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Preface 1

Preface

This volume contains focus reviews, órai contributions and poster papers pre- 
sented at the NATO Advanced Research Workshop “Turbulence, Waves, and 
Instabilities in the Solar Plasma”, held at Hotel Normafa, Budapest, 16 20 
September, 2002. The more exensive invited reviews presented at the same 
meeting are published by Kluwer in a companion volume, with the same title 
as that of the meeting.

The purpose of the workshop was to facilitate interchange and communi- 
cation between diverse groups studying different layers and regions of the Sun 
bút from the same aspect, concentrating on the study of small-scale motions. 
While the emphasis was on the common theoretical roots of these phenomena, 
observational aspects were nőt excluded either.

The selection of invited speakers concentrated on the researchers currently 
most active in the field, mostly on a post-doctoral/tenure/fresh faculty position 
level. A number of senior experts and PhD students were alsó invited. Scientists 
from NATO partner countries were especially encouraged to apply.

Altogether, 50 scientists from 11 different countries participated in the work
shop. The relative isolation of the venue, as well as the fact that the participants 
all lived at the same piacé, where the conference was alsó held, contributed to 
the success of the meeting, offering plenty of opportunities to meet and exchange 
ideas.

We are convinced that many of the papers in the present volume will prove 
to be a very useful reference fór somé rarely discussed chapters of solar physics.

The Editors
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Part One

Instabilities and Motions
in the Solar Interior and Tachocline





Gravity Waves in the Radiative Zone and 
Tachocline

K. B. MacGregor
High Altitude Observatory, National Center fór Atmospheric Research 

P. O. Box 3000, Boulder, CO 80307-3000, U. S. A.
E-mail: kmacOucar. edu

Abstract
We review the properties of internál gravity waves under physical condi
tions like those of the solar radiative interior, and consider a few of the 
ways in which such disturbances might influence the dynamical structure 
of the tachocline region.

1. Introduction

Disturbances in an incompressible fluid that is stably and continuously stratified 
under the influence of an external gravitational force take the form of internál 
waves. Waves of this kind have long been studied by geophysical fluid dynami- 
cists, who have invoked their properties to explain a diversity of flow phenomena 
in the Earth’s atmosphere and oceans. In recent years, an increasing amount of 
attention has alsó been given to the possible effects of internál gravity waves on 
the structure and dynamics of the interiors of the Sun and stars. It has been 
suggested, fór example, that the fluid motions associated with internál waves 
can contribute to compositional mixing in the innermost portion of the Sun’s 
radiative core (Press, 1981), as well as in the layers immediately below the con
vection zone (Garcia-Lopez & Spruit, 1991; Schatzman, 1996; Fritts, Vadas, & 
Andreassen, 1998). Mixing by gravity waves in this latter region might play a 
role in the overall process by which Li is depleted in the envelopes of the Sun 
and solar-type stars. Similarly, the interaction between propagating gravity 
waves and a shear flow has been investigated within the context of solar physics 
both as a mechanism fór forcing time-dependent fluid motions in the tachocline 
(Kim & MacGregor, 2001), and as a means of redistributing angular momentum 
throughout the radiative interior (Talon, Kumar, & Zahn, 2002).

Impetus fór examining the possible effects of gravity waves in the Sun is 
provided by the following fact, gleaned from careful observations of a variety of 
terrestrial Systems: internál waves are commonly detected in stable fluid layers 
that are located adjacent to an unstable, convective region. In the laboratory, 
experiments designed to study the properties of convection in water over ice show 
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fluctuations in the stable fluid layer that are identifiable as internál gravity waves 
(Townsend, 1964; Adrián, 1975). Evidently, these disturbances are excited when 
convective fluid motions deform the interface between the stable and unstable 
regions within the liquid volume. In the atmosphere, vertically propagating 
internál gravity waves are observed in the stable layers that overlie convective 
storm systems (see, e.g., Alexander, Holton, & Durran, 1995, and references 
therein). These waves are thought to result from the interaction of rising/sinking 
convective elements with the stable air above a cumulus cloud, in particular, 
from mechanical or thermal forcing of overlying stationary layers, or from the 
obstruction and deflection of a background horizontal wind flow (Fovell, Durran, 
& Holton, 1992).

The examples cited in the preceding paragraph suggest that gravity waves 
are likely to be present in the radiative regions that abut the Sun’s convection 
zone at its upper and lower boundaries. Convective flow time scales at both 
interfaces exceed the local period of buoyancy oscillations, so that the impact 
of these motions on neighboring stably stratified layers would seem to be a 
natural mechanism for producing internál waves. In subsequent sections of 
this paper, we adopt the foregoing picture of gravity wave generation inside 
the Sun as a working assumption, and examine how such disturbances might 
affect the radiative layers just beneath the base of the convection zone. In 
sections 2 and 3, we briefly review the properties of hydrodynamic (HD) gravity 
waves, and consider somé of the ways in which radiatively damped waves can 
modify the dynamics of the tachocline. In section 4, we describe the properties 
of magnetohydrodynamic (MHD) gravity waves, and conclude in section 5 by 
investigating the possibility of wave reflection and ducting by the magnetic and 
shear structure associated with the tachocline.

2. Properties and Propagation of HD Gravity Waves

The present paper is concerned with physical processes involving inward prop
agating waves that originate in the overshoot region at the bottom of the so
lar convective envelope. Of particular interest is the interaction between such 
waves and the flow and magnetic field that exist within the tachocline, the ro- 
tational shear layer that directly underlies the radiative-convective interface. 
Helioseismic inferences regarding the structure of the tachocline indicate that it 
is geometrically thin, having a radial extent at equatorial latitudes « 0.04 Rq 
(Charbonneau et al., 1999). In view of this, the following exposition of grav
ity wave properties is most easily carried out using a local Cartesian coordinate 
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system in which the directions of increasing x, y, and z correspond, respectively, 
to the directions in which the spherical polar coordinates 0, 0, r increase.

Consider a stationary (u — 0), unmagnetized (B = 0) fluid in which the local 
pressure p and mass density p satisfy the force balance equation dp/dz = —gp, 
where g = — g e2 is the (assumed) constant acceleration due to gravity. Wave- 
like disturbances to this hydrostatic equilibrium state can be investigated by 
examining the linearized mass, momentum, and energy conservation equations 
that govern the behavior of the infinitesimal perturbations 6p, 6p, and őu = 
6uy ey+öuz ez (see, e.g., the treatments given by Turner, 1973; Lighthill, 1978). 
The linearized equations can be further simplified by applying the Boussinesq 
approximation, under which the variation in density 6p is neglected in expres- 
sions involving the fluid inertia bút retained in the buoyant force (see Spiegel & 
Veronis, 1960, fór a more complete discussion). If the vertical velocity fluctua- 
tion (from which all other perturbation quantities can be derived) is assumed 
to have the form of a traveling wave, Suz = öúz(z') exp [i(ly — wt)] with l and w 
constants, then it can be shown that the amplitude 6üz satisfies

7/2* + m2^ ~ 0’ í1)
dzz

where
m2 = l2 [(N/w)2 - 1] , (2)

and
w2 = -{a/p) (3)

The quantity N is the so-called Brunt-Váisálá or buoyancy frequency; an 
adiabatic fluid element that undergoes a small vertical displacement from its 
equilibrium position in the stably stratified background will oscillate around that 
location with angular frequency uj = N. Fór the case in which N is independent 
of z and w < N, equations (1) and (2) indicate that 5űz ~ exp (imz), and 
small disturbances in the médium are propagating pláne waves with horizontal 
wavenumber l and vertical wavenumber m. It is alsó apparent from the above 
relations that lo = N is the maximum frequency of an internál wave since, when 
u > N, small disturbances decay exponentially.

Equation (2) can be rewritten in the form of a dispersion relation fór internál 
gravity waves,

u = N / l2 V/2
J =NCOS0 (4)
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where 0 is the angle between a pláne of constant phase and the vertical. Ac- 
cording to equation (4), specification of N (a property of the background strat- 
ification) and w (presumably deterinined by the wave excitation mechanism) 
determine the direction of propagation of the wave (fór experimental verifica- 
tion, see Mowbray & Rarity, 1967). Note that conservation of mass in the 
Boussinesq approximation requires the wavevector k = (0, l, m) to be perpen- 
dicular to the fluctuating velocity őu, so that the fluid motions associated with 
the wave take piacé within planes of constant phase. These motions are driven 
by the net force due to the pressure gradient —V öp ( || k ) and buoyancy —g öp 
( || e2 ). Fór waves with w « N, it follows from (4) that 0 « 0, and the phase 
surfaces are nearly horizontally propagating while the fluid motions are nearly 
vertical. Fór waves with uj « N, the dispersion relation indicates that 0 « tt/2, 
and the phase propagation is close to vertical while the fluid motions are ap- 
proximately horizontal. Note that the wave phase travels in the k-direction 
while the wave energy flux, given as an average of the quantity öp őu (see, e.g., 
Lighthill, 1978), must be parallel to <5u. Hence, on the basis of the preceding 
discussion, the phase velocity

vp = wk/A:2 = (N | 1 | l/k3) ey + (N\l\ m/k3} e2 (5)

and the group velocity

vg = du>/dk = (Nlm2/k3 11 |) ey - (N | l | m/k3) e2 (6) 

of hydrodynamic internál gravity waves in a stationary médium are perpendic- 
ular, vp • vs = 0.

3. Gravity Wave-Driven Flows in the Tachocline

The focus of the present section is one of several interesting physical effects that 
can occur when internál gravity waves propagate through a stratified médium in 
which there is a mean shear flow. In the presence of a fluid velocity u = u^z) ey. 
the wave dispersion relation becomes

m2 = l2 [N2/(lű - lu)2 - 1] (7)
through which modification the y-components of the phase and group velocities 
(cf. eqs. [5] and [6]) acquire an advective contribution. Fór waves with vertical 
wavelengths that are small in comparison to the length scales over which the 
properties of the background médium vary (i.e., waves fór which the WKB 
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approximation is valid), it can be shown ( e.g., Bretherton, 1966) that the 
Reynolds stress is

p (öuy öuz) = lvgzE/(w - lu) = IE, (8)

where ( ) denotes an average and E = | (5u2 + N28z2} is the wave energy 
density. The quantity IE given by equation (8) represents a vertical flux of 
horizontal momentum per unit area, and is constant as a function of z fór 
a fluid in which waves can propagate without dissipation. However, non-zero 
dissipation provides the means fór waves to internet with the mean flow, causing 
a transfer of momentum to the background médium through the agency of a 
force density — l (dE/dz\ ey.

The process by which gravity waves can force flows in a dissipative fluid 
has received much attention, particularly in atmospheric Science where it is be
lieved to play a role in producing the so-called quasi-biennial oscillation (QBO), 
the periodic reversal of the direction of the mean zonal winds in the equatorial 
stratosphere (see, e.g., Plumb, 1977). Here we consider the consequences of 
the wave-mean flow interaction fór the dynamics of the solar tachocline (Kim 
& MacGregor, 2001). Specifically, we situate the previously defined Cartesian 
coordinate system in such a way that the pláne z = 0 coincides with the base 
of the convection zone, and adopt as the computational domain a layer extend- 
ing to a depth -Ho/2, where (« 0.08 Rq) is the pressure scale height at 
the upper boundary. The physical properties of the background médium are 
specified as functions of depth within the domain according to the solar interior 
model of Bahcall and Pinsonneault (1995). The lower boundary is assumed 
to move with horizontal velocity uo = —104 ey cm s-1 relatíve to the sta- 
tionary upper boundary, consistent with helioseismic inferences regarding the 
rotational velocity difference across the tachocline at equatorial latitudes. Two 
internál gravity waves (heareafter designated ‘+’ and ‘—’) with opposite senses 
of horizontal propagation are continuously emitted from the upper boundary. 
These waves have identical amplitudes 6uzq and frequencies w, and wavevectors 
k± = ± 11 | ey + m±ez. The waves have w No « 2.5 x 10-3 s-1; their periods 
are long in comparison to typical radiative heating/cooling times, so that they 
are strongly damped.

Kim and MacGregor (2001) have studied the properties of the flows u(z, t) ey 
that are produced within the layer when the force arising from radiatively 
damped waves is counteracted by the force due to a large-scale, turbulent vis
cosity v. If the values of w, | Z |, and and 5uzo are held constant, they find 
that there exists a limiting value of v above which the wave and viscous forces
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Figure 1: The periodic gravity wave-driven flow obtained fór w/No = 2 X 10-3, | l |= Ho \ 
<5uqz = 59 cm s-1, and v = 3 x 109 cm2 s-1. (a) The flow velocity as a function of t at 
z — —0.1 Hq. (b) Profile of u within the layer at uot/Ho = 125 (solid line). The dotted line 
is the steady viscous flow solution without waves. (c) The accelerations produced by the + 
wave (solid line), the — wave (dashed line), and visocity (dotted line). (d) The momentum 
fluxes (cf. eq. [8]) associated with the + and — waves. (e) The radiative damping lengths of 
the + and — waves.

balance throughout the layer, resulting in shear flows that are time-stationary. 
Lowering v from the limiting value by a small amount leads to periodic flow 
Solutions, in which u(z, t) at a given point oscillates in time with a single fixed 
frequency. An example of this kind of solution, the dynamics of which has 
much in common with the terrestrial atmospheric QBO, is shown in Figure 1. 
We note that the characteristic length scales L± over which the waves are ra- 
diatively damped vary like L± ~ | Z | u)4, and that the forces produced by
the waves are given by ± | l | !F±lL± with !F± as defined in equation (8). As 
a result of these dependences, the magnitude of the force associated with the 
wave whose horizontal component of propagation is aligned with the local flow 
velocity exceeds that due to its oppositely directed counterpart. This behavior 
leads to flow profiles in which the mean flow direction reverses with increasing 
depth, thereby creating and accentuating regions of strong shear. The interplay 
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between this process and viscous diffusion within the shear layers that form is 
responsible fór the time dependence of the mean flow.

If the viscosity is continuously reduced to still lower values, the flow evolves 
through the following sequence of distinct time-dependent behaviors: (i) a sec- 
ond oscillation frequency appears that is incommensurate with the first, marking 
the onset of quasi-periodic fluid motions; (ii) the two frequencies both continue 
to decrease with decreasing viscosity until their ratio becomes equal to the ratio 
of two whole numbers, at which point phase locking occurs and periodic motion 
resumes; (iii) fór a sufficiently small value of the viscosity (e.g., v « 108 cm2 
s-1 fór the solution depicted in Figure 1), the motion becomes non-periodic, in- 
dicative of a transition to completely chaotic behavior. The variety of complex, 
time-dependent shear flows that can be produced by gravity wave interactions 
under solar interior conditions is of particular interest in light of recent reports 
of helioseismically detected periodic variability in the rotation rate of a layer 
located in the vicinity of the tachocline (Howe et al., 2000).

4. Properties and Propagation of MHD Gravity Waves

In the preceding section, we described the kinds of time-dependent flows that 
might take piacé in the tachocline region, produced by the interaction between 
downward propagating, hydrodynamic gravity waves and the mean rotational 
shear. In fact, several lines of evidence suggest that the tachocline contains 
a strong (« 105 G), toroidal magnetic field, and that this layer together with 
its environs is likely to be a principal site of hydromagnetic dynamo activity 
inside the Sun (see, e.g., the contribution by Petrovay to this conference). The 
presence of a background field leads to modifications in the properties of internál 
gravity waves, giving these disturbances an Alfvénic character indicative of the 
fact that the restoring force fór the wave motion arises from both buoyancy and 
magnetic tension.

Accordingly, we adopt the local Cartesian coordinate system used in the 
previous analysis, and briefly consider the behavior of internál waves in a strati- 
fied médium containing a horizontal (i.e., toroidal) magnetic field B = B(z) ey. 
The procedure outlined in section 1 can be straightforwardly extended to treat 
waves that alsó have a magnetic fluctuation óB = 5By ey + őBz ez in the MHD 
Boussinesq approximation (Barnes, MacGregor, & Charbonneau, 1998). Appli
cation of this approach to the case in which there is no mean flow (u = 0) yields 
the dispersion relation

m2 = I2 [A2/(w2 - l2u2A) - 1] (9)
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Figure 2: The region in the Zw-plane for which propagating MHD gravity waves are possible, 
as described in the text. When B = 0, hydrodynamic gravity waves are possible for w/N < 1, 
that is, the region below the dotted line in the figure.

and group velocity

v9 = (Iu2a/uj) ey + (/V2/fc4w) ^lm2ey — l2mez), (10)

where ua = B/y/Ánp is the Alfvén speed and the other symbols are as defined 
in sections 2 and 3.

From equation (9) it is evident that m is reál and that MHD internál wave 
propagation is possible only if l2u2A < w2 < N2 + l2u2A. For waves with horizon- 
tal components of propagation in the +e9-direction, the portion of the Zw-plane 
in which these inequalities are simultaneously satisfied is delineated by the two 
solid lines in Figure 2. Note that for MHD internál waves, k • óu = k • <5B = 0, 
so that both velocity and magnetic fluctuations are contained in planes perpen- 
dicular to k. Near the upper boundary, u « N for (Iua/N) 1, and the waves 
are like ordinary hydrodynamic gravity waves with horizontal phase propagation 
and vertical fluid motions. For (Iua/N) 1, w ~ Iua, the magnetic tension 
force dominates buoyancy, and the waves are like Alfvén waves that propagate 
along the horizontal magnetic field. On the lower boundary in Figure 2, k is in 
the vertical direction, implying that <5u and őB are perpendicular to g and along
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B, thereby eliminating buoyancy and magnetic tension as restoring forces for 
the wave motion. Outside the boundaries indicated in the figure, MHD gravity 
waves are evanescent. This is unlike the hydrodynamic (i.e., B = 0) case, in 
which propagating wave Solutions are possible for any combination of l and w 
below the dotted line in Figure 2.

5. Reflection and Ducting of MHD Gravity Waves

Because of the strong frequency dependence of the radiative damping length 
noted in section 3, higher frequency waves suffer less attenuation and may there- 
fore be capable of penetrating more deeply intő the solar core. However, in 
Crossing the tachocline region, these waves may encounter vertical structure in 
the background magnetic field or shear flow having a scale sufficient to cause 
the reflection of a significant fraction of the downward propagating flux. To see 
how this process might affect MHD gravity waves in the solar interior, consider 
a stationary (u = 0), stratified médium in which p varies continuously with z, 
bút in which the pláne z = 0 is a current sheet, so that B = ey for z > 0 and 
B = B2 ey for z < 0 where Ű12 are constants. A wave with l > 0 that travels 
downward from region 1 intő region 2 will experience a discontinuous change in 
the Alfvén speed, from to UA2, at z = 0.

lu^ /N

Figure 3: The reflection of MHD gravity waves from a discontinuous horizontul magnetic 
field. The left-hand panel shows the l and values for propagating waves in regions with 
Alfvén speeds uai (solid lines) and U42 = 5 U41 (dashed lines). The right-hand panel shows 
the reflection coefficient as a function of w for waves with (Zuai/M) = 10~2 (i.e., along the 
vertical dotted line in the left panel). The curves labelled a-e correspond to Alfvén speed 
ratios uaz/uai = 1-1, 2.0, 5.0, 10.0, and 25.0, respectively.

The situation outlined above can be readily analyzed by assuming that the
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solution consists of incident (t) and reflected (r) pláne waves in region 1 and a 
transmitted (t) pláne wave in region 2. Imposition of conditions ensuring conti- 
nuity of the vertical displacement and the totál (i.e., gas plus magnetic) pressure 
across the interface then yields the results Wj = wr = Wt, /» = Zr = Zt, together 
with expressions fór the vertical velocity amplitudes of the reflected and trans
mitted waves. If the reflection coefficient is defined as R =| Jű2r(0)/JűZi(0) |, 
it can be shown that (e.g., Acheson, 1976)

R = | 1 — 9 I
11+9 r

m2
9 =----  mi

w2 - l2u2A2\
(11)

with mi (m2) the vertical wavevector component in the upper (lower) region, 
given by equation (9) with ua = Uai (uaz)-

Figure 4: MHD gravity wave modes in a horizontal duct of vertical extent d fór a case with 
(l’Ml/M) = 7 x 10 3, = 5, and Id = 0.1. The solid curve is the totál pressure
perturbation at z ~ 0, and the dashed curve is the reflection coefficient (see Fig. 3).

The variation of R with w is shown fór (Iuai/Ni) = 10~2 and several differ
ent values of the ratio uaz/uai in the right-hand panel of Figure 3. The behavior 
seen there can be understood by examination of the left-hand side of the fig
ure, which depicts the portions of the Zoi-plane in which propagating waves are 
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possible in regions 1 (solid lines) and 2 (dashed lines) fór the particular case of 
uaz/uai = 5 (curve c in the right panel). Proceeding in the direction of higher 
frequencies along the vertical dotted line, MHD gravity waves cannot propagate 
in either region 1 or 2 fór u/Ny < 10~2 (i.e., below the lower solid line in the 
figure). Fór 10~2 < o>/Ni < 5 x 10~2 (i.e., between the solid and dashed lines), 
waves can propagate in region 1 bút are evanescent in region 2, implying that 
m? and q are imaginary so that R = 1. Fór waves that originate in region 1 with 
frequencies in this rangé, the change in Alfvén speed at the interface with region 
2 acts like a perfect reflector. Waves with 5 x 10~2 < w/Ni < 1 can propagate 
freely in both regions, so that the reflection at z = 0 is partial and R < 1. 
Fór the particular frequency üj/Ni = |{1 + (Zu^i/M)2 [1 + (uaz/uai)2 J}1/2, 
q = 1, so that R = 0 and the interface between regions 1 and 2 is perfectly 
transmitting.

We note that the slight super-adiabatic stratification of the solar convec
tive envelope implies that internál waves are evanescent and non-propagating 
therein. Hence, if a change in toroidal field strength of the kind described above 
occurs at depth z = — d below the convection zone base (z = 0), then MHD 
gravity waves with frequencies Iuai < < Iua2 can be horizontally ducted by
successive reflections at these two interfaces. An example of such a waveguide 
is given in Figure 4, which shows the sum of the gas and magnetic pressure 
perturbations at z = 0 fór ducted waves. Constructive interference between 
incident and reflected waves leads to significant enhancements in the amplitude 
of the totál pressure fluctuation at discrete frequencies. This behavior may 
have consequences fór compositional mixing and magnetic field generation in 
the tachocline region.

References

Acheson, D. J. 1976, J. Fluid Mech., 77, 433
Adrián, R. J. 1975, J. Fluid Mech., 69, 753
Alexander, M. J., Holton, J. R., & Durran, D. R. 1995, J. Átmos. Sci., 52, 2212
Bahcall, J., & Pinsonneault, M. 1995, Rév. Mód. Phys., 67, 781
Barnes, G., MacGregor, K. B., Charbonneau, P. 1998, ApJ, 498, L169
Bretherton, F. P. 1966, Quart. J. R. Met. Soc., 92, 466
Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R. M., Schou, J., 

Thompson, M. J., & Tomczyk, S. 1999, ApJ, 527, 445
Fovell, R., Durran, D., & Holton, J. R. 1992, J. Átmos. Sci., 49, 1427
Fritts, D. C., Vadas, S. L., & Andreassen, O. 1998, A&A, 333, 343



20 K. B. MacGregor

Garcia-Lopez, R. J., & Spruit, H. C. 1991, ApJ, 377, 268
Howe, R., Christensen-Dalsgaard, J. Hill, F., Komm, R. W., Larsen, R. M., Schou, J., 

Thompson, M. J., & Toomre, J. 2000, Science, 287, 2434
Kim, E. -J., & MacGregor, K. B. 2001, ApJ, 556, L117
Lighthill, J. 1978, Waves in Fluids, Cambridge Univ. Press
Mowbray, D. E., & Rarity, B. S. H. 1967, J. Fluid Mech., 28, 1
Plumb, R. A. 1977, J. Átmos. Sci., 34, 1847
Press, W. H. 1981, ApJ, 245, 286
Schatzman, E. 1996, J. Fluid Mech., 322, 355
Spiegel, E. A., & Veronis, G. 1960, ApJ, 131, 442
Talon, S., Kumar, P., & Zahn, J. -P. 2002, ApJ, 547, L175
Townsend, A. A. 1964, Quart. J. Roy. Met. Soc., 90, 248
Turner, J. S. 1973, Buoyancy Effects in Fuids, Cambridge Univ. Press



Insights on Turbulent Flows in the Solar 
Interior from the Behaviour of Dynamo

Generated Magnetic Fields

Dibyendu Nandy12 and Arnab Rai Choudhuri2
Department of Physics, Montana State University Bozeman, MT 59717, USA 
Department of Physics, Indián Institute of Science Bangalore 560012, India

E-mail: 1 nandiOmithra.physics.montana.edu, 2arnab@physics.iisc.ernet.in

Abstract

Turbulent flows in the interior of the Sun, both at small and large scales, 
are believed to feed and sustain the solar hydromagnetic dynamo that 
generates the solar cycle. The solar cycle itself strikingly manifests in a 
11-year periodic variation in the number of sunspots seen on the solar 
surface. Sunspots are regions of concentrated magnetic fields, occurring 
at low latitudes on the solar surface and are believed to be tracers of the 
underlying dynamo mechanism. An important ingredient in recent models 
of the dynamo mechanism is the meridional flow of matéria!, which is 
believed to originate from turbulent stresses in the solar convection zone. 
This meridional circulation is observed to be poleward in the outer 15% 
of the Sun and must be balanced by an equatorward counterflow in the 
interior. The natúré and exact location of this counterflow, however, is 
unknown. We discuss here results from a dynamo model that reproduces 
the correct latitudinal distribution of sunspots and show that this requires 
a meridional counterflow of matéria! that penetrates much deeper than 
hitherto believed - intő the radiative layers below the convection zone. 
We comment on the viability of such a deep counterflow of matéria! and 
discuss its implications fór turbulent convection and elemental abundance 
in the Sun and related stellar atmospheres.
Keywords: Sun, MHD, dynamo, turbulence, meridional circulation

1. Introduction

Understanding the exact natúré of the solar dynamo, which involves complex 
and non-linear interactions between the plasma motions and magnetic fields in 
the solar interior, remains an elusive problem. In what follows, we briefly outline 
somé of its main features, about which a consensus view has emerged in recent 
years.
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Under the assumption of axisymmetry, the magnetic field in spherical geom- 
etry (as appropriate fór the Sun) can be expressed as

B = + V x (Ae#). (1)

The first term on the right hand side of the above equation is known as the 
toroidal component and the second term as the poloidal component of the mag
netic field. The toroidal magnetic field is generated in the solar interior by the 
stretching of the poloidal component by the differential rotation (Parker, 1955). 
Helioseismology has now mapped the internál rotation of the Sun (Schou et 
al., 1998) and with the accompanying discovery of the tachocline - a region of 
substantial radial shear in the rotation, it is now fairly certain that the strong 
toroidal fields are produced in this tachocline region at the base of the solar 
convection zone (SCZ).

Due to its buoyancy, the strong toroidal flux tubes rise up radially from the 
base of the SCZ to the surface, forming sunspots. Simulations of this buoyant 
rise (Choudhuri and Gilman, 1987; D’Silva and Choudhuri, 1993) and flux stor- 
age (Moreno-Insertis, Schüssler and Ferriz-Mas, 1992), have established that the 
strong “sunspot-forming” toroidal field at the base of the SCZ must be of the 
order of 105 Gauss (G). The strength of the equipartition magnetic field (as- 
suming equipartition between the magnetic and turbulent energies) in the SCZ 
is only of the order of 104 G. The classical a-effect, which involves the twisting 
of the rising toroidal field by helical turbulence to regenerate the poloidal field 
(Parker, 1955), cannot work on such strong super-equipartition field. Therefore, 
alternative mechanisms fór the regeneration of the poloidal field are necessary. 
One of these alternative scenarios which has received considerable attention in 
the recent pást is the Babcock and Leighton (hereafter BL) mechanism fór the 
o-effect - which recognizes that the decay of tilted bipolar sunspot pairs on the 
solar surface can regenerate the poloidal field (Babcock, 1961; Leighton, 1969).

»
We may point out here that somé questions have been raised recently re- 

garding (solar-like) parity violation by BL models (Dikpati and Gilman, 2001). 
There are alsó alternate attempts to build overshoot layer and interface dynamo 
models. Detailed discussion on these issues are beyond the scope of this short 
paper and from now on we concentrate on our specific BL type model fór the 
solar dynamo.
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2. The Babcock-Leighton Dynamo

We have constructed a solar dynamo model (with helioseismically determined 
rotation pattern) based on the BL idea by invoking an o-effect that is concen- 
trated in a thin layer near the solar surface (Choudhuri, Schüssler and Dikpati, 
1995; Nandy and Choudhuri, 2001). Motivated by results from simulations of 
flux storage and the buoyant rise of toroidal flux tubes we have implemented 
a buoyancy algorithm where toroidal fields exceeding 105 G are made to erupt 
(from the base of the SCZ) to the surface layers. The a-effect acts on this 
erupted toroidal field to produce the poloidal field. The poloidal field thus pro- 
duced in the surface layers is first transported polewards by a combined action 
of the poleward meridional flow and diffusivity and then downwards to the high 
latitude tachocline by the meridional down-flow near the poles.

