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Abstract This work investigates the problem of NEA (Near Earth Asteroids) dynamics.
Due to their many close encounters with the inner planets, their motion is highly
chaotic - which leads to problems when one wants to calculate their orbits for
long time scales. As of the restrictions of the existing classifications (which can
be applied only on short or mid term scales), also a statistical treatment of NEAs
leads to ambigious results. We introduce a new classification scheme, based on
Fuzzy Logic. With this method, it is possible to derive quantitative and qualitativ
results on the dynamics of NEAs even for very long time scales.
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1. Introduction

Our Solar System is populated with a large number of bodies orbiting the Sun
in more or less eccentric orbits. Near circular orbits — like that of the planets —
do not cross the orbits of other bodies while smaller bodies are known to suffer
from close approaches and even collisions, as we know from many craters on
the surfaces of the Solar System bodies. In this work we are investigating the
the so called “Near Earth Asteroids (NEAs)” whose orbits bring them close to
the Earth. We want to show the problems that arise when one wants to deal
with the longterm evolution of this asteroids and how they can be solved by
introducing a new classification scheme.
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2. Why a new classification of NEAs?

Why is there a need to classify Near Earth Asteroids (NEAs)? And why
are the existent classifications no longer suitable for some aspects of scientific
research? In order to answer this questions, one has to understand why the
existing classifications where created at all. Up tow, there are two different
models of NEA classifications.

2.1 Shoemaker’s Model

The members of G4, the Near Earth Asteroids (=NEAs), are usually divided
into three subgroups':

m the ATENS, with a semimajor axis smaller than the one of the Earth
and an aphelion distance Q = a(1 + e) > 0.983 AU (mean perihelion
distance of Earth)

m the APOLLOS, with a semimajor axis larger than or equal to the one of
the Earth and a perihelion distance ¢ = a(l — e) < 1.017 AU (mean
aphelion distance of Earth)

m the AMORS, with a semimajor axis larger than the one of the Earth and
a perihelion distance 1.017 AU < ¢ < 1.3 AU

Today (March 2006) the total number of discovered NEAs is 2787 (324
Atens, 1923 Apollos, 1672 Amors). NEAs larger than 1 km in diameter is
about 2000 and that of the asteroids larger than 0.1 km in diameter is about
320 000 [8]. A new estimation with slightly different values can be found in
Bottke et al. [1].

2.2 Milani’s Model

Milanis Model of asteroid classification was derived by the data of the
SPACEGUARD project. This project includes data from the integration of
410 asteroids for 200 000 years. The classification of the fore mentioned 89
asteroids was performed by observing their long term behavior. There are four
main criteria :

Values and changes of the orbital elements (a, e, 7, ¢, Q))

Number and changes of node crossings (NC)

Number and depth of the close approaches (CA)

m Resonances?

According to this main criteria, one distinguishes between the following
classes (for details see Milani et al. [7] or Sec. 4): Geographos Class, Toro
Class, Kozai Class, Alinda Class, Oljato Class and Comet Class
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2.3 Problems with the classification

The need for a new classification is easily explained if one considers the
dynamical evolution of NEAs: a large amount of NEAs suffers under continu-
ous close encounters with the inner planets of our solar system. Such a close
encounter changes drastically the orbital elements of the asteroid, especially
the semimajor axis. The strength of the change depends on the depth of the
encounter and the masses involved. This can be seen in Fig. 1, where every
close encounter of the asteroid (10563) Izhdubar is reflected in a jump of the
semimajor axis. These close encounters and the resulting changes of orbital
elements make the orbits of the NEAs highly chaotic (see also [4] and [3] for
details on the chaotic behaviour of NEAs)
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Figure . The semimajor axis of the NEA (10563) Izhdubar for 5 x 10° years (lower graph)
and the encounters with the inner planets (upper graph); every jump in a reflects a close en-
counter.

How does this chaoticity affect the classifications? Fig. 2 shows the evolu-
tion of the eccentricity and semimajor axis of an Amor asteroid (1993 BX3) in
the a — e plane. One can see that the asteroid (which was initially inside the
Amor group) has crossed all group borders and has become a member of the
Apollo group, then changed to an Aten; in the end, the asteroid has become a
Subaten (such changes of initial group have also been reported in [2]). Here
one sees how the restrictions of the Aten/Apollo/Amor classification can cause
problems. Initially meant to be only used for observational purposes, these
groups are only valid for some 100 years. If one tries to apply the classes for
longer time scales, one certainly has to fail — thus the Shoemaker classification
can not be used when one deals with the longterm dynamics of asteroids. The
SPACEGUARD classification is based on the dynamics of the real NEAs that
were obtained from numerical integrations for 200 000 years — thus it can be
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used to classify the dynamical properties of NEAs for some 100 000 years.
What happens now, if one tries to use these existing classifications for other
purposes? — the classifications will fail and one will encounter major difficul-
ties when dealing with the dynamics of NEAs. Table 1 shows the mean mem-
bership times of the classification - that is the time a “mean” asteroids spends
inside its initial group. One can see that both classifications are comparable
concerning these percentages.
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Figure 2. Motion of 1993 BX3 in the a — e plane - the asteroid is a member of all three
classes (according to the Shoemaker classification) during the integration time.

Table 1. Mean membership times (in percent of the integration time) for the Shoemaker and
the Spaceguard classification (the numbers for the Spaceguard classification where taken from
Milani et al. (1989)).

Shoemaker classification
Atens  Apollos  Amors
76.81 80.98 51.87

Spaceguard classification
Geographos  Toro  Kozai Alinda Eros  Oljato
75.86 2290 91.70  55.05 83.72 65.13

2.4 Single objects versus groups

If the classifications can not be applied anymore when dealing with longer
time scales, why not investigate only single objects? Single objects on chaotic



A new dynamical classification of NEAs 7

trajectories can not be investigated independently — one has to work with
groups of asteroids. If the properties one wants to investigate are the ones
the existing classifications were made for (observational properties, short/mid
term dynamics), there are no difficulties. But as shown in the last subsection,
there are certain problems were the chaoticity of NEAs makes things compli-
cated. If, for example, one wants to calculate the collision probability of 1993
BX3, Fig. 2 shows the problems that arise: to derive the collision probability,
one has to take into account the data of the whole time-series — that means the
values of the orbital elements for all time steps to derive a single value. It was
shown [4] that it makes no sense to use this number — the collision probability
— as a property of 1993 BX3 itself: any other integration on another machine
would result in a different number. Thus one has to use statistics and to inter-
pret the collision probability of 1993 BX3 as one contribution to the common
collision probability of a certain group, whereof 1993 BX3 is a member. But
which group would be the right for 1993 BX3? Fig. 2 shows that there is no
evident choice — the asteroid is a member of all three groups during the inte-
gration time.

2.5 Mixing

The behavior described above is called mixing®. Because of the chaoticity
it is difficult to investigate single objects. Because of the mixing it is difficult
to investigate groups of objects. Thus, for certain problems, a new way of
grouping asteroids is needed! For this purpose it is useful to perform a detailed
investigation on the mixing behaviour of NEAs. To obtain a new classification,
two properties of NEAs were especially important: the collision probability
with the inner planets Venus, Earth and Mars and the BCN (Border Crossing
Number) - a quantity defined as the number of times an asteroid crosses any
group border in the Aten/Apollo/Amor classification. These parameters were
calculated for all known NEAs (in 2003) - for details see [4]. The next section
will explain how they can be used to construct a new classification.

3. Fuzzy classification of NEAs

This section will give some general comments on fuzzy classification and
then it will propose new fuzzy classes for NEAs. For an introduction on fuzzy
sets see the appendix.

3.1 General remarks

In general, the process of fuzzy classification will proceed as described in
the following:
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Definition: To obtain a fuzzy set, first of all, a valid definition has to
be found. Although fuzzy sets are mathematically exact constructions,
their definition remains relative. That means, it is possible to translate
every “vague” linguistic definition into mathematical notation. Thus one
has to be careful, sow one defines a new class: e.g. although, in spoken
language, the words “large” and “tall” can often be interchanged, there
exists a difference in their meaning. So a fuzzy class of “large peo-
ple” should not be identically with a fuzzy class of “tall people”. When
defining fuzzy classes, one has always to be aware of the meaning of the
definition.

Membership Functions: If the definition of the fuzzy class is set up,
one will have to obtain the membership function. These functions should
represent reality and describe the properties of objects in the basic set
according to the definition. Thus one needs a certain parameter that is
connected with the definition and according to the distribution of this
parameter among the members of the basic set, construct a valid mem-
bership function.

Classification: The objects of the basic set can now be classified ac-
cording to the membership functions. That means, one calculates their
grade of membership to all defined fuzzy classes.

Analysis: After all objects were classified, they have to be analyzed.
This can be done by using a-cuts (see Equ. (A.6)). As now, in contrary to
classical sets, objects can simultaneously be members in different fuzzy
sets, they are an adequate tool to obtain a deeper understanding of the
new groups: if an a-cut is applied on a fuzzy class, one obtains a clas-
sical set, whose members have special properties. E.g. one could apply
an a-cut with a = 0.95 on the fuzzy set of “large people” (and obtains
a set containing only people that belong to this group with a grade of
membership larger than 0.95). The important advantage lies therefore in
the cross relations of the members of an a-cut and the remaining other
fuzzy classes. The a-cut represents an important feature of the objects
in the basic set (e.g. “being large™) — but every object has also a certain
grade of membership to the other groups that were defined. Investigat-
ing the distribution of these grades of membership henceforth delivers
information on the additional “tendencies” that the objects have besides
their dominant features. This makes a fuzzy classification especially in-
teresting for the investigation of the long term dynamics of asteroids!



A new dynamical classification of NEAs 9

3.2 Fuzzy NEA classes

The most interesting (and important) feature of NEAs is the possibility that
they can collide with the planets of the inner Solar System. Thus, the proposed
new classification will describe the collisional properties of NEAs. As of the
chaoticity of NEAs an exact prediction of collisions (that is, forecasting the
date, the time and the place of a collision) is only possible for very short time
scales (some hundred years). In this work, the focus lies on the long term be-
havior and the collision probabilities of the asteroids. The fuzzy classification
shall now be used to investigate the tendency of a collision (which is a slightly
different feature). An asteroid, that e.g., due to its orbits has many close en-
counters with Venus will of course also have a high collision probability with
Venus — the “Venus-crossing” orbit is the dominant feature in its dynamics.
But deep close encounters with Venus can cause a and e to change drastically
and bring the asteroid also close to Earth — so a Venus-crossing NEA can also
have a certain tendency for a collision with Earth (and also Mars). These inter-
actions and connections between the planet crossing NEAs can be investigated
quantitatively and qualitatively by using fuzzy classes and a-cuts.

3.2.1 Definition.  As said before, defining fuzzy classes needs to be
done carefully. The purpose of the proposed new classification is to investigate
the connections between planet crossing asteroids. So the definition of the new
NEA classes will be the following:

m  The class of NEAs that can collide with Venus.
m  The class of NEAs that can collide with Earth.
m  The class of NEAs that can collide with Mars.

Note that the classes are defined by using the words “can collide”: an as-
teroid, that “can collide” with Earth not necessarily has to collide with Earth!
As said before, the proposed new classification will be used to investigate the
interactions between the planet crossing asteroids — thus a too strict definition
would not give the desired results. To get also some information on the varia-
tions of the orbital elements, an additional class is introduced:

m  The class of NEAs that show almost no mixing.

“Mixing” is defined as above (asteroids that cross group borders during inte-
gration time). The underlying classification will be the one according to Shoe-
maker. The mixing in the Aten/Apollo/Amor classification gives (for long time
scales) information on the variations of a and e. If they are very large, the as-
teroid will cross many group borders and have a larger amount of mixing. As
the group borders are “centered” on Earth and (more or less) marked-off by the
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influence of Venus and Mars, the mixing also gives information, if the motion
of the asteroid is “bounded” or not: as described in Sec. 2.3, if the asteroid
moves in the right region, larger variations in a and e do not necessarily lead
to the crossing of group borders — e.g. an asteroid with moderate variations in
a and e can still be in the region between the orbits of Venus and Earth (and
thus an Aten) for a very long time and is not related to the population of the
group of Mars-crossing asteroids — but if it develops tendencies to encounter
also Mars, this will be reflected by an increasing amount of mixing®.

3.2.2 Membership Functions. After having defined the new fuzzy
classes

m  G1: The class of NEAs that show almost no mixing.
m  G2: The class of NEAs that can collide with Venus.
m  G3: The class of NEAs that can collide with Earth.
m  G4: The class of NEAs that can collide with Mars.

now the membership functions have to be derived. One starts with an in-
vestigation of the distribution of the basic parameters that are most important
for these groups: for G1 this is the BCN, for G2, G3 and G4 these are the
close encounters with Venus, Earth and Mars. The distributions for these four
quantities are shown in Fig. 3.

These distributions can now be used to obtain a fuzzy membership function:

m 1: Fit a function through the data (this can be e.g. a linear interpolation).
m 2: Normalize this function to have only values between 0 and 1.

m  3: Adjust this function to make sure that it really describes the properties
of the desired group.

Fig. 4 shows now the membership functions for the four classes (the neces-
sary numerical integrations of the asteroids were done with initial orbital ele-
ments of the JPL Horizons system using the Lie-Series integration technique
(see [6, 5])

It can be seen that the shape of the membership functions for G2-G4 are
quite similar - which is not very surprising because of the definition of the
groups: they were meant to describe classes of asteroids "that can collide"
with a planet. Having in mind the chaotic motion of NEAs, it is very unlikely
that an asteroid has no close encounters with any planet during its evolution
for long times. Thus, also the grade of membership in these classes will be
high for a large amount of asteroids. If one would construct a membership
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Figure 3. Distribution of BCN (top left) and close encounters with Venus (top right), Earth
(bottom left), Mars (bottom right) for the real NEAs (y scale is logarithmic).

function for the group of "asteroids that are very likely to collide with Earth"
or "asteroids that could be really dangerous for Earth", one would obtain a
membership function which is much less steep than the ones presented here.
The largest increase shows the membership function for G4 - the class of NEAs
that are probable to collide with Mars. As Mars has a very small mass, it is
also not so likely for an asteroid to collide with it. Thus a/most any asteroid
that shows at least some encounters with Mars should belong to the group with
a higher grade of membership — because due to the chaotic motion every close
encounter gives rise to a probable collision in the following evolution.

3.2.3 Classification. With the membership functions derived in the last
section, it is now possible to calculate the grade of membership of every real
NEA to G1-G4.

Fig. 5 shows the distribution of all real NEAs according to their grade of
membership to G1-G4. It can be seen, that for G1, most asteroids have a grade
of membership of ~ 1 and thus seem to show only small or moderate changes
in a and e. The local maximum of the distribution sets near 0; for the interme-
diate values, there is a slight increase of the number of asteroids from values for
the grade of membership of 0.2 up to 0.9. For G2, G3 and G4, most asteroids
have a grade of membership of ~ 0. This maximum is well defined for G2 and
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Figure 4.  Membership function for the group G1 (top left), G2 (top right), G3 (bottom left),
G4 (bottom right).

G3 but for G4, asteroids with a zero grade of membership have only a slight
majority. Again, for G2 and G3 the second maximum sets near values of 1; for
G4 at slightly smaller values. Also the intermediate values show the same char-
acteristic: the number of asteroids decreases slightly up to grades of member-
ship of ~ 0.6, then increases again. The grades of membership for all NEAs®
can be found online under http://www.astro.uni-jena.de/~florian.

