that they have to read disjoint subtrees separately without
any possibility to combine the information gathered from the individual sub
trees. In an NDR tree recognizer this handicap is compensated for by their abil
ity to make several guesses about the subtrees jointly before reading them sepa
rately.

3. REGULAR TREE GRAMMARS

So far, the recognizable forests have been characterized by means of three types
of tree recognizers. Now we shall introduce a class of tree grammars that also
defines the family of recognizable forests. These grammars are the natural coun

terparts to type 3 grammars.

Definition 3.1. A regular ZX-grammar G consists of

(I) a finite nonempty set N of nonterminal symbols,

3* 67

(2) a finite set P of productions of the form a—r, where a^N and
r^F^NUX), and

(3) an initial symbol a0£ N.

It is assumed that WCXTUY^fl. We write G=(N, Z, X, P, a0).

When Z and X are not specified, we speak about regular tree grammars or just
grammars, if there is no danger of confusion.

Let G be a regular tree grammar as in the definition above. The right-hand side
of a production is a tree in which nonterminal symbols may appear at the leaves
only. For p, q^F^X^N), we write

(or just p => 9)

if there exist a^N, r^F^N) and words u, v such that p=uav, q=urv and
a—r£P, i.e., p=>07 means that q is obtained by replacing an occurrence of a
nonterminal symbol a by a tree r, where a—r is a production of the grammar.
More generally, we write

p=>^q (or just p => *4)

if p=q or there exists a (nontrivial) derivation

P =* gP1 ^G-'-^cPn-l G? O1 — D

of q from p. Hence, =>* is the reflexive, transitive closure of =>, when we view it
as a relation in /^(YUN).

Definition 3.2. The forest generated by a regular ZY-grammar G=(N, Z, X, P, a0)
is the ZY-forest

T(G)=

Two regular ZY-grammars Gx and G2 are said to be equivalent if T(G1)=T(G^).

Example 3.3. Let Z = Z0UZ2, I0={w}, £2={ct} and Y={x). Define the regu
lar ZY-grammar

G = ({a, b}, Z, X, P, a),
where

P = {a — o(x, a(x, b)), a — a(co, a), b — a(x, x)}.
The tree

t = a (co, a(x, a(x, a(x, x))))

is in T(G) and it has the derivation

a =>o(co, a) => a (co, a(x, a (x, b))) => t.

68

If the graphical representation of trees is used, this derivation can be written
in the form

A regular ZX-grammar may be viewed as a context-free grammar with a ter
minal alphabet consisting of X, X, the parentheses and the comma. Thus, if we
treat trees as words, then the forests generated by regular tree grammars are
special CF languages. However, we are mainly interested in them as forests, and
we shall prove that exactly the recognizable forests can be generated by these
grammars. To facilitate the proof first we show that the form of the productions
may be restricted considerably without limiting the generative power of regular
tree grammars.

To begin with, we note that productions of the form

a-b (a,beN)

are not needed. All such productions can be deleted if we add to P all productions
a-^r [a^N, r^F^^-N) such that a^*b and b-rtP for some b£N.
(It is easy to see that a=>*b is decidable for a, baN.)

Call hg(r) the height of the production a^r. If the height of a production
a-^r is >1, then r is of the form a (n, rm), where mSl, and hg(r,)<
*hg(r) for each i=l, Ifwe introduce new nonterminal symbolsam

and the productions
(*) a — afuj,am)
and
(**) at - rt (i = 1........ «)»

then the production a~r may be deleted without changing the forest generated.
Indeed, any application of a-r can be replaced by an application of () followed
by applications of the productions ("). On the other hand, none of the produc
tions (■•) can be used unless C) has first been used, and when () lias been applied
it must be followed by applications of all productions <") as there is no other
way to rewrite the now nonterminals a,. The total effect of these steps is the same
as that of a single application of a-r. Ulus every production of height >1 can

69

be replaced by productions of lesser height. The process can be repeated until
there are no productions of height >1. In (**) there may be productions of the
type a-b, but they can be eliminated. Hence each production of height 0 may
be assumed to be of the type

(i) a -* x (a^N, x^X)

or of the form

(ii) aa (a^N,

A production of height 1 is of the form

a -* o(r1,..., rm) (m S 1, a£N),

where each r(is a frontier letter, a 0-ary operator or a nonterminal symbol.If r(
is a letter from X or a 0-ary operator, then we may substitute a new nonterminal
symbol d for it and introduce the production rt of height 0 without changing
the forest generated. Thus we may assume that all productions of height 1 are
of the form

(iii) a — ..., am) (m S 1, a, a1(amaN).

We say that a regular tree grammar is in normal form if each of its productions
is of type (i), (ii) or (iii). The previous discussion amounts to the following lemma.

Lemma 3.4. Every regular tree grammar can be transformed into an equivalent
regular tree grammar in normal form. □

Example 3.5. None of the productions of the grammar considered in Example 3.3
is in normal form. The production a—o(x, a(x, b)) can be replaced by the fol
lowing set:

a — trfaj.aa), at — x, a3 — <r(«i, b).

Notice that we could use the new nonterminal symbol Uj twice since in both
functions it should be rewritten as x. Similarly, the production a—a (at, a) is
replaced by the two productions

a — tr(a3, a) and a3 -* co,

and the production 6—a(x, x) is replaced by b—o^a^a^ (we already have
Oi—x). We have got a grammar in normal form with five nonterminal symbols
a, b, alt a2 and a3, and the productions

a-dfdj.aj), a-o-(a3,a), b—aCa^a,),

at — x, a2a(alt b) and a3 — w. □

70

The following minor generalization of regular tree grammars is introduced as
a technical aid. An extended regular SX-grammar

G = (N, Z, X, P, A')

is defined otherwise exactly as a regular ZY-grammar, but it has a set A sN of
initial symbols. Also =>£ is defined the same way as for regular tree grammars. The
forest generated by such a G is

T(G) = {teFA^o^ct for some ao^A'}-

It is immediately clear that every language generated by an extended regular tree
grammar can be generated by an ordinary regular tree grammar, too.

Theorem 3.6. The forests generated by regular tree grammars are exactly the

recognizable forests.
Proof. We associate with every NDF ZZ-recognizer A—(A, X, X, a, A) an

extended regular ZZ-grammar

G = (A, Z, X, P, A'),
where ,

P={a~x\x€X, a€xa}U {a - ^<r€T0, a£o }U

U{a-<r(a1,...,am)|mSl, a£Zm, a, at,..., am(A, ae^^,.... am)}.

The grammar G is in normal form (i.e., the productions are of type (i)—(iii)).
It is clear that every extended regular ZZ-grammar in normal form arises this way
from a NDF ZZ-recognizer. To prove the theorem it suffices now to show that
T(A) = T(G) for such an associated pair A and G. To do this we show by tree

induction that
(*) a£t& iff a=>^t

holds for all aZA and t€Fll(X'). _ ,
1° For t = xeX, aex& iff a - xtP iff a x (here we needed the fact that

G has no productions of the form a—b).
2° The case t^Z, is similar: iff ata' iff iff a
3° Let t=a{tx,...,Q fa*1) and suPPose that hoIds f

and all states. If a^*t, then there is a derivation of the form

a =>a(aitam) a(ti, »^m)>

where a., aSN and
Oj =** fi for ' = 1’ m.

Then ata^.-.a^ by the definition of P, and C) implies a^A,

Hence , .
ata^^^iA.......tm® =

,amtt„A.

71

Conversely, a£t& means that
a^^, ...,am)

for some a^h&, ...,am£tm&. But then (*) implies a^*^, ...,am=Stm. Also, P
contains the production a—o^a^,a^ and we get the required derivation

a =>o-(ai,..., am) tj = t.

This completes the proof of (*), and we have for every ZX-tree t,

t^T^A) iff t&DA'^Q

iff a£t& for some at A'

iff for some atA'

iff ttT(G).

Hence T(A) = T(G) as required. □

4. OPERATIONS ON FORESTS

In this section some more insight into the family of recognizable forests is gained
by studying its closure properties with respect to various forest operations. In
the following definitions and theorems all forests usually have the same ranked
alphabet and the same frontier alphabet. To show that this is no serious limitation,
we note the following simple fact.

Lemma 4.1. Let Z and Q be ranked alphabets such that and let X and X
be frontier alphabets such that X^Y. Then

Rec (I, X) = Rec (£2, FJClpF^X). □

Of course, the lemma presupposes the point of view that every ZX-forest is
also an £2 X-forest. Now let Z and Q be any ranked alphabets such that Ym A £2„=0
whenever myn. Also, let X and Y be arbitrary frontier alphabets. The lemma
implies that if Rec (I, X) and TCRec (£2, X), then S and Fean be regarded
as recognizable forests over a common ranked alphabet ZU £2 and a common
frontier alphabet XU Y.

Theorem 4.2. If S, TtRec (Z, X), then SClT, SUFand S-Tare also recogniz
able LX-forests.

Proof. Suppose S and T are recognized by the ZX-recognizers A and B, respec
tively. Let and define

y: X — C by (xa, xp).

72

Then
t^ = (t&,t^) for all t^F^X).

This implies that we get from and y ZY-recognizers for SAT, SUT and S—T
by choosing, respectively, as the set of final states A'XB', A'XBUAXB', and
A'x(B-B'). For example, let

C = y, A'XB').
For any t^F^X),

t€T(C) iff t? = (t&, t^A'XB'

iff ^T(A)AT(B).
That is, r(C) = SAT □

Note that the complement FZ(X)—T of a recognizable Zy-forest T is recogniz
able. If Tis recognized by a ZX-recognizer A, then the complement is recognized
by (X, a, A-A').

Definition 4.3. Let (Tx\x£X) be an T-indexed family of ZJ-forests. For each
Z^-tree t we define a forest t(x^Tx\x£X), mostly written simply t(x~Tf
as follows:

1° If t = z£X, then t(x^Tx) = Tz.

2° If t = ado. then t(x - Tx) = a.
3° If S 1), then

t(x~ Tx)= {a(s1,...,sm)|si€fi(x- Tx) for i =

The forest product of the family (TjxCr) with the S^-forest T is defined as the
ZX-forest

T(x *- TjxCX) = U(t(x - TjxC 201^7).

We shall usually write just T(x*- Tx). If T consists of a single ZT-tree t, then

T(x -Tx) = t(x - Tx).

The trees in t(x~TJ are obtained from t by replacing every occurrence of each
letter x by a tree from the corresponding forest Tx. Different occurrences of the
same letter x may be rewritten as different trees from Tx.

If xt,...,x^X, then we use the notation

/ (X) *- T\y , xn *" F„)

for the forest product T(x *- Tx), where

|T(for x = xt (i =
^“Ix for xC{xj.......xj

73

If the letters x15 x„ and their order are understood, then this notation may be
further simplified to T(7j,T„).

The comments presented at the beginning of the section show that the defini
tion of forest products also includes the cases, where TcFfX) and TzcFn(Y)
(x€X) for any such alphabets that ZmrW„=0 whenever m^n. If T is a ZX-
forest and the forests Tx are GT-forests, then T(x~Tx) is a (Z U G) T-forest.

Example 4.4. Let Z=Z0UZ2, Z0=M> X={x,y} and Y={y,z}. If
t=a{x, aly, x)), Tx= {a(y, z), z} and Ty= {cr(co, y), o{z, z)}, then t(x - Tx, y - TJ
contains eight trees, among them the tree <r(ff(y, z), a(ff(w, y), z)). □

The following special type of forest products is important.

Definition 4.5. Let 5 and T be ZT-forests and z^X. The z-product of S and T
is the forest product

S-ZT = T(x *- Tx\x£X)

where TZ=S and Tx=x for all x£X, x^z.

The trees in S' -z T are obtained by taking a tree t from T and substituting a tree
from S’ for every occurrence of z in t. Different occurrences of z may be replaced
by different trees from 5.

Theorem 4.6. If TgRec (I, X) and Tx CRec (Z, X) for all xd X, then Tlx*-Tx)e
€Rec(Z, X). In particular, Rec (I, X) is closed under all x-products (x£X).

Proof. Here it is convenient to use regular tree grammars. Suppose Tand the forests
Tx (x^X) are generated by the regular ZT-grammars G—(N, Z, X, P, a0) and
GX=(NX, Z, X, Px, af) (x^X), respectively. We may assume that the grammars
are in normal form and that their sets of nonterminal symbols are pairwise dis
joint. Construct a regular Z^-grammar

G' = (N', Z, X, P', a0)

with and

P' = P"U {a ~ ax\xdX, a -x€P)UU(^n

where P" is P with all productions of the form a-x (a£N, x£X) deleted.
We claim that T(G') = T(x — Tx). The idea is that every derivation a0=>a ...=>Gt

of a tree t€ T can be imitated by the productions in P" up to the point where
frontier letters x^X are to be generated. Instead of generating a leaf x one
transfers then by a production a—ax to the beginning of a derivation which
generates any tree txc Tx in place of the leaf. This means that G' can generate
all of T(x— Tx). On the other hand, every derivation in G' can be brought into

74

this form by rearranging the applications of the productions suitably. Hence,
T’(G') = T(x ♦- Tx). For a formal proof it suffices to show that

(*) a^*,p iff (3qeFAX))a^*cq,peq(x^Tx)

holds for all a^N and p^F^X). We proceed by tree induction on p. The fact
that the grammars G and Gx are in normal form is used without comment.

1° Let p—y^X. Suppose there is a q^F^X) such that a^q and
yZqtx — T.''). This is possible only in case q—z and y£Tz for some z£X. Then
a—z£P and hence a-*az, az^y£P'. We get the derivation

a => caz gX-

On the other hand, all derivations of y from a in G' are of this form. Hence, if
a^*,y, then a-^a., az^y£P' for some z^X. This means that a^z^P and
az— y^Pz, and thus z is the required tree q.

2° Let p—G^F^.
(2a) If there is a q such that a=>*Gq and o£q(x^Tx\ then there are two

possibilities. The first one is that q=a. Then P and P both contain and
we get the required derivation in one step. The other possibility is that
q—x^X and Px contains ax-»cr. Then u-^^x and ax^a are 'n 7* and we get
the derivation

a =>G'ax^G‘a-

(2b) Suppose a=>G-a- One possibility is that a-^o^P'. Then a+o is in P,
too, and we may choose q=G. The only alternative is that the derivation is of
the form a=>G.ax=>Go ^r some x£X. Then a^x^P and o^Tx, and we

may put q=x.

3° Let p=o{plt -'PJ 0«>0)- , • u
(3a) Suppose we have a tree q such that a=**Gq and P^X^T^- A§ain there

are two cases to consider. If q=z^X, then p£Tz, a-^z^P and a.=>0,P- N°w

a—ax£P' and, since PZ^P', we get
*a ^G^t^cP-

The other possibility is that
q = a(qi,.... q^

for some qit.... qm^F^X). Then
(i = l,...,m)

and the derivation o=*Gq must begin with a step

a ^g0"^’ > am)

75

such that
af=>G?< for i = t — ,m.

Our silent inductive assumption yields

ai=>G'Pi for i = l.

Combining these derivations with a—a(alt ..., a^P' we get a=>G,p.
(3b) Suppose a^G,p. This could mean that a^z^P and ax^*Gtp for some

z^X. Then we may choose q=z. The other possibility is that the derivation
takes the form

a =><P<r(ai, am) =>G<a(Pi, ■■■>Pm)-

Then there exist zy-trees qt such that

at=>iq{, P^qfx (i = l, ...,m).

Now we may put q=cr(q1,qm). □

Next we generalize the iteration operation taking the x-products as the starting
point.

Definition 4.7. Let T be any T^-forest and let x^X. Put T°'x = {x} and

Tj+i.x _

for all y’sO. Then the x-iteration of T is the ZY-forest

T*x =U(TJ-X\j S 0).

The forest T*x is obtained as follows. First include x. New members of T*x
are obtained by substituting in some T for every occurrence of x some tree
already known to be in T*x. Note that Tl,x = TUx and 7'^'Icr',+l’x for
every JsO.

Theorem 4.8. If T€Rec(I, X), then T*x€Rec(Z, X) for each x^X.

Proof. Let G=(N, Z, X, P, aj be a regular tree grammar generating the forest T.
Construct an extended regular TT-grammar G'=(N', Z, X, P', A'), where

(l)JV' = #U{d} (d^N),

(2) P' = PU{d -x}U{a — r]a — x^P, a0 — r^P}, and

(3) A’ = {a0,d}.

It is not hard to see that T(G') = T*X. □

The following operation may be seen as a converse to the x-product.

76

Definition 4.9. Let S and 7 be ZY-forests and let x$X. The x-quotient of 7 by S
is the forest

S~XT = {p£FffX)\S-x{p}fYT*0}.

If S={j} is a singleton, then we write S~xT=s~xT.

A tree p is in S -x 7 iff one can convert it into a tree in 7 by substituting for
every occurrence of x a tree from S. If 7 is unary and X— {x}, and if we iden
tify the tree ^(...^(x)...) with the word o1...ak, then

S~XT= {u£2*\SuC]T 0}

is the usual (left) quotient language.

Theorem 4.10. If Rec (I, X) and S is any ZX-foreSt, then S~XT is recognizable
for every x^X. Moreover, the number of different x-quotients S XT for any fixed
Tc Rec (7, A") is finite.

Proof. Let A be a lA-recognizer for T. We define an NDF Z^-recognizer

B = p, A')

which is identical to A (when states at A and singleton sets {a} are identified)
except for the initial assignment which is defined so that

xp = S&
and

zp = {za} for all z£X, z? x.

Here is the set of all states s& in which A may be after reading a tree s from S.
By tree induction one verifies that

tfi = (S-xW

for all tt F^X). Hence
/€7(B) iff tPf\A'*0

iff (S-xf)&r\A'*9

iff S-xtD7^0

iff tes-xT

for all t^F^X). This implies S-7= 7(B). The second statement follows from
this construction as the number of possible p s is finite. □

Next we introduce the forest operation corresponding to the u-catenation of

trees which was defined in Section 1.

77

Definition 4.11. Let be an m-ary operator and let Tlt ..., Tm be m IT-forests
for some m=0. The a-product of the forests Tlt ..., Tm is the forest

...,Tm) = {<r(h,..., UlGCTi. tmeTm}.

If m=0, then the cr-product is always {er}. In general,

<7^, ...,Tm) = {afe, ...,xm)}(xx - ...,xm - Tm)-

From Theorem 4.6 we get the following result which could easily be proved
directly, too.
Corollary 4.12.// and Tu ..., Tm€ Rec(Z, X) (m^.thena^, ..., Tm)£
e Rec (2, X). n

We shall now consider some operations in which forests are generally trans
formed into forests over another ranked alphabet. The ranked alphabets will
be 2 and Q. Moreover, we introduce for every msO a new alphabet

which is assumed to be disjoint from all other alphabets.

Definition 4.13. Suppose we are given a mapping

hx: X^Fa{Y)

and for each m=0 a mapping

hm: Im-Fn(TU5m).

The tree homomorphism determined by these mappings is the mapping

h: FAX) - FAY)
defined as follows:

1° h(x) = hx(x) for each xeX.

2° h(a(ti»..., tj) = hm(a)(ii - h^), ...Am - W)

for all m^O, ae2m and ..., The tree homomorphism h is said to
be linear if no letter appears more than once in hm(a) for any m SO and at 2m.

To define such an h it obviously suffices to give hx and the mappings hm for
which 2m^0.

Example 4.14. Let Z = Z2={|}, Ga={V} and X=Y=
= {x, y). Define hx and h2 by the conditions

hx(x) = x, hx{y) = y and ha(|) = V

78

If we interpret | as the Sheffer stroke (i.e., the 2-place NAND), V as the symbol
of disjunction and ' as the symbol of negation, then the tree homomorphism h
defined by hx and h2 transforms |-expressions in variables x and y into equivalent
expressions which use V and ' only. If the more customary way to write Boolean
expressions is used, we get, for example,

= /i(x|y)'Vh(x|x)'
= (x'vyyvcwv)'.

This tree homomorphism is linear. □

Tree homomorphisms are not really homomorphisms in the sense of algebra.
The concept is the result of the dual nature of words. When one generalizes from
languages to forests, words are usually treated as unary terms. On the other hand,
many concepts in language theory arise from the interpretation of words as
elements of a free monoid. Here the initial concept was that of a homomorphism
from the free monoid generated by an alphabet Z to the free monoid generated
by another alphabet £2. Such a homomorphism rewrites every letter in a word
over Z as a word over J2. When Z and f2 are now viewed as unary ranked alpha
bets, this means that every operator from Z is rewritten as a piece of J2-tree to
be combined with other such pieces to form the image of a given Z-word. The
generalization of such mappings to the case of arbitrary ranked alphabets gives
tree homomorphisms.

The following example shows that tree homomorphisms do not always preserve
recognizability.
Example 4.15. Put Z=Z1 = {a}, X= Y= {x} and f2=Q8={o>}. Define hx and

hx so that
hx (x) = x and hk (er) = a) (&, &)•

All ZY-trees are of the type
tk = ... cr(x)...)) = ^(x) (k S 0).

Obviously, h(Q=hx(x)=x and, for all k^O,
h(tk+1) = w(h(tk),

Thus h(Fx(X)) consists of the trees
s0 = x, Sj = w(x,x), ...,st+1 = co(sk, sk),

Suppose A=G4,42, r,a,Z) is an 12/-recognizer such that T(A)=h(FxWi).
There must exist two integers such that s(<2—Sjfi. Butthen

w(s„ Sj)& = Sj&) = n'M, = sl+1&tA'

would imply m(s„ s^h^X)). Thus h(Fx(/)) cannot be recognizable. □

79

The nonpreservation of recognizability in Example 4.15 is due to the ability
of the tree homomorphism to create arbitrarily large identical subtrees by copying.
No tree recognizer can check whether trees of unbounded height are identical
or not. Such copying is precluded by linearity, and the following closure theorem
holds.

Theorem 4.16.7/ h: Fz(X}^Fn(Y} is a linear tree homomorphism and
T£Rec(S,X), then A(T)GRec(f2, T).

Proof. Let G=(N, X, X, P, a0) be a regular tree grammar in normal form gener
ating T. We may assume that G has no superfluous nonterminal symbols from
which no T^-tree can be generated. Let S' and Q' be the ranked alphabets which
are obtained by adding all nonterminal symbols a£N to Z and Q, respectively,
as nullary operators. We extend A to a tree homomorphism

h': Fr{X} - FAY}

by continuing h0 to a mapping

hj: ^UN-FAY}

so that h'0(a}=a for all a£N. Now let

G' = (N, Q. Y, P', a0}

be the regular QT-grammar, where

P' = {a - h'{p}\a - pGP},

i.e., G' is obtained simply by replacing in every production a-p£P the right
hand side by the tree h'(p). The theorem follows when we show that T(G'}=h(T).
This again is obvious once we have shown that

(*) a=>G'i (is^F^X}) h(s} = t, o=>qS

holds for all a^N and teFn(Y}. We prove the two directions of (*) separately.
Suppose a Ay * for some a^N and We Prove the existence of the

required s by induction on the length of the shortest derivation of t from a.

1° If t is obtained by a one-step derivation, then P' contains the production
a—t. Then P contains a production a—r such that h'(r}=t. If r does not con
tain any nonterminal symbols, we may put s-r. Otherwise we choose for every
b^N appearing in r a tree r^F^X} such that Let 5 be the tree obtained
by substituting in r these trees for the corresponding nonterminal symbols. Then
h(s)=h'(r}=t since h' deletes all nonterminal symbols from r. Moreover,

a =>ar =>qS,
and s is the required tree.

80

2° Suppose now that the derivation consists of k steps (&>1) and that (*)
holds whenever a shorter derivation exists. The first step must be the application
of a production a—h'(p), where a—p^P. Since G is in normal form,

p =

for some m>0, and alt ..., am£N. The derivation of t can now be written
in the form

a^G-M^l * 01, *- =>G’■■■ =* G’*-

For each (i— 1, ..., m) which is present in hm(a) we have a subderivation

at ^G'^^nCn)

of length less than k. The linearity of h implies that such a & appears in hm(a)
exactly once, and hence is unique. For every rf there is an s^F^X) such that
h{s)=ti and If a certain does not appear in then we choose
any s^F^X) such that ai^Gsi and put With these choices we get
a tree

s = ...,s^Fs{X)
such that

a =>go(oi, •••> om) —>sm) = s
and

h(s) = - h(sj.......- h(sm)) = t.

Now we shall prove the converse part of (*). Suppose a=>Gs and A(s)=f for
some a^N, s^F^X) and t£Fn(Y). To show that this implies a^.t we
proceed by induction on the length of the shortest derivation a=>G...=>Gs-

1° If there is a derivation of length one, then it consists simply of the appli
cation of the production a—s. Butthen a-^t is a production of G and a=>GT
is the required derivation.

2° Suppose now that the derivation is of the form

a =*G*” ^G^l^l, •••> Sm) = S>

where and alt...,am^N. For every there is a shorter
derivation

a(=>g-" G^i‘

Hence, a^,h(s) for each /= 1,..., m. Moreover, P' contains the production

corresponding to the production a—a(ai< am) of G. Now the required deri-

6 Giueg 81

vation is
a =>G'hm(o)(^i *- Oi, ••• 5 am) ^G' •••

= h(s) = t.
This concludes the proof. □

Next we show that arbitrary inverse tree homomorphisms preserve recogniz
ability. We need the following technical lemma. Its proof is left as an exercise.

Lemma 4.17. Consider a Z-algebra and a mapping a: X^A, where XPlA=0.
Let

a:

be the unique homomorphism such that a|X=a and = 1^. Then alF^X) —&
and

p^ - Pi,- PtW = P& - M)a

for all k^Q, p^F^XUSd and plt Pk^F^X). □

Theorem 4.18. Let h: F^X^F^Y} be a tree homomorphism. If T^ec{Q, T),
then h-^TK^c^.X).

Proof. Let A=(A, £2, Y, a, Af be an £2 /-recognizer for T. We construct a ZX-
recognizer B=(^4, Z, X, A') as follows. For any msO, aEZm and a^, am(z
£A, we put

0®(Pi, = hm(CT)(^ - Oi, -,^m - om)a,

where a: Ffl(/U A)-A is the homomorphism for which a|X=a and a|zl = IA.
In the special case m=0, we get oa=h0(p)ai=h^A. The initial assignment
is defined by putting

xP = h(x)& for all x£X.

Now a proof by tree induction shows that
s$ = h(s)&

for all s^FfX). Hence, x€T(B) iff h(s)eT(X). This means that h~1(T) =
=T(B) is recognizable. □

(1) hx(x)£Y for all x€X.
(2) Am(ff)=co(ii,{J, where «€«,„, for all m^O, aeZn.

As a conclusion we consider a simple, but very important special type of tree
homomorphisms.

Definition 4.19. A tree homomorphism h: F^^F^Y} is called alphabetic
if the defining mappings hx and hm (msO) satisfy the following conditions:

82

An alphabetic tree homomorphism FxfX)—Fa(Y) can be defined only in
case for all such m^O that Ym^0. Alphabetic tree homomorphisms
are often called projections.

Consider the general alphabetic tree homomorphism of the definition. For
any t^F^X), the image hf) is obtained simply by rewriting every x in t as the
letter hx(x) and every as the operator co, where hm(cb)=a^1,
Hence h preserves completely the “shape” of the tree t. Obviously, h is linear. From
Theorems 4.16 and 4.18 we get

Corollary 4.20. Let h: F^X)-^Fn{Y) be an alphabetic tree homomorphism.

(i) If Rec (£,.¥), then h(T)€Rec(Q, Y).
(ii) If T£Rec(Q, Y), then h-W^Rec^, X). □

5. REGULAR EXPRESSIONS. KLEENE’S THEOREM

Kleene’s theorem is of central importance in the theory of finite automata and
it is quite natural that it was among the first results to be generalized to the theory
of tree automata. Although the greater generality adds some technical complica
tions, the standard development of the theory can be followed quite closely here,
too, once the right generalizations of the basic concepts have been found.

We fix again an arbitrary ranked alphabet Z and an arbitrary frontier alphabet X.
It turns out that some additional frontier symbols are needed in the construction
of regular forests. Therefore we will operate with an extended alphabet Z which
contains X as a subset.

Definition 5.1.Thesetofregw/ar YZ-expressions RE(Z, Z) is defined as the smal
lest set RE such that the following conditions are satisfied:

1° 0€RE.
2° I0UZcRE.
3° If C j^RE, then (C-H)€RE.
40 If C^RE and z^Z, then (f-^CRE.
5° If f€RE and z£Z, then «**)€RE.
6° If m^O, th, then

Thus regular TZ-exprcssions are strings of symbols from TUZ, of commas
etc. Parts 2° and 6° of the definition imply that every YZ-tree is a regular YZ-
expression. Regular expressions are intended as representations of forests.

Definition 5.2. The forest |>/| represented by a regular expression f/CRE(Z, Z)
is defined following the inductive form of Definition 5.1:

6* 83

1° |0|=0 (the empty forest).
2° If tjEZgUZ, then M = fr}-
3° KC+^^ICIUHI-

4° |(Un)l=ICKW-

5° KrOHCI*1.

6° |aOh, = -d’lml)-

Note that the operations in the right-hand sides of 3°-6° are forest operations
which have been defined in Section 4. It is easy to see that every tree tCF/Z)
represents, as a regular expression, the one-element forest {t}.

With this interpretation in mind we may simplify regular expressions by omitting
parentheses that are not needed in order to specify the intended order of the
operations. First of all, the outermost parentheses in G+n), and (f1)
are obviously superfluous if the expressions do not appear as parts of other
expressions. We may also agree that iterations precede products and that products
precede unions. Then the parentheses around can always be omitted and, for

example,
C+ri^’

is interpreted as a short form for

Example 5.3. Let Z=Z0UI2, and and Z={x,y}. The forest

represented by
r/ = wya(x, y)*'

contains the trees co, o(x, co), a(x, a(x, co)) etc. Note that y has a purely auxiliary
function; it does not appear in any tree of the forest |>/|. □

In the following definition we make the formal distinction between letters that
may appear in trees of the forest represented by a regular expression and those
letters that are used just to mark leaves to be rewritten when products of forests
are formed.

Definition 5.4. Suppose a regular ZZ-expression (can be written in the form

C = mOM)”
where q, 0£RE(Z, Z) and z£Z. Then every occurrence of z within the string -,0
is said to be bounded. An occurrence of a letter z^Z which is not bounded is/ree.
A letter z^Z is bounded in RE (I, Z), if all occurrences of z in £ are bounded,
and it is free in £ if it has at least one free occurrence in (. We denote by Z^ the
set of letters z£Z free in £.

84

In Example 5.3 Z,= {x} and y is bounded by the y-product.

Lemma 5.5. For any ?/CRE(Z, Z), |^|6Rec (Z, Z,).

Proof. We proceed by induction following the six parts in Definitions 5.1 and
5.2.

1° Z0=0 and |0|=0€Rec (Z, 0).
2° For each z^Z, Zz = {z} and [z| = {z)€Rec (Z, {z}). For <t€Z0, Za—^,

but still |o| = {o}C Rec (Z, 0).
3° If ti=£+0, then Z„=Z{UZe and H = l£|U|0|€Rec(Z, Z,) by Lemma

4.1 and Theorem 4.2.
4° If then (if we omit the trivial case z$Z9, |?/| = 0) Z,=Z{U(Z9—z).

There are two cases to consider. If z^Z{, then Z,=(ZjUZ9)—z. From
Theorem 4.6 we know that McRec (Z, Zc(TZfl). Thus it suffices to show that
no tree 1/?| contains any occurrence of z. But this is obvious since every such
t is obtained from some st |0| by replacing every occurrence of z by a tree from
|C|, and no tree in |C| contains z. If z^Z^, then Z,=ZCUZ9 and |^|CRec (Z, Z,)
follows directly from Theorem 4.6.

5° If then Z^Z^z. Thus |C|€Rec(Z, Z,) by Lemma
4.1. This implies |C*'|€Rec(Z, ZJ by Theorem 4.8.

6° If ^=0^, where m>0, a€Zm and |j/f|€Rec (Z, Z,() (i=
= 1, w). then Z=Z U...UZ, and every M is also a recognizable ZZ -
forest. Corollary 4.12 yields now H£Rec (Z, Z,). □

The operations (finite) union, z-product and z-iteration are called the regular
operations. A forest is regular if it can be constructed from finite forests by applying
a finite number of regular operations. In view of the preceding discussion regularity
can also be defined as follows:

Definition 5.6. A ZZ-forest Tis regular if there exist an alphabet Z (XcZ) and
a regular ZZ-expression such that M = r.

Note that an unlimited number of auxiliary letters (zEZ-X) is allowed in a
regular expression representing a regular forest, but that in any particular case
just a finite number of them are needed. Lemma 5.5 implies now that all regular
forests are recognizable. The next lemma contains the converse statement.

Lemma 5.7. For any EX-recognizer A one can construct a regular expression
^RE(Z, YLM) (we assume ZA^ = 0> such that fo| = T(A).

Proof. The proof is modelled after the almost standard proof for the corresponding
fact in the language case (due to R. McNaughton and H. Yamada (I960)). The

85

notation can be simplified by assuming that

A = {1, 2,.... k} for some k S 1.

As in Lemma 4.17 let

a:

be the homomorphism such that a|y=a and a|.4=lx- For any KA, K^A
and h, Q^h^k, we denote by T(K,h, i) the set of all KFS(XUK) such that

(1) ta.=i and
(2) sa€{l, ..., A} for all s£sub (^-(A'UZ'oUO-

Thus T(K, h, i) means that the leaves of t may be labelled, besides frontier
letters and nullary symbols, by states from K. Moreover, the computation of A
on t results in state i and the state of A at any node between the frontier and the
root is in the set {1, ..., A}. Obviously,

r(A) = U(T(0, k, elic

it suffices therefore to show that all sets T(K, h, i) are regular. To do this we
proceed by induction on the number h.

1° When A=0, no intermediate states between the frontier and the root
are allowed. Every tree t in T(K, 0, i) must hence be of one of the following types:

(i) t=x£X and xa=i.
(ii) t=KK.

(iii) t=<K£0 with a^=i.
(iv) r=a(c71, ...,4) with m^Q, dj£XUZ0UK Q=l,...,m) and ta=i.

In each case a regular expression for {/} can be written. The number of such
trees t is finite and we get a regular expression for T(K, 0, i).

2° Suppose we already have a regular expression for each T{K,j, i) such that
j^h for some h^k. We show that

(*) T(K,h + l, i) =

= T(K, h, i)UT(K, h, h + 1)-h+J\KUh+l, A, h + l)*',+1-/l+1r(AUh + l, h, i)

holds for all K^A and KA. This will complete the induction because the
ringht-hand side of (*) is obtained by regular operations from forests for which
we already have regular expressions.

Let T be the right-hand side of (*). From the construction of T it is obvious
that TsT(K,h+\,i). If K T(K, h +1, i), then either KT(K,h,i) or t has
a proper subtree such that sa=A+l. In the former case we get KT

86

directly. In the second case we have

^{Pl, •••» Pd} •/i + l{?U, •••» 'h + l{?jl’ •••> ’*+i{r}>

for some

Pi, ...,p&T(K,h,h+\), qilt ...,qiee ■ ■■, qjefT(KL)h+l, h, h+V)

and T(KUh+1, h, i). But this means that t belongs to the second part of T. □

Combining Lemma 5.5 and Lemma 5.7 we get the following generalized form
of Kleene’s theorem.

Theorem 5.8. A forest is recognizable iff it is regular. □

6. MINIMAL TREE RECOGNIZERS

The number of states is a simple and natural measure of the complexity of a
finite automaton. In this section we consider minimal recognizers of forests. In
the case of a recognizable forest minimality means simply a minimal number of
states, and there is always a minimal recognizer which is unique up to isomorphism.
All tree recognizers recognizing a nonregular forest must be infinite and counting
the number of states does not make any sense. Nevertheless, the general defini
tion of minimality is such that the minimal recognizer of a forest remains unique
even in such a case. The minimal recognizer of a forest can be derived from any
recognizer of this forest. If the forest is recognizable, then the minimalization
procedure is effective. Otherwise, the finiteness of the recognizers is not needed
in this section. Also, some of the concepts and results presented here will be
applied to infinite tree recognizers in the next section. Thus we will temporarily
drop our general assumption that all tree recognizers dealt with are finite. In all
other respects the earlier definitions and conventions remain valid.

We shall now define homomorphisms, congruences and quotients of tree recog
nizers The reader may find it helpful to review the corresponding material from
Section 1.2 before going on. Algebraic functions and elementary translations
(cf. Sect. 1.3) will also be needed.

Definition 6.1. A homomorphism from a EY-recognizer A to a ET-recognizer B

is a mapping <p: A-^B such that

(1) <p is a homomorphism from the I-algebraa/ to the ^-algebra

(2) acp = p, and
(3) B'cp-^A'.

87

If (p is a homomorphism from A to B, we write <p: A—B. A homomorphism of
tree recognizers is an epimorphism if it is surjective, a monomorphism if it is injec
tive, and it is called an isomorphism if it is bijective. If there exists an isomor
phism <p: A—B, then we write A^B and say that A and B are isomorphic.
If there exists an epimorphism <p: A—B, then B is said to be an epimorphic
image of A. A monomorphism is also called an embedding.

Part (3) of Definition 6.1 means that the final states, and these only, map to
final states in a homomorphism. If cp is an epimorphism, then (3) implies A' cp — B'.

Lemma 6.2. Let A and B be two LX-recognizers. If there exists a homomorphism
<p: A—B, then T(A)^T(R).

Proof. The clauses (1) and (2) of Definition 6.1 imply together with Lemma I. 3.6
that

t^(a)cp = ta(a<p) = t31^

for every t^F^X). Now clause (3) shows that

tgr(B) iff 1”^) = t^(a)(peB'

iff t^^A'

iff t€T(A)

for every t^F^X), and the lemma follows. □

Definition 6.3. A congruence of a IT-recognizer A is a congruence q of the algebra
saturating A', that is, such that A' q = A'. The set of all congruence relations

of A is denoted by C(A).

Lemma 6.4. C(A) is a principal ideal of the complete lattice and thus
(C(A), c) is a complete lattice itself, too.

Proof. It suffices to verify the following simple facts:

(i) 5X€C(A) (which implies C(A)?*0).
(ii) 0£e€C(A) and imply 0£C(A).

(iii) V(C|C6C(A))€C(A).

In (iii) the supremum is to be formed in C(j/). It is the generating element of the
principal ideal. □

In Theorem 6.10 we shall get a more useful description of the greatest element
of C(A).

88

Definition 6.5. The quotient XX-recognizer of a TY-recognizer A with respect to a
congruence q is the ZT-recognizer

A/p = (^Iq, ae, A'Iq),

where ac is defined so that xat={xd)Q for each x^X.

The usual relations between homomorphisms, congruences and quotiens hold
for tree recognizers, too. Some of them are listed in the following theorem. We
omit the proofs since they can be constructed exactly as the corresponding proofs
in algebra.

Theorem 6.6. (a) If q£C(A~), the natural mapping

o^: A — A/o, a ao {a^A),

is an epimorphism A—A/q {called the natural epimorphism).
(b) If cp: A-»B is a homomorphism, then the kernel (pep 1 is a congruence of A

and the image
A(p = (j/<p, P, A'cp)

of A is isomorphic to A/(pep"1. (In Acp j^cp is the Xalgebra (Acp, Z) such that
o^^cr^Acp and P is to be interpreted as a mapping from X to Acp.)

(c) If for some n, q£C(A), then A/q is an epimorphic image
of A/n. □

From Theorem 6.6 and Lemma 6.2 we get

Corollary 6.7. If q£C(A), then T(A/q)=T(A). □

Thus any congruence of a tree recognizer yields an equivalent recognizer which
is an epimorphic image of the original one. If the recognizer is finite and the con
gruence is nontrivial, then a real reduction in the number of states is achieved.
Obviously, the greatest congruence gives the smallest quotient recognizer. The
construction of the quotient recognizer involves a merging of states which are
equivalent in the sense that one can be substituted for another in any computa
tion without affecting the end result. We shall now give a precise meaning to this
equivalence of states and show then that the greatest congruence consists exactly
of the pairs of equivalent states.

Definition 6.8. Two states a and b of a ZY-recognizer A are said to be equivalent
and we write a~fb, or just a^b, iff

(VZ€Algl(^)) f^A' ~f(b)£A'.

89

To get a better intuitive grasp of this definition we recall the fact that for each
algebraic function /CAlg^a/) there exists a tree such that for

all a^A,
f(a) = t&a,

where ao: AO^A is defined by ^|aa=lA and (Lemma 1.3.14). This
means that sd computes f(a) from the tree t when one assigns state fl to all leaves
labelled by £. On the other hand, every tree defines this way a unary
algebraic function. Such a tree may be thought of as the unprocessed part of a
jy-tree where a leaf labelled by a state c^A corresponds to a subtree S such
that s&—c. Once a value a^A has been assigned to the leaves labelled by
the computation may be completed. The equivalence of two states a and b means
that the assignments ^=a and £=b give always the same result (mod A')
when such a computation is completed.

Definition 6.9. The ZX-recognizer A is

(a) reduced if
(b) connected if every state of A is reachable, i.e., there exists for every a^A

a tree t^F^X) such that t&=a, and A is
(c) minimal if it is connected and reduced.

That a recognizer is reduced means that no two distinct states are equivalent.
To be connected means that every state is possible in some computation perform
ed by the recognizer on some tree. By Lemma L3.8, a tree recognizer A is con
nected iff Xa generates sd. In the case of a finite recognizer minimality really
means a minimal number of states among equivalent recognizers. If a recognizer
is not connected, then the nonreachable states can be discarded without changing
the forest recognized. If A is finite and ~then A/~a *s a properly smaller
recognizer equivalent to A. Hence, a finite tree recognizer can be minimal with
respect to the number of states only if it is minimal in the sense of Definition 6.9.
The converse will be established later.

Theorem 6.10. For any EX-recognizer A, ~ is the greatest congruence of A and
A/~ is a reduced EX-recognizer equivalent to A.

Proof. It is obvious that ~ is an equivalence relation on A. Let a~b (a, b^A).
For any two unary algebraic functions f, g^ Algj (j/), the composition

fog: (- g(/(0) (KA)

is a unary algebraic function. Hence

g(f(a)^A' iff g(f(b))£A',

90

and this implies f(a)~f(b). By Lemma 1.3.16, ~ is a congruence of j/. If a~b
and a^A', then b=\A(b)QA'. Thus A'~=A' and ~ is a congruence of A.
Let q be any congruence of A. If agb and /£Algi(X), then implies

Now A' q —A' implies

Aa^A' iff AbfrA'.

Hence a~b and we have shown that ~ is greatest among the congruences of A.
Corollary 6.7 tells us that T(A)=r(A/~). That A/~ is reduced follows directly
from the fact, well-known in universal algebra, that the lattice C(A/~) is isomor
phic to the principal dual ideal [~) generated by ~ in C(A). Since ~ is the gretest
element of C(A), [~) is trivial and thus ~A/~ must be the diagonal relation of
A/~. A more direct proof is possible, too. It is not hard to show that
(a~)~A/^,(6~) implies a^b, and hence a~=b~. □

The quotient recognizer A/~a is often called the reduced form of A. It is clear
from Theorem 6.10 that two tree recognizers having isomorphic reduced forms
are equivalent. We show that the converse holds for connected recognizers. In
other words, equivalent minimal recognizers are shown to be isomorphic.

Theorem 6.11. Let A and B be two minimal tree recognizers. If A. and B are equiv
alent, then they are also isomorphic.

Proof. Define tp’. A—B so that

(tty? = tp for all t^F^X).

We show that <p gives the required isomorphism from A to B. This involves the
following seven points:

(i) <p associates with every a^A a state of B since A is connected.
(ii) To show that cp is well-defined we consider the possibility that s6t = tA

for two ZT-trees X and t. If s^tp, then and tft are nonequivalent and there
exists an algebraic function /€Algi W such that f(s^B' and
(or conversely). By Lemma 1.3.14 there exists a tree p£Fx(BW) (^BUX)
such that for all b£B,

Ab) = p^fo,
where BUi — B is defined so that 0b\B=\B and &b=b. Since B is connected
there exists for each b^B a ZT-tree pb such that pbfl=b. Let

Consider the LY-trees q,=qd^-s) and q,=q(f-A Now

qj = pAP'l)

91

and
q^ = Px^=f^B'.