A poleward meridional flow pervading the outer half of the SCZ is observed 
(Braun and Fan, 1998). From mass conservation, it follows that there must be 
an equatorward counterflow somewhere in the solar interior. The exact location 
of this counterflow has, however, eluded helioseismic detection till date. Using 
a flow profile that is confined mainly to SCZ and the tachocline (as depicted 
in Fig. 1, top-left) and our model fór the BL dynamo, we generate a Butterfly 
diagram fór the toroidal field at the base of the SCZ (Fig. 1, bottom-left). 
It is clear from the Butterfly diagram that strong toroidal fields form at high 
latitudes. The shaded regions, denoting the latitudes at which buoyant eruptions 
occur with the progress of the cycle, show that these simulated sunspot eruptions 
are confined to high latitudes, contrary to observations.

In such BL dynamo models the poloidal field is generated only in a thin layer 
near the solar surface. The only way this poloidal field can be brought down 
to the tachocline fór the re-generation of the toroidal field is by the meridional 
down-flow near the poles. Thus the sinking poloidal field hits the high lati
tude tachocline first. Helioseismic inversions show that the radial shear in the 
tachocline, which is negative at high latitudes and positive at low latitudes, is 
stronger at high latitudes. This results in the production of very strong toroidal 
fields at high latitudes, which subsequently diffuse out to the SCZ giving rise to 
sunspot eruptions there. It may be noted that this difficulty has been faced by 
many modelers working with BL type dynamo models (Durney, 1997; Dikpati 
and Charbonneau, 1999, Kuker, Rüediger and Schultz, 2001).

It was proposed recently by Nandy and Choudhuri (2002) that a deep merid
ional flow penetrating below the tachocline can solve the above problem. In this 
scenario, the toroidal fields created at high latitudes are dragged down immedi- 
ately by the penetrating flow (profile shown in Fig. 1, top-right) intő the stable
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Figure 1: Top left shows a meridional circulation profile that is confined mainly to the SCZ 
and tachocline (shaded grey region). The arrows mark the direction of the flow. Bottom left 
shows the corresponding Butterfly diagram with solid lines denoting positive and dashed line 
negative toroidal field. Shaded regions mark the latitude of eruptions. Top right shows the 
profile of the penetrating meridional flow and bottom right shows the corresponding Butterfly 
diagram.

layers beneath the tachocline. A toroidal magnetic field becomes buoyant if 
it is above the base of the SCZ, bút its buoyancy can be suppressed if it is 
pút in the sub-adiabatically stratified upper radiative layer just beneath the 
tachocline. This beit of toroidal field cannot then diffuse out intő the SCZ and 
can be subsequently brought towards low latitudes through this stable layer 
by the equatorward meridional counterflow. At low latitudes, the up-flow in 
the meridional circulation will bring up this toroidal field beit to the unstable 
SCZ, from where it can buoyantly erupt to form sunspots. Such a flow profile 
successfully reproduces the latitudinal distribution of sunspots as shown in the 
Butterfly diagram in Fig. 1, bottom-right.
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3. Conclusion: Implications of a Deep Counterflow

According to conventional wisdom, the toroidal field that produces sunspots at 
low latitudes is generated at the low latitude itself. With the strong rotational 
shear in the high latitude tachocline, that no longer seems plausible. Our results 
show that the strong toroidal field is actually generated above 45° latitude, bút 
it is allowed to come out intő the SCZ and erupt, only at low latitudes. Such 
a penetrating flow advects the toroidal field through the low diffusivity region 
beneath the SCZ fór a long time, thus generating very strong super-equipartition 
magnetic fields in excess of 105 G.

Our understanding of the complex plasma motions in the solar interior is still 
far from complete and it is nőt immediately obvious what physical mechanism 
can drive such a deeply penetrating meridional flow. However, recent simula- 
tions of solar convection shows that downward directed convective plumes (that 
presumably make up the meridional circulation) originating in the SCZ tends to 
penetrate intő the stable region below and have a net equatorward motion inside 
the stable region (Miesch et ah, 2000). These downward plumes are capable of 
pushing the magnetic field intő the stable interior (Tóbiás et ah, 2001).

Such a deep flow if it exists, would transport Lithium to depths (at higher 
temperatures) where this element would be destroyed by nuclear burning. It 
turns out that Lithium is destroyed at depths of about ~ 0.6757?© while Beryl- 
lium gets destroyed at depths ~ 0.575/?© (Brun, Turck-Chiéze and Zahn, 1999). 
Our results with a deep flow show that the best Solutions are obtained with a 
penetration depth of 0.67?© fór the meridional flow. Lithium is actually found to 
be depleted in the solar surface with respect to its primordial abundance, while 
Beryllium remains un-depleted. Thus, such a penetrating flow may alsó help in 
explaining the Lithium depletion and its connection to angular momentum loss 
observed in stars at various phases of stellar evolution (Jones et ah, 1997).

Inquiry intő the dynamics of the tachocline and in what ways the rotational 
shear there interacts with magnetic fields have only just begun (Forgács-Dajka 
and Petrovay, 2002). Such studies, in conjunction with more sophisticated dy- 
namo simulations, hold the promise of unveiling the exact means by which the 
Sun generates its magnetic cycle.
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Abstract
The exact analytical solution of the extended Rayleigh (ER) equation fór 
the case of the periodical compressible shear flow is found. The dispersion 
relation of the problem is the infinite Hill determinant. It is found that 
sound waves in a shear flow have a dispersion and its velocity field contains 
a solenoidal part. Besides sound waves, new wave modes such as phonon, 
waveguide and vortex wave modes are revealed. The vortex mode is a 
singular solenoidal mode. Such modes are negative energy waves fór which 
a dissipative instability is possible. The absolute phonon-vortex instability 
appears fór Mach number Ma > 0.4.

1. Introduction

The theory of spatially periodic incompressible flows is a topic of active research 
interest from the time of Kolmogorov, who proposed it as a simple model to 
study turbulence (see, Meshalkin & Sinai (1961)). Fór this reason the incom
pressible periodic flows is used to name Kolmogorov flows. The stability of one- 
and two-dimensional Kolmogorov flows were explored in very details by theo- 
retical and experimental approach (Beaumont (1981); Bondarenko et al. (1979); 
Obuchov (1983); Takaoka (1989); Thess (1992); Brevdo et al. (1996)). To our 
knowledge compressible periodic shear flows have never been explored. This is 
nőt particularly surprising since the treatment of compressible flows is more se- 
vere problem due to interplay of different wave modes. One of basic methods of 
the exploration of periodic shear flows is based on Flouque theorem, which was 
used fór the first time by Beaumont (1981). Besides considerable progress to- 
ward the understandings of the physics of shear flows has been achieved with the 
introduction of the concept of negative energy waves and the exploration of the 
plasma analogy Craik (1985); Ostrovskii et al. (1986); Fabricant & Stepanyants 
(1998).

The treatment of compressible shear flows has been performed fór the first 
time in Zhugzhda & Stix (1994); Zhugzhda (1998); Zhugzhda. Flouque theorem 

zhu0izmiraii.rssi.ru
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makes possible to obtain an exact analytical solution fór the case of parallel 
periodical shear flow. First, the method (Flouque theorem) will be outlined. 
Second, wave modes and instabilities of periodical shear flow will be described.

2. Basic equations

Let us consider an equilibrium atmosphere with vertical hot upflows and cold 
downflows. The equilibrium pressure po is constant in the entire atmosphere, 
while the^ equilibrium values of the temperature To, density p0 and vertical 
velocity V = (0,0, V) are arbitrary functions of x. All equilibrium variables 
are independent of the vertical coordinate z. The problem of linear waves in 
a structured atmosphere is reduced to the extended Rayleigh (ER) equation, 
which reads 

S+dxz
dln(co) 2 dV' dp 

dx Vph — Vdx dx +
'k2z(Vph-VY _ k2 - k2Ky Kz (1)P — o,

where p is the amplitude of pressure fluctuations, co is the sound speed, Vph = 
w/kz is the phase velocity. In the limit of a uniform atmosphere, when V(íc) = 
const and co(x) = const, the equation is reduced to the standard dispersion re- 
lation fór sound waves w2 = (k2 + fc2 )cg, where kx is the “horizontal” wavenum- 
ber. In the generál case of a structured atmosphere it is assumed that the wave 
amplitude is bounded at infinity x —+ oo. This condition corresponds to the 
requirement k2 > 0 fór the case of a uniform atmosphere.

The consideration is restricted to the specific case of a periodical shear flow, 
when temperature, density and vertical velocity are periodic functions of x, with 
spatial period 2d:

T0(x+ 2d) =T0(x), p0(x + 2d) = p0(x), V(x + 2d) — V(x). (2)

In this special case, the ER equation (1) belongs to the eláss of equations with 
periodic coefficients. The treatment of such equations has been developed es- 
pecially fór the Mathieu and Hill equations, which often appear in physical 
problems Ince (1944). However, Eq.(l) is an extension of the Mathieu and Hill 
equations, and a more complicated algebra is needed to solve it.

Let us introduce the dimensionless variables

€ = kix,T) = kiyX = kiz,ki =—ky = -*-,kz = -^,w = —, V = —, 
2a ki kt kic c

Vph ~n Cn ~ P ~ vx ~ vz
ph- ’ C°~ c2’ P~^’ Vx~T’ Vz~T’ C = 
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where (cq) is the mean of the sound speed over the space period 2d. The reason 
fór the unusual definition of the lattice wavenumber ki is that in this way the 
Solutions of Eq.(l) is reduced to that form, which is used in the theory fór the 
Mathieu and Hill equations Ince (1944).

To obtain an analytical solution of (1) the consideration is restricted to the 
case, when the ar-dependence of the temperature and the flow velocity of the 
periodical shear flow are given by

^ = l+ácos2C, V = Vm + Ma cos2^ Vm = Ma - \/l ~ ö2) (4)

where Ma is the Mach number. The velocity of the mean flow Vm is defined by 
the condition of a zero mean mass flux < p0V >= 0. In this case the equation 
(1) reads

A1^+A2^ + A3P = 0,

where

Ai = ai + a2 cos 2£ + a3 cos 4£, A2 = bi sin 2£ + b2 sin 4£,
A3 = ci + C2 cos 2£ + C3 cos 4£ + C4 cos 6£, ai = Vd - O.bőMa,
a2 = öVd — Ma, a3 = — O.böMa, bi = —2(JVb + 2Ma),
b2 =-ÖMa,ci = VD(.V^ + 1.5Ma2)k2z-ai(kl + k2z), (6)

c2 =-3Ma(V%+ 0/25Ma2)k2z - a2(k% + k2z),
c3 = 1.5VDk2zMa2 - a^ky + k2),^ = -0.25Ma3kj, VD = Vph - Vm.

The mean velocity Vm causes a Doppler shift of the frequency ojd = a> - kzVm 
in the laboratory frame. Here and in the following the tilde is omitted.

The generál case of the oblique wave propagation with respect to the flow 
direction is considered. It is known from the theory of the differential equations 
with periodical coefficients (Ince 1944), that there are two kinds of bounded 
Solutions of Eq.(5) with either period 7r (n = 0) or 2tt (n = 1):

00

P = eik^ 22 C2m+nei(2m+n\ n = 0,1. (7)
—00

The coefficients C2m+n are not arbitrary constants. The solution satisfies the 
equation (5) only fór a special choice of the constants Cím+n- After substitu- 
tion of the solution (7) in the equation (5) and collecting the terms with the 
same powers of expz£, the equation is replaced by an expansion in terms of 
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expi£. Because the solution (7) has to satisfy the equation for all values of 
the coefficients of the equation expansion in powers of expi£ shall be equal to 
zero. This condition provides an infinite set of coupled linear algebraié equa- 
tions in the coefficients C2m+n of the solution (7). The set of linear algebraié 
equations has a non-trivial solution, when its determinant equals to zero. This 
determinant is known in the theory of the differential equations with periodical 
coefficients as Hill determinant, it is infinite. In the case under consideration 
the Hill determinant is a dispersion equation for hydrodynamic linear waves in 
a periodical shear flow. For the solution (7) with n = 0 the dispersion equation 
reads

... q_4 lt2 r0 s 0 ...
• • • C4 q-2 Iq r2 s ■■■

D(w) = ... r-4 r2 qo l2 r4 ... = 0, (8)
s r_2 q2 ...
0 s l2 q4 ...

where

kx.m =m + k^,qm = + ci, = 0.5(-k2rrna2 T + Qa),
rm = 0.5(-fc^ ma3 + k^mb2 + c3), s = 0.5c4, (9)

m — 0,2,4... for n = 0, m = 1,3,5... for n = 1,

and an,bn,cn are defined by Eq.(6). In fact the dispersion relation for n = 1 
is reduced to (8) by the transformations k± —> k± ± 1, which follows from the 
generál solution (7). Thus, it is sufficient to explore one of them. The dispersion 
equations defined by Hill determinants are a polynomials of infinite degree in 
the variables lü, kz, k±. The infinite degree appears due to the infinite number 
of wave modes in the structured atmosphere. The Hill determinant has to be 
truncated to consider a finite number of the wave modes.

<

3. Wave modes

The results of the numerical solution of the truncated Hill determinant (8) 
are presented in Fig-1 as the (fc,u>)-diagrams, where the totál wavenumber is 
k _ +fc2_|_^.2^o.5 The diagrams are plotted for the Doppler shifted frequency 
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ujd. The Doppler shift is small fór small values of 6 and Ma due to the small 
mean velocity Vm (6).

The acoustic mode is shown by solid line on (fc, w)-diagrams in Fig.l. The 
main distinctions between the sound mode in the periodical shear flow and the 
conventional one in the uniform média are the occurrences of wave dispersion 
and frequency gaps, where the propagation of waves is inhibited. The dispersion 
manifests itself as a distinction between the sound curve in the (fc, w)-diagrams of 
Fig.l and the straight line. By this is meant that the phase speed of sound waves 
differs from the mean sound speed (3) as a result of dispersion. The deviation 
of the phase velocity from the sound speed increases with k±. The dispersion 
appears due to the effects of both velocity and temperature variations in the 
shear flow. In the case of a transversal propagation of sound waves (kz = 0),

Figure 1: The (k, w)-diagrams fór (a) horizontal (kz,ky = 0) and (b) oblique kz = fcx, ky = 0 
propagation of the sound (thick solid), phonon (dotted), waveguide (dashed), and vortex (thin 
solid) modes in a periodical shear flow fór 5 = 0.6, Ma = 0.6 and, the a dimension of the 
determinant (8) of T = 40.

the (k, w)-diagram shown in Fig.la looks like the conventional Brillouin zone 
diagram well-known in solid state physics. To be more specific, the curve fór the 
sound waves is nőt continuous due to avoided Crossing with another wave mode, 
which in the case of crystal lattice is known as phonon mode. It comes as no 
surprise that the Brillouin diagram appears in the problem, since the shear flow 
is periodical one. The similarity of (fc,w)-diagram of Fig.la to the conventional 
Brillouin zone diagrams appears due to the occurrence of an alternative acoustic- 
type modes of negative group velocity < 0 and of a finite frequency fór k = 0. 
To follow the crystal lattice analogy, this mode is called ” phonon” wave mode. 
The avoided Crossing of the sound and the ” phonon” modes creates frequency 
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gap, where the waves are evanescent. The frequency gap is akin to ”forbidden 
energy gaps” in a crystal lattice. In the special case of a transversal propagation, 
the frequency gap appears as the result of only temperature variations. Bút the 
hydrodynamical ”phonons” have nothing to do with the heat transfer. They 
can only transfer acoustic energy.

Evén in the case of a transversal propagation the (fc,w)-diagram of Fig.la 
differs from the conventional Brillouin zone, since there is one more acoustic- 
type mode, which is absent in one-dimensional lattice. The first of these modes 
starts at the same frequency w = 2, as the phonon mode, and almost parallel 
to the sound mode in the case of a transversal propagation kz = 0. The natúré 
of this acoustic mode becomes clear in the case of quasi-longitudinal propa
gation, when one-dimensional structured atmosphere can be considered as a 
multilayered waveguide fór acoustic waves. The multilayered waveguides have 
been studied in great detail in photonics and electronics Yeh (1977). Thus the 
third mode of acoustic type in the periodical shear flow is an ordinary waveguide 
mode with low frequency cut-off.

Sound, phonon and waveguide modes appear only in a compressible atmo
sphere, since the gas pressure acts as a restoring force fór all of these modes. 
There is a crucial peculiarity of all acoustic-type modes in the periodical shear 
flow. They are accompanied by vortical oscillations, while the conventional 
sound waves in an uniform atmosphere are pure potential.

The most intriguing mode in the periodical shear flow is a vortex wave mode, 
which is located at the bottom of (k, u?)-diagrams of Fig.lb. It is absent fór the 
case of a transversal propagation of waves, which is shown in Fig.la. In this case 
the waves are nőt affected by flows because the projection of the component of 
flow velocity along the wave propagation equals to zero vz = 0. In the case of 
vortex modes the ER equation (1) has an infinite number of singular points due 
to the factor Vph — V in front of the second derivative.

4. Instability of shear flow

The instability of the periodical shear flow is defined completely by the negative 
energy waves. The concept of negative energy waves was first proposed fór the 
waves in electron beams and since then it has been broadly used in plasma 
physics and electronics. Later the negative energy waves were introduced in 
hydrodynamics in connection with waves in shear flows (detailed discussion of 
the subject can be found in Craik (1985); Ostrovskii et al. (1986); Fabricant 
& Stepanyants (1998). The negative energy waves play a significant role in
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Figure 2: The occurrence of the Crossing or avoided Crossing of the vortex and phonon modes 
as a function of the parameters Ma and ö fór the case k± = kz.

hydrodynamic instabilities of shear flows. Negative energy waves are involved 
in all kinds of instabilities in flows, because only they can withdraw an energy 
from the flow.

In case of a uniform flow V (x) = const, negative energy waves appear, when 
their phase speed is less than the flow velocity Vph < V. Fór vortex modes, 
the dimensionless phase speed is less than the maximum flow velocity Ma. Bút 
the wave function covers alsó the parts of flow, where Vph > V. So, the vortex 
waves are nőt necessarily negative energy waves, when the condition Vph < Ma 
is met. The wave energy in linear approximation (see fór details in Ostrovskii 
et al. (1986)) is to

E = at^1
(10)

where ö(w) is the dispersion relation and A is the wave amplitude.The essential 
point is that the expression (10) is obtained as an expansion of the Langrangian 
in terms of a small wave amplitude A. The question arises whether the disper
sion relation (8) can be substituted intő (10). Except somé factor, dispersion 
relations have to be the same no matter how they are obtained. Hence, the dis
persion relation D(w) (8) and one which stands in (10) differ by a factor, which 
can be either sign. Consequently,only the change of the sign of the wave energy 
can be found from (10) if the dispersion equation (8) is substituted. Actually, 
the true sign of the energy of acoustic and waveguide modes is known, namely, 
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their energy is positive since their phase velocity is more than the maximum flow 
velocity Vph > Ma fór subsonic flows. It follows that after substitution of (8) 
intő (10) we need to look whether there is a change of the sign of (10) fór going 
from acoustic waves to vortex ones. The vortex waves are of negative energy, if 
there is a change of the sign of (10), fór the phase velocity Vph Crossing the value 
Ma on the way from acoustic to vortex modes. Fig.3 shows the energy of vortex 
modes fór different determinant truncations fór the case of avoided crossings, 
when the phonon mode is above the curve u> = kzMa (see, Fig.2). Thus, the

Figure 3: The energy of vortex modes in units of the energy of acoustic mode (u> = 0.71), calcu- 
lated fór different dimensions of the determinant (8) T = 29(boxes), 41(circles), 61(crosses), 
81(diamonds). The case of avoided Crossing (see, Fig.l) is displayed fór kz = k^ — 0.5, 
<5 = 0.3, Ma = 0.3.

vortex modes are waves of negative energy waves. The stability of the shear flow 
depends on whether there is a Crossing of phonon and vortex modes. Fig.lb is 
plotted fór Ma = 0.6 and ő = 0.6, when there is a Crossing. The Crossing is 
replaced by an avoided Crossing fór smaller values of Ma and á. In Fig.2 the 
dependence of the occurrence of Crossing on the the choice of flow parameters. 
Fig.4 shows the part of (k, w)-diagram of Fig.lb, where the coupling of phonon 
and vortex modes occurs. This is a typical (fc, cj)-diagram fór those cases, when 
there is a coupling between positive and negative energy waves. The frequency 
turns intő a complex one beyond the point, where the phonon mode of positive 
energy and vortex mode of negative energy merge. The instability appears in
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Figure 4: The coupling of the positive energy phonon mode and negative energy vortex mode 
is shown as an elargement of a small part of the (k, u;)-diagram of Fig.lb. Circles The parts 
of the mode curves, where the energy is negative, are marked by circles.

that rangé of wavenumbers between the two branch points of Fig.4, where the 
frequencies are complex. The instability of coupled waves of this kind is well 
known in electrodynamics Lifschitz (1981). The Kelvin-Helmholz instability is 
an example of the such a.n instability as well. The instabilities of this kind 
are called as absolute instabilities in order to distinguish them from the con- 
vective instabilities, which can just amplify waves. In the limit of an infinite 
determinant, the coupling of phonon and vortex modes dies out, and the rangé 
of unstable wavenumbers shrinks to zero. Thus, the phonon-vortex instability 
appears only in the case of truncated determinant which is akin to the viscous 
case. This instability produces pressure fluctuations along with vortical distur- 
bances. The phonon-vortex instability appears fór subsonic flows, as it can be 
seen in the diagram of Fig.2, where the region of the mode Crossing is shown 
as a function of the flow parameters Ma and <5. The numerical simulations of 
a compressible flow Passot & Pouquet (1987) are in good agreement with our 
results. It is well known, that acoustic-kind instabilities appear in the case of 
supersonic flows Fabricant & Stepanyants (1998). As far as I know, subsonic 
acoustic-kind instabilities were nőt found in shear flows up to now. Up to the 
present the generation of acoustic nőise in turbulent shear flows is considered 
in the frame of the Lighthill mechanism,which has nothing to do with instabili- 
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ties of flows. So, the revealed phonon-vortex instability can be considered as one 
more mechanism responsible for acoustic nőise generation.
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Abstract
Parker’s interface dynamo is generalized to the case of a transversal (i.e. 
meridional) flow of constant speed, limited to the high diffusivity volume. 
It is found that the Parker-Yoshimura sign law is much more difficult to 
violate in this case than for a homogeneous velocity field.
Keywords: Sun, MHD, plasma physics

1. Introduction

Solar activity phenomena are widely thought to originate in a dynamo mecha- 
nism operating on the weak large-scale solar magnetic field (see Petrovay, 2000 
for a review). While the activity phenomena are related to strong concentrated 
fields like sunspots, these concentrations arise from the weak large-scale fields 
and after their decay their magnetic flux is returned to that field (e.g. Petrovay 
& van Driel-Gesztelyi, 1997). The rotational shear producing strong toroidal 
fields is concentrated below the bottom of the convective zone in the so-called 
tachocline layer (Kosovichev, 1996; Forgács-Dajka & Petrovay, 2002). The con- 
centration of magnetic fields to this layer is partly aided by convective transport 
mechanisms such as pumping (cf. Petrovay, 1990).

2. Model

Parker’s analytic, Cartesian interface dynamo model (Parker, 1993) has the as- 
sumption that the diffusivity varies by orders of magnitude across a surface. The 
a-effect operates on the high diffusivity side while the Q-effect is limited to the 
low diffusivity side. Under these conditions a surface dynamo wave can be ex
cited whose direction of propagation will be governed by the Parker-Yoshimura 
sign rule (Charbonneau &; MacGregor, 1997; Markiéi & Thomas, 1999). The 
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main advantage of the model is that in the case of high diffusivity contrast an 
arbitrary strong toroidal field can be generated in the shear layer. Instead of 
appealing to a dynamo wave, the field migration patterns can alsó be interpreted 
by meridional circulation (e.g. the recent Babcock-Leighton models, Wang & 
ah, 1991; Dikpati & Gilman, 2001). The aim of the present work is to study 
how the operation of the Parker-dynamo may be influenced by the presence of 
a specifically prescribed How representing the meridional circulation.
Following Parker, consider a Cartesian coordinate system with axes oriented in 
such a way that the positive x-, y-, and z-directions coincide with the directions 
of increasing 6, <j>, and r. The z = 0 surface is the upper boundary of the shear 
layer (shear defined as G = dvy/dz), and the lower boundary of the convec- 
tive region. The parameters are homogenously distributed in each layer while 
they change discontinuously at the interface. The large-scale flow has the form 
u(z) = UH(z)ex + vy(z)(l — H(z))ey, where H is the Heaviside function.

a-effect 
a=a„=constant

uniform flow (U) 
---------------►

high diffusivity (Tj)

low diffusivity (n)

£l-effect 
uniform shear (G)

Figure 1: Skéteh of the model

Represent the magnetic field B(x, z, t) as the sum of the poloidal and toroidal 
components: B = BP + By(x, z, t)ey, where BP = V x A and A = A(x, z, t^Gy. 
Denote the toroidal field and vector potential by B(x,z,t), A(x,z,t) in z > 0, 
and by b^x, z,t), a(x,z,t) in z < 0. The mean-field dynamo equations are

[Öt- + d2) + Udx]B = 0, 

[dt — T)(d2 + d?) + Udx]A = aoB,
at z > 0, and

(3)
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[öt-77(^ + ö2)]a = O, (4)

in z < 0. The boundary conditions in z = 0 are
a = A, b = B, dza = dza, ndzb = qdzB. The dynamo equations and the 
boundary conditions are linear, so the Solutions are sought in the form

B = Cexp {at — Sz) expi^ut + kx - Qz), (5)

A = {D + Ez) exp {at — Sz) exp i{ujt + kx — Qz), (6)

b = {L + Mz) exp {at + sz) exp i{wt + kx + qz), (7)

a = J exp {at + sz) expi{ujt + kx + qz). (8)

The corresponding dispersion relation reads as

-Z8(/z2 - l)2 - 2Z6(M2 - 1)2(M2 - 1 - ÍR)

-Z4[(l - 3/z2 + n4){p.2 - 1 - ÍR)2 - (l/2)i(l + p2)p.2N]

+Z2/z2[(/z2 - 1 - ÍR)3 + (l/2)i(l + m2)(m2 ~ 1 - iR)N]

+(1/16)m4W2 = 0, (9)

where Z2 = 0 + i{v + R), v = w/qk is the dimensionless frequency, 0 — 1 = 
a/qk2 is the dimensionless growth rate, R = U/qk is the Reynolds number, 
N = a^G/q^k2 is the dynamo number, and ^2 = n/q is the diffusivity contrast. 
The complex dispersion equation provides two relations between the four quan- 
tities v, 0, N, and R so that u and R can be expressed in terms of N and R. 
Instead of examining the generál case (where /z2 is arbitrary), it is expedient to 
consider the limiting case of small /z2, which can be relevant to the Sun.

3. Limiting case, < 1

Consider the limit /z2 —» 0 while N = p2N remains finite. For unstable modes 
0 — 1 > 0, so assume that /z2 < 1. The applicability of the approximation is 
restricted to a limited rangé in R, where Rmin and Rmax can be determined by 
the condition 0{R) » /z2.
In this case the reál and imaginary parts of the dispersion relation are

(p + R)4 - 2R{v + R)3 -{v + R)2{602 - 60 + 1 - R2)

{v + R)[20R{30 - 2) + N{0 - 1/2)]
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+02^ - l)2 - WR + (1/2)2V) - (1/16)/V2 = 0, (10)

and

[(p + R)2 - - 1) - (p + R)R][N - 8^ + RW - 1/2) + ^R] = 0. (11)

From the imaginary part it is clear that either

i/ = (l/2)[—R ± (R2 + 4/3^ - l))1/2], (12)

or
N = 8(1/ + R)(0- 1/2) -40R. (13)

Figure 2: Dynamo wave period P = 2tt/|í/| (a), dimensionless phase speed —v (b), and 
growth rate 0 — 1 (c), as functions of the flow speed in the limit of small p2, where 
p2 - 0.01 (diffusivity contrast), and N = -12^2 (dynamo number).

Fór the dimensionless growth rate we have the implicit relation

N = -2R ± 4[Z?2 + 4/3^ - l)]1/2^ - 1/2), (14)

where fór N > 0 the + sign, while fór N < 0 the — sign corresponds to growing 
modes.