4. Results

Before starting with analyzing the new classes by means of a-cuts, the valid-
ity of the classification can also be checked by a comparison with the existing
SPACEGUARD classification. As Milani et al. [7] have also classified the as-
teroids i.a. according to their collision probabilities and close encounters the
results should be consistent — at least there, where the two classifications are
comparable. The new fuzzy classification will now also include the long term
behavior; additionally the basic set of asteroids was much bigger (Milani et al.
could only use 410 asteroids — here 2442 NEAs were included). For compari-
son, we can look at the namesakes of the seven SPACEGUARD classes:

m  (1620) Geographos: according to the SPACEGU‘Dynamical evolution
and collisions of asteroids with EarthARD classification, an asteroid of
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Figure 5. Distribution of real NEAs according to their grade of membership to G1 (top left),
G2 (top right), G3 (bottom left) and G4 (bottom right) (y scale is logarithmic).

the Geographos group should show many close approaches to Earth and
some to Venus. This means that physical collisions with Earth can occur,
if the time scale is long enough. The semimajor axis of a Geographos
is almost constant; the eccentricity shows secular trends on small scales
— thus it is not expected to move very much in the a — e plane. (1620)
Geographos has a membership grade to G1 of 1 — so it is indeed a full
member of the group of asteroids that show almost no mixing and its
semimajor axis and eccentricity are not expected to change very much.
Also the membership grade to G2 (0.03) and G3 (0.76) reflect the behav-
ior described above. The membership grade to G4 (0.86) shows now the
influence of the long time scales: during the integration time, some deep
close encounters can change drastically the semimajor axis of an aster-
oid inside the Geographos class (see e.g. figure 5 in [7] for the asteroid
(1862) Apollo) and thus force the asteroid to leave the group. Depending
on the “direction” of the close encounter such an asteroid can now have
also many close encounters with Mars (like for (1620) Geographos) or
with Venus (like for (1862) Apollo, which has a grade of membership to
G2=0.91). This is a good example how the problems of mixing are by-
passed by the new fuzzy classification: in the SPACEGUARD classifica-
tion, after the close encounter with Venus, (1862) Apollo was no longer
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a member of the Geographos group — in the fuzzy classification, how-
ever, all the dynamical properties that belong both, to the Geographos
group and the one, (1862) Apollo would enter afterwards, are known
simultaneously.

(1685) Toro: according to the SPACEGUARD classification an aster-
oid of the Toro group shows close approaches with Earth. Toros are the
most unstable group of the SPACEGUARD classification — they tend to
leave the group after very short times (In [7], the group of Toro asteroids
has only 9 members — thus the statistics are very bad in that case)®. Al-
though Toros have close encounters with Earth, they are very shallow;
Toros are also protected against collision with Earth by mean motion
resonances. If they are Venus crossers (which happens not very often),
the close approaches with Venus could result in very large changes of
the semimajor axis (and thus the resonance with Earth is disrupted). In
general, the semimajor axis and eccentricity show only small variations.
(1685) Toro indeed has a membership grade to G1 of 1 — so its semi-
major axis and eccentricity are not expected to change very much. The
membership grade to G2 (asteroids that can collide with Venus) is 0 —
also in [7] (1685) Toro is in resonance with Venus and thus protected
from close encounters. Membership grades to G3 (0.77) and G4 (0.73)
show, that for longtime integration the fore mentioned resonant protec-
tion against close encounters with Earth ceases to exist — due to deep
close approaches, also encounters with Mars are possible.

(1863) Antinous: it was not possible to compare the results for (3040)
Kozai (the most prominent member of the class of Kozai asteroids) be-
cause although it belongs to the Mars-crossing asteroids, its perihelion
distance is larger than 1.3 and thus is not a NEA in strict sense (Milani et
al. did not just use NEAs but all planet crossing asteroids for their clas-
sification). (1863) Antinous is, according to the SPACEGUARD classi-
fication an asteroid of the Kozai group. Kozai asteroids are, due to Kozai
resonances of type I, protected against close encounters and collisions.
The evolution of the semimajor axis is very regular and shows only small
oscillations. The group of Kozai asteroids is the most stable class in the
SPACEGUARD classification. (1863) Antinous indeed shows the de-
scribed behavior: the grade of membership to G1 is 1, that to G2 (0.23),
G3 (0.16) and G4 (0.14) is considerably smaller than that of the fore
mentioned asteroids. Nevertheless, although Kozai asteroids should be
protected from collisions, the time scales, that the fuzzy classification is
based on, are longer than the protection time scale — thus the grades of
membership to G2-G4 are not zero.
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m (887) Alinda: according to SPACEGUARD classification, asteroids of
the Alinda group are in (low order) mean motion resonances with Jupiter.
The Alinda class is the one, for which the most difficult boundary prob-
lems existed — thus it was often difficult to decide, if an asteroid was
an Alinda or not. Their eccentricities can undergo large changes, the
semimajor axes oscillate around the resonant value. As of their probable
large changes asteroids can encounter all inner planets but are often pro-
tected against collision by resonances.(887) Alinda has a smaller grade
of membership to G1 (0.93) than the asteroids mentioned before; also
the grades of membership to G2 (0.12), G3 (0.08) and G4 (0.04) are
considerably smaller — showing the resonant protection.

m (433) Eros: according to SPACEGUARD classification, asteroids of
the Eros group are those, which do not cross the orbit of Earth because
their perihelion is always higher than 1 AU. All Eros asteroids are Mars
crossers and have close approaches with Mars. The eccentricities of Eros
asteroids can show very large changes. The grade of membership of
(433) Eros to G2 and G3 is 0, it is only a member of G4 (0.72). Also the
membership to G1 (0.9) is smaller than 1, indicating the larger changes
of a and e. Another good example for the behavior of Eros asteroids is
(719) Albert. Its membership to G1 (0.08) is very low (indicating very
large changes in @ and e), again the grade of membership to G2 and G3
is zero and that to G4 is 0.32.

= (2201) Oljato: according to the SPACEGUARD classification, aster-
oids of the Oljato group have orbits that show large-scale chaotic effects.
They have very high eccentricities and can have close approaches to all
inner planets. (2201) Oljato indeed has a grade of membership to G1 of
0.04, indicating the chaotic changes in a and e; it also shows a medium
grade of membership to G2 (0.38), G3 (0.36) and G4 (0.28) — thus it
encounters all inner planets.

s Comet class: a comparison with the class of Comet asteroids of the
SPACEGUARD classification is not possible in this work. This class
consists of all asteroids that spent a sufficient part of integration time in
the outer Solar System. In this work, asteroids with that behavior were
excluded from the fuzzy classification — first because of reasons of com-
parison: some of these asteroids escaped the inner Solar System that fast
that not enough data would be left to calculate a valid membership grade.
Second, to compare the data with the SPACEGUARD classification, it
would have been also necessary to investigate the entry/exit path of the
asteroid in the inner Solar System, which would have resulted in the cal-
culation of hyperbolic/parabolic orbits which lies outside the framework
of this study
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The new fuzzy classification is indeed capabale to describe the dynamics of
NEAs. In contrary to the SPACEGUARD classification, now the effects that
take only place on long time scales are included; also the problem of mixing
has been bypassed!

4.1 a~cut analysis

In contrary to classical sets, the asteroids can simultaneously be members
in different fuzzy sets. Thus an adequate tool to investigate the fuzzy classes
has to be used. As shown before, a-cuts are a proper way to investigate fuzzy
classes. By applying an a-cut to a certain fuzzy group, one obtains classical
sets and can now investigate the properties of its members. For this purpose,
out of the fuzzy classes of “asteroids that can collide” with a planet, classi-
cal sets containing that bodies, that are very likely to collide are extracted by
means of a-cuts. Then the members of the classical sets can be examined ac-
cording to their grade of membership to the remaining groups. This type of
investigation is the greatest advantage of the new fuzzy classification. In con-
trary to existing theories, where asteroids can inhabit only one class at time and
transitions between the classes can only be investigated as time passes by, the
fuzzy classes allow one to examine the membership to the different classes si-
multaneously. We will show the details of the a-cut analysis only in one case;
additional studies can be found in [4].

4.1.1 G3>99,  The set G399 contains all NEAs with g3 larger than
0.9 — these are “asteroids that are likely to collide with Earth”. This group
contains 329 bodies. Fig. 6 shows the distribution of these asteroids according
to their grade of membershipe” to G1, G2 and G4.

160 120

140 140

Figure 6. Distribution of asteroids in the group G'3”°-9

ship to G1, G2 and G4.

according to their grade of member-

Unlike G2>%9, G3>%9 has more members with a medium grade of mem-
bership (50.76%), only 47.52% have high grades. The fact, that NEAs that are
likely to collide with Earth show more mixing (and thus larger variations in a
and e) is first due to the type of basic groups that is used to derive the mixing:
the Shoemaker classification is “centered” on Earth — so asteroids that often
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come close to Earth also have a higher probability to cross the border between
Atens and Apollos. But Fig. 6 (middle and right) shows, that asteroids from
G'3>99 also have larger variations of a and e in general and thus come (very)
close to Venus and Mars too: 46.81% of them have high grades of membership
to G2, 34.95% to G4. An important property of G3>%“ asteroids can be seen
in the difference of low and intermediate values to G3 and G4: only 11.85% of
them have medium grades to G2, whereas three times more of them (34.04%)
have intermediates grades to G4. Thus, the “connection” between Earth and
Mars-crossing asteroids is more fluent: NEAs that are likely to collide with
Earth in the majority are also likely to collide with Mars — and, also in the
majority, are likely to collide with Venus; but the lack of intermediate grades
of membership to G2 shows that the interaction between Earth and Venus is
much stronger. If deep close encounters bring an asteroid near Venus (which
is the case for slightly more than half of asteroids), it is very probable that they
have very much close encounters (and thus also a higher collision probability)
with Venus. On the other hand, if they come close to Mars (which is also the
case for slighlty more than half of asteroids) the probability that they have a
high or intermediate number of close encounters is almost equal (34.04% of
G3>%9 have medium grades of membership, 34.95% have high grades). Earth
is able to “protect” its crossing asteroids much more easier from the influence
of Mars than that of Venus.

5. Conclusions

Concerning the question of the danger of Earth by NEAs, Fig. 7 shows in
detail, how the different groups consist of members of the other groups. One
should stress again the fact, that due to the combination of fuzzy set theory and
dynamical studies of NEAs, it was possible to obtain a quantitatively descrip-
tion of the planet-crossing behaviour on long time scales — that was not possible
in the past because of the chaoticity of the NEAs and the problems that were
due to the fixed, not flexible existing classifications! The group of NEAs that
are likely to collide with Earth not only itself has the largest number of mem-
bers, also the asteroids in the other groups are more often members in the group
of NEAs that are likely to collide with Earth than vice versa. This leads to the
following conclusion: NEAs move on orbits with semimajor axes from ~ 0.6
to ~ 3 AU (depending on their eccentricity). They can come close (and also
collide) with all large inner planets. For long time scales, the NEA population
1s of course not constant: their number can be reduced due to collisions with
the planets or the sun (“sun grazers”™); it can be increased by asteroids that are
thrown out of the main belt. But as long as they are NEAs, independent from
their position in the a — e plane, it was shown by introducing fuzzy classes,
that they have the tendency to evolve Earth-crossing orbits. Thus, for very long
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m‘” %
NEAs that are likely NEAs that are likely
to collide with Venus to collide with Earth

36.02 % 56.40 %

46.81 %

34.95 % 28.15 %
NEAs that are likely
to collide with Mars

Figure 7. Groups of asteroids that are likely to collide with a planet. The arrows show, how
many NEAs of one group, are also members of an other group.

time scales, the major reason for the decrease of NEA population will be due
to collision with Earth! Encounter and collision frequencies of asteroids with
Earth (and the other planets) will therefore differ from the current values when
including the evolution of NEAs for very long times. Future studies, that have
to include the flux from main belt asteroids to NEAs and also the effect of
sun-grazing bodies, should confirm these statistical results numerically.

Appendix: Fuzzy sets

Fuzzy set theory or Fuzzy Logic was developed in 1965 by L.A. Zadeh [10]. Fuzzy sets are an
extension of classical sets. A classical set is two-valued: for every set A there exists a function
fa that has either the value 1 or 0 with:

fa(z)=1 2z € Aand fa(z) =02 ¢ A. (A.1)

This function is called characteristic function of A. Fuzzy sets, in contrary, have a character-
istic function p 4 defined for all values between (0,1), describing the degree to which an element
x is included in the set A. Fig. A.1 shows an example of the membership functions describing
the degree of membership to the groups of "short", "huge" and "average" sized people.

small average huge

—

membership function p
_‘D
[#5]

=

140 160 180 200
height [cm]

Figure A.1.  Fuzzy membership functions for the classes "short", "huge" and "average".
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Fuzzy sets have the following properties:

m  (lassical sets can be interpreted as fuzzy sets with membership grades of only 0 and 1

m  Two fuzzy sets A and B are equal over a whole set X if
A=B < pa(z) =pp(xr) VeelX (A.2)

®m  The union of fuzzy sets A and B is the fuzzy set defined by the following membership
function:

pavs(z) = pa(z) vV us(z) (A3)

m  The intersection of fuzzy sets A and B is the fuzzy set defined by the following mem-
bership function:

pans(z) = pa(z) A ps(w) (A4)
®  The complement A of a fuzzy set A is defined by the following membership function:
pa(z) =1—pa(z) (A.5)
®m  For a fuzzy set A
A7 ={z € X | pa(z) > a}, a€l0,1] (A.6)
A=Y ={z € X | pa(z) > al, ac0,1] (A7)

are called the weak a-cut and the strong a-cut, respectively.

B The a-cuts of fuzzy sets are classical sets.

Notes

1. This definition follows [9]

2. The typical periods of resonances are longer than 200 years, therefore the analysis of resonances is
not affected by the filtering process.

3. In this work, the word mixing is only used to describe the fact that an asteroid changes from one
class to another — it is not meant to be confused with other definitions of mixing (like in statistics or chaos
theory).

4. Note that the mixing itself does not depend on the type of classification (see Sec. 2.3) — the
Aten/Apollo/Amor classes were chosen because they are much simpler to handle than the SPACEGUARD
classification.

5. Note that here some asteroids were excluded because they escaped the Solar System during integra-
tion time

6. In this context, the word “unstable” is not related to orbital stability! It only means, that asteroids do
not fulfill the requirements to be a Toro for long time scales and change to other groups often.

7. Here and in the following, high grades of membership are defined by pug; > 0.9, medium grades by
0.1 < pug; < 0.9 and low grades by pg; < 0.1.
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Abstract This paper describes a method to calculate the elements of orbit of a celestial
body, detected by two telescopes situated in the Lagrangian points L4 and Ls
by two satellites. Here the angles between the object and the points L4 and Ls
are surveyed. Then it is possible to calculate by only these two measurements
simultaneous in these points all elements of orbit of the detected object very fast
and accurate.

Keywords:  NEAs — observation — Lagrange points

1. Introduction

The problem to calculate the elements of the orbit of a detected object was
solved in the beginning of the ninetenth century by the methods of J. P. Laplace
and C. F. Gauss. We need in order to use these methods at least two observa-
tions from one point (Earth or satellite). Both methods have the disadventage,
that after the first measurement more measurements are necessary in order to
approximate the elements of orbit better and better!. It is assumed, that one
satellite is situated in the Lagrangian Point L4 and a second one in Ls. The
satellites are equipped with telescopes, in order to observe and to measure the
angles of objects in the plane of the Ecliptic and also the perpendicular an-
gles to this plane. With these angles it is possible, to calculate the distance
of a detected object, to the Earth and the Sun by only one observation. Also
it is possible to computer the other orbital elements of such an object by two
observations.
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2. Calculation of the distance AE by the angles o and 3
measured in L, and Ly

mmm Plane and orbit of the object

WSS Ecliptic plane and orbit of the Earth

Figure 1. Oblique view

From the points L4 and L5 the angles are measured in the plane of the Eclip-
tic (ain L4 and B in L5) and the angles of elevation ({4 at L4 and (5 at Ls).
For the orientation see Fig. 22

2.1 Calculation of the distances d 44 and d 45 in the
triangle A :AL,Ls:

Here the telescope in Ly (angle «) is orientated with 0° in the direction to
L5 and the angle counts clockwise. The telescope in Ls (angle () is orientated
with 0° and counts conterclockwise. Therefore it is possible that o and 3 can
accept values between 0° and 360° (see Fig. 2).
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Figure 2. Orientation of the angles

For angles o and (3*, between 270° and 360° we calculate with the angles
o’ = 360° — a* respectively 3 = 360° — 3*.