If we assign in q to every letter x^X the value xa, we get a function g€ Algj (j/)
such that for each a^A,

g(a) = q^M

where a„: XU^—A is defined so that a0[X=a and £aa=a. Applying Lemma
1.3.6 we get now

g(s£)<p = q^(ixsa)cp = qs&(p = qs^B'
and

g^cp = q^^q) = qt&(p = qt^B'.

This is in contradiction with our original assumption that s&=t&- Hence ?j€T(B),
but ?,CT(B). On the other hand, s6l = t& implies qs& = qt&, and a contradiction
with our assumption that T(A) = T(B) results.

(iii) Reversing the roles of A and B in Part (ii) one sees that sp = tp implies
s& = t& for all IX-trees s and t. This means that <p is injective.

(iv) ip is surjective since B is connected.
(v) Let mSO, and alt..., am£A. There are trees 4, t^F^X)

such that , am=tm&. Then

^(tfi, ...,a^(p = ..., tm&)(p

= afa,..., tm)&<p

= o-Gi. •••,

= ^(t^,...,tj)

= a^q), ...,amq>).

Hence <p is a homomorphism from j/ to

(vi) For each x£X, xa<p=x&cp=x^=xp. Thus a<p=p.
(vii) If t&£A' (teF^X)), then t&<p=t^B' since t€T(A)=T(B). Similarly,

t6up£B’ implies t&^A'. Hence, B'(p~1 = A'. □

Corollary 6.12. //A and B are connected ZX-recognizers such that T(A)=T(B),
then A/~a2‘B/~b. □

For every LX-forest T there is at least the infinite ZX-recognizer

Ft = (^(X), lx, T)

92

where ^(X)=(FZ(X), Z) is the ZA-term algebra. Indeed, for each
we have

twty = iff ter.

Obviously FT is connected. Hence, Fr/~ is a minimal recognizer for T (the rela
tion ~ will be examined more closely in the next section). To show it we shall
verify that every quotient recognizer of a connected tree recognizer is connected.

Let (p: A—B be an epimorphism of ZA-recognizers. If A is connected, then
so is B. Indeed, let b be any state of B. There exists an a^A such that a(p=b.
Since A is connected there is a tree t^F^X) so that a=t^(a.). Using Lemma
1.3.6 we get

= /«(«<?) = t^(d)(p = a(p = b.

In particular, A/~a is connected for every connected tree recognizer A.
We now have everything needed for the main theorem of the section.

Theorem 6.13. For every forest T there exists a minimal tree recognizer, and it
is unique up to isomorphism. If A is any connected recognizer of T, then the minimal
recognizer is an epimorphic image of A. In fact, A/~ A is minimal. □

The theorem is valid for every forest. It suggests the following two-step proce
dure for finding the minimal recognizer for Tonce any recognizer A of Tis given:

1° Discard all nonreachable states from A. We get a connected recognizer B
such that T(B)=T.

2° Reduce B by finding ~B and then constructing B/~b which is the required
minimal recognizer.

Both of these steps become effective when T is a recognizable forest and the
given recognizer A is finite.

The reachable states of A form the subalgebra of j/ generated by the subset Xa.
This can be found as follows. Let /fo=AaU Zo} and put

.......aJI"1 >0> «i> •••>
Then

Ho S ... £ A

and (isO) if Such an i must exist since A is finite.
Suppose now that we have a finite connected ZA-recognizer B and consider

step 2°. First one should find Algt (0). It is finite and can be formed repeating
the inductive step of Definition 1.3.13 a finite number of times. Then ~B can be
determined directly, using the definition. Although the minimal recognizer B/~b
certainly can be found this way, the procedure would be quite tedious in most
cases. A computationally simpler method can be derived from the following

93

lemma. The proof is left as an exercise. The crucial aid is Lemma 1.3.16: an equiv
alence is a congruence iff it is invariant with respect to all elementary translations.

Lemma 6.14. Define a descending sequence ~02~12... of equivalences on B
as follows: (i) B/~o= {B', B-B'} and (ii) for all i^O and a,b£B, a~i+1b
iff a~ib and f(a)~tf(b) for all /€ET (^). Then ~f= ~B if ~i+i=~i>
and this holds for some z<|5|. □

7. ALGEBRAIC CHARACTERIZATIONS
OF RECOGNIZABILITY

In this section two strictly algebraic characterizations of the recognizable forests
are presented. First some ideas from the previous section are applied to derive
a generalization of Nerode’s theorem on regular languages and right congruences
of the free monoid (cf. Theorem 1.5.6). Then we show that the recognizable forests
can be obtained by solving fixed-point equations of a certain kind. Again, there
is a well-known precursor in the theory of finite automata. In fact, in the unary
case the equations considered here reduce to Arden’s equations which give the
regular languages as their solutions.

Let Z and X be fixed and denote the ZX-term algebra ^(X) by for short.
In the previous section we noted that each ZX-forest T has the (infinite) ZX-
recognizer Fr=(^, lx, 7). Consider any ZX-recognizer A such that 7(A) = 7.
It is easy to verify that the extension of the initial assignment a: X-A to a
homomorphism

&: SF sf

is also a homomorphism of ZX-recognizers from Fr to A. Indeed, lx<2—& and
?1'<2~1 = 7(A) = 7. The kernel 1 is a congruence of Fr with a congruence class
for each reachable state of A. If T is recognizable, A may be chosen as finite, and
then &&-1 is of finite index. Now, suppose Fr has a congruence q of finite index.
Then Tt/q is a finite ZX-recognizer such that 7(FT/g) = 7(Fr)=7 (by Corollary
6.7). Hence T is recognizable. The congruences of Fr are simply the congruences
of which saturate T. Among these there is one of finite index iff the greatest
congruence of FT is of finite index. The congruence ~Ft (~r for short)
is the Nerode congruence of T. These observations may be summed up as

Theorem 7.1. For every ZX-forest T the following three conditions are equivalent:

(i) 7£Rec(Z, X).
(ii) The term algebra ^(X) has a congruence of finite index which saturates T.

(iii) The index of the Nerode congruence ~T is finite. □

94

The recognizer FT is connected and Theorem 6.10 implies therefore that Fr/~ T
is the minimal recognizer of the forest T. To find ~T for a given ZA'-forest T
one could try to apply Definition 6.8 to Fr: for any j, t^F^X),

s~Tt iff (Vp€Fx(JrUa)p«*s)€T-p(^-t)€r.

A part of Theorem 7.1 can be restated as follows.

Corollary 7.2. A ZX-forest T is recognizable iff there exist a finite Z-algebra sd,
a homomorphism cp: and a subset A'^A such that T=A'(p~1. □

The corollary gives, in fact, just an obvious reformulation of the definition of
recognizability. Without going into the subject any further here, we note that in
this form recognizability may be defined for subsets of arbitrary algebras (and
not just term algebras): a subset T of a Z-algebra j/ is said to be recognizable, if
there exist a finite Z-algebra a homomorphism (p: sd—di and a subset H^B
such that Hcp~1=T. If here s4=PffX), then we get the recognizable IX-
forests, and ifsd is the free monoid X*, then we get the recognizable ^-languages.

As an introduction to the theory of fixed-point equations we first look at an
example of Arden equations.

Example 7.3. Consider the two-state Rabin-Scott recognizer A defined by the
state graph shown in Fig. II.5. The input alphabet is Z= {a, t}.

Fig. II.5.

Let Lx and L2 be the languages of all words taking A from the initial state 1 to
state 1 and 2, respectively. Then the following equations hold:

Li =L1aUL2o’Ue

£j = L1tUL8t.

If we define a mapping

n -. wy-wr
SO that for all U, Ks E*.

ft(U, y) = (L/crU Ker Ue, CZtUKt),

then (1) means that (£u £») is a solution of the fixed-point equation

(2) (vn vj = vff

95

Moreover, (Lt, Lg) is the least solution of (2) when (pZ*)2 is partially ordered in
the natural way:

iff UksUa and £ Fg.

If we view Z as a unary ranked alphabet and identify E (xj-trees and 2?-words as
shown in Section 2 (x=e, ffk(... Oi(x)...)=ai...Gk), then the term algebra
^({x}) may be taken to be

= (E*, E),
where

<r^(u) = US (o^E, u^E*).

In the corresponding subset algebra

p^=(pr, E)

we have the operations

a^(L) = La ^E, L s E*\

The mapping fl can be defined in terms of these operations, the empty word and
unions:

fl(U,V) = T^(t/)UT^(K)).

Using forest products we may write this as follows:

(3) fl(U,V) = ({aM, aiv^x}^ - U, v2 - V),

{t(vi), T^IGh *- U, v2 - /)).

Finally, we write (2) in the more readable form

Vi = <rGh)+t7G>2)+*
(4)

V2 = tG’D + ^W

as a system of equations to be solved in the forest algebra p^ which is augmented
by union as an operation. Union is denoted here by 4-. □

It is obvious that Example 7.3 could be repeated for any regular language and
that the language itself is always the union of those components of the minimal
fixed-point which correspond to final states. The interpretation of the equations
in terms of forest operations serves as the starting point for a generalization to
equations for regular forests.

Fix again a ranked alphabet E and a frontier alphabet X. For any /csl, let

Fk = (pfaxw

96

be the set of ^-tuples of ZX-forests. We order Fk partially by componentwise
inclusion:

(A,-.A) ^,...,1^ iff S1^T1,...,Sk^Tk.

Then Fk becomes a complete lattice in which least upper bounds and greatest
lower bounds are obtained, respectively, by forming componentwise unions and
intersections, thus:

V((5n.......WU) = (U(5n|i€Z), LWiez))

and

A((Sn,..., ^|i£Z) = (n(M€Z), lWi€Z)).

The least element is O=(0, 0). (We refer the reader to Section 1.4 for the
lattice theory needed here.)

Let Fk={vlt ..., be a set of variables disjoint from Z and X. With every
Z^U K^-forest P we associate the mapping

A Fk - pF^X)
defined so that

P(Tl,...,Tk) = P{vl^T1,...,vk^-Tk)

for all (Ti, ..., T^Fk. A A-tuple n=(Plt ...,PJ of finite Z(XU PJ-forests
is called a (Z, X, k)-polynomial and we associate with it the mapping

fl: Fk - Fk
defined so that

A(T) = (A(T),...,A(n)

Lemma 7.4. For any (E, X^-polynomial II, the mapping ft: Fk^Fk is co-
continuous.

Proof. Let n=(Pk, ...,P^ The mapping fl is isotone as

P(V1 - vk - Sk) £ P^ - T„ vk - Tk)

obviously holds for all PqF^XUVJ and ZT-forests A.......Tk
such that SksTk, A £7*- Let

To £ Tj £ Ts £...

be any ascending co-sequence of vectors

T(-(Tn.......Ttk)tFk (/SO)

of ZA'-forests. Now write

T = (U(Tn|i £ 0).......U(Ttt|i % 0)).

Oicicg 97

In order to prove w-continuity we should show that
fl(T) = (U (AWIi s 0), U(A(T,)|i £ 0)),

or equivalently, that
(5) ^(T^U^/T^O) (j = l,...,k).

Every tree ^(T) is obtained from some p^Pj by substituting a tree from
Uir- lisO) for every occurrence of each variable vm and each m— 1, ...» • e
number of occurrences of variables in p is finite. Hence there exists an isO such
that all trees used in this substitution appear in a component of Tj. Then t€ Pj(1 iL
This shows that the left side of (5) is included in the right side of (5) for_each
J=\, The converse inclusions are obvious since ft is isotone and 1^

for all ISO.

Now, using Theorem 1.4.8 we get

Corollary 7.5. For any (I, X, k)-polynomial ft, the mapping fl: Fk^Fk has the

□least fixed-point
[fl] = V(0fl'|* s 0).

The corollary means that [fl] is the least solution of the fixed-point equation

(6) (vi,..., vk) = ft(vk,vft,

where the ^’s are “unknowns” that assume ZX-forests as their values. The equa
tion (6) can also be written as a system of equations

= Pi
(7) =

vk = Pk,
where the P’s are usually expressed as formal sums of their elements (as we did

in Example 7.3).
The finiteness of the components P, was not used in the proof of Lemma l A.

However, it will be essential for obtaining the main result of this section. In fact,
it will be convenient, although not necessary, to work with an even more restricted
class of fixed-point equations, which we shall soon introduce. Example 7.3 pro
vides us with a guideline here, too.

Let us extend the height function of Fr(X) to F^XU 1*) so that

hg(vi)= —1 (i = 1,.... k).

Then the Z(XU FJ-trees of height 0 are

(i) the frontier letters x£X,
(ii) the 0-ary operators and

98

(iii) the trees of the form cr^.......v{), where m>0, a£2m and

Definition 7.6. A (Z, X, ^-polynomial n=(Pt, Pf) is regular, if every
S(XU FJ-tree of height 0 belongs to exactly one Pjt and the Pfs do not contain
any other trees. If 17 is regular, then fl and the corresponding fixed-point equa
tion (6) are also said to be regular. A ZT-forest T is called equational if it can be
expressed as the union of some components of the least solution of a regular
fixed-point equation.

The fixed-point equation in Example 7.3 is regular. It is easy to see that the
same procedure applied to any Rabin-Scott recognizer will yield a regular fixed-
point equation. Hence, every regular language is equational when viewed as a
unary forest. It is also well-known, and easy to prove, that the components of the
least solution of a system of Arden equations are regular.

Example 7.7. Let Z=Z0UZ2, Z0={y}, ^={<4 and X={x,y}. Then

n = ({x, y, o-^i, vj, o(y2, t^)}, {y, a(yk, vj, a(v2, v2)})

is a regular (Z, X, 2)-polynomial. The corresponding regular fixed-point equation
can be written as the system

ki = x+y+<T(i>i, v^+a(v2, vj
b2 = j + <r(ui, + vf).

The least solution is the pair (Tk, Tf), where

Ti = {x, y, ofx, y), a(y, y), a(x, a(x, x)), ...}
and

Ta = {y, <?(x, x), a(y, y), a(y, y),...}. □

Let [/^(Ti, ..., Tk) be the least fixed-point for a given (Z, X, ^-polynomial fl.
We define a binary relation Qin) in F^X):

Q^n) = {(s, 0|s, for some •= L k}-

Lemma 7.8. If FI is a regular (Z, X, kfpolynomial, then q(JT) is a congruence of
&i(X) with at most k equivalence classes. For each congruence q of ^(X) of
index k (k^l) there exists a regular (E, X, kfpolynomial 11 such that Q(n) = Q.

Proof. Let H=(Plt ..., Pk) be a regular (S, X, ^-polynomial and [/)] =
*(^1. Tk) the corresponding least fixed-point. From the definition of q(n)

is clear that the relation is symmetric. To prove that it is reflexive and transitive,

7* 99

too, we show that every Z^-tree t belongs to exactly one Tt. First we note that

(8) Ti = Pi(y1^T1,...,vk^Tk) (» = 1,-»k)

as [H] is a fixed-point of fl. We proceed now by induction on hg (f).
1° If hg(r)=O, then t is in exactly one of the sets (i=l, ■ ■■, k) because

IT is regular. From (8) we see that t is in the corresponding and that it could
belong to some other (J^i) only in case v£Pj. But hg(vf)=-l and vt
does not appear in II.

2° Consider a tree ...» /m) (m>0) and assume that all trees of lesser
height belong to exactly one Then there exists for each /=1, m exactly
one fy such that t^T^. Also, there is exactly one i(/^fsk) such
that Clearly,

Z€p(vi *- 2i,..., v* *- T») G Ti-

The uniqueness of the indices ij implies that p is the only tree of height 0
in F^ GVU from which t can be obtained by the substitutions v^T^, ... ,vk^Tk.
Hence t belongs to 7) only.

Now we know that q^E^X)). It is obvious that it has at most k equiv
alence classes. (There may be less than k classes as some T’s could be empty.)
To prove that it is a congruence relation we consider any m£l, a^Zm and
sk,..., sm, h.......tme F^X) such that

s1s?1,...,smstm(e(H)).

There are indices 4, such that

SjJj^ for J =

Let a(yie •••,%) he *• pi- Then

<r(si, a(tlt ..., tmKTt
by (8). Hence

.... sm) =
as required.

Now, suppose q€C(^(X)) and let Slt...,Sk be the equivalence classes
of g. We define a (Z, X, k)-polyncmial n=(Plt ...,Pk) so that

Pi = {ptF^XU I\)|hg (p) = 0, pt^ - Slt...,vk~ SJ £ S()

for all 1=1, ...,k. The fact that q is a congruence means that for each p of
height 0 there is exactly one i (1 Si^k) such that

PtPi *- Si,.... vk — £ St.

100

TOnnMANYOS akadWIA

Hence 71 is regular. We claim that q(IJ)=q. Let [^]=(r15 Tk). In order
to prove the second statement of the lemma we show by induction on hg(r)
that for all i=l,

1° If hg(r)=O, then there is exactly one i such that t£Pt. This means t^S^
From (8) it follows that ZC Tt for the same i.

2° Let tm) (m>0) and suppose the claim holds for all trees
of height <hg (r). Then there are unique indices ilt ..., im such that

iffStjHTtj (j = 1, m).

Also, there is a unique i such that

P = vim)€Pt.
Then

r = P(V1 4, ...,vk ~ tJtSi

by the definition of Pt. On the other hand, (8) implies t£Tt. O

If we combine Lemma 7.8 and Theorem 7.1, we get

Theorem 7.9. A forest is equational iff it is recognizable. □

From the first part of this section it is clear that a ZY-forest T can be recognized
by a Estate tree recognizer iff T is saturated by a congruence of ^(X) of index
Sk. From Lemma 7.8 we get a similar connection between the number of states
and the number of variables in a regular fixed-point equation which defines
the forest.

There is also a very close connection between regular tree grammars and the
fixed-point equations considered here. For example, the equations of Example
7.7 can be converted into the following set of productions in which vk and v3
are nonterminal symbols:

Vi-x, »!-?, vj, Vi - a(v3, vk),

V3 — y, Vs — Vi), v3 — <t(vs, v3).

The resulting regular tree grammar generates T\ if is the initial symbol, and it
generates T3 if v3 is the initial symbol.

On the other hand, every regular F^-grammar with k nonterminal symbols
can be converted into a fixed-point system with k equations. This system is not
necessarily regular, but the components of the least solution are nevertheless
the regular forests generated by the grammar from the different nonterminal

101

symbols. For example, if Z and X are as in Example 7.7 and the productions are

a — x, a^-y, a—a(a,b),

b^a(b, b),

then the corresponding equations would be

a = x+y + cr(a, b) and

b = tr(b, b),

where a and b now are the unknowns. The least solution is (T(Ga), T(Gb)), where
Ga and Gb are the grammars which we obtain by chosing a and b, respectively, as
the initial symbol.

8. A MEDVEDEV-TYPE CHARACTERIZATION

Our next description of the recognizable forests is a streamlined generaliza
tion of a well-known characterization of the regular languages given by J. Med
vedev in 1956. First we define the family of representable forests. The theorem
states then that the representable forests are exactly the recognizable forests.
The representable forests are defined collectively for all ranked alphabets as
the definition involves tree homomorphisms and these may take us from one
alphabet to another. Recall that r(T) is the finite set of nonnegative integers m
for which Tm#0.

Definition 8.1. For every pair (Z, X) we define the “next-to-root function”

nroot: ^(^-(ToUX) - U((ZUX)"|m€r(Z))
so that

nroot ..., U) = (root(G),.... root (/J)

for all m>0, a€Zm and fj,

Definition 8.2. The elementary ZX-foreSts are the forests

(i) U(d) = rooted) (d€ZUX), and

(ii) K(d1,...,dm)-nroot-1(d1........dM),

where m^O, m£r(Z), and dlf ..., dm£Z[J X.

Note that the definitions of the U(d)- and K(dj, deforests presume
a Z and an X although the notations do not show this. Clearly, l/(d) is the set
of all ZX-trees with the root labelled by d, and K(dlt.... dm) consists of all ZX-
trees of height £ 1 in which the nodes immediately above the root are labelled,

102

from left to right, by dx,..., dm, respectively. Note also that U(d)={d} when
c/CToUA; We need three more definitions.

Definition 8.3. The restriction of a forest T is the forest

rest(T’) = {r£T|sub(0 £ T}.

Definition 8.4. The elementary operations on forests are the formation of

(i) the union of two forests,
(ii) the intersection of two forests,

(iii) an alphabetic tree homomorphic image of a forest, and
(iv) the restriction of a forest.

Definition 8.5. A forest is representable if it can be constructed from elementary
forests by a finite number of applications of elementary operations.

Now the theorem can be stated.

Theorem 8.6. A forest is representable iff it is recognizable.

Proof. To prove that the representable forests are recognizable it suffices to note
that the elementary forests are recognizable and that the elementary operations
preserve recognizability. Consider any X and X. If J€T0UA’, then U(d)=
= {</}€ Rec (Z,*). If d^Xm (m>0), then

U(d) = d(ylf..., - FffX\.... ym - F^X))

is again recognizable. Similarly,

r(dj........ dm) = U (aOh.....................................->ym *- UM\aeXm)

is recognizable for all m€r(Z) and dlt dm£XUX. We have already seen
in Section 4 that unions, intersections and alphabetic tree homomorphisms pre
serve recognizability. Let T be the forest recognized by a TT-recognizer A. We
construct a recognizer for rest(T). First define a Z-algebra = Z) {b^A)
so that

if b^.-.b^A and bmKA',
a “lb in all other cases,

for all m^Q, aeXm and bt.......bmCAUb. The initial assignment 0: X-^AUb

is defined so that for each x£X,

(xx if xa^A',
x^=lb if xx^A'.

W3

Consider any ZT-tree t. It is easy to show that

. (t& if sub (t) S T,
tp = i ,

I b otherwise.

Hence, B=(^, P, A') recognizes rest (T).
We shall now show that every recognizable forest is representable. Let T = T(A)

for some ZA'-recognizer A. First define a new ranked alphabet Q such that

Qm = 2mX(A UXY for all m 5 0.

We construct two representable £2X-forests R and 5 as follows. For c^AUX
we introduce the notation

_ (c if c^A,
C tea if c^X.

Then
R = {xeyixaC^'JU

UU(tf((<r, cx, ...,cM))|(a, c1,..., c^Q, ..., ^A')t

The forest 5 is the union of all intersections

where for each 1=1, either

(i) u^X and Bt = uta, or

(ii) Uj = (t, ..., (k S 0) and bt = t*(cx,..., cj.

Note that the possibility m=0 is included at appropriate places in the defini
tions of R and S.

Define the tree homomorphism

h: FO(X) - Fx(X)
so that

M(ff> - • bm^ = a^ (m- °> <ff’ bl,

and hx=\x. Clearly, A is alphabetic. We claim that

h(P)
for the representable forest

P = .RArest (SUfloUX).

Let p^P- If p=(cr, e)Cfi0> then p^R implies a^^A'. Hence h(p)=a£T.
If p=x£X, then p£R implies h(x)&=xa£A'. Again h(p)=x£T. Next we

104

show that for every p^rest (SU^Uy) of height si

(1) h(p)& = ^(Bl, ..., Bm\ where (a, bk,bm) = root (p).

We proceed by induction on hg(p).

1° If hg(p)= 1, then mil and

p=(<r,bi, ...,bj(ult ..., wm)

for some q,..., «mc£20UA'. Since p^S we have h(ui')&=Bi for all m.
But this implies that (1) holds for p.

2° Now let

.......Pm)

and assume that (1) holds for the trees p^, ...,pm. As p is in 5 and

h(pm)6t),

it suffices to show that h(pi)&=Bi for every We should consider
three cases.

(a) If pt is of the form (r, q,..., q)(q,..., rk) (*>0), then the induction
hypothesis yields

= ^(q, ...,q).

Moreover, r^(q, ..., c^=bi=Bi since p£S.

(b) If pt=(<r, e)€Q0, then h(p^&=ff^=bl=Bl.
(c) If p^x^X, then h(p^6.=xaL=Bi.

Now we have completed the proof of (1). Consider any tree

p = (a, bt, b^ip^ ...,p„KP.

By using (1) and the fact that p^R we get

h(p)& ■=

This implies h(p)£T and we have shown that h(P)cT.
In order to prove the converse inclusion we show first by tree induction how

to construct for each t£Fi(X) a tree purest (S(JQ0UX) such that h(p)=t:

1° If t=x£X, then we may choose p=x.
2° If t=a^Z0, put p=(cr, e).
3° Let t=a(tlt.... tm) (m>0) and suppose we have trees Pi,...,pm€

^stiSUQoUX) such that h(p^tt («=*1,.... m). If we put

P = (<b hi> •••» bm)(plt.... pm),

105

where for then h(p)=t and purest (SU f20U^) as
required.

Let t^T and construct a p for t as above. To prove t£h(P') it suffices to
show that p^R. This can again be done by tree induction:

1° If t-x^X, then xa^A' and hence p=x£R.
2° If t=a€r0> then rs^A' and p=(a, e)£U(a, e)cR.
3° Let t..., Q (w >0). If we use (1) and its notation, we get

^(51,...,5m) = h(p)S = t«€X/.
This shows that p£R. □

9 . LOCAL FORESTS

In this section a proper subfamily of the recognizable forests is introduced.
We will then also get one more characterization of the recognizable forests, not
quite unrelated to that given in the preceding section.

We need the following auxiliary concept

Definition 9.1. The set of forks fork (t) of a IT-tree t is defined as follows:

1° If then fork(r)=0.

2° If ...,U (w>0), then

fork (t) = fork (0 U... U fork (tm) U {<r(root (rO, root (tj)}.

The set of all forks of ZY-trees U(fork(r)|t€Fx(X)) will be denoted by
fork (I, X).

Example 9.2. Let I^ToUTiUTa, ^o={?}> an^
For the ZJf-tree

t = cr(r(y), v(x, -cW),
we have

fork (0 = {a(r, a), t(y), a(x, t), t (y)}.

Graphically these forks are represented by
ro Oo /q X<1 To !/<'

, V ond ।
<5 * r a r

respectively. Obviously, fork (Z, X) is always finite and here it consists of
30 forks. □

106

Local forests may now be defined.

Definition 9.3. A ZA^-forest T is local if there are sets U(sZUI) and
F(c fork (Z, X)) such that, for each t^F^X),

t^F iff root (/)£/? and fork (t) £ F.

Then we write T=Loc (R, F).

Hence the membership of a ZZ-tree t in the local forest Loc (R, F)can bedecid-
ed by testing for the local properties root(Z)CA and fork(z)cF.

A ZA-recognizer for Loc (R, F) can be constructed as follows. First we define
a Z-algebra ^=(A,E). Let ^ = ZUAU0 (0$ZUA). For every put

o’- For m^O, and alt am£A let

a^(a a)=la if
” ’ m 10 otherwise.

Let a: A— A be the embedding x (xgA). It is easy to show that for all
KF^X),

. f root (z) if fork (f) s F, to, =) _ ,10 otherwise.

This readily implies T(A) = Loc (R, F) for A=(sfa,R). Hence, we have

Theorem 9.4. Every local forest is recognizable. □

The converse of Theorem 9.4 does not hold. For example, the forest consisting
of the single tree of Example 9.2 is not local as there are many other trees with
the same root and the same forks. However, the following fact can be proved.

Theorem 9.5. For every recognizable EX-forest T there exist a ranked alphabet Q,
a frontier alphabet F, a local Y-forest S and an alphabetic tree homomorphism

h: F^Y^F^X)
such that T=h(S).

Proof. Let G=(N, I, X, P, a0) be a regular ZA-grammar generating T. We assume
that G is in normal form. A new ranked alphabet 12 is defined so that

Qm = {[a -cr(ai,.... am)]|a - ff(alt

for all mgO. Also, let

F = {[a -* x]|a x£X}.

The local 12 F-forest S=Loc(7?, F) is defined by the sets

R = {[a0 -*p]l«o -*PCP}

107

and
F= {[a - a(a19...» am)]([ai - pj, [am - pj)^ > 0,

a -erfo, a! - pn am - pm^P}.

Finally, define an alphabetic tree homomorphism

h: F^Y^F^X)
by the mappings

hy-.Y^F^XY [a~x\~x
and

hm- F^XUS^, [a -*a(a1, afa, ...,^m).

Now h (5) = T, and thereby the theorem, follows from (1) and (2):

(1) If a^t, for some a£N and t^Fz(XY then there is a tree s€Fn(Y)
such that A ($)=/, fork (s)cF and root (s) is of the form [a— p],

(2) If s^F^Y) is such that fork(s)cF and root ($) = [«— p] for some
pCFjCVUiV), then a=>gh(sY

Part (1) can be proved by induction on the length of the derivation of t and
(2) by tree induction on s. □

Note that h (5) is always recognizable when S is a local forest and h an alpha
betic tree homomorphism (Theorem 9.4 and Corollary 4.20).

10. SOME BASIC DECISION PROBLEMS

In this section we shall show that some of the first questions one might ask
about given tree recognizers are algorithmically decidable. To begin with, we have
the emptiness problem: Is the forest recognized by a given tree recognizer empty?
Or one may ask whether this forest is finite or infinite. This is the finiteness problem.
Finally, we have the important equivalence problem: Do two given tree recogniz
ers recognize the same forest? In fact, the more general inclusion problem-.
“HA) c T(B)?” is shown to be decidable. The problems are quite easy and the
proofs follow the strategy familiar from finite automata theory with a “pumping
lemma” as the key result. We have seen in Section 2 that any nondeterministic
frontier-to-root, or root-to-frontier, tree recognizer can be converted into an
equivalent deterministic F-recognizer. Hence we may again restrict ourselves to
our basic type of tree recognizers.

We need the following special notation. Let Z and X be given. Introduce a new
letter f and let T{ be the set of all Z(XU O-trees in which { appears exactly once.
For any qZT^ and p^Fi(X)UTi we denote ?({*-p) by p • q. Also, we define

108

the powers qk as follows:

i° ?° = e,
2° qn+1 = q- qn (« s 0).

Using these notations we may formulate the pumping lemma of tree recognizers
as follows.

Lemma 10.1. Let A be a k-state ZX-recognizer. If t£T(A) and hg (t)^k, then
there are trees p^F^X) and q, r£T{ such that

(a) t=p.q.r,
(b) hg (q) s 1 and
(c) p ■ q'-r^A) for all /=0, 1, 2,

Proof. Suppose t£T(A) and hg (r)^&(= |J|). Then we can write t=(r(t1, ...tt^
(w>0, Choose some j such that hg(t;)=hg(r)~ 1. Then

where
Sj = erOi, ..., tJ^1, tJ+1,..., tm)£T{.

If hg (ty)>0, we may decompose tj the same way. Since hg (t)sk the process
can be repeated k times and finally we obtain a representation

t = t • Sj • ... ■ S2 • Si,

where tfFfX) and sltsk^Tt. Moreover, hg(si)sl for every
Let

«* + l = C Uk = t'-Sk, ..., Mi = f-S*-...-Si = t.

There must be indices h and j, k + \^h>j^\, such that

uh6i = Uj&.

Now let p=uk, q=sh-i-...-Sj and r=sJ_1 ■... -Sj (if j=l, then r={). Then
t=p-q-r and hg (q)^ 1. Also, our choice ofp and q implies

(1) P& = (p-q)&.

We assume that AF\X—0, and extend <2 to a homomorphism

a: ^(XUA)

so that <2|^ = lx. By Lemma 4.17 sa=S& whenever s^F^X). We verify now
by induction on i that

(2) (P^,)& = (p-q)&

109

for every i^O. From (1) we know that this is true for z=0. Suppose (2) holds
for a given i. This assumption and (1) imply

= q(£ - {p-q^a. = q($ - (p.?)d)a

= q(^ - p<2)a = (p-q)&.

Using (2) we get for each zsO,

(p-q'ffi = r(£ - {p-q^&^a.

= (p-q^a

= (p-q-r)&.

Hence, p ■ q‘■ r^TtA) for all z'sO. □

Theorem 10.2. Let A be a k-state ZX-recognizer. Then T(X) is nonempty iff it
contains a tree of height less than k. Hence the emptiness problem of recognizable
forests is decidable.

Proof. Suppose T(A) is nonempty. Let t be a tree in T(A) of minimal length. If
hg (z)^A, we apply the pumping lemma and write t=p-q-r. But then T(A)
would contain the tree p ■ r which is properly shorter than t as hg (q)^ 1. Hence
hg(t)<* must hold. The converse part is trivial. The emptiness of 7(A) can
always be decided by going through the finite set of trees of height < k. □

Suppose two ZT-recognizers A and B are given. Clearly, 7(A) c T(B) iff
T(A)—T(B)=0. But T(A~) — T(B) is recognized by

C = (^X^, y, A'X(B-B')),

where xy=(xa,x/3) for x£X. Thus the question “T(A) c HB)?” can be
answered by deciding whether T(C) is empty or not. The equivalence problem can
similarly be reduced to the emptiness problem. Of course, its decidability follows
also from the decidability of the inclusion problem. We have justified

Theorem 10.3. The inclusion problem and the equivalence problem of tree recog
nizers are decidable q

Finally we consider the finiteness problem.

Theorem 10.4. It is decidable whether the forest recognized by a given tree recognizer
is finite or infinite.

Proof. Let A be a Estate ZT-recognizer and write

T==T(A)-{'€W)|hg(0*4

110

We claim that T(A) is finite iff T=9. Obviously the condition is sufficient since
the set of Z^-trees of height is finite. If T#0 and t^T, then hg(r)g£ and
we may apply the pumping lemma and write t=p-q-r so that

p-qt-rCT(A') for all i s 0.

These trees are pairwise distinct since hg(g)Sl. Hence T(A) is infinite. The
forest T is recognizable and one can easily construct a recognizer for it. This means
that the condition T=0 is effectively testable. □

The decidability of the finiteness problem may also be deduced from the following
corollary of the pumping lemma. The proof is an exercise.

Lemma 10.5. Let A be a k-state tree recognizer. Then T(A) is infinite iff it contains
a tree t such that

k S hg (t) < 2k. □

11. DETERMINISTIC R-RECOGNIZERS

In Section 2 it was shown that NDR-recognizers recognize exactly the family
Rec, but that there are recognizable forests that cannot be recognized by any
deterministic R-recognizer. The limited recognition power of DR-recognizers is
due to the fact that they have no way of combining the information gathered from
disjoint subtrees. This implies that a DR-recognizer will accept any tree in which
every path from the root to the frontier appears in some tree accepted by the
recognizer. It will turn out that this closure property characterizes the forests
recognizable by DR-recognizers. Here a “path” contains, not only a list of the
labels of the nodes traversed, but also the information about the directions taken
at the nodes. In the later part of this section we shall consider the minimization
of DR-recognizers. It will be shown that every DR-recognizer can be reduced to
a canonical minimal form which is unique up to isomorphism.

Let Z be a fixed ranked alphabet. In order to avoid some troublesome techni
calities, we shall assume that Zo=0. We associate with Z a unary ranked alphabet

r = r, = u(r(<r)|a€i),
where for all a, t£Z,

(i) r(ff)={fflt...,ffw} if (mSl), and
(ii) r(a)nr(T) = 0 if a^x.

The paths in Z-trees can now be defined as T-trees.

Ill

Definition 11.1. Let X be any frontier alphabet. For each x^X the set of
x-paths of a ZX-tree t is defined as follows:

1° gxW = and gx(y) = 0 for all y x, y^X.

2° If r = ...,Q m^O), then gx(t) = ... Uam(gx(U)-

We extend gx to a mapping from pF^X) into pFr(X) in the natural way. More
over, we put

g(n=U(gx(T)|x€X)
for each Ts F^X).

Label the edges of the graph representing a tree t£Fs(X) so that the i‘h edge
(counted from the left) leaving a node labelled by a symbol a always gets the
label o-j. Then the elements of gx(t) (x£X) are spelled out by the paths leading
from the root to a leaf labelled by x when we interpret a word au ...au x
(^=0, ..., Vki^F) as the FX-tree tru (x)...). Moreover, every such
path gives an element of gx(t).

Lemma 11.2. If F^Rec (Z, X), then g(T)£ Rec (F, X).

Proof. Let G=(N, I, X, P, a0) be a regular LX-grammar in normal form generating
F. The case F=0 being trivial, we may assume that every Ga=(N, Z, X, P, a)
(a^N) generates a nonempty forest. Let G'=(N, F, X, P', a0) be the regular
FX-grammar, where

P' = {a - ^.(a^a - ..., am)eP, m > 0, 1 s i m}U
U {a -* x\a — x€F, x£X}.

We claim that F(G')=g(F). This follows when we show that, for every tree

p = <7H1(... aklfx) ...)eFr(X)
and every a£ N,
O iff p£g(T(Ga)),

where G'a=(N, r, X, P', a).
We proceed by induction on hg (p).

1° If hg(p)=0, then p=x. In this case (*) obviously holds as a-x is in
P' iff it is in P.

2° Suppose hg (p)>0 and that (*) holds for all trees of lesser height.

If p^.T(G'a), then and -^W-) for some
and P contains a production a—.... am) such that By

the inductive assumption there exists a tree tifT(Ga) such that
-Oh/*)-Moreover, we may choose for every i^ilt

a tree t£T(G.). Then 1=0^.......Q^G,) and p€gx(/)£g(r(G.)).

112

Conversely, let p^g{T(Ga)\ Then p£gx(t) for some teT(Ga). Obviously,
t is of the form , ..., tm), where i^m, and it has a derivation

« =»G^i(ai, a^ct.

This means that P' contains the production a^au (at). Moreover, tt £T(Ga)
and Hence, we get a derivation

a ^G'P)

which shows that XT(G'). □

Let g be the mapping of Definition 11.1 associated with a given frontier alpha
bet X. Then we write tx=gg-1. It is clear that is a closure operation in F^X),
i.e., for all S, TqF^X),

(i) Sxx,
(ii) SsT implies SxxsTxx, and

(iii) Sxxxx=Sxx.

For any Tc Fx(X), Txx is the closure of T, and T is said to be closed if Txx — T.
Now, consider an arbitrary NDR ZX-recognizer A=(a/, A', a). For each

a£A, let
T(A, a) = {teFx(X)laeta}.

A state at A is a O-state, if T(A, a)—0. We say that A is normalized if for all
m>0, and atA one of the following two alternatives holds:

(1) Each component of every vector in o^(a) is a O-state.
(2) No component of any vector of cP*(a) is a O-state.

A normalized NDR ZX-recognizer A has the following important property.
Let ptgx(s) (x£X) for some ZX-tree s such that A has a computation on s
which begins at the root in an initial state and ends at the leaf corresponding to
P in a state which belongs to xa. Then there exists a tree t in T(A) such that

Such a t can be built around the x-path p by completing it with trees
from appropriate a)-forests.

An NDR ZZ-recognizer A becomes normalized if we omit from each set a^(a)
every vector which contains a O-state. This does not change T(A) because the
use of a vector containing a O-state cannot lead to an accepting computation.
Hence, we have

Lemina 11.3. For every N D R-recognizer there is an equivalent normalized NDR-
recognizer. □

8 O4cwg 113

We associate with each NDR Zy-recognizer A a DR ZA^-recognizer pA=
=(pa/, A', P) defined as follows:

(i) pj^=(pA, Z) is the deterministic root-to-frontier algebra such that

= (U(n1(^(O))|fl€7Z), ... ,U (Km(^(a))|a€/Z))

for all H^pA, m>0 and ff£Zm. Here ni is the z‘h projection.

(ii) For each x^X, {/f£p^|Hrixa^0}.

Lemma 11.4. For every normalized NDR ZX-recognizer A, T(pA) = T(A)Tx.

Proof. In order to prove the inclusion T(pA) £ T(A)tx, we consider an arbitrary
tree sC^pA) and an x-path p€gx(s) (x£X). We should show that p€g(T(A)).
Let p=o,ii (...(o*; (x))...). By the definition of pA there are states a0, alt ...,ak€A
such that

(i) a0£A' and ak£xa, and
(ii) for y=l, ...,*.

Since A is normalized, this implies that there is a tree t£ T(A) such that p^gAt).
Hence pCg(T(A)). Now, let s^T(A)tx and consider any x-path

P = (• • • Ouk W • • •)€ Ex(«) (*€*)•

Then p€gx(f) for some t^T^A) and there are states a0, ax, ..., ak£A such
that the above conditions (i) and (ii) hold. But the definition of pA implies that
the state of pA at the leaf corresponding to p includes ak for any tree in which p
is an x-path. Hence pA arrives at the leaf of s corresponding to p in a state belonging
to xa. This holds for every leaf of s and therefore s€T(pA). □

Corollary 11.5. If Rec (Z, X), then Trx€Rec(Z, X). □

Lemmas 11.3 and 11.4 also imply that every closed recognizable forest is
recognized by a DR recognizer. But it is easy to see that T(pA)=T(A) if A is
deterministic. Hence we may state the following result.

Theorem 11.6. A recognizable forest can be recognized by a DR recognizer iff
it is closed. □

The rest of this section deals with the minimization of DR-recognizers. First
two general remarks. When A=(.s/, a0, a) is a DR ^-recognizer, then the NDR
algebra j^=(A, Z) is deterministic and we may view each {a^Zm, m>0) as
a mapping

a": A ~Am.

114

Hence we write (a)=(«!,..., am) rather than o-*(a)={(a1, ..., aj}. The
second remark concerns normalized DR recognizers. If the DR LT-recognizer
A is normalized, one of the following conditions holds for each pair (a, o)£AxZ:

(1) Every component of (a) is a O-state.
(2) No component of a^(a) is a O-state.

Of course, Lemma 11.3 and the construction which led to it are valid here, too,
but we define a “standard” normalized form A*=(j/*, a0, a) of A as follows:

(i) If A has no O-state, then put A*=A.
(ii) If A has a O-state, choose one of them, say d, and define then for all m>0,

and a^A,
. 1(d.......d)(EAm) if contains a O-state,

I a0' (a) otherwise.

It is easy to prove that A* is normalized and deterministic, and that T(A*) = T(A).
Normalized DR recognizers have also the following useful property.

Lemma 11.7. Let A and B be normalized DR LX-recognizers, and let a£A, b^B,
a^{a) = {ai,...,am) and ^(b)^, ..., bm). If T(A, a)=T(B, b),

then T(A, Oi) = T(B, b() for all i=l,...,m.

Proof. If one of the states at (i^i^m) is a O-state, then all of them are. More
over, T(A, a)=T(B, t) does not contain any tree of the form off,..., tm).
Hence, one of the forests T(B, b^ (l^z’Sm), and therefore every one of them,
is empty. Thus T(A, a^KB, bt)=& for all i=\,...,m.

Suppose now that T(A, a^W and T(B, b^td for all i=l, ...,m. Consider
anyi (l^iSm) and tfT(A, af Choose any t1^T(A,a1),...,tl_l^T{A,ai^),
ti+i£T(A,al+1).......tmeT(A,am). Then a(tlt tm)£T(A, a)=T(B, b) implies
t& T(B, b^. By a symmetrical argument, T(B, b^ £ T(A, a^ holds for every
' = 1, ...,m. Hence, T(A, a^Tifi, b^ for every i=l,...,m, as required. □

We shall now define a few algebraic concepts for DR recognizers. Let
A=(^, a0,a) and B=(di,bo,0) be DR ZX-recognizers.

A homomorphism from A to B is a mapping tp'. A-*B such that

(0 for all m^O, and a^A, alll(a<p)=(.a1(p, ..., amcp), where
0^=0^(a),

(ii) a0(p—b0, and
(iii) for every x^X, xp(p~1=xa.

is a homomorphism from A to B, we write <p: A-*B. If such a <p is surjec
tive, it is called an epimorphism. For an epimorphism condition (iii) implies

8» 115

xa<p=xP, too. If there exists an epimorphism <p from A onto B, then B is an epi
morphic image of A. If cp: A—B is bijective, then A and B are isomorphic, and
we write A=B.

A congruence on A is an equivalence relation q on A such that

(i) for all m>0, and a, a'^A, ap—a'Q implies a^(a)lQ = c*(a')lQ
(recall the notation from Section LI), and

(ii) q saturates every set xa {x^X).