4. Conclusions

The analysis of the equations above indicates that Parker-Yoshimura sign rule 
holds unconditionally, so in the limit considered here an anti-parallel flow cannot 
reverse the direction of propagation of the dynamo wave.
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Abstract
We present a model fór the lower overshoot layer of the Sun, based on the 
realistic solar stratification, without the use of a “mixing-length” param
éter, by solving the system of Reynolds momentum equations using the 
closure formalism of Canuto & Dubovikov (1997, 1998). A fixed value of 
velocity anisotropy is assumed, and the local convection model is assumed 
to be valid fór the convectively unstable layer. In accordance with seismic 
constraints, overshoot (defined as the amount by which the convectively 
mixed zone extends beyond its boundary in local theory) is found to be as 
low as about 6 percent of the pressure scale height, and it is nőt bounded 
by a discontinuity from below.
Keywords: Sun, MHD, plasma physics

1. Introduction

The most promising way to model the overshooting layer is the Reynolds stress 
method, based on the well known Reynolds momentum hierarchy of the hydro- 
dynamical equations fór a turbulent médium. Our aim in such a model is to 
determine the radial distribution of the turbulent kinetic energy k, the mean 
square relatíve temperature fluctuation q, the normalized energy flux J and the 
energy dissipation rate £ under the convectively unstable region.

The Reynolds moment equations fór k, q and J were solved fór the lower 
overshoot layer by Unno & Kondo (1989), Xiong & Chen (1992), and Xiong & 
Deng (2001), resulting in significant non-adiabatic overshoot. However, in those 
calculations the mixing length l was treated as a free paraméter, arbitrarily set 
to be equal to Hp. The use of an equation fór e to get rid of the free paraméter 
was suggested by Canuto (1993) and it has been applied in a simplified k-e 
model by Petrovay (1998).

In this paper we will employ a formalism basically identical to that of Canuto 
& Dubovikov (1997, 1998). By solving the momentum equations fór the realistic 
solar stratification, here we present the first model of the lower overshoot layer 
without an assumed mixing length paraméter.

mailto:D.Marik@astro.elte.hu
mailto:2K.Petrovay@astro.elte.hu
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2. Equations and closure

We will use the following notations. Any variable f is split intő a mean and a 
fluctuating part as f = / + f- The velocity v has only a fluctuating part. We 
assume pláne parallel geometry and the depth z is measured from AV — 0, so 
the gravity acceleration g is positive. Beside q fór density, we alsó introduce the 
notations q = (T'/T)2, J = w(T'/T), w = vz,k = v2/2 = w2/fa where fa is an 
anisotropy paraméter.

We make the following assumptions:

• d Iq « 1

• The Reynolds number Re » 1, while the Prandtl number v/x C 1

• The extent of the overshoot layer d <C Hp, where Hp is the pressure scale 
height.

• The turbulent flow field is characterized by a mild and fixed value of the 
anisotropy fa G 0(1). This aasumption is made fór simplicity only.

With these assumptions we can use the Boussinesq approximation q’/q = -dp- 
■(T' /t) where dp is an order of unity factor (<5p = 1 fór full ionization). Fol
lowing standard practice, we will alsó neglect the vVP' term in the equation 
fór k.

The detailed derivation of the Reynolds momentum equations was given by 
many authors (Xiong, 1980; Canuto, 1993; Grossman et al., 1993). With the 
assumptions and notations mentioned above, and after customary dimensional 
modelling of somé terms, they read

dtk = —dzFk + dpgj - e (1)

dtJ = -dzFj ~ Cqj6pgq +Ckjfayy—k-------
Hp TpO

+~d2z{JT) * (2)

dtq = -dzFq + 2^J-± + ^d^ (3)

P ,2

dt£ = ~dzFe + Cjebpg-J -Ce— (4)
k k
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where the non-local fluxes are

Fk = wyi/2, Fq = w(T'/Ty (}
Fj = vFT'IT, Fe=wéi U

El being the local dissipation rate. Fór the coefficients we use the following 
values: Ckj = 1-0, Cqj = 1, fa = 1, CE = 1.92, Cje = 1.44, 5p = 1- In order 
to close the system we used the closure assumption of Canuto & Dubovikov 
(1997). Finally, the timescales rpe and tp were calculated using formuláé (34) 
of Canuto & Dubovikov (1998).

3. Numerical solution

A relaxation method was used to solve this nonlinear, coupled system of differ- 
ential equations. The condition of flux equilibrium (Fc + Fk + Fr = Fq = const) 
must alsó be coupled to the problem, where Fq is the totál spolar flux, Fc is 
the totál convective heat flux, Fk is the kinetic energy flux, and Fr is the radia- 
tive flux. The iteration process of relaxation is repeated until it converges to a 
stationary state.

4. Results

Our stationary solution is presented in Fig 1. The turbulent length and time 
scales in Fig. 1 b are defined as l = k3^2/e and t = k/e. The thickness of the 
overshoot layer is small, below six percent of Hp, and the AV curve does nőt 
show a particularly sharp discontinuity. This is compatible with the available 
helioseismic evidence (Basu & Antia, 2001). It must be stressed that, by design, 
our models can only yield the extent of overshoot in the helioseismic sense (i.e. 
the amount by which the convective zone extends beyond its boundary in local 
theory).

It is interesting to note that the ”mixing length” l is found to decrease 
continuously towards the bottom of the overshoot layer. This underlines the 
incorrectness of the assumption l =const. in those models that use a free length 
paraméter.

Yet we do nőt claim that our model is the final word concerning overshoot 
in the Sun. Further work is alsó needed to include a consistent treatment of 
the anisotropy (Petrovay (1992)) and to extend the domain of calculation to the 
unstable layer.
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Z/H. ....

Figure 1: Leit is the distribution of k, q, and £ vs. depth below the convectively 
unstable layer. Right is the distribution of l. r and AV. All dimensional variable are 
given in CGS units.
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Abstract
Rotation plays vitai roles in a great number of solar phenomena. Here 
we discuss results of a large eddy simulation study that illustrates the 
behavior of convective turbulence spanning over a wide rangé of Coriolis 
numbers.
Keywords: Sun, rotation, convection, turbulence

1. Introduction

Rotation has dominant effect on the convective turbulence in most of the solar 
convection zone. So far, a comprehensive understanding of the effect has nőt 
been achieved, and due to the complexity of the problem, realistic progress has 
to rely on numerical simulation. In an earlier paper (Chan, 2001), we have re- 
ported on an f-box study that covered the paraméter space with a rather dense 
distribution of cases, so that trends can be clearly identified in the changing 
behavior of convection as the Coriolis number (Co = 1/ Rossby number ) in- 
creases from 0 to somé moderate value (~ 7). Fór a review of the literature, the 
readers are referred to the paper by Brummell et al. (1996).

In the last couple of years, we have made higher resolution calculations 
(70 x 70 x 80 vs 35 x 35 x 39 meshes) that allow us to extend the rangé of Co 
to higher values (since the sizes of large eddies decrease with increasing Co; see 
later discussion). Here the discussion is focused on the changing behavior of the 
turbulence across the different values of Co (« 0 to 15.6); the latitude is fixed 
at 22.5°.

2. The Model

A ‘f-box’ is a three-dimensional, rectangular, horizontally periodic, region that 
approximates a small piece of the global rotating convection zone. In this region, 
the angle between the rotation vector and the vertical direction is considered 
to be constant (the colatitude). In our Cartesian system, the x-, y-, z- axes are 
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north-to-south, west-to-east, and radially outward, respectively (a right-handed 
system). The gas is ideál and the totál stratification is about 5 pressure scale 
heights. The units are chosen so that the totál depth, the pressure, density, 
and pressure at the top are all equal to 1 (in these units, sound speed = «
1.29) . The top of the convection zone is at the height 0.95, above which lies a 
marginally stable layer to soften the impact of the turbulence with the upper 
boundary. Further details of the model can be found in Chan’s paper.

In this short article, we consider eight cases which have rotation rates Q 
sequentially chosen at 0, 1/8, 1/4, 1/2, 1, 3/2, 2, and 3. Correspondingly, the 
Coriolis number, defined to be Q J dz/ f v"dz where v" is the rms velocity (with 
contribution of the mean already subtracted), takes on the approximate values 
0, 0.7, 1.3, 2.6, 5.4, 8.3, 11.1, and 15.6. The resolution may nőt be sufficient fór 
the fastest rotating case, bút we include it here fór comparison.

3. Dependence of the Turbulence on Rotation Rate

3.1. Flow patterns

Figure 1 shows horizontul cuts of instances of the vertical velocity field vz at a 
number of depths fór the different cases. The dark lanes show downflow regions. 
Roll structures are prominent, and there is a transition in the roll alignment from 
north-south to west-east between Q = 1/8 and 1 /4. The east-west alignment can 
be explained by the linear analysis of Hathaway et al. (1979), and the transition 
to the north-south alignment can be understood as the growing dominance of 
the Taylor-Proudman effect at higher Co. The separation of the downflow lanes 
decreases with increasing Co.

Figure 2 shows the vertical component of the vorticity £' = (V x f/)2. Note 
that (/ denotes that the fluctuating quantity already has the mean subtracted. 
Both positive and negative vorticities concentrate along the downflow lanes, bút 
the positive kind is more prominent. Figure 3 shows the vertical contribution to 
the helicity, vzC/z- This part of the helicity alsó shows a tendency to concentrate 
in the downflow lanes, bút its distribution is more spotty than the vertical 
vorticity. The spots are priinarily negative and prominent only near the top of 
the convection zone.

Figure 4 illustrates that the rolls are tilted from the horizontul direction. 
The roll axes ure more or less in ulignment with the rotution vector. Before 
the streum lines ure generuted, the horizontul meun flows huve been subtracted 
from the velocity field.
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3.2. Statistics of the velocity field

Figures 5 and 6 show the horizontal and tempóra! mean of the meridional (north- 
south) and zonal (west-east) velocities, respectively. Fór small Co, the mean 
velocities have shear-like distributions. As Co gets larger, the shear region 
shrinks towards the top. The senses of the shears below the top of the convection 
zone are negative (velocities dropping outward). The depth extent of the shear 
region is related to the local Coriolis number (= TlHp/v" where Hp is the local 
pressure scale height) whose distributions are plotted in Figure 7. The shears 
are confined to regions with the local Coriolis number below 1. The vertical 
averaging of the local Coriolis number defined here yields the values 0, 0.19, 
0.35, 0.73,1.6, 2.5, 3.4, 4.6 fór the eight sequential cases. They are different from 
the Co defined earlier; there is arbitrariness in the choice of the characteristic 
velocity and length scales.

The symmetric Reynolds stress tensor contains six independent components. 
The diagonal ones are the mean square velocities, and the off-diagonal ones are 
covariances of different velocity components. Dynamically the diagonal stress 
components act as turbulence pressure along different directions, and the off- 
diagonal ones produce momentum transport. One interesting result in the f- 
box configuration is that the mean zonal flow is driven only by the vertical- 
meridional component of the Reynolds stress; components that carry the zonal 
momentum do nőt participate in the averaged momentum balance. Figure 8 
shows the distributions of the rms vertical velocity. Higher rotation rates tend 
to suppress this component of velocity. Figure 9 shows the rms meridional 
velocity, the rms zonal velocity behaves similarly (except in the fastest rotating 
case whose results may nőt be reliable).

Figure 10 shows the correlation coefficient of the two horizontal velocities 
(remember that the means have been subtracted). Between the Co values 0.7 
and 2.6, there is a change of sign in the correlation, almost at all depths. At 
the Co value 1.3, the situation is transitional. Figure 11 shows the correlation 
coefficient of the vertical and meridional velocity fluctuations. Note the generál 
presence of positive peaks near the top of the convection zone in all of distribu
tions; they are responsible fór producing the negative dips in the zonal velocity 
near the top, through the meridional momentum equation. Figure 12 shows the 
correlation of the vertical and zonal velocity fluctuations. Though negative (as 
expected) when the Co is small, the correlation drops in magnitude when Co 
gets large, and eventually regions of positive correlation show up.
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4. Summary

Results of the higher resolution calculations presented here are generally in 
agreement with those obtained by the low resolution calculations presented in 
the earlier paper. The higher resolution allows us to view the flow fields more 
clearly. That alsó makes possible the pushing of Co to higher values, further 
consequences of which are to be explored in a later paper.
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Figure 1: From top to bottom, the rows show instances of the vertical velocity field for the 
cases with Q = 1/8, 1/4, 1/2, 1, 2, 3, respectively. Each column shows horizontal cuts of the 
fields at a fixed depth. From left to right, the depths go from deeper to shallower. The vertical 
and horizontal directions represent the north-south and east-west orientations, respectively.
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Figure 3: Horizontal cuts of the vertical contribution to the helicity field (i.e. t>z(V x u')2) for 
the same instances and cases as those in Figure 1.
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Figure 4: Streamlines of the turbulence velocity field (mean flows eliminated) in an instance 
of the Q = 2 case. Upper panel: A view taken from the west side of the box towards east. 
Lower panel: A view taken from the south side and 22° below the horizon, towards the north 
and at an angle 68° from the vertical direction; the projected streamlines indicate circular roll 
motions.
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mean meridional velocity

Figure 5: Vertical distributions (profiles) of the horizontally and temporally averaged mean 
meridional flow. The Q = 0, 1/8, 1/4, 1/2, 1, 3/2, 2, 3 cases are represented by the solid, 
dotted, short dashed, dot-dashed, triple-dot-dashed, long dashed lines, the triangles, and 
rhombus, respectively. All later figures use the same symbols to identify the cases.

Figure 6: Profiles of the horizontally and temporally averaged mean zonal flow. All show dips 
near the top of the convection zone.



58 Kwing L. Chan

Figure 7: logio of the local Coriolis number, defined as ÜHp/v". The characteristic length 
scale is chosen to be the local pressure height Hp.

height

Figure 8: Profiles of the rms vertical velocity. Rotation tends to suppress this velocity.
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Figure 9: Profiles of the rms meridional velocity.

Figure 10: Profiles of the correlation coefficient of the two horizontal velocity fluctuations. 
There is a change of sign between the distributions fór the low and the high Co values.
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height

Figure 11: Profiles of the correlation coefficient of the vertical and meridional velocity fluc
tuations. Note the generál presence of a positive peak in the upper region of the convection 
zone.

height

Figure 12: Profiles of the correlation coefficient of the vertical and zonal velocity fluctuations. 
Its value is nőt always negative.
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Abstract

The effect of space- and time-dependent random mass density, velocity, 
and pressure fields on frequencies and amplitudes of solar acoustic waves 
is considered by means of the analytical perturbative method. The ana- 
lytical results, which are valid fór weak fluctuations and long wavelength 
waves, reveal frequency and amplitude alteration, the effect which depends 
on the type of a random field. In particular, short-wavelength frequen
cies of the sound waves that propagate along the constant gravity in an 
isothermal atmosphere are lifted up (reduced) by a space-dependent ran
dom mass density (pressure) field. Higher values of the acoustic cut-off 
frequency result in an increase of wave frequencies. This effect is stronger 
fór longer waves. As a consequence of that in the case of the random 
pressure field the frequency correction exhibits a cross-over at intermedi- 
ate values of wavenumber; long (short) sound waves experience a positive 
(negative) frequency shift. In the limit of a gravity-free médium, the ef
fect of a random mass density field is to increase wave frequencies. Space- 
dependent random velocity and pressure fields reduce wave frequencies. 
While space-dependent random fields attenuate wave amplitudes, their 
time-dependent counterparts lead to wave amplification.

In the other example, the sound waves that are trapped in the vertical 
direction bút are free to propagate horizontally are effected by a space- 
dependent random mass density field. This effect depends on a direction 
along which this field is varying. A random field, which varies along the 
horizontal direction, does nőt couple standing modes bút increase their 
frequencies and attenuates amplitudes. These modes are coupled by a 
random field which depends on the vertical coordinate bút the dispersion 
relation remains the same as in the case of the deterministic médium. 
Keywords: Sun, MHD, plasma physics, turbulence, random fields

1. Introduction

This paper is devoted to isolate somé important effects related to influence of 
turbulence on frequencies and amplitudes of solar acoustic waves. The problem 

kmurawsk0tytan.umcs.lublin.pl
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is vast and we do nőt claim to be comprehensive. Indeed, random wave propaga- 
tion in the solar atmosphere has been a subject of recent intensive studies (e.g., 
Murawski 2002, Murawski et al. 2002). This subject stems from our wish to un- 
derstand the complex physical phenomena which occur in the solar atmosphere 
and their influence on the solar oscillations. From this point of view simple 
models acquire much attention as they allow to separate and quantify effects of 
various stochastic fields on frequencies and amplitudes of these oscillations. In
deed, the study of sound waves in a space-dependent random mass density field 
reveals that these waves are accelerated and attenuated (Nocera et al. 2001). 
On the other hand, the effect of a time-dependent random mass density field 
is to accelerate and amplify the sound waves (Murawski et al. 2001a). These 
phenomena have a simple physical explanation in terms of scattering and para- 
metric instabilities which lead to energy transfer between coherent and random 
fields (Murawski et al. 2001a). As a consequence of that the imaginary part 
of the wave frequency can attain negative or positive signs which correspond 
respectively to wave damping or amplification. A combined effect of a space- 
and time-dependent random mass density field that is represented in the form of 
the wave nőise leads to resonance at which the phase speed of the random nőise 
is equal to the wave phase speed (Murawski et al. 2001a). At this resonance 
the wave frequency tends to infinity.

The above studies have been carried out fór a random mass density field 
and gravity-free plasma. It is natural then to enquire about influence of other 
random fields on spectral properties of sound waves which propagate in a grav- 
itationally stratified atmosphere either freely or are trapped in a cavity. Un- 
derstanding this influence is essential in developing theories of random p-modes 
which are essentially sound waves trapped in the solar interior by the tempera- 
tűre gradient (e.g., Roberts 1989).

As the problem of random sound wave propagation is complex, our strat- 
egy is to discuss simple structures first and then building on them construct 
more realistic models. Guiding by this strategy we consider first sound waves in 
simple random fields of a gravity-free plasma. Then, we generalize the theory 
by developing a model of sound waves which propagate along a gravity field 
in a random mass density field. At this stage we will show up the effect of 
gravity field on random sound waves. Using the knowledge gained from earlier 
models we discuss the effect of random fields on trapped sound waves. Exten- 
sion of the latter problem on p-modes will be then straightforward although 
computationally expensive.

This paper is organized as follows. A simple model of sound waves is de- 
veloped in Sec. 2. which presents the hydrodynamic equations and dispersion 
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relation fór the coherent sound waves. In Sec. 3. we dérivé the dispersion rela- 
tions fór a random fiow. In this section, we summarize the influence of various 
space- and time-dependent random fields on frequencies and amplitudes of the 
solar sound waves. Sec. 4. discusses effects of random mass density and pressure 
fields on sound waves that propagate along a gravity field. The sound waves 
that are settled in a plasma cavity which contains a random mass density field 
are considered in Sec. 5.. This paper is concluded by the presentation and 
discussion of the main results in Sec. 6..

2. Hydrodynamic equations

We limit our discussion to magnetic-free plasma which is described by hydro
dynamic equations:

P,t + V-(pV) = 0, (1)
p[Vt + (V-V)V] = -Vp + pg, (2)

P,t + V(pV) = (l-7)pVV. (3)

Here the Symbol denotes a partial derivative with respect to time t, q is the 
mass density, V = [u, 0, v] is the flow velocity, p is the pressure, 7 is the adiabatic 
index, and g is the acceleration of a gravity field.

3. Sound waves in a random velocity field

It has been shown that flows can affect solar waves, modifying dispersion rela- 
tions and changing line widths (Nakariakov and Roberts 1995, Nakariakov et 
al. 1998, Murawski 2000, Pintér et al. 2001a,b). In particular, Nakariakov et 
al. (1998) have found that even very weak flows, bút with sufficiently sharp 
gradients, can dramatically affect propagation of the waves, causing enhanced 
coupling of different modes. In the other context it has been found by Murawski 
(2000) and Pintér et al. (2001a,b) that solar f- and p-modes are effected by a 
coherent flow. Thus, it is believed that the wave-flow interactions play a very 
important role in the dynamics of the solar atmosphere.

We consider the one-dimensional (d/dy = dföz = 0) equilibrium:

Qe = Po = const, ue = uT(x,t), pe = po = const, (4)

where the index r denotes random fields such that their ensemble averages are 
equal to zero,

(uT(x, t)) = 0. (5)
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Using the perturbation technique (e.g., Murawski and Roberts 1993), we 
obtain the following dispersion relation:

wkE(k — k, ti — üj^dkdúj
új2 — c2k2

(6)

where E is the Fourier transform of the correlation function

R(x-X,í-r) = (ur(x,t)ur(X,T)). (7)

From the dispersion relation of Eq. (6) it follows that the random sound 
waves are no longer dispersionless. We will see in the forthcoming part of this 
paper that sound waves experience nőt only frequency shift bút alsó amplitude 
alteration due to a presence of the random field.

3.1. A space-dependent random flow

In this part of the paper we consider the case of a frozen random velocity field 
for which

uT = ur(x).

Then, Eq. (6) simplifies to

2 2,2 2 f°° kE(k — k) dkw -c^k2 = ^kuj2 / ---- i------- i---- .
J-oo w2 — c^k2

3.1.1. Approximate solution

We use the Gaussian spectrum

2 7
E(k) = (10)

7T
and the expansion

w = cok + 4-----• (11)
Here a2 is the variance of the random field and lx is the correlation length. 
From Eq. (9) we obtain then

l 2
w2^ = 7=k2lxD(2klx) - ik2l2 fi -

^0 V ** \ / (12)
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Figure 1: Reál (left panel) and imaginary (right panel) parts of the frequency correction 
ÍÍ2 = ^2 vs normalized wavenumber K = klx for the sound waves in the space-dependent 
random velocity field of a Gaussian correlation function. As the reál and imaginary parts of 
ÍÍ2 are negative for overall values of K we claim that the sound waves experience frequency 
reduction and amplitude attenuation in a weak space-dependent random velocity field.

where the function
D(£) = e~? et2di 

Jo
(13)

is Dawson’s integrál (Press et al. 1992).
From Eq. (12) it follows that the reál and imaginary parts of W2 are lower 

than zero. As <t2W2 consists the lowest-order random correction to the frequency 
we claim that a space-dependent random flow of the Gaussian correlation func
tion reduces frequencies and attenuates sound waves. Indeed, Fig. 1 confirms 
these claims. The effect of random field grows with the normalized wavenumber 
K = klx.

We conclude that space-dependent random flows exert a similar effect on 
sound waves and the solar f-mode (Murawski 2000, Pintér et al. 2001a,b), 
reducing their frequencies and attenuates amplitudes.

3.2. Various random fields

An influence of various random fields on sound waves frequencies and amplitudes 
can be studied in a similar way as in Sec. 3.1.. Table 1 summarizes the cor- 
responding results. Frequencies of the sound waves are increased by a random 
mass density (Nocera et al. 2001, Murawski et al. 2001a) and a time-dependent 
random velocity (Murawski et al. 2001b). A space-dependent random flow and 
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random pressure lead to reduction of sound waves frequencies. Space-dependent 
(time-dependent) random fields attenuates (amplifies) sound waves amplitudes.

Table 1: The main results fór the frequency shift Au = ur — uo and amplitude changes 
Aa of sound waves propagating in the random mass density Qr(x,t), flow fluctuations 
ur(a:,t), or random pressure pr(x,t). Here ur and uo denote random and determin- 
istic frequencies, respectively. Aw > 0 (Au < 0) corresponds to a frequency increase 
(decrease). Aa < 0 (Aa > 0) is symbolically associated with wave attenuation (am- 
plification) by a random field.

QrW Pr(t) Ur(l) Ur(t) PrM Pr(t)
△w > 0 > 0 < 0 > 0 < 0 < 0
Aa < 0 > 0 < 0 > 0 < 0 >0

4. Random sound waves in a gr avitat ionally stratified at
mosphere

The above models of random sound propagation can be extended to the case 
of a gravitationally stratified atmosphere fór which we consider the frozen equi- 
librium of random mass density pr and pressure pr fields which overlay their 
coherent counterparts po and p0:

= PoW + = p0(l +ee), < Be >= Bo, (14)
Pe(*) =Po(*) +Pr(*) =Po(l +£p), <Pe>=P0- (15)

Small amplitude perturbations of this equilibrium satisfy the wave equation

PeVitt - (peCeV%),2 = 0, (16)

where the equilibrium sound speed ce is given as

(17)
Be

Following Roberts (1989) it is convenient to introduce the new variable

?(M) = ^clVz (18)
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is the density scale height.
Equation (19) can be rewritten in the operator form as

Loq + Mq = 0

with
n2 n2

L°=d^~ C°dz* + + 2H,Z^

d2 d2
M = £edt2 ” £pC°d^ + +

Here 
co U/a = ----  

a 2H
is the coherent acoustic cut-off frequency.

4.1. The case of the isothermal atmosphere

In the case of the isothermal atmosphere

H = const, cn = const, wa = -— = const. 
2co

in which Eq. (16) can be written as

q,tt - clq,zz = -^q- (19)

Here
^ = ^0 + 2#., (20)

is the stratified and random generalization of the acoustic cut-off frequency and

(21)

(22)

(23)

(24)

(25)

(26)

4.1.1. Non-random dispersion relation

In the non-random atmosphere the operator M = 0. Then, from Eq. (22) it 
follows that a sound wave of

q ~ ei(kz-uot) 

satisfies the following dispersion relation: 

wo = + c^k2. (27)
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4.1.2. Random dispersion relation

Now, we adopt a weak random field approximation as in the method by Noééra 
et al. (2001). The random correction to the above dispersion relation is

2 2CJ — (Jo = f°° f(k,k,a>) dk
-OO W2 — C^k2 — W2 ’ (28)

where

f(k, k,w) — w^Egg (cq/c2w2 4- 2w2u>2 + c^k2uj2)Eep +

+ c2̂ 2^ + ^k2 + ^)EPP. (29)

Here Eee and Epp are the correlation functions of the random mass density and 
pressure, respectively. The quantity Eep is the cross-correlation function.

We assume the Gaussian profiles fór the correlation functions of the type

where the indices i and j correspond to o and p. Fór such correlation functions 
we can evaluate the integrals

°° E-^k-k^dk
-oo k2 — k2 2^/^

[-2D(2fciz) + (1 + (31)

and 

k2E^k - k) dk <Ti(Tj
-oo k2 — k2 \Ek

1 - klxD(2klz) + i^klz (1 + e~4k2il

(32)
Substituting Eqs. (31) and (32) intő Eq. (28) with a use of the expansion 

of Eq. (11), we obtain

2c2Qa2u2 - -^Iee + w0(wq + w2)Zep + c^o Jep - c^0 Jpp - ^üIpp. (33)

4.1.3. Random mass density fluctuations

To realize the case of random mass density fluctuations alone we set in Eq- (33) 
Op = 0. Rearranging the corresponding terms we have

1
W2 = 2^ c2k D^2klz>>

, p-4fc2!’

4 c2k U + (34)
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Figure 2: Reál (left panel) and imaginary (right panel) parts of the frequency correction 
Q2 = vs normalized wavenumber K = klz for the sound waves in the random mass 
density field. The solid, dashed, dotted, and dashed-dotted curves (from the bottom to the 
top of the left panel) correspond respectively to the sound speed cq = 100 km/s, cq = 20 
km/s, co = 17 km/s, and co = 15 km/s. The other parameters are chosen as: the correlation 
length lz = 103 km, the solar surface gravitational acceleration g = 274 m/s2, and the ratio 
of specific heats 7 = 5/3.

Fig. 2 shows the results which are obtained from Eq. (34) for various values 
of the sound speed co- According to Eq. (26) a higher value of co corresponds 
to a lower value of the acoustic cut-off frequency. The effect of a lower (higher) 
value of sound speed (acoustic cut-off frequency) is to lift up the reál part of the 
frequency correction 012 which attains finite values for long waves. These waves 
are much attenuated as the imaginary part of 012 is infinite at k = 0. Obviously 
in the limit of k = 0 the pertubative method fails as it corresponds to small 
corrections.

The case of co = 100 km/s is very close to the gravity-free médium for which 
wa = 0 and = kco- Then,

/ k2!2 i
-^2 = ^D(2klz) - 
cq 2y7r 4

1 + e -4fc2;2 (35)

This result converges with the findings of Nocera et al. (2001).
In summary, the effect of random mass density field is to shift up the fre

quency and attenuate the sound waves. This effect is higher for shorter waves 
and higher values of the acoustic cut-off frequency.
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4.1.4. Random pressure field

The case of a random pressure is realized by setting in Eq- (33) aQ — q Then 
we obtain

wq l ta2 
klzD(2klz) - 1 +

i 
~7W°4 (36)

Figure 3: Reál (left panel) and imaginary (right panel) parts of the frequency correction 
Í12 = 1^2 vs normalized wavenumber K = klz fór the sound waves in the random pressure 
field. The parameters are chosen as in Fig. 2.

Fig. 3 displays the results of Eq. (36) fór the same set of parameters as 
in Fig. 2. We conclude that the random pressure acting alone lead to wave 
attenuation in the whole rangé of wavenumbers k. Fór high (low) values of 
sound speed (cut-off frequency) sound waves experience frequency reduction by 
the random pressure field. As lower (higher) values of sound speed (cut-off 
frequency) lifts us w2 at k = 0 the sound waves increase there frequency fór low 
k bút their frequencies are reduced at high values of k. The cross-over at which 
cu2 = 0 occurs at intermediate values of k.