Known are the distances between the Lagrangian points L4 and L5 and also
the distances L4 and Ls from the Earth (Ly — Ls = dss = /3 AU). It
is assumed that the necessery angles o and 3 are determined with very high
precision simultaneous.

We observe the angles a and 3 with errors Aa and ASB. Also we can
observe the angles between the the two Lagrangian points and the Earth.
These observations are “surplus measures”, because the condition o + 3 =
(o’ +30°) + (B + 30°) exists (o resp. 3 are the angles object — Lagrangian
point — Earth).

First we have to calculate the distances d 44 = distance L4 — object and d 45
= distance L5 — object. The calculation is done in the plane of the Ecliptic (see
Equ. (1) and Equ. (2)).

sin G
_ -7 1
dag = dss sin (o 1 5) (1)
and: )
sin
— - - 2
das = dys sin (a1 5) (2)

2.2 Distance AE by mean of the angles o and 3 .

We calculate now the distance Earth — object 7 in the plane of the Ecliptic by
the calculated angles 7 and ( in the triangle Earth — L., — object, resp. the trian-
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Figure 3. Calculation of the distances d a4 and d a5

gle Earth — L5- object (see Equs. (3) and (4) also see Fig. 3). The real distance
Earth — object now we can calculate with the measured angles of elevation (4
in Ly resp. (5 in Ls.

In the same manner we can calculate the distance R’ (Sun — object) by the
calculated angles £ and w in the Plane of the Ecliptic. (see Equs. (3) and (6)
also Fig. 3) Also we can calculate the real distance R by the angles (4 and (5.

It is useful to make these calculations by the distance Ly — Ls = dys5 =
v/3 AU, because this distance is the longest in this configuration and by this
kind of calculation we achieve the best values (All values of angles are given in
degrees, because the telescopes should show degrees). In order to calculate the
angles 1 and ¢, which are necessary to determine the distance Earth — object
resp. the angles £ and w for the distance Sun — object , there is a distinction
necessary, because the angles o and 3 can be smaller or bigger than 30° .

The values of 7’ in the plane of the ecliptic are:

i — 30°
= gy 220 30) )
sin n
and: _ 200
Y = dag S0 =30 @
sin (
now we can set Equ. (3) = Equ. (4):
sin (a — 30° sin (B — 30°
d a4 ( ) _ das ( ) (5)

sin n sin (
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Also we can calculate:

R —dy sin (a + 30°)
sin &
and . i
R —dy sin (6—|— 30°)
sin w

and in similiar manner: Equ. (6) = Equ. (7)

sin (o + 30°) sin (8 + 30°)
: =das :
sin & sin w

daa

Importing auxiliar values y, h1,hs we get the following equations:

sin (3
y = =
sin «
sin (o — 30°)
hh = =
sin (8 — 30°)
sin (a + 30°)
hy = =
sin (8 + 30°)
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(6)

(7)

(8)

)

(10)

(1)

Now we can calculate the following equations for the angles 1 and ¢ by mean

of Equ. (3) and Equ. (4)

t p—
an n -
and /3
3
tanC——l_thl

and for the angles £ and w by mean of Equ. (6) and Equ. (7).

V3yhs
th — 2

tan & =

and:
V3

tanw = ————
an w 247

(12)

(13)

(14)

(15)

With these angles from the Equ. (12) or Equ. (13) and Equ. (3) or Equ. (4)
now we can calculate 7" and R’ by the equations Equ. (6) or Equ. (7) by the
equations: Equ. (14) or Equ. (15). The possibility to calculate 7’ and R’ by two

calculations should be used in every case in order to control the calculations”.

3
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2.3 Observation of the angles n and ¢ from the Earth.

An additional possibility to determine the distance Earth — object directly
from the Earth. This are the angles i’ and (' (see Fig. 3). After reduction of
these angles to the center of the Earth we can find the angles  and ¢. From
this indirect determination and the values of the angles by measuring from L4
and Lsnow we can calculate an average value and so we have more accurate
values.

2.3.1 Another possibility is the calculation with the Cosine theorem.

With the triangles: L4 — Sun — object, or Ls — Sun — object it is possible to
calculate R’ (distance Sun — object, see Fig. 3) Also it is possible to calculate r’
(distance Earth - object) with the triangle L., — Earth — object, or the triangle L5
— Earth — object . The distances d 44 and d 45 are known from the calculations
from chapter 1.2. The distance Earth - L4 and Earth — L5 is known. See
Equ. (1) and Equ. (2)

=y + 1 - 2das cos (a— 30°) (16)

R = \Jd%, +1—2da cos(a+30°) (17)
or:

v = \Jds + 1~ 2das cos (8- 30°) (18)

R = \Jd% +1—2das cos (3 +30°) (19)

We do not use this kind of calculation because of the minor precision o the
square root.

2.4 Determination of the distance AE = » and R from »’
and R’ in the plane of the Ecliptic.

Now we can calculate by the measured elevation — angles (4 in L4 and (5 in
L5 the distances 7 and R: (See Equ. (25) or Equ. (26) for the distance r and
Equ. (28) or Equ. (29) for R)

h = daqtan (4 (20)

or
h = dastan (5 (21)
By the calculation of d 44 rsp. da5 from Equ. (1) and Equ. (2) we can find:
sin «

h = d45 m tan C4 (22)
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or

sin 3
h = t 23
5 Gn(a+ ) an (s (23)
and with:
r? =17 4 h? (24)
r = \/r’2 + d?, tan? (4 (25)
or
r=\/1"? + & tan? G (26)
and for the distance Sun — object:
R? = R? 4+ p? (27)
R— \/ R? + &2, tan? ¢4 (28)
or
R= \/ R? } d2 tan? (s (29)

The values for d 44 and d 45 ar known from Equ. (1) and Equ. (2).

For small values of the angles (; we cannot find exact values for r and R ,
but that means only, that the position of the object lies nearly in the plane of
the Ecliptic, therefore we can say that the distances at this moment are: R ~

R'andr ~7'. 4
3. Calculation of the elements of orbit of the object

A = vp+(60°—w) (30)

pr = vp—(60°—¢) €29
and .

SOAZUE—§(W—§) (32)
3.1 Calculation of the rectangular coordinates of the
object.

Now it is possible to calculate the rectangular coordinates by the angles &
and w and the angle ¢4 and (see Fig. 4 and Equ. (32)):
Therefore the rectangular coordinates X 4,Y4, Z 4 are now:
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Figure 4. Calculation of the elements of orbit

X4 = R cospy (33)
Yy = R sinpga (34)
Zsa = h (35)

The calculation of ¢4 can be done by the Mean Anomaly M by Kepler’s
equation. %y is the time of passing the perihel. These values come from the
U.S. Naval Observatory, Astronomical Applications Department 2001: Earth’s
seasons; Equinoxes, Solstices, Perihelon, and Aphelion 1-2-2005 . (e.g for
2005 January 2.at 1Th UT).

vg is the True Anomaly of the earth in the moment of observation.

3.2 Determination of the plane of orbit

From the observation of two or more locations of the asteroid we can cal-
culate by the distances R’ and the elevation h above the plane of Ecliptic the
equation of the plane of orbit in rectangular and polar coordinates as follows:

Because the Sun as origin of the system lies in the plane of orbit, we have
the equation:

ar+by+z2=0 (36)

With two values of the vector R (X, Y, Z) (see Equ. (33) to Equ. (35)) the
coefficients of the plane of orbit are:
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 Yarho—Yarly
a = 37)
Xa1Yar — Xa2 Y1

Xarhya —Xa0h
b o— A1 2 A2 I (38)
Xa1Yar Y
To calculate the trace of the plane of orbit with the Plane of the Ecliptic
2z = 0 so the equation of the plane is: ax + by = 0, or with the values for a

and b:

(Yarho —Yash1)x + (Xarho — Xash1)y =0 (39)

After the first observation it is possible to make more measures of the angles.
So we do a smoothing of the values with the method of Least Squares. We have
n — 2 more values then we need. Therefore we can calculate the values of the
parameters a and b more and more exactly.

For n measurements the parameters a and b are therefore:

n n n n
DTy D Yizi— Yy, TiZi »,Yili
i=1 i=1 i=1 =1
— 40
a o) (40)
n n n n
DoTiT Y Yizi— Y, Tili Y, Tiz
i=1 i=1 =1

b = =1 5 (41)

n 2 n n
D—@)WJ—ZﬁmZﬁm (42)
1=1 1=1 1=1

The gradient of the plane of orbit can calculated from two observations as
follows:

N = Rix Rip (43)
and so we get for the gradient:
N.
1 = arc cos (—f) (44)
V]
3.3 Calculation of the other necessary parameters of the

orbit

We assume: After the first measurement of the angles further observations
follow. By two measures at times ?g and ¢; with a relatively short difference of
time, now it is possible to calculate the velocity of the asteroid as follows:

. Ry— R,
Vg = ——— (45)
to — 11
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and the vector of angular momentum C:
C = Ryp x 1 (46)

Also we calculate the Runge — Lenz Vector P

P =y x C— 2112 (47)

The distance of Perihelion w now is (see Equ. (48))

w-arccos(P'N> (48)

|PIIN]

for N # 0. If N = 0 ist, the slope of the orbit z = 0.
By substituting the Gauss — constant k£ and the value of the angular momen-

tum C it is possible to calculate by the following equation the parameter p (see
Equ. (49)) of the equation of orbit:

C 2
p= ('—k') (49)

From the initial values of F and Vo we can calculate the specific energy Fy
by

1 k?
Eo == |vi2]? — = (50)
2 |T‘12|
With this value Ey from Equ. (50) we can calculate the excentricity of the
orbit e. .
Ey|C|?
e=1+2 kl 1 | (51)
and the major axis a by Equ. (52)
1
= —— 52
= (52)

The further values of the orbit: €2 (see Equ. (53)) and w (see Equ. (54)) we
also can calculate by the equations:

2 = arccos ('A@J) (53)

V]
) (54)

2

P
W = arccos ——
|P N
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and again (see Equ. (55))
sl
C]
So we have all elemtes of the orbit of the asteroid by two observations of the
angles o and S3.
This method was preferred, because the for this method necessary basis is
with /3 AU the longest basis that could be easy realised. (The ocillation of
the Lagrangian Points is very small and could be taken in mind by an error

calculation.). Also all observations are free from influences of the earth’s at-
mosphere.

7 = arc cos (55)

4. Conclusion

By observation of objects by satellites positioned in the Lagrangian points
and simultaneous determination of the angles a and (3 and it is possible to
calculate the distances r (Earth — object) and R (Sun — object) only by one cal-
culation. By two simultaneous observations we can calculate all other elements
of orbit of the detected methods very exactly.

Notes

1. After a meeting between R. Dvorak and W. Grandl about the possibility to observe objects from the
Lagranian points L4 and Ls by satellites.

2. Note: This method is not applicable for angles a and 8 = 90°, or 270°. If o and § = 0°,
a =180°, 6 =0°ora = 0°, 8 = 180°, or a and 3 = 180°, the object is situated on the straight line
L4 — Ly and it is not possible to calculate the position for any angle of elevation (;. (The object lies in a
plane, perpendicular to the plane of the Ecliptic, wich includes the straight line L4 — L5 )

3. The possibility to use the triangles Earth — object — L4 resp. Earth — object — L in order to determine
7’ should not be used, because the distance Earth — L4 resp. Earth — L5 is only 1 AU and therefore smaller
then the distance Ly — Ls = /3 AU.

4. In the case that the position of the object lies in a plane perpendicular to the plane of the Ecliptic
through L4and Ls, the angles « and (3 are 0° or 180° and therefore there exists no possibility to determine
the distances r’, and R’ but we can measure the angles at an other time ¢;
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Abstract In this investigation we integrated the orbits of the planets of our Solar System
over 1 billion years (-500 million back and 500 million into the future) based on
the Newtonian model of the Solar System including the 8 major planets Mer-
cury to Neptune. For the integration we used the very stable and highly precise
Lie-Integration method. The output of the simulation were the osculating or-
bital elements, stored every 66,6 years. We transformed the data set to Laplace-
Lagrange variables and analyzed it using windowed fourier transformation with
a windowsize of 10 million years, overlapping with 1 million years. In this pa-
per we present the maximum and minimum values of the orbital elements of the
planets and give the time varying fundamental frequencies of all eight planets.

Keywords:  Solar System - Fundamental Frequencies - Windowed Fourier Transform

1. Introduction

The numerical simulation of the dynamics of our Solar System on computer
systems is a field not older than 50 years. Various people have been working
on it: Eckert et al. (1951) integrated the system, using the 5 outer most planets
over 3.5 x 10? years. Cohen & Hubbard (1973), Kinoshita & Nakai (1984),
Applegate et al. (1986), Sussman & Wisdom (1988), Nobili et al. (1989),
Nakai & Kinoshita & (1995) used the same model (5 planets) but varied the
stepsize (between 0.5 and 40 days) and increased the integration time of the
simulation. Newhall et al. (1983) integrated the whole system of major planets
(9) using a very small stepsize (0.25 days), so did Richardson & Walker (1989)
(0.5 days), Quinn et al. (1991) (0.75 days), or Sussman and Wisdom (1992)
using a stepsize of 7.2 days but integrated the whole system for 10° years. Ito
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et al. (1996) increased the simulation time up to 4.3 x 10'° years but only took
the outer four planets into account. Duncan & Lissauer (1998) used Venus to
Neptune in their model and integrated the system for 10? years.

The main question is still open: How long will our Solar System be sta-
ble inspite of its chaotical nature? Are there resonances, which will kick one
of our planets from its nowadays known orbit, thus leading to a completely
different configuration of our Solar System? Laskar (1990) used a semiana-
lytical solution and showed, that there are no secular variations in the semi
major axes. He integrated the Solar System in his paper for 200 Myr years
and found secular resonances between the precession periods of Earth and
Mars, 2(g4 — g3) — (s4 — s3) and between the main secular frequencies as-
sociated with the perihelia and nodes of the planets (Mercury and Jupiter,
(g1 — g5) — (81 — s2)). In this paper we extended the integration time for the
full system up to 10 years to see the variation of the fundamental frequencies
and the possible chaotic nature of our planetary system.

This paper is organized as follows: In the second section we give an overview
of the methods used to produce the results outlined in this paper. We intro-
duce the reader into the windowed fourier transform (WFT) - also known as
Gabor transform, a special topic from wavelet analysis, and show the mech-
anism, how we separated the spectral lines in the corresponding power spec-
trum. In the third section we summarize the evolution of the elements of the
planets during 1 billion years of integration time. We present the maximum
and minimum values of the eccentricities and semi major axes of the main
planets of our Solar System and take a look on the evolution of their charac-
teristic orbital elements in short. The fourth section introduces the frame work
of Laplace-Lagrange and defines the fundamental frequencies based on the
Laplace-Lagrangian (h, k, p, q) coordinate system. The fifth section reflects
the main results of the present work and compares them with those found by
Laskar and other results found in literature.

2. Methods

To calculate the motions of the eight major planets we used a standard New-
tonian model and integrated the full system of nonlinear equations of motions
using the Lie - integration method (Hanslmeier & Dvorak, 1984) in the Carte-
sian reference frame. Starting from present time we simulated the system
500 million years into the back and 500 million years into the future and col-
lected the positions and velocities referring to the classical orbital elements of
all planets every 66,6 years. Thus the time span of 1 billion years resulted
in 15 million "observations" of their orbital elements leading to a multivari-
ate time series of 90 million data points, which leads to a set of 720 million
real numbers, which is necessary to represent the evolution of our Solar Sys-
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tem (eccentricity ey, semi major axes ag, inclination 7y, argument of pericen-
ter wy, longitude of the ascending node () and mean anomaly My, where
k =1 (Mercury), ..., 8 (Neptune)).