If q is a congruence on A, then the quotient recognizer determined by q is the
DR ZT-recognizer

A/g = WIQ,

where sd/q — {A/q, L) is defined by

c^te^ao) = 0s* (afp (<r€£m,m>0, a^A),

and ae: X^A/q is defined by xae=xa/g {x^X). It is easy to see that X/q
is well-defined.

The following theorem is easily obtained by modifying the proofs of the corre
sponding facts from algebra.

Theorem 11.8. Let X and B be DR LX-recognizers.

(a) If q is a congruence of A, then the natural mapping q : A—A/q defines an
epimorphism of A onto X/q.

(b) If <p‘. A—B is an epimorphism, then Q — qxp^1 is a congruence on A, and
X/q^B. □

The following fact will be needed later.

Theorem 11.9. IfB is an epimorphic image of A, then T(X)=T(B).

Proof. Let cp: A—B be an epimorphism. We verify by tree induction that

(*) tol = tPy"1 and tarp = t^,

for every t^F^X).

1° For t=x£X, (*) follows directly from the fact that (p is an epimorphism.
2° Let t=a(t1, tm) and assume that (*) holds for t1,...,tm. Suppose

a£t&. If o"rf(a)=(a1, am), this means that a^t^, ..., am^tmci. Hence,
G ft • • •, am <p£ tm 0. This implies

^(atp) = (w.......amcp)etiliX...Xtm^

Hence, aq>^tfi Suppose now that acp^tji, and let a^(a)=(ait ..., a„). Then

116

which implies aj€Ga, ..., a. Hence, a^ti. The
equality Za=t^<p-1 implies tx(p = t^ as <p is surjective.

Now, (*) implies that for every t^Fs{X),
t£T(A) iff a0^tx

iff a0(p{= b^tx<p{= t^)
iff teT(B). □

We call two states a and a' of a DR ZY-recognizer A equivalent, and we write
a~Aa' (or just a^a'), if T(A, a) = T(A, a'). Obviously, ~A is an equivalence
relation on A. We say that A is reduced, if ~ a-

Lemma 11.10. If A is a normalized DR ZX-recognizer, then ~ is a congruence on
A and A/ ~ is reduced.

Proof. First we show that ~ is a congruence relation.

(i) Consider any w>0, and a, a'^A such that a~a'. Let
a^(a) = (ai,.... am) and o^(a') = (a^,..., a'm).

But a~a' means that T(A, a) = T(A, a'), and Lemma 11.7 implies that

T(A, af) = T(A, a[) for all i = 1,

Hence, a^a, for all i=l,...,m.

(ii) If a£xx and a^a', for some x£X and a, a'^A, then x^T(A,a)=
= T(A,a") implies a'^xx. Hence, ~ saturates xx.

Now we know that the quotient recognizer A/~ can be defined. It is reduced as
(a~)~A/^(a'~) implies a~=a’~ (a,a'£A) because, by Theorem 11.9,

T(A, a) = T(A/~, a~) = T(A/~, a'~) = T(A, a'). □

Let a, a'^A. We write a\-a' if there exist an m>0 and a such that
a' appears in a* (a). The reflexive, transitive closure of H is denoted by H *.
If ah*a', we say that a' is reachable from a. The DR recognizer A is said to be
connected if every state is reachable from the initial state.

The connected component
Ac = (rfc, a0, xe)

of a DR ZT-recognizer A is defined as follows:

(i) ^C=(AC, I), where Ac= {a€^|fl0H*a} and for all
and a£Ac.

(ii) xac = xaAAc for each x^X.
Clearly, the operations A'-^A'y are completely defined (ffl*0, ffCTJ.

117

The proof of Lemma 11.11 is quite straightforward and we shall omit it.

Lemma 11.11. Let A be any DR ZX-recognizer. Then

(a) Ac is connected and deterministic,
(b) AC=A iff A is connected,
(c) and
(d) if A is normalized, then so is Ae. □

We are now ready to present the main theorem of the minimization theory of
DR recognizers.

Theorem 11.12. Let A and B be connected, normalized DR ZX-recognizers. Then
T(A)=T(B) iff A/~a-B/~b.
Proof. If A/~a and B/~b are isomorphic, then

TW = HA/-*) = T(B/~B) = T(B)

by Theorems 11.8 and 11.9.
Assume now that T(A) = 7’(B). We define a mapping

(p:
by the condition that

(u~A)9> = b~B if T(A, a) = T(B, b) (a£A,b<iB).

The following steps (i)—(v) show that <p is the required isomorphism.

(i) (a^f)(p is defined for all a~pfA/~A. Since A is connected, there exist
for every a^A a k^O and states alt ..., ak£A such that

u0H Ui I— UjH... H ak = a.

Using Lemma 11.7 one shows by induction on the smallest k (corresponding to
the given a) that there is a b such that T(A, a) = T(B, b).

(ii) (P is well-defined. If T(A, a)= T(B, b) = T(B, b') for some at A and
b,b'^B, then b~B—b'~B.

(iii) (p is injective. Similarly as (ii).
(iv) rp is surjective. If we exchange the roles of A and B in (i), we see that there

exists for every b^B an a^A such that T(A, a) = T(B, b).
(v) ip is a homomorphism. That <p preserves the operations follows from Lemma

11.7. If o~A€xa/~A (x£X) and (a^Jcp^b^, then x£T(A, a)=T(B, b)
implies i~B€x^/~B. Likewise, (a^ implies o~A€xa/~A.
Thus x^~B<p-1=xa~A for every x£X. □

ADR recognizer A is said to be minimal if no DR recognizer with fewer states
recognizes T(A). If A is minimal, then it is connected by Lemma 11.11. As

118

7'(A*)=7'(A) we may also assume that A is normalized. Then T(A) = T(A/~ A)
implies that A should be reduced, too. Conversely, if A is connected, normalized
and reduced, then it is minimal and every normalized minimal DR recognizer is
isomorphic to it (Theorem 11.12). These facts imply that the following three steps
yield for any DR recognizer A an equivalent minimal DR recognizer B. More
over, this B is normalized.

Step 1. Form A*.

Step 2. Form A*c.

Step 3. Form ~ for A*e, and put B=A*7~.

It is not hard to see that these steps are effectively realizable.

EXERCISES

1. Let leaf(t) denote the set of symbols which label the leaves of a given ZZ-tree
t. Define Ieaf(/) by tree induction.

2. (a) Define the length |z | of a ZZ-tree t (as a word) by tree induction.
(b) For the sake of simplicity, let Z=Za. Derive an upper bound for |z|

in terms of hg (/). Give also a lower bound for |z| in terms of hg(r).
3. Let Z=Z0UZ2, Z0={w}, ^2=W> and let Construct a CF

grammar which generates the set F^X) of all ZZ-trees (when these are viewed
as words). Is the set of all ZZ-trees still a CF language if we use the Polish nota
tion for ZZ-terms?

4. Let Z and X be as in the previous exercise. Decide which ones of the ZZ-
forests, R, S, and T are recognizable, when these are defined as follows:

(i) t^R iff the number of cr’s in t is odd.
(ii) te S iff all paths from the root to a leaf are of the same length.

(iii) t^T iff no leaf labelled by y appears to the left of a leaf labelled by x.
5. Let A be an NDF ZZ-recognizer and B an NDR ZZ-recognizer which are

associated in the sense of Section 2. Prove the equality by tree induction.
6. Use regular tree grammars to prove directly that Rec (Z, X) is closed under

c-products (Corollary 4.12).
7. Let us change the definition of the forest product T(x*~ Tx) (cf. Definition

4.3) in such a way that every occurrence of each letter x£X should be rewritten
as the same tree Tx. Then we get the new product

Hx - Tjx€X] = {/(x - rJxCZ)^!', tx^Tx (x€Z)}.

Is Rec (Z, X) closed under this product?

119

8. Let T be a iT-forest and let x^X. Describe the forests 7\0 and 0-xT.
9. Do the following laws hold for x-products?

(a) R-X(SUT) = (R.XS)U(R.XT).

(b) (RUS)-xT=(R-xT)U(S-xr>.

(c) R-x(SyT) — (R-XS)-yT.

10. Let us change Definition 4.7 so that TJ+1‘X=T-XTJ‘XUTJ'X for all j^O.
Does the new x-iteration coincide with the original one? If not, does it preserve
recognizability?

11. Let x^y (x,y£X). Is it possible that for some EX-
forest T?

12. Show that the construction of the tree recognizer for the forest S~XT
given in the proof of Theorem 4.10 is effective when S is recognizable (and given
by a tree recognizer).

13. Prove Lemma 4.17.
14. Prove Corollary 4.20 directly without using Theorems 4.16 and 4.18.
15. Let (p: ^(X^^X) be a homomorphism of ^-algebras. Prove that

if T^Rec^, X), then (a) T<pCRec(E,X) and (b) Ttp-^Rec (E, X).
16. The set of atomic ZT-trees is defined as

A(E,X) = {a(x(1,.... xu)|m S 0, atEm, xh, ..., xlm£X}.

For the sake of definiteness, let JT={xi, ...,x„} (»S1). Prove that

(•••(^(T, X)**.)**. ...)*«» = F^X)

(cf. THATCHER and WRIGHT (1968)).
17. Let E=E2={o} and Z={x}. Write a regular expression for the forest

of all zy-trees which contain an even number of a’s.
18. Let E and X be as in Exercise 3. Construct a ZZ-recogmzer for the forest

represented by the regular expression <r(x,y) a(w, z))*1.
19. Prove Theorem 6.6.
20. If A is a EX-recognizer and T(A)=T, then di is a homomorphism from

Fr to A. Prove Lemma 6.2 using this observation.
21. Prove Lemma 6.14.
22. In Section 7 we noted that one may define recognizability for subsets of

algebras. We call T (gA) a recognizable subset of the Z-algebra s/=(A, E),
if there exists a congruence 0 of finite index which saturates T. Denote by RecW
the set of all recognizable subsets of j/. Prove the following facts:

(a) If S,TeRec^, then SUT, SHT, S-T^Recj^.
(b) If is a homomorphism and TfRec^, then Tip-^Recssf.

120

(Note. TgRec^/ does not imply T^CRec^. A counterexample where and
are monoids can be found in Eilenberg’s book (Vol. A) mentioned among the

references of Chapter I.)
23. Let S=E2={g} and X={x,y}, and let (JU, V) be the least fixed-point

of the system
u = x + a(a(u, v), y)

a(y, u).

Find a regular (I, X, ^-polynomial 77 (k^2) such that U and V can be repre
sented as unions of some components of [^]. (For a general treatment of such
questions see Mezei and Wright (1967).)

24. Show that every local ZA'-forest Loc (R, F) can be represented in terms
of the elementary forests and the elementary operations intersection, union, and
restriction. Note the resulting connection between the Theorems 8.6 and 9.5.

25. Show that the decidability of the equivalence problem of tree recognizers
follows from the results of Section 6.

26. Prove Lemma 10.5.
27. Prove that it is decidable whether a recognizable forest can be recognized

by a DR-recognizer.
28. Are all local forests recognizable by DR-recognizers?
29. Present algorithms for carrying out Steps 2 and 3 of the minimization

algorithm for DR-recognizers which was outlined in Section 11.

NOTES AND REFERENCES

The observation (made about 1960) that finite automata may be defined as unary algebras
is attributed to J. R. Buchi and J. B. Wright (see Mezei and Wright (1967), Thatcher (1973)).
The generalization to tree automata was suggested independently by Doner (1965, 1970) and
by Thatcher and Wright (1965, 1968). Many of the basic results presented in this chapter were
obtained in various forms by several authors, and often it would be hard to establish any priori
ties. Most of the important early contributions can be found in Mezei and Wright (1967),
Eilenderg and Wright (1967), Thatcher and Wright (1968), Doner (1970), Thatcher (1970),
Pair and Quere (1968), Brainerd (1968,1969a), Arhib and Give’on (1968), and Magidor and
Moran (1969).

Already in many of these papers trees were defined as terms, and this formalism is now very
common. However, most authors use no separate frontier alphabet. Also, often operators may
have more than one rank. The original reason for our use of frontier alphabets was to keep
the character of the algebras independent of the number of frontier symbols. Another popular
formalism defines a tree as a pair (D, A) consisting of a "tree domain" D and a labelling mapping
A. Each element d of D specifies a node of the tree and Md) is the label of this node. This defi
nition is quite convenient for discussing concepts and operations which involve specific occur
rences of subtrees. Tree domains were introduced by S. Gorn in 1965 (for a reference, see
Brainerd (1969a)).

121

Deterministic and nondeterministic frontier-to-root tree recognizers were defined, and their
equivalence was established, by Thatcher and Wright (1968), Doner (1970), and Magidor
and Moran (1969). Root-to-frontier tree recognizers were introduced by Rabin (1969), and
Magidor and Moran (1969). Magidor and Moran showed the equivalence of NDF and NDR
recognizers, and they also studied DR recognizers.

Regular tree grammars and the results of Section 3 are due to Brainerd (1969a). In Brainerd’s
grammars the form of the productions is quite general, but he shows that they can be reduced
to, what we call, regular tree grammars.

The Boolean closure properties of Rec (X, X) were noted in many of the early papers mentioned
above. The Kleene theorem (Theorem 5.8) was proved by Thatcher and Wright (1968) and
by Magidor and Moran (1969). A simplified proof was given by Arbib and Give’on (1968).
Alphabetic tree homomorphisms (called there projections) and Corollary 4.20 appear in That
cher and Wright (1968). General tree homomorphisms arose as special cases of finite-state
tree transductions (see Thatcher (1970, 1973) and Engelfriet (1975b)). Tree transductions
and tree homomorphisms will be considered in Chapter IV. Forest products (or "substitutions”)
were also introduced in this context. ITO and ANDO (1974) present a complete axiom system
for the equality of regular expressions (cf. also Esik (1981)).

Minimal tree recognizers and Nerode congruences are discussed in Brainerd (1968), Arbib
and Give’on (1968), and Magidor and Moran (1969).

The theory of equational forests is from Mezei and Wright (1967). We have simplified the
exposition by considering only regular fixed-point equations. Mezei and Wright considered
also equational and recognizable subsets of general algebras (cf. Exercise 22). They proved
that the equational subsets of an algebra (of finite type) are the homomorphic images of the
recognizable subsets of term algebras. Applied to term algebras this result gives our Theorem
7.9. Eilenberg and Wright (1967) present these results in a category theoretic form. For var
ious classes of subsets in general algebras we refer also to Wagner (1971), Lescanne (1976),
Marchand (1981), Shepard (1969), and Steinby (1981). Dubinsky (1975) discusses equational
and recognizable subsets of nondeterministic algebras. Maibaum (1974), and Engelfriet and
Schmidt (1977, 1978) extend the subject into another direction by considering many-sorted
algebras.

The material of Section 8 is from Costich (1972). Local forests, or similar concepts, and
results related to Theorems 9.4 and 9.5 can be found in Doner (1970), Thatcher (1967, 1970),
and Takahashi (1975a).

The characterization of the forests recognizable by DR recognizers is from VirAgh (1981),
although the basic idea is discernible already in Magidor and Moran (1969) (cf. also Thatcher
(1973)). The minimization theory of DR recognizers appears in Gecseg and Steinby (1978a).

We should also mention an alternative approach, originating with Pair and Quere (1968) and
popular among French writers, in which the basic objects are tuples of trees rather than trees.
The usual tree operations are then augmented by operations which catenate tuples of trees
or form a tree from an m-tuple by creating a new root labelled by an m-ary operator. As an
abstract framework for their study Pair and Quere introduced "binoids", the tuples of trees
form such a binoid. Their results include the basic closure properties and a Kleene theorem.
This formalism has been developed further by Arnold and Dauchet (I978d, 1979) to a theory
of "magmoids” which also embodies many of the ideas of Eilenberg and Wright (1967).
Arnold (1977a, b) discusses many topics relevant to this chapter within the framework of
magmoids.

We shall now discuss briefly some topics and applications of the theory not covered by this

122

book. The survey is by no means complete, and in many cases the choices were dictated by
personal preference. Some more remarks will be made at the end of Chapters III and IV.

The category theoretic treatment of recognizable and equational subsets by Eilenberg and
Wright (1967) was already mentioned. It is based on Lawvere’s "theories”. This approach
was developed further by Give’on and Arbib (1968), and others. The theory of magmoids has
also evolved from the same ideas. We have avoided the use of category theory altogether, but
the bibliography contains a sample from the extensive and highly diversified literature on the
subject. The items of interest include Alagic (1975a, b), Arbib and Manes (1974), Bobrow and
Arbib (1974), Goguen (1975), Goguen et al (1974, 1977), Horvath (1979,1981) and Trnkova
and Adamek (1979).

The structure theory of tree automata has received little attention although some initial steps
were taken already by Magidor and Moran (1969). Ricci (1973) considered cascade products
of tree automata. Iterative realizations and general products of tree automata are studied in
Steinby (1977b). Two sections of Gecseg and Steinby (1978b) are devoted to the subject. It is
evident that generalizations from the unary case will usually not be easy in this area.

Transition monoids have proved very useful in finite automaton theory and some equivalents
of them for tree automata have been suggested. The "m-ary monoids” of Give’on (1971) and
the "substitution algebras” of Yeh (1971) are in fact special Menger algebras. The same idea
reappears in the "clone algebras" of Turner (1975). Sommerhalder (1974) develops the concept
further and associates with an algebra a sequence ... of monoids. Here M„ consists
of all n-tuples of n-ary polynomial functions of the algebra. It would be easy to define syntactic
monoids of forests along these lines, but no such theory seem to have evolved yet. Another
variant of the transition semigroup concept has been studied by Helton (1976).

We shall mention some other algebraic topics of potential interest. A ZX-forest T is said
to be recognizable by a 27-algebra s^=[A,X) if one may choose a: X-*A and A'(— A)
in such a way that (j/, X, A') recognizes T. Families of forests recognizable by algebras belonging
to a given variety (equational class) were considered by Steinby (1977a) and by Gecseg and
Horvath (1977). For a further study in this direction it would probably be advantegeous to
follow the example of Eilenberg’s theory of M-varieties and varieties of recognizable languages
and consider "co-varieties” (usually called pseudovarieties) of algebras and the families of forests
corresponding to them; an ©-variety is a class of finite algebras closed under the construction
of subalgebras, homomorphic images and finite direct products. In Steinby (1979) it was shown
that Eilenberg’s basic variety theorem can be extended to ©-varieties and varieties of recogniz
able subsets of free algebras (suitably defined). A specialization of this result to term algebras
gives a correspondence between ©-varieties and varieties of recognizable forests. A YY-forest
T is said to be rationally represented by an I2Y-recognizer A if there exists an embedding
p: F^X)-*Fa(X) of a certain kind such that T<p = T(\). A variety of algebras is said to
be rationally complete if every recognizable forest can be rationally represented by a recognizer
based on a finite algebra belonging to Jf. Gecseg (1977) studies the rational completeness of
varieties and the equivalence of tree recognizers with respect to rational representation. Further
results can be found in Mar6ti (1977), and Marchand (1979) also contains some related ideas.

We shall now list a few references to some more topics. Probabilistic tree automata and related
topics have been discussed by Magidor and Moran (1969, 1970), Ellis (1970) and Karpinski
(1974b, 1975). Forests of infinite trees appear in Rabin (1969), Engelfriet (1972), Casteran
(1978) and Courcelle (1978). An alternative way to generate forests is provided by the tree
adjunct grammars studied by Joshi, Levy and Takahashi (1973, 1975), Levy (1973), and Levy
and Joshi (1973). Also Lindenmayer systems (L-systcms) for trees have been considered; see

123

Culik (1974), Culik and Maibaum (1974), Engelfriet (1976a, 1977), Karpinski (1977), Steyart
(1978), and Szilard (1974).

Although we present our subject as a part of pure automata and formal language theory,
it should be clear that it has many connections to the more applied aspects of language specifi
cation, translation and semantics. As a conclusion we would like to point out some less obvious
areas of application.

When Doner (1965,1970) and Thatcher and Wright (1965, 1968) introduced tree automata
their goal was to prove the decidability of the weak second order theory of multiple successors.
Further applications to logic can be found in Rabin (1969, 1970).

In syntactic pattern recognition patterns are decomposed into simple basic elements which
are represented by letters of an alphabet. A pattern is then represented, for example, as a word.
However, essential information about the relations between the basic elements may be lost if the
corresponding letters are simply concatenated to form a word. It is possible that these can be
described adequately by representing the pattern as a tree, and then tree automata theory may
be used. For example, the considered class of patterns may be generated by a tree grammar or
recognized by a tree recognizer. One specific problem prompted by syntactic pattern recognition
is the inference of forests from samples. The interested reader may consult the books by Fu
(1982) and Gonzalez and Thomason (1978). Some papers from this area are Berger and Pair
(1978), Brayer and Fu (1977), Fu and Bhargava (1973), Gonzalez, Edwards and Thomason
(1976), Lu and Fu (1978), Pair (1976), Tai (1979), and Williams (1975).

124

CHAPTER III

CONTEXT-FREE LANGUAGES AND
TREE RECOGNIZERS

The words generated by a context-free grammar can be read from derivation
trees. The connection between forests and languages implied by this fact is the
subject matter of this chapter. In the first section we define the yield-function by
means of which a word is extracted from a tree. In Section 2 the basic relations
between recognizable forests and context-free grammars are established. The
usual definition of derivation trees must be modified slightly as to make them
“trees” in our sense of the term, but the difference is inessential. The forest of
derivation trees of any CF grammar is shown to be recognizable. On the other
hand, we shall see that the yield of any recognizable forest is a CF language.
Hence tree recognizers may also be viewed as recognizers of CF languages. The
section is concluded by showing that every CF language is the yield of a local
forest recognizable by a deterministic R-recognizer.

The inverse image of a CF language under the yield-function is not always a
recognizable forest, but we show in the beginning of Section 3 that the inverse
image of a regular language is a recognizable forest. Also, a slightly restricted
converse of this fact is presented. Then we show that every CF language can be
obtained from a recognizable forest with a fixed and very simple ranked alphabet.
Section 3 is concluded by some examples which show how facts about context-
free languages can be proved using the theory of recognizable forests.

In Section 4 another, less well-known, way to obtain the context-free languages
from recognizable forests is presented.

1. THE YIELD FUNCTION

We shall now formally define the function that extracts a word from the fron
tier of a tree. This will also give a function that associates a language with every
forest.

Definition 1.1. The yield yd(l) of a TY-tree t is defined inductively as follows:

125

1° yd(x) —x for all x£X.
2° If then yd(t)=yd(rj...yd(tm).

The yield of a ZZ-forest T is the X-language yd(T)= {yd(t)|t€T}.

To obtain the yield of a tree tm) one concatenates the yields of the
subtrees In particular, yd(cr) = e for all a£Z0. More generally,
yd(/)=e iff t^FffQ). The mapping

yd: FffX)+X*

is not injective; in general, a word is the yield of several trees.
We use the same symbol yd for its extension to forests. Of course, yd presupposes
a Z and an X although our notation does not show this.

Example 1.2. Let ca€Z0, <t€Z3 and x,y^X. For s=o(x, o(y, co, y), co) and
t=a(co, x, o(y, y, co)) we have yd(s)=yd(t)=xyy. □

Whether or not a given word w^X* is the yield of some ZY-tree depends
on the length of w and the arities of the operators in Z.

Lemma 1.3. Let r(Z)={mL, mk}. For a word w^X* there exists a tree
t^F^X) such that yd(/) = H’ iff the length of w can be expressed in the form

|w| = h1(m1-l) + ...+/ik(mt-l) + l

for some (integers) hlt...,hm^0. □

The proof of the lemma is an exercise. It is easy to see that yd(FI(Z))=Z*
iff Zo^0 and Z—(Z!UZo)#0. When this is the case, there exists for every
Z-Ianguage L a ZZ-forest T such that yd(7’)=L. The greatest among these is
the forest

yd-^I) = {^(ZjlydWCL}.

In general, we know just that ydfyd-^L^sL. From Lemma 1.3 one easily gets

Corollary 1.4. For a given LzX\ there exists a forest TcF^X) such that
yd(T)=L iff

{HHL} £ {M'«i-1)-I---- + M'M*~1) + I|/J1, hk » 0),

where {mltmk}=r(Z). □

In the following lemma we list some obvious properties of yd and yd-1.

126

Lemma 1.5. Let S and T be LX-forests, and K and L X-languages. Then

(a) yd(SUT) = yd(5)Uyd(T),

(b) yd (SAT) c yd (S) A yd (T),

(c) yd-^AUZ) = yd-HWyd-VL),

(d) yd-^AfU) = yd-Wnyd-^L), and

(e) yd-^A-L) = yd^^-yd-^L). □

2. CONTEXT-FREE LANGUAGES AND RECOGNIZABLE
FORESTS

In the customary definition of derivation trees the inner nodes are labelled by
nonterminal symbols and a nonterminal may appear at nodes with different
numbers of outgoing edges. Since we allowed a symbol of a ranked alphabet
to have just one rank, the definition of derivation trees should be modified accord
ingly.

Let G=(N, X, P, a0) be a CF grammar as defined in Section 1.6. We associate
with G a ranked alphabet ZG thus: for each

2m = {(«. w)|(3a - = «}•

Definition 2.1. Let G and ZG be as above. For every dO.NUX the set D(G, d)
of derivation trees with d as the root is defined by the following conditions:

1° D(G, x)={x) for each x£X.
2° For a^N, (a, 0)£D(G, a) iff a-e^P.
3° Suppose a-*d1...dm£P, with a£N and dt, ..., dmcNJX. If

t^D(G, dj, ..., t„fD(G, dm), then (a, m)(tlr tm)^D(G, a).
4° Nothing is in any D(G, d) unless this follows from a finite number of appli

cations of the rules 1°, 2° and 3°.
The derivation foreSt of G is the ZG X-forest D(G)=D(G, a0).

Exactly as in the case of conventional derivation trees, every t in D(G, d)
(d^NUX) corresponds to a unique leftmost derivation in G of the word yd(r)
from d. Also, every derivation

d qUi =>q ...=* G^k-l qW>

with d^NUX and w€A*, can be described by a tree t£D(G, d) such that
yd(t) = w. This is easily shown by induction on the length of the derivation.
Hence, L(G)=yd(D(G)).

127

Theorem 2.2. The derivation forests of CF grammars are local and, therefore,
recognizable.

Proof. Let G-(N,X,P,a^ be a CF grammar. It is obvious that D(G) is the
local ZG^-forest L(R, F) (in the notation of Section II.9), where

R = {(a0, m)\m £ 0, (a0, m)£E°}

and the set Fof the allowed forks is defined as follows. If and a—di...dm^P,
then we include in F every fork (a, m)^, c^ such that for all i=l, ..., m,

_(dt, if
C‘ I (dt, k) with k&O and (d^k^Xf if d^N.

Nothing is in F unless this follows from the construction described above. □

It is also easy to see that D(G) is generated by the regular iV-grammar
Gd=(N, Xg, X, PD, a^, where

PD = {a-^(a, m)(dlf ..., dm)\m Q, a^-d^.-.d^P, dlt dm€NUX}.

Example 2.3. Consider the CF grammar

G = ({a0, b}, {x, y}, {a0 -* xaob, a0 — e, b -* xyb, b -* y}, a0)-

In this case ZG=TGUZf UZG where XG = {(a0,0)}, T®={(b, 1)} and
ZG = {(a0, 3), (b, 3)}. The productions of the grammar GD=(N, XG, X, PD, a^
generating D(G) are a0->(n0, 3)(x, a0, b), a0~-(a0, 0), b-*(b, 3)(x, y, b) and
b—(b, l)(y). The allowed roots of the local forest D(G) are (a0, 0) and (a0, 3),
and the possible forks are (a0, 3)(x, («0, 0), (b, 1)), (n0, 3)(x, (a0, 0), (b, 3)),
(a0, 3)(x, (a0, 3), (b, 1)), (a0, 3)(x, (a0, 3), (b, 3)), (b, 3)(x, y, (b, 1)), (b, 3) •
• (x, y, (b, 3)) and (b, l)(y). □

Theorem 2.2 yields immediately

Corollary 2.4. Every CF language is the yield of a recognizable forest. □

The converse is also true:

Theorem 2.5. The yield of any recognizable forest is a context-free language.

Proof. Let G=(N, X, X, P, a0) be a regular ZA'-grammar generating the given
recognizable LZ-forest T. To simplify matters we assume that G is in normal
form. Now we construct the CF grammar Gt=(N, X, Plt a0) with

Pl = {a -yd'(p)|a -*p€P).

128

Here yd' is the yield-function corresponding to the extended frontier alphabet
XUN. Inductions on the lengths of the derivations show that

(1) a=>£t implies a^^yd^X for all a^N, t^F^X), and that
(2) for all w^X* and a^N, a^w only in case there exists a tree t^F^X)

such that a^t and yd(t) = w. These two facts imply that yd (T)=L (GJ
is CF. □

In view of Theorem 2.5 any tree recognizer may be seen as a device which recog
nizes a CF language by checking the possible syntaxes of given words; a word is
accepted iff it is the yield of at least one tree accepted by the tree recognizer.

Definition 2.6. The language recognized by a TJV-recognizer A is the ^-language
L(A)-yd(T(A)).

The previous results can now be expressed as follows.

Theorem 2.7. A language is recognized by a tree recognizer iff it is context-free. □

The equivalence expressed in Theorem 2.7 is effective both ways; for any CF
language given by a CF grammar we can construct a tree recognizer, and for
any tree recognizer A we can construct a CF grammar generating A (A).

By Theorem 2.2 every CF language is the yield of a local forest. We shall now
show that even a smaller class of forests will suffice. To this end we replace deri
vation trees by trees in which the inner nodes are labelled by complete produc
tions.

With every CF grammar G=(N, X, P, aj we associate another ranked alpha
bet EF defined as follows. For each mgO, let

Em = {(a - 7)|a -* 7 is in P and M = m},

i.e., the m-ary symbols correspond to the productions with right-hand sides of
length m.

Definition 2.8. Let G and EF be as above. For every d^NUX the set P(G, d) of
production trees with d at the root is defined by the following conditions:

1° P(G,x)={x} for each xQX.
2° For aCN, (a-e^Plffa) iff a-e^P.
3° Suppose a-*di ■ ■■dm£P (w>-0, a£N and dlt ..., d„(iN\JX). If

p^PiG, dj.......pm£P(G,dm), then (a-^ ...d^Pt........pm)^P{G,a).
4° Nothing is in any P(G, d) unless this follows from a finite number of

applications of 1°, 2° and 3°.
The production forest of G is the J/X-forest P(G) = P(G, aj.

9 Odcseg 129

Theorem 2.9. The production forest P(G) of any CF grammar G is local and it is
also recognizable by a deterministic R-recognizer.

Proof. Let G=(N, X, P, a0) be a CF grammar. The presentation of P(G) as a
local forest is similar to that of D(Gf We construct a DR 2/Y-recognizer
X=(A, X, X, A', a) as follows. Put /1 = 7VU.W {d} (d^NUX), A' = {a0}, and
for each x€X, xa={x}. Next, the underlying root-to-frontier algebra d=(A, Zp)
is defined. If a=(a^e)€Z£, then 0^=0. Let (r = (u-c1...cm)€^ with m^Q.
Then we put XXCci-•••> and a^lb^d, ...,d) for all b^a. It is
easy to show by tree induction that for all t^F^ifX) and a^N^dX,

a^ta. iff t£P(G, af

This implies that A recognizes P(Gf □

The language recognized by an R-recognizer is defined in the natural way. As
it is obvious that yd (P(G))=L(G) for every CF grammar G, we may state

Corollary 2.10. Every CF language is recognized by a deterministic R-recognizer. □

3. FURTHER RESULTS AND APPLICATIONS

Every CF language L is the yield of many different forests. Such a forest is
not necessarily recognizable. In particular, the greatest ot them (for a given L)
yd'1 (L) may be nonrecognizable.

Example 3.1. Let and X={x>y}- Consider the (minimal linear)
CF language £= {x"/|nsl}. If yd-1 (L) were recognized by a IX-recognizer A,
then A would accept all trees a^s^tj) G—1), where (i) s^x, ti—y and (ii)

and fora11 As A is finite, it would then also
accept some tree ofsi,tj) with i^j. But this is a contradiction, because
yd(o(s„ D

In contrast to Example 3.1 We have

Theorem 3.2. If L is a regular X-language, then yd-1 (L)€Rec (I, X) for any
ranked alphabet Z.

Proof. Let Jt be a finite monoid, <p: X*~M a homomorphism and H a subset
of M such that L=H(p~1. Let j/=(M, Z) be the I-algebra defined so that

0^(0^ ...,am) = afaa-...-am (product in ^)

130

for all m^O, o^Xm and alf ...,am£M. In particular, o^=l when a£X0.
If we put

a = (p\X: X—■ M,
then

t& = yd(t)(p for all t£Fz(X).

This implies that yd-1 (£)=7’(A) for the ZT-recognizer A=(j/, a, H). Indeed,
for all t^F^X),

t£T(A) iff t& = ydeepen

iff yd(t)€£
iff t€yd-1(L). □

The full converse of Theorem 3.2 is not valid, but the following result will be
proven in Exercises 6 and 7.

Theorem 3.3. Let L(sX^ be a language and X a ranked alphabet such that
yd (yd"1 (L))=L. Then yd-^^CRec (Z, X) implies L^ec X. □

The ranked alphabets XG and Xp depend on the given CF grammar. We shall
now show that every CF language is the yield of a recognizable forest over a fixed
ranked alphabet. In fact, a very simple alphabet will suffice.

Theorem 3.4. Let X be a ranked alphabet which contains a binary operator and a
nullary operator. Then every CF language is recognized by a X-recognizer. For
e-free CF languages the binary symbol alone is enough.

Proof. Let us consider the e-free case first. Every CF language LcX* is gener
ated by a CF grammar G—(N, X, P, a0) in Chomsky normal form, where each
production is of the form a—be or a—x (a, b, c£N, x^X). By Lemma II.4.1
we may assume that Z=Z2={cr}. Let G1=(N, X, Plt aj be the regular XX-
grammar, where

Pj = {a o(b, c)|a -* bc£P}U {a -* x\a -* x£P}.

Adjoin N to the frontier alphabet and let

yd': Fz(XUN)-^(XUNy

be the corresponding yield-function. By induction on the length of the derivation
°ne can verify that for every derivation

a =*cWi =>0...=*G«* (a^N, k S 1)

there is a derivation

O a ~OlP1 (P>, ...,P^FdXUN))

9* 131

such that yd'(p^=Ui for i=l, ...,k. This implies L(G)syd (HGO) as
yd'|Fj(y)=yd. The converse inclusion follows from the fact that for every
derivation (*) we have the derivation

a =>oyd'(Pi) =>G---=>Gyd'(P*)-

If L^X* and e^L, then we find, as above, a recognizable Zy-forest T such
that yd (T)=L-e. Now add a nullary operator co to I and let T' = TUco.
Then T' is recognizable and yd(T')=£. □

The connections established above suggest the possibility of developing, or
just interpreting, the theory of context-free languages in terms of tree automata
and recognizable forests. We shall illustrate this by a few examples. The results
themselves are well known.

Theorem 3.5. The intersection of a context-free language with a regular language
is context-free.

Proof. Consider a CF language L c X* and a regular language U over the same
alphabet. Choose any ranked alphabet Z and recognizable Zy-forest R such that
yd (R)=L. Then

LOU = yd(RA yd-1 (C/)).

Since RAyd-^GjCRec (Z, y) by Theorem 3.2 and Theorem II.4.2, this
means that £ A G is context-free. □

The next example shows how the regular forest operations relate to language
operations.

Definition 3.6. Let U and V be y-languages and x£X. The x-substitution of U
into V is the language U -x V of all words

woukwku2... Wk-iUkWk,

where k^O, ...yU^U, waxw1x...xwk-.kxwk£V and x does not appear in the
word w0 . Wn.

The x-substitution closure of U is the language

[/** = U(G''x|i SO),

where and U,’X=U‘-1-X for i^Q.
Consider two Zy-forests S and T and a symbol x€X. Every tree p£S’xT

is obtained from some tree t£ T by replacing each occurrence of x by some tree
from 5. Suppose x appears k times (AsO) in t and that we get p by replacing
these occurrences, from left to right, by the trees st, ...,sk£S. If

yd(/) = WOXW1X ... xwk,

132

then

yd(p) = woyd(si)wjyd(s2)... yd (s^w^yd (S) -,yd(r).

Conversely, if w£yd (S) ^yd (T), then we may write w in the form

w = w^w^... wk^ukwk

so that k^O, woxw1x...xwk^,yd (T) and uk€yd (S). Then there are
trees t^T and such that yd(r) = woxw1x...xwk and yd($x) =
=«i...... yd (sk)=uk. If we replace the occurrences of x in t by the trees slt ...,sk,
then we get a tree p£S-xT such that yd(p)=w. An easy induction on i shows
now that

yd(T,,x) = yd(T)i,x for all i s 0.

Using these observations we get

Lemma 3.7. For any two EX-foreSts S and T, and any letter x^X,

(a) yd (S.,n=yd W^ydCT)

and

(b) yd(T*x)=yd(T)*x- □

Now we can derive the following well-known description of the family of
context-free languages.

Theorem 3.8. The context-free languages form the smallest family of languages
which contains the finite languages and is closed under (finite) union, x-substitu-
Hons and x-substitution closures.

Proof. Clearly, all finite languages are context-free. Let U, Ks X* be CF and
x£X. There exist recognizable forests S, T^FfX} such that yd (S’) = U,
yd(T)=K Now UU K=yd (SUT), U-xV=yd (S)-Xyd (T) and F*x=yd(rx)
are all seen to be context-free. On the other hand, the Kleene theorem (Theorem
H.5.8) together with Corollary 2.4 and Lemma 3.7 shows that every CF language
can be obtained from finite languages by forming unions, x-substitutions and
■^-substitution closures. □

Note that when a CF J-language is expressed in terms of finite languages,
unions, substitutions and substitution closures, symbols not in X may be used
as auxiliary symbols in substitutions.

As an example we consider the language L— {xypiSO}. Let and
«r€T3. Then L is the yield of, for example, the recognizable ZX-forest

T = {a>, <r(x, co, y), a(x, a(x, co, y), y), ...}

133

which has the regular expression co -zo(x, z, y)*z. From this we get for L the
representation

L = {e}-z{xzyYz.

Here z is an auxiliary letter which does not appear in the language represented.

4. ANOTHER WAY TO RECOGNIZE CF LANGUAGES

If an ordinary finite automaton is viewed as a unary algebra, then its input
symbols form a ranked alphabet. There is a way to interpret ZY-trees as words
over Z in the general case, too. When this is done, recognizable forests become
CF languages. Moreover, every CF language can be obtained this way as a recog
nizable forest once its alphabet is suitably ranked.

We consider the unary case as an introduction. The word

= <h — ^X*
can be obtained from the corresponding Z{x}-tree

^^(...^(x)...)
recursively as follows:

1° xr]=e for all x^X.
2° if t=cr(s) (a^X).

Another way to get tr] would be to erase the parentheses and x and then reverse
the resulting word. Both of these constructions can serve as the basis for the
generalization to the case of an arbitrary ranked alphabet. The reversing of the
order of the word is an inessential step due to our way of writing trees, and it
will be omitted in the generalization.

Let X be an arbitrary ranked alphabet and X any frontier alphabet. We shall
treat Z as an ordinary alphabet, too. We assume that Z and X are disjoint and
that they do not contain (,) or the comma. Let

r=WYU{(,),,}
and define

n: Y* ^Z*

as the monoid homomorphism such that

_ I y for y£X,
for y^Y-X.

Applied to a ZY-tree 11] erases all frontier letters x£.X, the parentheses and
the commas leaving the symbols a^X intact. It is easy to see that this can be
carried out as follows, too.

134

Lemma 4.1. The words tr) (t^F^X)) can be found recursively as follows:

1° xtj = e for x^X.

2° If t = ff(t1,...,tm') (msO,aeTm), then ty = atrf... tmri. □

We have already noted that every regular ZY-grammar may also be viewed as
a CF grammar generating a /-language. Moreover, it is well-known that the
family of context-free languages is closed under homomorphisms. Hence we have

Lemma 4.2. If T^cfT,X), then Tfi£CF(Z). □

Next we prove the following converse of Lemma 4.2.

Lemma 4.3. Let Z and X be alphabets. If Z is ranked so that Z2=Z, then there
exists for each CF language L^Z* a recognizable ZX-forest T such that Tr^L.

Proof. First, let L be e-free. Then L is generated by a CF grammar G= (N, Z, P, a0)
in Greibach 2-form, where each production is of the form (i) a^obc, (ii) a—ah
or (iii) a—a (a, b, c^N, a^Z). We convert G into a regular ZY-grammar
G1=(N, Z, X, Plf a0), where the set A of productions is defined as follows. Fix
any x£X and put then

Pt = {a — a(b, c)|n -* abetP}U{a — a(b, x)|a — ah€P}U

U{u — a(x, x~)\a — <r€P}.

In order to show that is the required recognizable forest we extend t] to
a homomorphism

(KUY)* - (£U.V)*

so that ih\Y=t] and th\N= 1N. It is easy to see that to every derivation

a =>c«i k S 1)

there corresponds a derivation

(*) a=>G1v1=>Gl...=>Glvk

such that v^^u, (i=l,...,k). Conversely, every derivation (*) is matched
by the derivation

a =W1 =>G---=>

Since Y*=n, this implies T(G^=L(G)=L. If e^L, we apply this construc
tion to L-e and add then the tree x to T{G^. □

In the representation of Lemma 3.3 the frontier alphabet A can be fixed in ad
vance independently of Z and the language L. A one-element alphabet X= {x}
suffices always.

135

We say that a Z-Y-recognizer A ^-accepts a word w€Z*, if it accepts at least
one ZA-tree t such that tr] = w. The Z-language ^(A) rj-recognized by A is the
set of all words ^/-accepted by A. In this terminology the previous results may be
summed up as follows.

Theorem 4.4. A language is rj-recognized by Some tree recognizer iff it is a context-
free language. □

EXERCISES

1. Is it possible that yd-1 (w) is infinite for some word wl
2. Prove Lemma 1.3.
3. Find an example of a nonrecognizable forest T such that yd (T) is a recog

nizable language.
4. Show that for every CF grammar G, D^G) is the image of P(G) under an

alphabetic tree homomorphism.
5. Recall that a groupoid is an algebra with one binary operation (and no

other operations). For Z — Z2—{a}, FffX) is the free groupoid generated by X.
Verify that yd: FS(X)~-X+ is a groupoid epimorphism. Then prove that a
language L £ X+ is context-free iff it is the homomorphic image of a recogniz
able subset of the free groupoid generated by X (cf. Exercise 11.22, and Mezei
and Wright (1967)).

6. The set Comb (Z, X) of “comb-like” ZV-trees is defined as the smallest
set 5 satisfying the conditions 1° and 2°:

1° ZUFoSS.
2° If m>0, xit ...,xm^X and t^S, then a(xx, x,^, t)£S.

(a) Prove that Comb (Z, X)£ Rec (Z, V).
(b) Let T be a recognizable forest such that TsComb (Z, X).

Show that T is generated by a regular ZY-grammar (N, Z, X, P, a0) in which each
production has the form a-*a{xlt xm_lt b), a—a> or a—x (a,b£N, m^O,
<r€Zm, Xi, ...,xm_ffX, a?€Z0, x£A).

(c) Infer from (b) that yd(F)CRecA' for every recognizable T, Tq

cComb (Z, X).
(d) Prove that for every ZY-tree t there exists a comb-like EX-tree s such

that yd (s)=yd (r). Deduce from this fact that if yd (yd-1(L))=£ for some
LcXf then

yd(yd-1(L)AComb (Z, V)) = L.
7. Prove Theorem 3.3 using the results of the previous exercise.
8. Give another proof for Theorem 3.4 using the fact that every CF language

can be generated by an invertible CF grammar in Chomsky normal form.

136

In Exercises 9—12 the theory of recognizable forests should be applied.
9. Prove that the language U— Vis CF if Uis CF and Eis a regular language.

10. Let epi X*—Y* be a homomorphism of monoids. Prove that L<p“1€CF(A')
for every L^CF^Y).

11. Let h(t) denote the tree which is obtained from a given tree by rewriting
every operator a as its rank r(a). Obviously yd (A(r))=yd (r). Show that h
can be defined, for any given Y and X, as an alphabetic tree homomorphism.
Two CF grammars G1 and G2 are said to be structurally equivalent if h^DlG^—
=h(D(G$. Prove that there is an algorithm to determine whether or not two
CF grammars are structurally equivalent.