5. Trapped sound waves in random mass density fields

It is very instructive to envisage the sound waves which are trapped by two hor- 
izontal walls which bound gravity-free plasma at z = 0 and z = h. These waves 
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are described by the system of equations (l)-(3) together with the boundary 
conditions at the walls:

v = 0 at z = 0, (37)
v = 0 at z = h. (38)

We discuss the following equilibrium:

Qe(x,z) = £>o(l + e(x,z)), Ve = 0, Pe=Po (39)

with the random density ratio

. , pr(x,z} , .
e(x, z) = —------ . (40)

Qo

In the above formuláé the indices e and 0 denote respectively equilibrium and 
constant coherent quantities, and qt is a random mass density field that depends 
both on the horizontal x and vertical z coordinates.

Linear perturbations of the above equilibrium satisfy the set of equations

(1 + e(x,z))uttt = c%(u,xx + v ,Xz\ (41)
(1 + e(x, z))vttt = Cofaxz + v zz). (42)

5.1. Non-random dispersion relation

From equations (41), (42) in the limit of a coherent médium (e = 0) we get that 
a Fourier component of a vertical component of the flow velocity

v ~
satisfy the wave equation

, 2 n 2 A

ü zz + K V = 0, K = —y !------ 5“
Co k W

(43)

This equation together with the boundary conditions of equations (37), (38) is 
solved by

v(z) = vn(z) ~ sin (Knz), (44)

where

n = l,2, •••. (45)
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Here the index n which denotes the mode number has been added to point out 
discrete values of k.

Rearranging equation (45) we obtain the dispersion relation

= Cq(/í2 + k2 (46)

In this equation Knc0 plays a role of a cut-off frequency.
It is noteworthy that in the limit of a homogeneous médium h —♦ oo leads 

to w2 = c^k2.

5.2. Random mass density field along the vertical direction

We consider now the case of the random mass density field which depends on 
the vertical coordinate z,

Qr — Qr(z). (47)

Expanding the wave field v in terms of the coherent < v > and random v' 
components we dérivé from Eqs. (41) and (42) that

, 2 2 z «- z< v >,zz +k <v>= <ev> —- < ev' >K2
/ । 2 / 2u + k V = -k2e <v> —-e < V >zz 

K*

k2 ,
---- 2 < S,zV,z >, K2

(48)

(49)

Equations (48) and (49) can be solved with a use of the expansions

< v >= ^ an sin (Knz), v'= a'n sin (Knz), q(z) = y^encos(Knz). 
n=l n=l n=l

(50) 
Substituting these equations intő Eq. (49) we find that the coefficient a' is 
expressed in terms of the set of coefficients {an}, n = 1,2, • • •. Eq. (48) consists 
then an algebraié equation fór the set of the coefficients {a„}.

From the above analysis it follows that any random field which depends on 
the vertical coordinate z leads to modes coupling bút it does nőt altér frequencies 
of the horizontally propagating waves.

5.3. Random mass density field along the horizontal direction

We discuss now the case of the random mass density field

Qr — Qr{x). (51)
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Figure 4: Reál (left panel) and imaginary (right panel) parts of the frequency correction 
ÍÍ2 = ^Ix/co vs normalized wavenumber K = klx fór the sound waves that are trapped 
between two horizontal walls in the case of the random mass density fleld pr(z). The curves 
from the bottom (top) to the top (bottom) of the left (right) panel correspond respectively to 
the mode number n = 1, n = 2, n = 3, and n = 4. The other parameters are chosen as: the 
correlation length lx = 103 km and the distance between walls h = 104 km. Higher modes 
are effected more by the random field.

When deriving the random dispersion relation we have followed the method 
described in the above sections. The difference here is that only the coherent 
< v > and random v' fields are expanded in terms of the set of the basic 
functions sin (Knz), n = 1,2, • • while q^x) is left alone. See Eq. (50). Using the 
orthogonal properties of these functions we end up with the random dispersion 
equation

r00 fé/tn + K2)
k2 - w2 = / ---- --------^-E(A: - k)dk. (52)

J-oo K ~ Kn

In the limit of Kn —► 0 we obtain the dispersion relation which was already 
derived by Nocera et al. (2001). From this equation it follows that the standing 
modes are nőt coupled by the random field. However, their frequencies and 
amplitudes are effected by this field.

We get the approximate solution of equation (52) with the use of the expan- 
sion

w = un + cr2^ (53)

and the replacement k2 by «2 in the expression under the integrál. Fór the
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Gaussian spectrum we have

W2 =
Cplx (k2 + K2 )2
2wn k

-±=D(2klx) -4k2i (54)
Z
2

In the limit of Kn —> 0 we obtain the familiar dispersion relation fór the random 
sound waves which propagate in the unbounded médium (Nocera et al. 2001).

Fig. 4 presents numerical results of Eq. (54). It follows from these results 
that higher-order modes are effected more by the random field.

6. Summary

The above presented results fór sound waves have been discussed fór various 
random fields and the Gaussian correlation function. These results can be sum- 
marized as follows:

1. Random fields influence spectral properties of sound waves: reduce or 
increase their frequencies and attenuates or amplifies their amplitudes. 
These effects depend on a character of the random fields. However, gener- 
ally space-dependent (time-dependent) random fields attenuates (ampli
fies) sound waves amplitudes. Sound waves experience a frequency de- 
crease by a space-dependent random velocity field and pressure field. In 
the latter case the effect is similar fór space- and time-dependent fields. 
Wave frequencies are increased by a time-dependent random velocity field 
and space- and time-dependent mass density fields;

2. Random effects are stronger fór stronger random fields and shorter waves;

3. A space-dependent random pressure field in a gravity-free atmosphere 
works similarly as a space-dependent random flow field, reducing waves 
frequencies and attenuating their amplitudes;

*
4. Trapped modes are nőt coupled by random fields which vary in the direc- 

tion along which these modes propagate. However, such fields altér both 
their frequencies and amplitudes. These modes are coupled by random 
fields which depend on the coordinate perpendicular to the direction of 
modes propagation. In the latter case the dispersion relation remains the 
same as in the case of deterministic médium;
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5. As high-degree p-modes can be approximated by the sound waves we ex- 
pect that these modes are affected by random fields. However, the theo- 
retical results for low-degree p-modes need verification for realistic models 
of the solar atmosphere;

6. Random fields which depend on horizontal coordinate do nőt couple modes. 
However, these modes are coupled by random fields which depend on the 
vertical coordinate;

7. As the analytical results are valid in the limit of a weak random field and 
long-wavelength waves the above findings have to be verified numerically. 
Already an effort intő this direction has been made by Medrek et al. 
(2000), Nocera et al. (2001) and Murawski et al. (2001a,b) who have 
verified the analytical results for space- and time-dependent random mass 
density fields.
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Abstract
In the present paper we study the absolute and convective natúré of insta
bilities in open shear flows by carrying out fully non-linear adiabatic 2-D 
hydrodynamic numerical simulations. We found the value of mean flow 
for which perturbations change from absolute to convective unstable. We 
fully recover the results of a previous analytic solution. We found that 
(i) an inviscid incompressible fluid is the most unstable configuration; (b) 
compressibility and viscosity decrease the value of mean flow necessary for 
the transition from absolute to convective instability; (c) even a viscosity 
has dominant influence over compressibility.
Keywords: Instability, Absolute, Convective

1. Introduction

Shear flows are present in most solar-terrestrial applications and it is of fun- 
damental importance to understand their stability. To analyze the stability of 
shear flows with respect to perturbations finite in space one has to solve an 
initial-value problem. When a shear flow is unstable there can be two different 
scenarios. In the first scenario the initial finite perturbation grows exponen- 
tially at any spatial position (i.e. the instability is called absolute). In the 
second scenario the initial perturbation alsó grows exponentially, bút it is swept 
away by the flow so fást that perturbations decay at any fixed spatial position 
(i.e. the instability is called convective) eventually leaving the flow unperturbed. 
The classification of these instabilities is important for the understanding of the 
physical processes in solar plasmas and space weather, in particular for the 
interpretation of in-situ satellite observations.

To investigate the problem of initially perturbed open shear flows numeri- 
cally VÁC (Versatile Advection Code) has been used. A detailed description of 
VÁC can be found in e.g., Tóth (1996); Tóth (1997). A fully non-linear 2-D 
hydrodynamic simulation of the adiabatic approximation in a 400 x 800 uniform 
mesh was carried out using a Flux Corrected Transport (FCT) method. The 
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equilibrium is prescribed by a uniform density throughout the whole domain and 
there is no vertical component of equilibrium velocity, i.e. (vy = 0). Fór the vx 
component of the velocity the shear profile is defined as U = Uq + |tanh(y). 
Here velocity is normalised by the difference in the two streams All and spatial 
coordinates are normalised by half the momentum thickness of the shear layer, 
ho-

2. Numerical Simulations

In order to study the transition from an absolute to convective instability the 
mean flow shall be varied. We shall find the critical (or threshold) value of 
mean flow, (Uc), fór which the transition from absolute to convective instability 
occurs.

Because the non-dimensionalisation used here is slightly different from the 
one used by Huerre & Monkewitz (1985) in their analytic work, a simple trans- 
formation must be carried out to compare the two approaches. Huerre & Monke
witz (1985) derived in their analytic studies a threshold, Rth = 1.3, above that 
of a velocity shear perturbations were absolutely unstable. By their definition 
R = if AU is considered to be unity and R = 1.3, then Üc = 0.38. This 
means fór mean flows below 0.38 the shear layer is absolutely unstable.

Regions of obsolute instability

Figure 1: Variation of the growth rates with 
Uo fór an incompressible fluid. The dot-dashed 
line represents the threshold found by Huerre 
&: Monkewitz (1985).

To test our simulations the asymptotic solution found by Huerre & Monke
witz (1985) must be recovered. Fig. 2. compares the results of our numerical 
and the analytical approach by Huerre & Monkewitz (1985). The results of the 
two approaches coincide perfectly, i.e. Uc = 0.38.

Detailed response of an incompressible and inviscid fluid to an initial per- 
turbation at various snapshots is shown in Fig. 2. fór two cases: (i) absolutely 
unstable (Uo = 0 < Uc) and (ii) convectevely unstable (Uo = 0.4 > Uc)-

Let us now introduce compressibility in the open shear layer. The compari- 
son of the compressible and incompressible limit is shown in Fig. 2..
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Figure 2: Response of an in- 
compressible flow to an initial 
perturbation at various snap- 
shots. Streamlines are plotted 
fór two physically distinct be- 
haviours: (a) convectively un- 
stable Uq = 0.4 (top row), (b) 
and absolutely unstable Uo = 
0.0 (bottom row).

Fig. 2. shows that compressibility decreases the value of critical mean flow 
velocity from Uc = 0.38 to Uc = 0.37. Less mean flow is needed to sweep away 
an initial perturbation which alsó means the growth rate of the perturbation is 
smaller due to compressibility. It is known that an increase in Mach number 
reduces the rangé of angles of propagation of unstable modes and at supersonic 
speeds parallel propagating modes are stable (Baranov et al., 1992).

Finally let us move to study the absolute and convective instability of open 
shear flows when there is (a week) viscosity present. Comparison of the inviscid 
incompressible and viscous compressible cases is shown in Fig 2..

Figure 3: Variation of the growth rates with 
Uo fór a compressible fluid (dashed line) and 
fór an incompressible fluid (solid line).

Figure 4: Variation of the 
growth rates as a function 
of mean flow Uo fór a vis
cous compressible fluid with 
Reynolds number Re = 103 
(dashed line) and fór an invis
cid incompressible fluid (solid 
line).
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The introduction of viscosity decreases even further the value of critical 
mean flow as it is clearly shown in Fig. 2.. In the previous section the ideál 
compressible flow can actually be considered as a viscous fluid with an infinite 
Reynolds number. It may then be concluded the critical mean flow needed 
decreases as the Reynolds number decreases.

3. Conclusions

This study has allowed a direct comparison between the limits of incompress- 
ible and compressible open shear fluid with respect to the convective or absolute 
natúré of its perturbation. The analytic threshold found by Huerre & Monke- 
witz (1985) is in an excellent agreement with the results obtained by the fully 
nonlinear numerical simulations. The effects of compressibility and viscosity 
are similar. Both have a stabilising effect on the shear flow resulting in a lower 
value of Uc- However, in the case of compressibility the effect is much smaller.
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Abstract

On the basis of quasi-hydrodynamic equations we consider formation 
of electron-density fluctuations by turbulent mixing of weakly-ionized 
plasma in the solar atmosphere. An expression fór the power spectrum of 
the fluctuations is obtained, assuming quasi-neutrality and isothermality. 
The expression is used to predict the shape of the spatial spectrum and 
the rms level of the plasma fluctuations in the lower part of the solar at
mosphere.
Keywords: solar atmosphere, turbulence, plasma fluctuations

1. Introduction

Studies of motions and magnetic fields on the photosphere are very important 
fór understanding basic solar phenomena, such as atmospheric energy transport, 
turbulent diffusion of magnetic fields or chaotic excitation of solar oscillations 
(e.g., see Cadavid et ah, 1998; Norton & Ulrich, 2000). Data of observations 
indicate that photospheric flows include both organized and stochastic motions 
(Cadavidet ah, 1998). Spectraassociated with thestochastic velocity fieldsobey 
power laws, which are consistent with the spectrum of Kolmogorov turbulence. 
Plasma in the lower part of solar atmosphere is only weakly ionized (Krinberg, 
1971): the charged components are a minor species and have no influence on 
both the average motion and turbulent pulsations of neutral gas (at least outside 
the active regions of solar atmosphere). It may be said that the ion-electron 
plasma is embedded in the turbulent flow of neutral gas. Such a situation 
may result in fluctuations of electron density, even though the gas motions are 
incompressible. Information about the velocity fields and the electron-density 
fluctuations is essential fór study of the contribution of solar photosphere to 
the stochastic component of the magnetic field of the Sun. The aim of this 
report is to consider the possibility of formation of electron density fluctuations 
(with scales smaller than the granular scale l < Lg) by turbulent mixing of 
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weakly-ionized plasma in the solar atmosphere and to obtain the spectrum of 
the fluctuations.

2. Small-scale electron-density fluctuations in turbulent 
weakly-ionized plasma of the solar atmosphere

Fór description of slow processes in the weakly-ionized plasma, when the time- 
scale is larger than inverse value of ion-neutral collision frequency t » i/”1, 
and the length-scale of the processes is larger than the ion mean free path, 
/ Aí, and if the motion of neutral gas is known and is unchanged by inter- 
action with charged components (u is the velocity of neutral gas) a simplified 
system of macroscopic (quasi-hydrodynamic) equations can be used (Gurevich 
& Tsedilina, 1967). In this set of equations, the variables are chosen as density 
Ns and velocity vs fór each species (s = i, e):

dNs/dt + V(Nsvs) = 0, (1)
^(vs - u) = qsm^E + wBs(vs x b) - vTsVNa/Ns, (2)

where = the charged partiele neutral collision frequency, qs the partiele charge 
(qi = ~Qe = -e), ms = mass of the partiele, wBs = the gyrofrequency, b = B/B 
is the unit vector along the magnetic field B, vra = the thermal velocity, E = 
the electric field.

In the lower part of solar atmosphere (a quiet area) (a) Ui » wBi, as- 
sumptions of (b) isothermality, Te « Ti « Tn = T, and (c) quasi-neutrality, 
Ne ~ Ni = N, are valid; if (d) we consider the only electric field, which is 
required to prevent charge separation (due to E eleetrons tend to follow ions); 
(e) the velocity and electron-density fields may be separated intő mean and 
fluctuating parts: u = uq + ui (ui is the turbulent velocity field, U; < uq, 
(ui) = 0), N = Nq + Ni (Ni < No, (Ni) = 0); when (f) the flow of neutral 
gas is incompressible, V • u = V • ui = 0, (g) length-scales of the random ingra- 
dients uj and Ni are small compared with the scales, Lg, L^, of variation of 
mean quantities u0, No, respectively (l < Ln = (|VA^o|/Afo)-1 ~ Lg), and the 
same may be said about time-scales, the following equation deseribing genera- 
tion of relatíve plasma-density fluctuations, 6N = Ni/N0, in the turbulent flow 
of weakly-ionized gas can be derived from the set of equations (1), (2):

dóN/dt - DaN25N + V(<WU1) = -L^(ui ■ n) - ^V(U1 x b), (3)

where fa — ujbí/ví, Da is the ambipolar diffusion coefficient, n = Ln(^N0/Nq), 
is the unit vector along the gradient of Nq-
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The process in which the neutral gas turbulence in conjunction with a back- 
ground electron-density gradient produce plasma irregularities by mixing regions 
of high and low density is described by the first term on the RHS of (3), this 
term is more important at larger scales, l > /3íLn; the second dominates at 
smaller ones, l < and represents the interaction of the plasma embedded 
in the turbulent motions of neutral gas with the magnetic field.

Under the assumption of statistical homogeneity and stationarity of the ran- 
dom fields ui(x, t) and t), the Fourier transform of (3) is

(DAk2 — iw)<UV(k, w) + ikj J dk'duóUV^k'ju/Jui^k — k',0; — u/)

=-L“‘(n ■ u^k, w)) - i^kfui x b). (4)

The convolution term on the LHS of (4) represents the contribution of mode 
interactions in the process of plasma fluctuation generation. If we take it intő 
account phenomenologically through the coefficient of turbulent diffusion Dt, 
then (4) becomes

6N(k,v) = (-L^n - i/3i(b x k)) (r^1 + r^1 - iw)-1 ■ ui(k,w), (5) 

where r^1 = DAk2, = Dtk2.
Using relations: (tíH(k,w) ul^k',^')) = 4>ij(k,cu) <5(k - k')á(w - o/), and 

(6N(k, Lü)6N*(k',cü'')) = ^(k, <n)ő(k — k')<5(w — w7), known for statistically ho- 
mogeneous and stationary random fields, and the spectrum tensor of the tur
bulent velocity field in the form

$v(k, w) = - kj^/k2) [4rr2k2Tk^2 + (6)

(E(k) = Cie2^3k~5^3, the energy spectrum function in the inertial rangé of 
wavenumbers, ko < k < k^, k^1 is the basic energy input scale, k^1 «
is a viscous length-scale at which viscous dissipation is adequate to dissipate 
the energy at the rate e, pn is the kinematic viscosity of neutral gas; r^1 = 
r^1 + r”1, in the inertial rangé « e^k2/3, = pnk2 « r^1, because in
our case Da « pn), and taking (5) intő account, we obtain an expression for 
the space-time fluctuation spectrum:

a ^2k~\n x k)2 + ff (b x 
(w2 + fo-1 + rf ^(w2 +

The spatial spectrum of plasma fluctuations S(k) is related with 'l'(k.w) as 
S(k) = dw ^(k, ív). After integration, we have

S(k) = (L^2k~2(n x k)2 + ff (b x k)2)^k2ílk)~lE(k), (8) 
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where Q* — (rd + rt )(rd + rt + rk 1). Using (8) we may obtain the rms 
level of plasma fluctuations: ((MQ2)1^ = {(n^Nq)2)^2 = (f dkS(k))1/2, the 
integration over the surface of the sphere of radius k in k-space then gives

{^N)2) = / S0(fc)dA:, 
Jfc,

where 9
$o(k) = - (L~2 + ^k2) ^E(k)

(9)

(10)

(S0(k) is the 1D omnidirectional spectrum of the fluctuations).
To estimate the level of relatíve fluctuations in plasma density (9) and the 

shape of the spectrum (10) expected in the lower atmosphere, we take the 
following values of parameters: B= 2 gauss, LN « Lg ~ 106 m, e « u3/Lg ~ 
103m2s 3 (ug ~ l()3ms 1 is the velocity associated with granulation of the 
scale Lg), other relevant values are listed in Table 1.

Table 1: Height dependence of DA, fa, k^1, and ((áN)2)1/2

h, km Da « pn, m2s 1 A = k^, m ((.UV)2)1^

250 2.4 3.5 x 10-5 0.34 ~ 4.1
515 24.5 4.4 x 10~4 2 ~ 4.1
705 194.6 6.9 x 10~3 9.3 ~ 4.2

The calculations of and DA were based on the books by Dungey (1958) 
and Lifshitz & Pitaevskii (1979) as well as on the model data fór the solar 
atmosphere of Krinberg (1971) and Vernazza et al. (1981). The level of the 
fluctuations, ((<5 TV)2)1/2, was estimated fór wavenumber rangé km < k < k„ 
(km = 10~5m~1).

It is seen from Table 1 that the level of electron-density fluctuations induced 
by turbulent mixing of weakly-ionized plasma in the solar atmosphere has to be 
almost unchanged with increasing the height. Figure 1 represents normalized 
1D spectra of the fluctuations, So(k)/So(km), obtained with the use of (10), fór 
3 levels in the atmosphere: 250 km, 515 km, 705 km; the dashed line shows 
the slope of the Kolmogorov spectrum, k~5^3. The spectral form predicted by 
(10) changes with changing the altitude. These changes result from the height 
dependence of the ratio vbí/ví, and of values of the coefficients pn and DA.
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Figure 1: Normalized 1D spectra of plasma fluctuations expected in the solar atmosphere at 
heights: 250, 515, 705 km.

3. Conclusions

In this work an expression fór the spectrum of small-scale electron-density fluc
tuations, which may be generated in the turbulent flow of weakly-ionized gas in 
the solar atmosphere has been obtained. The expression shows that the spatial 
1D spectrum is close to the power-law dependence, bút somé its departures from 
a simple power law may exist. An expected rms level of relatíve plasma fluctu
ations was estimated. Under the usual conditions fór the quiet atmosphere this 
level is about 4% fór wavenumbers, km < k < k^, corresponding to the inertial 
rangé of turbulence. If the intensity of turbulence and the length-scale of mean 
plasma-density gradient is height independent, then the fluctuation level must 
be nearly unchanged with altitude. However, because of changes in the ratio 
of the ion gyrofrequency to the ion-neutral collision frequency and in the coeffi- 
cients of the ambipolar diffusion and kinematic viscosity with height, the shape 
of the 1D spectrum has to vary with a change in the height.
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Abstract
The dynamo action of unstable magnetic flux tubes due to magnetic buoy- 
ancy in a rotating stellar convection zone is summarized and the implica- 
tions of a flux tűbe dynamo with a threshold in field strength fór dynamo 
action is discussed in connection with the observed variability of solar and 
stellar magnetic activity.
Keywords: Sun, stars, magnetic activity, dynamo, stability, MHD

1. Introduction

The solar magnetic field may be divided intő two, a strong and a weak compo- 
nent. Sunspots are the most prominent manifestation of the strong component. 
They show a regular cyclic behaviour and obey Hale’s polarity rules. The weak 
field is irregular and may be due to turbulent dynamo action in the upper con
vection zone (Cattaneo, 1999).

The strong field is assumed to result from dynamo action in a layer of over- 
shooting convection at the bottom of the convection zone (Schmitt, 1993). Dif- 
ferential rotation builds up a large toroidal magnetic field, which is stably stored 
in the subadiabatically stratified médium until magnetic buoyancy instability 
sets in fór strong fields of about 105 G (Moreno-Insertis, 1992; Schüssler et ah, 
1994; Ferriz-Mas & Schüssler, 1993, 1995). In a weak régimé the instability pro- 
vides a dynamic a-effect (Schmitt, 1985, 2003; Ferriz-Mas et al., 1994), which 
regenerates the poloidal field and closes the dynamo cycle. A strong instability 
leads to the rise of flux tubes through the convection zone and accounts fór the 
bipolar active regions at the solar surface (Caligari et ah, 1995).

In the following we discuss the dynamo effect of the magnetic buoyancy 
instability and its implications fór the dynamo. The lower threshold in field 
strength fór the instability of toroidal flux tubes and random fluctuations due 
to magnetic fields from the turbulent convection zone leads to strong amplitude
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5.0x10^ 1.0x10$ 1.5x10$ 2.0x10$
Magnetic field: Bq (Gauss)

Figure 1: Stability diagram for toroidal flux tubes in the solar overshoot region. The shaded 
regions denote instability; the degree of shading indicates the azimuthal wavenumber of the 
mode with the largest growth rate.

variations and the appearance of grand minima (Schmitt et ah, 1996; Schüssler 
et al., 1997; Schmitt et ah, 1998), resembling the long-term behaviour of solar 
and the various kinds of stellar magnetic activity.

2. Dynamo action of magnetic buoyancy

Intense magnetic flux tubes can be stored in mechanical equilibrium in the 
stably stratified overshoot region at the bottom of the convection zone, while 
their field strength is increased by differential rotation (the overshoot region is 
a layer of strong shear) or by other mechanisms (Moreno-Insertis et al., 1995; 
Rempel & Schüssler, 2001). Once the field strength exceeds a critical value, 
which depends on stratification, latitude and angular velocity distribution, a 
buoyancy instability sets in. For details see Ferriz-Mas & Schüssler (1993,1995). 
In 1 igure 1 a stability diagram is shown for flux tubes originating within the 
overshoot region.

The weak instability of region II of Figure 1, with growth times larger than 
1 year, results from the combined effect of buoyancy instability and Coriolis 
force. This instability gives rise to helical waves of growing amplitude, which
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Figure 2: Long term evolution of dynamo activity. The top panel shows the totál magnetic 
energy (in arbitrary units) as a function of time (in years). The lower panel shows a 100-year 
interval together with the corresponding butterfly diagram.

propagate along the tűbe and produce an inductive effect (o-effect) regenerating 
poloidal field from toroidal field. Fór flux tubes the dynamo effect is discussed 
in detail in Ferriz-Mas et al. (1994), fór a continuous magnetic field details are 
given in Schmitt (2003). Since only nonaxisymmetric and unstable modes yield 
a net a-effect, strong magnetic fields are required, fór below a threshold the 
toroidal flux tubes are stable.

Once the field becomes even larger, a second régimé of instability is reached 
(region III on the diagram), with much smaller growth times. This instability 
drives the flux tubes intő the convection zone proper and leads to the rise of 
unstable loops to the photosphere within about 1 month (Caligari et al., 1995).

3. Dynamo model and results

We propose a model of a strong-field dynamo working in the overshoot region 
with super-equipartition fields which is responsible fór the activity cycle of bipo- 
lar regions. This dynamo is modelled with a simple 1D oQ-mean field approach 
(Schmitt & Schüssler, 1989). The a-effect is due to tűbe instability and works 
only in the rangé B^ < B < B?. Convective downdrafts transport threads of 
magnetic flux, originating from a turbulent convection zone dynamo, intő the 
overshoot layer. This effect is described as a stochastically varying source fór 
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the strong-field dynamo (Schmitt et al., 1996).
The system can be driven intő a low-field, grand minimum state if the fluc- 

tuating source reduces the field strength below the threshold value Bi for a 
sufficient long time and over an extended latitudinal rangé. The source alsó 
provides the radial magnetic field which restarts the strong-field dynamo once a 
sufficiently strong toroidal field has been generated by the action of differential 
rotation.

Of special interest is the fluctuation level which closely resembles the varia- 
tion of solar activity. Figure 2 gives the result of a numerical simulation which 
exhibits regulát cycles of varying amplitude and duration, irregularly inter- 
rupted by grand minima. The radial magnetic flux to be supplied from the 
convection zone amounts to about 1022 Mx per month (Schüssler et ah, 1997).

Application to other cool stars is achieved by appropriate change of the 
stellar parameters (Schmitt et ah, 1998; Schüssler et al., 1996; Granzer et ah, 
2000; Holzwarth & Schüssler, 2001).

4. Discussion

The picture of two mutually interacting hydromagnetic dynamos, a strong-field 
dynamo in the overshoot region based on the dynamo action of unstable mag
netic flux tubes and a turbulent weak-field dynamo in the convection zone, leads 
to solar activity cycles with strong amplitude variations and the occasional ap- 
pearance of grand minima, in qualitative agreement with the long-term record 
of solar magnetic activity.