The initial values for the simulation were taken from the JPL (1st August,
1965), the effective computation time just for the integration was about 1 year.
To organize and analyze the resulting data set we wrote sophisticated algo-
rithms in Mathematica and Fortran. The method used for the frequency anal-
ysis of the time series was the approximated windowed fourier transformation
(WFT) also known as Gabor Transform and an exponential fitting and opti-
mization algorithm in the power spectrum. For the analysis we split the data
set into pieces of equal length — 10 million years per unit, overlapping with
1 million years. Thus we were able to get a time evolution of the frequency
space of the system resulting in 1000 data points in time per element, frequency
and planet.

To cope with the known problem in Celestial Mechanics, when doing fre-
quency analysis of the orbital elements, namely the mixture between high
and low frequencies — resulting from the chaotic structure of the system, we
tried various filter methods to smooth the spectrum (Hanning, Hamming and
Blackman - Tukey windows) and compared with the respective methods, when
smoothing in the time domain, before starting the frequency analysis on the
whole data set. In the end we decided to use a linear filter in the time domain,
to get rid of high oscillation components. The second problem is, that there are
actually no constant frequencies in the orbital elements (because of the non-
linear character of the system, they are time and amplitude dependent). Thus
every method based on Fourier analysis will fail, as it was invented for signals
of infinite length and a constant frequency domain. This problem can be solved
using the WFT: When we split the data set into smaller pieces, we can regard
the elements being constant within those lag windows: But using a lag win-
dow, which is to small will not cover the frequency range, we are interested in,
using a lag window, which is to big, will result in a dispersion of the frequen-
cies in the power spectrum of the signal. So it is a non trivial and difficult task
to find the right tuning for the parameters (size of lag windows, overlapping
& filtering) to cope with this kind of problems. Other approaches doing fre-
quency analysis in Celestial Mechanics were done by e.g. Laskar (1993) and
Chapront (1995).

Our approach used in this paper was to use the WFT on the one hand to cope
with the time dependence of the frequencies and to refit the frequency lines in
the power spectrum on the other hand using an exponential fitting model. Thus
we considered a set of lines around a peak in the power spectrum as belonging
to the same line and fitted an exponential curve through it to get a more accurate
and not dispersed form of each spectral line. The resulting fitting model was
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maximized and so we could easily improve the accuracy of the determination
of the frequency.

The windowed fourier analysis is the simplest way to extract both the fre-
quency and its respective time evolution of a time series, giving us insights
of the evolution of the signal in the time and frequency domain. The back-
ground or theory can be found in Wavelet analysis, where the WFT is based
on the implementation of Gabor functions. In our approach we approximated
the method and used lag windows of equal length of 10 million years (150
000 data points per element and planet) and used a simple but fast FFT proce-
dure to obtain the power spectrum within the window. The overlapping of the
windows was 1 million years, thus leading to 1000 frequency spectra for each
element and planet. In the next step we used a self written sorting algorithm,
which extracted the spectra lines according to their amplitudes and fitted each
spectral line within using an exponential model. We calculated the maxima in
the models of the first dominant 100 frequencies in each element and planet
and searched within for the set of fundamental frequencies according to a ref-
erence list given by Bretagnon (1984), Laskar (1992) and Gamsjédger (2002).
To check our results, we visualized random samples and overlooked our re-
sults to proof the correctness of the automatized identification method of the
spectral lines.

3. Evolution of the Orbital Elements

The evolution of the semi major axes of the eight major planets over the
integration period is almost constant, which is due to the quasi conservation of
energy of every single planet, because of the smallness of the inclinations and
eccentricities. This is also a first indicator for the accuracy of the integration
method. There are no slopes or gradients in the data set — regarding long time
scales. The semi major axes just oscillate around their mean values with small
amplitudes. Mercury, the inner most planet moves at 0.39 AU over the whole
time span, Neptune — the outer most planet stays at approximately 30 AU.
Fig. 1 takes a closer look onto the evolution of the semi major axes of Mercury
- the most influenced body in our Solar System 500 million years ago (left
graph) vs. 500 million years in the future (right graph). One can see, that
the evolution of the semi major axes still lies in the range of present time (see
Table 1) but that there are large and chaotic variations, which seem not to
follow any periodic behaviour.

In contrast to the nearby constant semi major axis of our planets the eccen-
tricities show large variations with large periods. This effect raises, when going
from the outer Solar to the inner Solar System and becomes largest, when ar-
riving at the inner most planet Mercury, where the eccentricity may lie between
~ 0.08 and ~ 0.3. In Fig. 2 one can see the coupling between the eccentric-
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Table 1. The maximum and minimum values of the orbital elements of our planets. The semi
major axes are given in AU, the eccentricities are numeric, the inclinations are given in degrees.

Planet Umax Amin €max Emin Tmag Imin
Mercury 0.3871 0.3870 0.30120 0.078730 11.40720 0.17599
Venus 0.7233 0.7234  0.07709  0.000020 491516 0.00246
Earth 1.00003 0.9998 0.06753 0.000083 449496  0.00075
Mars 1.5239 1.5235 0.13110  0.000080 8.60320 0.00291

Jupiter 5.2050 52012 0.06188  0.025140 2.06597 0.55867
Saturn 9.5927 9.5128 0.08959  0.007423 2.60186  0.56037
Uranus 19.3351 19.0989  0.07834  0.000095 2.73889  0.42615
Neptune  30.4325 299101 0.02316  0.000024 2.38176  0.77977

ities of Earth and Venus due to the 13:8 mean motion resonance and also the
coupling between Jupiter and Saturn (due to the 5:2 mean motion resonance)
as an example for the outer planetary system: one minima of the first leads to
a maxima of the second and vice versa. These resonances stabilize the system
over the whole integration time. The mean values and the minima and maxima
of the eccentricities can be found in Table 1.

mercury - a [AU] mercury - a [AU]

0.387102 0.387102
0.387101 0.387101
0.3871 0.3871
0.387099 0.387099

0.387098 0.387098

0.387097 0.387097

~500 -499 -498 -497 -496 ~495 -494 ~493 -492 -491 -4 490 491 492 493 494 495 496 497 498 499 50C
t [Myr] t [Myr]

Figure 1.  The evolution of the semi major axes of mercury (a;) 500 million years ago and
500 million years in the future. Although there are chaotic variations around a constant mean
value, there is no secular trend, which indicates the stability of the integration method (Lie -
integrator).

The inclinations of the orbits of the planets show a similar resonant be-
haviour like those found in the eccentricities. The influence of the other planets
in contrast seems to be more dominant, than e.g. in the eccentricities, the max-
imum and minimum values of the inclinations of the 8 major planets can also
be found in Tab. 1, two representatives of the outer system (Uranus vs. Nep-
tune) are given in Fig. 3 (left graph), another two representatives of the inner
system (Mercury vs. Mars) are given in the right graph.

Resonances in our Solar System may stabilize or destabilize the system.
Looking to the evolution of the inner and outer planets one can see the cou-
pling of the orbital elements (e and 1). Although we are not able to calculate
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Figure 2. The evolution of the eccentricities of Venus and Earth (upper) and Jupiter and
Saturn (lower) over the last 3 million years of the integration time. One can see the coupling
between the planets also over the whole time span (upper:the curve with the higher amplitudes
belongs to Venus, lower:the curve with the higher amplitudes belongs to Saturn).

the real positions and velocities of all planets for long time scales, it is impor-
tant to see, that those resonances found last for long time scales. The answer to
the question of stability in our Solar System thus needs a better understanding
of the resonances in it — stabilizing, as one can see in the coupling effect of the
planets or destabilizing, like those found by Laskar (1990).

4. Canonical Elements

The question, if our Solar System is stable or not needs new analytical re-
sults and of course a highly accurate and precise numerical investigation of the
system. There have been several approaches to derive better and higher or-
der approximations for the analytical part of the solutions. It was first studied
by Laplace in the 18th century. He found out, that the semimajor-axes of the
planets of our Solar System suffer only from periodic changes up to first order.
Poincaré showed, that the formal series of small parameters, like the eccentric-
ities, the inclinations or the masses of the planets are not convergent due to the
problem of small divisors.
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Figure 3. The evolution of the inclinations in time of Uranus and Neptune (upper) and Mer-
cury and Mars (lower) over the last 3 million years of the whole integration time (lower:the
curve showing a higher frequency represents Neptune, upper: the curve with the higher ampli-
tudes belongs to Mercury).

Nowadays we are able to find good analytic approximations of the solutions,
which allow us to reconstruct the shifting of the proper mode frequencies and
the combinations of them, but it is still a problem to give long time predictions
of the evolution of our Solar System. Analytical approaches may lead to re-
sults, which are good for millions of years and with numerical techniques one
may integrate over billion of years, like in this paper. But without the knowing
of the structure of the solution, the exact resonance conditions for the inner and
outer planets, we will not be able to give a final answer to the question, if our
Solar System can be regarded as stable or not. In this chapter we introduce the
results of the theory of Laplace-Lagrange. We transform the orbital elements
to better ones, canonical and not singular. The benefit is the better treatement
when doing frequency analysis in the time depending orbital elements.

Using secular perturbation theory in the N-body system with one heavy mass
in the center of gravitiy it is possible to derive the Laplace — Lagrange solution
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of the system, given in Laplace-Lagrange coordinates (h, k, p, q) defined as:

N

hi = D ejisin(git+5i), (1)
i=1
N

kio= Y ejicos(git + ), 2)
i=1
N

pj = ij,iSiﬂ(Sz‘tJr%), (3)
i=1
N

g = Y Ijicos(sit+), 4)
i=1

which implies stability for the system for all times assuming small values for
the eccentricities e;; and for the inclinations /;;. The conjugated variables
(hj,kj) and (p;, g;) respectively are the vertical and horizontal components of
the eccentricities and the inclinations, so called Lagrange-Laplace coordinates
are defined via the relations:

hj = ejsin (w; + Q) , kj = ejcos (w; + ), (5)

and
pj =sin([1;/2)sin;, g; = sin (1;) cos ;. (6)

Here w; are the arguments of pericenter and (2, are the longitudes of the
ascending nodes. The quantities g; and s; refer to the fundamental frequencies,
the quantities 3; and ~y; are the corresponding phases in the solution of the
system. The indices (i, j) refer to the bodies in the system (Mercury =1, . . .,
Neptune = 8). The advantage of using this variables is the fact, that they are
canonical conjugated to each other and can not become singular. The orbital
elements e; and I; can be easily derived via the equations:

ej:@/hﬁ—l-ka, Ij:4\/p?—|-q]2-. (7)

The solution of Laplace-Lagrange given here to introduce the idea of the fun-
damental frequencies used in the proceding sections, is based on a secular and
second order perturbation theory (in e and I) and neglects nonlinear effects,
which lead to chaotic phenomena in our Solar System. Looking to equations
(1) - (4) one can see that the elements are bounded and somewhat called lin-
early stable. But this is not true, when going to higher orders of approximations
in the analytical formulas.
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5. Resulting Fundamental Frequencies

The frequency analysis in the variables (h, k, p, ¢) show more or less regu-
lar periodic behaviour in the evolution of the elements for the outer planets,
complex and irregular evolution in the time series of the elements of the inner
planets (see Fig. 4 and Fig. 5), overlapping of different frequencies and beats
for example in Mars. The parameters h and £ are identical but phase-delayed,
which is the same for the canonical conjugates p and ¢. In principle we will
find every fundamental frequency of the planets in the frequency spectrum of
the other planets, limited due to the fact, that the basic frequencies of the plan-
ets of the outer Solar System are more dominant in the spectra of the planets
of the inner Solar System, than vice versa and that frequencies, which can be
found in (h, k) may be too small to be found in (p, q) and vice versa (note
that this effect can not be described by the Lagrange-Laplace solution, given
in (1)-(6)). In fact we did the frequency analysis in all four elements using the
WEFT method. We searched for the fundamental frequencies in the frequency
space of all four elements and planets and averaged corresponding ones in-
cluding their influence according to their amplitudes. To check consistency
we compared the results given by the canonical conjugates and found minor
neglectible differences between them.
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Figure 4.  The evolution of the time varying fundamental frequencies g1 of Mercury (upper
left), g5 of Jupiter (upper right), s1 of Mercury (lower left) and s2 of Venus (lower right) over
1 billion years. The samples shown correspond to the critical angle (g1 — g5) — (s1 — s2).

In Laskar (1990) two angles related to the combinations of the secular fre-
quencies associated with the perihelia and nodes of the planets are responsable
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for the positive value of the Liapunov exponent in the order of 1/5 million
years. Another numerical integration Laskar et al. (1992) confirmed the re-
sults found in the previous paper over the time span of 6 million years. The
work of Dvorak et. al (2003) has increased the integration time up to 200 mil-
lion years. Based on an extension of this work we will improve the accuracy
of the determination of the critical angles and may find additional ones, when
analyzing the fundamental frequency set.
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Figure 5. The evolution of the time varying fundamental frequencies gs of Earth (upper
left), g4 of Mars (upper right), ss of Earth (lower left) and s4 of Venus (lower right) over
1 billion years in arcseconds per year. The samples shown correspond to the critical angle

2(gs — g4) — (83 — 84).

The evolution of the time varying fundamental frequencies g; of the inner
planets over the whole time span can be found in Fig. 6 (upper) and of s;
(lower). The time evolution of the respective frequencies for the outer planets
g; and s; show no significant variations. The mean values of them over the
whole integration time can be found in Tab. 2 (NEW). The standard deviation
is small regarding the evolution of the frequencies of the outer planets, it is
larger for the inner planetary system. The table compares the results of this
work with an analytical work by Lagrange (LAG), a semianalytical approach
by Laskar (NGT) and the values found by Gamsjiger (GAMS).

Due to the nonlinear structure of the system, the fundamental frequencies
which are constant in the first order approximation of Laplace (see Eq.(1) -
(3)) are in reality varying with time. Some of them look like, they are chang-
ing randomly (see Fig. 4 and Fig. 5), others look like they follow secular trends
or seem to have periodic changes around their mean values. If some of them
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Figure 6. The evolution of the time varying fundamental frequencies g; (upper panel) and s;
(lower) of the inner planets given in arcseconds per year.

in combination - called critical angles - lead to secular frequencies, their cor-
responding orbital elements may change from libration to circulation, so that
they will cross the separatrix in the phase space - which will directly lead to
chaos.

6. Conclusions

Although we were yet not able to confirm the resonant structure of our So-
lar System, we showed that the system is stable over 1 billion years. There
1s no planet showing any slightest sign of beeing unstable. The maximum
values of the orbital elements also give no evidence, why one of the planets
should escape in the next future. There exist a couple of resonances, which
stabilize the whole system. The frequency spectrum, particularly the time
evolution of the fundamental frequencies of the planets show a very irregu-
lar behaviour over the whole time span, if you take a closer look on it. The
variances from the mean values are quite big — indicating the chaotical nature
of the system. The outer bodies of the system show a more regular behaviour in
their time-evolution of the orbital elements and fundamental frequencies (see
Fig. 6, lower left and right panels), the inner bodies are highly chaotic but seem
to be stabilized by the more massive outer bodies (see Fig. 6, upper left and
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Table 2. Fundamental Frequencies of the planets in arcseconds per year. LAG is based on the
analytical result of Lagrange (analytical), NGT is the work of Laskar (semianalytical), GAMS
presents the results of Gamsjager (numerical). Our new results are based on windowed fre-
quency analysis with a lag size of 10 million years (1000 lag windows) and average over the
clements (h, k, p, q).