12. Prove Bar-Hillel’s pumping lemma (Lemma 1.6.13).
13. Let G be a regular Zy-grammar. Construct a CF grammar G' such that

L(G')= T(G)q. Note that Lemma 4.2 follows as a result.

NOTES AND REFERENCES

The basic connection between recognizable forests and context-free languages has been estab
lished in various ways. Mezei and Wright (1967) proved that the equational subsets of an algebra
of finite type (in the monoid X* these are the CF languages) are the homomorphic images of
the recognizable subsets of term algebras, i.e., recognizable forests. Applied to groupoids this
theorem gives the result of Exercise 5 (credited to D. Muller). It also implies Theorem 3.4 which
was explicitly formulated by Magidor and Moran (1969). The proof using derivation forests
goes back to Thatcher (1967, 1970) and Doner (1970). Various forms of production trees have
been used in this context by Engelfriet (1975a), and Steinby (1977a). Theorem 3.2 appears,
for example, in Rounds (1970b). It is a special instance of the fact that the Inverse homomorphic
images of recognizable subsets of algebras are recognizable (cf. Exercise 11.22). Theorem 3.3
appears to be well-known. The proof outlined in Exercises 6 and 7 is from Steyart (1977b). The
idea to use tree automata in the theory of CF languages was proposed by Rounds (1970a). More
examples of such applications can be found in Thatcher (1973) and Engelfriet (1975a). The
results of Section 4 are due to Ferenci (1977). The interested reader may also consult Ferenci
(1980) for further work in this direction.

As a conclusion we mention a few other topics. Using a ranked nonterminal alphabet it is
possible to define context-free tree grammars. Rounds (1969, 1970a, b) shows that the yield-
languages of CF forests are exactly the indexed languages. Arnold and Dauchet (1976d, 1977,
1978a), and Engelfriet and Schmidt (1977, 1978) arc some further references.

Possibilities to extend some of the results of this chapter to type 0 or context-sensitive lan
guages by generalizing the tree-concept have been investigated by Benson (1970), Buttelman
(1975a, b). Hart (1974, 1976), and Rfvfsz (1977). Hierarchies of term languages obtained by
iteration of the yield-forming process have been studied by Maibaum (1974), Engelfriet and
Schmidt (1977,1978), and Turner (1973,1975). Families of languages defined by tree recogniz
ers based on aJgebias belonging to a given variety of algebras were considcicd in Steinby
(1977a). GtcSEG and Horvath (1976) showed that a proper variety may be complete in the sense
that every CF language is recognizable by a finite algebra of the variety (cf. the Notes and refer
ences section of Chapter II).

137

CHAPTER IV

TREE TRANSDUCERS AND TREE
TRANSFORMATIONS

In this chapter we shall deal with systems transforming trees into trees simi
larly as generalized sequential machines transform strings into strings. There
are two main categories of such systems: frontier-to-root tree transducers which
process a tree from the leaves down towards the root, and root-to-frontier tree
transducers which work in the opposite direction. Special classes of tree trans
ducers will play a basic part in decomposing tree transformations into simpler ones.

1. BASIC CONCEPTS

Throughout this chapter Z, Q and A will stand for ranked alphabets. It will
be assumed that whenever an operator belongs to more than one ranked alpha
bet, then it has the same rank in all of them. Moreover, X, T and Z will always
stand for (finite, nonvoid) frontier alphabets.

Let us recall that F^S) as defined in II. 1 denotes the set of Z-trees over the
frontier alphabet S. Here we shall allow S to be a possibly infinite set of trees
and then use the notation for F^S). One can easily see that in such a
case there always exist a ranked alphabet Q and a frontier alphabet Y such that

Binary relations tsF^XjXF^Y) will be called tree transformations. An
inclusion (p, is interpreted to mean that t may transform p into q. Because
tree transformations are binary relations, we can speak about compositions,
inverses, domains and ranges of tree transformations as defined in Section 1.1.

With each tree transformation re F^XyxF^Y) we associate the translation
{(yd (p), yd(i?))|(p, ^)Ct} from X* into Y*.
The important tree transformations are those which can be given in an effective

way. Next we define two general systems (tree transducers) inducing such trans
formations. We shall need a countably infinite set

s=Ko^,...}
138

of auxiliary variables. The subset of S consisting of its first n^O elements will
be denoted by S„, i.e., The role of an auxiliary variable is to
indicate an occurrence of a subtree in a tree.

If all variables occuring in a tree q are among ..., then the notation
?(£i> •••> ^n) may be also used for q. Moreover, if qlt ..., qn are arbitrary trees,
then we generally write q^, ..., qn) for qi^q^

Definition 1.1. A frontier-to-root tree transducer (F-transducer) is a system
21=(T, X, A, Q, Y, P, A'), where

(1) X and Q are ranked alphabets,
(2) X and Y are the frontier alphabets,
(3) A is a ranked alphabet consisting of unary operators, the state set of 91.

(It will be assumed that A is disjoint with all other sets in the definition of 91,
except A')

(4) A' e A is the set of final states, and
(5) P is a finite set of productions (or rewriting rules) of the following two

types:

(i) x-afa) (x€X aEA, q^Fa{Y)\

(ii) v(ax^, ...,am^^ m^O, a1,...,am, a^A,

(In the sequel we shall write simply a(alf ..., af) for a^af^), ..., am(^m)).)

We shall use also the notation (p, q) for a production p^q- Moreover, if a^A
is a state and t is a tree, then we generally write at for a(f). Similarly, if T is a
forest, then AT will denote the forest {at^aCA, t^T}. Furthermore, for any
a^A, we put 9I(a)=(Z, X, A, Q, Y, P,a).

Let us note that in the above definition it would be more exact to speak about
production schemes instead of productions. Indeed, soon we shall see that they
define patterns for rewriting trees.

Next we define the transformations induced by F-transducers. Consider the
F-transducer 91 of Definition 1.1 and, for every pCFJTLMH], let be the
subset of >(Fn(yUS) given as follows:

(1) if p = ai (a^A, ^B), then

(2) if pgXUIo. then for all (p,aq)£P,

(3) if p = a(p1.......pm) m >• 0) then aq^,..., qm)epTv for all

(<r(ai.am), aq){P and a^^pit^ (a, a^A, i = 1, m), and

(4) nothing is in any pt* unless this follows from (1)—(3).

139

Definition 1.2. Take an F-transducer UI=(Z, X, A, Q, Y, P, A'). Then the relation

— {(P, ^P^F^^X), q^Fn^Y), aq^px^ for some a^A'}

is called the transformation induced by 21.

For Definition 1.2 it would be enough to apply r* to trees from K(y). The
above more general case will be needed later.

Sometimes in our proofs we should know how an input tree is transformed
step by step into an output tree. Again, let 21 be the F-transducer of Definition
1.1, and consider two trees p, qtFAXUAF^YVZ)]. It is said that p directly
derives q in 21 if q can be obtained from p by

(i) replacing an occurrence of an x^X in p by the right side aq of a produc
tion x—aq from P, or by

(ii) replacing an occurrence of a subtree afoft, ...,amqm) ak,

a^A’ qlt ..., in p by aq(qk, ..., q^, where a{alt ..., am)-aq is

a production from P.
Each application of rule (i) or rule (ii) is called a direct derivation in 21. If q

is obtained from p by a direct derivation in 21 (i.e., p directly derives q in 21),
then we write p^q. Therefore, =>a is a binary relation in ^[AW/t/FUS)].
If there is no danger of confusion, we generally omit 21 in =>M.

By finitely many consecutive applications of direct derivations we get derivations.
Accordingly, for any two trees p, JFn(FUS)] we say that

W P = Pa => Pi =*■■■■ =>Pi =>■■■=> Pj=>...=>pk = q

(k S 0, MFHyU^TUS)], I = 1, k, k)

is a derivation of q from p in 21, k is the length of this derivation and p^.-.^pj
is a subderivation of (1). In this case we write p^q, or p=>*q if 21 is understood,
and say that p derives q in 21. Therefore, =>* is the reflexive-transitive closure
of =>. Obviously, when p=Sq, there could be several (but finitely many) deriva
tions of q from p. However, when we write p=Sq, we usually have in mind, at
least implicitly, a certain well-defined derivation of q from p. Consequently, we
may say that p=>*q is a derivation.

Using the notation =>* the transformation tm induced by an F-transducer
®“(^, X, A, Q, Y, P, A') can also be given thus:

T« — {(P, f)\p£Fs(X), q^Fn(Y), p=>*aq for some a^A'}.

As 21 may have different productions with the same left side, there could be
more than one qeFn(Y) such that (p, q)exn for a given p in F^X), i.e., 21 is in

140

general nondeterministic. However, at each step of a transformation we have
only finitely many choices. Therefore, is finite for every Ti W.

A tree transformation is an ^-transformation if it can be induced by an F-
transducer. The class of all F-transformations will be denoted by

Take an arbitrary set A. The ith component of a vector a^A" will be denoted
by a^ i.e., a=(u1, ..., a^. If a1 = ...=a„=a then for a we write an. If a^A" and

are arbitrary two vectors, then (a, b) will stand for fa, blt ...,bm).
Assume that k=min(m, ri). Then ab stands for (a^, ...,akbk) or

(ak> ^k))> depending on the context.
Consider a p^F^X^B^, and let p=(pn ...,pn) be a vector of trees. Then

we shall write p(p) for p(P1, ...,p„). Moreover, if p£FI(A'U3n)n’ and
Q=(?i,is a vector of trees, then p(q) will stand for (^(q), ...,pm(q)).

Consider the homomorphism tp: (XUBf^B* given by xtp=e (x^X) and
Set

F^fX^E^) = {p€FJ(A'U£„)|yd(p)<p is a permutation of

and

WW = {peFXWSJIyd^ip = & ... Q.

Moreover, if m>0 then let

= {pCF^XUSZIyd^)^ ... yd^tp is a
permutation of

Now let 2I=(Z, X, A, Q, Y, P, A') be an F-transducer, and consider a deri
vation

a: (p, ^F^XUAF^Y)]).
Let
(2) r(plt p^ =>r^, p^ =>... =>rfak, p2) =► r(plk, p2)

(r€fs[XUAFo(Y)U3J)

be a subderivation of a, where the first £ direct derivation steps apply to the
subtree plt and then the (A:+l)th step concerns the subtree p2. Replacing the
subderivation (2) in a by

<3) rfa, pt) =>r(plt pl) => r(plp p2) =*...=> r(pik, p'2)
we obviously get a new derivation

p^‘q.
The replacement of (2) in a by (3) is called an inversion of direct derivations.

Finitely many inversions of direct derivations is a reordering of direct derivations.
In the sequel we do not distinguish between derivations obtained from each

other by reorderings of direct derivations.

141

Again, consider the above F-transducer 21 and a tree p^F^X). Then by

P =P(Pi, -,P^ amqm) =>* aq^, qm)
(p^XUEJ, Pi^*aiqi, i = p(a1^,...,am^^aq)

we mean the derivation

P(P1, Pm)^^, Pm)^...=>p(plki, ...,p^^,„

■■■^p(PlkiPmJ =^-=^p(Plki, PmkJ =

^P^qi,-,amq^ =^aq{qlf..., qm)
if Pi^atq{ is the derivation Pi ^p^ => ... =► p.* = (a£A, q^F^Y),
i = 1, ..., m), and p(a1q1, ..., amqm)=>*aq(q1, ..., qm) is obtained by replac
ing in pia^, ..., am^^*aq by qt (i=\,

If we say that we write the derivation

a: p^aq (a^A, p^F^X), qtFa(Y))
in the (more detailed) form

P- P=P(Pi,-^Pm^^P^q^ amqm) =>*aq(qlt 9m)
(pEF^XUSJ, Pi^a^t, i = 1, p(ai^,...,am^m)^aq),

this also generally means that is a reordering of a. Of course, such a reordering
always exists.

In the special case p=a(^1, ..., £m) (trgZJ we write 0 in the form

P- v(Ji,-,Pm)=>^(a1q1, ...,amqm)^*aq(q1,..., qm)
(Pi^a^i, i = (cr^, aq)^P).

We illustrate the concepts of F-transducers and F-transformations by

Example 1.3. Let 2I=(T, {x}, K aJ, Q, {>>}, P, fo}), where £=£2= {a},
and P consists of the productions x-^^y and a(alt aO-Uotu^i).

Consider the tree cr(x, x). One of the possible derivations

<r(x, x) => ff(a1y, x) => cr(aly, aky) => a0co(y)

is illustrated by Fig. IV. 1.

Fig. IV.l.

142

Thus (a(x, x), a>(y)) is in In fact, ta consists of this single pair
(<7(x,x),m(y)). Indeed, the only Z^-tree of height 0 is x, which obviously is
not in dom(TM). If p^F^X) is a tree with a height greater than 1, then it should
contain at least one of the following trees as a subtree:

a(a(x,x), a(x,x)\ a(v(x,x),x) and a(x, <r(x, %)).

One can easily see that none of these subtrees can be transformed by 21. □

F-transducers transform a tree from the leaves of the tree towards the root
of the tree. Now we define a system which works in the opposite direction.

Definition 1.4. A root-to-frontier tree transducer (R-transducer) is a system
(T, X, A, Q, Y, P, A'), where

(1) Z, X, A, Q, Y and A' are specified the same way as in Definition 1.1, but
here A' is called the set of initial states,

(2) P is a finite set of productions (or rewriting rules) of the following two types :

(i) ax - q (a^A, x^X, q^F^Y)),
(ii) aa^, ...,£„) ~ q (a^A, m^O, q£Fn[YUAEm]).

In the sequel we shall write simply aa for aa^, Moreover, for a pro
duction p-q we shall use the notation (p, q), too.

Obviously, a production of type (ii) in Definition 1.4 can be written in the form

mr - q(a1^', ...,am^)

where a^A^, n^O, z=l.......m, n1 + ...+nm=n, and qe^XUBJ. In the
sequel we shall assume that whenever 1 sism and n1 + ...+n(_1 + lSz1-czgs
—ni + --, +«i, precedes in yd (q)<p. Here <p is the homomorphism defined
on p. 141.

Next we define the transformations induced by R-transducers. Let 91 be the
R-transducer of Definition 1.4. For any a^A and p£F£(X) we define the sub
sets as follows:

(i) if pCZoUT and (ap,q)£P then q^ptti a,
(ii) ifp=<t(plt ...,pm) (<s^Xm, m^O), then for any (aa, qfal;"',a^^zP

and (l^i&m, l^Jsnt), ^(q^ qm)€pr„ a where q(=
“(?<.. -,?l) 0=1, ,„,m),J nt

(iii) nothing is in anypt„ „ unless this follows from (i) and (ii).

Definition 1.5. Let 2l=(Z, X, A, Q, Y, P, A') bean R-transducer. Then the trans
formation induced by 21 is the relation

T« = {(P, ^IpS^OT), q£Fa(Y), q^px^ for some a^A'}.

143

A tree transformation is an ^-transformation if it can be induced by an
R-transducer. The class of all R-transformations will be denoted by

For R-transformations we also give another definition which shows how a
transformation is carried out step by step.

Let p, 9€Fn[FUy4FJ(ArU3)] be trees, and consider the R-transducer of
Definition 1.4. It is said that p directly derives q in 21 if q can be obtained from p by

(i) replacing an occurrence of a subtree ax (at A, xtX) in p by the right
side q of a production ax^q in P, or by

(ii) replacing an occurrence of a subtree aa(p1, ...,pm) (at A, at^m, m^O,
Pi, ■■■,Pm^FI(XU2)) in p by q(pv ...,pm) where aa-^q is in P.

Each application of steps (i) and (ii) is called a direct derivation in 21. The
relation expressing the direct derivation will be denoted by =>a, i.e., we write
p=>^q if q is obtained from p by a direct derivation in 21. Frequently, 21 will be
omitted in =>a. Any finite sequence of consecutive direct derivations defines a
derivation. More precisely,

(4) p = Po^P1 =>...=>Pi q

(k?=0, p^F^YUAF^XUS)], 1 = 0, ...,k, O^i^j^k)

is a derivation of q from p in 21, k is the length of this derivation and p^.-.^-pj
is a subderivation of (4). If q can be obtained from p by a derivation, then we
write p=^q, or simply p=>*q if 21 is understood from the context. Thus, =>*
is the reflexive-transitive closure of =>. Similarly as in the case of an F-transducer,
we suppose that the notation p=»*q implies a certain derivation of q from p in 21.

Using the notation =>*, the transformation tsi induced by an R-transducer
21=(27, X, A, Q, F, P, A') can equivalently be defined thus:

= {(P, Q^P^F^X), q^F^Y), ap =>* q for some atA'}.

Let us note that although an R-transducer 21 is generally a nondeterministic
system, pt^ is finite for every input tree p of 21.

Let 2I=(27, X, A, Q, Y, P, A') be an R-transducer. Consider some n>0,
^An, ptFz(X)n, qtF^Y)” and derivations atpl=>*ql (i=l,..., n). Then
ap=>*q will denote the vector of these derivations. Moreover, we assume that
ap=>*q implicitly expresses the n derivations alpi=f*ql (i=l, ...,n).

Take the above R-transducer 21 and a derivation

a: p^?(p,?Efn[ruw)]).
Let
(5) r (Pi > Pa) =* r (Ph. Pa) =» • • • => r (Pik, pj =* r(pu, pj)

(rC/^rU/fF^US,)])

144

be a subderivation of a, where the first k direct derivation steps are carried out
in the subtree plt and then in the (& + l)th step we apply a production in the sub
tree p2. Replacing the subderivation (5) in a by

(6) r(plt pj => rfa, p'i) => r^, p0 =>... => r(plk, p'2)

we get a derivation
0: p q.

The replacement of (5) in a by (6) is called an inversion of direct derivations.
By finitely many applications of inversions we get a reordering of direct deriva
tions. We shall not distinguish between derivations in an R-transducer if they
are reorderings of each other.

Again, take the above R-transducer 21, a state a^A and a tree p^F^X).
Then by

up = ap(P1, ...,Pm) =>* q^p”1, ...,Ampnm^ =>* q^lt.... qm)

ni — ®> i = l, «!+... + nm = n, qeFa(YU3n),

we mean the derivation

ap(pi, ...,Pm) =>* amp^) =>

=* al2Pl> al„tPl^ •••» am1Pm, •••» Qm^Pm) =>••■

...^(Pi^), ai2Pi. aln Pi, ...,amjpm,a^pn,) =>...

... =>q(pil(kl), ■ Pi^k^), —,a„tpm.......am„mPm) =>—

...=>?(Pl1(*t), Pl„t(klnh ■■■’Pm, (k^), ...,a„nnPm) =>...

•••^qiPl^k^, •••» Pl„ (k,)> Pm^k-), •••» Pm (km)) =
1 1 m nm

■ •••> 91^. ■••> •••> <7mnm)> assuming

that a(p"‘=>*q((ISZSw) has its component derivations

ai}Pi => PijW^-^ Pi^) = J = •••> ”<)»

and ap(plt , p^^q^Pi', ..., a,„p^) is obtained by replacing (f=l, ...,m)
in ap^*q(^, ..., am^-) by p(.

When we say that we write the derivation

a: ap=>*q (a^A, p^F^X), qQFa(Y))

10 Gdcneg 145

in the (more detailed) form

0: ap = ap(P1, ...,pm) ^q^p”', ...^p”̂) ^q^,.... qm)

(p^AXUEJ, ap^q^"1, a£A\ nt S 0,

i = ni + ... + nm = n, q^F^YUS^, ajP^^Hj,
it generally also means that /? is a reordering of a. Obviously, such a reordering
always exists.

In case p—a^, (aEYm), we write P in the form

P: aa^, p^^q^p"1, ...,ampn”) ^q^, ...,qm)

((ao-, q (a^1, ..., am£”m))eP, *£An‘, nt S 0, n1 + ...+nm = n,

q^YUE^, j = 1, ..., m).

Example 1.6. Let 2l=(Z, {x}, {a0, alt a2}, <2, {j^, y2}, P, a0) be the R-trans
ducer, where I2=I21U<22, O1 = {co1}, I22 = {co2} and P consists
of the productions

aoa - CDiCa^, a2^,
«i (fli ^i), a2 a - coj (a2 {J,

a2x-y2.

Consider the trees p=o-(cr(<r(x))) and ^(^(ya)))- Then
a derivation of q from aop is illustrated by Fig. IV.2.

Fig. iv.2.

146

By induction on the heights of input trees one can easily prove that

= {(*"(*)> <»;_1Oa))) l«= 1, 2, ...},

where <t°(O=^ and <rn(O = o-(o-"-1(i)) if n>0. □

Both F-transducers and R-transducers generalize generalized sequential ma
chines from strings to trees (or from unary polynomial symbols to polynomial
symbols of arbitrary finite type if strings are interpreted as unary polynomial
symbols, as we did in Section II.2). At the same time there are the following main
differences between F-transducers and R-transducers:

(1) An F-transducer first processes an input subtree nondeterministically
and then makes copies of the resulting output subtree.

(2) An R-transducer can first make copies of an input subtree and then pro
cess each copy independently in a nondeterministic fashion.

(3) F-transducers should process even those subtrees which are deleted after
wards.

Before ending this section we state and prove some simple general results.
The concept of tree homomorphism was introduced in Section II.4. It is easy

to see that the tree homomorphism h: F^X^-'-F^Y), given by the mappings

hm: (meO)
and

X^Fa(Y\

can be induced by the one-state F-transducer ill=(F, X, {a}, 12, Y, P, a) where

P = {* - {<r(a, ..., a) - ahm(d)](?eEm, m S 0).

Definition 1.7. A one-state F-transducer X, {a}, 12, Y, P, a) is an HF-
transducer if for every x£X, resp. aCZ, in P there is exactly one production
with left side x, resp. a (a,

We have seen that every tree homomorphism can be induced by an H F-trans
ducer. The converse is also true: transformations induced by HF-transducers are
tree homomorphisms.

We now introduce the R-transducer counterpart of HF-transducers.

Definition 1.8. A one-state R-transducer 9l=(Z, X, {a}, 12, Y, P, a) is an HR-
transducer if for each d^XUY in P there is exactly one production with the
left side ad.

io* 147

Next we prove that the class of all tree homomorphisms coincides with the class
of all transformations induced by HR-transducers.

Theorem 1.9. The class of transformations induced by HF -transducers coincides
with the class of all transformations induced by HR-transducers.

Proof. Let X, {a}, Q Y, P, a) be an HF-transducer. Consider the
R-transducer iB — (Z, X, {a}, Q, Y,P',a), where P' is given in the following
way:

(ax, q)£P' (x, aq)^P (x£X)
and

(aa, q^,..., al^P' q^F^YU-^.

It is obvious that ® is an HR-transducer.
By induction on hg (p), we show that for arbitrary p^F^X) and q£Fa(Y)

the equivalence

O ap =>» q op aq

holds. This obviously implies tw=t8.
If hg(p)=0, then (7) holds by the definition of P'.
Let p—c(pl, ..., pm) (a^Em, m>0), and assume that (7) has been proved

for all trees in F^(X) with heights less than hg (p).
Suppose that the left side of (7) holds, i.e., we have ap=aa(p1, ■■■,pm)=>9

^n^api, ■■■,ap^lq(qi...... qm^q, where (aa, q(a^, ..., a^)£P' and
aPi^^i Then, by the definition of P', the production o(a, ..., a)-

— ,&) is in P. Moreover, by the induction hypothesis, pi^aqi is
valid for each i (\^i^m). Therefore, we have a desired derivation

P = •••» Pm) aqm) =o-naq(ql,..., qm) = aq.

The fact that p=>^aq implies ap=>^q can be shown by reversing the above
argument.

To see that every HR-transformation is induced by an HF-transducer, it suf
fices to observe that every HR-transducer SB arises from an HF-transducer 91 by
the above construction. Hence HR- and HF-transducers appear in equivalent
“associated pairs”. q

We prove two more results.

Theorem 1.10. The following statements hold.

148

(i) For every ¥-transformation tcFs(X)XFB(Y), dom (r)CRec (Z, X).
(ii) There exists a tree homomorphism h: F^xy^F^Y) such that range (A)

$Rec(&, K).

Proof. In order to show (i) consider an F-transducer 91-(Z, X, A, Q, Y, P, A').
Construct an NDF Ty-recognizer B=(^, /?, B'), where @=(A,Z), B'=A',
and, for all m^Q, ff£Zm and a1,...,amEA,

^(«i. ...,am) = a^, aq^P}}.

Finally, let
xp = {u€^|(3^Ffl(K))((x, aq^P)} (x^X).

We end the proof of (i) by the observation that for all a£A and p^Fz(X) the
equivalence

a^o^F^Y^p^aq)

holds. This can be shown by induction on hg(p).
For a proof of (ii), see Example II.4.15. □

Example II.4.15 shows also that the translation of a context-free language
by a tree transducer is not always context-free. In fact, in this example the finite
language {x} is translated into the non-CF language {x2"|ns0}.

Lemma 1.11. For each T$Rec(Z, X) there exists an F-transducer 91 such that
dom (tm)=range (r9I)= T and r3J is the identity mapping of T.

Proof. Let B=(^, p, B') be a DFR ZW-recognizer with 38=(B, Z) and T(B) = T.
Take the F-transducer 9l=(T, X, B, Z, X, P, B') where

P={x- p^x^X}^^.......bm) - bt^,.... Cm)|

m^O, b, bltbm£B, tr*^,.... bj = b}.

Obviously, 91 has the desired properties. □

We end off this Section with

Definition 1.12. Two R- or F-transducers 91 and 91 are equivalent if t81=tb holds.

149

2. SOME CLASSES OF TREE TRANSFORMATIONS

In this section we shall define several classes of F- and R-transformations and
then compare them with each other with respect to set theoretic inclusion. It
will turn out that in most cases the classes to be investigated are incomparable.

Definition 2.1. Let 2l=(r, X, A, £2, Y, P, A') be an F-transducer. Then:

(1) A production of 21 is linear if each auxiliary variable occurs at most once
in it. Moreover, 21 is a linear F-transducer (LF-transducer) if all of its produc
tions are linear.

(2) 21 is a totally defined F-transducer (TF-transducer) if
(i) for each x^X there is a production in P with left-hand side x and

(ii) for all and alt ...,am€A there is a production in P with
left-hand side ..., am).

(3) 21 is a nondeleting F-transducer (fiAF-tranSducer) if for every production
<r(ai, ..., am)—aq (a££m, m^O) from P each ^Bm occurs at least once in q.

(4) 21 is a deterministic F-transducer (DF-transducer) if there are no two distinct
productions in P with the same left-hand side.

(5) 21 is an F-relabeling if each of its productions is of the form
(i) x-ay (x^X, a^A, y£ Y) or

(ii) where aeEm, alt am, a^A, coeQm.
Transformations induced by F-relabelings are also called F-relabelings.

To illustrate the above concepts, let us take the following example.

Example 2.2. Let 2(=(Z, {x}, {n0, a^, £2, {y}, P, {a*}) be the F-transducer with
W and £2=Q2= {a)}, where P consists of the productions

x -* a^y,

a0) - a^!, a(a0, aj - a0co(^, a(alt a0) - f2),

cr(ai,ai) -

Then 21 is a linear, totally defined, nondeleting and deterministic F-transducer.
Moreover, 21 is an F-relabeling. pg

Example 1.3 gives an F-transducer which is linear and deterministic, but it is
neither totally defined nor nondeleting.

Let us note that F-relabelings are always linear and nondeleting F-transducers.
We now define the R-transducer counterparts of the above classes of F-trans

ducers.

150

Definition 2.3. Let X, A, Q, Y, P, A') be an R-transducer. Then:

(1) A production of 31 is linear if each auxiliary variable occurs at most once
in it. Moreover, 21 is a linear R-transducer (LR-transducer) if all of its produc
tions are linear.

(2) 21 is a totally defined R-transducer (YR-transducer) if
(i) for all a£A and x^X there is a production in P with left-hand side ax,

and
(ii) for all a^A and (m^O) there is a production in P with left-hand

side aa.
(3) 21 is a nondeleting R-transducer (NR-transducer) if for every production

aa—q (a£Em, m^O) from P each occurs at least once in q.
(4) 21 is a deterministic R-transducer (DR-transducer) if A' is a singleton and

there are no distinct productions in P with the same left-hand side.
(5) 21 is an R-relabeling if each of the productions of 21 has the form
(i) ax^y (a^A, x£X, y^Y) or

(ii) aa—a)(a1^1,...,am^m), where a, alt ..., am£A, a>£Qm. Trans
formations induced by R-relabelings will also be called R-relabelings.

Example 2.4. Let 2I = (T, {x}, {a0, ^i}, {A. P, fao}) be an R-transducer
with X=X2={(t} and Q=Q2= {co}. Moreover, P consists of the productions

aoX-ji, a1x-^y2,

aoa - coCa^i, a^a), Oja - m(a0£i, a0^.

Then 21 is a linear, totally defined, nondeleting and deterministic R-transducer.
Moreover, 21 is an R-relabeling. □

The R-transducer of Example 1.6 is deterministic and nondeleting, but it is
neither linear nor totally defined.

Let us note that R-relabelings are linear and nondeleting R-transducers.
The abbreviations introduced above for classes of tree transducers can be

combined to indicate further subclasses. For instance, an LNF-transducer is a
linear nondeleting F-transducer. Moreover, a transformation is a R-transforma
tion if it can be induced by a K-transducer. The class of all K-transformations
will be denoted by X. Thus, for example, is the class of all LNF-transfor-
mations, i.e., the class of all transformations induced by linear nondeleting F-
transducers. By Theorem 1.9, we shall write simply Jf instead of MP and XX
Moreover, .Frei, resp. Frei, will denote the class of F-relabelings, resp. R-rela-
belings.

We now prove

Theorem 2.5. F and 31 are incomparable.

151

Proof. In order to prove Theorem 2.5, we give (i) an F-transformation which is
not in and (ii) an R-transformation which cannot be induced by any F-trans
ducer.

(i) Consider the LDF-transducer 21 of Example 1.3. If for an R-transducer
® = {x}, B, Q, {y}, P', B') we have (a(x, x), ©(y))^, then at the first
step of a derivation bo(x, x)=>^(a(y) (b^B') we should apply a production
of the form bo—b'^, ba^b'^2, bo-^a>(b' ba—(o(b' or bo-^w^y), where
b'^B. In each of the above cases one of the auxiliary variables and £2 is deleted.
Therefore, dom (rB) is infinite.

(ii) Take the DR-transducer 21 of Example 1.6. Assume that an F-transducer
® = (T, {x}, B, Q, {yj, y2}, P', B') induces th. Obviously, P' should then con
tain a production of the form

0(b) - ^(0^, q2) (b,b£B).

We may confine ourselves to the following cases:

(I) ft^Ch) and q2^ak(y^,
(II) q^a^Q and q2=ck(y£,

(III) q^ffy^ and q2=a1^},
(IV) q1 = am^1') and q2=on(^.

Obviously, in a derivation <r,(x)=>*6/(B2(tDl-1(y1),coj-^yg)) (r>l, b'^B') the
last application of the above productions can be followed by applications of
productions of the form (5, b^B) only. Let t denote the maximum
of exponents in (I)—(IV). If r>r+l and Ts(ar(x))=ca2(cor1-1(y(), coj-^yp)
(1S i, js 2) then i = j. n

From the proof of Theorem 2.5 we directly get

Corollary 2.6. and 3 St are incomparable and so are 3& and St, and P and
3>&. n

As we have mentioned one of the main differences between F- and R-transdu-
cers is that while F-transducers first process an input subtree and then copy the
resulting output subtree, R-transducers first copy an input subtree and then treat
these copies independently. In the case of an LR-transducer none of the input
subtrees of a tree is copied during the translation of the tree. This property leads to

Theorem 2.7. is a proper subclass of

Proof. By (i) in the proof of Theorem 2.5, is not a subclass of Thus,
it is enough to show the validity of

152

Let 9I=(Z, X, A, Q, Y, P, A') be an LR-transducer. Then the productions
from P can be written in the form

(i) ax-q (a^A, x$X, q£Fa(Y)), or
(ii) am£„) (a, alt am^A, q^

^FO[Y^AB^.

Now take the following R-transducer 21. If 21 is nondeleting, then 91=91.
In the opposite case ST=(Z, X, A, Q, Y, P, A') is given as follows. Let A—A U { * }
(*^T). Fix any y^Y and enlarge P by all productions**—y (x^X) and*a—y
(msO, a€Tm). Denote by P the resulting set of productions. Obviously, 91 is
linear and equivalent to 91. The only difference between 91 and 91 is that 9l trans
forms (in state*) even those subtrees of a tree p^ F^X) which are deleted during
the corresponding derivation of p in 91.

Next, construct the F-transducer ®=(I, X, B, 12, Y, P', B'), where B=A
and B'=A'. Moreover, given any x£X, b^B and q£Fa(Y\ x—bq is in P'
iff bx-^q is in P. Furthermore, the production

<7^.......b^-bq^,...,^^, b1,...,b„, b^B, q^F^YUB^

is in P' iff P contains a production

ba - q^c^,

such that for each i = 1, ..., m,

_ (ct if £, occurs in q,
‘ I * otherwise.

Obviously ® is linear.
In order to complete the proof of Theorem 2.7, it is enough to show that the

equivalence

(1) P=>vbq o bp =>S q

holds for all b^B, p^F^X) and q^Fa(Y). We shall proceed by induction
on hg (p).

If hg(p)=0, then (1) obviously holds by the definition of P'.
Now let p =a(plf ...,pm) (a£Ym, m>0), and assume that (1) has been proved

for all trees in FZ(X) of lesser height.
(I) Let p=>^bq hold. More in detail, let

p = a(plt.... pm) =>Jff(Mi» b„qm) =>»bq(q^ qm) = bq

where p^^b^ (i=l,m). Then by the induction hypothesis, we have

153

biPi^Qi 0 = 1 > Moreover, by the definition of P', ba—qty^, ...,bm^m)
is in P. Therefore,

bp = ba(plt ...^^(b^, bmpm) ^q^, ...,qm) = q

also exists in 21.

(II) Assume that in 21 we have a derivation

bp = ba(pltp^^-q^Pi,.... bmPm) ^q^, qm) = q

where each qt (i=l, is obtained by a derivation bipi^*qi in 91. Moreover,
let Z>i=*and qt=y if does not occur in q. Then a(blt bm~)-<-bq is in P'.
Furthermore, by the induction hypothesis, there are derivations Pi^b^j
0=1, Therefore, the derivation

P = ... ,pm) =^«a(blq1,,bmq^=^9bq{ql, ...,q^ = bq

is also valid. □

For linear nondeleting tree transformations we have the following stronger
result.

Theorem 2.8.

Proof. The LF-transducer ® constructed to the LNR-transducer, 91 in the proof
of the previous Theorem is obviously nondeleting.

Conversely, let ^—(Y, X, C, Q, Y, P", C') be an arbitrary LNF-transducer.
Construct the R-transducer 21-(Z, X, C, Q, Y, P, C'), where P is defined as
follows:

(ax, q)EPo (x, aq)EP"
and

(ucr, q(a^ltam^m))^P

^(a(a!, aq^,..., <□)£P",

where xQX, a, alt ..., am£A, Ym (m^Q) and qtF^YUSJ. Obviously,
21 is an LNR-transducer.

Now to 21 construct the F-transducer ® as in the proof of Theorem 2.7. Then
®=C. D

The LF-transducer ® constructed to an R-relabeling in the proof of Theorem
2.7 is obviously an F-relabeling. Moreover, the R-transducer 21 given to an F-
relabeling (£ in the proof of Theorem 2.8 is an R-relabcling. Thus, we have

Corollary 2.9. jFrel = rel. n

154

According to Corollary 2.9, we may speak simply about relabelings.
One can easily show the existence of an LNF-transformation which is not a

relabeling.
Our comparison results can be summarized by the diagram below.

(5*! ^-rel

3. COMPOSITIONS AND DECOMPOSITIONS OF TREE
TRANSFORMATIONS

Let X be a class of tree transformations. We say that X is closed under com
position if r1oT2€Jf whenever Tj,t2£X. As we shall see, some of our classes
of tree transformations are closed under composition while others are not. On the
other hand, in many cases it is possible to decompose a tree transformation into
a composition of simpler ones.

For any two classes X and X of tree transformations, we introduce the
notation X> rs£X}- Using this notation, the closure
of a class X of tree transformations under composition can be expressed by the
inclusion Xc/c/. Similarly, the fact that all transformations in X can be
given as compositions of a transformation in X by a transformation from X2
can be expressed by X sX°X- Finally, if X is a class of tree transforma
tions, then let X*=X and X"=XoX"-1 (n>l). All of the classes defined
in the previous section (di, £0, X etc.) include all identity transformations
{(r, t)|z€Fx(y)}. Hence, if X is any one of these classes, then we know that

Xc Xa £ Xa S....

First we prove a decomposition theorem concerning F-translbrinations.

Lemma 3.1. .F s oX and & S ^oX.

155

Proof. Let 91 = (27, X, A, A, Z, P, A') be an arbitrary F-transducer. Arrange the
productions from P in a fixed order and number them from 1 to |P|. For all
z(=l,|P|), if the left side of the ith production is x£X, then let be a
new letter. Denote by Y the set of all such x^. Moreover, for all /(=1, ..., |P |),
if the symbol (wsO) occurs in the left-hand side of the /th production,
then will be a new m-ary operator. The set of all such operators will bedenoted
by £2.

Now we introduce the F-transducer ®=(Z, X, A, £2, Y, P', A'), where P'
is defined as follows:

(i) x-^-ax^ (x£X, a^A) is in P' iff the ith production in P is x-^-ar for
some r,

(n) a(a1,...,am)^aa^(^1,...,^m) m^O, alf ..., am£A) is in P'
iff the ith production in P is cr^, ..., a^-^ar for some r.
Obviously, SB is linear and nondeleting. Thus, by Theorem 2.8, r8 is a linear
nondeleting R-transformation, as well.

Next define the F-transducer C=(£2, Y, {c0}, A, Z, P", c0) in the following
way:

(i) x(O-*cor is in P" iff the ith production in P is x—ar,
(ii) ^'’(co,..., c0)—cor is in P” iff the ith production in P is a(alt ..., am)—ar.

Then (£ is an HF-transducer.
We prove that Ta=TBoTe. For this it is enough to show that, for all p^F^X),

rdF^Z) and a£A, the equivalence

W P =*«ar (3?€FQ(F))(p aq\q cor)

holds. We proceed by induction on hg (p~).
If hg(p)=0, then (1) obviously holds.
Assume that p=a(plt ...,p^ and that (1) has been proved

for all trees from F^X) of lesser height.

(I) Let

P •••» amrm) ^arfa,..., rm) = ar,

where p^a^ faF^Z)) holds for each /(=1, m). Then, by the indue
tior^hypothesis, there are trees q^F^Y) (i=\, such that Pt=>^alql and

hold. Assume that the production a^, ..., am)-ar last applied in
(2) is the ith one in P. Then

...,am), aa^^,..., ^m))£P' and (c0........ c0), cof)6P".

Therefore, taking q=ai‘\ql, ...,qm), we have the desired derivations

p amqm) =>vaafl>(qx, qm) = aq

156

and
q =►£ (c0 ,..., c0 rm) =*c cor (^,..., r„) = c0 r.

(II) The fact that the right side of (1) implies its left side can be proved by
inverting the above computation. n

Lemma 3.2. Xf c

Proof. Let 2l=(T, X, A, Q, Y, P, A') be an F-transducer and 23 =
= (&, Y, {i0}, A, Z, P', bo) an HF-transducer. We shall construct an F-transducer
C whose productions will be composed of productions of 91 and derivations in
93. For this, using the fact that derivations in 23 can be started from trees in
Fn[yUi>0S] (see p. 140), we define derivations in 23 for trees in Fn(TUS). Take
two trees q^F^YUE^ and r£FA(ZUEm). We write q=>%bQr if

?(Mi> bor

holds. Now define an F-transducer E=(Z, X, A, A, Z, P", A'), where P" is
given as follows:

(i) x-^ar (x€Z, a^A, r£FA(Z)) is in P" iff there is a production x—aq
in P such that q=^bor holds,

(ii) afo, ...,am)-ar wsO, ait ..., am, a^A, r£FA(ZUEm)) is in
P" iff there is a production o-^,... , a^—aq in P such that q=>%bor holds.
Since at each step of the transformation of a tree the number of applications is
finite, P" is finite.

We prove that for all a^A, p^F^X) and r£FA(Z) the equivalence

(3) p *>(3qeFa(Y))(p ^aq\q=>lbor)

holds. We proceed by induction on hg (p).
If hg(p)=0 then (3) obviously holds.
Assume that p=a(p1, ...,pm) (a£Zm, m>0) and that (3) has been proved

for all trees from F^X) of lesser height.
(I) First we show that the right side of (3) implies its left side. For this assume

that the derivations

p =**0(0^1, ...,amqm) ^vaq(qlt.... qm) = aq

1 = 1,
and

<7 q(bor1, • • • > b0 rm) =>» bor (fj, ..., rm) — bor

(?< =>tAri. i = 1.......m)

157

are given. Then, by the induction hypothesis, the relations pp^a^ (z= 1,..., m)
also hold. Moreover, by the definition of P", ..^aj—ar is in P". Thus,
we have the derivation

(4) •••> amrm) ^ar^, ...,rm) = ar.

(II) Suppose that (4) and the derivations Pr^ast (z=l, ...,m) are valid.
Then, by the induction hypothesis, there are trees q^Fa{Y} (f=l, ..., m)
such that Pi^^a^ and qc^h^ hold. Moreover, by the definition of P",
there exists a with , am\ aq)^P and q^bfi. There
fore, for q=q{q1, ...,qm)

p =>t<^(.a1q1, ...,amqm) ^aq^, ..., qm) = aq
and

bor„^ ^bgr^, rm~) - bor
hold. U

From Theorem 2.7 and the Lemmas 3.1 and 3.2 we directly obtain

Theorem 3.3. . □

The constructions in the proofs of Lemma 3.1 and 3.2 preserve determinism.
Thus, we have

Corollary 3.4. <3) SPQ) &o &. q

Now we investigate some special classes of F-transformations for closure
under composition.

Lemma 3.5. Let 9l=(Z, X, A, Q, Y, P, A') be an F-transducer. Then there exists
a totally defined F-transducer & = (£, X, B, Q, Y, P', B') such that Tw=ro.
Moreover, ifH is linear, then ® can be chosen linear, too.

Proof. Let 5=^4U{*} and B’=A'. The required ® results if we put

P' = PU{x ^*y\x£X, bm) - *

m SO, b^.^b^B, y^Y}.

If 91 is linear, then so is 23. g

Theorem 3.6. The following equalities hold:
(i)

(ii) && a

Proof. In order to show (i), take two LF-transducers 91=(I, X, A, Q, Y, P, A')
and S = (I2, Y, B, A, Z, P’, B'). In view of Lemma 3.5, we may assume that

158

® is totally defined. Construct an F-transducer C=(T, X, C, A, Z, P", C')
with C=AxB and C' = A'xB'. Furthermore, P" is defined as follows:

(I) x—(a, b)r (x^X, (a,b)£C, r^F^Z)) is in P" iff there is a production
x—aq in P such that q=>^br holds,

(II) a((a1,b1'),...,(am,bm)^a,b)r

m S 0, (alt bm\ (a, b^C, r^F^Ej)

is in P" iff there is a production a(alt ..., a^—aq in P such that
q{b^, ...,bm^^br holds.

We shall prove that for arbitrary p^F^X), r£FA(Z) and (a, b)£C the
equivalence

(5) p =>J (a, h)r o(3?€Fn(y))(p =4aq\q =>%br)

holds. We proceed by induction on hg (p).
If hg(p)=0, then (5) obviously holds.
Now let p—o(pl,...,p^) and assume that (5) has been proved

for all trees of lesser height.
First we show that the right side of (5) implies the left side. Suppose we are

given derivations
p^a^a^, ..., qm) = aq

and
q^lq^r^.... bmrm) ^br^, = br

where and qi^^,blri (i=l, ...,m). (Observe that for each
there exists an rt such that qi=>^biri holds since 23 is totally defined.) Then, by
the induction hypothesis, the derivations p^Ka^ bi)rl (i=l, are also
valid. Furthermore, by the definition of P", the production

((<!. W.......(am, bm)) - (a, b)r

is in P Therefore, we get the derivation

P bi)^.......(am, bm)rm) ^^(a, b)r(rlt ..., rm) = (a, b)r.