Stronger fluctuations may destroy the cyclic behaviour of the overshoot layer 
dynamo and lead to increased bút irregular activity (Schmitt et ah, 1998), as is 
observed in fást rotating cool stars. On the other hand, stars with low and non- 
variable magnetic activity may be in a state with only the turbulent convection 
zone dynamo active.
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Abstract

Our work on the basis of selected regular bipolar magnetic regions (BMRs) 
strengthens the assumption that the scatter of tilt angles of BMRs around 
Joy‘s law is determined by the convective turbulence. Furthermore, regu
lar BMRs grouped by age do nőt show the phenomenon of toroidal relax
ation, which may probably mean the disconnection of Q-loops from the 
bottom of the convection zone.
Keywords: Sun, Q-loop, convective turbulence, dinamic disconnection, 
tilt angle

1. Introduction

It is assumed that the solar magnetic field originates in the dynamo operating 
in a stable layer at the base of the convection zone. According to dynamo mod
els (Parker, 1955; Babcock, 1961; Leighton, 1964; Leighton, 1969) the initial 
poloidal field turns intő toroidal because of differential rotation. The toroidal 
strands of this subjacent magnetic flux locally may come out of this stable layer 
and would rise through the convection zone as an Q-loop. It is one of the pos- 
sible phenomena that is responsible fór the formation of BMRs.
The emerged flux tubes show Joy’s law that means, in generál, that the preced- 
ing (p) spots of BMRs are closer to the equator than the following ones (f). Thus 
the BMRs are inclined to the local latitudinal line by an angle, which increases 
with latitude (Halé et al., 1919) and is called tilt. One of the explanations fór 
this phenomenon is to take the Coriolis force intő account (Schmidt, 1968) that 
can twist the ascending flux loops so that it finally emerges at the surface with 
a tilt to the local latitudinal line (Wang & Sheely, 1989; Wang & Sheely, 1991; 
Howard, 1991; Howard, 1996a; Howard, 1996b; Sivaraman et al., 1999).
Later on, in the theoretical descriptions (D’Silva &: Choudhuri, 1993; Longcope 
& Choudhuri, 2002) further effects, namely the role of convective turbulence 
and dynamic disconnection have been taken intő account, which influence the 
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rising flux loop. In the present article we investigate observational signatures of 
these processes.

2. Method of investigations

In our investigations we applied the data of Greenwich Photo-Heliographic Re- 
sults (GPHR) concerning the 14(/i solar cycle from 1901 to 1913 from which 
only those clearly aligned active regions (ARs) were taken intő account of which 
longitudinal co-ordinates were nőt farther from the Central meridián than 60 
degree. The selection of the regular ARs was made on the hasis of photospheric 
observations of the Haynald Observatory (Tóth et al., 2002) and it resulted in 
3754 BMRs.
The tilt angle (7) is, by convention, positive for BMRs where p-spots are equa- 
torward and negative if they are poleward of f-spots. Furthermore, this angle 
was calculated as the bend of a straight line to the local latitudinal line from 
which the first one was fitted by area weighted least-squares method to the 
spots of the given BMR. In accordance with Howard (1991) we applied latitu
dinal correction as well.

3. The distribution of tilt angle and its rotation

The distribution of tilt angles (7) of BMRs over 5 degree increments is shown 
and compared with other results (Howard, 1996b; Sivaraman et al., 1999) in 
Figure 1 where the Kodaikanal and the Mount-Wilson data are basically the 
same bút differ from our result. Due to the above-mentioned selection of reg
ular BMRs our peak is more narrow than the others and apart from the small 
differences at it’s wings follow the Gaussian distribution well.
Further Information is obtainable from the distribution of the daily tilt angle 
changes of BMRs, which according to Howard (1994) were determined as simple 
day to day differences (w = Ay/Aday). The distribution of them over 2 degree 
increments is shown in Figure 1, which is for the same reason as mentioned 
before narrower than that of the others’. Of special interest is the fact that it 
follows the Lorentzian distribution well.
The peak positions and the half-widths of our fitted Gaussian (70, a) and 
Lorentzian (w0, P) curves for the whole and the different age BMRs are com
pared with the theoretical results of Longcope & Choudhuri (2002) in Table 1. 
Our results show that the average tilt (70) of BMRs is close to the mean angle 
determined by Joy’s law and it slightly decreases as the BMRs are growing old.
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TILT ANGLE CHANGE (DEG./DAY)

Figure 1: Left: The distribution of tilt angles (7). The striped colutnns show our results 
that are based on the selected regular BMRs of the 14íh solar cycle (1901-1913). The solid 
line is a Gaussian curve fitted by the least-squares method applied to our data. The open 
circles represent the Kodaikanal (1906-1987) while triangles the Mount Wilson data (1917- 
1985) (Sivaraman et al., 1999) normalised to our results. Center: The distribution of the daily 
tilt angle changes (w). The striped columns show our result and the solid line is a Lorentzian 
curve fitted by the least-squares method applied to our data. The black squares with solid 
line represent the Mount Wilson data (Howard, 1994) normalised to our result. Right: The 
plot a) versus 7 of our selected regular BMRs and the straight line fitted by the least-squares 
method to its points (dashed line)

Moreover, the average rotational velocity (wo)> though to a less degree, bút is 
larger than zero, bút tends to disappear as BMRs are growing old.

4. The role of dynamic disconnection

Howard (1996a) made first a plot of w against 7 that shows a relation between 
the tilt angle and its change, and fitted them with a straight line as w = a+b*7- 
This fitting (Howard, 1996a) resulted in the slope as b = -0.229±0.004 and the 
location of the intersection of the 7 axis at 7(w=o) = 5.65±0.32 degree that is 
close to the angle 70 detennined by Howard (1996b) (70= 4.28±0.19), Sivara
man et al. (1999) (70= 4.2) and this article (70= 5.8±0.3, Table 1). This lead 
to the conclusion that the bipoles relax from their orientation toward the angle 
70 specified by Joy’s law. This phenomenon is called orientational relaxation. 
On the bases of Howard (1996a) work Longcope & Choudhuri (2002) gives an 
overall theoretical description of this phenomenon. In their theories they took 
intő account the effect of the Coriolis force on the rising flux tűbe as the origin 
of Joy’s law, and the effect of the convective turbulence as being responsible fór 
the random scatter of tilts around the systemic ones determined by Joy’s law. 
This assumption is proved by our results since the measured tilt angles follow
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Table 1: Our 70 [deg], a [deg], u>o [deg/day], r [deg/day], 7(u)=0) [deg] and b [day-1] param- 
eters compared with Longcope & Choudhuri (2002) theoretical results. The explanations of 
these parameters are in chapters 3 and 4.

Our work: Longcope & Choudhuri 
(2002)

anchored 
life time:

2<day<7 7<day

dis- 
conn 

-ectedall group
life time:

2<day<7 7<day
7o 
a
^0 
r

7(w=o) 
b

5.8Í0.3 5.5±0.3 4.8±0.4
13.5±0.3 13.0±0.3 12.2±0.4

0.32±0.06 0.35Í0.06 0.12Í0.09
11.0±0.2 11.4±0.2 8.3±0.3
21±30 18±18 9±16

-0.02±0.02 -0.03±0.02 0.07Í0.07

3.71 2.43 4.05

3.3 -0.03 2.12
-0.302 -0.097 -0.024

Gaussian distribution (Figure 1), which seems to describe the distribution of 
random observations. Consequently, we assume that there must be a connec- 
tion between the half-with of the tilt angle distribution (cr in Table 1) and the 
scale of convective turbulence as well.
Furthermore, there is a question, which gains importance, whether the rising 
Q-loop is connected to the bottom of the convection zone or nőt. The last case 
is called dynamic disconnection. Namely, if the flux tűbe is connected to the 
strong toroidal magnetic field at the bottom of the convection zone then follow- 
ing the emergence, the magnetic tension with the progress of time may force 
to align the bipolar magnetic region toward the east-west direction. That is, 
the above-mentioned slope (b) and the intersection (7(w=o)) with the progress 
of time may keep to 0, that kind of behavior is called toroidal relaxation. Bút if 
the flux tűbe were dynamically disconnected, this relaxation to zero tilt would 
stop. Considering this Longcope & Choudhuri (2002) calculated artificial w-7 
plots fór the younger and the older than 7-day-old Q-loops, in cases when they 
are connected to or disconnected at 75 Mm below the solar surface from the 
bottom of the convection zone. The parameters of the straight lines fitted to 
these artificial plots are visible in Table 1.
Based on our selected, clearly aligned BMRs, we have investigated the distribu- 
tions of the related w and 7 pairs fór all and fór BMRs of different age-groups 
as well. The plot of all selected BMRs with the fitted straight line to its points 
is in Figure 1. The parameters of the fitted straight lines, namely the slope (b), 
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and the intersection (7(o,=o)) of all the BMRs and of the different age-groups 
are in Table 1. The difference is striking between the work of Howard (1996a) 
(see above) and our’s (Figure 1, Table 1), since our results do nőt show the 
phenomena of orientational and toroidal relaxations. Bút practically neither 
the younger than 8-day-old BMRs show these relaxations nor the olders (Ta
ble 1). What on the base of Longcope & Choudhuri (2002) may mean, that the 
Q-loops of the regular BMRs are possibly disconnected from the bottom of the 
convection zone.

5. Conclusions

First of all, we can claim that the selection of the clearly aligned BMRs lead to 
the reduction of several error sources and gave new results.
The distributions of the tilt angles of BMRs and their rotations agree with other 
results well, and show that the average alignment (70) determined by Joy’s law 
just as its near zero average rotational velocity (wo) slightly decreasing as the 
active regions are growing old.
The Gaussian shape of the tilt angle distribution is in agreement with the as
sumption that the scattering of the tilt around the Joy’s law determined systemic 
ones is caused by random-like convective turbulence.
Furthermore, the regular, clearly aligned active regions do nőt show the phe- 
nomenon of toroidal relaxation, which may mean that the Q-loops are presum- 
ably disconnected from the bottom of the convection zone.
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Abstract
A model fór the fine structure of a sunspot penumbra can be con- 

structed in a form of an ensemble of magnetic flux tubes moving in their 
own background. As a first step the evolution of a single flux tűbe in 
a penumbra of the magnetostatic sunspot model is studied numerically. 
Properties of such Solutions are briefly recalled and somé of new results 
are presented with a qualitative discussion of dynamic features of emerg- 
ing tubes as compared with the observed behaviour of bright penumbral 
grains. Limitations of the model and problems related to a quantitative 
comparison with observations are alsó commented.
Keywords: Sunspots, penumbrae, magnetic flux tubes

1. Introduction

Sunspot penumbrae observed at high spatial resolution exhibit a very com- 
plex filamentary structure which changes continuously on dynamical time scales. 
Short living bright and dark fibrils together with bright penumbral grains mi- 
grating inwards and outwards are responsible fór azimuthal inhomogeneity of 
all measured parameters, i.e. field strength, its inclination, light intensity, and 
velocity field. Fór exhaustive discussion of the penumbral structure and its 
dynamics see the reviews of Thomas & Weiss (1992) and Maltby (1997).

The known picture of the penumbrae strongly suggests that their fine struc
ture and dynamics are a manifestation of a convective process occurring in an 
inclined magnetic field which extends deep below the photosphere. Theoretical 
modelling of such a process is required to understand both: complex behaviour 
of the fine structure at the surface, and a global natúré of a penumbra with the 
energy transport which is responsible fór a very small (of 5% only) variation of 
the mean brightness between the inner and the outer edge. Direct numerical 
simulations of penumbral convection are very demanding because they should 
describe nőt only deep layers bút alsó the photosphere, which is a shallow layer 
of transition from adiabatic to radiative régimé in which plasma /3 is close to 
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unity. Moreover, it seems impossible at present to cover the full rangé of scales 
which are necessary to describe the fine structure of the penumbra. Note, that 
recent observations indicate extreme narrowness of bright Aláments (about O."35 
or less), and most probably the true structure of magnetic elements has nőt yet 
been resolved (e.g. Sütterlin, 2001). Nevertheless, such attempts have been 
made and the obtained results shed somé light on properties of magnetocon- 
vection in an inclined magnetic field (Hurlburt & Rucklidge, 2000; see alsó 
Hurlburt, this conference).

Here, I would like to discuss another approach to describe the penumbral 
structure. The approach based on the concept of interchange convection - a 
conjecture proposed on the basis of high resolution observations of penumbral 
fine structure and its dynamics confronted with global models of sunspots (Jahn 
& Schmidt, 1994). In this picture bright penumbral Aláments are inclined mag
netic Aux tubes or rather narrow Aux sheets that emerge in the photosphere 
bringing to the surface hot matériái from deep layers. The following Section 
contains: a brief summary of properties of computed models, qualitative discus- 
sion of dynamics of Aux tubes emerging in the penumbra, and a few comments 
on limitations of the model and on somé problems related to a quantitative 
comparison with observations.

2. Evolution of a flux tűbe in the penumbra

The description of the model and physical properties of evolving Aux tubes was 
discussed in detail by Schlichenmaier, Jahn & Schmidt (1998), hereafter SJS. 
Below, I brieAy comment the main features of the model.

We study the evolution and properties of a single convective element which is 
initially a part of the penumbra in the global magnetostatic model of a sunspot. 
We use a simplifying assumptions and approximate the structure of such a mag
netic Aux element by a 1-D thin Aux tűbe (TFT), and neglect the magnetic 
diffusion assuming and ideál MHD. That limits the rangé of size (or magnetic 
Aux) of tubes which can be modelled. On one side, the size of the tűbe should 
be smaller than the local pressure height scale, which is of the order of 100 km 
in the photosphere. Otherwise the TFT breaks down. On the other side, due 
to a Anite value of magnetic diffusivity g in the photosphere too narrow Aux 
tubes are nőt described properly by the ideál MHD. Still acceptable would be 
a tűbe with a diameter of 5 km, fór which the diffusion time scale is close to 5 
hours and the magnetic Reynolds number is somewhat more than 3000 fór the 
velocity of 1 km/s (the coefHcient 77 is estimated according to Láng, 1999, fór 
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the temperature 6000K and the electron density 3xl013 cm-3). It should be 
stated clearly that our models correspond to elements which cannot be observed 
directly on the Sun. Therefore, a quantitative comparison of physical param- 
eters with observations is nőt trivial, bút that concerns any model as long the 
true magnetic structure of the penumbra remains unresolved.

The main feature of our model is that the tűbe of the size of about 50 km, 
initially positioned at the magnetopause, rises through the deep penumbra and 
emerges in the photosphere, where it forms a horizontal channel containing an 
outflowing gas, i.e. the Evershed flow. The intersection of the tűbe with the 
photosphere migrates towards the umbra and contains an upflowing hot matter 
which gradually cools down as it flows outwards, which makes the tűbe more 
and more transparent. This picture closely resembles a bright penumbral grain 
(PG) with a “head” and a “cometary tail”. It is alsó tempting to identify 
the extended tail of such a tűbe (one or more) with a single bright filament. 
Detailed analysis of properties of the tűbe shows the model is consistent with 
observations even when the velocities of the flow reach up to 14 km/s (see SJS).

It is worth-while to recall here another solution fór a very thin flux tűbe, 
with a diameter of 10 km, which forms an arch above the photosphere of the 
penumbra (Jahn, Schlichenmaier & Schmidt, 1996). This “wave” migrates to
wards the umbra and the flow along the submerging part of the tűbe becomes 
supersonic at somé stage of evolution. Perhaps, an ensemble of such tubes could 
account fór the feature observed by dél Toro Iniesta, Bellot Rubio & Collados 
(2001), i.e. a presence of supersonic downflow in the outer penumbra.

In recent years Schlichenmaier and coworkers carefully confronted the model 
with the observed properties of penumbral fine structure and flows. Summary of 
those findings together with an extensive discussion of observational peculiarities 
of the penumbra in the context of emerging flux tubes can be found in the review 
of Schlichenmaier (2002). Here, I would like to present a preliminary comment 
on somé new simulations and concentrate the discussion on the dynamic features 
of the flux tubes evolving in the penumbra. Those features can be compared 
(at present, qualitatively only) with statistical properties of PGs studied by 
Sobotka, Brandt & Simon (1999) and Sobotka & Sütterlin (2001). Their analysis 
gives an additional possibility of verifying our model.

The simulations were performed with a code that slightly differs from the 
one used previously. The main difference is the description of the radiative heat 
exchange, which takes intő account the fact that an optically thick flux tűbe 
loses or gains energy nőt with a whole volume bút rather with a surface layer 
of a thickness depending on local opacity. The resulting heat exchange rate fór 
the finite temperature difference lies between the inefficient Newton’s cooling
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Figure 1: Shapes of tubes above the photosphere are plotted with 30s cadence and a vertical 
shift such that 1 Mm corresponds to lh of evolution. Left - =1015Mx, right - <> =1016Mx.
See text fór details.

rate and the overestimated rate based on the difference between the bolometric 
Planck functions (see e.g. Kalkofen & Ulmschneider, 1977). More details will 
be published elsewhere (in preparation).

From a series of models two have been selected and shown in the Fig. 1. 
The magnetic flux <1> of the tubes is equal to 1015 and 1016 Mx (left and right 
plot respectively), so that the models correspond to the ones recalled above. 
Figure 1 shows the shape of flux tűbe only above the photosphere. It is drawn 
with continuous (dotted) line above the penumbra (quiet Sun). Curves are 
plotted with a 30s cadence and shifted vertically so, that 1 Mm on the vertical 
scale corresponds to lh of the evolution. The initial shape of the tűbe (or a 
fragment of the magnetopause) is drawn down to -1 Mm. The transition from 
the penumbra to the quiet Sun is marked with the vertical dashed lines. This 
is the region of a “naked wall” (see Jahn & Schmidt, 1994).

The thinner flux tubes tűbe emerges in the photosphere several times. Each 
time it forms a PG which migrates initially inwards, bút sometimes the phase 
of sinking proceeds in such a way that the grain moves outwards. Near, and in 
the region of the “naked wall” PGs move mostly toward the photosphere. Thus, 
most probably outward moving PGs correspond to the phase of sinking of flux 
tubes. In all computed models the grain is accompanied by a tail directed 
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outwards. Therefore, it is nőt mysterious (as noted by Sobotka, Brandt & 
Simon, 1999) that alsó PGs moving outwards may have such a feature. It is 
rather the opposite direction of the tail (toward the umbra) that cannot be 
explained in this way. Velocities of migration of flux tubes (0.5-3 km/s) and 
the time they appear above the photosphere (10-30 min.) compare well with 
observations. Such an appearance of the tűbe at the surface may probably 
account for a transitory character of the Evershed effect (e.g. Shine et ah, 
1994). Note alsó, that the tűbe sinks outside the penumbra and forms a moving 
magnetic element in the quiet photosphere (MMF in the moat?). The behaviour 
of the thicker tűbe is similar to the model of SJS. Because of larger crossection 
it cools down less efficiently and penetrate further towards the umbra. However, 
there are here phases of the evolution when the tűbe dives below the surface 
in the outer penumbra. It is alsó difficult to find a longer time period during 
which the horizontal flow would become stationary.

The important feature of PGs, i.e. the dominating type of motion (inward 
and outward) in the inner and outer penumbra, cannot be discussed with a 
present set of models. We have no solution in which the tűbe would reach 
the umbra. The reason is most probably related to the initial conditions. The 
primary source of perturbation that sets the tűbe in motion is an abrupt heat 
exchange at the “naked wall”. Thus, the grain starts the migration always 
at the magnetopause near the surface, and the larger the tűbe the further it 
moves inwards. The size of a tűbe that would survive a travel across the whole 
penumbra should be larger than allowed by the TFT. However, there is another 
type of natural perturbation in our model - part of the magnetopause at depth 
of 5-6 Mm is unstable to interchange. Somé experiments indicate that tubes 
perturbed at those depths (with the upper perturbation artificially suppressed) 
have a tendency to appear first in the middle penumbra. Perhaps there exist two 
families of emerging tubes originating from different depths, bút this possibility 
has nőt yet been studied in detail.

Somewhat surprising bút alsó attractive consequence is suggested by our 
model: dark filaments do nőt exist per se. They would rather appear as a view 
of a darker background obscured by bright parts of emerging flux sheets. Then, 
the penumbral background would be almost the same as that of the umbra. 
Therefore, it would be interesting to investigate features of emerging tubes in a 
sunspot model surrounded by a single current sheet, or in a model of a poré.

The extreme narrowness of the single flux tubes models makes a quanti- 
tative comparison with observations rather difficult. An observable should be 
constructed, for instance a synthetic profile of a spectral line emitted from a 
region of a size corresponding to the observational resolution, and forming in 
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an inhomogeneous volume which contains the tube(s) and the background with 
different temperatures, velocities, and the magnetic tieid. That requires a model 
of a penumbra with a fine structure. It can be constructed as an ensemble of 
evolving flux tubes of different sizes and in different phases of evolution, which 
is the main goal of the investigations presented here.
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Abstract

Attempts to detect magnetohydrodynamic waves in the solar photosphere 
by identifying oscillations in the magnetic field have proved problematic 
due to suspected contributions from systematic temperature and density 
fluctuations causing the spectral line formation height to vary, which in 
turn samples a vertical gradient in the magnetic field strength. We investi- 
gate this effect in sunspot umbrae and penumbrae through the analysis of 
data obtained with the Advanced Stokes Polariméter in spectral lines with 
notoriously different temperature sensitivities. The temporal behavior of 
the magnetic field strength in sunspot is presented with special considera- 
tion to line formation physics occurring in the dynamic solar atmosphere. 
These results are compared to forward modeling of Stokes profiles with a 
radiative transfer code given a sunspot atmosphere perturbed by an MHD 
oscillation.
Keywords: Sun, MHD waves, observations

1. Introduction

Magnetohydrodynamic (MHD) waves are expected to exist in the solar atmo
sphere. A desire to detect MHD waves and estimate their role in energy trans- 
port has motivated several researchers to obtain time series of the magnetic field 
with the hope of measuring an oscillation corresponding to an MHD wave. Un- 
fortunately, the results from these tests are varied, with problems of crosstalk 
of one kind or another. Table I is an incomplete list of observers who have 
conducted tests fór MHD waves, the amplitudes of magnetic field oscillations 
measured and the instrument and spectral line used during observations. To 
view a more complete list, see Settele et al. (2002). We have broken the table 
in two parts: the upper half represents observers who do nőt exclude MHD 
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waves as an interpretation, the lower half are those who believe the measured 
oscillations are due to crosstalk. Most of the observers concentrate solely on the 
dynamics of sunspots, which is alsó the focus of this paper.

One crosstalk mechanism, thought to be responsible for oscillations observed 
by Rüedi et al. (1998) and Bellot Rubio et al. (2000), intrigued us as a possi- 
ble way to reconcile the conflicting reports and bring solar physics community 
closer to understanding the reál amplitude of MHD waves. To understand this 
crosstalk mechanism, imagine that a magnetic field embedded in the solar at- 
mosphere has a vertical gradient, d|B|/dz, such that the absolute value of the 
field strength is decreasing with height. Alsó imagine that there exist temper
ature and density perturbations (from an MHD or acoustic wave) which cause 
the effective height of formation of the spectral line to bob up and down in the 
atmosphere. That would cause an oscillation to be measured in the magnetic 
field which is nőt intrinsic to the MHD oscillation itself, bút instead results 
from sampling at different heights for differing wave phase. This would show up 
even in a purely (field aligned) acoustic wave, which has no intrinsic magnetic 
oscillations itself.

We were inspired by Rüedi et al. (1999) who investigated the effect of ver
tical magnetic gradients on MDI data by simulating the Nil 6768 Á line with 
MHD perturbations for the center-of-gravity magnetogram method and MDI’s 
modified center-of-gravity algorithm. They found that thermodynamic fluctu- 
ations alone (without a vertical gradient) gave rise to a magnetic flux density 
oscillation with the signature of (v, <5|B|)=9O°. However, the introduction of 
a vertical gradient reversed this effect such that increasing gradients decreased 
the amplitude introduced by the thermodynamic crosstalk and eventually intro- 
duced an oscillation whose signature was (u, ő|B|)=-90°. We thought it was an 
important task to determine whether commonly used Fel lines and an inversion 
technique used by spectropolarimetric Instruments sampled the vertical gradi
ent in a similar fashion. A simple observational test could be done to estimate 
the thermodynamic fluctuations.

Our intention for this research was to observe with spectral lines of notori- 
ously different thermodynamic sensitivities, assume a vertical magnetic gradi
ent, and through the comparison of forward modeling with observations, piacé 
upper bounds on the thermodynamic perturbations present. In other words, 
if there are thermodynamic fluctuations, the temperature and density sensitive 
line will experience larger height of formation fluctuations than the insensitive 
line. Through forward modeling, height of formation variations could be calcu- 
lated for both lines. Comparison of height of formation changes coupled with 
an assumed vertical gradient and the oscillation amplitudes present in observa-
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Table 1: Incomplete List of MHD Wave Searches

Amplitude Instr. Line (Á)
Ulrich, 1996* 2 Mx/cm2 MWO 5896 NaDl
Horn et ah, 1997 30 G FPI 5250 Fel
Norton et al., 1999* 18 Mx/cm2 MDI 6768 Nil
Balthasar, 1999 40-70 G FPI 6843 Fel
Settele et al., 2002 6 G ASP 6302 Fel
Rüedi et al., 1998 6 Mx/cm2 MDI 6768 Nil
Lites et al., 1998 4 G ASP 6302 Fel
Bellot Rubio et ah, 2000 4 G TIP 15650 Fel
‘Observations taken outside of sunspot.

tions, would allow an upper boundary to be placed on temperature and density 
perturbations.

2. Observations & Data Calibration

Two sets of observations were taken with the HAO/NSO Advanced Stokes Po
lariméter (ASP: Elmore et ah, 1992; see alsó Lites, 1996). The first dataset 
was a time series consisting of umbra, penumbra and plage of the active region 
NOAA9697 located at N14 W13 on 18 November 2001 from 14:27-16:09 UT. 
The síit was stepped across the region fór ten steps each of 0.6". The region 
scanned was 6"x85". The Fel spectral line pair 6301/6302 Á was observed in 
channel A while the Fel 5147/5250 Á spectral line pair was observed in channel 
B simultaneously. The second dataset was a time series consisting of outer um
bra, inner penumbra and somé plage above the active region NOAA9866 located 
at S8 E56 on 10 Mar 2002 from 20:45-21:09 UT. The síit was stepped across the 
region fór sixteen steps each of 0.37". The region scanned was 6"x85". The 
Fel spectral line pair 6301/6302 Á was observed in channel A while the Nil 
spectral line 6768 Á was observed in channel B simultaneously.

Calibration of the data was performed as described by Skumanich et al. 
(1997). Calibrated data were then inverted through the use of a 2-component 
(1 of them non-magnetic) Milne-Eddington (ME) atmosphere (Skumanich et 
al., 1987). Image motion between single scans was removed, when necessary, 
by obtaining a maximum correlation with a single good map of the signed in-
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Figure 1: Comparison of field strength oscillation amplitudes as measured in umbra and
penumbra with 6302/6301 & 5250/5147 Á line pairs. 

Umbra
100

(0 
E 60

ÖT
•o 40 a> <o 
£ 20

0
0 10 20 30 40

6302 d | B | rmg (G)

Figure 2: Comparison of field strength oscillation amplitudes as measured in umbra and 
penumbra with 6302/6301 A line pair & 6768 Á spectral line.
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tegrated Stokes V signal and shifting the data subpixel amounts through linear 
interpolation. Drifts in the data were removed through maximum correlation 
and bilinear interpolation of entire maps.

3. Observational Analysis & Results

Time series of magnetic field strength are interpolated onto an evenly sampled 
time grid. The data is detrended and power is calculated using a Fást Fourier 
Transform. No spatial averaging is used. The 2.5-4.5 mHz frequency is defined 
as the 5 minute bánd whereas nőise is determined in the 7.0-8.3 mHz frequency 
bin. A statistical significance test is applied to the data according to Groth 
(1975) where a multiplicative of the mean nőise level was used to determine 
if the power in the 5 minute bánd was at a 99% confidence limit. Only those 
spatial positions common to both spectral lines and containing significant power 
were then further analyzed. Only umbral and penumbral points were analyzed 
and these were done so separately. The reason for the separate analysis is 
that geometries and thermodynamics should vary significantly from umbra to 
penumbra and we wanted to limit the analysis to features whose physics are 
fundamentally similar. Again, for the 10 March 2002 data, only umbral and 
penumbral points were analyzed.

Fig 1 shows results for the simultaneous observations with Fel 5250/5147 
Á and Fel 6302/6301 Á line pairs. The Fel 5250/5147 Á data shows RMS 
magnetic field amplitudes in umbra 1.5 times higher than those seen in Fel 
6302/6301 Á data. This could be the result of larger fluctuations in spectral 
line formation heights of 5250 Á sampling the vertical gradient. Penumbral 
ratios of RMS magnetic field amplitudes are unity, signifying different physics 
occurring in penumbral structures than in umbra.

Seen in Fig 2, the Nil 6768 line shows RMS magnetic field amplitudes in 
umbra 10 times higher than those seen in Fel 6302/6301 line pair. However, 
so few data points in the umbra met the significance criteria that it is difficult 
to give credence to this result. Furthermore, the comparison of 6768 Á and 
6302/6301 Á penumbral data shows the Nil 6768 Á results are dominated by 
nőise. Therefore, the Nil 6768 Á data cannot be used conclusively. It must 
be considered that the Milne Eddington least squares inversion performs better 
with a spectral line pair than it does with a single line (Lites et ah, 1994). 
Therefore, the larger RMS amplitudes are probably due to greater error in the 
6768 inversion which uses a single spectral line as opposed to the 5250/5247 or 
6302/6301 pair inversion.
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Figure 3: Amplitudes of scaled MHD perturbation applied to Maltby M atmosphere.
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Figure 4: A vertical magnetic field gradient observed by Socas-Navarro et al. (2000) in a 
sunspot is used in conjunction with the Maltby-M umbral atmosphere to simulate Stokes 
profiles.