Planet LAG NGT  GAMS NEW
g1 54615 55689 52130  5.1832 & 0.0086
92 73459 74555  7.3343 73592 4 0.0124
g3 17.3307  17.3769  17.5022  17.2541 £ 0.0419
94 18.0042  17.9217  17.8921  17.8176 = 0.0050
s1 52007 -5.6043 55010  -5.5467 £ 0.0739
$2 65701  -7.0530  -6.2230  -6.8978 4 0.1528
s3 _18.7455 -18.8499 -18.8574 -18.8069 + 0.02501
s4 -17.6358  -17.7614  -17.7167 -17.7363 £ 0.0216
s 37109 42489 42567  4.2743 % 0.00007
g6 222868  27.9606  28.2445  28.2523 £ 0.00006
g 27014 3.0695  3.0468  3.1075 & 0.0022
gs 0.6333  0.6669  0.6727  0.6711 % 0.00003
S5 -0.0000  -0.0000  -0.0000 _ 0.0000

56 257411  -26.3300 -26.3473  -26.3256 & 0.00007
s7 29038  -2.9854  -2.9944  -2.9818 4 0.00008
sg 0.6777  -0.6927  0.7381  -0.6710 & 0.0001

right panels). The windowed fourier transform is a good tool, when analyzing
the time dependent and nonlinear time-evolution of the orbital elements, lag
windows of 10 million years overlapping with one million year produced good
results. We were not able to confirm the resonances proposed by Laskar (1990)
yet, but look forward to find them and maybe additional ones, when using the
larger integration time for the simulation of our Solar System.
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The temporal evolution of the rotational motion along with the attitude of a set
of irregularly shaped small planetary satellites is studied. For this problem a
computer application was developed featuring an FFT implementation scalable
in terms of the available computer hardware optimized for fast execution, per-
formed by reducing the amount of mass-storage operations with the aid of an
adaptive multi-buffer cache strategy. Every satellite is modelled as a homoge-
nous triaxial ellipsoid precessing under the torque of the main body. For a set
of eight satellites the evolution of their spin-angular velocity vectors is numeri-
cally tracked using non-singular matrix differential equations. Calculations were
carried out with a 4" order Runge-Kutta algorithm using a grid of 1620 differ-
ent initial conditions for the attitudes of the satellites. An FFT was applied to
the results to observe, whether the spin axis tumbles chaotically in conjunction
with chaotic rotation, or if the obliquity and the spin angular velocity remains
constant or changes periodically for certain initial conditions. It is shown that
for each satellite investigated a regular rotation is possible for spin axes with an
obliquity near zero degrees. Other stable regions exist for each satellite as well.
For Proteus, a satellite of Neptune, the stable region is maximally extended of
all objects investigated.

Satellites — Rotation — Stability

1. Introduction

The investigation of the temporal evolution of the spin-axes of natural satel-
lites has a long history in celestial mechanics (see [11], [10], [14], [13], [6],
[3], [7], [8]). The stability of the attitude of the rotation axes and the existence
of resonant spin states is of special interest. All the above mentioned investi-
gations have in common that a spin axis perpendicular to the orbital plane was
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assumed. Thus only a small region in the phase space was investigated or the
calculations were only carried out for one satellite.

Due to tidal forces rotational evolution tends to erect the spin axis until it is
perpendicular to the orbital plane of the satellite. For some satellites these spin
states however are not stable, e.g. for Hyperion. This behavior can only be
found if a satellite is non-spherical, hence small in size. A numerical analysis
of the stability of the attitude and the spin period of small, irregularly shaped
natural satellites with an obliquity between 0 and 45 degrees with an unknown
rotation state is presented in this work.

This analysis was performed with the aid of computer programs written in
C# and Mathematica. This extensive program package can be used for further
research tasks.

2. Theory

Many satellites’ highly aspherical shapes can roughly by described as ellip-
soidals. For the orientation of a satellite with respect to the main body two sets
of coordinates are necessary; a reference frame and a body frame. The origins
of both sets are situated in the satellites’ center of mass. Every vector in the
reference frame can be expressed in terms of the body frame with the aid of
3 right-hand rotations (through 3 Eulerian angles) around a sequence of (prin-
cipal) body axes [4], [12]. Every rotation can be described by a 3x3 matrix
with time-dependent elements. Consequently differential equations with the
Eulerian angles as variables, describing the time development of the spin axis,
are developed.

A body fixed coordinate system is given as follows. Let three vectors, @, b
and ¢ define a right-hand set of axes fixed to the satellite which correspond to
the principal moments of inertia A < B < C.

Z
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The reference coordinate system is given as follows. The trihedral

(7, Y, 7) is defined as:

axis parallel to the planet-to-satellite vector,

ﬁ
x
Y axis parallel to the orbital velocity,
Z

axis normal to the orbit of the satellite.

ﬁ
Starting with this reference system the trihedral system (7, b, ?) is ob-

tained through the rotation along the Eulerian angles (v, 6, ¢):
At first the body axes are rotated around the 7" axis along an angle 1), then

—

around the new 7 axis (denoted by z’) along an angle € and finally around the
— - —

new 2" axis (denoted by c¢") along an angle .

X

- — : R
The axes ', y are rotated along the Eulerian angle 1) to give z’, /.
For the direction cosines (A, u, v/) [6] one obtains:

A = cos(p)cos(¥) —sin (p) cos (0)sin (V) ,
p = —cos(p)sin(¥) —sin (p) cos () cos (), (1)
v = sin(0)sin(p).

With the components (wq, wp, w,) of the angular velocity vector referenced

ﬁ
to the axes (7, b, ?) the Eulerian equations can be written as [2]:

dwa 3'M'G
A-SE—(B=C)wpwe = ——— = (B=C)-pov,

dwyp 3-M- -G
B-—2—(C-A)wewy, = ——5—-(C=A)v-A

dw 3-M-G
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The equations in terms of the Eulerian angles experience a singularity how-
ever, when the spin axis is perpendicular to the orbital plane [5].

To circumvene this problem the attitude of the satellite with respect to its
main body can be described as follows.

An initial coordinate system (Z', 3/, Z) is given in such a way that the x
axis is pointing from the main body to the perihelion of the satellites’ orbit.
The z axis is perpendicular to the (z, y) plane originating in the center of the
main body.

Let the principal moments of inertia be (A, B, C'). Three axis (E), ?, ?)

parallel to these principal moments can be used to describe a coordinate system
fixed to the satellite (body fixed coordinate system).

E; are the cosines of the angle between the it" body fixed axis (a, b, or c)
and the j*" initial axis (x, v, or z). The nine E;js represent a 3x3 rotation
matrix F. With the aid of this matrix, every vector in the initial frame can
be transformed to the corresponding vector in the body fixed (rotating) frame.
Because of the orthogonality of E, the transposed matrix E? describes the
inverse transformation.

Let [ be the torque and let & be the angular velocity vector of the satellite
in the inertial frame.

Furthermore let & = Uél—; with f denoting the true anomaly. One can define

L = E | astorque and ) = E'W as the spin angular velocity vector in the
— —
body fixed frame, thus ¥ = Q 3 = F7.
The components of the torque 1n the body fixed coordinate system are:

La = AQy, 3)

Lp = BQg, “4)
Lo — CQc. )
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This leads to the following form of the Eulerian equations [5]:

d Y a2esin (f)

@EA - 1 +ecos(f) TaXpXo
3o (Ea1 cos (f) + Eggsin (f)) (B cos (f) + Eszsin (f))
1+ ecos(f) ’
d _ Xp2esin(f)
@EB ~ 1+ecos(f) +BRake - ©
383 (E11cos (f) 4+ Erasin (f)) (Es1cos (f) + Fsasin (f))
1+ecos(f) 7
d _ Xc2esin (f)
EZC = H—Tos(f) —yXAXp +
3y (Ell cos (f) + E9 sin (f)) (E21 Ccos (f) + E99 sin (f))
1+ ecos(f) '

With the following equations, one can describe the temporal evolution of the
spin axis of a satellite with the aid of direction cosines:

@Eu = Yok —XpFEs,
iEzl = Yalb31 — YoFE1
df ’
i]-'*731 = Yk — Xk
df ’
iEm = YcokFEo —YpEs)
df ’
%Em = YaE3 — YcoE2, (7)
iEzm = YpEio — Yaks
df ’
iEw = Ycoka3 —XpFEs3
df '
i]-'*723 = Yaks33 — XcokEi3
df ’
iE33 = XpEi3 — YaFEas.
df
3. Numerical investigation

A computer program in C# was developed to numerically integrate the equa-
tions of motion. For this purpose a 4" order Runge-Kutta [9] with variable
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step-size was used. The results were analyzed by calculating a frequency spec-
trum using an optimized Fast Fourier (FFT) algorithm implemented by one
of the authors of this treatise (T. Loeger). This implementation contains an
intelligent multi-buffer cache strategy to reduce Hard-Disk operations.

To visualize the results, the program was designed to create Mathematica
notebooks with dynamically structured plot-expressions. A specially designed
notebook is used to read all these notebooks and execute them. After the paths
to the output-files of the C# program are properly set, this notebook reads
all the files and creates the plots showing the results of the integration. The
formulae used by the application were set up by Mathematica.

It is sufficient to describe the initial attitude of a satellite in terms of two
angles as initial conditions rather than using the elements of the rotation matrix
E.

The angle « is varied between 0 and 180 degrees in steps of 5 degrees, (3
is varied between 0 and 45 degrees in steps of 1 degrees. The mean rotation
period expressed in terms of the true anomaly (corresponding to normalization)
was selected as the z-element of the spin angular velocity vector.

The variation of the spin axis attitude and the evolution of the spin angular
velocity vector were calculated for 1620 initial conditions with a 4" order
Rung-Kutta algorithm.

An FFT was applied to the results obtained above. For each satellite and
initial condition, a histogram over all the frequencies obtained in the Fourier-
spectra was calculated. Histograms were used to distinguish the frequencies
indicating resonant spin states and “noise”-frequencies.

For each satellite a plot for all initial conditions was created showing the
values of the remaining frequency-peaks found for each initial condition (see
Fig. 1 — Fig. 8).

4. Results

The frequency-values in terms of the orbital period were gray-coded as
shown in Fig. 1 — Fig. 8. Left to each figure values markers of the correspond-
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ing frequencies are displayed. Due to the fact, that the frequency correspond-
ing to a certain gray-code differs for each satellite, these code plots cannot be
directly compared, with the exception that black regions always indicate initial
conditions for which the satellite’s rotation state becomes chaotic. Each point
in the plot corresponds to the result of one initial condition for o and (3, where
alpha is the azimuthal and beta the polar angle describing the initial attitude of
the satellite (the initial conditions for the subsequent integration).

4.1 Satellites of Jupiter
4.1.1 Adrastea.

Physical and orbital characteristics

Period of revolution [days] 0.29826
Eccentricity 0.0018

Mass of main body (Jupiter) [kg]  1.899 - 10%7
Mass of satellite [kg] 1.91 - 10
Diameter [km] 25 x 20 x 15

o

al’l

0 50 100 150 ‘

Frequency
4

0 25 50 75 100 125 150 175

Figure 1. A plot showing the gray-coded values of the frequency-peaks found for all initial
conditions («,3) for Adrastea.

As one can see in Fig. 1 the eccentricity e is relatively large, leading to a large
chaotic region for values of the azimuthal angle a between 10 and 20 degrees
and the polar angle 3 between 0 and 30 degrees (black regions in the right plot
of Fig. 1). Small regions of initial conditions leading to chaotic rotation can
be found for alpha between 150 and 180 degrees and beta between 18 and 20
degrees and beta between 35 and 40 degrees. In the region of initial conditions
leading to regular rotation states, one observes resonances between 2:1 and 3:1
for alpha between 50 and 180 degrees and beta between 0 and 20 degrees and
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an approximate 1:1 resonance for alpha between 0 and 180 degrees and beta
between 32 and 45 degrees.

4.2 Satellites of Saturn
4.2.1 Atlas.

Physical and orbital characteristics

Period of revolution [days] 0.6019

Eccentricity 0

Mass of main body (Saturn) [kg]  5.6846 - 10%°

Mass of satellite [kg] 1.91-10'¢
Diameter [km] 18.5 x 17.2 x 13.5

al’]

(]

4

3

Frequency
2

7.

1

0

0 25 50 75 100 125 150 175
al’l

Figure 2. A plot showing the gray-coded values of the frequency-peaks found for all initial
conditions (a,3) for Atlas.

The eccentricity e is zero, leading only to non-chaotic regions as one can
observe in Fig. 2. One can find initial conditions leading to resonances between
1:1 and 2:1 for values of alpha between 0 and 80 degrees and beta between 0
and 15 degrees and 1:2 resonances for alpha between 0 and 80 degrees and
beta between 20 and 45 degrees.

4.2.2 Prometheus.

Physical and orbital characteristics

Period of revolution [days] 0.61299
Eccentricity 0.0024

Mass of main body (Saturn) [kg]  5.6846 - 10%°
Mass of satellite [kg] 3.3-10%

Diameter [km] 145 x 85 x 65
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Figure 3. A plot showing the gray-coded values of the frequency-peaks found for all initial
conditions («,/3) for Prometheus.

The eccentricity e is relatively small, leading to small chaotic regions for
values of alpha between 110 and 120 degrees and for values of beta around 10
degrees, around values of alpha 70 degrees and 150 degrees, and values of beta
between 35 and 45 degrees (shown black in Fig. 3). One can find large regions
of initial conditions leading to 1:1 and 1:3 resonances for initial conditions for
alpha between 0 and 180 degrees and for beta between 0 and 20 degrees, and
further for alpha between 0 and 50 degrees and beta between 0 and 45 degrees.

4.2.3 Pandora.

Physical and orbital characteristics

Period of revolution [days] 0.628
Eccentricity 0.0042

Mass of main body (Saturn) [kg]  5.6846 - 10%°
Mass of satellite [kg] 1.94 - 10'7
Diameter [km] 114 x 84 x 62

The eccentricity e is relatively large, leading to a large chaotic region for
initial conditions for alpha between 0 and 10 degrees and beta between 20 and
30 degrees, and a small region for initial conditions for alpha of 100 and 130
degrees and values of beta for 25 and 40 degrees (black regions in Fig. 4). One
can find initial conditions leading to resonances between 1:1 and 2:1 for initial
conditions of alpha between 50 and 180 degrees and beta between 0 and 15
degrees.
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Figure 4. A plot showing the gray-coded values of the frequency-peaks found for all initial
conditions (a,3) for Pandora.

4.2.4 Telesto.

Physical and orbital characteristics

Period of revolution [days] 1.8878
Eccentricity 0

Mass of main body (Saturn) [kg]  5.6846 - 10%°
Diameter [km] 34 x 28 x 26
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Figure 5. A plot showing the gray-coded values of the frequency-peaks found for all initial
conditions (., 3) for Telesto.

Even if Telesto’s eccentricity is zero, one can recognize many initial condi-
tions leading to chaotic rotation, because Telesto is highly aspherical. These
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regions can be found for alpha around 10, 100 and 180 degrees and for initial
conditions for beta between 10 and 30 degrees, at O degrees and at 30 degrees
(black regions in Fig. 5). A distinct region leading to a 1:2 resonance can
be observed in the diagrams of Fig. 5 for values of alpha between 30 and 40
degrees and beta between 0 and 40 degrees.

4.2.5 Calypso.

Physical and orbital characteristics

Period of revolution [days] 1.8878
Eccentricity 0

Mass of main body (Saturn) [kg]  5.6846 - 10%°
Diameter [km] 34 x 22 x 22

Frequency

0 25 50 75 100 125 150 175
al]

Figure 6. A plot showing the gray-coded values of the frequency-peaks found for all initial
conditions («,3) for Calypso.

Considering the very small eccentricity of Calypso, only a small chaotic
region can be observed. This region can be found for initial conditions of alpha
around 10 degrees and for beta around 35 degrees (black regions in Fig. 6).
There is a large region of initial conditions leading to a 3:1 resonance for alpha
between 70 and 180 degrees and beta between 5 and 45 degrees and a region of
initial conditions leading to 1:1 resonances for alpha between 0 and 70 degrees
and beta between 0 and 40 degrees.