The fact that the left side of (5) implies its right side can be shown by reversing
the above argument.

In order to prove (ii) it is enough to note that the HF-transducer C constructed
to the LF-transducer 21 in the proof of Lemma 3.1 is also linear. Moreover, by
Theorem 2.7, the inclusion BCJl £ holds. □

Using an argument similar to that used in the proof of Theorem 3.6 (i), one
can prove

159

Theorem 3.7. The classes and are closed under composition. □

From Theorem 3.7, by Theorem 3.6 (i), we get

Corollary 3.8. The class is closed under composition. □

Using our decomposition results, one can prove

Theorem 3.9. . □

Now we turn to decomposition of R-transducers.

Lemma 3.10.

Proof. Let 9I=(Z, X, A, A, Z, P, A') be an arbitrary R-transducer. Let n be
the greatest integer with Tn^0. For any production dtP and natural number
i (i^i^n), denote by k(d, i) the number of occurrences of in the right-hand
side of d. Set £=max {k(d, i^dtP, 1=1,..., n}. Furthermore, take the ranked
alphabet Q given by Q~ U(Qm.k\m^&) and Qmk= {a'\v€Em} (m^O).

Let X, {h0}, Q, X, P', be the HR-transducer where P’ consists of
all productions

box -■ x
and

.......b^ (at£m, m^O).

Next define an LR-transducer C=(12, X, A, A, Z, P", A'), where P" is given
as follows:

(i) ax-^r (x£X) is in P" iff it is in P.
(ii) Let (m^O) and ^Ek with (i=l, ...,m, j=l, ...,k).

Then is in P" iff aa-r^Q,..., «,£) is in P (for
some nk, ..., nm).

For each p^F^X) let us denote by p’^F^X) the tree given as follows:

(I) if p=xCX then p'=x,
(II) if p=a{pk,...,pm) ^Zm, m§0), then p'=a\p'k,...,p'*).

It is easy to show that the transformation is exactly the mapping p—p'
(p^FsW).

In order to prove TH=TBoTtt it is enough to show that for all at A, ptF^X)
and rtFd(Z) the equivalence

ap =>^r o ap'

holds. We proceed by induction on hg (p).

160

If hg(p)=O then, by the choice of P", (6) is obviously valid.
Now let ...pm) (<r£Em, m>0), and assume that (6) has been proved

for all trees of lesser height.
First we prove that the left side of (6) implies its right side. Assume that

ap ^r^p"', ..., ...,rm) = r

where (1=1, Then, by the definition of P", the production
aa' — rCa^, ...,am^m) is in P". Moreover, by the induction hypothesis, there
are derivations aip'",=>^ri for all ;(=1,m). Therefore, we have the de
sired derivation

ap'amp^m) ..., r„) = r.

The fact that the right side of (6) implies its left side can be proved by the con
verse of the computation above. □

Lemma 3.11.

Proof. Let 91—(Z, X, {a0}, Q, Y, P, a0) be an HR-transducer and ® =
=(Q, Y, B, A, Z, P', B') an arbitrary R-transducer. Take the R-transducer
G=(T, X, B, A, Z, P", B'}, where P" is given in the following way:

(i) bx—r (b^B, x^X, r£FA(Z)) is in P" iff there is a production aox—q
in P such that bq=>£r holds;

(ii) ba—r (b^B, a£Em, r£FA[ZUBBm]) is in P" iff there is a pro
duction (^€Ffl(FU3m)) such that bq=>£r holds.

To show TSIorffl=T(E it is enough to prove that for arbitrary b^B, p^F^X)
and r£FA(Z) the equivalence

bp =>$ r <> (3q£ Fn(Y))(aop =>£ qh bq =>» r)

holds. This can be carried out by induction on hg (p). □

From Lemmas 3.10 and 3.11 we directly get

Theorem 3.12. □

Using Theorems 3.3 and 3.12 we obtain

Theorem 3.13. For each nsl the inclusions .^"a^n+1 and hold. □

Taking n=l in Theorem 3.13, we sec that every F-transformation can be
given as the composition of two R-transformations, and each R-transformation
can be obtained as the composition of two F-transformations. Thus, taking
Theorem 2.5 into account, we get

11 G6cwg 161

Corollary 3.14. Neither SF nor SR. is closed under composition. □

One can show that is not closed under composition by LNF-transformations
either. For we have

Theorem 3.15. SR a SFAX SR=SR.

Proof. By Theorem 3.12, it suffices to show that SFSR is closed under composi
tions by LNR-transformations.

Let 9l=(Z, X, A, £2, Y, P, A') be an LR-transducer and SB = (12, Y, B, A, Z,

P', B') an LNR-transducer. Take the R-transducer G = (T, X, C, A, Y, P", C')
with C=AxB and C'—A'xB'. Moreover, P" is given as follows:

(i) (a,b)x—r ((c^b^C, x£X, rZF^Z)) is in P" iff there is a production
ax^q in P such that bq=**r holds.

(ii) {a, b^rfa, bi)^, ...,(am, bjQ

(l.a,b),(a1,bi),...,{am,bm^C, a£Zm, m^O, r£FA[ZUC3m])

is in P" iff there is a production aa^qia^, (q£Fa(YVa,$ in P
such that bq^r^, ...,bm^ holds.

In order to show Tffi=TaoTs it is enough to prove that for arbitrary (a, b^C,
p^F^X) and qFFA(Z) the equivalence

(a, b)p Fn(Y))(ap =>« q^bq =>» r)

holds. This can be done by induction on hg (p). □

Later on we need the following results.

Lemma 3.16. Let rcFs(X)y.Fa(Y) be an arbitrary ^-transformation and
T^c(Q,Y). Then Ff-^Rec (T, X).

Proof. By Lemma 1.11, there exists an F-transducer 91 with dom(T„) =
— range (t^^ T and ta is the identity mapping on T. Moreover, by the proof
of Lemma 1.11, we may suppose that 91 is deterministic. Furthermore, by Theo
rem 3.9, Thus, since Fr-1=dom (totm), in order to prove Lemma
3.16, it is enough to show that the domain of an F-transformation is recogniz
able. But this is true by (i) of Theorem 1.10. □

From Theorem 1.10 and Lemma 3.16, using the inclusion (see Theo
rem 3.13), we get

Corollary 3.17. Let r g FZ(X)XFn(Y) be an arbitrary ^-transformation. If
Ft Rec (12, F), then Ff^Rec (Z, X). In particular, dom (r)€ Rec (Z, X). □

162

4. TREE TRANSDUCERS WITH REGULAR LOOK-AHEAD

Consider an F-transducer 9I=(Z, X, A, Q, Y, P, A'). Take a tree p=
=a(plf ...,pm)^F^X) (aeSm, m>0) and a derivation <t(a> ■••>Pm)^*

amqm) (a^A, q£Fa(Y), p^aft, i=l, ...,m). Then, knowing the
states at, ...,am, our transducer can decide which production ...,am)—q
to apply next. In other words, after inspecting the properties of the subtrees
Pi, ..., pm, the F-transducer 91 can select the production to be applied in the
next step of the translation of p. Moreover, these properties of subtrees are regu
lar in the sense that dom (ta(>) is a regular forest for each i(=l, ..., w)- Ob
viously, R-transducers lack this possibility. This observation leads to the idea
to provide R-transducers with regular look-ahead as follows.

Definition 4.1. A root-to-frontier tree transducer with regular look-ahead (Rr-
transducer) is a system 91=(2, X, A, Q, Y, P, A'), where

(1) Z, X, A, Q, Y and A' have the same meanings as in Definition 1.4,
(2) P is a finite set of productions (or rewriting rules) of the form (p—q, D),

where p—q is an R-transducer production and D is a mapping of the set of all
auxiliary variables occurring in p into Rec (Z, X).

If p is of the form ax (x£X) or aa with o-CZ0, then the domain of D is empty.
We write such rules generally as ax—q and aa^q, respectively. Moreover, for
any a^A, we put 9l(a)=(Z, X, A, Q, Y, P, a).

Definition 4.2. Let 91 be the RR-transducer of Definition 4.1. 91 is called deter
ministic if the following conditions are satisfied:

(i) A' is a singleton.
(ii) If (pi—qlt DJ and (p2 —q2, D2) are two productions in P with Pi—p2,

and qi^q2, then there exists an i (i^i^m) such that A(^) AD2«;) = 0,
where m is the number of auxiliary variables in Pi(=p2)-

Linear and nondeleting Rr-transducers are defined in the same way as their
R-transducer counterparts.

Definition 4.3. Take an Rr-transducer 9(= (Z, X, A, Q, Y, P, A'), and let
p, ?CFn[FU^FI(A')] be two trees. It is said that p directly derives q in 91 (in
notation, p^^q) if q can be obtained from p

(i) by replacing an occurrence of an ax (a^A, x£X) in p by the right side
q of a production ax—q in P, or

(ii) by replacing an occurrence of a subtree aa^Pi, ...,pm) (at A,

feO, Pi,-,P^FSW) in p by where (aa^q,D) is in P and

P&D(ti) for each i(=A,...,m).

“• 163

A. sequence

P = Po=*a Pi =>« •••=>« Pk - q (k^O)

obtained by consecutive applications of direct derivations is a derivation of q
from p in 21. When such a derivation exists, we write p=>^q. Again, this nota
tion will also be used to indicate a certain derivation.

If there is no danger of confusion, then we generally omit 21 in =>9t and .

According to Definition 4.3, the difference between derivations in R-trans-
ducers and Rr-transducers is that in case of an Rr-transducer 21 a production
ao-^q can be applied to a tree ao(pY, ...,p^ if and only if there is a production
(aa-*q, D) of 21 such that each subtree pt (l^i^m) is in the recognizable
forest

Definition 4.4. Let <H=(E, X, A, Q, Y, P, A') be an Rr-transducer. Then the
relation

Ta = {(p, q^p^F^X), q£Fa(Y), ap=>*q for some a^A'}

is called the transformation induced by 21.
A relation t is an ^-transformation if there exists an Rr-transducer 21 such

that T=ta.
Linear, nondeleting and deterministic ^^-transformations are defined in an

obvious way.
The class of all Rr-transformations will be denoted by SiR.

Let us note that there exists a recursive definition of transformations induced
by Rr-transducers. This can be obtained by an obvious modification of the
corresponding definition of transformations induced by R-transducers.

Moreover, for Rr-transducers the notion of a reordering of direct derivations
can be defined in the same way as in the case of R-transducers. Furthermore,
the remarks concerning different forms of derivations in R-transducers are valid
for Rr-transducers, too.

To illustrate the concepts of Rr-transducers and Rr-transformations, consider

Example 4.5. Let ^{x} and Z=Z1Ur8, where Zt= {aj (i= 1,2). Take
the forests T, = (x)}*’ and T2={a1(x)}. Let 21=(Z, X, {a0, aj, Q, Y, P, o0)
be the Rr-transducer where £?=C1 = {a>}, Y={y} and P consists of the pro
ductions

(a^ - co^), Dj = 7g),

Da) (Dgfo) = Tj,

- y.

164

Then ra={(<r2«(x), ^W)> co"+1 (t))l«=0, 1, ••■}• Observe that (without regu
lar look-ahead) the corresponding R-transducer would induce the transformation
{(aa(^(x),p), co’^^Ipg^W, n=0, 1, ...}. □

Obviously R-transducers are special cases of Rr-transducers. On the other
hand, RR-transducers can restrict the domain of possible subtrees of input trees
even if these are deleted. In fact, no R-transducer could induce the ra considered
in the above example. Assume that such an R-transducer

S = (I, X, B, Q, Y, P', B')

exists. Then for every n(^0), the production applied first in a derivation
^B') should be of the form

(i) boO^qib^ or
(ii) ^--/(^a) (b^B, q^^), mSO).

Let k be the maximum of the heights of right sides of productions from P and
n^3k. Then the considered production should be of the form (i). But in this
case all pairs co"+1(y)) (p^F^X)) are in ?B, which is a contradic
tion. □

Theorem 4.6. The following inclusions hold:

(i) &R £ ^^"relo^,
(ii) ^R£^relo^,
(iii) 23tR £ ® J^rel o
(iv) ^^E^relo^^.

Proof. Let 91 = (Z, X, A, A, Y, P, A') be an arbitrary Rr-transducer. Let
Tt, ...,Tk (sFI(A')) be all regular forests which appear as images in the D-
mappings of the productions in P. Denote by V the set of all ^-dimensional vec
tors with components 0 or 1. Now take a ranked alphabet Q, where I20=Z0,
and for each m>0, Qn=ZmXVm. Thus, the elements from Qm (w>0) can
be given in the form (cr, (vn ..., vm)), where <r€lm and v1(v„f K

Let A(=(j/(, a(, A,) be TZ-recognizers with =(Ah Z) and T(A() = T(
(Z= 1,..., k). We introduce the F-transducer ®=(Z, X, B, Q, X, P', B') where
B=B' = AiX... XAk and P' consists of the following productions:

(I) x—(xalt.... xa*)x (xC-Y),
(II) (^o).

(Ill) <7(8!........aj-afer, (vt......... vm))({n W

(atZ„, m>0; a,^B, vfV, ' = 1.-. ™).

165

where
a = o^(alk,

and ^=1 iff a^A'j. Obviously, SB is a deterministic F-relabeling.
One can easily show that SB relabels every Zy-tree p in the following way:

(a) if p^XUZg, then ts(p)=p,

® if P~°(Pi, ■■■,P^ m>G) then Ts(p)=(cr,(v1,...,vm))-
■(x^p^where ^=1 iff p.^Tj

Next construct the R-transducer £=(Q, X, A, A, Y, P", A') where P" con
sists of the productions below:

(a') ap+r (a^A, ptXUQ,, r^F^Y)) is in P" iff it is in P,
vm))-r (a€A;ffeYm,m>O;v£V,i=l, r£ FA[Y\J ASm])

is in P" iff (a, (vn vj) occurs in a tree t8(P) (p^F^X)) and P contains
a production (ao-^r, D) such that p, =1 whenever D(^=TS
l^k). J '

In order to prove it is enough to show that for arbitrary a£A,
p^F^X) and r^F^Y) the equivalence

ap =>£ r o ac9(p) =>£ r

holds. This can be carried out by induction on hg (p).
It is also easy to show that C is deterministic (linear) if 91 is deterministic

(linear). n

Theorem 4.6 (iii) shows that DRr-transducers induce (partial) mappings.
Next we show that ^R is closed under certain special F-transformations.

Theorem 4.7. The following inclusions hold:

(i)
(ii) 3MRo3><F3F<=®gtR,

(iii) 3)^Ro3>^cQ)StRy
(iv) 3>^roj^cQ^r.

Proof. Let ^(Z, X, A, Q, Y, P, A') be an Rr-transducer, and take an LF-
transducer ® = (Q, Y, B, A, Z, P', B').

We want to treat cases (i) and (ii) together. Since the set of initial states of a
DRr-transducer should be a singleton we shall use the LF-transducer
» =(I2 F, 5, A,Z, P',b0) instead of ®, where B = BUbu (MB) and P' is
obtained by enlarging P' by the following productions: if y^bq (y^Y), is in
P and b^B', then y~boq is in P'. Similarly, if o(blt.... bj-bq (^In,

166

is in P' and b^B’ then the production o-^, b^-b^q is in P'. It is obvious
that

Construct the Rr-transducer &=(£, X, AxB, A,Z, P", A'X {io}), where P"
is given as follows:

(I) (a, b)p^r (a^A, b^B, p£XU20, r^F^X)} is in P" iff there exists a
production ap^q in P such that q^^br holds.

(II) Assume that the production (ao —q^^, a^™), D) (a^A;
w>0; 8^^"', i=l, w; «! + ...+«„=«, ?€/n(yU3n)) is in P and

that there is a derivation ..., bm£m)=>|ir(?i, ?m) with b^.B', b^B"*
^=^1+„.+B).l+P and rtFA(ZUBn). Then

P" contains the production ((a, i)u^(ajb^s ••■, a^^™), £>'), where
(f=l,.If b^B', then

((a, ..., ambm^-), D’) is also in P".
By Corollary 3.17, the domain of an R-transformation is regular. Moreover,

also by Corollary 3.17, the inverse of an R-transformation preserves regularity.
Thus, by Corollary 2.9 and Theorems 4.6 and II.4.2, (1 SiSm) is regular.

In order to show ^01-=^ it is enough to prove that for all (a, b)^AXB,
p^F^X) and r£FA(Z) the equivalence

(a, b)p =4 r <> (3?€ Fn(Y))(ap qK q =>® br)

holds. This can be done by induction on hg (p).
One can easily check that if 91 and ® are deterministic, then so is G. Thus, (i)

and (ii) are valid.
For (iii), take a DRr-transducer 9I=(Z, X, A, Q, Y, P, and a DLR-

transducer ® = (I2, Y, B, A, Z, P', b^.
Consider the RR-transducer G=(T, X, A XB, Q, Y, P", (a0, b^), where P"

is given in the following way:
(I) If ap-q (a€/I, pEA'UIo. q^Fn^ is in Rand bq=^r (b£B, reFA(Z))

holds, then {a, F)p—r is in P”.
(II) Suppose that aX")> p) (a^A, aeZm, m^Q, a£A\

nl + ...+nm = n, qefn(YUSn)) is in P and there is a derivation
.......Mm) with heB^^B"', ^Sn‘,

j = l.......m and r€F4(ZUSB). Then the production

.......ambm(H D')

is in P", where for every /(= 1,

D'd) = n(dom(tW(<9)R(, (1 does not occur in r)^).

167

Obviously, G is a DRR-transducer. Moreover, for all a^A, b^B p^F (X)
and r£ FA (Z) the equivalence

(a, b}p r o (^F^Y^ap =>* qK bq r)

holds. This can be proved by induction on hg(p). Therefore, t<=thot1b. Thus
we have shown that

To show (iv), let 21=(f, X, A, Q, Y, P, a0) be a DRr-transducer and ® =
— Y. {^oL A, Z, P', b0) an HF-transducer.

Construct an RR-transducer G=(Z, X, A, A, Z, P", n0), where P" is given
as follows:

(I) ap-r (a^A, p^X, r^F^ is in P" iff there is a production ap-^q
in P such that q^bor holds.

(H) Suppose that the production
a^A <, 1 = 1, m, ni+...+nm=n, q^Y^B^ is in P and there is

a derivation ...,b^1^^ where

^11' ^-’^'^1 + -+^ +...+^+...
■■■+kmnm—k, r£FA(ZUBk). Then the production

.............................

is in 7”, where for every «= 1.......m), />-«,) = n(dom (.)K, occurs in ,
but it does not occur in r)FlD(^). J

Using a similar argument as in the proof of (ii), we get that is a regular
forest. It is obvious that (£ is deterministic.

Finally, to show ^0x^=1^ it is enough to prove that for all a^A pfF (X}
and r^.FA(Z) the equivalence

ap =>tt r <=> pTV(a) =>&bar

holds. This can be done by induction on hg (p). n

From Theorem 4.7 we get

Corollary 4.8. The inclusions
(i) ^Ro ^relc^,

(ii) ^^o^^relg^^, and
(iii) ^jto^relg^.

hold.
□

Sh0W a181 thC Classes Of ^-‘"“formation, and LR„.transformations

168

= {

Theorem 4.9. EP^R—E£^.

Proof. The inclusion SP3tRc^ is implied by Theorems 4.6 (ii), 2.8 and 3.6 (ii).
In order to prove c &&R, take an LF-transducer 91=(Z, X, A, Q, Y, P, A').

Consider the Rr-transducer ®=(Z, X, A, (2, Y,P',A'), where P' is given as
follows:

(i) If x^aq (xEX, a^A, q^F^Yf) is in P, then ax—q is in P'.
(ii) If afo, ...,am)+aq m^O, a1,...,am, a^A, q^F^YUSj) is

in P, then (aa—q(a1^1, , am^m), D) is in P', where for every i(—l,...,m),

domfr^,) if does not occur in q,
F^X) otherwise.

Obviously, ® is an LRr-transducer. To prove t9i = t<b it is enough to show
that for each a£A, p^Fx(X) and q£Fa(Y) the equivalence

p^aq^-ap =>® q

holds. Again, we omit the straightforward inductive proof. □

In the proof of the above theorem we used look-ahead to ensure that the LRr-
transducer will not transform any tree which contains a subtree for which the
LF-transducer has no transform but which it would later delete.

From Theorem 4.9, by Theorem 3.6 (i), we get

Corollary 4.10. ^3tR is closed under composition. □

Next we show that 01R is closed under LRr-transformations and 2)3tR is closed
under composition.

Theorem 4.11. The following equations hold:
(i) 0lRo>R=0tR,

(ii) 2(XRo3>3tR=Qi^.R.

Proof. 0tRo^3lR=3lR follows from Theorem 4.7 by Theorem 4.9.
Since, for each E and X, the identity mapping on F^fX) is in in order

to prove (ii) it is enough to show the validity of the inclusion £ 23# R.
By Theorem 4.6 (iii), the inclusion ^3tRo^3tR sS3tRoQ>.^re\oQ)0t holds

from which, using Corollary 4.8 (ii), we get 2>3lRo&0tRc@giRoQ>0t. This
latter inclusion, by the proof of Lemma 3.10, implies ^3tRo^3fRs
^3>3lRoJfoQ)^^. Now, using Theorem 4.7 (iv), we get
£0^?Ro&<P0t, from which by Theorem 4.7 (iii), we arrive at the desired inclu
sion □

To end this section we prove the analogue of Theorem 3.12.

169

Theorem 4.12. 01 „ = JP o . K. K

Proof. The inclusion 3iPo£PSiRc.^R directly follows from Theorem 4.11 (i).
To show SiR £ Xf o SP0lR, consider an Rr-transducer 2l=(Z, X, A, A, Z, P, A').

Omit regular look-ahead in 31 and for the resulting R-transducer consider the
H-transducer 93 and LR-transducer C given in the proof of Lemma 3.10. Now it
is impossible to provide (E with a suitable regular look-ahead in an obvious way
since H-transducers do not preserve regularity. We shall solve this problem in
the following way.

Take the tree homomorphism h: Fa(X) — F^X) given as follows:
(i) hx(x)=x (x^X),

(“) 1)^+1) msO).
One can easily verify that for every p^F^X) the equality h^x^p^^p holds,

i.e., h{p')—p (for p', see the proof of Lemma 3.10).
Now replacing each production aa'—/-(aifj, ..., am£m) (crC^,

(ao^r^^p, am^-), D^P) in P" by (aa-^r^i, ..., aX), £'), where
^(^^•^(.D^)) (z=l, ...,m,j=l, ...,k), from C we get an LRr-transducer
since, by Theorem II.4.18, A-1 preserves recognizability. Let us denote the
resulting LRr-transducer also by C.

Using tree induction, it is easy to prove that □

5. GENERALIZED SYNTAX DIRECTED TRANSLATORS

In studying certain properties of tree transformations it is technically useful
to consider systems that translate trees into strings. Such systems are also of
interest as mathematical models of syntax directed translations of context-free
languages.

Definition 5.1. A generalized syntax directed translator (GSDT) is a system
2l=(T, X, A, Y, P, A'), where

(1) Z is a ranked alphabet,
(2) A is a unary ranked alphabet (the state set),
(3) X and Y are alphabets.
(4) A’ g A is the set of initial states, and
(5) P is a finite set of productions (or rewriting rules) of the following two

types:
(i) ax^w (a£A, x^X, w^Y*),

(ii) ao^w (a£A, m^O, w^(YUA3m)*). (Here ASm is treated as an
alphabet; the elements of it are the trees of the form with at A and teSm.)

170

For ap—w we shall use the notation (ap, w), too. Moreover, for any at A,
we put 9l(a) = (I,X^,y,P,a).

Next we define translations induced by a GSDT 91. To this end, we associate
with each at A and ptFz(X) a subset pr^ a as follows:

(i) if pefXUZo), then p-^^ {w|(up, w)tP};
(ii) if p = a(p!, ...,pm) (otYm, then for all

(aa, Wja^w2...wkawwk+1)tP

j=l, ...,k, wlf ...,wk+1tY*) and (7=1.-, ^) the
word w1viiw2...wtv(kH’i+1 is in pr%a, and

(iii) nothing is in any pv^ unless this follows from (i) and (ii).

Definition 5.2. Let 91=(Z, X, A, Y, P, A') be a GSDT. Then the translation in
duced by 91 is the relation {(p, w)\ptFz(X), wC Y*, wtprv a for some at A'}.

The class of all translations induced by GSDTs will be denoted by

For translations induced by GSDTs we give another definition showing how a
translation is carried out step by step.

Let 91 be the GSDT of Definition 5.1. Take two words v, w^YUAF^XUFty*.
(Here again each element of JFjQfUS) is considered a symbol, i.e., we ignore
the fact that these elements are composed of simpler objects.) We say that v
directly derives w in 91, and write v=>slw, if w can be obtained from v by

(i) replacing an occurrence of ax (atA, xtX) in p by the right side w of a
production ax-*w from P, or

(ii) replacing an occurrence of an aa(plf ...,pm) (atA, otYm,
Pi.......pmtF^XUa)) in p by wlaimpiwi...wkawpiwk^ where

aa - w1a((1)^iw2...w*aw^)(H'lt+1 (1 S ij m, j = 1, ...,k, wt, ...» K*)

is a production in P.
Each application of a step (i) or (ii) is called a direct derivation in 91. A sequence

v = v0 =>« Vt =>«...=>« vk = w (k 0, t>(€(yU.<4Fj(XUS))*, i = 0, k)

of consecutive direct derivations is a derivation of w from v in 91, and k is the length
of this derivation. If w can be obtained from v by a derivation in 91, then we
write Thus =>J(is the reflexive-transitive closure of =>„. Again, we sup
pose that the notation implicitely includes a given derivation of w from v.

Using the notation =>J > the translation induced by a GSDT
9I=(T, X, A, Y, P, A') can be given by

r„ = {(p, w^ptF^X), wt Y*, ap =»J w for some at A'}.

In the sequel we shall generally omit 91 in =>„ and =>J.

171

The concept of a reordering of direct derivations in GSDTs can be defined in
a similar way as in the case of an R-transducer. Moreover, different forms of
derivations can be introduced in an obvious manner.

Deterministic, linear, totally defined and nondeleting GSDTs are defined in a
natural way. Moreover, a one-state totally defined deterministic GSDT is a GSDH-
translator. The translation induced by a GSDH-translator is called a generalized
syntax directed homomorphism (GSD homomorphism). The class of all GSD homo
morphisms will be denoted by ^hom.

Example 5.3. Let 23=(Z, {x}, {50, bx, b2}, {yi, y2}, P', b0) be a GSDT, where
2?=!!={&} and P' consists of the productions

boff b^b^,

b^a-b^, b2a^b2^,

bix-^yr, b2x — y2.

Then 23 is deterministic, totally defined and nondeleting, but it is not linear.
Take the tree p=a(a(<T(x))) and the word w=y^. Moreover, consider the

derivation

p =>s b1£r(cr(x))b2cr(<T(x)) =>s b1<7(x)b2a-(o-(x)) =>$ b1xb2o(a(x')')

=>*yib2<T(x) =>vyib2x=>v yiy2 = w,

i.e., T!B(p)=yd (ts(p)), where 91 is the R-transducer of Example 1.6. One can
easily show that the previous equality holds for every p€Fj({x}). □

The above relation generally holds between GSDTs and R-transducers as it
is shown by

Theorem 5.4. For each GSDT 9l = (Z, X, A, Y, P, A') there exist a ranked alpha
bet Q and an R-transducer ®=(Z, X, A, Q, Y, P', A') such that rB=
= {(p, yd (^))|(p, Moreover, if 91 is linear, deterministic, nondeleting or
a GSDH-transducer, then 23 can also be chosen, correspondingly, as a linear, deter
ministic, nondeleting or an RH-transducer.

Conversely, for every R-transducer 23 there exists a GSDT 91 such that
{(p> yd q)S.t®}=Ta. If 23 is, respectively linear, deterministic, nondeleting
or an RH-transducer, then 91 is linear, deterministic, nondeleting or a GSDH-
translator.

Proof. Let 9(=(T, X, A, Y, P, A') be a GSDT. To define 23, for each
production ap-w (a£A, p^XUZ, w£(YUA3)*) in P, let m(8p,w) be an opera
tor with rank |w|. Let Q be the resulting ranked alphabet. Moreover, P' is defined
as follows:

172

(i) If ap—w (a^A, is in P and |w|=fc, then the produc
tion ap*<<>(«,,w)(?i, •••.ft) 1=1,...,^ with yd^p,^, ...,?*))=w
is in P'.

(ii) If aa-w (a^A, m>0, w6(rU^3,„)*) is in P with |w|=&, then
the production ncr—oj^^fq^, ..., qk) (q^YUA3m, i=l,...,k) satisfying
yd qki)=w is in P', where yd is taken over the frontier alphabet
YUASm.

In order to prove Ta={(p, yd (?))|(p. it is enough to show that, for
all a^A, p€Fz(X) and w^Y*, the equivalence

ap =>« w o (3q€Fa(^))(aP =*® ?Ayd(?) = w)

holds. This can be done in an obvious way by induction on hg (p).
It is also obvious from the construction of ® that the remaining conclusions

of the first part of Theorem 5.4 hold, too.
Conversely, consider an R-transducer ®=(Z, X, B, £2, Y, P', B'). The pro

ductions of the desired GSDT 2l=(Z, X, B, Y, P, B') are given as follows:
(I) For all b^B, peXUE0 and q£Fa(Y), if bp-q is in P', then bp-

-*yd (q) is in P.
(II) For all b^B, (m>0) and qeFa(YUB3mf if ba-q is in P',

then ba—yd (q) is in P, where yd is again taken over the alphabet TUP3m.
To prove ra={(p, yd (?))|(p, q)^^} it is enough to show that the equivalence

bp =>«w =>s^Ayd(g) = w)

holds for arbitrary b^B, p^F^X) and w€T*. This can be carried out by
induction on hg(p). Moreover, the remaining conclusions of the second part
of Theorem 5.4 are obviously valid. □

6. SURFACE FORESTS

The images of regular forests under tree transformations are called surface
forests. In this section we compare classes of surface forests belonging to differ
ent classes of tree transformations.

Definition 6.1. Let X be a class of tree transformations. A forest S^Fa(Y)
is called a AY-surface forest if there exist a ranked alphabet I, a frontier alphabet
X, a forest R^Rec (Z,X), and a Jf-transformation ictfX)xFn(Y) such
that S—Rt. The class of all Jf-surface forests is denoted by Surf(Jf).

173

The following lemma is obvious

Lemma 6.2. If is a class of tree transformations which contains all identity
transformations, then Rec is included as a subclass in Surf (jf). □

Of course, this lemma applies to all of the classes of tree transformations which
we have considered (^, di, FPS', SP etc.).

Next we characterize F-transformations preserving regularity. For this we
should introduce some more terminology.

Definition 6.3. A tree transformation t c Fz(X)XFS)(Y) is said to preserve
regularity if RrCRec (£2, T) whenever Rec (Z, X). Moreover, a class
of tree transformations preserves regularity if every t in X preserves regularity.

We say that an F-transducer X, A, Q, Y, P, A') is connected if for
each a^A there are p^F^fX) and q£Fa(Y) such that p=>*aq holds.

Definition 6.4. For each p^F^X^dE^, path;(p) (l^i^n) is given in the follow
ing way:

(i) if p^YffdX, then path;(p)=0,
(ii) if P=^i, then path; (p)= {e},

(iii) if p=£j (J Ai) then, path;(p)=0,
(iv) if p=a(p1, ...,pm) (a^Em, m^O), then

path; (p) = {>,>,€ path; (pj, j = 1, ..., m}.

Thus, path; (p) is a language over the alphabet {1, ..., m), where m is the maxi
mal integer with Tm^0.

Obviously, the elements of path; (p) describe paths leading from the root of p
to a leaf labelled by .

If pathj(p) consists of a single word, then /(pathf(p)) denotes the length of
this word.

Lemma 6.5. FPS' preserves regularity.

Proof. Since the F-transducer given in the proof of Lemma 1.11 is linear, by
Theorem 3.6 (i), it is enough to show that for each LF-transducer *21 =
=(£, X, A, Q, Y, P, A'), range (tw) is regular. Without loss of generality, we
may assume that *21 is connected.

Consider the regular £2T-grammar G=(A, Q, Y, P', A'), where P' is given
as follows:

(i) if x—aq (x£X, a£A, q€.Fa(Y)) is in P, then a—q is in P',
(ii) if <7^, ...,am)-*aq m^O, a., ...,am, aCA, q€Fn(YUE„)) is in

P, then a^q(at, am) is in P'.

174

In order to prove the ’emma it is enough to show that the equivalence

(1) a=*G?<*(3p€Fx(X))(p=>«a?)

holds for all atA and qtF^Y).
(1) First we prove that the left side of (1) implies its right side. For this, assume

that a^q is valid. We shall proceed by induction on the length I of a^q.
Let /=1. Then a—q is in P', and the following two cases are possible:
(la) There is a production x—aq (xtX, atA, qtFSi(Y)').
(Ib) There is a production ..., a^^aq (otYm, altam, atA)

such that in q no auxiliary variables occur, i.e., qtFn(Y).
In case (la) take p=x.
In case (Ib), since 91 is connected, there are p^F^X) and q^F^Y)

(i=l, ...,m) such that Pt^aph hold. Now taking p=o(ply ...,pm) we have
p=a(Pi, ..^P^^^q!, ...,a^q„)^uaq(qlt ...,qm)=aq.

Next, assume that 1 and that our statement has been proved for derivations
of length less than /. Then a=>^q can be written in the form a=>Gq(ai, ...,
=>*q(g15 — , where am)-~aq is in P for some atYm (m>0)
and a^^ (l^i^m) if occurs in q. By the induction hypothesis, for all
such i there exists a pitF1(X) with Pi^a^t. In the remaining cases, i.e. if

does not occur in q, let PitF^X) and qitFn(Y) be arbitrary
such that Then p=a(p1, ...,p^) satisfies p=»^aq.

(II) Assume that p^^aq holds. We shall show by induction on hg (p) that
the left side of (1) is also valid. If hg (p)=0, then, by the choice of P', the right
side of (1) obviously implies its left side.

Now let p=a(pt, ...,pm) (at£m, m>0), and assume that our statement
has been proved for all trees from F^X) with height less than hg(p). Moreover,
let us write p=^aq in the form p^a^qi, ■■■, a^J^aq^, ..^q^, where
a{ax, ...,am)^-aq is in P and p^^a^ (1=1, ...,m). Then, by the definition
of P' and the induction hypothesis, we have a=>c§(ax, ..., am)=>gq(qlt -..,q„)=
=q. . □

From Lemma 6.5, using Theorems 2.7 and 4.9, respectively, we get the following
results.

Corollary 6.6. ^£31 preserves regularity. □

Corollary 6.7. preserves regularity. □

A state at A of an F-transducer 9I = (I, X, A, £2, Y, P, A') is nondeleting
if there exist two trees pt^xiXUS^ and ^£Fn(TU^i) such that p(a£i)=>*aq
for some a'tA' and ii occurs in q. Otherwise a is deleting. The state a is copying

175

if there are two trees p€FI(A'US1) and g€Fn(TUS1) such that pfal^^a'q
for some a'^A' and occurs at least twice in q.

Lemma 6.8. Let 21 -(Z, X, A, Q, Y, P, A') be a connected F-transducer. If
preserves regularity and a^A is copying, then range (t^)) is finite.

Proof. Assume that preserves regularity. Let a^A be a copying state, and
take two trees p^F^X^ay) and q^Fa(Y^3„) such that piatf^a'q^
where afiA’ and n>l. Suppose that range (r^) is infinite. Then there is an
sCrange (ra(a)) with hg(s)>k-|^|, where k is the maximum of the heights of
the right-hand sides of the productions in P. Let r^F^X) be a tree such that
r=>*as. Since hg (s)>k ■ |^|, there are trees rt, r^F^^XUEi) and r^F^X)
such that the following conditions are satisfied:

(i) r^r^r,
(ii) r3=s*bs3, r^b^^bSi and r^b^^as,. for some b^A, s^s^

tF^YUBJ and s3tFa(Y),
(iii) hg (s2)>0, and & occurs in Sj and s2,
(iv) Ji(s2(s3))=^
Therefore, for each z(=0, 1, ...), there is a derivation pi=p(rfri3(r3)))=>*

=>*a'^(z?)=^ where ^=^1(53(53)) (the powers t‘ of any tree rCFjCXUSO
are defined thus: 1°=^, and t,+1=t(t') for each zsO). Obviously, hg(^f)
increases with i when i is large enough.

Now consider the forest T-{pi\i=0, 1, ...}. Obviously, T is regular. Since
T.a preserves regularity, this implies that T'—Tr is also regular. Take an QY-
recognizer B=(B, Q, Y, 0, B') with T'=T(B). Choose an

i a (2&(hg(Xr))+l)+2|F|)£(hg(p(r)) + l).

Then there exists a tree t£Fa(Y) with k(hg (p(r))+1) +|B|Shg (r)<
<&(hg (p(r)) + l)+2|F| such that

(2) q = ‘t *)
is also in T'. To prove the lemma it is enough to show that there exist no j and
a'fiA' such that pj^a'q. Suppose

Pj =>* a"q'(t'm) = a"q

holds, where a'fiA', q'efia(YUSm), r3=>*b1j', r2(b^l)=>*bl+ts'l+1 (bltbi+^A,
Jz+i^^n(LUai), /=!,...,j, s^Fq(F)), ri(b/ + i£i)=>*b/+3‘^ + 2
^F^YUSS), p(bj+^l)^*a"s'j+3=a"q' and t'=Sj+i(sj+1(...(s'J...)).

By the choice of i, there exists a u (2smSj+3) such that occurs
in s', s'+1,..., s'J+3 but does not occur in s'^. Moreover, let u— 1S
■^Ui^...^u„^j+3 be a maximal sequence with 1 Shg (s„)-<...•«hg(s„),

176

where s(=5/'(jj'_1(...(jO -)) (/=1,--,7+3). Then vg2fc(hg (p(r)) + l)+2|B|.
Taking into consideration that hg (Z)sA:(hg (p(r))+l)+|B| (and |2?|sl), for
an I (2Sv), the word w forming pathL (q) is a subword of a word in pathj •
• (jj+3(jj+2(...(j'i)...))). (Informally speaking, this means that there is a word in
path1(jy+3(jj+2(...(^)■••))) going through the root of t.) Therefore, we have
Z(pathi(^)) + hg (r)^2A:(hg (p(r))+1)+2|B|. But, by (2) and the choice of t,
/(pathxGy^+hg (Z)<2£(hg (p(r)) + l)+2|jB|, which is a contradiction. □

Lemma 6.9. Let X, A, Q,Y, P, A') be a connected F-transducer such
that for each copying state a^A, range is finite. Then 21 is equivalent to a
linear Y-transducer.

Proof. Suppose that at,...,ak are all the copying states of 91. Let Tp*
= range(t,,^) (i=l,..., k). Moreover, set T=U(7’j|i=l,...,k). By our as
sumptions, T is finite.

Define an F-transducer ®=(Z, X, B, £2, Y, P', B'), where

B = (A-{at\i = l,...,A:})UU({«i}XTi|f = 1, ...,k)
and

B' = (A'UA'XT)nB.

Moreover, P' is given as follows:
(i) If p^aq {p^Y^X) is in P and a=at for some i (l^isk), then

p-^(a,q)q is in P'. If a$ {alt ..., ak}, then p-^aq itself is in P'.
(ii) Let

<r(h1,...,hm)-ag(^,...,^m)

(a€lm, m>0, bk, ..., bm, a^A, q^Pn(YUSm)) be in P. We distinguish the
following cases:

(iia) The state a is deleting. Fix any ?€FD(FU5m) such that every occurs
at most once in q. Then P contains every linear production a(q,....c„)—
-aq^i, ...,^ such that

_ ((bJ< 9j) if bj is copying and bj=a„
Cj I bj otherwise.

(iib) The state a is nondeleting but not copying. Then all productions

-,cm) aq(tii, ...,rim)

are in P' where for each _/(=!, ■ w),

f(bj,qj) (q^T^ if bj is copying and bj=a„
otherwise

12 Gdcscg 177

and

{^j if occurs at most once in q,
q. (= 7t2(Cj)) otherwise.

(Observe that if occurs at least twice in q then bj is copying.)
(iic) The state a is copying. Then P' contains all productions

or(Ci,...» cm) ~-(a,q)q

where q=q(rh, ..., rim) and for each y(=l, ..., m),

_ ((fy. <Ij) if bj is copying and bj=a,,
J I bj otherwise

and
(q} if occurs in q,

~ (any fixed tree from Fn(Y) otherwise.

(Note that bj is copying if occurs in q.) This ends the construction of P'. Ob
viously, 33 is an LF-transducer.

We show that 21 is equivalent to ®.

(I) Assume that p^aq {p^F^X), q£Fa(Y), a€A) holds. We prove that
(la) p^aq if a is nondeleting but not copying,
(lb) p=>^(a, q)q if a is copying,
(Ic) p=A^aq for some q£Fa(Y) if a is deleting.

We shall proceed by induction on hg (p). If hg(p)=0 then, by (i), (la), (lb)
and (Ic) obviously hold.

Next let p=ff(p!, ...,pm) (tr£Em, m>0), and write p^aq in the more
detailed form

<r(Pi, , bmq'm) =*vaq'(q{, ..., q'm) = aq

where a(bx, ..., bm)-<-aq' is in P and for each j (X^j^m), Pj^bjq'j. Then,
by the induction hypothesis, for all J(=l,...»m), we have Pp^cfij, where

(la') Cj=bj and q1=q'j if bj is nondeleting and not copying,
(lb') Cj=(bj,qj) and qj=q'j if bj is copying,
(Ic') Cj=bj and qj=qj for some qj£Fa(Y) if bj is deleting.

Therefore:

(la") If a is nondeleting but not copying, then the production

a(c1,...,cm)-*aq'(f]1,...,rim)

is in P', where rjj (j—X, m) is given by (iib).

178

(Ib") If a is copying then the production

....cj ^(a,q')q'

with q'=q'(th, is in p'> where ijj (j=l,m) is given by (iic).
(Ic") If a is deleting then the production

— .cm) -aq'
given by (iia) is in P'.

Thus, in all three cases the required derivations in ® exist.

(II) Assume that one of the following relations hold:
(Ila) p=>^aq or
(lib) p^(a,q)q

where p^F^X), q^Fn(Y) and a^A.
Then, by reversing the above computation, one can show that the desired

derivations

(lie) p^aq if a is nondeleting,
(lid) p^aq for some q£Fa(Y) if a is deleting

exist. Since the final states are nondeleting, this ends the proof of the lemma. □

We can now state and prove

Theorem 6.10. Let 91 = (I, X, A, (2, Y, P, A') be an arbitrary F-transducer. Then
rM preserves regularity iff 91 is equivalent to an YF-transducer.

Proof. If 91 is equivalent to an LF-transducer then, by Lemma 6.7, preserves,
regularity.

Conversely, let t8I preserve regularity. We may assume that 91 is connected
Then by Lemmas 6.8 and 6.9, 91 is equivalent to an LF-transducer. □

From Example II.4.15, we directly obtain

Theorem 6.11. Neither & nor di preserves regularity. □

The following result shows that Surf (^)c Surf (di). More precisely, we have

Theorem 6.12. Surf (.F)=Surf QO and Surf (JO is a proper subclass of Surf (£).

Proof. The first statement of Theorem 6.12 follows from Theorem 3.3 and Lemma
6.5.