4. Forward Modeling Results

Stokes profiles were simulated using a non-LTE numerical radiative transfer 
code (Uitenbroek, 2001) based on the multilevel accelerated lambda iteration 
(MALI) formalism of Rybicki & Hummer (1991). All calculations were made in 
a 1-dimensional pláne parallel geometry. The model atom used is a 23 level Fel 
atom. The oscillator strength of the 5250/5247 Á line was multiplied by three, 
to compensate fór the population deficiency caused by overionization (Bruls et 
al., 1990).

A linear adiabatic wave of 3.33 mHz frequency (300 second period) was 
calculated as described by Cally et al. (1994). The model consists of three layers: 
a Maltby M model (Maltby et ah, 1986) fór — 122<z<2146 km, an isentropic 
polytrope below and an isothermal corona (2xl06 K) above, and was found to 
support api wave with horizontal wavenumber 1.96 x 10-3 + 6.18 x 10~5i km-1 
(the imaginary part is due to spatial decay resulting from slow mode leakage). 
The perturbation amplitudes were scaled by ten times the original perturbation 
calculations in order to better match with observations. Maximum perturbation 
amplitudes as a function of height in the atmosphere are shown in Fig 3 fór 
the vertical velocity, temperature and density perturbations. The temporal
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Table 2: RMS Amplitudes of Field Strength from Simulated Stokes Profiles with Vertical 
Magnetic Gradients

Gradient 6302 5250 6768>isp 6768mdi
0 G/km 0.8 G 36 G 6.7 G 2.1 Mx/cm2
1 G/km 1.6 G 64 G 9.3 G 3.3 Mx/cm2
2 G/km 2.3 G 72 G 10.5 G 4.8 Mx/cm2
3 G/km 2.7 G 85 G 11.1 G 6.9 Mx/cm2
Socas-Navarro et al. 2.0 G 48 G 9.3 G 1.7 Mx/cm2
(2000)

variations of these quantities (exemplified here by density) are: Ppert(t) — 
J?{p} cos(wt) + Ö{p} sin(wt). Vertical lines in Fig 3 show core formation heights 
fór the 6302, 6768 and 5250 Á lines (z=168, 291, 549 km respectively) in a 
NLTE umbral atmosphere.

The MHD perturbation was applied to a Maltby M atmosphere with and 
without vertical magnetic gradients. In the case of no vertical gradient, a 2500 
G field was supplied. Fór a realistic gradient, a NLTE inversion of sunspot 
observation (Socas-Navarro et aL, 2000) was used, see Fig 4. Alsó, gradients of 
1, 2 and 3 G/km were tested. The Stokes profiles output from the model were 
inverted using a ME fitting procedure fór a completely magnetized atmosphere 
(no stray light). In this manner, the magnetic field strength was determined 
from simulated profiles fór one MHD oscillation period fór the 6302, 6768 and 
5250 Á spectral lines fór a constant field and a realistic gradient, see Fig 5.

The results show that thermodynamic fluctuations alone and resultant line 
profile changes cause varied B amplitudes to be derived from the inversion. 
Therefore, thermodynamic crosstalk is nőt limited to the magnetogram algo- 
rithms, bút is alsó present in inversion methods. The RMS amplitudes fór each 
spectral line pair and vertical gradient can be found in Table 2. Sampling of the 
vertical gradients is present as seen in the increasing amplitudes with increasing 
gradients in Table 2. Height of formation fluctuations due to the MHD ther
modynamic perturbations were <5z6302 «3.6 km, <5^6768 ~6.0 km and ŐZ5250 ~30 
km.

The phase differences observed fór both thermodynamic crosstalk and ver
tical gradient sampling are (v, <5|B|)=9O° fór all the spectral lines analyzed 
with the Milne Eddington fitting routine similar to the ASP analysis. This is 
distinctly different from results (Rüedi et ah, 1999) fór 6768 Á line and the
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magnetogram method. The plot on the lower right in Fig 5 shows that provided 
with the same exact line profiles, the MDI analysis algorithm interprets changes 
in the line profile as a decrease in magnetic flux when the ASP fitting routine 
interprets the same line profile changes as an increase in field strength. Indeed, 
this is worrying.

5. Discussion

Results herein and those of Rüedi et al. (1999) could reconcile the (y, <5|B|) phase 
differences measured with ASP (90°) and MDI (—90°), if thermodynamic line 
profile changes and vertical gradients are the cause of measured oscillations in 
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the magnetic measurements. Forward modelling shows that vertical gradients 
necessary to achieve amplitudes measured by MDI are greater than 3.0 G/km, 
which is high. Gradients this high are nőt out of the realm of possibility, bút 
are probably nőt commonplace.

Assuming that the RMS amplitudes measured in the 5250 Á line (see Fig 
1) during observation of NO A A 9697 sunspot are due to sampling of the mag
netic gradient, then values reported from forward modeling in Table 2 indicate 
the vertical gradient of the magnetic field to be no higher than half a Gauss 
per kilométer, d|B|/dz « 0.5 G/km. This value agrees well with the gradient 
supplied by (Socas-Navarro et al., 2000) at the height of formation of the 5250 
Á line (see Fig 4).

There is much work to be done on this topic. Phase analysis of all observa- 
tions should directly follow. MHD wave searches may greatly benefit from the 
use of the SIR (Stokes Inversion based on Response Functions, Ruiz Cobo and 
dél Toro Iniesta, 1992) or similar codes because of the more realistic treatment 
of thermodynamics. It was shown by Westendorp et al. (1998) that SIR was 
able to overcome somé of the ME technique trade-offs that exist between source 
function, Doppler width and the vector field. Future work needs to carefully 
assess the benefits gained from using SIR in the context of MHD wave searches 
and the potentially problematic height of formation fluctuations.
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Abstract

Observations with the Extrémé Ultraviolet Imaging Telescope (EIT) on- 
board SOHO have revealed the existence of transient coronal waves which 
propagate across the visible solar disc and are generated by an impulsive 
event. Using observational quantities (propagation speed, attenuation 
length) we dérivé ayerage values fór magnetic field intensity and viscosity 
in the low corona, i.e. we develop global coronal seismology.
Keywords: Sun, MHD, waves

1. Introduction

The latest observational results provided by space telescopes showed us directly 
the existence of global coronal waves, able to propagate in the solar atmosphere 
fór distances comparable with the solar radius. Usually these waves originate 
from an impulsive source, though the generation mechanism is still unknown. 
Because of their type of propagation, these waves are different from those ob- 
served recently in coronal loops, called local coronal waves.

One of the oldest global waves known in the solar atmosphere are the chro- 
mospheric Moreton waves (Moreton and Ramsey, 1960) seen in the wings of Ha 
propagating with a speed of 400-2000 km/s in an arc rarely exceeding 120° in 
the hot chromosphere at 104 K. Extrapolating the speed and locations of the arc 
indicates that the waves’ origin intersects well with the impulsive phase of an as- 
sociated Ha flare. The arc may nőt form or may nőt be observable until it is tens 
of Mm from the flaring region. Based on their propagation character, Moreton 
waves are considered fást shock waves. Another global wave phenomenon is the 
X-ray wave seen by YOKHOH in soft X-ray propagating in the corona with a 
speed of 600 ± lOOkm/s. They are interpreted as fást shock waves. Narukage et 
al. (2002) studied the Moreton and X-ray waves which appeared on 3 November 
1997 and they concluded that the two type of waves are very well correlated in 
time and space, so (i) they must have the same origin and (ii) the X-ray waves 
are the coronal counterpart of the chromospheric Moreton waves.
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Recent observations by the Extreme-ultraviolet Imaging Telescope (EIT) on- 
board SOHO have provided unambiguous evidence fór large-scale coronal im- 
pulses initiated during the early stage of a flare and/or CME. Although it seems 
that all EIT waves are correlated with CMEs, there are somé reports stating 
that in fact EIT waves would be correlated with flares, at least those EIT waves 
which are very bright. EIT waves are typically of lower amplitude than Moreion 
waves and they can extend 360° surrounding the initiating region.
EIT waves are seen in a bandpass dominated by the emission lines of Fe XII at 
192.3, 193.5 and 195 A (the 195 A bandpass). The emission lines exhibit a peak 
emission near 1.6 MK at coronal densities. EIT waves propagate in the quite 
Sun with a speed of 200-400 km/s at almost constant altitude. Observations 
show that an EIT wave has two stages: first there is an early (driven) stage 
where the wave is associated with rádió II type burst. In the initial stage the 
propagating wave could excite plasma radiation by accelerating electrons and 
creating an energized population that serves as the source of the rádió emission. 
The second stage consists of a freely propagating wavefront.
The correlation between EIT and Moreion waves is still subject to a strong 
debate in the literature. Fór a very long time, EIT waves have been considered 
as the coronal counterpart of chromospheric Moreion waves. This was based on 
studies by Thompson et al. (2000) and Warmuth et al. (2002)) where the authors 
found a very good correlation between Moreton and EIT waves. In contrast, 
Shibata et al. (2001) and Eto et al. (2002) found that EIT and Moreton waves 
are nőt correlated, so the terminology of coronal Moreton waves attributed to 
EIT waves may seen to be inappropriate. This conclusion is further supported 
by the differences of their characteristic properties (different generating event, 
different propagation speed, different propagation character, etc.).

2. Application: Magnetic field and plasma diagnostic

Since EIT waves are able to cross very large distances, they can carry in- 
formation about the plasma they pass through. The method of subtracting 
these Information from waves is called coronal seismology (Asqhwanden et al. 
1999, 2002, Nakariakov et al., 1999, Nakariakov & Ofman, 2001, Ruderman and 
Roberts, 2002) and it became possible after the launch of high resolution space 
telescopes. Coronal seismology is a perfect tool to obtain physical parameters 
such as magnetic field and transport coefficients (volume and shear viscosity, 
resistivity, thermal conduction). Measuring the properties of MHD waves and 
oscillations (periods, wavelengths, amplitudes, attenuation lengths) combined 
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with theoretical models (dispersion relations, evolutionary equations) we can 
determine coronal parameters.

Since EIT waves are observed to propagate in every direction almost isotrop- 
ically, we suppose that they are fást magnetoacoustic waves (FMW) propagating 
perpendicular to the vertical equilibrium magnetic field. The temperature form- 
ing the 195 A wavelength is T = 1.6 x 106K corresponding to a sound speed 
cs (= (c^bT/ nmpy^2} of 190 km/s (7 = 5/3, ratio of the specific heats; ks, 
Boltzmann’s constant; /z = 0.6, the mean molecular weight; mp, proton mass). 
Since the FMW propagate perpendicular to the field, their phase speed is given 
by (4 + 4)1/2, where va is the Alfvén speed. EIT waves are considered to be 
generated in the low corona at about 0.087?© above the photosphere where the 
electron number density is 4.22 x 108 cm'3. Then the magnetic field can be 
calculated by B = VA(^rnpny^2, where n denotes the full partiele number den
sity, which is related to the electron number density by ne — 0.52n for /z = 0.6. 
For the given speeds, we obtain the magnetic field is 0.8 — 4.5 G. Before we step 
forward, we should remark that the lower limit of the propagation speed (200 
km/s) is suspicious since for this value the plasma-beta is larger than unity, 
and the strength of the magnetic field obtained in such case is well below the 
acceptable values.

For an average value of EIT waves’ speed of 300 km/s we find that the 
magnetic field is 3 G what we use in the fortheoming calculations. From Br2 = 
const., i.e. the magnetic flux is constant, we obtain that the magnetic field is 
3.5 G in the photosphere and at 1 AU it is 7.5 x 10~5 G, respectively. These 
values are in very good agreement with the averages of the magnetic field found 
in the literature .

Another possibility to exploit EIT waves is to extract information about 
its wave behaviour and to use them to obtain averaged values for transport 
coefficients. This task is rather difficult due to the poor temporal resolution 
of the EIT camera. In the best case, the waves disappear after 3 or 4 images 
were taken. Unfortunately, this is far from being enough to carry out wavelet 
analysis. Likely, this problem will be overcome by TR.ACE and the fortheoming 
space satellites with a much better time resolution. We find, analyzing the front 
of an EIT wave, that it is very difficult to observe any wave characteristics. 
Instead it is likely that the EIT wavefront is an additional source of FMW at 
any time.

However, the information which can be still extracted from their propagation 
is related to their velocity attenuation. For illustration, we consider the event 
which occurred on 7 April 1997, at the start of solar cycle 23. The EIT wave has 
been generated by a flare situated in NOAA AR 8027, located slightly southeast 
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of disk center. The peak emission occurred at 14:07 UT and images were taken 
at 14:12 UT; 14:21 UT; 14:35 UT; 14:53 UT after which the leading front of the 
wave disappeared. Figure 1 shows a series of running difference images taken 
at the above times. These images were obtained by rotating each image back 
to the time of the pre-event (at 13:28 UT). White regions show an increase in 
emission while dark regions indicate a decrease.

Figure 1: SOHO/EIT 195 Á running difference images showing the propagation of an 
EIT wave on 7 April 1997. The images were taken at 14:00 UT, 14:12 UT, 14:21 UT, 
14:35 UT, with image at 13:28 subtracted from them (courtesy of B. Thompson)

Measuring the distance travelled by the leading front at the given times, 
we were able to obtain that the distance over which the speed of the wavefront 
decreased e-fold is roughly 365.3 Mm, i.e. 0.52/?Q. This result, determined from 
the observations is going to be used in conjunction with theoretical modelling 
in order to determine plasma parameters.

We suppose the coronal plasma is isotropic, inhomogeneous and viscous. Fór 
the sake of simplicity we choose a constant background magnetic field parallel 
to the z-axis in Cartesian geometry. Although a spherical geometry and a 
viscosity described by the Braginskii tensor (usually in coronal plasmas the 
viscosity due to ions is given by this tensor) would be a better ^pproximation, 
we suppose a simplified case in order to get a first insight intő the problem 
of EIT wave attenuation. The equilibrium density and pressure decrease with 
height according to an exp[-z/H] law where H is the pressure scale height 
(H = 79 Mm) in an isothermal plasma.

Fór a horizontal propagation perpendicular to the ambient magnetic field, 
the evolution of the velocity is given by an equation of the form 52„=1 an{r])dn v / dpn
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0, where r] = w2 H2/v^explz / H]. Considering weak dissipation (just like in 
coronal plasmas), the solution of this ODE with non-constant coefficients can 
be found in form of Fröbenius series, provided r) < 1, resulting in

v ~ e~z/‘acos(Az), (1)

where la is the attenuation length and A is a constant given by the equilibrium 
quantities. In Eq. (1) la is given by

 1 --------- • j 
+------------+ 4k2H2n cs V cs

The frequency of the waves constitute a serious uncertainty because the poor 
temporal resolution of the EIT camera does nőt allow us to perform a more 
precise analysis to obtain this quantity. However, we suppose that EIT waves 
have a frequency of 1 mHz. Using the attenuation length obtained earlier, we 
found that the coefficient of kinematic viscosity derived, based on the attenua
tion of an EIT wave with a frequency of 1 mHz, is 2.67 x 1012 m2/s, two order of 
magnitude larger than the value obtained using the Spitzer’s formula (Spitzer, 
1962).

3. Conclusions

The present study is a first attempt to exploit the remarkable properties of 
coronal global waves to carry information about the mean values of the magnetic 
field strength and transport coefficients. The extraction of information from the 
observed wave propagation combined with the prediction of theoretical models 
allow us to develop global coronal seismology.

Fór the studied event, occurred on 7 April 1997, we obtained an average 
value of the magnetic field strength and the coefficient of kinematic viscosity. 
While the value of the magnetic field strength is in very good agreement with 
other previous studies, the value of the coefficient of viscosity is larger than the 
value obtained from Spitzer’s classical formula.

Obviously, the calculations in the present paper are just a first approximation 
where we used the simplest model possible. Fór a better understanding of the 
phenomena of global coronal waves one should include other important effects, 
such as the effect of curvature, the anisotropic character of the coronal plasma, 
the effect of geometrical dispersion, etc. The results obtained by the EIT camera 
should be combined with observations by TRACE which has a better temporal 
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resolution. Of course, the field of view of TRACE is limited compared to EIT. 
These new effects will be addressed in our forthcoming investigations.
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Abstract
High cadence TRACE observations show that outward propagating 

intensity disturbances are a common feature in large coronal loops. An 
overview is given of measured parameters of such longitudinal waves in 
coronal loops. We found that loops that are situated above sunspot re- 
gions display intensity oscillations with periods centred around 3 minutes, 
whereas oscillations in ‘non-sunspot’ loops show periods centred around 5 
minutes. The observed longitudinal waves are interpreted as propagating 
slow magneto-acoustic waves and we show that the disturbances are nőt 
flare-driven bút are most likely caused by an underlying driver exciting 
the loop footpoints. We found that (slightly enhanced) thermal conduc
tion could account fór the observed damping lengths.
Keywords: Sun, corona, oscillations

1. Introduction

An important eláss of proposed mechanisms to explain the high temperatures in 
the solar corona are the wave heating mechanisms, which rely on the dissipation 
of wave energy to provide the required heating. Although the existence of MHD 
waves in the corona has been widely accepted on theoretical grounds fór several 
decades (Roberts 2000), observational evidence remained inconclusive. How
ever, satellites such as TRACE and SOHO have recently provided a multitude 
of observations of both transversal and longitudinal oscillations. Fór example, 
periodic density and intensity variations were detected in polar plumes (Ofman 
et al.,1997; DeForest & Gurman, 1998) by both UVCS and EIT onboard SOHO 
and interpreted by Ofman et al. (1999) as slow magneto-acoustic waves. Similar 
propagating intensity variations were detected in large coronal loops in the 171 
Á and 195 Á passbands of both EIT/SOHO and TRACE (Berghmans & Clette, 
1999; De Moortel et al., 2000; Robbrecht et al.,2001). An extensive overview 
and analysis of a large number of transversal, flare-exeited, coronal loop oscil
lations was presented by Schrijver et al. (2002) and a detailed discussion of the 
measured parameters can be found in Aschwanden et al. (2002).

and.ac.uk
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Figure 1: Left: Typical example (TRACE 171 Á - 13 June 2001, 0646 UT) of a large coronal 
loop footpoint supporting an oscillatory signal. Right: A plot of the running difference between 
the average time series.

In this paper we give a short overview of somé of the observed properties of 
longitudinal waves, observed by TRACE. The observations and data analysis 
are described in Section 2. An explanation of the analysis and an overview of 
the results is given in Section 3, followed by a discussion on the damping by 
thermal conduction and conclusions in Section 4.

2. Observations and Analysis

The analysed observations are high-cadence EUV TRACE data (171 Á), taken 
as part of JOP 83 (23 March 1999 and 04-19 April 2000) and JOP 144 (05- 
13 June 2001). All data were corrected fór dark current and cosmic ray hits 
using the standard TRACE procedures. Fór a detailed analysis, we extracted 
subcubes of roughly 25-30 minutes, with a constant cadence.

Fór the data analysis, we use a running difference to identify propagating 
disturbances and a wavelet analysis (99.0 % confidence level) to determine an 
oscillation timescale (De Moortel et al. 2000). An example of a large coronal loop 
supporting a longitudinally propagating intensity perturbation is shown in Fig. 1 
(left). The straight, diagonal ridges of higher (bright) and lower (dark) intensity 
in the running difference image (Fig. 1, right) indicate that a disturbance is 
travelling along the coronal structure with a more or less constant speed.

3. Results

The statistical information of the averages and ranges of somé of the different 
measured parameters can be found in Table 1. The propagation speeds (122 ±43 
km/s) were calculated from the slopes in the running differences, and in most
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Table 1: Statistical overview of the averages and ranges of physical properties of the 38 
oscillations found in the footpoints of large coronal loops.

Paraméter Average Rangé
Oscillation period P 282 ± 93 s 145 - 525 s
Propagation speed v 122 ± 43 km/s 70 - 235 km/s
Relatíve Amplitude A 4.1 ± 1.5 % 0.7 - 14.6 %
Damping length Ld 8.9 ±4.4 Mm 2.9 - 23.2 Mm
Energy flux F 342 ±126 ergs/cm2s 194 — 705 ergs/cm2s

cases, no significant deceleration or acceleration was observed. It is alsó worth 
remarking that we only found positive gradients, i.e. we only found outward 
propagating disturbances. The average amplitudes of the intensity oscillations, 
as percentages of the background brightness, are very small, of the order of 
4.1 ± 1.5 %. From a wavelet analysis, we obtained the oscillation periods bút, 
as we are concentrating on propagating signals, we only take intő account those 
periods PprOp that are roughly consistent and above the confidence level in a 
number of consecutive positions along the loops. We found values for these 
dominant oscillatory periods of the order of P = 282 ± 93 seconds, and as all of 
these are well above the acoustic cutoff value, the waves are propagating intő 
the corona. However, De Moortel et al. (2002a) pointed out that loops that 
are situated above sunspot regions display intensity oscillations with a period 
of the order of Ps = 172 ± 32 seconds, whereas oscillations in ‘non-sunspot’ 
loops show periods of the order of P^s — 321 ± 74 seconds. From the number 
of consecutive positions where a similar period is detected, we can estimate a 
‘detection length’, Ld = 2.9 — 23.2 Mm. This is nőt a true damping length bút 
only indicates where the intensity changes vanish intő the data nőise and can 
thus be thought of as a lower limit to the true physical damping length.

4. Discussion and Conclusions

Taking intő account all the observed and measured properties, the small-amplitude, 
propagating intensity disturbances were interpreted as slow magneto-acoustic 
waves. The compressive disturbances have no noticeable effects on the loops, as 
the overall, large-scale structure and appearance of the coronal loops remained 
stable and unchanged throughout the observational sequences. At the time
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Figure 2: Top-left: Plot of the estimated damping length in Mm as a function of the 
thermal ratio d. Top-right: Contour plot of perturbed density from a numerical simulation 
with d « 4 X 0.16. Bottom-left: Contour plot of perturbed density from a numerical simulation 
with d as 0.16. Bottom-right: As on the left bút with d as 10 x 0.16.

of observing, no major flares occurred in any of the considered active regions, 
making it highly unlikely that the observed longitudinal waves are flare-driven. 
However, the clear difference in periods found in loops situated above sunspots 
(~ 3 min) and loops above non-sunspot regions (~ 5 min) strongly points to- 
ward an underlying driver exciting the loop footpoints. This results suggests 
that both the 3-minute sunspot oscillations and the global 5-minute solar oscil- 
lations directly or indirectly drive oscillations in coronal loops.

To examine the effect of thermal conduction on the observed waves, we 
look for pláne wave Solutions and assume a constant background magnetic field, 
pressure po and density po. The linearised MHD equations then combine intő 
the dispersion relation

«||o(? - ^PoTok4 - [k||0(7 - l)w2poTo - nPo^2 “ ü^PoPo = 0, (1)

where «||o is the parallel thermal conductivity, cu the frequency and k the 
wavenumber in the z-direction. Given the frequency, w, this is a 4th order 
equation, giving 4 Solutions, ki, for the wavenumber. In the absence of thermal 
conduction, we would obtain a quadratic equation for k, corresponding to sound 
waves, and the extra mode generated when K||0 0 is a thermal mode. The full 



Thermal conduction damping of longitudinal waves in coronal loops 131

solution fór the perturbed velocity is then given by,

v = Ae~iklZ + Be~ik2Z + Ce~ik3Z + De~ikiZ , (2)

where the constants A, B, C and D are determined from the boundary condi- 
tions. As we study the damping of oscillations, we are only interested in the 
positive Solutions fór k, which decay fór increasing z. These Solutions will be 
complex, with the imaginary part corresponding to the decay. Assuming stan
dard coronal values fór all variables, we find estimates fór the damping length 
of the order of 4.3 Mm and 137 Mm (De Moortel et ah, 2002c).

To examine the importance of parallel thermal conductivity, the estimated 
damping length Ld,est is plotted (Fig. 2, top-left) against a dimensionless ther
mal ratio

, _ (7 ~ 1)k||O7oPow 
u — 92

72Po

Fór standard coronal values, d « 0.16. However, fór d « 4 x 0.16 the damp
ing length reaches a minimum of 35 Mm, implying that the observed detec- 
tion lengths could be explained by considering enhanced thermal conductivity, 
K||0 = 4 x 10_11Tq/2 W m-1 deg-1. The contour plot (Fig. 2, top-right) of the 
perturbed density confirms that, fór d « 4 x 0.16, the perturbations drop off 
by more than a factor of four in about 40 Mm, after which the perturbations 
would be lost in the data nőise. On the bottom row of Fig. 2 similar plots of 
the perturbed density are shown fór d ~ 0.16 and d « 10 x 0.16 respectively. 
When comparing these contour plots with the plot fór d « 4 x 0.16, it becomes 
clear that arbitrarily increasing the thermal conduction does nőt necessarily de- 
crease the damping length. Fór large thermal conduction, the plasma becomes 
isothermal and the remaining mode is an isothermal sound wave, travelling at 
the (slower) isothermal sound speed. This slower propagating speed is reflected 
in the steeper gradients in the contour plot fór d « 10 x 0.16. This implies that, 
to obtain damping lengths below the value of 35 Mm, an additional damping 
mechanism would have to be included in the model. One possibility would be 
to include (parallel) viscosity. A comparison between the effect of viscosity and 
thermal conduction is made by Hood & De Moortel (2003). Additionally, the ef- 
fects of inhomogeneities might become important, as the estimated wavelengths 
are of the order of the gravitational scale height fór somé of the observed oscil
lations. Fór a more comprehensive and detailed description of the analysis and 
results presented in these short proceedings, we refer the reader to De Moortel 
et al. (2002b, 2002c).
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Abstract
The possible generation of spicules by Alfvénic waves is studied in MHD 
where dissipation is mainly caused by ion-neutral collision damping, as 
suggested by Haerendel (1992). The propagation of high frequency Alfvén 
waves on vertically open solar magnetic flux tubes is considered by nu- 
merically solving a set of fully nonlinear, dissipative 1.5D MHD equations 
with the waves being generated by a continuous sinusoidal driver in the 
low atmosphere of the Sun. Spicule-like structures with heights of around 
4000 — 10 000 km were formed, primarily by the impact of a series of 
slow shocks generated by the continuous interaction between the upward 
propagating driven and reflected wave trains rather than the predicted 
ion-neutral damping mechanism.
Keywords: Sun, MHD, plasma physics

1. Introduction

In the photosphere and chromosphere the solar plasma is only partially ionised. 
Changes in the magnetic and electric fields directly impact the ion fluid bút 
the neutral fluid is indirectly affected, being collisionally coupled to the ions. 
At sufficiently high frequencies the friction between the ion and neutral fluids 
can become important and Alfvén wave damping and dissipation can occur. 
Haerendel (1992) showed that this effect produces a net waveperiod averaged 
force in the direction of wave propagation which, fór realistic parameters of the 
solar atmosphere, can support a spicular structure against gravity. De Pontieu 
(1999) numerically investigated this effect using an essentially 1D hydrodynamic 
model by looking at the evolution along a cylinder of flux lines and included the 
heating and coupling intő vertical momentum due to wave damping by applying 
the WKB approximation to pláne polarised small amplitude Alfvén waves. It 
was found that structures resembling solar spicules could indeed be generated 
and supported by this mechanism under these approximations. However, the 
assumption of both linearity and the WKB approximation were violated. This 
work extends the model to 1.5D fully dissipative, nonlinear MHD simulations.
1.5D MHD equations, adiabatic apart from heating due to ion-neutral damping, 
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are solved numerically using a flux corrected transport technique. The equations 
are adiabatic with the exception of heating due to ion-neutral damping. Further 
details can be found in James &: Erdélyi (2002).

2. Results

The figure above left shows the velocity profile of the transition region, identified 
with the top of the spicule fór 4s waveperiod, amplitude 20% of the background 
Alfvén speed and 20 G coronal magnetic field. The wavefront reaches the tran
sition region at about 50 s and starts to push it upwards. The plasma is then 
decelerated by gravity. Somewhat more than half of the Alfvén wave flux is 
refiected off the transition region resulting in a downward propagating train of 
refiected waves. This refiected wave train interacts with the upward propagating 
waves resulting in a series of shocks which propagate upward at the slow speed. 
The figure above right shows the motion of the transition region fór three runs 
with identical parameters. The inclusion of damping alone makes little difference 
whilst the inclusion of heating increases the height of the structure. Evolution of 
the structure is dominated by the shocks rather than the force from ion-neutral 
damping predicted by the linear WKB theory. However, the heating from damp
ing has a definite effect, increasing the thermal pressure gradient and helping to 
support the plasma against gravity, resulting in greater heights. At longer wave 
periods, the three results converge as the damping and resultant heating become 
negligible. At shorter wave periods, the waves become too strongly damped in 
the upper chromosphere and the reduction in wave amplitude reaching the tran
sition region overcomes the positive benefit from increased heating resulting in
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smaller structures.