4.2.6 Helene.

Physical and orbital characteristics

Period of revolution [days] 2.7369
Eccentricity 0.0022

Mass of main body (Saturn) [kg]  5.6846 - 10%°
Diameter [km] 34 x 22 x 22
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Figure 7. A plot showing the gray-coded values of the frequency-peaks found for all initial
conditions (a,3) for Helene.

Even though the eccentricity of this satellite is small, some chaotic regions
are visible, more precisely at alpha around 10 degrees, 80 degrees, 170 de-
grees and 180 degrees and beta around 20, 30 and 40 degrees (black regions
in Fig. 7). There is a large region of initial conditions leading to resonances
between 1:2 and 1:4 at alpha between 20 and 180 degrees and beta between 0
and 20 degrees, and a region leading to a 1:1 resonance for alpha between 0
and 180 degrees and beta greater than 25 degrees.

4.3 Satellites of Neptune
4.3.1 Proteus.

Physical and orbital characteristics

Period of revolution [days] 1.122
Eccentricity 0.0022

Mass of main body (Neptune) [kg] ~ 1.0243 - 10%°
Mass of satellite [kg] 5-10°
Diameter [km] 440 x 416 x 404

Proteus is nearly spherical, but its orbit shows a small eccentricity, so there
are some regions leading to chaotic rotation for initial conditions for alpha of
10 and 140 degrees and for beta at 15 and 40 degrees (black regions in the
right plot above). A large region leading to a synchronous rotation state (1:1
resonance) can be observed for alpha between 0 and 180 degrees and beta
between 0 and 15, respectively 45 degrees, as well as a region leading to a 3:1
resonance for alpha between 100 and 180 degrees and beta between 10 and 40

degrees.
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Figure 8. A plot showing the gray coded values of the frequency-peaks found for all initial
conditions (a,3) for Proteus.
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Abstract In this study we show the results of a numerical determination of the stability of
planets in exchange orbits. These kinds of orbits are defined such that two small
but massive bodies with almost the same semimajor axes on nearly circular orbits
are moving around a much more massive host. Because the planet on the inner
orbit is faster it approaches the outer body from behind. Before they meet, the
inner body is shifted to the orbit of the outer and vice-versa the former outer
body moves to an orbit with a smaller semimajor axis. We did our numerical
experiments for different masses of the two planets involved and different initial
separation of the semimajor axis. It turned out that for stable exchange orbits the
sum of the mass of the two planets can only slightly exceed the one of Saturn.

Keywords:  Extrasolar planetary systems, terrestrial planets, exchange orbits

1. Introduction

The search for extrasolar planets led up to now to the knowledge of 185
planets in 149 extrasolar planetary systems (EPS)'. Almost all these planets
are giants with a few exceptions; the planet with the lowest mass found has
5.5 masses of the Earth. One primary goal of searching for EPS is to find
terrestrial planets in so-called habitable zones (HZ) ([10]). There are different
possibilities for terrestrial planets (TP) to move on stable orbits even when a
large planet is present: when the giant is outside the HZ a TP may move inside
(like in our Solar System), when a hot Jupiter is moving close to the host star
a TP may move on a stable orbit in the HZ. A lot of effort has been undertaken
to define such stability zones in existing EPS (e.g. [1], [4], [5], [6], [12], [11],
[13], [14], [16], [18], [19], [20], [21]). Additionally we can imagine TPs as
satellites of giant planets and also in 1:1 mean motion resonances (MMR) with
a Jupiter like planet.

63
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These 1:1 resonant orbits are of special interest for asteroids in our Solar
System. It is due to the fact that in a region 60° before Jupiter and 60° behind
the largest planet a large number of asteroids are populating this region. Many
analytical and numerical work has been devoted to the stability of these two
"clouds’ of asteroids, which are named after the warriors of the Trojan war.
The Trojans librate about these two stable equilibrium points? in the so-called
tadpole orbits having orbits with two well distinct periods (almost 12 years and
149.6 years) which are visible in Fig. 1 (upper graph).

When the libration around the one Lagangian point grows and reaches a
point which is opposite to the location of Jupiter with respect to the Sun the
orbits merge with the orbits around the other equilibrium point. These kind of
orbits — because of their appearance in a rotating frame in which Jupiter and
the Lagrangian points have fixed positions — are called horseshoe orbits (see
Fig. 1, lower panel)

In the case of an asteroid and Jupiter in the 1:1 resonance there is not any
’measurable’ effect on Jupiters orbit, because of the smallness of the mass of
the asteroid compared to the one of Jupiter. The situation is quite different
when the two celestial bodies involved have comparable masses and are both
small compared to the central mass. Surprisingly enough some years ago two
satellites in the Saturn system were discovered which have exactly these kind
of orbits which we call now exchange orbits. The exchange orbits (e-orbits) of
the general three body problem can be described as follows:

Two small but massive bodies are moving on nearly circular orbits with al-
most the same semimajor axes around a much more massive host. Because
of the 3" Keplerian law the one with the inner orbit is faster and approaches
the outer body from behind. Before they meet, the inner body is shifted to the
orbit of the outer and vice-versa the former outer body moves to an orbit with
a smaller semimajor axis: they have changed their orbits and their semimajor
axis!

This interesting interplay may be stable for millions of encounters as we
will see in the next chapters. In the satellite system of Saturn the two moons
Janus and Epimetheus (the orbits of these two moons differ only by 50 km?
and have themselves diameters of more than 100 km) have exactly these kinds
of orbits; so we postulate that this may apply to extrasolar planets too. Early
work concerning exchange orbits was accomplished by [22] who described the
u-shaped orbits during the close encounter (in a rotating frame!) and also [2]
who established stability regions depending on the masses involved. Recent
numerical integrations and analytical estimations show that e-orbits are stable
up to a mass ratio where a TP is in exchange with a Saturn like planet (e.g.

[14]).
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Figure 1.  Orbit in the restricted three-body problem around the Lagrangian points in the
rotating frame: around L4 (upper graph), around Ls and around both equilibrium points (lower
graph). Note that the last orbit is in an exchange orbit in the full three body problem; for detailed
explanation see in the text.
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Another study by [7] was devoted to the problem of the dynamics of systems
of two close planets which is in a certain sense similar to the problem we
are dealing with. But in contrary to exchange orbits there he studied stability
against close encounters which may led to escapes when they come as close as
the Hill’s radius®. [13], [14] studied the different possibilities for two planets
in 1:1 resonance and how they would be detectable with the aid of their radial
velocity curves. [17] have shown that two planets in 1:1 MMR can be stable
for quite different orbital parameters. In a recent paper [8] showed that two
ESP with planets in a possible 2:1 MMR could also be in the 1:1 MMR with
more or less the same Radial Velocity Curve.

2. The stability limits

To establish stability regions depending on the parameters which determine
the exchange orbits (mass ratio of the planets and total mass of the planets
compared to the central body and difference in semimajor axis Aa) we did
numerical integrations of the equations of motion of the full 3-body problem.
We used the Lie-integration (e.g. [9], [15]) with an adaptive step-size to be
able to model in a proper way the encounters of the two planets. We always
started the two planets on circular orbits on both sides of the central star in
1 AU with an increasing value of the difference in semimajor axes Aa for
every single experiment. We checked the maximum eccentricity during the
integration time of 10000 years; we emphasize that the number of encounters
depend on Aa.

In Fig. 2 we can see the limits of stability for e-orbits where two equally
massive TPs are involved. We plotted these differences Aa versus the max-
imum of the eccentricity . There it is visible (upper graph, shaded region in
Fig. 2) that up to the distance Aa = 0.02 AU (a = 1.01 AU for the outer and
a = 0.99 AU for the inner planet) the eccentricity stays very small; it means
that the orbits were stable even after thousands of encounters. Then we see
large maximum eccentricities between 0.96 AU and 0.99 AU (1.01 AU and
10.4 AU) which are the sign that after an encounter the planets had quite dif-
ferent orbits and left the exchange orbits. Then they are again stable because
they are too far from each other and may pass without major perturbations (the
eccentricities are again small). The small *hills’ on both sides are due to high
order resonances which cause slightly larger perturbations, but the two orbits
are well separated and almost circular. We have undertaken these numerical
experiments for four different pairs of planets with equal masses are the fol-
lowing ones: Earth — Earth, S-Earth — S-Earth®, Uranus — Uranus and Saturn —
Saturn.

In Fig. 3 we depicted a zoom of the results shown in Fig. 2: here it can be
seen that for large masses involved the differences in semimajor axis can be
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larger and the e-orbits are still stable: the respective results for two equally
massive planets in exchange orbits with a mean semimajor axis a = 1 AU are
shown in Table 1.

Table 1. The extension of the stable regions for exchange orbits for two equally massive plan-
ets around a Sun-like star with a small difference Aa in semimajor axes

2 planets lower limit  upper limit Aa
Earth — Earth 0.994 AU 1.006 AU 0.012 AU
S-Earth — S-Earth ~ 0.990 AU 1.010 AU  0.020 AU
Uranus — Uranus 0.988 AU 1.012 AU 0.024 AU
Saturn — Saturn 0.982 AU 1.018 AU  0.036 AU
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Figure 2. Stable regions for exchange orbits for 4 examples of two equally massive TPs:
Earth, Super-Earth, Uranus, Saturn; the initial semimajor axis of the two planets is plotted
versus the maximum eccentricity.

In Fig. 4 we plotted the stability regions for three different pairs of planets
in e-orbits: upper graph the Earth (as inner planet for the beginning of the
integration) with S-Earth (as outer planet for the beginning of the integration);
middle graph the Earth with Uranus and lower graph the Earth with Saturn.
The large emax values (y-axis on left part of the plot) are the ones of the Earth,
the smaller ones (y-axis on right part of the plot) are the en,x values for the
more massive planet. The region in the middle, with ey,.x close to zero, is the
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Figure 3. Zoom of Fig. 2 but for logscale in y.

domain of stable e-orbits. One can also see that the larger the total mass, the
larger is the stable region, a fact which is also visible from Tab. 1.

In Fig. 5 we show the results of numerical integrations of different pairs of
planets in e-orbits: S-Earth with Uranus (upper graph); S-Earth with Saturn
(middle graph) and as Uranus with Saturn. The trend is the same as already
shown in the last figures: the stable region increases with the masses involved.
Nevertheless there is a limit for the total mass of the planets: the numerical
experiments for e-orbits have shown that approximately 2 Saturnmasses are
this limit (which also agrees with the analytical model by [3]).

In Fig. 6 we show for three examples of equally massive planets how the
semimjaor axes evolves during 2000 years. We can see a butterfly - like dia-
gramm: the 2 planets start on opposite sides of the planet(AX = 180°) with a
small difference in semimajor axes (Aa). During the integration the two plan-
ets approach, Aa increases and just before their encounter Aa has its largest
value. Now the two planets change their orbits: the inner one, which is moving
faster, 1s shifted outwards and the outer one is shifted innwards and therefore it
is on a ’faster track’. Consequently now this planet approaches the other planet
from the inside; when they are on the opposite sides of the host star the Aa is
again as small as at the beginning of the integration and the procedure repeats.
The upper graph is for an Earth-Earth pair, the middle graph for S-Earth —



Exchange orbits in planetary systems 69

maximum eccentricity
© oo
o =~ N W
< T T
1 1 1

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
Z 06 . . : : . . .
[}
£ 05 4
c
g 04r 4
] 0.3 -
E o2 ]
£
3 ™ AT T e AT
c 0
0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04
2
‘© T T T T T
£ i
Q .
Q
(8]
(0] .
£ i
35
£ e
x
m 1 1 1 — 1}
E 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

initial semimajor axis of both planets in AU
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versus the maximum eccentricity of their orbits.

S-Earth and the lower graph for Uranus — Uranus. The encounter frequency
depends on the separation of the semimajor axes Aa.

In Fig. 7 we depicted the change of the semimajor axes after every close
encounter of a pair of Earth and Saturn. It is clearly visible that the Earth
suffers from bigger jumps in semimajor axis during the encounter than Saturn,
a consequence of the smaller mass of the Earth.

An important point is the long-term stability of such orbits. Is this a transit
configuration, or, can these kind of orbits survive for millions of encounters?
To answer this question severeal tests were undertaken and we could show that
these kind of orbits are very stable. In the respective Fig. 8 we depicted the
semimajor axes for the first million years and for the time interval from 9 to
10 million years; in Fig. 9 we show the development of the eccentricity for
the same periods of time. The results of two Earth-like planets with an initial
Aa = 0.08 show the regularity of the orbits even after almost ten thousands of
encounters (exchanges).
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orbits.

3. Conclusions

The search for terrestrial planets in EPSs is a hot topic for observing as-
tronomers nowadays. To establish regions where stable orbits of TPs in extra-
solar planetary systems may survive is a challenge for astronomners working
in Astrodynamics. Besides inside or outside the orbit of a giant planety one
possibility for TPs is to move in 1:1 MMR like Trojans and satellites of Jupiter-
like planets. Numerical estimations led to the conclusion that for a Solar type
host star the mass limit for exchange orbits in the distance of 1 AU (thought
as the habitable zone) is just below two Saturns (0.0003My,,). These means
that even a Saturn like giant may exchange orbits with an Earth-like planet;
unfortunately most of the gasplanets discovered up to now are in the size of
Jupiter or even larger. Nevertheless we expect for planetary systems to host
also Neptune and Uranus like planets — and also smaller planets, namely the
terrestrial ones — and consequently we cannot exclude the realisation for plan-
ets in this type of orbit. Although it seems to be a very unlikely configuration
the fact, that Janus and Epimetheus in the Saturn satellite system have such
orbits, teaches us that the probability of a realisation of planets in e-orbits is
not zero. To summarize we can see that e-orbits are possible only for almost
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Two planets in e-orbits for 10 Million years
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Figure 6.  Time development of semimajor axis for 200 years of 3 different pairs of planets:
Erath — Earth (upper graph), S-Earth — S-Earth (middle graph) and Uranus — Uranus (lower

graph).
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Two earth-like planets in e-orbits for 10 Million years
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Figure 8. Semimajor axes of the exchange orbits for 10 million years; upper graph: first
million years, lower graph last 1 million years.

circular orbits (e < 0.001) and almost coplanar orbits. These limits for ec-
centricity and inclination depend on the mass and also on the seperation of the
two planets involved: a numerical results (which fit well to analytical estima-
tions) give for the values of the separation in semimajor axis Aa in a distance
of 1 AU to a sunlike planet: 0.012 AU (Earth), 0.020 AU (S-Earth), 0.024 AU
(Uranus) and 0.034 AU (just below Saturn). In a next step we will investigate
how perturbations of an inner or outer perturbing gas giant may destroy these
limits.
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Notes

1. The homepage for the catalogue of extrasolar planets is maintained by J. Schneider:
http://vo.obspm.fr/exoplanetes/encyclo/catalog.php
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2.

named after Joseph Louis, comte de Lagrange (Giuseppe Lodovico Lagrangia, 1736, Turin - 1813,

Paris)

3.
4.
5.

151472 km and 151422 km
7 = Qplanet (M/3M)1/3; M the larger mass and m the smaller one

With S-Earth we mean a TP with the mass mg_garth = SMEarth
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The main goal of this study is to investigate the long term stability of orbits of
terrestrial like planets in the habitable zone (HZ) of the extrasolar systems 55
Cnc and v And. The habitable zone is defined as the region, where liquid wa-
ter can exist on the surface of a terrestrial planet. From the dynamical point of
view the most interesting planetary systems are multiple planetary systems, to
which the two planetary systems belong, since they have at least three known ex-
oplanets. To determine the orbital behavior in the different systems we used (a)
direct numerical computations (Lie-Integration method), where we determined
the escape-times and the maximum eccentricity (MEM) and (b) for the long term
stability the FLI, which is an effective chaos indicator. Because of the uncertain-
ties in the observational data for the initial conditions we varied the eccentricity
of the known planets as well as the inclination of the test-planets. For the system
55 Cnc we found a very stable HZ more or less independent of the eccentricity
of 55 Cnc d and up to an eccentricity of 0.38 of 55 Cnc c. For higher eccentric-
ities of 55 Cnc ¢ the whole system becomes unstable. The system v And has a
nearly completely unstable HZ for all initial conditions.

dynamical Astronomy, multiple exoplanetary systems, habitable zone

1. Introduction

In 1995 the first extrasolar planet was discovered [21] and until now (May
2006) we know 188 planets in 152 extrasolar systems. The investigation of the
dynamical stability of extrasolar planetary systems is more interesting in multi-
ple planetary systems. Beside some general studies for such systems (e.g. [3])
many exosolar planetary systems, like v Cephei [5], HD 12661, HD 38529, HD
37124 and HD 160691 [8], HD 74156 [6] and GI 777 A, HD 72659, Gl 614,
47 Uma and HD 4208 [1] were investigated. Furthermore an extensive study

75
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including 97 exosolar systems and their resonances was done by [24]. These
investigations determined on the one hand the stability limits, and checked on
the other hand the orbital parameters obtained by observations ([13], [14]). In
our study we investigate two multiple exoplanetary systems with three planets:
55 Cnc and v And, which are both located in wide binary systems.