It is obvious that Surf (JO £ Surf (Jf). We show that the inclusion is proper.
For this, consider Example 1.6. Moreover, let 5= {a>2(u>"()’1), coj(j’2))|n=0, 1,—}•

12* 179

If P denotes the regular forest {a(x)}-x{o-(x)}*x then Jit - V T^r r
5CSurf(^). 1 ‘ 1 01611 Therefore,

Assume that for an HR-transducer ^B=(A Z (b } (2 Y P' h \ ,
forest T^FAZ) we have K-Tr « ’ v ’ P ’ bo) and regu)ar
opposite case in T? th ®' Then ® Can be chosen linear since in the
Therefore, by Theorem'll 4 occurrences °f a subtree,

in Example “

Section'? - °f SUrf““ needed

andlet T be a recognizable forest. Then

^Recf^ 311 F’transformation S-Jl^ where

Denote by
- ay the DF-transformation given in the nmnf A.

□
For R-surface forests we have a similar result.

» a rts^forat I

'hat °f previous th“rem’ to "« »« shall
MXT^Se" sVr °f L“ 1H 'S “

-sformatron by an LNR-tran^a^^ ̂ “ -

- shad show that Surf(9a) is d J

Theorem 6.15. Let 2t=(r Y j o v d

any DR-transducers. Then there exists a DR d" B' A' Z' P ' be
such that for every R c f (Xi Vr p DR’Zww^ C=d, C, A, Z, P", c0)

ery PSF^X), where 5=Andom (r„orB).

Want t0 define in such a way that hold, then [afyy ^(f) and b,^r

^P~r in r. . wih have Jhe desired

180

Now let p—c(pj, m^O) and suppose

ap = ...,p^ ^q^..., a^,...) ^q(-, qij, -) = q,

where (aa, q(..., ...))tP (5€/fl(yUS„) for some ri) and a^p^^q^, i.e.,
the considered copy of pt is translated by 21 starting in state atJ into q^. Further
more, suppose that applying to q the transducer 23 starting in b, we get

b? = bq(..., qtj,...) =>®r(..., b^qy, b^q^, ...) =>8

=>»r(..., r^, ...) = r

(bq=^r,feFA(ZUE^, bijtqij^lr^, / = 1, ...,k)

(meaning that the given occurrence of qtJ in q has k translations by 23 starting
the translations in states b^, biJk). Thus, if we have the production

(a, b)a b^i, (a^, b,^,...)

in P" and suppose that C has the required property for trees with height less
than hg(p), then (a, b)p^r also holds. Accordingly, the formal definition of
P" reads as follows:

(i) The production (a, b)x--r (ia,b)£C, x^X, r£FA(Z)) is in P” if there
is an ax—q in P such that bq=>*r.

(ii) If the production aa-qta^"1, am^m) (a^A, msO, a^A"1,
i=l,...,m, n1 + ...+nm=n, q^F^YUS,,)) is in P and

bq =w(bn^}1,...» b.„ ..., bml^\..., bmn C?™)
i io ' 11’11 ’ ’ in^’lUj ’ ’ ml “Wil ’ ’ mnrnmnm '' IJ 7

^=^1+...+1.,.1+P j=l, nn+... + n;„m=n', r£?A(ZUS„,)

holds, then the production

(a,b)<T-r((<“b11, ...,^*blni)^,.... (a^b^,

is in P", where •••+ «;„, (i=l,...,m).

Obviously, G is a DR-transducer. Moreover, to prove the theorem it is enough
to show that for arbitrary (a, b)^.C, p£Fx(X), q£FQ(Y) and reFA(Z), ap=>*q
and bq=>*r jointly imply (a, b)p=>^r. This can be proved by induction on
hg (p). □

Let us note that the d constructed above may delete certain subtrees of input
trees so that dom (tc) becomes larger than dom (t1(otw).

If R in Theorem 6.15 is regular then, by Corollary 3.17 and Theorem II.4.2,
S is also regular. Thus we have

Corollary 6.16. Surf (SJ?) is closed under DRAransforniations. □

181

7. AUXILIARY CONCEPTS AND RESULTS

In Section 3 it has been shown that neither S' nor 5? is closed under composi
tion. In the next section we shall prove that compositions of n F-transformations
or n R-transformations lead to proper hierarchies when n assumes the values
0, 1,2,....

The purpose of this section is to introduce concepts and present results needed
in Section 8.

Let K be a class of forests and S’ a class of tree transformations. Then S^K)
denotes the class {7/TCX, t€^}. Moreover yd^(X) will stand for
{ydcnir^X)}.

Definition 7.1. Let Z be a ranked alphabet and X an alphabet. Let f be a mapping
which associates with each d^ZUX a nonvoid recognizable forest
where Q(d) is a ranked alphabet consisting of unary operational symbols only.
It is also supposed that Q(d) is disjoint with Z.

Now define the mapping /from the set of all ZY-forests into the set of subsets
°f (12= U(12(cl)\d^ZUY)) in the following way:

(i) if X^oUY, then f(p)= {q(p)\qeTp},
(ii) if p=o(p1,...,pm) (aeZm, A, ...,p^F^X)), then

7(p)={?(a(^,.... /=!, m), and

(iii)if T^F^X), then U(/(p)|p€T).

The mapping / is called a regular insertion.
In the sequel we shall write simply/for /
The above regular insertion can be interpreted as follows :f inserts directly

cart node of a tree piF^X) a unary tree from the re8ular forest T. if
the label of the node in question is d. The insertion of {, means that the given node
IS unchanged. The name “regular insertion” is more expressive if trees are given
in Polish prefix form. In this case / inserts a word from Td directly before an
occurrence of d in the word p.

Lemma 7.2. Rec is closed under regular insertion.

f(^r a regUlar forest and/a re«uIar inscriion given by

r'r Consider a regular tree grammar G=
eve^T ‘V??1 fOFm SUCh that T^=T' for
every T mUY) let ^=(^,12,^,^,^ be a regular tree ar in
normal form generating 7L. For each iff Fl J Y nnd m -j t.

and a^N consider the tree gram

182

mar Gd=(Nd, Q, Pd, (a%, a)), where Nd=NdX{a} and

P„ = {(</, a) — co^b*, u))^ — co^jCP^U

U{(^, 67) <?iePd}.

Obviously, T(Gda) = Td holds for each d€EUX and a^N.
Assume that the sets of nonterminal symbols of the tree grammars G* (dtEUX)

are pairwise disjoint and also disjoint with N and NX^EUX). Construct the tree
grammar G'=(N', E^Q, X, P', a0), where N'= U(Nd\deEUX, a^UNUNX
X(EUX) and P'is given as follows:

P' = {a - (ag, a)|a6M d€ZUy}U

d€EUX)U

U {(ad, a) (a, d)jad — ^EPa, aW, a^N, d£EUX}U

U{(a, er) - a^j,..., am)|a -,a^P,
a€Em, m > 0, a, alt..., am£NjU

U{(a, d) - d\a - d^P, a^N, dCE0UX}.

From the construction of G' it is obvious that the following statements are
valid:

(ia) For any production a-*a(ax,..., a^P {a£.Em, m^G) and tree q£Ta
there exists a derivation in G'

a => (a J, a) =>* q((a’, a)) => q((a, a)) =► q(a..., um))

(a^N").

(ib) For any production a-*d^P (d^E^UX) and tree q£Td there exists
a derivation in G'

a => (do, a) =>* q((ad, a)) => q((a, d)) =* d (ad£ N^.
Conversely,

(ii) for any a£N and p^.FI^n{X') each derivation a=>^.p should have the
form

(iia) a =>(aS, a) => qt((af, a)) =>... => q„((aS, a)) =* q„((a, a)) =►

for some a-^a(alt ...,am)eP, qn^Ta, o^Em, m^O and a^, d^N’, or
the form

(iib) a =► (a^, a) => ?i((aj, a)) =>... => a)) =♦

=* ?»((«, ^)) =*

for some a—d(-P, d£Ea{JX and d^,..., adn^.Nd.

183

Properties (ia), (ib) and (ii) obviously imply that T(G')=f(T). □

Lemma 7.3. Let K be a class of forests closed under regular insertion. Then
is also closed under regular insertion.

Proof. Let R^K be an arbitrary IT-forest and take an R-transducer 91=
=(Z, X, A, £2, Y, P, A'). Set S^Rt^. Moreover, for every d^ZUX take a
unary operator #d, and let /be the regular insertion given by /(d)^#/^)}**1.

First we shall show that if g is a regular insertion for which g(d) = { #(£1)}*^
(</€OUn then g(S)e^(K).

Construct the R-transducer ®=(ZU {*d|d€Z'UJV}, X, B, £2U {*}, Y, P', A')
with B=AUC, where C= {p|p€(U (sub is the right-hand side of a rule in
P)—S)}. Moreover, P' is the union of the following ten sets of productions:

Pi = {«*d — *(afi)> d^ZUX},

Pz= ...,qm^\adq is in P for some

d^ZUX,

a^A, q = (0^, ...,qj, (o€S2m, m > 0},

P3 = {a #d — — q is in P for some d^Z,

q = a'^, a,a'£A},

Pi = {a*d — q is in P for some d£Z\dX, a^A,

q = £20},

P^ = {a/ — — q is in P for some d^ZVdX, a^A,

q = ytY},

Pi = {q^d- #(^i)> q#d -,qmG, q#d^q£i\

q = m(?i, ..., qm\ m >0},

Pi = W»#d ®#d - *(<%). "*d -©Ji,

y#d -* #(Ki)> J*d — Xi|l — ‘ — r(P\ r(P) is the maximum of ranks
of the operators appearing in the left-hand sides of productions from P, a^A

y^Y},

P& = — a<u|a€/L m > 0, 1 S i S m),
P9 = (cod — ct)|co£<20, dCZ'UA'} and
Pv>= dewy}.

One can easily see that ® works as follows: assume that for some a^Ayp^F^X)
and q^Fn(Y) a derivation ap=Y^q exists. Let q' be a tree obtained by inserting
in q arbitrary trees from {#(fi)}**‘ below symbols from Q (J Y. Then for a

184

p'^f{p\ ^p'^vQ' holds. Conversely, if for some a€A, p^F^X), p'€f(p)
and q'£Fau{#}(Y) a derivation ap'^q' holds then there is a qeFa(Y) such
that q'€g(q) and ap^q.

Now, consider an arbitrary regular insertion h (into OK-trees). For each
c/€f2UF, there is a regular tree grammar Gd=(Nd, Q(d),BuPi, {ado}) such
that h^d^T^Gi). We may assume that every Gd is in normal form. Since Q(d)
is unary, this means that the productions of Gd are of the form ad —cod(ad) or

(ad, ad^Nd, cod€Q(d)). Furthermore we may assume that the sets Nd
are pairwise disjoint. Now construct the R-transducer

G = (f2U{#}, Y,C, J, Y,P",C')
with

c = u(wun c’ =
and
A =U(<2(4/)|J€£2UF)Uf2 (4 = U(fl(4fcflUy)Uflb Am = Qm (m#l)).

Furthermore, P" is given as follows:

(I) ad# — ^(aj^) (ad,ad£Nd, cod£Q(d), d£QUY)

is in P" if is in Pd,

(II) aom co^a^, is in P" for (o£Qm, m 0, dr, ...,dm£QUY

and aa€Na, if ao—Ci is in Pa-

(III) For each y€K and ay£Ny, ayy-^y is in P' if ay-*^i is in Py.

Obviously, C is an R-relabeling. Therefore, by Theorem 3.15, TgOTj-—t is an
R-transformation. Moreover, by the constructions of ® and S, it is clear that the
equality h(S)=f(R)T: holds. □

In the next section we shall need

Theorem 7.4. Let t: X*-Y* be a mapping induced by a deterministic gsm and
I a ranked alphabet. Then there exist a ranked alphabet Q and a DRR-transducer
H5=(£,X, B, Q,Y, P',b0) such that the equality yd (T)r=yd (Tts) holds for

every TqF^X).
Proof. Consider the deterministic gsm A=(X, A, Y, a0, P, A') inducing r. We
shall show the existence of a ranked alphabet 12 and that of a DR R-transducer
»=(£, X, B, Q, Y, P', b0) such that for any p^F^X),

(i) yd(pr») = yd(p)r if yd(p)€dom (t), and
(ii) p€dom(T») if yd(p)€dom (r).

These obviously will imply the validity of Theorem 7.4.

185

For each ai,a2€J, let T^,^) denote the set of all such trees p^F^X)
that «iyd(p)=>*w2 holds for some w^Y*. By Lemma 1.7.4 and Theorem
III.3.2, every T(aly u2)=yd-1(L(a1, a2)) is a regular forest. Now let B=(AXA)U
U {h0} (b0^A) and {cOax^EA, x£X}, where r(coax) equals the length
of the word w obtained from the production ax—wa'^P (a%A). (The ranks of
symbols from Z are unchanged.) Moreover, P' is given as follows:

(I) For arbitrary and alf a2, ..., am+1£A, P' contains the
production ((ax, am+J a—a(, a2) , ..., (am, am+J ^m), D) where D (6) =
=T(ai,at+1)

(II) If a^Za and at A, then the production (a, a)tr — cr is in P'.
(Ill) For arbitrary x£X and (aj, ^AXA, P' contains the production

(«i> as)x—q, where atx=>Awa2 (w£Y*) and q^pQ^Y) is a fixed tree with
yd (q)=w (such q exists by the definition of ma x).

(IV) For arbitrary and a19..., am+1CA, if ai=a0 and an^A',
then the production (bg^^, a^,..., (am, am+1)£m), D) is in P', where

ai+1) (i=l,..., m).
(V) For arbitrary x^X, if (w€T*) and a^A', then the pro

duction bgx—q is in P', where q^Fo{Y) is a fixed tree with yd(^)=w (again,
by the definition of such q exists).

(VI) If a0^A' and o^Xg, then the production bgff^o is in P'.

In order to prove Theorem 7.4 it is enough to show that for arbitrary a2E
EAXA, p€Fz(X) and q£Fn(Y) the implication

(an «2)p =>»?=> Oiyd(p) =>Ayd(^)a2

holds. This can be carried out by induction on hg (p). □

We shall now introduce some more concepts that will be needed in the next
section.

Let 2I=(Z, X, A, Q, Y, P, A') be an R-transducer. Take a tree p^F^X)
and a node d of p. Denote by j the subtree of p at this node d. Consider a state a
and a derivation a: ap=Sq (,q£Fa(Y)). Suppose exactly k copies of this occur
rence of s are created during a and that these are translated into the trees llt...

(^^n(Y)) starting the translations, respectively, in states al,...,ak.
In the next definition we distinguish a sequence of these states which will be
called the state-sequence of a at d.

Definition 7.5. Let = (27, X, A, Q, Y, P, A') be an R-transducer. Take a deri-

a:aP=>*q (a€A, p^F^X), q€Fn(Y)).

186

Let d be a node of p and 5 the subtree at this node d. Replace the given occurrence
of s in p by and denote by r the resulting tree. Write a in the form

ap = ar (s) =>*q (as") =>*q(t),

where ^/o(yUS„), a^", ar^q{^, as"=>*t and t€Fo(^)"- Denote by
a^i-qt (afA, dfYt)X) the production applied first in the derivation a^^tt
(z = 1, ..., ri). Then , a„) is the state-sequence and

(akdk - qk, ...,andn - qn)

is the production-sequence of a at d.

Often we shall speak about the state-sequence and production sequence of a
at a subtree J. In such cases the node to which the given occurrence of s belongs
will be clear from the context.

We now define state-sequences for derivations in GSDTs.

Definition 7.6. Let 2l=(I, X, A, Y, P, A') be a GSDT. Take a derivation

a: ap =>* w (atA, p^F^X), w^y*).

Let J be a node of p and s the subtree of p at d. Replace the given occurrence of 5
in p by & and denote by r the resulting tree. Write a in the form

ap = ar(s) =>* w1a1sw2...w.aBswB+1 =>*

=>* w^Wg... wnvnw„+1,

where ar=»*Wia1{1w4...M'BaB^1w,B+1 (w^y*, i=l, n+1, alt..., antA) and
ats^>*vt (v£Y*, i=l, ..., n). Then a=(a1,a„) is the state-sequence of a at d.

Like in the case of R-transducers, we shall also speak about the state-sequence
of a at the subtree s.

Definition 7.7. Let 21 be an R-transducer 2I=(I, X, A, Q, Y, P, A') [a
GSDT 2l=(Z, X, A, Y, P, .4')]. Then a derivation a: ap=>*q (atA, ptF^X),
q£Fa(Y)) [p: ap=**w (at A, ptF^X), w^Y*)] is k-copying if for every node
d of p the length of the state sequence of a [p] at d is at most k. Moreover, 21 is
k-copying if every derivation a: ap^q (pt F^X), qt Fa(Y)) [p: ap =^* w
(ptFx(X), w6T*)] with at A' is k-copying. Finally, 21 is finite-copying if it is
k-copying for some k.

We shall use the notation 0tk for the class of all transformations induced by
k-copying R-transducers. Similarly, 9k denotes the class of all transformations
induced by k-copying GSDT’s. Moreover, 01, and 9, will stand for the classes
of transformations induced by finite-copying R-transducers and finite-copying

187

GSDT’s, respectively. Corresponding notations will be used for the classes
etc.

The next result shows that R-transformational languages can be studied through
generalized syntax directed translations.

Theorem 7.8. For every k-copying GSDT 2I=(Z, X, A, Y,P,A') there exist a
ranked alphabet £2 and a k-copying R-transducer 23 = (Z, X, A, £2, Y, P', A') such
that tn={(p,yd(q)j\(p,q^T:K}-

Conversely, for every k-copying R-transducer 23 there exists a k-copying GSDT
21 such that ^={(p, yd (?))|(p,

Proof. The R-transducer and GSDT constructed in the proof of Theorem 5.4
obviously have the required properties. □

The following theorem gives sufficient conditions under which ^k(K~)=
—Q&lffK) holds for a given class K of forests.

Theorem 7.9. Let K be a class of forests closed under relabeling and regular in
sertion. Take an R-transducer 2I=(Z, X, A, Q, Y, P, A'), an R£K and a pos
itive integer k. Then

S = there is a k-copying derivation ap =>* q for some a£A' andp^R}

is in

Proof. Since K is closed under regular insertion, we may assume that A' is a
singleton. Indeed, in the opposite case enlarge A by a new state a0, Z by a new
unary operational symbol a and P by all productions ana—a^ (a^A'). Let 21
be the resulting R-transducer with initial state a0, and let R=f(R), where f is
a regular insertion given by f(d) = {oC^)} (d€LU£). Then R^K and tj(R) =
= tm(R). Furthermore, a derivation ap=>^q (a^A', p^R, q$Fo(Y)) isfc-copying
if the corresponding derivation aoa(p)=>-^q is /c-copying, and conversely. Thus,
we shall assume that J'={a0}.

Now we introduce the alphabet

y = {(fox, qj, ...,(a,x, 9,))|t s k, xex, aiX - q£P (i = 1, ..., /)}

and the ranked alphabet A with

qj,..., (a,a, 9())|t £ k, a£Zm, ata - q^P (i = 1, /)}

(w=0, 1,...). Consider the R-transducer ®=(I, X, fo), A, X, P', b^ where P'
consists of the productions

V - ((^iX, 91),..., (a,x, qt)) (x£X, (fax, qj, ..., fax, qty)t.X)

188

and
boa - ((^cr, qj, q^b^, ...,b0^

(aHm, ((a1Cr, qj, q^Am, m = 0,1, ...).

Obviously, ® is an R-relabeling which relabels trees in the following way:
if [resp. x£X] is a label at a node d of a tree p^F^X), then ® relabels dby
a sequence of productions qj, q,)} [resp. ((axx, qj,..., (atx, ?,))]
from P with length at most k.

Next define an R-transducer C=(d, X, C, fl, Y, P", c0) with

C = {(u; Oj,..., s u S t S k, a^A (z=l, ..., r)}

and c0=(l;a0). Moreover, P" is defined as follows:
(i) For each (u; alf..., a^C and

(w; ..., a,) (fap, qj, ...,fap, qt))^qu is in P".
(ii) Let (m; a1; ..., a^C and (fac, qj,..., fac, qt')}eAm (m>0). Write

(^o-, qd in the more detailed form a^-q^a.^,..., a/m£» (aye^"u, J=l,

..., m; nn + ...+nim = nf, ^^(YUS^), i = 1, ..., t). Then the production

(u; alt ft), ...,faa, q^ -

- qu^Un, b,)........(M1„ui; K))^’, ((uml; bm), ..., (zz^j bm)X»

is in P', provided that ny+...+ntJ^k (;=1, ..., m), where 1^=^+...+
+ ...+nM_y+/, bj=(aiy, a,y) and j= 1, ..., m.

Obviously, (E is a deterministic R-transducer. Furthermore, one can easily see
the following connection between derivations in 21 and (E:

Let p^F^X) and q^Fn{Y) be arbitrary trees, and take a fc-copying deri
vation

a: aQp =>« q.

Consider the tree p with (p, £)€ Tffl which is the result of relabeling each node d
of p by the production-sequence of a at d. Then in C we have a derivation

P- (i j ao)p q

such that if a=(a1(..., a„) (n^k) is the state-sequence of a at d then
((1; a), a)) is the state-sequence of [i at d. Conversely, if for a p\FA(X)
and q\Fn(Y) there is a derivation

P'- (i; a0)p'^q',

then for the (uniquely determined) tree p'^F^X) with (p',p')£iv we have the
derivation

a': aop' q'.

189

Moreover, the state-sequence of at a node d of p' is of the form
((1; a'), a')) (a'=(aj, ...,*0) wlth and a' is the state-sequence
of a' at d. Therefore, C is A:-copying and S—Rr^or^ holds. Since K is closed
under relabelings, this implies S£@$?k(Kf □

From Theorem 7.9, by Theorem 7.8, we get

Corollary 7.10. Let K be a class of forests closed under relabeling and regular
insertion. Take a GSDT 91=(I, X, A, Y, P, A'), a T^K and a positive
integer k. Then the language

L = {w€T*| there is a k-copying derivation ap =>* w for some a^A' and p£T}

is in 3>^k{K). □

Three more language operations will be needed.

Definition 7.11. Let X be an alphabet and # $X a symbol. For each L^X*,
res(L, #) (regular substitution) denotes the language defined as follows:

(i) if L = {e}, then res (L, #) = #*,

(ii) if L = {x}(x€^), then res {L, #) = #*x#*,

(iii) if L = {ux}(u£X*, x£X), then res (L, #) =

=res (w, #) res (x, *),
(iv) if L is arbitrary, then res (L, #) = U(res(w, #)|w£L).

Theorem 7.12. Let K be a class of forests closed under regular insertion. For each
R^K there exist a linear nondeleting GSDT 91 and a forest S^K such that
res (yd (R), #)=5Ta.

Proof. Let RcF^X), R^K, and denote yd (ft) by L. Let A=Ak =
= {<?|d€SUA'} and let f be the regular insertion defined by f(d)= {3(^i)}*{1
WCZUy). Define the GSDT 91 =(Q, X, {u0}, { # }, P, a0) with Q=ZUd
(D^IjUd, Qm=Ym, so that

P = { aox -*a0£i, - ao^i#l^€^}U{ao^ -

- *o0<u|tf€ro}U{a0* ^4*€^}U{ao<7 0).

Obviously, 91 is a linear nondeleting GSDT satisfying res (L, #)=f(R)rM.
Moreover, by our assumptions, f(R)=S£K. □

Theorem 7.13. Let Y be an alphabet and # $ Y a symbol. Take a language L^Y*
and a class K of forests closed under relabeling and regular insertion. If res (L, #)€

then

190

Proof. Let res(L, #)=7T9I where 9I=(T, X, A, LU {*}, P, a0) is a deter
ministic GSDT and Tc F^X) is a forest from K. Moreover, let A = {fij, ..., ak}.
A word y^ #"■- (c res {L, *), , ..., y^ T) is called proper
if n15 n2, •••, «r-i are pairwise distinct.

Consider a derivation

a: aop =>* w1b1p1w2b2p1w3 ... wllb,p1w,l+1 =>*

=>* w1v1w2u2w3... w,v5ws+1 = w,

where p^T, pk is a subtree of p, (b1,b2,..., bs) is the state-sequence of a at pk,
bip1^>*vi (i=l, ..., s) and wx, ..., ws+1, ..., usC(TU {#})*. If wisproper
and bi—bj (iAj), then in vt (and thus in Vj) at most one symbol from Y may
occur.

Now for each a€Zm (m>0) take all pairs (a, M), where M is a matrix of
typekXm whose elements are from YUAPm. Moreover, let Q be a ranked alpha
bet with Q0=Z0 and Qm= {(a, (m>0).

Let Y={yk, ...,yt} and denote by (i=l,..., k, J=l,..., I) the set of
all trees ptF^X) for which v£#*yj#*, where v is the word obtained from
the derivation aip=>*v. Moreover, let Ttl+l (i=l, ..., k) be the forest of all
trees p^Fz(X) satisfying v£ #*, where v is obtained again by the derivation
aip=>*v.

By Theorems 5.4 and III.3.2 and Corollary 3.17, the (i=l,...,k,
y=l, ...,/+1) are recognizable forests. Therefore, there are ZZ-recognizers

Ay) (i=l,..., k, j=l, ..., l+l) with j^lJ=(Aij, Z) such that
T(Av)=ry. Consider the DF-relabeling ® = (Z, X, B, Q, X, P', B) where

B= {(Ai.Ai+i....»Ai. •••> Ai+i)Ip€^(*)},

and P' is given as follows:
(i) For each x£X, the production

x - (xau,..., xa1J+1-, xaH..., xaw+1)x
is in P'.

(ii) For every aCTo, the production

O’ -♦ (<rrfu, o-^n + i, CT'Ai, ..., <Tj/kl + i)(T
is in P'.

(iii) For each a£Zm (m*0) the productions

<7(b1,...,bm)-b(<7,4/)(i1........ {„)

are in P', where bt=(b^, --^b^, .-,b^+1'), b = (bn, ...,bu+1,
bkl....... bkl+i)eB (t = I, bu^a-^o^, ...,b\^) (i = l, j=l,

191

...J+l)
given by

and the element mit (i=l, —1, ...,m) of matrix M is

e if b^+1eAu+1,
yu if b&^Ai, (1 S u Si I),
a^t otherwise.

Obviously, mit is well-defined since there are no two components b^
and b^^i^k, X^AJ^l+Y such that b^A^ and b^A'iJt

both hold.
By the definition of®, it relabels trees in the following way: take a tree pt F^X),

and let 0^, ...,pm) (m>0) be the subtree of p at a node d. Then ® provides
us with the information about which of the subtrees p±, ■ ■■,pm is translated by
21(0^ (i=l,..., k) into a word from (FU {#})* with

(I) no occurrence of letters from Y,
(II) exactly one occurrence of letters from Y,

(Illa) at least two occurrences of letters from Y, or
(Illb) the given subtree is not in dom (ra(a|)).

Next take the GSDT G=(fl, X, A, Y, P", a0) where P" is given as follows:
(a) If ap^w (atA, ptXU£0, ^(fU{#}D is in P, then the production

obtained from ap-w by replacing all occurrences of * in w by e will be in P”.
(b) Let aa^ ^A, w€(TU{#}U^3m)*) be in P. Then all

productions a{a, M)^w' are in P" where w' is the result of replacing all occur
rences of a^j in w by (X^i^k, X^j^ni) and all occurrences of # by e.

It is clear that G is deterministic. Moreover, one can show by induction on
hg (p) for arbitrary atA, p^F^X) and w((yU{#})* the implication

ap^w=> atv(p) =>£<p(w)

holds, where <p: (TU{#})*-F* is the homomorphism given by (p(y)=y (y^Y)
and <p(#)=e. Thus

(1) L = {w'€y*|a0T8(p) =>a w', aop =>« w,

ptT, w€(TU{#})* and w is proper if |w'|>2}.

Furthermore, by our remark concerning state-sequences of derivations yielding
proper words and the construction of S, the elements of a state-sequence of a
derivation aoTB(p)=*aw' from (1) are different at any node of *$(/>). 1 herefore,
since £ has k elements, each element of L can be obtained by a ^-copying deriva
tion in CL Finally, since by our assumptions TrvtK, using Corollary 7.10 we get

□

192

Definition 7.14. Let X be an alphabet and # $X a symbol. For each language
LcX\ the language c^L, #) is defined by

c^L, #) = {(w*)”|w€L, n=l,2,

Theorem 7.15. Let K be a class of forests closed under regular insertion. For each
R^K there exist a DGSDT and a forest S^K such that c*(yd(R), *)=S'Ta.

Proof. Suppose RcF^X) and let L—yd (7?). We introduce the ranked alpha
bet A — = {J|J6ZUA'} and define a regular insertion f by f{d) = {3(£1)}**'
(3CTUJV). Moreover, let 12 be the ranked alphabet for which I21=2'1Uz1 and
Qm=Zm (m=0, m^l). Consider the GSDT

91 = (Q, X, {a,, a2), XU { # }, P, aj
where

P = {a^ —

U{a23-aa^|d€lUy}U

U {atx — e[x€{ui<r — e|a€Lm, m S 0}U

U{a2x - x|x€y}U {a2a — ... a2^JaeZm, m S 0}.

It is obvious that 91 is a deterministic GSDT satisfying c^L, #) = 5ra, where
S=f(R). Moreover, by our assumptions S^K. □

Theorem 7.16. Let U^c^L, *) (L^Z*, be a language containing
infinitely many words (w # ffor each w^L. Furthermore, let K be a class of forests
closed under relabeling and regular insertion. If then

Proof. Let 9l=(I, X, A, Q, Y, P, A') be an R-transducer and ® = (Q, Y, B, Z
U {# }, P', b0) a L-copying deterministic GSDT. Moreover, take a forest R £ F^X)
from K satisfying U=(Rt21)t9. Since K is closed under regular insertion, we
may, without any loss of generality, assume that A' is a singleton, say A' = {a0}.
First we shall construct an R-transducer 91 = (Z, X, A, Q, Y, P, a^ which
translates every p^F^X) into a tree q£Fn(Y) in the same way as 91 provided
that $€dom(re). In addition, if during the translation of p into q by 91, an
occurrence of a subtree p' in p is translated starting in a state a into a tree q',
then during the corresponding translation of p by 91, p’ will be translated star
ting in a state consisting of a and the state-sequence of the derivation of q in 93
at the subtree q'. Thus, 91 will have the property that if during the above trans
lation of p by 91, two copies of an occurrence of p’ are translated starting in
states ax and a,, respectively, into the trees qx and q2 such that ax=a2, then
the state-sequences of the derivation of q in 23 at q^ and q2 coincide.

13 G&ug 193

Let T^B(^)=(w*)^, If m is large enough, then the properties of 21
will make it possible to replace in a derivation different derivations of
p' starting from the same state by one of them such that for the resulting output
tree q we shall have TB(g)=(w #)m' with m'^m. By prescribing the applications
of productions of 21 in this manner we shall arrive at a DR-transducer 2L such
that (S’t2I)tsb contains infinitely many words (w#)'” for each w^L and S is
obtained from R by a relabeling. Afterwards applying a deterministic gsm to

)ts, we shall get L.
Thus construct the R-transducer 2l=(Z, X, A, Q, Y, P, u0) where

A = {(a, b€5n, n = 0, 1, k}

and a0=(a0, (h0)). Moreover, P is given in the following way:
(i) Let ap-q (a^A, p^X^Z0, be in P and take a vector b^jB"

(OSnSk). Then the production {a, b)p —q is in P.
(ii) Let aa-^a^*, ..., a^"-") (a^A, m>Q, a^A"1,

nt+...+nm—n, q^F^YUE^ be in P and b=(h1, ..., bs)£Bs. Moreover, for

every u (l^u^j), and every j take the derivation

buq =>s Wuj.buj^jWuj, ■■■ wujubujUjijWujUj+1

..., w7;j+1€(ZU{#}UB^ bujl, ..., buJ^B).

Set Then the production

(a, b)o- - ?(((au, bi), ...»(ai^, b^))#1, ((aal, b^+i), ...
... , . bBl + B1)) £2*5 ■ * •, ((Um,, bn, + ... + nm_1 + l)s • • • , 5 b,,))

is in P, provided that for each j=\, ..., n the length of the sequence b7 is not
greater than k.

From the construction of 21, one can easily see the following connection bet
ween 21 and 21. Take a tree p^F^X), a node d of p and let p' be the subtree of
p at d. Moreover, write p=r(p') and consider a derivation

a: a^p') ^q(ap'n) = q

feF^Y), qeWUSn), ap* =>U t€Fn(T)")

with g£dom(Te). Then in 21 we have a derivation

P- («o, (b^r^p') ^q^, bj,.... (a„, bjlp'") =>*q(t) = q,

where b, (Isi^n) is the state-sequence of the derivation

r- boq^w^(ZU{*}Y)

194

at the subtree rf. Therefore,if(a;, bi)=(a;, by) (l^z, j^n), then the state-sequences
of y at the subtrees r; and tj coincide. We can assume that 21 itself has this prop
erty, because the equality obviously holds.

Consider a word (w *)m€(-Rrsl)tiB with m>2£+l. More exactly, let p^R
be a tree for which under the derivation aop=^q(£Fa(Y'j) the equality
=(w#)m holds. Let r€^(XUSi) and p'^F^X) with r(p')—p. Moreover,
write the above derivation in the form

a': aor(p') =>^q(ap'") =>aq(t) = q

^Fa{Y), aar^q^, qd^En\ ap'” =>Jt, KF^Y^.

Assume that a state a^A occurs more than once in a, and let a.,..., a, ‘1 ‘3
be all occurrences of a in a. Then the state-sequences of

p'-. boq^(W^y^(zu{*}y)

at the subtrees t^, ..., coincide. Let (&n ..., bs) be this common state-sequence.
Among ..., let be the tree for which has a

maximal number of occurrences of #. Replace the considered occurrences of
..., ttj in q by and denote by q' the resulting tree. We claim that for q'

we have tb(/)=(w #)m' with m^m. To prove it let us distinguish the following
two cases:

(I) There exists an r (l^rSs) such that * occurs at least twice in the word
T® 0i) Then our claim obviously holds.

(II) ft occurs at most once in each word TB(h }(r;), ..., tB(1j). Take a fixed
r (l<r^j), and write ft' in the form

bo q =>B WX bt tlr »v2... ws b, tlr w,+! =>£

WjPiW, ... w,t>,wj+1 = (w#)m.

Since m>-2it+l and s^k, there exists a m’„ (ISk^j+1) such that # occurs
at least twice in w„. This also implies our claim.

Thus we have got the following result. If we replace in a' every subderivation
arp'=>*tr (ar=a, r=ilt...,ij) by ap'^t^, then boq'=>^(w #)m' with
holds for the resulting output tree q’. Therefore, prescribing the applications of
the productions of 91 in this way, we arrive at a deterministic R-transformation
whose composition by r®, applied to a suitable forest from K, for each w^L
yields infinitely many words (w #)" (m : 1), and only such words. Next we show
how this can be carried out. First we define a deterministic R-transducer 'Jlj.

Let A = (ai,..., a,}, and define a set X of variables by

X = {(*» (ci......................... ct = («ix, q^P or *, i = 1, s}

13* 195

where * is a new symbol. Moreover, define the ranked alphabet A, where for
each m(sO),

Am = {(a, (q, q))|cr€Zm, = (attr, q^P or q = *, i = 1,s}.

Now take the R-transducer = (A, X, A, <2, Y, Plf a0) for which Pr is given
as follows:

(a) For each a£A and (x, (q,q))cX if c—^x, q^, then the pro
duction

a((x, (q,..., q)) - qi
is in .

(fi) For each a^A and (a, (q, ..., q))€dm, if q=(qq^), then the
production

ai(q (q, ...,q))-q
is in Pi.

Obviously, is a deterministic R-transducer.
Next, let D=(Z, X, {dQ}, A,X, P",d^ be the F-relabeling where

P" = {x - d^x, (q,..., q))|x€X, (x, (q,...,

U{a(d0,d0) - (q, ..., qM, I.,

(q(q, q))€dm, m 0}.

Put Since K is closed under relabeling, S^K. Moreover, taking
into consideration the remarks proceeding the construction of Six, one can easily
see that, for each w^L, (St^)ts contains infinitely many words of the form
(w#)m (msl), and only such words.

Finally, take the deterministic gsm C=(ZU { #}, {q>, q}, Z, q>, Pc, {q})
where

Pc = {qz ■* zc0|z€Z}U {c0# —eq}U{qz -* eq|z£ZU{#}}.

Obviously, (w’#)mrc=H' for all and mSl.
Denote by ®t the deterministic ^-copying R-transducer obtained from ®

by Theorems 5.4 and 7.8. Moreover, let Cq be the DRR-transducer given to C
by Theorem 7.4. Then the equality L=yd (Sq, ore otc) holds. Thus, by a
repeated application of Theorem 4.6 (iii) and Corollary 4.8 (ii) and using Theorem
6.15 and Corollary 3.17, we get for a suitable deterministic R-transformation t
and a suitable T^K the equality Tt = St,(ot,, oTff . (Observe that the F-
transducer '21 given in Lemma 1.11 is an F-relabeling. Hence, closure under rela
beling implies closure under intersection with regular forests.) Finally, again by
Theorem 5.4, we have ££0#(r). □

196

Definition 7.17. Let X be an alphabet and a symbol. Then for L^X*
the language c^L, #) is defined by c2(L, *)={w*w|h'6L}.

Theorem 7.18. Let K be a class of forests closed under relabeling and regular
insertion. If R^K, then there exist a 2-copying GSDYf-transducer 21 and a forest
T^K such that cfyd(R), =

Proof. Suppose R^F^X) and let L—yd(R). Moreover, take the ranked
alphabet d =dj = ZUJf}, and consider the regular insertion defined by
ffd)={d^}*^ (df£GX), and set S=f[R). Then S^K. Finally, let Q—
= ZUd be the ranked alphabet with Q1=Z1UA and (m^O, m^l).

Now consider the R-relabeling 23=(Q, X, {b0, bj, Q, X, P, b0\ where

p=

U{M ..., b1^\a£Xm, m s 0}U

U^x — x|x€JT}.

Obviously, T—St^ consists of all trees of the form 3(f), where r^R and
J=root(r). Since ® is a relabeling, T^K. Now we construct the required
GSDT 21 = (Q, X, {u0}, XU { * }, P', aQ), where

P' = {a03 -

U{u0o- a0^mk€Tm, m S 0}U {aox - xjxCA'}.

It is clear that 21 is a 2-copying GSDH-transducer and that c2(L, *) = 7t8i
holds. □

Theorem 7.19. Let Y be an alphabet and # $ Y a symbol. Take a language L^Y*
and a class K of forests closed under relabeling and regular insertion. If c2(L, #)€
^(K), then Le&<0(K).

Proof. The idea behind the proof is similar to that of Theorem 7.16, but this
is much simpler.

Let 'il=(Z, X, A, YG {#}, P, A') be a GSDT and R^K a LX-forest such
that Rtv=c2(L, #). Since K is closed under regular insertion, we may assume
that A’ is a singleton, say A'= {o0}.

Take a tree ptR, a subtreep' ofp and let p=r(p') (rS/j^USi)). Consider
a derivation

a: a^r{p')=s*wlaxp’w2... wkakp'wk+1 wkvkwk+1 = w#w,

where^+1, fi, ...» v*€(TU{#})* and
atp’=>*vt (1 = 1, ..., k). Then (an ak) is the state-sequence of a at p'. Assume
that a state at A occurs at least twice in (at,...,ak), and let at and ait

197

(1 ^i^i^k) be two such occurrences of a. Then, taking the relevant occurrences
of V/ and v; in w#w, we have the decomposition w # w=u1v1]m2i>Jim3. On
the other hand the words Wifj u2l’iJMs O=l»2) are also in Rtv. Hence, 1^ = ^
must hold. This implies that if we replace for each t (1 ^t^k) such that at=a,
a,p'^*vt by atp’=>*vi , we get the same word w # w. Therefore, prescribing
accordingly the applications of productions from R, we arrive at a deterministic
GSDT yielding cfL, #). This can be carried out in the same way as in the proof
of Theorem 7.16, but here the resulting 21 j is a DGSDT. Thus, taking the F-rela-
beling T> defined in the proof of Theorem 7.16, for S=RrSl, we have S^K and

=c2(L, #). Moreover, by Theorem 5.4, there exists a DR-transducer Kj
with c2(L, #)=yd (St^). Finally, consider the deterministic gsm C of the
proof of Theorem 7.16 with Y instead of Z, and let be the corresponding
DRr-transducer. Then the equality £=yd (St^ot^) holds. Thus, by Theorem
4.6 (iii), Corollary 4.8 (ii), Theorem 6.15 and Corollary 3.17, for a suitable DR-
transformation t and a TQK, we get This, by Theorem 5.4,
implies □

8. THE HIERARCHIES OF TREE TRANSFORMATIONS,
SURFACE FORESTS AND TRANSFORMATIONAL LANGUAGES

In this section we prove that the compositions of n F-transformations or n
R-transformations form proper hierarchies when n=0, 1,2, Similar results
will be shown for the classes of forests (n-surface forests) which can be obtained
from regular forests by compositions of n F- or n R-transformations. All these results
will follow from the fact that the classes of languages (n-transformational lan
guages) obtained by taking the yields of n-surface forests form a proper hierarchy.

Definition 8.1. A forest T is an (n, Resurface forest if TCSurf(^"). (n, F)- and
(n, Resurface forests are defined in a similar way.

Definition 8.2. A (string) language L is an (n, ^-transformational language if
£=yd(T) for some (n, Resurface forest T. (n, F)- and (n, Rg)-transformational
languages are defined similarly.

If n = l then we shall speak about R-, F- and Rr-transformational languages,
as well.

The following results show that in studying (n, R)-surface forests and (n, R)-
transformational languages we can use Rr-transformations, too.

Theorem 8.3. For each natural number n, the equality Surf (^") = Surf (i#R) holds.

198

Proof. This follows from Theorems 4.6 (i) and 3.15 and Lemma 6.5. □

From Theorem 8.3 we directly get

Corollary 8.4. For every natural number n, the class of (n, ^-transformational
languages coincides with the class of (n, ^^-transformational languages. □

Using Theorems 4.7 (i) and 2.7, from Theorem 8.3 we obtain

Corollary 8.5. For every natural number n, Surf (.^") is closed under LF-transfor-
mations and LR- transformations. □

Now we can state and prove a result giving a recursive procedure by which
the hierarchy theorems can be proved easily. The procedure will be based on the
“bridge theorems” of the previous section which concern the operations res,
c2 and c*. These associate with each language which is not in a given class another
language which is not in another, larger class.

Theorem 8.6. Let K be a class of forests closed under relabeling and regular inser
tion. If yd 2^tf(K)c:yd then for each integer nSl,

yd^CAi) c yd (#"(£)) C yd^^W) c yd ^n+\K).

Proof. By Theorem 3.15 and Lemma 7.3, is closed under relabeling and
regular insertion, for every nsl. In the sequel these facts will be used without
further mention.

We shall proceed by induction on n. Let n=l. Take a forest R such that
R£$t(K) and yd (R)$.yd&$tf(K). Then by Theorems 7.12,5.4 and 2.8 there exist
an LNF-transformation t and a forest S£0V(K) such that res (yd (A), #) =
=yd(Sr). Moreover, by Theorem 3.15, Sr€^(X). On the other hand, since
yd (R)<yd by Theorems 7.13 and 5.4, res (yd (A), #)$yd
Thus, the proper inclusion yd @0l(K)cyd holds.

Next take an with yd (A)$yd Then, by Theorems 7.18
and 7.8, there exist a 2-copying homomorphism t and a forest such
that c2(yd(A), #)=yd(ST). On the other hand, since yd (A)£yd by
Theorems 5.4 and 7.19, c2(yd (A), #)<yd^(X). Therefore, the inclusion
yd^(K)cyd^^f(^(K)) is valid.

Again take an R^tH(K) with yd (A)<yd ®^(X). By Theorems 7.15 and 5.4
there exist a DR-transformation r and a forest SC^A) such that,
c*(yd(A), #)=yd(Sr). Moreover, since yd (A) yd (A), by Theorems 7.16
and 7.8, c„(yd(A), #)$yd Thus we have got that

yd c yd

199

Finally, take an R^\K) with yd (7?)^ yd Then again by
Theorems 7.12 and 5.4, there exist an LNF-transformation t and a forest

such that res (yd (J?), #)=yd(5r). Moreover, by Theorem 3.15,
S^\K). On the other hand, since yd (^)^yd ^z(^(^)), by Theorems 7.13
and 7.8, res (yd (R), *)$yd Therefore, yd £^?(^?(7Q)cyd 3i2(K).