Height (Mm) Height (Mm)

The figures above show the temperature and density profiles at the end of one 
characteristic simulation with the initial profiles shown fór reference. The den
sity profile shows the stratification intő high and low density regions caused by 
the interaction of the upward propagating and reflected wave trains. The profiles 
are similar in character fór all parameters considered. The peaks and troughs in 
the density profile become considerably more pronounced with increasing wave 
period, reaching more than a factor of 10 apart fór 40 s wave periods. Such fine 
structure may nőt be visible in observations so that the results are nőt neces- 
sarily in contradiction with the fairly fiat profiles observed.

Magnetic field 10 20 40
4s Period 3.4 3.8 5.1

40s Period 5.4 6.1 5.6

The damping strength is proportional to the magnetic field which reduces the 
amplitude of waves reaching the transition region and tends to reduce height. In 
contrast, temperatures and therefore the supporting thermal pressure are higher 
fór the same reason. Characteristic velocities (in the absence of damping) are 
alsó higher due to the increased Alfvén speed. Once again though, it is reflec- 
tions that dominate the picture. Increasing the coronal field leads to two com- 
peting effects regarding reflection strength. Firstly, the increased wavelength 
relatíve to the fixed transition region width makes reflections more efficient. On 
the other hand, steepened waveforms are more strongly reflected. Increasing 
the wavelength results in less steepening over the same distance which reduces 
reflection efficiency. This explains why the 4s period results show a monotonic 
increase as the 10G and 20G cases lead to only weak reflection whilst the results 
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fór 40s period show no clear trend.

Period 2 4 6 8 10 20 40
3.5 3.8 4.5 4.6 5.1 5.7 6.1

The above table shows the variation in the maximum height in Mm of the spicule 
fór varying wave period with all other parameters kept constant. The height 
increases monotonically with increasing wave period.
A study of the reflection of Alfvén waves off the transition region in our model 
shows that longer period waves are more strongly reflected. The increased 
strength of the reflected wave train leads to stronger shocks forming which 
would help to explain the increased velocities and heights. Countering this, the 
heating effect will decrease with increasing time period, reducing the ability of 
the thermal pressure gradient force to support the structure against gravity.

3. Conclusion

Evolution of the structure was found to be dominated by the slow shocks formed 
by the continuous interaction between the upward propagating wave train and 
the waves reflected off the moving transition region. The structures formed 
had density and temperature profiles broadly in agreement with observations. 
Heights and velocities could alsó be recreated bút were more paraméter sensitive. 
Alfvén wave damping helped to heat the structure bút the coupling intő vertical 
momentum predicted by the WKB linear analysis was only a minor effect in 
the subsequent evolution. Since the effect depends on the level of ionisation, 
inclusion of thermal conduction and radiative losses may be beneficial. As well 
as the WKB approximation initially being violated in the transition region, 
it is alsó violated everywhere once the interaction of upward propagating and 
reflected waves results in stratification intő high and low density regions. It is 
perhaps nőt surprising then that the anticipated effects failed to materiálisé. 
This stratification is primarily the result of a partially standing wave. A more 
random source of Alfvénic disturbances should reduce this effect.
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Abstract
A series of quasi-periodic pulsations have been detected in the flare of 
19th July 1999. The totál area occupied by the flare ribbons exhibited 
temporary increases in the declining phase of the flare at certain moments, 
the period of the pulses was about 20-30 minutes. The phenomenon has 
been recognized in the center, as well as at 0.5 and 1.0 Á wings on both 
sides of the H-alpha line.
Keywords: flare, oscillations

1. Introduction

Oscillatory and wave phenomena in the solar corona attract continuously grow- 
ing attention of observers and theorists in the context of MHD coronal seis- 
mology and coronal heating. Often, the oscillations are associated with fiaring 
loops. Svestka (1994) described repetitive X-ray brightenings with mean peri- 
ods close to 20 min. A typical example was studied by Harrison (1987): the 
Hard X-ray Imaging Spectrometer on SMM detected soft X-ray (3.5 to 5.5) keV 
pulsations with the period of 24 min. Very recently, 10-20 min periodicities 
have been found in the Doppler shift of the EUV emission lines observed by 
SOHO/SUMER (Kliem et aL 2002) and interpreted as slow magnetoacoustic 
modes by Ofman and Wang (2002). To our knowledge, there have nőt been 
reports of long-time periodicities associated with coronal events observed in the 
white light and in this contribution they are discussed fór the first time.

2. Observational matéria! and procedure

The event of July 19, 1999 was a classic impulsive flare with classification 
2N/M5.8, it had two well developed, complex and receding systems of ribbons 
(Kulinová and Karlicky, 2001). The observations have been gathered in the 
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Heliophysical Observatory, Debrecen, with the large coronograph and the at- 
tached tunable Lyot-filter. The FWHM of the filter is 0.4 Á. During flares the 
observer makes serii of observations at four wavelengths: line centre, +0.5 Á, 
-0.5 Á, and at a special passband ± 1 Á. A totál of 19 such serii (76 frames) 
have been gathered between 07:46:53 and 11:03:08 UT, the first series recorded 
the State immediately before event. Figure 1 shows the first series about the 
flare. The observations were recorded on KODAK H-alpha patrol film and the 
involved frames were digitized later. With this strategy one can easily follow the 
intensity of the flare, because the H-alpha faculae are visible only up to about 
±0.5 Á.

Figure 1: Images of the flare at the Ha line center, +0.5A, -0.5Á, and ± 1 A.

The aim of observing this series was to determine the time profile of the 
totál flare ribbon area. Since the images were made by automatic exposures 
and an absolute photometric calibration was nőt possible, an indirect method 
was applied. This method was based on the analysis of the intensity histogram of 
each frame. The histograms of the intensities contain the three main components 
of the chromospheric pattern: the flare, facular and background points. Each 
component has a normál intensity distribution, so the totál distribution is a 
superposition of three gaussians. The area of the gaussian representing the flare 
intensities is considered as a measure of the flare ribbon size. Figure 2.a. shows 
the histogram of a frame and the three fitted gaussians, the curve belonging to 
the flare points can readily be recognized.

3. Observational results

The time profiles at the four wavelengths are depicted together in Figure 2.b. 
The continuous line with crosses indicates the area at line center, dotted line
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Figure 2: (a) Intensity histogram of a frame at the line center, horizontal axis: intensity level 
given by the 8-bit camera, vertical axis: number of pixels.

with triangles: +0.5 Á , dashed line with diamonds: -0.5 Á dot-dashed line 
with squares: ±1 Á. All of these distributions exhibit certain fluctuations which 
cannot be regarded as random. The curves have local minima and maxima close 
to each other which cannot happen incidentally because the measurements and 
the selection criteria are made differently and independently at the different 
wavelengths. The curves should be regarded as independent, so their local 
maxima and minima corroborate each other.

The most important piece of information to be deduced from the curves is 
the duration of the peaks. After the first maximum and decrease a temporary 
recovery follows at about 9:10 UT, then another decrease and increase at 9:40 
and two later recoveries (in ±1 Á frames already nőt visible) at about 10:00 and 
10:20 UT. The areas are depicted in the number of pixels, the area of a pixel 
is 0,13 arcsec2 (0.3549 as x 0.3643 as), no foreshortening has been taken intő 
account because we are here only interested in the temporal behaviour and nőt
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Figure 2: (b) Time profiles of the flare at the four wavelengths studied.

in the absolute size of the flare. One can see that the period of consecutive local 
maxima is between 20 and 30 minutes.

4. Discussion

The observed quasi-periodic variations of the white light emission intensity gen- 
erated by a solar flare may be associated with slow magnetoacoustic oscillations 
of the flaring arcade, similar to that reported by Kliem et al. (2002). In this 
scenario, the slow waves are trapped between the loop footpoints and cause lon- 
gitudinal field-aligned changes in the plasma density. The density fluctuations 
modulate the emission intensity observed. More detailed study of this scenario 
will be presented elsewhere.
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Abstract

The nonlinear mechanism of the transformation of magnetohydrody- 
namic (MHD) Alfvén waves to kinetic Alfvén waves (KAW) in the ho- 
mogeneous magnetized plasma with small plasma paraméter fi « 1 is 
investigated. As the generation mechanism, the parametric instability, 
where the MHD Alfvén wave is the pumping wave is considered. On the 
basis of the two-fluid MHD and Vlasov equation the nonlinear dispersion 
relation describing three-wave interaction, the instability growth rate and 
the threshold of the instability are found. The theoretical results are used 
fór the interpretation of plasma heating in the solar corona.
Keywords: Sun, MHD, Alfvén wave, instability

1. Introduction

MHD Alfvén waves are weakly damping and there is a problem fór transforma
tion energy from waves to plasma particles. Fór the first time kinetic effects 
(account of the finite values of the proton Larmor radius) in Alfvén waves were 
taken intő account in papers Coroniti (1970) and Stefant (1970). However only 
after the publication by Hasegawa (1976), kinetic Alfvén waves have received 
enough attention. KAWs retain main properties of MHD Alfvén waves, bút 
they have somé new important properties as well, including (1) dependence of 
the wave dispersion on the transverse wave vector component, and (2) presence 
of a non-zero longitudinal component of the electric field Ez.

In the present paper we focus on the new aspects of the transformation of 
MHD Alfvén waves intő kinetic Alfvén waves. It is assumed that an MHD 
Alfvén wave with finite amplitude and dispersion relations cűq = ^0zYa> propa- 
gates in the homogeneous magnetized plasma (b0 = Boez^ with a small plasma 

paraméter (3 = << 1 and decays intő two KAW with wave vectors ki andDo
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k2 and frequencies and W2, Were Va — \ ^norm " Alfvén velocity, 
T=(Te + Ti) is the plasma temperature and mi is the ion mass. The conserva- 
tion laws fór the three wave interactions are assumed to be satisfied:

CJq = UJy + C02, 0 — & 1 4“ k 2‘

Alsó we assume that all wave vectors are situated in the XOZ pláne.

2. The nonlinear dispersion equation fór three-wave inter- 
action

As an initial set of equations, fór studying three-wave nonlinear interaction, we 
use the two-fluid MHD:

= “ (e“J + x ^Bq) m n ^na' 
öt ma \ / \ 7 TnaTia

É^ + WnaVj=0,
Öt \ 7

. 4tt 1 d
v xB = — j + c c ot

-t ld^
V xE =----- ,c dt

= 4np.

Here J = e (n, Vi - nelj, p = e (m - ne),

ra^^{yax^-ma (VaV) Va.

The index a = i, e correspond to ion and electron components of plasma respec
tively. As Fe = ^Fi, influence of Fi force is small, and can be neglected. In 
the Ampere low we neglect the displacement current fór low-frequency waves. 
The electron density and velocity, electric and magnetic fields are written in the 
forms:

ne = no + no + ni + n2,
V = V0 + V1+V2,
V = Vo +Vi + V2,
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+ b o + öi + b 2,

where no - is the average value of the plasma density, no - is the electron 
density perturbation caused by the MHD pump Alfvén wave, the index ”0” 
in all expressions correspond to the pump wave, and indexes ”1” and ”2” - 
correspond to the first and second KAW respectively.

To obtain the dispersion relation for the kinetic Alfvén waves, we use the 
plasma approximation:

nu = nle, (1)

where nie and n^ - are the perturbations of electron and ion densities respec
tively. From the equation of motion and the continuity equation, we find the 
expression for nie related to the KAW. Expression for the perturbed ion density 
is found from the Vlasov equation Shukla (2000). From (1) we have the rela
tion between the vector potential A i and the scalar potential y>i. The second 
relation between Ai and yq we can find from the perpendicular projection of 
the Ampere law:

= kixjix- (2)
c

Equating the expression for form (1) and (2) we have the nonlinear equation 
circumscribing the dispersion of the kinetic Alfvén waves Yukhimuk (1998):

YL 1 + öl Te
1 + nfl y>l = Qinl- (3)

Here nonlinear term Qinl is given by

Qinl — —Fieziekiz
me FA 1
— ITT + Xie) mt iekix

FXex-i^FXey

i mi .
*le
(yL A 
I „ ' lex I 
\n0 /

where Vre — is the thermal electron velocity, xie = ^i^2’ is the
electron inertial length, <5í = -f- is the ion inertial length, ai = 1 - Fo (/xH) - wpi

r04 = /01 (M1.) exp I01 is the zero-(first) order modified

Bessel function, un = klxP^ Pi = is the ion thermal gyroradius. If in the
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plasma propagate only noninteracting kinetic Alfvén waves (Qinl = 0), from 
(3) we obtain the dispersion equation fór KAWs as:

Figure 1: Dependence of the normalized kinetic Alfvén frequencies on the normalized 
wavenumbers kixpt, kiz6i and plasma paraméter /3.

In absence of the pump wave from (3) fór pi, << 1 the linear dispersion 
equation fór KAW is:

4 = (5)

Here — ~^s , Vs = " *s t^e ion-sound velocity. In (4) and (5) we are

take intő account effects due to finite Larmor radius of ions (mis) and effects 
due to the electron inertial (yie). Using expression (3), the dispersion equation 
fór kinetic Alfvén waves is found as:

(6)

where
_ e Va k0zk2xklz 1

me k2z 1 + Xie ’

1 + Xle
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The dispersion equation for the second kinetic Alfvén wave follows from (6) 
when the indexes ”1” and ”2” are exchanged. Using dispersion equations for 
two KAW we can find a nonlinear dispersion equation describing three-wave 
interaction (decay of the MHD Alfvén pump wave intő two KAWs):

— VlA^ZA |-Etta:|2 ■ (7)
The presence of the pump wave leads to the energy transfer from MHD Alfvén 
wave to the kinetic Alfvén waves, which increase their amplitudes. Assuming in 
(7) Wi = wlr + iy, W2 = w2r + iy , (where I7I « Wir,u>2r) and expanding e^a 
and E2A in Taylor series in the small paraméter 17, we obtain an expression for 
the instability growth rate:

[W. A ^pe

7 = V 77 wo,V 16 ^Be

where W = Jg°l .47rnoTe

3. Conclusion

One of the most interesting phenomena appearing on the Sun is the high temper
ature of the solar corona, which reaches 106 K (compare with 5 • 103K at the level 
of the photosphere). For maintaining such a high temperature and compensat- 
ing the radiative cooling the constant inflow of energy is needed. The necessary 
energy is considered to be carried by Alfvén waves, excited in the lower layers 
of the atmosphere of the Sun. Bút Alfvén waves are weakly damping. On the 
other hand, the damping of kinetic Alfvén waves is strong. Therefore, they can 
effectively heat the solar corona. As an application of our theoretical results, 
obtained in this work, we consider somé regions of the solar atmosphere where 
plasma paraméter is small. For typical values of coronal plasma parameters 
Bo = 100G, Te = 106K, no = 1010sm3 we have the instability growth rate 
7 « 6 • 102s-1 and the time of instability development t « 2 • 10~3s. Therefore, 
the presented process can reduce the transmission of the energy from large-scale 
MHD Alfvén waves to small-scale KAW, which are able to heat the corona.
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Abstract
There is abundant observational evidence that the ions in the solar corona 
(in particular, O+5) are heated anisotropicaly, predominantly across the 
background magnetic field. This heating is usually attributed to the dis- 
sipation of ion-cyclotron waves. We study an alternative possibility with 
the dissipation rangé in the solar corona formed by the kinetic Alfvén 
waves (KAWs) which are very short- wavelengths across the magnetic 
field. Instead of transport of MHD wave energy towards to the rangé 
of ion-cyclotron waves, we study transport intő the dissipation rangé of 
KAWs. We show that the nonlinear excitation of short-wavelength (of the 
order 10 m) KAWs in the extended solar corona and solar wind can be 
provided by upward-propagating fást and Alfvén MHD waves launched 
from the coronal base by the convection or magnetic reconnection. KAWs 
are very efficient in the energy exchange with plasma particles, providing 
plasma heating and particles acceleration. In particular, these transver- 
sal wavelengths make KAWs accessible fór the stochastic perpendicular 
heating of oxygen ions when the wave/background magnetic field ratio 
exceeds 0.005. Both the quasi-steady coronal heating and the transient 
heating events observed by Yohkoh and SOHO may be due to KAWs that 
are nonlinearly excited by MHD waves. Keywords: solar corona, waves, 

instabilities

1. Introduction

Spectroscopic SOHO observations of the widths of extreme ultraviolet emis- 
sion lines indicate that ions are very hot in the solar corona at 2-5 solar radii. 
Moreover, the ion kinetic temperatures seem to be highly anisotropic with the 
perpendicular (with respect to the background magnetic field) temperature be
ing much larger than the parallel temperature (Dodero et ah, 1998; Cranmer et 
al. 1999). A similar trend, though nőt so pronounced, is observed in the solar 
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wind, where the perpendicular temperature of ions is higher than the parallel 
and the ion magnetic moments increase with the distance írom the Sun (Marsch, 
1991). These observations suggest that the ions are energized (heated and/or 
accelerated) anisotropically, mainly across the magnetic field.

The perpendicular heating of the ions in the solar corona and solar wind has 
been mainly attributed to the ion-cyclotron damping of high-frequency Alfvén 
waves (see recent papers by Marsch and Tu, 2001, and Hollweg and Markovskii, 
2002, and references therein). The ion-cyclotron sweep has been widely dis- 
cussed as a mechanism fór the energization of the solar atmosphere by relatively 
high-frequency (1 4-103 s-1) Alfvén waves injected at the base of solar corona 
(e.g., Tu & Marsch 1997; Leamon et al. 2000). Numerous magnetic reconnec- 
tion events at the base of the solar corona can provide a possible source fór these 
waves (McKenzie et al. 1995), and the decrease of the ion-cyclotron frequen- 
cies with the distance from the Sun gives rise to the cyclotron damping of these 
waves. Most attention has been given to the cyclotron sweep of Alfvén waves due 
to the parallel inhomogeneity of the magnetic field (length scale L|| ~ 1010 cm). 
However, the waves alsó undergo strong phase mixing due to the perpendicular 
density inhomogeneity (length scale L± ~ 105 4- 107 cm). The perpendicular 
wave vector increases with distance z as k± = — (w/Va) (z/L±), and at 2-3 solar 
radii the Alfvén waves with w = 14100 s-1 would attain k^pp » 1, where pp 
is the ion (proton) gyroradius. However, they should Landau-damp well before, 
at the distances < 1010 cm.

Another possibility is that the ion-cyclotron waves are excited in-situ in the 
solar corona and solar wind. The nonlinear excitation by MHD turbulence - tur- 
bulent Kolmogorov cascade towards higher frequencies - has been discussed as 
an alternative fór the cyclotron sweep mechanism (Hollweg 1986; Li et al. 1999). 
The ion-cyclotron waves can alsó be excited linearly by the perpendicular cur- 
rents developed by finite-amplitude MHD waves (Markovskii, 2001; Markovskii 
and Hollweg, 2001). Yet another possibility is the excitation by plasma outflows 
from coronal reconnection events (Voitenko and Goossens, 2002a).

All of these schemes imply that the wave dissipation rangé is formed by the 
high-frequency waves with frequencies close to the local ion-cyclotron frequen
cies. We note, however, that the ion-cyclotron scenario is nőt free from difficul- 
ties and is nőt the only possibility. An alternative possibility is that the dissipa
tion rangé is formed by the waves that are short-wavelength across the magnetic 
field. So, the turbulent cascade in Alfvénic turbulence is highly anisotropic: it 
does nőt change the parallel wavenumbers that determine the wave frequencies, 
bút increases the perpendicular wavenumbers (Zank & Matthaeus 1992; Lea
mon et al. 2000). The phase mixing in a transversally nonuniform plasma works 
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in the same direction. These mechanisms, again, are too slow fór providing the 
necessary rate of the transfer of wave energy from the MHD length scales, where 
the búik of the energy resides, to the dissipative length scales, which are of the 
order of the proton gyroradius pp.

In the present paper we investigate the possibility that the dissipation rangé 
is formed by the Alfvén waves, which have a sufficiently short wavelength across 
the magnetic field fór the dissipative effects to become significant. An extension 
of the low-frequency Alfvén wave branch intő the region of finite k^Pp (k± is 
the wavenumber component that is perpendicular to the background magnetic 
field) is called a kinetic Alfvén wave (KAW).

The energy reservoir is provided by the low-frequency large-scale MHD waves 
that are launched in the corona by the photospheric motions or excited at the 
coronal base by magnetic restructuring. However, instead of following local 
nonlinear interactions among MHD waves, which are rather slow, we study the 
nonlinear excitation of KAWs which are already in the dissipative rangé. We 
show that the presence of the finite-amplitude MHD waves, polarized in the 
sense of Alfvén and/or fást wave, gives rise to the nonlinear excitation of KAWs 
via three-wave resonant interaction. This process provides a jump-like transport 
of MHD wave energy directly in the dissipation rangé. When the excited KAWs 
have a sufficiently short wavelength and have a sufficient amplitude, they give 
rise to a stochastic acceleration of the ions across magnetic field.

2. Nonlinear excitation of short-scale kinetic Alfvén waves 
by large-scale MHD waves

In terms of the effective density potential 0 = (Te/e) In (ne/n0), the eigenmode 
equation fór KAWs is (Voitenko and Goossens 2002b):

(a2 d \
= (1)

7d is the linear damping/growth rate due to wave-particle interaction, K is the 
dispersion function in the perpendicular wavenumber space,

K2 (2)
1 + Xe

where pT — Pt^, Pt = r = Tp+Te, = eB0/mpc is the
ion-cyclotron frequency, Va = Bo/ y/4immp is the Alfvén velocity, fi = V^/V^
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is the gas/magnetic pressure ratio, xe = <5^2 _ ^-1 (me/TOp) the
electron inertial length. The KAW dispersion function K > 1 fór me/mp < (3 < 
1, and K < 1 fór (3 < me/mp.

The nonlinear part Atot of (1) is quite complicated and is given by Voitenko 
and Goossens (2002). The nonlinear second-order terms that appear in Woi 
come from the electron and ion continuity equations, and from the parallel and 
perpendicular components of the Ampere law. The nonlinear interaction is due 
to the KAW dispersion and the finite values of the number density fluctuations 
n/n0, magnetic compressibility B^/Bo, and parallel velocity of electrons vei|/VA 
in KAWs.

2.1. Parametric decay of MHD waves intő KAWs

The parametric decay instability is a well-known process fór the nonlinear trans- 
fer of energy from a finite-amplitude pump wave to secondary (sometime called 
daughter) waves (Galeev and Sagdeev, 1979). The matching conditions relate 
the frequencies and the wavenumbers of participating waves are important fór 
an efficient energy transfer. We concentrate here on the decay instabilities of 
the large-scale pump MHD waves (Alfvén or fást magnetoacoustic) intő KAWs, 
AW(FW)=KAW+KAW, which are made possible by scalar nonlinear interac- 
tions (Voitenko and Goossens, 2002b). These decay instabilities result in a 
jump-like spectral transport of MHD wave energy directly intő the dissipation 
rangé (i.e., dissipative length scales).

It is useful to factorize the KAW wave functions of the excited KAWs di 
and 02 intő an exponential phase dependence and a slowly varying amplitude, 
$1,2 = $1,2 (t):

01,2 = $1,2 exp (-1011,2* + íki,2 ■ r).

The equations fór the resonant short-scale Alfvén waves 1 and 2, coupled to 
the large-scale pump wave P, are then obtained from the nonlinear eigenmode 
equation (1) as

$1 = í^i,-2,p$2^p; (3)

$2 = ^-2,i,-p$ibp, , (4)

bp = Bp/Bo is the normalized magnetic field of the pump wave. The coupling 
coefficients are

^i,-2,p — (-íwi$2&p) 1 Mot (1; —2; P),

' d

a 
ÖT™
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U-2,i,-p — (íw2<l>ibp) 1 Mot (—2; 1; —P), 

where ATtot have to be calculated írom by eliminating all the pump variables 
in favor of bp, and by eliminating all the KAW variables in favor of $. Then, 
looking for exponentially growing (or decaying) Solutions of the system (3-4), 
$12 ~ exp (ytotO, we find the totál growth (or damping) rate

i— \ 27di + 7d2 , //7di-7d2) , 2
7tot =------------ 2------------ * V (---------------2------------ ) + (5)

where 7/v/, is the nonlinear growth rate - the rate of the nonlinear pumping of 
MHD wave energy intő daughter KAWs:

7nl = y/Uit-2,pU-2,i,-P IM • (6)

2.2. Nonlinear excitation of KAWs by MHD fást waves

We focus on the decay FW=KAW+KAW, where the pump is a FW with 
a frequency wp propagating at an angle to the background magnetic field, 
kp= (fcpj_; 0; fcp2), the z-axis is parallel to Bo- As we are interested in a non- 
local process of the decay intő KAWs with high perpendicular wavenumbers, 
k2±,kix » kpj_, we have — ku. ss k2± = k± and K (fox) « K (fcix) - K. 
The frequency matching condition,

LJl + UÜ2 — U?p = 0. (7)

and the parallel wavenumber matching condition,

klz + s2 |k2z| = kPz, (8)

can be solved for s2 = -1 (anti-parallel propagating decay waves), giving fre- 
quencies of decay waves for given K = K (k±) as

1 / kpz K \ 1 í kpz K \ .
uq = - ( 1 + "7—57“ “Pí w2 — x ( 1 —t—) wp- (9)2 \ kp Kp J 2 \ kp Kp)

For S2 = 1 (parallel propagating decay waves), we find from (7) that the KAWs’ 
wavenumbers should be fixed, pr — = (1 + ^)^px/^pz • The decay intő
parallel propagating KAWs is thus selective (restricted by the matching con- 
ditions). For s2 = -1 (anti-parallel propagating decay waves), the matching 
conditions reduce to the requirement a>2 > 0, which can be satisfied in a wide 
rangé of perpendicular wavenumbers pt < Pt- The coupling coefficients, the 
nonlinear growth rate, and further details of the decay FW=KAW+KAW are 
given in Voitenko and Goossens (2002b).
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2.3. Nonlinear excitation of KAWs by MHD Alfvén waves

We now focus on a pump AW with a frequency wp and a wave vector

kp= (fcp±; 0; kpz), (10)

that decays intő KAWs with fcn. ~ -k2± » fcp± and with approximately equal 
dispersions, K (kj^ re K (fc2±).

The frequency matching condition, wi +^2 = and the parallel wavenum- 
ber matching condition, sioq +«2^2 = a>pK, can be satisfied only fór antiparal- 
lel propagation of the daughter KAWs (we take sp = kPz/ |fcp2|). So, assuming 
sí = 1, we must have S2 = —1. This determines the KAW frequencies as

wi =
VK 1 —A
-—wp; W2 = —2— (U)

Hence, the process is only possible if K < 1, i.e., in a very low-/3 plasma < 
me/mp). The KAWs in a ö < me/mp plasma are sometimes called inertial 
Alfvén waves, because their dispersion is determined mainly by the parallel 
electron inertia.

In the dipólé approximation, — ku_ re k2± = k^, the coupling coefficients of 
KAWs with a pump MHD Alfvén wave are reduced to quite simple expressions:

U1,-2,P = —17-2,1,-P = ÍV7 A2 
me

A2 A-2
<12>

ep is the magnetic polarization vector of the pump wave, ep = Bp/Bp. The 
totál growth rate of KAWs is given by (5), where the nonlinear pumping rate is 
found from (6) as

(13)

As long as /3 is distinctly smaller than me/mp, the MHD Alfvén waves decay 
very strongly, exciting KAWs. However, 7^^ —> 0 fór /? —> me/mp. The decay 
is impossible fór (3 > melrap, where the resonant conditions cannot be satisfied.

These features of the nonlinear growth rate, together with the dissipative 
properties of KAWs, create an interesting feedback loop fór the plasma/MHD 
wave flux system. When the flux of MHD Alfvén waves enters the region where 
(3 < me/mp. nonlinearly driven KAWs are generated and tend to heat the 
plasma up to the level where the (3 is kept slightly below me/mp, (3 = /3C < 
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melmp. When used in (13), this particular value [3C provides a dynamical equi- 
librium in which the nonlinear growth rate ^nl, at which the energy is pumped 
in the plasma via intermediate KAWs, balances the energy lost from the plasma 
due to emission, thermal conduction and plasma acceleration. With different 
powers of the launched MHD Alfvén flux, the interplay of these processes can set 
up different regimes - from weak additional heating in the vicinity of the transi- 
tion point /3 = me/mp, to the creation of an extended region where < melmp^ 
which ends up with accelerated flows of heated plasma, where (3 > melmp.

3. MHD wave decay and anisotropic plasma heating in 
the solar corona

The nonlinear properties of KAWs provide a very promising plasma energiza- 
tion mechanism that can be responsible fór the plasma heating and solar wind 
acceleration in the coronal holes. Let us imagine an initial static equilibrium 
where the plasma is heated locally, only at low heights (e.g., by acoustic shock 
waves), and the plasma temperature and density decrease with heliocentric dis- 
tance along open magnetic field lines. The gas/magnetic pressure ratio should 
alsó decrease, practically to zero, at the distance of the order of the hydrostatic 
scale height. Now, assume a flux of MHD waves, launched in the corona by 
photospheric motions (or by magnetic reconnection events at the coronal base).