Since v And was the first system with three known planets there exist a lot of
studies, which checked the observational data as well as the stability of this
system (e.g. [22], [15], [11], [2], [17]). For example [25] and [26] calculated
additional some fictive planets to find out, if there are some stable regions for
other lower-mass planets. Other works showed, that the planets ¢ and d inhabit
a secular resonance. [18] found, that the system v And has a stellar compan-
ion, approximately 750 AU away ([18]).

55 Cancri is part of a wide binary system and the planets were discovered by
the California & Carnegie Planet Search Team [19]. The inner two planets
were found to move in a 3:1 mean motion resonance, which was studied in
detail e.g. by [27], [10], [4] and [20]. Recently (August, 2004) a fourth planet
was detected, which moves very close to the primary (0.038 AU) and has just
14.21 4+2 2.91 Earth-masses ([23]), which was not included in our computa-
tions (The planet has no influence on the HZ, since it moves very close to the
star). In our study we concentrate on the HZ (see [12]) in these two systems
and try to find out if there could exist any additional planets within. In the
following we introduce the dynamical model and the methods with which dy-
namical stability was established: (a) long-term numerical integrations and (b)
chaos-indicators. Finally we discuss the results for both systems.

2. The dynamical model and the methods

The orbital parameters for both investigated systems are given in Table 1.
These systems were investigated numerically using two different models. In

Table 1. Orbital parameters for the 55 Cnc and the v And extrasolar planetary systems.

Name M Spectraltype a [AU] e w [o]
55 Cnc 0.95 Mg G8V - - -
Star 2 3.2 Mg A0 1150 ? -
55Cncb 0.84 M yup - 0.115 0.02 99
55Cncc 0.21 M yup - 0.24 0.34 61
55Cncd 4.05 M yup - 5.9 0.16 201
v Andromedae 1.3 Mg F8V - - -
Star 2 0.2 Mg M4,5V 750 ? -
v Andromedae b  0.69 My, - 0.059  0.012 73
v Andromedae ¢ 1.89 My, - 0.829 0.28 250

v Andromedae d  3.75 My - 2.53 0.27 260
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both cases we use the restricted 6-body problem (for this study we ignore the
recently new discovered planet in the 55 Cnc system, because test-calculations
showed, that it has no influence on the HZ) consisting of the binary, the three
planets and massless test-planets, that move either in the same plane or on in-
clined orbits. Because of the observational uncertainties in the eccentricities
of the planets we varied the eccentricities of those planets, which are next to
the HZ. Since the eccentricity of the binary is not known and because of the
large distance of the stellar companions (see table 1) we investigated only an
extreme case: epin, = 0.9 to see, if there is any dependence at all. The in-
tegration of the Newtonian equations of motion was undertaken with the Lie
integration method [9], [16], which uses an automatic step-size and is, because
of the recurrence of the Lie-terms, a precise integration method. The inte-
gration time was 10° years and our stability criterion was such that no close
encounters within the Hill’s sphere of one of the massive planets were allowed.
As a second independent tool to investigate the region between the two known
planets we used the Fast Lyapunov Indicators (FLI) [7]. This program uses the
Bulirsch Stoer integration method and is especially adapted for distinguishing
between chaotic and regular orbits. The criterion for the FLIs is given by their
time evolution, which defines clearly the orbital behaviour. In our study we
define orbits with FLI < 10 as stable; the integration time was 50000 years
for the FLI’s. Both methods were used complementary and showed a quite
good agreement.

3. 55 Cnc

For a primary-mass of 0.95 M, the HZ lies approximately between 0.5 and
1.4 AU [12]. In Fig. 1 the orbits of all three known planets are shown as black
circles and the HZ is marked as a grey circle. As one can see 55 Cnc d moves
far away from the HZ, but 55 Cnc ¢ moves very close to the inner edge of the
HZ as well as very close to 55 Cnc b; thus the mean motion resonances with
55 Cnc ¢ could play an important role. Additionally we found out, that 55
Cnc c itself become unstable for higher eccentricities, because then it has close
encounters with 55 Cnc b. The HZ lies between 55 Cnc ¢ and 55 Cnc d, thus
we change the eccentricities for these two planets as follows: The eccentricity
given from the observations (epps) for 55 Cnc ¢ is 0.34 and for 55 Cnc d 0.16,
so we changed the eccentricity of 55 Cnc ¢ between 0.14 and 0.54 with a
step of 0.1 and the eccentricity of 55 Cnc d between 0.06 and 0.36 again with
a step of 0.1. All these calculations were additional done for inclined test-
planets (for inclinations from 0° to 50° with a step of 5°). The results for
eops are shown in Fig. 2. As one can see, the region of the HZ is nearly
completely stable with very low eccentricities, just for high inclinations an
unstable region near the outer edge of the HZ occurs. The inner edge of the
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Figure 1. Heliocentric orbit for the planets in the system 55 Cnc (black circles); the grey
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Figure 2. Maximum eccentricity plot for the system 55 Cnc with esscpee = 0.34 and
esscned = 0.16. Dark regions show low eccentricities (stable motion) and the grey scales
go to higher eccentricities (unstable motion, see color code). Additionally one can see the
19 : 5 = 0.5844 and the 5 : 1 = 0.7018 mean motion resonances with 55 Cnc c.

HZ shows also a small unstable strip, which indicates the influence of the inner
planet (55 Cnc c), as well as some mean motion resonances with 55 Cnc c. For
lower eccentricities than the observed one, the HZ remains very stable and
also a higher eccentricity of 55 Cnc d has no considerably influence on the HZ
(see Fig. 3). For higher eccentricities of 55 Cnc ¢ the whole system becomes
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unstable. Fig. 4 (upper) shows the orbits of 55 Cnc b and 55 Cnc ¢ in the case of

inclination
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Figure 3. Maximum eccentricity plot for the system 55 Cnc with esscpee = 0.34 and
esscncd = 0.36. Dark regions show low eccentricities (stable motion) and the grey scales

go to higher eccentricities (unstable motion).

es5cneb = 0.02 and ess cpe ¢ = 0.42. As one can see, the high eccentric orbit
of 55 Cnc ¢ comes already very close to the orbit of 55 Cnc b, which leads to
close encounters with this planet (see Fig. 4, lower), so that after approximately
6000 years 55 Cnc ¢ becomes completely unstable as it can be seen from the
time evolution of the semi-major axis of 55 Cnc b and 55 Cnc ¢ (Fig. 4, lower).
These results were also confirmed with the FLI’s.

4. v And

For a primary-mass of 1.3 M, the HZ lies approximately between 1.2 and
2.6 AU [12]. In Fig. 5 the orbits of all three known planets are shown as black
circles and the HZ is marked as a grey circle. As one can see v And d moves
partly inside the HZ and also v And ¢ moves very close to the inner edge of the
HZ; so we can assume a very unstable HZ, where the mean motion resonances
with the two nearby planets play an important role. Additionally the known
planets themselves become unstable for higher eccentricities. For v And ¢ we
choose eccentricities between 0.08 and 0.48 with a step of 0.1 and for v And
d we choose eccentricities between 0.07 and 0.47 again with a step of 0.1.
All calculations were done for inclinations of the test-planets from 0° to 50°
with a step of 5°. Fig. 6 shows the results for this calculations in the case of
ey Ande = 0.08 and e, angd = 0.07, here one can see a stable region between
1.38 and 1.6 AU (black region) up to an inclination of about 40°. Already for
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Figure 4. upper: shows the orbits of 55 Cnc b and 55 Cnc c; lower: shows the time evolution
of the semi-major axis of 55 Cnc b and 55 Cnc c (the lower line shows 55 Cnc b; the upper line
shows 55 Cnc ¢) for es5cncb = 0.02, ess cnce = 0.44 and ess cne ¢ = 0.06.

an eccentricity of v And c of 0.18 the stable region shrinks drastically and for
an eccentricity of v And d of 0.17 the stable region disappears completely.
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Figure 5. Heliocentric orbit for the planets in the system v And (black circles); the grey
region mark the HZ in this system.
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Figure 6. Maximum eccentricity plot for the system v And with e, anac = 0.08 and
ev andd = 0.07. Black regions show low eccentricities (stable motion) and the grey scales
show higher eccentricities (unstable motion).

5. Conclusions

In this study we investigated the dynamical stability inside the HZ of the two
systems 55 Cnc and v And, which are both multiple planetary systems and
parts of binaries. Our investigation showed, that the HZ of the system v And
1s, because of the two very close planets on high eccentric orbits, very chaotic.
In the HZ of this system stable motion is just possible in a small region (be-



82 TROJANS AND RELATED TOPICS

tween 1.37 AU and 1.6 AU) and only for very low eccentricities of both known
planets. Thus this system is not a good candidate for additional, habitable plan-
ets. The results for the system 55 Cnc are completely different. Here the HZ is
very stable for a lot of initial conditions, just for high inclinations (z > 40°) and
for high eccentricities of 55 Cnc ¢ (es5 cnc ¢ > 0.34) the orbits within the HZ
are unstable, where 55 Cnc c itself would have close encounters with 55 Cnc b
and becomes unstable. If the eccentricity of 55 Cnc c is not higher than 0.42,
stable motion in the HZ is possible and therefore this system may be, from the
dynamical point of view, a good candidate for additional planets inside the HZ.
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Abstract The stability of hypothetical Trojan planets in exoplanetary systems is investi-
gated. In the model of the planar three-body problem, corresponding to a gravi-
tational system of a star, a giant planet and a Trojan planet, the stability regions
for the Trojan planet around the Lagrangian point L4 are determined depending
on the mass of the two planets and the initial eccentricity of the orbit of the giant
planet. The results indicate that in exoplanetary systems with one giant planet of
several Jupiter-masses, a Trojan planet up to one Jupiter-mass can exist in stable
motion around L4.

Keywords:  Trojan exoplanets — Stability

1. Introduction

The possible existence and stability of Trojan planets in exoplanetary sys-
tems have been the subject of several recent discussions. It is well known
that Trojan asteroids exist in the Solar System in great number. It can be ex-
pected that Trojan-type objects exist also in exoplanetary systems. Laughlin
and Chambers [3] outlined a possible formation mechanism of Trojan plan-
ets in protoplanetary accretion discs. They also discussed the question of de-
tectability of extrasolar Trojan planets. According to their results two planets
with masses comparable to the mass of Jupiter or Saturn around a solar-mass
star can perform stable tadpole-type librations about the Lagrangian points L4
or L5 of the system. Pairs of Saturn-mass planets can also execute horseshoe
orbits around a solar-mass star, but this is not possible for Jupiter-mass pairs.
A pair of planets both in tadpole and horseshoe-type orbits induce a charac-
teristic pattern in the radial velocity component of the central star that could
be detected. Nauenberg [5] determined numerically the nonlinear stability do-
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main of the triangular Lagrangian solutions in the general three-body problem
as a function of the eccentricity of the orbits and the Routh’s mass parame-
ter. This study indicates that there is a wide range of Jupiter-size planetary
masses (including brown dwarfs) and eccentricities for which such solutions
could exist in exoplanetary systems.

Most of the known exoplanets are gaseos giant planets having large masses
of the order of or several Jupiter-masses. The search for small terrestrial-like
planets with solid surface is an outstanding aim of several ongoing and future
research projects. It is an important question, whether Earth-like planets can
exist in the habitable zone (HZ) of exoplanetary systems. If there is a giant
planet in the HZ of a system, the existence of another planet there is unlikely.
However, as Menou and Tabachnik [6] noted, terrestrial planets could exist at
the stable Lagrangian points L4 or L of the giant planet moving in the HZ.

Erdi and Sandor [2] studied this possibility in detail, investigating five ex-
oplanetary systems (HD 17051, HD 28185, HD 108874, HD 27442, and
HD 114783) in which the only known giant planet moves in the HZ. By using
the model of the elliptic restricted three-body problem they determined numer-
ically the region around L, of each system where stable tadpole-type motion is
possible. In [2] four other systems (HD 150706, HD 177830, HD 20367, and
HD 23079) were also studied in which the orbit of the giant planet is partly out-
side the HZ due to its large eccentricity. It has been shown that in all studied
systems there is an extended stability region around L4, whose extent depend
on the mass and the orbital eccentricity of the giant planet. It is possible that
Trojan exoplanets of negligible mass exist in these systems.

Dvorak et al. [1] also studied three exoplanetary systems in which a giant
planet moves close to the HZ in low eccentricity orbit. They determined the
size and the structure of the stability region around L4 and L5 and pointed out
that the stability region shrinks significantly with the increase of the orbital
eccentricity of the giant planet. It is possible that in all three systems a small
Trojan planet could exist in stable orbits with moderate eccentricities.

In our previous study [2] we assumed that the fictitious Trojan exoplanet had
negligible mass. In this paper we study the problem more generally, giving
mass to the Trojan planet up to 1 Jupiter-mass and determine the regions of
stability around L4 in the model of the planar three-body problem.

2. Dynamical model and method of investigation

For the investigation of the nonlinear stability of orbits around L4 we used
the model of the planar three-body problem, corresponding to a gravitational
system of a star, a giant planet and a Trojan planet, by assuming, as a first step
of a more general stability study, that the orbits of the two planets are in the
same plane.
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To determine the dynamical character of the orbits we used the method of
the relative Lyapunov indicators (RLI) developed by Sandor et al. [7], [8]. The
RLI measures the difference in the convergence of the finite-time Lyapunov
indicators to the maximal Lyapunov characteristic exponents of two initially
very close orbits. The values of the RLI are characteristically several orders
of magnitude larger for orbits in a chaotic region than in a regular domain.
The method is extremely fast in establishing the ordered or chaotic nature of
individual orbits, and therefore is very well applicable to explore the dynamical
structure of the phase space. According to our experiments, gained in different
dynamical problems, it is enough to integrate the two very close orbits for a few
hundred times of the longest orbital period of the studied system. In the present
investigation we integrated the orbits for 10? periods of the giant planet.

In our computations we used the following parameters and initial orbital
elements.

m  Mass of the central star: mg = 1 my, (solar mass)
m  Mass of the giant planet: m’ =1, 2, 3, 4, 5, 6, 7 m; (Jupiter-mass)
m [nitial orbital elements of the giant planet:

— semi-major axis: a’ = 1 AU

— eccentricity: ¢ = 0 — 0.30, stepsize: Ae’ = 0.05

— argument of the pericentre: w = 0

— mean anomaly: M’ =0

m  Mass of the Trojan planet: m = 0, 1, 2, 3, 10, 100 mp (Earth-mass) and
1 my

m [nitial orbital elements of the Trojan planet:

— semi-major axis: a = 0.8 — 1.2 AU, stepsize: Aa = 0.001 AU
— eccentricity: e = 0
— synodic longitude: A — X = 20° — 180°, stepsize: A\ = 2°,

where \ and )\ are the mean orbital longitudes of the Trojan and the giant
planet, respectively. (Initially A’ = 0, since \' = M’ + w’.)