Summarizing our results, we have

yd ^(7T) c ydc yda yd &2(K)

which completes the proof for n—1.
The transition from n to n+1 is illustrated by Fig. IV.3. □

Fig. IV.3.

According to Theorem 8.6, to show that the classes of (n, R)-transformational
languages form a proper hierarchy it is enough to prove the properness of the
inclusion yd ^z(Rec)cyd ^(Rec). For this we need

Lemma 8.7. For each k-copying DGSDT 91=(2, X, A, Y, P, a.) there exists a
linear DGSDT SB—(27, X, B, Y, P', b0) such that Par (TT9)=Par for every
jorest Ts— F^^X^.

Proof. For each HOKUMS)*,
all a^s (a£ A, ^B).

let w denote the word obtained from w by erasing

Let 5_{(ai ...,a„)|n^*, a£A (/=!, ...,«)} and b0=(a0). Moreover, P' is
dehned m the following way:

(i) Let a-fa, ...,a„)eB and x£X be arbitrary. Assume that the produc-
'°ns aix-^vl (afA, v^Y*, i=l,...,n) are in P. Then the production ax-

—v1...v„ is in P'.
(ii) Take an arbitrary a=(an ..., a„^B and (mSO).

tains, for each f=l, ..., n, a production Suppose P con-

- w^a^jw^ ... wtj.a^ijwtj^ = w,

•••» wijlj+1€ (TUT(.2m — {£/}))*, atJi,... aiJt£A, 1 Sm).

200

Then the production

a<T -* ... , <111^ » •••» Quip •••»

••• Ghmp •••> ...j ^nntp •••» ^nmn Km*!--- W„

is in P', provided that ly+...+nysA: 0=h ■ ■•,m).
Obviously, SB is a linear DGSDT. Moreover, the derivations in 21 and in SB

are related as follows. Take a vector aCJ" (n^k) and a tree p£F2(X). Con
sider the derivations a: apn=>^w, where w=w1...w„^Y* and a;:
(i=l, ..., n). By the state-sequence of a at a node d of p we mean (a^ ..., a„),
where a; is the state-sequence of af at d. Furthermore, we say that a
is ^-copying if the length of the state-sequence of a at any node of p is at most k.
Assume that a is ^-copying. Then for some wfY*, p\ ap"=>^w' exists. One
can easily show by induction on hg (p) that the state-sequence of ft at any node
d of p is of length one (if it exists) and coincides, as a sequence of states of 21,
with the state-sequence of a at d. Finally, w is a permutation of w'. Therefore,
the equality Par (Trw)=Par (Prs) holds. □

From Lemma 8.7, by Theorem 1.6.17 and Corollary 6.8, we get

Corollary 8.8. Let T^F^X) be a recognizable forest and <H—(Y,X,A,Y,P,a0)
a finite-copying DGSDT. Then Par is semilinear. □

We now can state and prove that the hierarchy of (n, R)-transformational
languages is infinite.

Theorem 8.9. For every natural number n, the inclusions

yd ^"(Rec) c yd £^?z(^"(Rec)) c yd ^^(^"(Rec)) c yd ^n+1(Rec)

hold.

Proof. By Lemma 7.2 and Corollary 6.6, Rec is closed under regular insertion
and relabeling. Thus, by Theorems 8.6, 5.4, and 7.8, and Corollary 8.8, it is
enough to show that there exist a regular forest TcF^X) and a GSDT 21 =
= (I, X, A, Y, P, a0) such that Par is not semilinear. For this let Z=Zj =
= {<?}, /f = {a0}, ^{x}, and P={a0<r-a0^a^1, a^x-^y}. Moreover,
let T={ff(x)}**. Then 7tw = {/>=0,1,...}. Thus, Par(Tra)=
= {(2")|n=0, 1,...}, which obviously is not semilinear. □

From Theorem 8.9 we directly get

201

Corollary 8.10. For every natural number n the inclusions

(i) yd ^"(Rec) c yd +1(Rec),

(ii) ^"(Rec) c <r+1(Rec),

(iii) c ^B+1
hold. c

Finally, we give two more hierarchies of transformational languages, surface
forests and tree transformations.

Theorem 8.11. For every natural number n the inclusions

yd (Rec) c yd +1 (Rec) c yd +1 (Rec)
are valid.

Proof. By Theorems 3.3 and 3.12 and Corollary 6.6, the inclusions yd ^"(Rec) c
cyd^+1(Rec)cyd^+l(Rec) hold. By the proof of Theorems 8.6 and 8.9,
yd 5?" (Rec) is a proper subclass of yd ^(^"(Rec)). Moreover, by Theorems 3.3
and 3.12 and Corollary 6.6, the equality ^’(^”(Rec))=J5',,+I(Rec) holds
Thus, the inclusion yd^"(Rec)cyd^"+1(Rec) is valid. Finally, by Theorem
8.9, yd^(0"(Rec))Syd<^(^"(Rec))cyd Therefore, the inclu
sion yd^"+1(Rec)cyd;r+1(Rec) is also valid. □

From Theorem 8.11, using Theorems 3.3 and 3.12 and Corollary 6.6, we get
the following results.

Corollary 8.12. For every natural number n the inclusions

^"(Rec) c ^^(Rec) c ^n+1(Rec)
hold.

□
Corollary 8.13. For every natural number n the inclusions

(i) yd ^"(Rec) c yd^"+1(Rec),

(ii) ^"(Rec) c ^""“(Rec),

(iii) dFn c ^"+1
are valid.

□

202

9. THE EQUIVALENCE OF TREE TRANSDUCERS

Since the equivalence problem for (nondeterministic) generalized sequential
machines is undecidable, there exists no algorithm to decide for arbitrary two
tree transducers whether or not they are equivalent. In this section we show that
there is an algorithm for deciding the equivalence of two tree transducers when at
least one of them induces a partial mapping. Moreover, we shall prove that it is
decidable whether the tree transformation induced by a given tree transducer is
a partial mapping when restricted to a given recognizable forest.

We start by introducing a concept.

Definition 9.1. Let p^FfiX). A tree is called a supertree of p
if there are trees plt ...,pn^F^X) such that p=p'(Pi, ...,p„).

To prove the decidability results we shall give five reduction rules formulated
in the following five lemmas. In these lemmas X, A, Q,Y, P, A') will
be a fixed R-transducer and B = (^, p, B') will be a fixed ZV-recognizer with
^=(B, Z) and T(B)=T. Furthermore, set Q={p£T\ i.e., g con
sists of all trees from T which are translated into at least two different output trees
by 91.

Lemma 9.2. Let Pi,Jp2€Fi(VU.2O, PaCF^AJ, nj, n^, n%, n2 —0, <7i^F^(yU^nJ,
^(FUS/J, q^WUS,,), q^Z/^FU^;), q^F^F)"*, q^Fn(F)B«,

a^a'^A' and a^A"1, a-EAn‘ (i=l,2). Moreover, set ^={^17=1, ..., nJ
and A{ = {oj |7= 1, ..., n{) (i= 1, 2). Assume that the following conditions are
satisfied:

(0 pApAp^t,

(ii) a^ =►* ^(a^J), aJP1 =>* JaRJ),

(iii) a1P"> =>*q2(a2^.), a(p< =>*qjaj^),

(iv) a2pj. =>*q3, a^i=>*qj

(v) p3fl = pM^, Ar £ At, A[£ A'i,

(vi) for all r€Fn(F)"i and r'€Fn(F)"i, qx(r)#^i(r').

Then pAp^Q.

Proof. First let us note that the conditions of Lemma 9.2 imply p^Pikp^Q.
Next take two mappings f: {1, ..., nJ — {1,..., nJ and g: (l,...,nj —

-{!»•••.nJ such that ^=0^ (/=!,...,nJ and ^,=o;,(1> (f=l.......nJ.

203

By (v), there are such mappings f and g. Thus, by (iv), we have and
a^=>*r' with r=(q3fw,...,q3fM) and r' = (q'3gm, q'^). This, by (ii)

implies o0p1(p3)=>*</1(r) and By (vi), ?i(r)#^(r'). Moreover
by (v), PAP^T. Therefore, pAPzKQ- □

Lemma 9.3. Let pAFAXVSA, P&FS(X\ n,n'>Q, qAFn{Y\JBn\ q'A
q3CFa(Y)n, nAFn(Y)n, a0, aAA', a^A" and afA"'. Further

more, let K be the maximum of the heights of the right-hand sides of the productions
from P. Assume that the following conditions are satisfied:

(i) pApACT,

(ii) aoPi=>*?i(a^). ^Pi^tfKa'ft'),

(iii) a^=>*q2, a'pg'=>*q2,

(iv) pathx (qA is an initial segment of pathj {q'A, and

I(path1(9;))-Z(path1(91)) > MW, hg(P2) s M2|B|.

Then there exists an A FAX) with |r|<IP2l such that pA^KQ.

Proof. Set R = {r^FAX)\pAr^T, MLpa|, ar"=>*s, a'P'^s' for some
s^FfAYy and s'CZ^y)"'}. Obviously, R is nonvoid. Denote by r an element
from R with minimal length. We prove that pAr)£Q and hg(r)<|pj|2|B|.

First assume that hg (r)s|p^|2|5|. Then there are

ri> rAFAXUEA, rAFAXf m^mAm^m'^O, sAF^YUSmA,

sAF^YUS^), saF^AYUS^, ^F^(YUBm^

^FAY^, s'AFAYff bfAm<, b'AAm'‘ (i = 1, 2) such
that

(I) r = r^rArA), r^^,

(II) ar? =>* S1 (b, ^9, a' =>* sj (b(T1),

(III) bxrf* =>*si(ba^’)> =►* s£(b;^),

(IV) b2r^“ =>* s3, bjrj-i^,

(V) r3^ = rAr3)^, Bi S B3 and B{ c BA where

Fi — {\J1 Sjs mt}, B{ = g i g (i = 1, 2).

Take two mappings/: {1,..., mJ-{1, ..., and g: {1, mJ-U,
such that (fsi^mA and (1 siSm'A. Obviously, atn^
^sAs»f(W-,s3/(miA and ar^s;^,...,.^^ where t=rAr3).

204

Moreover, rfir3)p=rp also holds. Therefore, r^r^R, which is a contradic
tion since |ri(rs)|<|r|.

Thus, we got that hg (r)<|p^|2|5|. Therefore, for arbitrary vectors s£Fn(T)"
and s’eFa(Y)n' satisfying ar"=>*s and a'r"'=>*s', the inequalities
hg (■s'i), hg(jj)s hold. This, by (iv), obviously implies the conclusion
of Lemma 9.3. □

Lemma 9.4. Let Pi, Pi, P^F^XUEfi, P^F^X), nt, n't, m^O (z=l,2,3),

^(rus^), ^(ru^), /^(yu^),

q2€WU3St), r^/^TUS^),

q8€Wusnj), q^Wus,;), r3e^”(rU3ms),

q^r^r)"’, q^UT, r^F^Yff

ao,a'oeA', A, *&A\ , b^”'1 (z=l,2,3).

Moreover, take an r^Fn(Y\ and let r^ri^^rj)). Finally, set A~
= {%\J=^, A'i = {a'ij\j=l, ...,«?} and {1^=1, ..., mJ (z = l,2,3).
Assume that the following conditions are satisfied:

(i) pAPi^P^T,

(ii) a^^qfa^, a^ji),

(iii) at p^ =>* q2 (a2 ft’), a[p< =>* q2 (aj ft’),

ap2^a^,

(iv) a2pp =>*q3(a3fp), a£=>*q3(a;^’),

ap3^ailt b2p?«=>*r3(b»^«),

(v) a3pj’=>*q4, aipj’^q;, apt =>* r, b3p^»^rit

(vi) PiP = P-MP = Pi(p3(P^P, £ A2c At,

Ai S AS A^y Bi B^ — B^,

(vii) r jt r', pathx (qj = pathi (q'i).

Then at least one of the trees Pi(p3(p^), pfipfip^) and pfpfi is in Q.

205

Proof. First note that the conditions of Lemma 9.4 imply Pi (Pa(P3(P4)))£(?•
Indeed, let q2(q3(q4))) and Qa(^(ql)))- Then

OoPl^PziPz^Pi))) ^Pl^CPs^))) =** Z (r)

and t(r)^t(ry
Take six mappings f: {1, nJ—{1, nJ+i}, Si'- {!>•••> M-*”, •••’”n-i)

and
hp {1, ...,mj-{1, 0 = 1,2)

such that

Furthermore, set /3=^o/a, ga—gi°&2 and h3=h1o/i2. Moreover, introduce

the notations
Si = ($3,^, - ^V(l)’ - ’

*1 “ O^i),

Sa = «; = q^^, —

*2 = ^O^y), •••» r4*1(m,P’

S3 = (?4/>(lf - > ’ ?<(<?’

*3 = (1)’ •••’ r4M'"l)}‘

Then the following derivations obviously hold:

aoPi(P3(Pt)) =** 9i(r> Si), «oPi(P3(P<)) =** 9i(ri0i), sj,

«oPi(Pa(P4)) =** ?i(r> sj> «oPi(Pa(P4)) =** di^iOa). sj,

^oPiCPi) =** ?i(r» aoPi(Pt) =*+ Ss)-

It is also obvious that Pi(p3(P4))> Pi(.Pa(Pi)\ PitPiKT.
Now assume that Pi(p2(P4))C Q- Then, by (vi) and (vii), mlt m2, m3>-0 and

there exists an i such that (()* We can choose ht in such a
way that for some j hl(j)=i holds. Now assume that, under the
latter choice of ht, none of Pi(p3(P4)) and Pi(p4) are in Q. Then we get ri(tj=
=ri(t3)=r. But this is impossible since □

206

Lemina 9.5. Let P1, p2, pA^A^EA, pAFAXY n^m^O (* = 1,2,3),

91£/n(rUS„i+i), ^€^(KU3n;+1), r^FAYUE^,

q2€^(rusnt), q^^crus/,), r2€Fnm*(yU3mt),

qs^’CrUS,,), qM^US,;), r8€/fl’(rusmt),

q^FnCn"’, q^C^A rAF^Y)^,

a^A', *AA\ ^AA^, ^Am‘ (i=lA3).

Moreover, take an rAF^Y), and let r^A^)). Finally, set At=
= {ai\J=i,-,ni}, A'i = {a'ij\j=i, ■■•,n'i} and B={btj\j=l, ...,mA (*-1,2,3).
Assume that the following conditions are satisfied:

(i) pApApApAW,

(ii) OoPi =>* qArA*^ a«Pi =**

(iii) HA^\ Q^?)’ M?1 =>* r2(b2^’),

(iv) a2pS’ =>* q2M’). W>’ r3(b3^)>

(v) a3pj’=>*q4, ajp^=>*q4, b3p?’=>*r4,

(vi) Pi^ = PstP^fi = P2(P»(P4))^’

A^A2^ A3, A{ S A'2 £ AA Bl = B2S b3,

(vii) r r', path! (^4) = path^i).
Then at least one of the trees pfipAp A), pApApA) and pAp A Q-

Proof. The proof of this lemma is similar to that of Lemma 9.4.

Lemma 9.6. Let
P^PA^SA, PAFAX), k,l,m,k',r,m'^0,

qA^YUEk^), q'Afa(YUEk.^, qA^YUE^A, q'A^Y^^+A'

re/nCrUSJ, r'€/n (TUSm.), q3^^YUEA, q3,r^la(Yf

^Fa{Yt MMY)1’, AFa{YT, t'eFAYf, aQ,aAAr a,^A,

^A\ ^Y^AV, b^1, b'U'', ^Am and cfiAn’.

Moreover, set
/i; w-k

Al = {at\i=\,..A},
k'}, b;=o=1-

B^{b,\i=l......... /}, C1={cl|(=l,
...,/'} and C;={<|f=l,Assume

207

that the following conditions are satisfied:

(i)
(ii) a0Pi =>* a^)> a'^ a'^')’

(iii) ap2 =>* <72Wi> b£i)> a'Pi =** ?2(a^i>
ap^*r(c^)» a'pj'^r'(c'ff'),

(iv) aps =** ?s(O> a'Ps =** ^3’ hPs^*9* b'Pa^s'’,

cp3 =>* t, c'p?' =>* t',

(vJAs^UQ, pj = PitPz'rf,

(vi) pathj^i) — pathiG/Dpath^g) and r # q3.

Then pAp^Q.

Proof. Introduce the notations d=(b, c), d'=(b', c'), u=(s, t) and u=(s,t).
Moreover, take two mappings f: {1, ..., ..., l+m} and g: {1, —
— {1, ..., l'+m'} satisfying the equalities at=dfW (i^i^k) and at=ugW
(i^i^k'). Obviously, there are derivations a0pi(p3)^>*qi(q3(.r), UfW, ...,ufW)
and a^pM^q'fiqi ti'gW, ...,u'gm). Moreover, p^^T. Since

path^C/sO u/w, = path^^, u'(1),..., «'{V)))

and q3^r, qi^r), ufm,, Uf^^q'^q'a, ugW, Hence, p^p^Q- □

Now we are ready to state a theorem from which the main decidability results
of this section easily follow.

Theorem 9.7. There exists an algorithm to decide whether Q is empty.

Proof. Let K denote the maximum of the heights of the right-hand sides of the
productions from P, 11^11=2^1 and let L be the number of all words over
{1, ...,Fj} with length at most ||JH2I^I^. where r^ is the maximal m for which
Zm^0. Moreover, let l=k + (2|MI|SM||B|)(M||W+1)
and m = Z+2M||3|B|.

We shall show that Q is nonvoid iff it contains a tree with height less than m.
The case K=0 being obvious, we assume that K^O.

Let p be an element of Q with minimal length, and q, qfiFa(Y) trees such
that q^q' and (p, q), (p, q'K^v. Assume that hg(p)£m. Then there
are a0, a'€Z, p0, ...,pme/'I(A'U31), pm+i£Fi(X), nt,n'^0 (i=0,...,m),

q'^YUB^^^-'iYUE^ q^^'-XTUS,;) (Z=l, ..., m).
qm+i€Fn(T)'’m, qm+i€F0(r)<, a^"*, (i=0, ...,m) such that the

208

following conditions are satisfied:

(1) P = Po(Pi(-(Pm+i) •■•))> Pi^£i (i-L--,™),

(2) q = 9o(qi (-fam+i) •••)), (?'= ^(qK-C^+i)-)),

(3) floPo 9o(®o^i°)> aoPo=> qo^^h

a;P^i =>*qi+1(ai+1^+'), ^P-^ =>* q^+i^1)

(i = 0, —1), ampm"+i q„,+i’ amP^.i^qm+1-

For i=0, introduce the notations Pi=Po(Pi(-(Pi)"-))’
=?o(q1(-(qi)-)) and Moreover, let p^pi+1-
•(-(pm+i)-), ?i=ql+i(-(qm+i) -) and ^=q;+iC-(qm+i)-) 0-0,
Finally, set ll^n,} and A- = {a.^j^n.}

If ^(r)^^(r') holds for all and r'€Fn(T)% then the fact that
w_/+l>|p^|2|5| makes Lemma 9.2 applicable and hence there are i and j
with l^J^m such that p^p^Q. This is obviously a contradiction since

|pi(p/)|< |p|- . _
Thus, we way assume that at least one of n, and n,, say n(, is greater than 0.

Moreover, it can also be supposed that there are an i, an r't,
and an s'tFn(Y) such that q’=r\s'), path1(r')=pathii($l)

and s'^q,.. Then for each j<l, n^O. Now let ij be
those uniquely determined integers for which pathfj(^) are initial segments of
path^^). Without loss of generality, we may assume that i0=...=z(=l.

Now suppose that there exists no {path;(^')|l such that pathj (9,)
is an initial segment of w or w is an initial segment of path^q,). Then for each 1

set
Bt = {oijpath!^) is an initial segment of path/^)}

and „ .
C(= {a(Ipath^qO is not an initial segment of path/qj).

Since the cardinality of {/,.... ™) is 2MW 1 + 1. to ’re?
< i. S m) such that the following conditions are satisfied. P^P-P^P-P^P,
B, =B, SB, , C, sC, fiC. and A'sA',^. From this, by Lemma 9.5
we get'that at least one of the trees fc/A,) and >s in 2, which is

again a contradiction. , .
Therefore, for an i, (lsf^«;), pathl((^) is an initial seement of Pa**(™

or path,(3,) is an initial segment of path,/^)- Let ij (P&M’ be
those uniquely determined integers for which path(j(9;) are initial segments of

14 Gcocg 209

path^'). Without loss of generality we may assume that i0=...=z/=l. We
can also assume that path^,) is an initial segment of pathj^).

Now let us distinguish the following two cases:

a) pathj(^) is an initial segment of path^^). If in addition for some i
(O^iSk), abs^pathiO-Ztoath^i?;))^^ then, by Lemma 9.3,
there exists an r£Fn(Y) such that q^r^Q and |r|<IPil- (Here abs stands
for absolute value.) This obviously is a contradiction. Therefore, for each i

abs(/(pathi(^))-Z(pathi(^)))sMII2l^l^- Then, since the cardi
nality of {1, ..., k} is M||2|^|2\B|2L+1, for some integers i and; (l^i<jsk),
we have:

(I) path^i) is an initial segment of path^^-), path^^) is an initial segment
of pathx(^), pat^ (^)/pathj (;?,)=pat^ (^/pathj^ or

(II) pathi(^-) is an initial segment of path^), pathiQy) is an initial segment
of pathi(^), pathi($i)/pathi(gI')=pathi(g;)/pathi(^). (Here uv/u—v for any
two words u and v.) Moreover, Pj^=P^, ail=aj^ Bt—Bj and
B'^B], where B= {asJ2sr^ns} and B',=: (s=i,J). Then, by
Lemma 9.6, pApjKQ, which is a contradiction since ^(A^HIpI-

b) pathi(^() is an initial segment of pathi(^). We shall show that

Z(path1©)-Z(path1(?Jk))* Mil2 \B \K.

Then /(path^))-Z(pathi(?*))>Mil2 \B|K will also hold, which, by Lemma
9.3, will be a contradiction.

Thus, assume that Z(pathi(^)) — Z(pathi(^))^MII2|5 1^- Then, since the car
dinality of {A:+1,..., Z} is ^MII’MII^IXMIPI-Bl^+O. there are Zj and i2
(fcSii<iasZ) such that Za —Z1=2MIISHI I-® I and path1(?<|)=...=pathi(0li),
i e., ?((i+1)i = ...=<?(> =<!• Now for each./ (Z1^j^f2) set

Bj = {a'j\ 1 S t n], path^;') is an initial segment of pathi(^j)}
and

Cj = {a'j |l S t § n'j, pathi(^') is not an initial segment of pathj(^)}.

Since the cardinality of {Zi,...,Z2} is 2MII3MI|£| + h there are integers j\, j\
and y3 (ZiSJi^’-A^) such that =ah=ah,
sAjteAJt, Bj^B^sB^ and CjUCjSCj, where = {aJt |2s$Sn7i}
(/=1, 2, 3). Therefore, by Lemma 9.4, at least one of the trees Pj^Pj,)
and Pj^j^f is in Q which is again a contradiction. □

210

Now we are ready to prove

Theorem 9.8. For any two R-transducers 9I = (Z, X A, QY, P, A') and
® = (I, X, B, Q, Y, P',B') and any recognizable ZX-forest T it is decidable

(i) whether is a (partial) mapping,
(ii) whether vn\T^Tv\T, provided that is a (partial) mapping,

(iii) whether 91 is equivalent to ®, provided that r>a or rB is a (partial) mapping,
and

(iv) whether 91 is equivalent to 9?, provided that at least one of them is deter
ministic.

Proof. By Theorem 9.7, (i) is true. Moreover, (iii) and (iv) follow from (ii) since
the domain of an R-transformation is regular and, by Theorem II.10.3, it is
decidable for two regular forests whether one of them contains the other one.
Therefore, it is enough to prove (ii).

We may assume that AOB=9. Let us construct an R-transducer C =
=(T, X, C, Q, Y, P", C') with C=AUB, C'=A'UB' and P"=PUP'. Ob
viously, Thus holds iff dom^nTs
cdom(Te)nr and tc|T is a partial mapping. □

Before stating the analogous result for F-transducers we prove a lemma.

Lemma 9.9. For any F-transducer 9l=(T, X, A, A, Y, P, A) and FCRec (Z, X)
one can effectively give an R-transducer ®=(f2, X, B, A, Y, P', B') and a forest
SC Rec (Q, X) such that is a partial mapping iff is a partial mapping.

Proof. Construct an RR-transducer ®=(Z,X A, A, Y, P, A') where P is given

as follows:
(i) If x-ar {x^X, atA, r^F^ is in P, then ax^r is in P. .
(ii) If <r(ai, ..^aj-ar m^O, a1,...,am, a^A, r^.FffY\da^) is

in P, then (aa-^r^,, am^, D} is in P, where D^dom^ ()
(f=l, Since, by Theorem 1.10 (i), dom (t9)(o)) (atA) is regular, 91 is
an RR-transducer. Observe that r,I(a)£T91(o) holds lor every atA.

We shall show that for all {a, a'}sA and p^F^X) the equivalence

(1) |t«(4)(p)UTa(«')(p)| * 1 ** |tmw(p)Ut«(«-)(p)I * 1

holds (Note that a and a' are not necessarily distinct.)
Since the left side of (1) implies its right side
The converse will be proved by induction on hg(p). If hg(p)-0, then our

statement obviously holds. Now let p=a(p........pj w*0, p^F^X))
and r, r'ZFffY) be such that ap^r, a'p^r' and r^r'. Moreover, assume

14* 211

that the right side of (1) implies its left side for every state and every Z^-tree of
height less than hg (p).

Let us write the above derivations in the form

, a"^(i = l, ...,m)
and

b^p”'^

where a, a', at, b^A, i = 1, ...,m, n1+... + nm = n, nJ + ... + nm = n ,

r^,rj = r and

^(rj, rm) = r'. Moreover, um), ar(£?, C”))>

^b., ...,bm),

Now distinguish the following two cases:

(I) There exists an i with n^O and 1 or there exists
aj (i^jSm) with n'>0 and 1- Then, by the induction hypothesis,
|tB(0()(A)> 1 or Therefore, by the definition of P, k2(a)(p)|>l
or |t2(o9(p)|> 1 also holds.

(II) Assume that there are no i and J satisfying (I). Then, r^... =rln=ri
(l^iSm) if ^>0. For all such i, by r2(aj)£t2(B() and the choice of D, we
have Pi^^a^p Moreover, again by the choice of D, if «;=0 then also there
exists an r^FA{Y) such that Pi^a/i holds. Thus, we have the derivation
p=>^ar. Using similar arguments, one can show that p=>^a'r' is also valid.
Therefore, |ra(a)(p) U n^afp)| > 1.

Thus, we have proved that ra |R is a partial mapping iff Ta1R is a partial mapping.
By Theorem 4.6 (i), there exist a deterministic F-relabeling t: F^X)-^Fa(X)
and an R-transducer SB=(Q, X, B, A, Y, P ", B') such that T5 =totb. More
over, by Lemma 6.7, Rt=S is in Rec (Q, X) and S can be obtained effectively
from R. Therefore, rj |R is a partial mapping iff is a partial mapping. □

Now we state and prove

Theorem 9.10. For any two F-transducers 9l=(Z, X, A, Q, Y, P, A') and
33=(Z, X, B, Q, y, P', B') and recognizable YX-forest T, it is decidable

(i) whether tm|T is a partial mapping,
(ii) whether T^lTcr^ir, provided that tb|T is a partial mapping,
(iii) whether 91 is equivalent to ®, provided that or Ta is a partial mapping, and
(iv) whether 91 is equivalent to SB, provided that at least one of them is deter

ministic.

212

Proof. Obviously, (i) follows from Theorem 9.8 by Lemma 9.9. Moreover, (ii)
implies (iii) and (iv) since, by Theorem 1.10 (i), the domain of an F-transfor-
mation is recognizable. Thus, it suffices to prove (ii).

Assume that ^405=0, and construct the F-transducer

E = (Z, X, C, Q, Y, P", C')

with C=AUB, C'=A'UB' and P"=PUP'. Obviously, Tc=TaUTB. There
fore, iff dom^DTsdom^nr and xc|r is a partial map
ping. D

EXERCISES

1. Define generalized sequential machines as tree transducers when strings
are interpreted as unary trees in the usual way.

2. Let t be a DR-transformation. Then dom (t) can be recognized by a
DR-recognizer.

3. Show that the classes and and similarly the classes
and are incomparable.

4. Let us call a DR-transducer SM=(27, X, A, Q, Y, P, A') simple, if for
every au-q^P, whenever and a^, occur in q, then If 91 is a simple
DR-transducer, then ra can be induced by an F-transducer.

5. Prove that St tit is not closed under composition.
6. The composition of a totally defined DR-transformation by an R-trans-

formation is an R-transformation.
7. Is closed under LR-transformations?
8. Show that is not closed under LNF-transformations.
9. Prove Theorems 3.7 and 3.9.

10. Find two R-transformations Tj and x2 such that Ti°t2 is the F-transforma-

tion given in Example 1.3.
11. Give two F-transformations whose composition is the R-transformation of

Example 1.6.
12. Show that.^ and &K are incomparable.
13. Prove that SH0lR is closed under DF-transformations.
14. An F-transformation (or an R-translormation) is a partial mapping iff

it can be induced by a DR R-transducer.
15. Find a DRR-transducer which is not equivalent to any DR-transducer.
16. The equivalence problem of two Rr-transducers is decidable, provided

that at least one of them induces a partial mapping.
17. Find an algorithm to decide for an F-transducer whether it is equivalent

to an LF-transducer.

213

18. Let 9I=(Z, X, A, Y, P, A') be a GSDT and 12 a ranked alphabet. Let
{n^ ...,nr} be the set of lengths of right-hand sides of all rules from P (each
element of A3 is counted as one symbol). Moreover, let r(£2)={m1, ...,m,}.
Assume that there exists a mapping f: {«i, ..., n,}—r(12) such that the equality

nk = mf(k) + ll(.ml~ 1)+... + ^(Ws— 1)

holds for every k(=l, where 4, ...,/ss0. Then there is an R-transducer
S=(Z, X, B, Q, Y, P', B') with Ta = {(p, yd (q))\(p, q)^}.

19. Find an R-transducer 91 such that preserves recognizability, but 91 is
not equivalent to any LF-transducer.

20. An R-transducer 9l=(Z, X, A, Q, Y, P, a0) is called k-metalinear if the
following conditions are satisfied:

(1) a0 does not appear in the right-hand sides in rules from P,
(2) for each rule aoa^q (adj in P every & can occur in

q at most k times, and
(3) for each rule aa^q (a#a0> in P the number of occurrences

of each (Isi^m) in q is 0 or 1.
Let 91 be a fc-metalinear R-transducer. Does Ta preserve recognizability?

21. For a ranked alphabet Z let be the ranked alphabet with Zo=
=Z0 and I1={a|<TCZm, m>0}. Define the mapping ph: F^X}-pF-s{X)

by ph (d)= {4} (t/CToUT) and

ph(a(pj, ...,pm)) = {5(t)|r€ph(p1)U...Uph(pm)}

Pk, ...,pm^Fs{X)}. Show that if T£Surf(«) then ph(T)= U(ph (O|r€T)
is recognizable.

22. Is Surf(^?) closed under intersection?
23. Give a recursive definition of the concepts of state-sequence and production

sequence.
24. For every F-transducer there is an equivalent totally defined F-transducer

with a single final state.
25. For every DF-transducer (DR-transducer) one can effectively give an

equivalent DF-transducer (DR-transducer) with a minimal number of states.

214

NOTES AND REFERENCES

The concept of the R-transducer was introduced by Rounds (1970b) and Thatcher (1970)
thus extending generalized sequential machines from strings to trees and to give a tree automaton
formalism for parts of mathematical linguistics (in particular, for the theory of syntax directed
compilation). The F-transducer is due to Thatcher (1973). As in the case of tree recognizers,
many of the authors dealing with tree transducers allow a symbol from a ranked alphabet to
have more than one rank, and most of them use no separate frontier alphabets.

The results of Section 2 can be found in Engelfriet (1975b), and most results of Section 3
are also from this work. Theorems 3.3, 3.12 and 3.13 were obtained by Baker (1973).

Tree transducers with regular look-ahead are defined and investigated in Engelfriet (1976/77).
Generalized syntax directed translations were introduced by Aho and Ullman (1971) in the
special case where the domain of the translation is the forest of all parse trees of a given context-
free grammar. (Parse trees are almost the same as our production trees.) Applying a generalized
syntax directed translation in the sense of Aho and Ullman is equivalent to applying a DGSDT of
Section 5 which, by Theorem 5.4, is equivalent to applying a DR-transducer and then taking the
yield of the resulting tree. The more general concept of a GSDT was introduced in Baker (1978b).
In the same work she proved that for each n, ydSurf (^") and ydSurf (^'") are properly
contained in the family of deterministic context-sensitive languages.

The results of Section 6 are from Engelfriet (1975b), Gecseg (1980) and Rounds (1970b).
The first result about the Surf (^")-hierarchy can be found in Ogden and Rounds (1972),

where they proved that Surf (^) is a proper subclass of Surf (^2) and conjectured the properness
of the hierarchy. It was Engelfriet (1978a, 1982) who succeeded in proving that the &n-, Surf
(^")-,and ydSurf (^-hierarchies (and their F-transducer counterparts) are proper. Section 7
and 8 are based on his work.

The decidability results of Section 9 are from feiK (1980). Using a different technique Zachar
(1980) also proved the decidability of the equivalence problem of DF-transducers.

As a conclusion we mention some other topics relevant to the subject matter of Chapter IV.
A sequential program machine (sp-machine) introduced by Buda (1979) is such a generaliza

tion of a gsm whose inputs are strings and whose outputs are n-tuples of n-ary trees. Buda showed
that the equivalence problem of sp-machines is solvable and that this implies that the equivalence
of certain program schemes is also decidable.

Engelfriet and Fild introduced a new type of tree transducer called macro tree transducer which
is a combination of the R-transducer and the context-free tree grammar (see ENGELFRIET
(1980)). They propose to use macro tree transducers to model attribute grammars of
D. E. Knuth (Math. Systems Theory 2 (1968), 127—145: Correction: ibid 5 (1971), 95-96). For
tree transformations in terms of magmoids we refer the reader to Arnold and Dauchet (1976b, e),
Dauchet (1977a, b), and Lilin (1978a, b).

Finally, we note that much of the category theoretic work mentioned in the Notes and refer
ences to Chapter II deal with tree transductions.

215

BIBLIOGRAPHY

We hope that most of the literature dealing with tree automata, tree grammars forests, tree
transductions, or their applications (published by the end of 1982) is listed tn this bibliography
It also includes some more general works which devote at least a part to our subjec t as well
as a few items on closely related topics. As to the latter category the decis.on on inclusion or
exclusion has sometimes been difficult. Of a paper published more than once in almost dentical
form, just the more complete, or the more widely available, version is menttoned Prehmm ry
reports and unpublished theses are not included except for a few cases. Items published by the
same author(s) in the same year are distinguished for reference by a letter after the year. For som
of the most often recurring journals and proceedings we use the followmj-abbreviations^
n Ann ACM STC = Proceedings of the Annual ACM Symposium on Theory of Computing

de Lille I
IC = Information and Control
n IEEE Symp. («^15) = «th Annual Symposium on Switching and Automata Theo y
n. IEEE Symp (n>15) = n‘h Annual Symposium on Foundations of Computer Science

J. ACM = J. Assoc. Comput. Mach.
J. CSS = J. Comput. System Sci.
LN in CS = Lecture Notes in Computer Science (Springer-Verlag)
MST = Mathematical Systems Theory
S-C-C = Systems-Computers-Controls

Adamek, J. and TrnkovA, V. (1981): Varietors and machines in a categry. - Algebra

Universalis 13 (1981), 89-132. ir/onom
Aho, A. V. and Ullman, J. D. (1971): Translations on a context-free grammar. — IC IV(^ii),

439-475. _ _
Alaoi6, S. (1975a): Categorical theory of tree processing. — Category Theory Applied to Com

putat’ion and Control (Proc. Symp., San Francisco, 1974), LN in CS 25 (1975), 65 72.
AlagkS, S. (1975b): Natural state transformations. — J. CSS 10 (1975), 266-307.
Arbib, M. A. and Give’on,Y.(1968): Algebra automata I: Parallel programming as a prolegom

ena to the categorical approach. — IC 12 (1968), 331-345.
Arbib, M. A. and Manes, E. G. (1974): Machines in a category: An expository introduction. —

SIAM Review 16 (1974), 163-192.
Arbib, M. A. and Manes, E. G. (1978): Tree transformations and the semantics of loop-Irec

programs. — Acta Cybernet. 4 (1978), 11-17.
Arbib, M. A. and Manes, E. G. (1979): Interwined recursion, tree transformations, and linear

systems. — IC 40 (1979), 144-180.

216

Arnold, A. (1977a): Rational sets of trees. — 2. Coll. Lille (1977), 20-28.
Arnold, A. (1977b): Systemes d’equations dans le magmoide. Ensembles rationnels et algebriques

d’arbres. — These de doctoral, University de Lille I (1977).
Arnold, A. (1980): Le theoreme de transversale rationnelle dans les langages d’arbres. — MST

13 (1980), 275-282.
Arnold, A. and Dauchet, M. (1976a): Theorie des magmoides. — 1. Coll. Lille (1976), 15-30.
Arnold, A. and Dauchet, M. (1976b): Bimorphismes de magmoides. — 1. Coll. Lille (1976),

31-43.
Arnold, A. and Dauchet, M. (1976c): Transductions de forets reconnaissables monadiques.

Forets coreguliyres — RAIRO Informat. Theor. 10 (1976), No. 3, 5-28.
Arnold, A. and Dauchet, M. (1976d): Une theoremededuplicationpour lesforetsalgebriques.—

J. CSS 13 (1976), 223-244.
Arnold, A. and Dauchet, M. (1976e): Bi-transductions de forets. — Automata, Languages

and Programming (Conf. Rec., Edinburgh, 1976), University Press, Edinburgh (1976), 74-86.
Arnold, A. and Dauchet, M. (1977): Un thyordme de Chomsky-Schutzenberger pour les fo

rets algebriques. — Calcolo 14 (1977), 161-184.
Arnold, A. and Dauchet, M. (1978a): Forets algebriques et homomorphismes inverses. —

IC 37(1978), 182-196.
Arnold, A. and Dauchet, M. (1978b): Sur 1’inversion des morphismes d’arbres. — Automata,

Languagesand Programming (Fifth Coll., Udine 1978). LN in CS 62 (1978), 26-35.
Arnold, A. and Dauchet, M. (1978c): Une relation d’equivalence decidable sur la classe des

forets reconnaissables. — MST 12 (1978), 103-128.
Arnold, A. and Dauchet, M. (1978d, 1979): Theorie des magmoides

(I) — RAIRO Inform. Thyor. 12 (1978), 235-257.
(II) — RAIRO Inform. Theor. 13 (1979), 135-154.

Arnold, A. and Dauchet, M. (1982): Morphismes et bimorphismes d’arbres. — Theor.
Comput. Sci. 20 (1982). 33-93.

Arnold, A. and Leguy, B. (1979a): Une propriety des forSts algebriques “de Greibach”. —
4. Coll. Lille (1979), 1-17.

Arnold, A. and Leguy, B. (1979b): Forets de Greibach et homomorphismes inverses. — Fun-,
dam. Comput. Theory ’79 (Proc. Conf., Berlin/Wcndisch-Rietz 1979), Akademie — Verlag
Berlin (1979), 31-37.

Asveld, P. R. J. and Engelfriet, J. (1979): Extended linear macro grammars, iteration grammars,
and register programs. — Acta Inform. 11 (1979), 259-285.

Baker, B. S. (1973): Tree transductions and families of tree languages. — 5. Ann. ACM STC
(1973), 200-206.

Baker, B. S. (1978a): Tree transducers and tree languages. — IC 37 (1978), 241-266.
Baker, B. S. (1978b): Generalized syntax directed translation, tree transducers, and linear

space. — SIAM J. Comput. 7 (1978), 876-891.
Baker, B. S. (1979): Composition of top-down and bottom-up tree transductions. — IC 41

(1979), 186-213.
Barrero, A. and Gonzalez, R. C. (1976): Minimization of deterministic tree grammars and

automata. — Proc. IEEE Conf. Decision and Control and the 15lh Symp. Adaptive Processes
(Clearwater, Fla., 1976), Inst. Electr. Electron. Engrs.. New York (1976), 404-407.

Barrero, A., Gonzalez, R. C. and Thomason, M. G. (1981): Equivalence and reduction
of expansive tree grammars. — IEEE Trans. Pattern Anal. A Mach. Intell. PAMI — 3
(1981), 204-206.

Benson, D. B. (1975): Semantic preserving translations. — MST 8 (1975), 105-126.

217

Berger, J. and Pair, C. (1978): Inference for regular bilanguages. — J. CSS 16 (1978), 100-

122Berstel, J. and Reutenauer, C. (1982): Recognizable power series on trees. - Theor. Comput.

BeSsc^E1 0973):'So™ considerations about classes of mappings between context-free deri

vation systems. — GI. 1. Fachtagung Automatentheorie Formale Sprachen (Bonn, 1973),

LN in CS 2 (1973), 278-283. .
Bilstein, J. and Damm, W. (1981): Top-down tree-transducers for infinite trees I.

CAAP’81 (Trees in algebra and programming, 6‘ Coll., Genoa, March 1981), LN in

Bloo^S9 L. and Elgot, C. C. (1976): The existence and construction of free iterative theories. -

BobrowS lT and Arbib/m. A. (1974): Discrete Mathematics, Applied Algebra for Computer

and Information Science. - W. S. Saunders Co., Philadelphia (1974).
Brainerd, W. S. (1968): The minimalization of tree automata. -IC13(1968),_484 .
Brainerd, W. S. (1969a): Tree generating regular systems. — IC 14 (1969), _
Brainerd, W. S. (1969b): Semi-Thue systems and representations of trees. - 10. IEEE Symp.

(1969) 240-244.
Brayer, J. M. and Fu, K.-S. (1977): A note on the Mail method of tree grammar inference. -

IEEE Trans. Systems Man Cybernetics SMC — 7 (1977), 293-300.
Buda, A. (1978a): The equivalence problem for sequential program machines. - 3. Coll. Lille

(1978), 19-26. 4 r - n_n
Ey.ua, A. O. (1978b): A6cTpaKTHbie MamnHbi nporpaMM. — Axan. HayK CCCP Cub. fl.,

Bmhhch. iieHTp, IIpenpHHT 108, Hoboch6hpck (1978).
Buda, A. (1978c): Languages of program machines (Russian). - C. R. Acad. Bulgare Sci. 31

(1978) 1543-1544.
Buda, A. (1979): Generalized1,6 sequential machines. — Inform. Process. Lett. 8 (1979), No. I,

38-40.
Buttelmann, H. W. (1971): On generalized finite automata and unrestricted generative gram

mars. — 3. Ann. ACM STC (1971), 63-77.
Buttelmann, H. W. (1975a): On the syntactic structures of unrestricted grammars I: Generative

grammars and phrase structure grammars. — IC 29 (1975), 29-80.
Buttelmann, H. W. (1975b): On syntactic structures of unrestricted grammars II: Automata.

IC 29 (1975), 81-101.
Casteran P (1978): Representation rationelle d’arbres infinis. — 3. Coll. Lille (1978), 27-39.
Catalano, A., Gnesi. S. and Montanar., U. (1978): Shortest path problems and tree grammars:

An algebraic framework. — Graph-grammars and their application to computer science and
biology (International workshop, Bad Honnef, 1978), LN in CS 73 (1978), 167 179.

Costich, O. L. (1972): A Medvedev characterization of sets recognized by generalized finite

automata. — MST 6 (1972), 263-267.
Courcelle, B. (1976): Arbres alg6briqucs et langages d6terministes. — 1. Coll. Lille (1976),

60-64.
Courcelle, B. (1978): Frontiers of infinite trees. — 3. Coll. Lille (1978), 76-102.
Crespi Reghizzi, S. and Della Vigna, P. (1973): Approximation of phrase markers by regular

sets. — Automata, Languages and Programming (Proc. Coll., Rocquencoutt, 1972), North-

Holland, Amsterdam (1973), 367-376.
Culik, K. II (1974): Structured OL-systems. — L Systems, LN in CS 15 (1974), 216-229.