3.1. Quasi-steady plasma heating

The flux of MHD Alfvén waves propagates upward unattenuated up to the 
height where (3 becomes equal to melm-p. As soon as /3 drops below me/mp, 
the MHD Alfvén waves undergo a strong parametric decay intő KAWs. Due to 
their short perpendicular wavelengths, the nonlinearly excited KAWs dissipate 
via collisional or collisionless wave-particle interaction, which, in turn, gives rise 
to the plasma heating and particles acceleration. Thus, the flux of KAWs, that 
propagates further upward, can easily increase (3 again well above melmp in the 
high corona and provide the energy source fór the solar wind acceleration. The 
eventual result of this should be a new, dynamic equilibrium, in which (i) the 
first transition point from (3 > me/mp to [3 < me/mp is shifted to larger heights 
(result of the dissipation of downward KAW flux); (ii) there is an extended 
region where (3 is kept (by the dynamical back reaction on the KAWs damping) 
at a level below meJrnp. so as to provide an efficient conversion of the upward 
MHD Alfvén flux intő two counter-streaming KAW fluxes; (iii) there is a second 
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transition point írom (3 < me/mp to /3 > me/mp, beyond which the plasma is 
strongly heated by the upward KAW flux and expands farming solar wind.

Let us turn to numerical estimates. We take plasma parameters that are 
typical far coronal holes. The temperatures and densities of electrons in coro- 
nal holes are rather well determined (see Wilhelm et al., 1998, and references 
therein). Near critical point, we take (3 = 0.99me/mp, Te = 105 K, ne = 3 x 10' 
cm-3, magnetic filed Bo = 5G and Tp/Te = 1.5, Qp = 5 x 104 s-1. Then the 
electron collisional frequency ve may be estimated as ve ~ 100 s-1. As the colli- 
sional (resistive) dissipation of KAWs is stronger than the Landau damping far 
low-frequency waves Wk < 10 s-1, we use the collisional damping as an estimate 
far the dissipation rate: 

7di = 7d2 = 7d = -0.25i/e
kl<%

l + k2^2' (14)

and
7tot = 7d + 7nl-

The maximai growth 7tot ~ 0.6 s-1 is attained at k^ő2 « 1 if we take an 
(underestimated) amplitude bp = 0.0023 far the MHD waves, participating 
in elementary three-wave interactions. Formally, we can have a much higher 
growth rate with different wave and plasma parameters, bút we are restricted 
by the condition of weak growth/damping, i.e., 7tot should be smaller than wp, 
7tot < wp, which can be violated far the low-frequency MHD waves. In this 
respect we note that the wave flux, coming from the (3 > me/mp region, meets 
initially very small values of 1 — (3mp/me, satisfying the condition qtot < w, bút 
providing fást enough conversion of wave energy. This mechanism is working in 
such a way as to keep (3 very close to me/mp, so that the values = 0.99me/mp 
can be reasonable. Bút, far any (3 < me/mp, the fastest growing waves have 
perpendicular wavenumbers in the rangé k\b2 = 1 4- 3.

An essential feature of the heating by Alfvén wave decay is its relation to the 
region of (3 < me/mp at somé distance from the Sun. The AW-driven KAW flux 
will dissipate fást in the vicinity of the critical level where (3 ~ me/mp (with the 
rate (14) in collisional régimé), and will thus provide a localized quasi-steady 
heating.

At the same time, the part of the wave flux polarized in the sense of a fást 
mode can decay and heat plasma in the wide rangé far (3, (3 > me/mp. The 
heating by the FW-driven KAWs can be distributed over large distances from 
the Sun because the condition (3 > me/mp is fulfilled in the most part of corona 
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and in the solar wind. The Progressive refraction of FWs with heliocentric 
distance could provide the disturbed source fór KAWs.

3.2. Transient brightenings

Transient brightenings on time scales of about one minute or shorter are ob- 
served in the low corona by Yohkoh and SOHO (blinkers, nano- and microflares) 
and attract an increasing interest (Shimizu et al., 1992; Innes et al., 1997; Berger 
et al., 1999; Roussev et al., 2001; Berghmans et al., 2001). It is believed that 
most of these explosive events are closely related to the interaction of magnetic 
fluxes, separated by current sheets. Fushiki and Sakai (1994) have shown that 
fást waves can be produced in the solar atmosphere by a pinching current sheet.

We have shown (Voitenko and Goossens, 2002b), that the fást waves emitted 
from the magnetic reconnection events heat the surrounding plasma by heavily 
damped KAWs that are excited by the parametric decay instability of the fást 
waves. Fór the FW with amplitude bp = 0.1 and frequency cűp = ve = 30 
s-1, pumped from the current sheet, we estimate the typical time fór the decay 
instability intő KAWs to develop and the plasma to heat, Ttot ~ t^z, ~ tc ~ 1 s. 
This process provides fást local heating of coronal plasma in the volume of about 
103 x 103 x 103 km3.

3.3. Stochastic ion heating by KAWs

The nonlinear driven KAWs with k^ö? ~ 1 are almost electrostatic in sense that 
their electric field is almost parallel to the wave vector, |k • E| » |k x E|. In this 
case the velocity of the polarization drift of the ions becomes large, which makes 
the KAWs available fór the stochastic ion energization (heating) across the mag
netic field. Stochastic ion heating by (quasi-) perpendicular electrostatic waves 
has been studied by Stasiewicz et al. (2000). The efficiency of this process can 
be estimated on the basis of individual particles motion in wave fields (Balikhin 
et al., 1993). Hence, we consider the motion of two ions that are initially close 
in the phase space, |ír| = |ri — r2| < |ri|, |r2|, and |óv| = |vi - v2| < |vi| ,|v2|. 
From the ion equation of motion, we obtain fór the perpendicular components 
of the velocity difference:

d _ Qí dEx c । , c—óvx = —-r—ár± + 
dt mi dr±

y-övy = -íliSvx, 
dt y
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where the x-axis is taken in the direction of Ej. • Differentiating the first equation 
with respect to time, and eliminating ővy by the use of the second equation, we 
obtain the linearized equation for the rr-component of the velocity difference:

d2 c Qj dEx 
mi dx

8vx.

Chaotic energization occurs when the difference between the partiele velocities 
grows exponentially with time,

exp (7cht) •

This corresponds to

7ch =
qí dEx _ 2
mi dx 1 > 0.

We can write the condition of the stochastic heating of ions i in terms of the 
wave magnetic field By as

kxVA Hp By
Qi KB0> (15)

Hence, the condition for the stochastic heating of oxygen ions O+5 is

mj kxVA^ + By > !
5mp Qp K Bq

For the nonlinearly excited KAWs with kxöe > 1 we obtain the condition for 
the relatíve KAW amplitudes as

pKAW coy 5mp me K
> 7^1/—-.ez,,-----r = (1 4- 3) x 10-3. (16)Eq mi y TTlp kxSe (1 "I- jUp)

Since the amplitudes of coronal MHD wave are in the rangé BMHD/Bo = 
0.05 4- 0.1, the condition (16) becomes realistic even for a small fraction (< 0.1) 
of MHD wave energy transferred to KAWs, and the O+5 ions can be strongly 
heated in the perpendicular direction. However, due to the high efficiency of 
the nonlinear excitation of KAWs, we could expect much more energy to be 
transferred to KAWs, of the order of the initial MHD wave energy. In this 
case the protons can alsó be stochastically heated by KAWs. The condition for 
stochastic proton heating is B^AW/Bo > 0.01.
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4. Conclusions

We have studied the parametric excitation of KAWs by pump Alfvén and fást 
waves. The main conclusion is that these elementary nonlinear processes can 
strongly accelerate the spectral evolution of wave energy from MHD length 
scales to dissipative short length scales in the solar corona. The parametric 
decay instability of a pump MHD Alfvén wave intő KAWs is only possible in 
a very low-/3 plasma, /3 < m£lmp. The pump fást magneto-acoustic wave can 
drive KAWs in a low-/3 plasma, /3 < 1.

The nonlinear excitation of KAWs in the extended solar corona can be pro- 
vided by upward-propagating (Alfvén and fást) MHD waves launched from the 
convection zone or excited by the magnetic reconnection events at the coronal 
base. Short transversal wavelengths of the order 10 m make KAWs accessi- 
ble fór the stochastic heating of oxygen ions if the wave/background magnetic 
field ratio exceeds 0.005. The resulting ion heating is primarily in the direc- 
tion perpendicular to the background magnetic field. This process provides an 
alternative to the ion-cyclotron explanation fór the intense transverse heating 
of oxygen ions observed by SOHO at 2 4- 4 solar radii. Similarly, the impul- 
sive heating events at the coronal base can be due to the dissipation of KAWs 
nonlinearly driven by MHD waves, excited by the collapsing current sheets.
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Abstract
Magnetic reconnection in the lower transition region of the solar atmo- 
sphere is numerically simulated by solving the fully nonlinear, time-dependent, 
dissipative, radiative 2D MHD equations. Setting the initial parameters 
describing transition region explosive events, we computed the evolution 
of the reconnection jets. Taking intő account the limit of the spatial and 
temporal resolution of the CDS camera and converting the high-resolution 
numerical results intő ‘CDS-resolution’, the propagating reconnection jets 
are found to have similar properties as those described by CDS blinker 
observations. These results suggest SOHO CDS may actually observe re
connection driven explosive events as blinkers.
Keywords: Sun, MHD, blinkers, explosive events, transition region

1. Observations

Transition region blinkers (TRBs) are observed in the pást five years in the 
lower solar atmosphere. Numerous blinker observations followed their discovery 
by the Coronal Diagnostic Spectrometer (CDS) of the Solar and Heliospheric 
Observatory (SOHO) (Harrison (1997)).

Blinkers are best detected in the O V line and are found to occur in both 
active and quiet regions of the Sun. Typical behaviour of active-region blinkers 
is very similar to quiet-region blinkers (fór more details see e.g. Bewsher et al. 
(2002)).

The mean lifetime of a blinker event is approximately 16 minutes, the mean 
rise and fali times are around 8 minutes and the intensity enhancement ratios 
are around 1.8. There is evidence that blinkers appear to be increases in density 
and/or filling factor rather than increases in temperature. Harrison et al. (1999) 
suggest it is probable that blinker events are driven by activity which most likely 
continues to dump energy intő the plasma throughout the blinker duration. The 
mean area of blinkers is 2.9 x 107 km2. The frequency of blinker events on the 
solar disk is 1 - 20 s-1.

mailto:D.Marik@sheffield.ac.uk
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2. Blinkers as CDS signature of reconnection?

Marik & Erdélyi (2002) proposed a blinker model, coinciding best with the 
above observational findings, based on magnetic reconnection. Our aim is here 
to apply this model and to investigate the plasma jets driven by the process 
of magnetic reconnection in a 2D magnetic plasma representing the solar TR. 
Magnetic flux cancellation may be initiated by localized increase of magnetic dif- 
fusivity in a current concentration separating two magnetic flux tubes (Roussev 
et al. (2002)). Another driving mechanism could be the reconnection between 
randomly emerging magnetic flux at the boundary of active regions or super- 
granular cells where the newly emerged flux is pushed intő the background 
magnetic field (Jin et al. (1996)). In both cases, reconnection results in jet 
ejections along the current sheet developed at magnetic shears. (Note it is nőt 
necessary to have opposite polarities! See, e.g. Zhang et al. (2000), Ryutova & 
Tárbeli (2000).)

The above picture of reconnection is accepted as a probable mechanism 
driving explosive events (Innes et al. (1997), Erdélyi et al. (1997), Erdélyi & 
Sarro (1999), Erdélyi et al. (1999), Roussev el al. (2001b)). Explosive events 
(EEs) are strongly localised high velocity jets in the transition region observed 
by SUMER onboard SOHO (Erdélyi et al. (1998), Perez et al. (1998), Perez et al. 
(1999)). How could they link to slow speed TRBs observed by CDS? What could 
their role be in blinker evolution? In spite of the apparently distinctive character 
of these two phenomena we propose they may be manifestations of the same 
physical process observed by different Instruments. CDS has, at most, a spatial 
resolution of 1.7 x 4.0 which is many times the area of an average explosive 
event on the solar surface. Hence, CDS provides unresolved integrated signals 
from a whole surface where many tiny and localised magnetic reconnections 
may occur. This may suggest blinkers could in reality be identical to EEs (or 
a series of them) bút CDS cannot resolve these events. MHD reconnection 
simulations of EEs are carried out. The reconnection jet velocity and profiles 
are re-mapped intő CDS resolutions. These re-mapped profiles are found nőt 
be in contradiction with observations describing TRBs.

3. The equilibrium model
I

The solar atmospheric plasma is considered as an ideál gas embedded in an 
intermittent inhomogeneous vertical magnetic field (y-coordinate), where xz is 
the pláne of the solar surface with z-coordinate being the ignorable direction. 
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Gravity is neglected. The governing equations of a 2D dissipative, radiative 
MHD are considered (see, e.g. Roussev el al. (2001b) fór details on inclusion of 
dissipation and radiation).

The initial magnetic field configuration describing a current sheet is given by 
B = (0, By(x), 0); By = Bq tanh (Cx/Lq) , where Lq and Bq are typical values 
of length scale and magnetic field strength, respectively, and C is a constant. 
The initial equilibrium velocity is assumed to be zero throughout the computa- 
tional domain. The totál pressure balance is given by B2(x)/2 + P(x) = B^/2 + 
Po = const, where P(x) is the kinetic gas pressure and can be computed once 
the initial magnetic field distribution, By(x) is given. Fór the sake of simplicity 
a uniform kinetic gas pressure distribution in the y-direction is assumed as a first 
approximation resulting in the thermal energy, e = P/(^— 1), alsó being uniform 
along y (although in reality it decreases in height towards the solar corona). To 
represent the TR containing a current sheet the density stratification in the 
y-direction is given by g(y) = p0 {1 + Ap {1 - tanh [(e/Lo^y + ys)]}} , where 
qo is a typical value of the mass density in the low density region and 2Ap 
is the jump in density across the transition region. The corresponding equi
librium temperature profile is an increasing function in height, and is given 
by T(y) = P/o{y). The mass density distribution in the x-direction reads as 
q(x) = po (P/Po) = Qo (e/eo) , where 0 is a free paraméter (one over the poly- 
tropic index) used to control the density profile in the current concentration. 
The full 2D profile of the mass density is computed by q(x, y) = Q^Q^y)/ Qo- 
Using the equation of State e = qT/^ — 1), one can dérivé the 2D temperature 
profile T(x,y). Finally we alsó assume energy balance in the entire physical 
domain fór the initial State: S(x, y) — Vq(x, y) — Lr(x, y) = 0 at t = 0, where S, 
q and Lr are the volumetric heating rate, the heat flux and the radiative loss, 
respectively.

Magnetic reconnection is governed by a time-dependent localized magnetic 
diffusion yioc = yoP^^^P {—a/L^x2 + (y + Po)2]} , where y0 is a shift param
éter and rjo = VAoLo/Rm (Rm is the magnetic Reynolds number, Vao is the 
Alfvén speed given by Vao — Bo/y/öö) and F(t) is a time dependent function.

4. Numerical Method

The numerical experiments are performed using a 2D compressible MHD code 
based on staggered mesh. The MHD equations are solved in a 2D domain using 
non-uniform staggered grids. The grids are stretched in the x-direction to better 
resolve the region around the current concentration in which the important 
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dynamics of the experiment takes piacé. In the y-direction, however, there is 
no stretching applied since we need high resolution all the way throughout this 
direction of the domain. The MHD code used in our experiments conserves 
mass, momentum, energy, and magnetic tieid divergence.

5. Reconnection jets

The compressible fully nonlinear 2D MHD equations are solved for typical pa- 
rameters of EEs. Our aim here is nőt to study the paraméter space for EEs; this 
has recently been extensively done by Roussev et al. (2001abc, 2002), instead 
we focus on obtaining characteristic profiles of velocity, density and temperature 
distributions for EEs. These profiles will be re-mapped intő CDS resolution and 
will be compared to TRBs. Fig. 1 shows there is a blue shifted jet propagating 
towards the high temperature region (y > yo) with increasing velocity and there 
is a red shifted jet moving towards the high density region (y < yo) submerging 
intő the lower atmosphere.

Figure 1: The evolution of the relatíve density distribution of the reconnection jets. 
The density is in units of y0 = 2.54 x 10“14 g cm-3. The reál times of the images are 
205s (left), and 334s (right).

EEs simulated above (or seen by SUMER) appear to have different properties 
from blinker events seen by CDS as described above. They are smaller and 
their lifetime is much shorter. The observed velocity profiles alsó appear nőt to 
match, because EEs have a maximum jet head velocity around the TR Alfvén 
speed (as it should be!) while, according to recent spectral analyses TBRs do 
nőt really show considerable velocity enhancements. Blinker velocitiés of around 
20 km/s are the upper limit (Harrison et al. (1999)).

Let us now re-map the obtained high spatial and temporal resolution results 
of the reconnection model of EEs in Fig. 1 by taking intő account the reso-
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lution limits of a typical CDS observation of TRBs. We convert the velocity, 
temperature and density profiles of the outwards propagating blue jet of an EE. 
Before we proceed we recall: (i) a CDS pixel overlaps a 1.7” x 4" domain which 
actually corresponds to more than the whole EE area on the solar surface; (ii) 
the CDS exposure time is around 10 sec; (iii) images are averaged over the 
whole depth of a domain. Fig. 2a shows the difference between the numerical 
simulation (maximum speed in the line of sight) and what CDS would ’see’ as 
an integrated velocity profile.

Relatíve lemp. & dens .vs. Time

Figure 2: Leit are the simulated (long dashed) and the re-mapped ’CDS-eye’ integrated 
(dotted) velocity profiles obtained from the case study in Fig. 1. (Vao = 1.293 • 102 
km s , íao = 23.2s. Right are the corresponding relatíve density (long dashed) and 
the relatíve temperature (dotted) profiles.

Although there does nőt seem to be an obvious saturation of the integrated 
velocity profile around the 20 km/s observed maximum, it reaches much lower 
values than the actual simulations (Figure 2a) and remains well under this 
threshold. Unfortunately we cannot simulate blinkers fór longer than 6-8 min- 
utes as a 6 minutes event takes more than two days CPU to run. However, the 
location of the blue jet after 300 sec is already well in the solar corona anyway. 
Similarly in Fig. 2b one sees that the integrated, averaged relatíve temperature 
and density. Observe the enhanced density as speculated by Harrison (1997). 
These integrated velocity, relatíve temperature and density profiles suggest the 
reconnection model could describe blinkers.

On the other hand, one has to recall that 80-90% of blinkers are in unipolar 
magnetic field dominated areas which may contradict blinkers are the results 
of magnetic reconnection unless there is a shear in unipolar magnetic fields.
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Sunspots in many cases show light bridges providing sheared fields. There is no 
reason to believe that smaller flux tubes cannot have such bridges as well. Two 
final comments: (i) The re-mapped density enhancement of an EE per CDS 
pixel may seem to be small. However, EE’s show up very repeatedly in SUMER 
lines. (ii) The averaged temperature enhancement in Fig. 2b (« 10%) is well 
within observation errors.

Statistical analysis of joint SUMER and CDS observations supported by 
high-resolution ground based magnetograms to construct a magnetic carpet of 
blinkers may shed light on the role of explosive events in blinker formation.
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Abstract

Observations of the solar chromosphere-corona transition region plasma 
show evidence of small, short-lived dynamic phenomena called e.g., explo- 
sive events, blinkers, micro- and nano-flares. These events may serve as 
the basic building blocks of the heating mechanism(s) of the solar atmo- 
sphere. In this paper we study the heating of the solar corona by numerous 
micro-scale randomly highly localized events representing the energy dis- 
sipation főúrid by observations. We found, that typical loop temperature 
structures seen by e.g. TRACE are recovered when the energy release 
occurs close to the footpoints of the loop. Implications of these results 
upon the latest coronal loop observations are addressed.
Keywords: Sun, atmosphere, transition region, corona, hydrodynamics

1. Introduction

One outstanding problem in solar physics today concerns the heating of the so
lar corona. Recent interest has centered on the idea that the solar atmosphere 
is heated by small events, which are believed to be manifestations of localized 
magnetic tieid reconnection (Parker 1988), where direct current dissipation oc
curs. Since these events have associated about 10 9 times the energy of a typical 
large flare, they are usually called nanoflares. High resolution satellites (SOHO 
and TRACE) have revealed a kind of very small-scale activity at transition- 
region temperatures (Pérez et al. 1999; Erdélyi, De Pontién, & Roussev 2001). 
More recently Benz & Krucker (2002) analyzed the energy distribution of the 
different microevents reported in the literature and estimated their totál energy 
input intő the corona, finding that the energy input observed by EIT on the 
SOHO satellite can be estimated to be of the order of 10% of the totál radiative 
output in the same region. These heating events are candidate signatures of 
nanoflares (or microflares) proposed to explain the high temperature and the 
very existence of the corona.

ield.ac.uk
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Several authors have proposed hydrodynamic models to study the temperature 
evolution of coronal plasma loop under the assumption of a time-varying beating 
(e.g., Sterling, Shibata, & Mariska 1993; Walsh & Galtier 2000). Models with 
a spatially and temporally varying beating have alsó been considered to study 
impulsively heated solar flares (Mariska et al. 1989; Peres et al. 1987; Betta et 
al. 2001) and coronal loops maintained close to steady conditions (Reale et al. 
1994; Betta et al. 1999). In particular, in the latter models the effects of releas- 
ing either periodic or random heat pulses at the loop apex were studied. On the 
other hand, Sarro et al. (1999) proposed numerical models to study the natúré 
of explosive events (i.e., of impulsive mass motions) and their contribution to 
the coronal heating mechanism. The response of the coronal plasma loop to a 
dynamic heat input generated by the flux braiding model was studied by Walsh 
and Galsgaard (2000). More recently, Spadaro et al. (2002), Mendoza-Briceno 
et al. (2002), and Warren et al. (2002) investigated the hydrodynamic evolution 
of coronal loops undergoing transient heating.

In this paper, we investigate the response of the coronal loop plasma to 
randomly injected microscale heat pulses near the footpoints. In contrast with 
previous work (Mendoza-Briceno et al. 2002), here we consider the effects of 
asymmetrical energy releases near the footpoints of semi-circular loops.

2. Hydrodynamical Modeling

Since the plasma dynamics in a coronal loop is dominated by the magnetic field, 
we make the usual assumption that the plasma motion takes piacé primarily 
along the magnetic field lines which in turn determine the loop geometry. Heat 
conduction due to the electron diffusion alsó occurs along the field lines rather 
than across them. In this way, each plasma loop can be treated almost indepen- 
dently from the neighboring ones implying that the thermo-dynamical evolution 
of the coronal plasma along the field lines is essentially one-dimensional (1D). 
Under these conditions, the energy conservation equation, including the effects 
of thermal conduction and radiative cooling and heating reads

d^pT) d(pvT) p,^ — 1) dv
dt + ds Rg 1 de

d 
ds ■ (1)+p2Q(T)-#(M) 

os

In these equations, s denotes the position along a loop of constant crbss-section, 
p is the plasma mass density, v is the fluid velocity, T is the plasma temperature, 
p is the gas pressure, g(s) is the component of gravity along the field line, Q(T) is 
the optically thin radiation-loss function, H(s, t) is the coronal heating function, 



Impulsive heating in the solar atmosphere 173

?(= 5/3) is the ratio of specific heats, p is the mean molecular weight, and 
k w 10 “T5/2 W m-1 K-1 is the coefficient of thermal conductivity parallel to 
the magnetic field (Braginskii 1965). The set of governing differential equations 
is closed by assuming a pressure relation of the form p = l^pT/ p, where TZg is 
the gas constant.

Here we adopt many of the same parameters and assumptions that were used 
in Mendoza-Briceiio et al. (2002), with the exception that now the condition of 
reflection symmetry about the apex is completely relaxed. In this way, the entire 
semi-circular loop is represented by the calculations. This allows fór models of 
the cooling of loops that are being impulsively heated near their footpoints in 
an asymmetrical manner.

In order to describe the spatial and temporal variation of heating, we choose 
a function of the form 

H(s, t) = ho + Hq exp^—at) exp (s ~ sq)2
(2)

where so denotes the location of the heating pulse, (3 fa 3.6 x 104 m is the width 
of the heating, ho = 3.6 x 10-5 J m-3 s-1 is the constant background heating 
needed to maintain the initial atmosphere, Ho = 3 J m-3 s-1 is the maximum 
amplitude of the impulsive heating and a = ln(0.1)/At. Hence, 90% of the totál 
energy is deposited during a finite time At. Fór the calculations of this paper the 
time duration of the heating is taken to be At = 150 s. In particular, we study 
the response of the loop to random energy inputs of totál energy Etot ~ 1018 J. 
The pulses are randomly injected in a small loop segment of length 0.1L from 
the footpoints, with elapsing times of either 60 or 120 s. In order to produce 
asymmetrical injections of the energy input near the footpoints, the random 
spatial distribution of the pulses on one loop segment is taken to be different 
from that on the opposite loop segment.

With the above prescriptions, the governing equations are solved numerically 
using the same 1D finite-difference hydrodynamics code employed in Mendoza- 
Briceno et al. (2002).

3. Results and Conclusions

All calculations start with initial conditions corresponding to a hydrostatic equi- 
librium loop of totál length L = 1.0 x 107 m (10 Mm), excluding the chromo- 
sphere. The initial atmosphere is such that the base pressure is 0.01 N m-2 
fór all cases. The boundary conditions are specified by fixing the same initial
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density and temperature at the two footpoints. Since p oc pT, this is equivalent 
to assign a constant pressure at s = 0 and L. The presence of a deep chro- 
mosphere is here simulated by allowing mass to 9ow across the footpoints by 
just hydrodynamically evolving the velocity there. We first describe the case

Figura 1: Evolution of the temperature along the loop length fór 10 random pulses injected 
near the two footpoints. Different random spatial distributions of the pulses are used at each 
side. The time interval between successive pulses are: of 60 s (Left) and 120 s (Right) , with 
the first pulse being injected at t = 0.

in which 10 randomly spaced pulses are released near the two footpoints, with 
the random spatial distributions («o) of the pulses being different on both sides. 
The time evolution of the loop temperature is displayed in Fig. la where a 
sequence of computed profiles along the entire loop length is shown at intervals 
of 10 s each. The pulses are randomly injected over a loop segment of 0.1L from 
the footpoint locations and with elapsing times of 60 s with the first pulse being 
injected at t = 0.

Fór comparison, Fig. lb depicts the resulting temperature evolution when 
the elapsing time between successive injections is increased from 60 to 120 s. 
The trends of the evolution are quite similar to those shown in Fig. la, with 
the exception that in this case the overall loop temperature is slightly reduced. 
The effects of increasing the elapsing time between successive pulses is more 
clearly seen in Fig. 2a, which shows the time variation of the temperature at 
the apex fór the evolutions of Figs. la (solid line) and lb (dashed line). On 
average summit temperatures around 1.5 MK are maintained during the first 
540 s of the evolution fór the model of Fig. la and during the first 1100 s fór 
the model of Fig. lb.

Fig. 2b shows two temperature profiles resulting from averaging in time the



Impulsive heating in the solar atmosphere 175

Figure 2: Left: Evolution of the summit temperature fór the same models of Fig. la (solid 
line) and Fig. 1b (dashed line). Right: Integrated temperature profiles fór the two random 
energy pulse distributions given at 60 s (solid line) and 120 s (dashed line) of elapsing times.

temperature evolution fór the two models of Figs. la (solid line) and 1b (dashed 
line), all integrated over the first 550 s and 1100 s of the corresponding evolutions 
and fór ten injected thermal pulses. The random temperature profile fór elapsing 
time of 60 s show a higher summit temperature compared to the evolution with 
elapsing time of 120 s. From this figure we may alsó note that farther away from 
the footpoint the two curves reproduce a quasi-isothermal profile along the loop, 
suggesting a footpoint exponential decay heating as discussed by Aschwanden 
et al. (2001) and Mackay et al. (2000; see their Fig. 5b).

We have presented hydrodynamic loop simulations to study the response 
of the plasma to input energy releases near the footpoints of loops of semi- 
circular shape. In contrast with previous calculations, the entire loop length is 
represented by the calculations. This allows considering the effects on coronal 
heating fór more realistic cases in which the injections on one side of the loop are 
nőt necessarily symmetrical with respect to the other side. The energy input 
was introduced as an additional heating term in the energy equation by just 
perturbing the initial hydrostatic equilibrium profile.

The calculations show that successive energy inputs can maintain the plasma 
along the loop at typical coronal temperatures. On the other hand, the appear- 
ance of localized thermal bumps along the loop length seem to be a pattern 
fór models with random pulse injections. Such bumps could be related to the 
signatures observed by Patsourakos & Vial (2002).

In summary, we find that by dynamically injecting energy (e.g., as a result of 
nano-scale magnetic reconnection as predicted by Parker 1988) coronal plasma 
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loops can stay at temperatures over a millión K as revealed by observations.
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