218

Ey.ua

Culik, K. II and Maibaum, T. S. E. (1974): Parallel rewriting systems on terms. — Automata,
Languages and Programming (Proc. Symp., Saarbriicken, 1974), LN in CS 14 (1974), 495-
511.

Damm, W. (1977): Languages defined by higher program schemes. — Automata, Languages and
Programming (Proc. Coll., Turku, 1977), LN in CS 52 (1977), 164-179.

Damm, W. (1979): An algebraic extension of the Chomsky-hierarchy. — 4. Coll. Lille (1979),
66-78.

Damm, W. (1982): The IO- and Ol-hierarchies. — Theor. Comput. Sci. 20 (1982), 95-207.
Dauchet, M. (1977a): Grammaires transformationelles et bimorphismes de magmoides. — 2.

Coll. Lille (1977), 249-273.
Dauchet, M. (1977b): Transductions de forets, bimorphismes de magmoides. — These de doc

toral, Universite de Lille I (1977).
Dauchet, M. and Mongy, J. (1979a): Image de noyaux reconnaissables par diverses classes de

transformations. — 4. Coll. Lille (1979), 79-101.
Dauchet, M. and Mongy, J. (1979b): Transformations de noyaux reconnaissables capacite

generative des bimorphismes de forets. — Fundam. Computation Theory ’79 (Proc. Conf.
Berlin/Wendisch-Rietz 1979), Akademie — Verlag, Berlin (1979), 92-97.

Doner, J. E. (1965): Decidability of the weak second-order theory of two successors. — Notices
Amer. Math. Soc. 12 (1965), Abstract 65T-468, 819.

Doner, J. E. (1970): Tree acceptors and some of their applications. — J. CSS 4 (1970), 406-

451.
Dubinsky, A. (1975): Computation on arbitrary algebras. — Symp. on 2-calculus and Computer

Science Theory (Rome, 1975), LN in CS 37 (1975), 319-341.
Duske, J. (1970): Funktionenautomaten. — Automaten und Formale Sprachen (Tagung Math.

Forschungsinst., Oberwolfach, 1969), Bibliographisches Institut, Mannheim (1970), 23-26.
Eilenberg, S. and Wright, J. B. (1967): Automata in general algebras. — IC 11 (1967), 452-

470.
Elgot, C. C. (1975): Monadic computation and iterative algebraic theories. — Logic Colloquium

’73, Studies in Logic, Vol. 80 (Eds. M. E. Rose and J. C. Sheperdson), North-Holland, Amster

dam (1975), 175-230.
Elgot, C. C„ Bloom, S. L. and Tindell, R. (1978): On the algebraic structure of rooted trees. -

J. CSS 16 (1978), 362-399.
Ellis, C. A. (1971): Probabilistic tree automata. — IC 19 (1971), 401-416.
Engelfriet, J. (1972): A note on infinite trees. — Information Processing Lett. I (1972), 229-

232.
Engelfriet, J. (1975a): Tree automata and tree grammars. — Lecture notes, DA1MI FN-10,

Inst. Math., Aarhus Univ., Aarhus (1975).
Engelfriet, J. (1975b): Bottom-up and top-down tree transformations. A comparison. — MST

9 (1975), 198-231. . ,
Engelfriet, J. (1976a): Surface tree languages and parallel derivation trees. — Theor. Comput.

Sci. 2 (1976), 9—27. , _ „ ,
Engelfriet, J. (1976b): Some remarks on classes of macro languages. — I. Coll. Lille (1976),

71-79.
Engelfriet, J. (1976/77): Top-down tree transducers with regular look-ahead. MST 10

(1976/77), 289 303. , , J .
Engelfrift J (1977): Macro grammars, Lindenmayer systems and other copying devices.

Automata, Languages and Programming (Proc. Coll., Turku, 1977), LN in CS 52 (1977),

221 229.

219

Engelfriet, J. (1978a): A hierarchy of tree transducers. — 3. Coll. Lille (1978), 103-106.
Engelfriet, J. (1978b): On tree transducers for partial functions. — Inform. Process. Lett. 7

(1978), 170-172.
Engelfriet, J. (1980): Some open questions and recent results on tree transducers and tree

languages. — Formal language theory. Perspectives and open problems (ed. R. V. Book),
Academic Press, New York (1980), 241-286.

Engelfriet, J. (1982): Three hierarchies of transducers. — MST 15 (1982), 95-125.
Engelfriet, J., Rozenberg, G. and Slutzki, G. (1980): Tree transducers, L systems, and two-

way machines. — J. CSS 20 (1980), 150-202.
Engelfriet, J. and Schmidt, E. M. (1977, 1978): IO and OI.

I — J. CSS 15 (1977), 328-353.
II — J. CSS 16 (1978), 67-99.

Engelfriet, J. and Skyum, S. (1976): Copying theorems. — Information Processing Lett. 4
(1976), 157-161.

Engelfriet, J. and Skyum, S. (1982): The copying power of one-state tree transducers. — J.
CSS 25 (1982), 418-435.

Ssik, Z. (1978): On decidability of injectivity of tree transducers. — 3. Coll. Lille (1978), 107-133.
Esik, Z. (1979): On functional tree transducers. — Fundam. Computation Theory ’79 (Proc.

Conf., Berlin/Wendisch-Rietz 1979), Akademie — Verlag, Berlin (1979), 121-127.
Esik, Z. (1980): Decidability results concerning tree transducers I. — Acta Cybernet. 5 (1980).

1-20.
Esik, Z. (1981): An axiomatization of regular forests in the language of algebraic theories with

iteration. — Fundamentals of computation theory (Proc. Conf., Szeged 1981), LN in CS
777 (1981), 130-136.

Estenfeld, K. (1982): A new characterization theorem of treetransductions. — Elektron.
Informationsverarbeit. Kybernet. 18 (1982), 187-204.

Ferenci, F. (1976): A new representation of context-free languages by tree automata. — Found.
Control Engrg. 7 (1976), 217-222.

Ferenci, F. (1980): Groupoids of pseudoautomata. — Acta Cybernet. 4 (1980), 389-399.
Fischer, M. J. (1968): Grammars with macro-like productions. — 9. IEEE Symp. (1968), 131-

142.
Fu, K.-S. (1980): Picture syntax. — Pictorial Information Systems (Eds. S. K. Chang and K.-S.

Fu), LN in CS 80 (1980), 104-127.
Fu, K.-S. (1982): Syntactic pattern recognition and applications. — Prentice-Hall, Englewood

Cliffs, N. J. (1982).
Fu, K.-S. and Bharkava, B. K. (1973): Tree systems for syntactic pattern recognition. — IEEE

Trans. Computers C-22 (1973), 1087-1099.
Fu, K.-S. and Fan, T.-I. (1982): Tree translation and its application to a time-varying image

analysis problem. — IEEE Trans. Systems, Man and Cybernetics, SMC — 72 (1982),
856—867.

FOlop, Z. (1981): On attributed tree transducers. — Acta Cybernet. 5 (1981), 261—279.
Gecseg, F. (1977): Universal algebras and tree automata. — Fundamentals of Computation

Theory (Proc. Symp., Poznan—Kbrnik, 1977), LN in CS 56 (1977), 98-112.
GtcsEG, F. (1981): Tree transformations preserving recognizability. — Finite Algebra and

Multiple-valued Logic (Record Coll. Universal Algebra, Szeged 1980), North-Holland,
Amsterdam (1981), 251-273.

G£cseg, F. and Horvath, Gy. (1976): On representation of trees and context-free languages
by tree automata. — Found. Control Engrg. 7 (1976), 161-168.

220

G£cseg, F. and Steinby, M. (1978a): Minimal ascending tree automata. — Acta Cybernet.
4 (1978), 37-44.

Gecseg, F. and Steinby, M. (1978b, 1979): A faautomatak algebrai elmelete.
I — Mat. Lapok 26 (1978), 169-207.

II — Mat. Lapok 27 (1979), 283-336.
GScseg, F. and E.-T6th, P. (1977): Algebra and logic in theoretical computer science. — Mathe

matical Foundations of Computer Science, 1977 (Tatranska Lomnica), LN in CS 53 (1977),
78-92.

Georgeff, M. P. (1981): Interdependent translation schemes. — J. CSS 22 (1981), 198-219.
Ginali, S. (1979): Regular trees and the free iterative theory. — J. CSS 18 (1979), 228-242.
Ginsburg, G. and Mayer, O. (1982): Tree acceptors and grammar forms. — Computing

29 (1982), 1-9.
Give’on, Y. (1971): Algebraic theory of m-ary systems. — Theory of machines and computations

(Eds. Z. Kohavi and A. Paz), Academic Press, New York (1971), 275-286.
Give’on, Y. and Arbib, M. A. (1968): Algebra automata II: the categorical framework for

dynamic analysis. — IC 12 (1968), 346-370.
Gnesi, S., Montanari, U. and Martelli, A. (1981): Dynamic programming as graph search

ing: an algebraic approach. — J. ACM 28 (1981), 737-751.
Goguen, J. A. (1975): Semantics of computation. — Category Theory Applied to Computation

and Control (Proc. Symp., San Francisco, 1974), LN in CS 25 (1975), 151-163.
Goguen, J. A. and Thatcher, J. W. (1974): Initial algebra semantics. — 15. IEEE Symp. (1974),

63-77.
Goguen, J. A., Thatcher, J. W., Wagner, E. G. and Wright, J. B. (1977): Initial algebra

semantics and continuous algebras. — J. ACM 24 (1977), 68-95.
Gonzalez, R. C., Edwards, J. J. and Thomason, M. G. (1976): An algorithm for the inference

of tree grammars. — Intern. J. Comput. Information Sci. 5 (1976), 145-164.
Gonzalez, R. C. and Thomason, M. G. (1978): Syntactic pattern recognition. — Addison-

Wesley, New York (1978).
Hart, J. M. (1974): Acceptors for the derivation languages of phrase-structure grammars. —

IC 25 (1974), 75-92.
Hart, J. M. (1976): The derivation language of a phrase structure grammar. — J. CSS 12 (1976),

64-79.
Helton, F. J. (1976): The semigroup of an algebra automaton. — J. CSS 12 (1976), 13-24.
HOpner, M. (1971): Eine Charakterisierung der Szilardsprachen. — GI-4. Jahrestagung(Berlin,

1974), LN in CS 26 (1975), 113-121.
Horvath, Gy. (1979): On machine maps in categories. — Fundamentals of Computation

Theory’ ’79 (Proc, conf., Bcrlin/Wendisch-Rietz 1979), Akademie — Verlag, Berlin (1979),

182-186.
HorvAth, Gy. (1981): Functor state machines. — Acta Cybernet. 6 (1981), 147-172.
HOblf.r, A. (1975): Zur Dechiffrierung von Baum-Akzcptoren mittels Mehrfachexperimenten.

Elcktron. Informationsverarb. Kybernct. Il (1975), 590-593.
Hupbach, U. L. (1978): Rekursive Funktionen in mehrsortigen Pcano-Algebren. — Elektron.

Informationsverarb. Kybernct. 14 (1978), 491-506.
Inoue, K. and Nakamura, A. (1976): Some topological properties of ^-structure automata.

S-C-C 7 (1976), No. 5, 19-27.
Ito, T. and Ando, S. (1974): A complete axiom system of super-regular expressions. — Proc.

IF1P Congress 74 (Stockholm, 1974), 661-665.

221

Ito, H. and Fukumura, T. (1974): Dendrolanguage generating systems on sets of control
strings. — S-C-C 5 (1974), No. 4, 9-17.

Ito, H., Inagaki, Y. and Fukumura, T. (1973a): Characterization of derivation trees of context-
sensitive tree generating systems. — S-C-C 4 (1973), No. 2, 24-32.

Ito, H., Inagaki, Y. and Fukumura, T. (1973b): Scattered tree automata and scattered context-
sensitive tree-generating systems. — S-C-C 4 (1973), No. 4, 22-28.

Ito, H., Inagaki, Y. and Fukumura, T. (1973c): Hierarchy of the families of dendrolanguages. —
S-C-C 4 (1973), No. 5, 48-56.

Ito, H., Inagaki, Y. and Fukumura, T. (1974): Dendrolanguage generating systems on control
state sets. A hierarchy between context-free and context-sensitive dendrolanguages. — S-C-C
5 (1974), No. 5, 1-8.

Jacob, G. (1979): Elements de la theorie algebriques des arbres. — Fundamentals of Computa
tion Theory ’79 (Proc. Conf., Berlin/Wendisch-Rietz 1979), Akademie-Verlag, Berlin
(1979), 193-206.

Joshi, A. K. and Levy, L. S. (1977): Constraints on structural descriptions: Local transforma
tions. — SIAM J. Comput. 6 (1977), 272-284.

Joshi, A. K., Levy, L. S. and Takahashi, M. (1973): A tree generating system. — Automata,
Languages and Programming (Proc. Symp., Rocquencourt, 1972), North-Holland, Amster
dam (1973), 453-465.

Joshi, A. K„ Levy, L. S. and Takahashi, M. (1975): Tree adjunct grammars. — J. CSS 10
(1975), 136-163.

Joshi, A. K., Levy, L. S. and Yueh, K. (1980): Local constraints in programming languages.
Part I: Syntax. — Theoret. Comput. Sci. 12 (1980), 265-280.

Kamimura, T. and Slutzki, G. (1979): DAGs and Chomsky hierarchy (extended abstract). —
Automata, languages and programming, (6th Colloq., Graz 1979), LN in CS 71 (1979),
331-337.

Kamimura, T. and Slutzki, G. (1982): Transductions of dags and trees. — MST 15
(1982), 225-249.

Karpinski, M. (1973a, b, c, 1974a): Free structure tree automata.
I — Equivalence. — Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 21 (1973), 441-

446.
II — Nondeterministic and deterministic regularity. — ibid 21 (1973), 447-450.

Ill — Normalized climbing automata. — ibid. 21 (1973), 567-572.
IV — Sequential representation. — ibid. 22 (1974), 87-91.

Karpinski, M. (1974b): Probabilistic climbing and sinking languages. — Bull. Acad. Sci. Sir.
Sci. Math. Astron. Phys. 22 (1974), 1057-1061.

Karpinski, M. (1975): Stretching by probabilistic tree automata and Santos grammars. — Mathe
matical Foundations of Computer Science (Proc. Symp., Jadwisin 1974), LN in CS 28 (1975),
249-255.

Karpinski, M. (1977): The equivalence problems for binary EOL-systems are decidable. —
Foundamentals of Computation Theory (Proc. Symp., Poznan—Kornik, 1977), LN in CS 56
(1977), 423-434.

Kawahara, Y. (1980): Relational tree automata and context-free sets. — Bull. Kyushu Inst.
Technol., Math. Nat. Sci. 27 (1980), 17-25.

Kawahara, Y. and Yamaguchi, M. (1980): Minimal realization theory for free process ma
chines in monoidal categories. — Mem. Fac. Sci. Kyushu Univ. Ser. A. 34 (1980), No. 1,71-78.

Kojima, M. and Honda, N. (1972): Properties of context-sensitive tree automata and charac
terizations of derivation trees of context-sensitive grammars. — S-C-C 3 (1972), No. 5, 23-30.

222

Kojima, M. and Honda, N. (1973): A characterization of sets of trees acceptable by tree autom
ata. — S-C-C 4 (1973), No. 1, 40-47.

Kozen, D. (1977): Complexity of finitely presented algebras. — 9. Ann. ACM STC (Boulder,
Col. 1977), 164-177.

Lawvere, F. W. (1963): Functoral semantics of algebraic theories. — Proc. Nat. Acad. Sci.
USA 50 (1963), 869-872.

Lescanne, P. (1976): Equivalence entre la famille des ensembles reguliers et la famille des en
sembles algebriques. — RAIRO Inform. Theor. Ser. Rouge 10 (1976), No. 8, 57-81.

Lescanne, P. (1977): Quelques applications des classes equationelles conformes. — 2. Coll.
Lille (1977), 199-212.

Levine, B. (1981): Derivatives of tree sets with applications to grammatical inference. — IEEE
Trans. Pattern Anal. & Mach. Intell., PAMI-3 (1981), 285-293.

Levine, B. (1982): The use of tree derivatives and a sample support parameter for inferring
tree systems. — IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4 (1982), 25-34.

Levy, L. S. (1971): Tree adjunct, parenthesis, and distributed adjunct grammars. — Theory of
machines and computations (Eds. Z. Kohavi and A. Paz), Academic Press, New York (1971),
127-142.

Levy, L. S. (1973): Structural aspects of local adjunct grammars. — IC 23 (1973), 260-287.
Levy, L. S. (1980): Discrete structures of computer science. — John Wiley & Sons, New York

(1980).
Levy, L. S. and Joshi, A. K. (1973): Some results in tree automata. — MST 6 (1973), 334-342).
Levy, L. S. and Joshi, A. K. (1978): Skeletal structural descriptions. — IC 39 (1978), 192-211.
Lilin, E. (1978a): S-transducteurs de forets. — 3. Coll. Lille (1978), 189-206.
Lilin, E. (1978b): Une generalization des transducteurs d’etats finis d’arbres: les S-stransduc-

teurs. — These de doctoral, University de Lille I (1978).
Lilin, E. (1981): Transducteurs finis d’arbres et tests d’egalite. — RAIRO Inform. Theor. 15

(1981), 213-232.
Lippe, W.-M. (1982): Context-sensitive top-down creative dendrogrammars. — Bull. EATCS,

No. 9 (Oct. 1979), 41-45.
Lu, S. Y. (1979a): Stochastic tree grammar inference for texture synthesis and discrimination.—

Comput. Graphics and Image Process. 9 (1979), 234-245.
Lu, S. Y. (1979b): A tree-to-tree distance and its application to cluster analysis. — IEEE Trans.

Pattern. Anal. & Mach. Intel!., PAMI-1 (1979), 219-224.
Lu,S. Y. and Fu, K.-S. (1978): Error-correcting tree automatafor syntactic pattern recognition.—

IEEE Trans. Comput. C-27 (1978), 1040-1053.
Magidor, M. and Moran, G. (1969): Finite automata over finite trees. — Technical Report 30,

Hebrew University, Jerusalem (1969).
Magidor, M. and Moran, G. (1970): Probabilistic tree automata. — Israel J. Math. 8 (1970),

340-348.
Mahn, F. K. (1969): Piimitiv-rekursive Funktioncn auf Termmengen. — Arch. Math. Logik

Grundlagenforsch. 12 (1969), 54-65.
Maibaum, T. S. E. (1972): The characterization of the derivation trees of context-free sets of

terms as regular sets. — 13. IEEE Symp. (1972), 224-230.
Maibaum, T. S. E. (1974): A generalized approach to formal languages. — J. CSS 8 (1974),

409 439.
Maibaum, T. S. E. (1978): Pumping lemmas for term languages. — J. CSS 17 (1978), 319-330.
Marchand, P. (1976): Bigrainmes et systcmes transformationnels. — 1. Coll. Lille (1976),

175-195.

223

Marchand, P. (1979): Construction des algebres minimales des sous-ensembles des algebres
libres. Applications aux parties reconnaissables. —4. Coll. Lille (1979), 134-158.

Marchand, P. (1980): Grammaires paranthesees et bilangages reguliers. — RAIRO Inform.
Theor. 14 (1980), 3-38.

Marchand, P. (1981): Langages d’arbres. Langages dans les algebres libres. — Thesis, CRIN
81-T-O3O, Universite de Nancy, Nancy (1981).

Mar6ti, G. (1977): Rational representation of forests by tree automata. — Acta Cybernet.
3 (1977), 309-320.

Martin, D. E. and Vere, S. A. (1970): On syntax-directed transduction and tree transducers. —
2. Ann. ACM STC (1970), 129-135.

Mayer, O. (1975): On the analysis and synthesis problems for context-free expressions. — Mathe
matical Foundations of Computer Science (Proc. Symp., Marianske Lazn6 1975), LN in
CS 32 (1975), 308-314.

Meissner, H.-G. (1976): Uber die Fortsetzbarkeit von sequentiellen Baumoperatoren mit end-
lichem Gewicht. — Elektron. Informationsverarbeit. Kybernet. 11 (1976), 578-579.

Meissner, H.-G. (1977): Zur einige Begriffen und Resultaten aus der Theorie der Baumautoma-
ten. — Rostock. Math. Kolloq. 3 (1977), 85-102.

Merzenich, W. (1979): A binary operation on trees and an initial algebra characterization for
finite tree types. — Acta Inform. 11 (1979), 149-168.

Mezei, J. and Wright, J. B. (1967): Algebraic automata and context-free sets. — IC 11 (1967),
3-29.

Mojtm, JI. C. (1975a): AepeBHtie rpaMMaTHKH h him. — Kn6epHCTHKa (Khcb) (1975),
No. 5, 86-93.

Modina, L. S. (1975b): On some formal grammars generating dependency trees. — Mathemat
ical Foundations of Computer Science 1975 (Proc. Symp. Maritinske Lazn6), LN in CS 32
(1975), 326-329.

Mostowski, A. W. (1979): A note concerning the complexity of a decision problem for positive
formulas in SkS. — 4. Coll. Lille (1979), 173-180.

Mostowski. A. W. (1982): Determinancy of sinking automata on infinite trees and inequal
ities between Rabin’s pair indices. — Information Processing Lett. 15 (1982), 159-163.

Ng, P. and Yeh, R. T. (1973): Tree transformations via finite recursive transition machines. —
Mathematical Foundations of Computer Science (Proc. Symp., High Tatras 1973), 273-278.

Ng, P. A. and Yeh, R. T. (1976): Sequential tree-walking automata. — Nanta Math. IX (1976),
159-167.

Nivat, M. (1973): Langages algdbriques sur le magma libre et s6mantique des schemas de
programme. — Automata, Languages and Programming (Proc. Symp., Rocquencourt 1972),
North-Holland, Amsterdam (1973), 367-376.

Ogden, W. F. and Rounds, W. C. (1972): Compositions of n tree transducers.— 4. Ann. ACM
STC (1972), 198-206.

Opp, M. (1975a): Eine Beschreibung contextfreier Sprachen durch endliche Mcngensystcme. —
Automata Theory and Formal Languages (2nd GI Conf., Kaiserslautern 1975), LN in CS
33 (1975), 190-197.

Opp, M. (1975b): Allgemeinc T-Grammatiken. — GI-5. Jahrcstagung (Dortmund 1975), LN
in CS 34 (1975), 420-428.

Opp, M. (1976): Characterizations of recognizable subsets in generic algebras. — 1. Coll. Lille
(1976), 164-174.

Pair, C. (1976a): Inference for regular bilanguagcs. — Formal Languages and Programming
(Proc. Semin., Madrid 1975), North-Holland, Amsterdam (1976), 15-30.

224

Pair, C. (1976b): Les arbres en theorie des langages. — 1. Coll. Lille (1976), 196-216.
Pair, C. and Quere, A. (1968): Definition et etude des bilangages reguliers. — IC 13 (1968),

565-593.
Perrault, C. R. (1976a): Intercalation lemmas for tree transducer languages. — J. CSS 13

(1976), 246-277.
Perrault, C. R. (1976b): Augmented transition networks and their relation to tree transducers.—

Information Sei. 11 (1976), 93-120.
Petrov, S. V. (1978): Graph grammars and automata (survey). — Autom. Remote Control 39

(1978), 1034-1050.
Pettorossi, A. (1976): Combinators as tree transducers. — 2. Coll. Lille (1976), 213-223.
Pyster, A. (1978): Context-dependent tree automata. — IC 38 (1978), 81-102.
Pyster, A. and Buttelmann, H. W. (1978): Semantic-syntax-directed translation. — IC 36

(1978), 320-361.
Rabin, M. O. (1967): Mathematical theory of automata. — Mathematical Aspects of Computer

Science (Proc. Symp. Appl. Math. XIX), Amer. Math. Soc., Providence (1967), 153-175.
Rabin, M. O. (1969): Decidability of second-order theories and automata on infinite trees. —

Trans. Amer. Math. Soc. 141 (1969), 1-35.
Rabin, M. O. (1970): Weakly definable relations and special automata. — Mathematical Logic

and Foundations of Set Theory (Proc. Coll., Jerusalem 1968), North-Holland, Amsterdam
(1970), 1-23.

Raoult J.-C. (1981): Finiteness results on rewiitting systems. — RAIRO Inform. Theor.
15 (1981), 373-391.

Reisio, W. (1979): A note on the representation cf finite automata. — Inform. Process. Lett.
8 (19/9), 239-240.

Revesz, Gy. (1977): Algebraic properties of derivation words. —2. Coll. Lille (1977), 224-234.
Ricci, G. (1973): Cascades of tree-automata and computations in universal algebras. — MST

7(1973), 201-218.
Riha, A. (1981): A certain type of dependency tree transformations. — Mathematical logic

in computer science (Proc. Coll., Salgdtarjdn, Hungary, Sept. 10-15,1978), Elsevier North-
Holland Publ. Co., New York (1981), 699-709.

Rosen, B. K. (1973): Tree-manipulating systems and Church-Rosser theorems. — J. ACM 20
(1973), 160-187.

Rosen, B. K. (1974): Syntactic complexity. — IC 24 (1974), 305-335.
Rounds, W. C. (1969): Context-free grammars on trees. — 1. Ann. ACM STC (1969), 143 148.
Rounds, W. C. (1970a): Tree-oriented nroofs of some theorems on context-free and indexed

languages. — 2. Ann. ACM STC (1970), 109-116.
Rounds, W. C. (1970b): Mappings and grammars on trees. — MST 4 (1970), 257-287.
Rounds, W. C. (1973): Complexity of recognition in intermediate-level languages. — 14. IEEE

Symp. (1973), 145-158.
Schreiber, P. P. (1976): Tree transducers and syntax-connected transductions. — 1. Coll. Lille

(1976), 217-238.
SchOtt, D. (1970): Baumautomaten. — Bericht 36, Gesellschaft filr Math. u. Datenverarbei-

tung, Bonn (1971).
SchOtt, D. (1973): Zustandsfolgenabbildungcn von vcrallgcmeinertcn endlichen Automaten. —

1. Fachtagung iiber Automatentheorie und Formale Sprachen (Bonn 1973), LN in CS 2
(1973), 88-97.

Shepard, C. D. (1969): Languages in general algebras. — 1. Ann. ACM STC (1969), 155-163.

is oecug 225

Shi, Q.-Y. and Fu, K.-S. (1982): Efficient error-correcting parsing for (attributed and sto
chastic) tree grammars. — Information Sciences 26 (1982), 159-188.

Siefkes, D. (1978): An axiom system for the weak monadic second-order theory of two succes
sors. — Israel J. Math. 30 (1978), 264-284.

Scmmerhalder, R. (1974): Monoids associated with algebras and automata. — Unpublished
Report, Delft (1974).

Steinby, M. (1977a): On algebras as tree automata. — Contributions to Universal Algebra
(Record Coll. Universal Algebra, Szeged 1975), North-Holland, Amsterdam (1977), 441-455.

Steinby, M. (1977b): On the structure and realizations of tree automata. — 2. Coll. Lille (1977),
235-248.

Steinby, M. (1979): Syntactic algebras and varieties of recognizable sets. — 4. Coll Lille (1979),
226-240.

Steinby, M. (1981): Some algebraic aspects of recognizability and rationality. — Fundamentals
of computation theory (Proc. Conf., Szeged 1981), LN in CS 117 (1981), 360-372.

Steyart, J.-M. (1977a): Sur les index rationales des feuillages de forets lineaires. — C. R. Acad.
Sci. Paris, Ser. A, t. 285 (1977), 473-476.

Steyart, J.-M. (1977b): Evaluation des index rationnels de quelques families de langages. —
Technical Report No. 261, IRIA, Rocquencourt, France (1977).

Steyart, J.-M. (1978): Index rationnel des ETOL-langages. — 3. Coll. Lille (1978), 246-249.
Szilard, A. L. (1974): 12-OL systems. — L-systems, LN in CS 15 (1974), 258-291.
Tai, K.-Ch. (1979): The tree-to-tree correction problem. — J. ACM 26 (1979), 422-433.
Takahashi, M. (1973): Primitive transformations of regular sets and recognizable sets. — Autom

ata, Languages and Programming (Proc. Coll., Roquencourt 1972), North-Holland, Amster
dam (1973), 475-480.

Takahashi, M. (1975a): Generalizations of regular sets and their application to a study of
context-free languages. — IC 27 (1975), 1-36.

Takahashi, M. (1975b): A mathematical approach to the structure of language. On the funda
mental concept of a tree (Japanese). — Sugaku 27 (1975), 241-252.

Takahashi, M. (1977): Rational relations on binary trees. — Automata, Languages and Pro
gramming (Proc. Coll. Turku 1977), LN in CS 52 (1977), 524-538.

Thatcher, J. W. (1967): Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. — J. CSS 1 (1967), 317-322.

Thatcher, J. W. (1970): Generalized2 sequential machines. — J. CSS 4 (1970), 339-367.
Thatcher, J. W. (1973): Tree automata: an informal survey. — Currents in the Theory of Com

puting (ed. A. V. Aho), Prentice-Hall, Englewood Cliffs, N. J. (1973), 143-172.
Thatcher, J. W. and Wright, J. B. (1965): Generalized finite automata. — Notices Amer.

Math. Soc. 12 (1965), Abstract No. 65T- 649, 820.
Thatcher, J. W. and Wright, J. B. (1968): Generalized finite automata theory with an appli

cation to a decision problem of second order logic. — MST 2 (1968), 57-81.
Tiuryn, J. (1977a, b): Fixed-points and algebras with infinitely long expressions.

I — Mathematical Foundations of Computer Science 1977 (Proc. Symp., Tatranska Lom-
nica), LN in CS 53 (1977), 513-522.

II — Fundamentals of Computation Theory (Proc. Symp., Poznafi-Kdrnik 1977), LN in
CS 56 (1977), 332-339.

Tokura, N. and Kasami, T. (1974): Automata with labelled tree inputs. — S-C-C 5 (1974),
No. 3, 88-95.

226

Trnkova, V. and Adamek, J. (1979): Tree-group automata. — Fundamentals of Computation
Theory ’79 (Proc. Conf., Berlin/Wendisch-Rietz 1979), Akademie-Verlag (1979), 462-468.

Turner, R. (1973): An infinite hierarchy of term languages - an approach to mathematical
complexity. — Automata, Languages and Programming (Proc. Symp., Rocquencourt 1972),
North-Holland Amsterdam (1973), 593-608.

Turner, R. (1975): An algebraic theory of formal languages. — Mathematical Foundations of
Computer Science (Proc. Symp. Marianske LaznS 1975), LN in CS 32 (1975), 426-431.

Upton, R. A. (1981): An extension of tree adjunct grammars. — IC 51 (1981), 248-274.
Viragh, J. (1980): Deterministic ascending tree automata I. — Acta Cybernet. 5 (1980), 33-42.
Wagner, E. G. (1971): An algebraic theory of recursive definitions and recursive languages. —

3. Ann. ACM STC (1971), 12-23.
Wagner, E. G., Wright, J. B., Goguen, J. A. and Thatcher, J. W. (1976): Some fundamentals

of order-algebraic semantics. — Mathematical Foundations of Computer Science (Proc.
Symp. Gdansk 1976), LN in CS 45 (1976), 153-168.

Williams, K. L. (1975): A multidimensional approach to syntactic pattern recognition. — Pattern
Recognition 7 (1975), 125-137.

Wright, J. B., Thatcher, J. W., Wagner, E. G. and Goguen, J. A. (1976): Rational algebraic
theories and fixed-point solutions. — 17. IEEE Symp. (1976), 147-158.

Yeh, R. T. (1971): Some structural properties of generalized automata and algebras. — MST 5
(1971), 306-318.

Zachar, Z. (1979): The solvability of the equivalence problem for deterministicfrontier-to-root
tree transducers. — Acta Cybernet. 4 (1979), 167-177.

15* 227

’fW W Mi

INDEX

Algebra, 17
Boolean, 17
clone, 123
finite, 18
finitely generated, 18
finite ND, 63
free, 26
freely generated over a class, 26
ND, 63
NDR, 65
nondeterministic, 63
nondeterministic root-to-frontier, 65
of finite type, 18
power, 22
quotient, 20
subset, 22
substitution, 123
trivial, 18
universal, 16
2?X-term, 26

alphabet, 34
frontier, 55
ranked, 55
terminal, 43

arity of
operation, 15
operator, 17

associated JCX-recognizers, 66

bijection, 14
binoid, 122
bound

greatest lower, 30
least upper, 30
lower, 30

upper, 30
branch of tree, 57

chain, 30
Chomsky hierarchy, 43
class

congruence, 20
equivalence, 13
of tree transformations closed under compo
sition, 155
of tree transformations preserving regulari
ty, 174

closure
of forest, 113
x-substitution, 132

comparable elements, 30
compatible partition, 20
complete sublattice, 32
complete variety, 137
composition of

mappings, 14
operations, 16
relations, 13
tree transformations, 138

congruence
of DR ZX-recognizer, 116
of recognizer, 41
of 27-algebra, 20
of £A"-rccognizer, 88
right, 38
syntactic, 39

connected component of DR 2'%-recognizer,
117

connected part of recognizer, 42
converse of relation, 12

229

derivation in
F-transducer, 142
grammar, 43
GSDT, 170
gsm, 51
RR-transducer, 163
R-transducer, 143

DF-transducer, 150
direct derivation in

F-transducer, 139
GSDT, 170
RR-transducer, 163
R-transducer, 143

direct generation in grammar, 43
direct power of algebra, 22
direct product of

algebras, 22
posets, 32

domain
of relation, 12
of tree transformation, 138
operator, 17
tree, 121

DR-transducer, 151
simple, 213

element
unit, 31
zero, 31

embedding of
algebra, 19
27%-recognizer, 87

epimorphism
natural, 87
of DR ■S'A'-recognizer, 116
of algebra, 19
of recognizer, 41
of Ur-recognizer, 88

equivalence of
grammars, 43
gsm’s, 52
Mealy machines, 51
regular .^-grammars, 68
R- and F-transducers, 149
tree recognizers, 108

equivalence of states in
DR recognizer, 117

recognizer, 40
27X-recognizer, 89

extension of mapping, 14

family of languages, 34
final assignment of NDR .E'A'-recognizer, 65
final state of

F-transducer, 139
gsm, 51
NDF .EX-recognizer, 64
recognizer, 35
rX-recognizer, 60

fixed point, 33
least, 33

forest
closed, 114
derivation, 127
elementary, 102
equational, 99
generated by regular -TX-grammar, 68
jf-surface, 173
local, 107
(n,F)-surface, 198
(n,RR)-surface, 198
(n,Resurface, 198
production, 129
recognizable, 60
recognized by NDF -TA'-recognizer, 64
recognized by NDRZW-recognizer, 66
recognized by rZ-recognizer, 60
regular, 85
representable, 103
represented by regular expression, 83

fork of 2? A'-tree, 106
F-relabeling, 150
frontier of tree, 57
F-transducer, 139

connected, 174
deterministic, 150
linear, 151
nondeleting, 150
totally defined, 150

F-transformation, 141
function, 14

output, 50
unary algebraic, 28
polynomial, 24

230

generalized syntax directed homomorphism,
172

generalized syntax directed translator, 170
generating set, 18

free, 26
grammar, 43, 67

ambiguous, 4 7
attribute, 215
CF, 44
context-free, 44
context-free tree, 137
reduced CF, 47
right linear, 43
tree adjunct, 123
unambiguous, 47

Greibach k-from, 47
groupoid, 136
GSD homomorphism, 172
GSDH-translator, 172
GSDT, 170

deterministic, 172
finite copying, 187
k-copying, 187
linear, 172
nondeleting, 172
totally defined, 172

gsm, 51
deterministic, 51

height of
tree, 56, 98
production, 70

HF-transducer, 147
homomorphism

alphabetic tree, 82
length-preserving, 40
linear tree, 78
natural, 20
of algebra, 18
of DRXX-rccognizer, 115
of recognizer, 41
ofXX-rccognizcr, 87
tree, 78

HR-transducer, 147

ideal, 32
dual, 32

principal, 33
principal dual, 33

image, 14
epimorphic, 19, 87, 115
inverse, 14

index of equivalence relation, 14
induction

term, 24
tree, 55

inference of forests, 124
infimum, 30
infix notation, 16
initial assignment of

NDF XX-recognizer, 64
XX-recognizer, 60

initial state of
GSDT, 170
gsm, 51
Mealy machine, 50
NDR XX-recognizer, 65
recognizer, 35
R-transducer, 143

initial symbol of
grammar, 43
regular XX-grammar, 67

injection, 14
input alphabet of

gsm, 51
Mealy machine, 50
recognizer, 35

inverse of tree transformation, 139
inversion of direct derivations in

F-transducer, 141
R-transducer, 145

isomorphism of
algebras, 19
DRXX-recognizers, 115
recognizers, 41
XX-recognizers, 87

iteration, 36

join, 30

^-copying derivation in
CSDT, 187
R-transducer, 187

231

kernel of mapping, 14
K-transformation, 151

Mealy, 50
sequential program, 215

magmoid, 122
mapping, 14

language, 35
CF, 44
context free, 44
e-free, 34
F-transformational, 198
generated by grammar, 43
inherently ambiguous CF, 47
local, 40
(„,F)-transformational, 198
(n,RH)-transformational, 198
(n,R)-transformational, 198
of type, 7, 43
quotient, 36
recognizable, 35
recognized by recognizer, 35, 38
recognized by XX-recognizer, 129
regular, 36
right linear, 43
RR-transformational, 198
R-transformational, 198
tree, 59
unambiguous CF, 47
^-recognized, 136

lattice, 30
complete, 30

leaf of tree, 56
left-most derivation, 47
length of

derivation in GSDT, 172
derivation in F-transducer, 140
derivation in R-transducer, 143
tree, 56
word, 34

letter, 34
LF-transducer, 150
Lindenmayer system, 123
linear production of

F-transducer, 150
R-transducer, 150

LR-transducer, 150

bijective, 14
constant, 28
identity, 14
injective, 14
isotone, 33
natural, 14
onto, 14
Parikh, 50
partial, 14
substitution, 37
surjective, 14
undefined for an element, 14
co-continuous, 33

meet, 30
mirror image, 36
monoid

free, 35
m-ary, 123
syntactic, 40

monomorphism of
algebra, 19
XX-recognizer, 87

morphism, 19

Nerode congruence of
language, 39
forest, 94

next-state function of
Mealy machine, 50
recognizer, 35

N F-transducer, 150
nonteiminal symbol of

grammar, 43
regular XX grammar, 67

normal form of CF grammar
Chomsky, 47
Greibach, 47

normal form of regular tree grammar, 70
normalized NDRXX-recognizer, 113
N R-transducer, 151

machine
generalized sequential, 51

occurrence
bounded, 84

232

free, 84
of subtree, 57

operation
binary, 16
elementary, 103
finitary, 17
m-aiy, 16
zn-ary nondeterministic, 63
partial zzi-ary, 16
regular, 85
unary, 16

operational symbol, 17
operator, 17
ordering

partial, 30
total, 30

output alphabet of
gsm, 51
Mealy machine, 50

Parikh vector, 49
path in tree, 56, 175

poset, 29
dual, 29

powar of,
language, 36
relation, 12

probabilistic tree automaton, 123
problem

emptiness, 108
equivalence, 108
finiteness, 108
inclusion, 108
nonterminal minimization, 49
production minimization, 49

production of
F-transducer, 139
grammai, 43
GSDT, 170
gsm, 51
regular 27X-grammar, 67
RH-transducer, 163
R-transducer, 143

production-sequence, 187
product

forest, 73
of languages, 36

of mappings, 14
of relations, 12
of tree automata, 122
projection, 122
pseudovariety, 123

range of
relation, 12
tree transformation, 139

rank of
operation, 15
operator, 17

rational completeness, 123
rational, representation, 123
reachability of state in

DR ^X-recognizer, 117
rX-recognizer, 90

realization of
operator, 18
tree automaton, 122

recognizer, 35
connected, 41
minimal, 40
nondeterministic, 38
quotient, 41
Rabin-Scott, 35
reduced, 41

reduced form of rX-recognizer, 91
reflexive transitive closure, 13
regular expression, 36
regular fixed-point equation, 99
regular insertion, 182
regular operations, 85
regular tree grammar, 67
regular-EX-grammar, 67

extended, 71
regular TX-expression, 99
relation, 12

antisymmetric, 13
congruence, 20
diagonal, 13
equivalence, 13
invariant with respect to operation, 20
reflexive, 13
saturating a subset, 14
symmetric, 13
total, 13
transitive, 13

233

reordering of direct derivations in
F-transducer, 142
R-transducer, 145

restriction of
forest, 103
mapping, 14
operation, 16

rewriting rule of
F-transducer, 139
GSDT, 170
RR-transducer, 163
R-transducer, 143

root of tree, 56
root-to-frontier tree transducer, 142

with regular look-ahead, 163
R-relabeling, 151
RR-transducer, 163

deterministic, 163
linear, 163
mondeleting, 163

RR-transformation, 164
deterministic, 164
linear, 164
nondeleting, 164

R-transducer, 143
deterministic, 151
finite copying, 187
k-copying, 187
fc-metalinear, 214
linear, 150
nondeleting, 151
totally defined, 150

R-transformation, 143

set
free generating, 26
generating, 18
Parikh, 49
power, 12
quotient, 13

sp-machine, 215
state

copying, 175
deleting, 175
nondeleting, 175
of F-transducer, 139
of GSDT, 170

of gsm, 51
of Mealy machine, 50
of NDR rA'-recognizer, 65
of recognizer, 35
of-TT-recognizer, 60

state-sequence of
GSDT, 187
R-transducer, 187

structural equivalence of CF grammars, 137
subalgebra, 18

generated by a set, 18
subderivation in

F-transducer, 140
R-transducer, 143

subrecognizer, 41
subset

closed, 18
closed with respect to operation, 16
linear, 49
recognizable, 120
semilinear, 49

subset construction, 38
substitution, 123
subtree, 57
supertree, 203
supremum, 30
surjection, 14
syntactic pattern recognition, 124

term, 24
TF-transducer, 150
theories, 122
transformation induced by

F-transducer, 140
RR-transducer, 164
R-transducer, 143

translation, 50
elementary, 29
induced by GSDT, 178
induced by gsm, 51
induced by Mealy machine, 51
induced by tree transformation, 139

tree, 55
derivation, 44, 127
infinite, 123
parse, 215
production, 129

234

tree transducer
frontier-to-root, 139
macro, 215
root-to-frontier, 142

tree transformation, 139
preserving regularity, 174

TR-transducer, 150

variable, 23

word, 34
accepted by recognizer, 35
empty, 34
proper, 191
//-accepted, 136

x-iteration, 76
X-language, see language
x-path of XX-tree, 112
x-quotient, 77
X-recognizer, see recognizer
x-substitution, 132
X-tree, 55
X-word, see word

yield of
forest, 126
tree, 125

z-product, 74
O-state, 113

p-class, 13

X-algcbra, see algebra
^catenation, 57
<7-product, 78
X-term in X, 23
X-tree, 55
XX-forest, 82, see also forest
(X, X, A-)-polynomial, 97

regular, 98
XX-recognizer

connected, 90
connected DR, 117
deterministic root-to-frontier, 67
DR, 67
frontier-to-root, 59
minimal, 90
minimal DR, 118
NDF, 64
NDR, 65
nondeterministic frontier-to-root, 64
nondeterministic root-to-frontier, 65
quotient, 89
quotient DR, 116
reduced, 90
reduced DR, 117

XX-term, 23
XX-tree, 55

atomic, 120

<o-sequence, 15
co-variety, 123

We recommend

ACTA MATHEMATICA
ACADEMIAE SCIENTIARUM

HUNGARICAE

Edited by
K. Tandori

The journal covers a wide scope in the
field of mathematics. It comprises theory
of sets, mathematical logic, classical and
modern analysis, algebra, number theory,
geometry, topology, combinatorics, mathe
matical statistics, probability theory, as well
as information theory.

Papers in English, German French,
and Russian.

Published in two volumes per year, of
two issues each.

Distributors:
KULTURA

Hungarian Foreign Trading Company
H-1389 Budapest

P.O.B. 149