We computed maps of dynamical stability around L4 in the following way.
Selecting a value of m/, ¢’ and m from the given sets, we changed the semi-
major axis and the synodic longitude of the Trojan planet in the given intervals
with the given stepsize and computed the values of the RLI for all resulting
orbits. Then we represented the logarithm of the values of the RLI correspond-
ing to each initial point on the (a, A — \’) plane on a black and white scale. In
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what follows we discuss the main characteristics of these maps. Some repre-
sentatives of them are shown in Figures 1-8. Low RLI values (light regions)
correspond to stable orbits, high RLI values (dark shades) indicate chaotic be-
haviour. The black background corresponds to escape or collision orbits with
the giant planet. Considering that 7 values for the mass of both planets, and
also 7 values for the initial orbital eccentricity of the giant planet were taken,
altogether 343 maps were computed. These dynamical stability maps can be
used to establish the stability region around L4 in known exoplanetary systems
with one giant planet.

3. Maps of dynamical stability

Fig. 1 shows the stability region around Ly form = 0, m’ = 1my, e =0
(circular restricted three-body problem, with mass parameter . = m’/(mg +
m’) 2 0.001). It can be seen that there is a central more stable region and going
outwards a ring structure appears corresponding to higher order resonances

between the short and long period components of the librational motion around
Ly.
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Figure 1.  Structure of the stability region around L4 in the circular restricted three-body
problem (m = 0, ¢’ = 0) for the mass parameter . ~ 0.001 (m’ = 1m.).

The computations show that increasing the mass of the giant planet, the sta-
bility region becomes shorter in the synodic longitude and wider in the semi-
major axis. Near its edge the ring structure disrupts into a chain of islands. In
Fig. 2, obtained for m’ = 2m , both a ring and a chain of small islands can be
seen. These islands are remnants of a former ring. The shrinking of the stabil-
ity region with the increase of the mass of the giant planet is not monotonic, it
reaches a minimum extension at m’ = 6m (Fig. 3), then it is larger again for
m’ = Tm (not shown in the figures).

In the elliptic restricted three-body problem, when m = 0 and €’ # 0, the
structure of the stability regions is similar to that of the circular problem. Figs.
4 and 5 show two examples which are somewhat different from the general
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Figure 2. Structure of the stability region around L4 in the circular restricted three-body
problem (m = 0, ¢’ = 0) for u =~ 0.002 (m’ = 2m.).
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Figure 3. Structure of the stability region around L4 in the circular restricted three-body
problem (m = 0, ¢’ = 0) for u ~ 0.006 (m' = 6m.).

picture. Fig. 4, obtained for ¢/ = 0.1, m’ = 4m, exhibits a well structured
stability region around L4. In Fig. 5, obtained for ¢/ = 0.2, m’ = 3my, a
compact stability region is present.
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Figure 4. Structure of the stability region around L4 in the elliptic restricted three-body
problem for e’ = 0.1, ;1 ~ 0.004 (m = 0, m' = 4m).
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Figure 5. Structure of the stability region around L4 in the elliptic restricted three-body
problem for e’ = 0.2, u ~ 0.003 (m = 0, m' = 3m.).

When the Trojan planet has non-zero mass, the stability region is still quite
extended. Figs. 6 and 7 show the cases when m = 1mpg and 10mg (in both
cases ¢ = 0, m’ = 1my). A comparison with Fig. 1 (m = 0, ¢ = 0)
reveals that the size of the stability region is about the same for Trojan planets
of several Earth-masses as for negligible mass.
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Figure 6. Structure of the stability region around L4 in the three-body problem for m =
Img, e =0, m = 1m;.

We determined the stability regions around L4 in the planar three-body
problem for the combinations of the masses: m = 1,2,3,10,100mg, and
IMy;, m" = 1,2,3,4,5,6,7m , and initial eccenticity of the giant planet
e/ =0.05,0.10,0.15,0.20, 0.25, 0.30. For a given pair of m’ and €’ the size of
the stability region does not change much with the increase of m. The changes
are larger when m is fixed, and either m’ or €’ is changed while the other is kept
constant. The computations confirm the existence of a stability region around
L4 even for m = mj, when the mass of the giant planet is several Jupiter-
masses and its orbit is very eccentric. Fig. 8 shows the stability region for
m = 1my, ¢ = 0.3, and m’ = 1m . Increasing m’ at this value of m and €,
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Figure 7. Structure of the stability region around L4 in the three-body problem for m =
10mg, e’ =0,m' = 1mj.

the size of the stability region decreases reaching its minimum at m’ = 5m,
after which it grows again, as the computations show.
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Figure 8. Structure of the stability region around L4 in the three-body problem form = 1m.,
e =0.3,m =1my.

4. Size of the stability region

The size of the stability region depends on the masses m, m’ and the eccen-
tricity €/. In [2] we determined this dependence for m = 0. Continuing that
work we studied how the size of the stability region depends also on m. Fig. 9
shows the dependence of the size of the stability region around L4 on m’ and
e/ for m = 1my for 500 periods of the primaries. The figure was obtained as
follows.

For a given pair of ¢ and u = m//(mgo + m’) we put the Trojan planet
in the point L4 with zero relative initial velocity and checked if it stays there
or performs librational motion around L4 for 500 periods of the primaries.
(Certainly, the time interval in this kind of investigations is crucial, we took
this value as a compromise. The general features of the stability structure
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appear during this time.) Then we moved the Trojan planet a little away from
L, along a line going throgh L, perpendicular to the line of the primaries. We
checked again the librational motion of the Trojan planet. Proceeding in this
way we determined the largest distance ¢ from L4 (perpendicular to the line
of the primaries) at which the Trojan planet starting with zero relative initial
velocity still performs librational motion around L4 and does not cross the line
of the primaries. We defined the stability region as the largest possible libration
region. Changing €’ and . on a fine grid, we determined for each pair of (€’, )
the largest € (in the unit of the distance of the primaries) corresponding to
the largest libration region. For the sake of better visualization Fig. 9 shows
the values of 1/log(e) instead of € on a black and white scale. The light
region above the V-shaped curve corresponds to instability, libration is possible
below this curve. Darker regions correspond to larger librational regions. It
can be seen that the size distribution of the stability regions shows a complex
structure. The size is the largest when both €’ and p are small (¢/ < 0.1,
1 < 0.01). This means that in an exoplanetary system with one giant planet of
several Jupiter-masses there can be a Trojan planet of one Jupiter-mass. The
fine structure of the figure confirms our previous finding that the size of the
stability region changes much either fixing e’ and varying u, or vice versa.
There is also an extended stability region for small values of €’ (¢/ < 0.1)
between p = 0.014 — 0.02. This was also found by Lohinger and Dvorak [4].
The unstable regions below p = 0.014 and at © = 0.023 correspond to the
resonances 3:1 and 2:1 between the frequencies of libration around L4. The
finger-like structure on the left side of the figure may be related to higher order
resonances.

Eccentricity

0.01 0.02 0.03 0.04 0.05
Mass parameter

Figure 9. Size of the stability region around L4 in the planar three-body problem for a
Trojan planet of mass m = 1m depending on the ecccentricity e’ and mass parameter 1 =
m’/(mo + m') of the giant planet.
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Abstract The stability of P—type orbits in a binary system (mass—ratio equal to 0.5) was
studied on the semi—major axis vs. inclination plane, similar to [10]. In the
present work we investigate a larger part of the phase space, by calculating the
relative Lyapunov Indicators and maximal eccentricities.
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1. Introduction

Observations show that 60% of the main sequence stars are in binary or
multiple systems (see [3]). Moreover, pre-main sequence stars may indicate
that almost all of the stars are born in multiple systems (see [4], [5]). On
the other hand, until now more than 160 exoplanets have been discovered, and
some of them belong to binary systems. These facts show, that the investigation
of the stability of planetary orbits in binaries is very important.

The discovered planets in binaries move on satellite orbits i.e. the planet
revolves around one stellar component (S—type orbit; see Fig. 1). Theoretically
there is another possible type of motion, the so called planetary orbit (P—type;
see Fig. 1), whereas the planet moves around both stars. The S—type orbits
were studied for some known systems by [6], [7], [8] and [9].

The stability of P—type orbits was also studied by [10] on the semi—major
axis vs. inclination plane for a binary’s mass—ratio (u = ms/(m1 + my))
equal to 0.5 by calculating the Fast Lyapunov Indicators (FLI) and escape
times. They concluded that the stability limit varies between 2.1 and 3.85
binary separation (bs) depending on the eccentricity of the binary, and found a
finger-like unstable island at inclinations 7 = 15° to ¢ = 45°.
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Figure 1. In the left panel: satellite—type or S—type motion: the planet revolves around one
of the stars; right panel: planetary-type or P—type motion: the planet revolves around both star,
i.e. it moves around the barycenter (BC).

In this paper we also study the stability of P—type orbits in a larger part of the
phase space by using the methods of the Relative Lyapunov Indicators (RLI)
and the maximum eccentricity. In the next section we give a description of the
investigated system, the initial conditions and the applied numerical methods.
After that we delineate and summarize our results.

2. Numerical setup
2.1 Initial conditions

For the integration of the equations of motion of the 3D restricted three-body
problem we used the Bulirsch-Stoer integrator with adaptive stepsize control
in the case of the RLI, and the Runge-Kutta-Neystrom-Felhberg RKN7(8) in-
tegrator with adaptive stepsize control for calculating the maximum eccentrity.
The orbit of the primaries, and initially the massless planet’s orbit is also circu-
lar, i.e. the eccentricity of the planet e = 0. The semi—major axis of the planet
a 1s measured in the unit of the distance between the primaries and the initial
value ag varies from 0.55 to 4 with stepsize Aa = 0.005. We use four starting
mean anomaly (M) values for the planet: 0°, 45°, 90° and 135°. These an-
gles are measured from the connecting line of the primaries (see Fig. 2). (The
resulting maps are the average of the four M. See later.) The inclination ¢ is
the angle between the orbital plane of the planet and the reference plane (zy—
plane), which is the orbital plane of the binaries; initial value ¢¢ varies from
0° to 180° with stepsize A7 = 1.25°. The x—axis is the line connecting the
primaries at t = 0. We note, that this line coincides with the line of node if
i # 0,t = 0, i.e. the node of the planet is 29 = 0°. Initially the argument of
the pericenter of the planet is wg = 0°.

The above defined orbital elements are referred to a barycentric reference
frame, where the mass of the barycenter is M = M; + M>. Using the usual
procedure, the barycentric co-ordinates and velocities were calculated. After
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Figure 2. Configuration of the system: BC is the barycenter, the separation of the stars is the
unit of distance, ¢ is the planet’s inclination with respect to the reference plane and My is the
initial mean anomaly of the planet.

that we transformed our co-ordinate and velocity vectors to a frame of refer-
ence with Sy in the origin.

2.2 The maximum eccentricity method (MEM)

For an indication of stability a straightforward check based on the eccentric-
ity was used. This osculating orbital element shows the probability of orbital
crossing and close encounter of two planets, and therefore its value provides
information on the stability of the orbit. We examined the behaviour of the
eccentricity of the planet along the integration, and used the largest value as a
stability indicator; in the following we call it the maximum eccentricity method
(hereafter MEM). This is a reliable indicator of chaos, because the overlap of
two or more resonances induce chaos and large excursions in the eccentricity.
We know from experience, that instability comes from a chaotic growth of the
eccentricity. This simple check has already been used in other stability studies,
and was found to be a powerful indicator of the stability character of an orbit
(see [2], [1]).

Calculating the maximum eccentricity an upper threshold was used. When-
ever the eccentricity reached 0.8, the orbit was considered unstable, and the
integration was stopped.
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2.3 The relative Lyapunov indicator (RLI)

The method of the relative Lyapunov indicator (RLI) has been introduced
by [11] for a particular problem, but its efficiency was demonstrated in a later
paper [12] for 2D and 4D symplectic mappings and for Hamiltonian systems.

This method based on the idea that two initially nearby orbits are integrated
simultaneously and also the evolution of their tangent vectors are followed.
For both orbits the Lyapunov characteristic indicator (LCI) is calculated and
the absolute value of their difference averaged over time is defined as RLI:

RLI(¢) — %|LCI(:1:0) _ LCI(zo + A)], ()

where Az is the distance in phase space between the two orbits. The definition
of RLI contains an arbitrary parameter Ax, which may affect the result. The
authors have tested the sensitivity of RLI versus the norm of this parameter
and found that the RLI depends almost linearly on Az in the regular domain,
while it is practically independent of it in the chaotic domain. Nevertheless,
the value of the RLI is characteristically always several order of magnitudes
smaller in a regular domain than in a chaotic region.

3. Results

The resulting figures were obtained as follows: we started the integration at
mean anomaly My = 0°,45°,90°, 135° so we got RLI ©), RLIWS) RLI(0)
RLIM3%) and maximum eccentricity M E©), ME®) M E®O A E(35)
also. The plotted value is an average:

RLI(a,i) 1 3 RLIMo)(q, ) )

ME(a,i) 4 Mo=0,45.90,135 MEMo)(a, i)
We note, that this averaging in the case of the RLI stress the chaotic behaviour
of an orbit, whereas in the case of the maximum eccentricity it is not so drastic.

At first we calculated the same part of the phase space as in [10], which is
ap = 1.8—2.5and 7o = 0—50°. We performed the calculations on a finer grid:
Aap = 0.005 bs and Azg = 1.25° (see Fig. 3). Our maps are very similar to
[10], except that our figures are more detailed, especially the second RLI map,
where the system was integrated up to 1000 binary periods (bp). In Fig. 3 one
can see some resonant formations, which appear at lower inclinations and are
deviated at higher inclinations.

In Fig. 4 we show two maps for a larger domain of the phase space, which
corresponds to ag = 0.55—4 bs and 19 = 0—180°, with stepsizes Aag = 0.005
bs Aig = 1.25°. Both maps contain 691 x 145 points, resulting more than 10°
orbits, if we take into account the averaging detailed above this number rises to
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Figure 3. Upper right: FLI for 10000 bp in [10] Black indicates the stable zone, white the
unstable. Upper lefi: Maximum eccentricity for 1000 bp. White shows the stable zone, black
the unstable. Lower left: RLI for 200 bp. Colors like in max. ecc. Lower right: RLI for 1000
bp. Colors like in max. ecc.

4 x 10° orbits. Each orbit was integrated for 1000 bp in the case of the MEM
and for 500 bp in the case of the RLI.

It is interesting, that the stable regions are wider in the case of retrograde
orbits (z9p > 90°) than for direct ones (29 < 90°). In the RLI map we can see
several resonant formations. A resonant curve splits into three stronger and
some fainter branches which makes it similar to a fork. The shape is generated
by the applied averaging. For example in the case of the 3:1 resonance: when
My = 0°, we can see a sharp vertical line at a = 2.085 bs, at My = 45°, the
centre of the line is shifted to a = 2.175 bs and at My = 90° the centre is at
a = 2.23 bs. The case of My = 135° 1s similar to My = 45°. The width of
the line grows with the distance from the 3:1 resonance (a = 2.08 bs). The
averaging shows simultaneously the three cases, producing the fork shape. The
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black the stable.

fork belonging to the 3:1 resonance iduces Pilat-Lohinger’s finger-like unstable
island (see Fig. 4).
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4. Summary

We investigated the stability region around a binary on the a — ¢ plane by
calculating the RLI and the ME. Our results are in very good agreement with
the results of [10], on the other hand they give information about a more ex-
tended part of the phase space. The maps obtained by the RLI show very fine
resonant structures. The stable regions are wider when g > 90° (retrograde
orbits). The resonant curves have a fork-like shape which is caused by the av-
eraging. We demonstrated that Pilat-Lohinger’s unstable island is created by a
triple fork-like resonant shape.
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Abstract
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Gliese 86 is one of 3 binary systems with a close stellar component, where an
extra-solar planet was discovered. The host-star is classified as a K1 main-
sequence star and its stellar companion was first identified as a brown dwarf
(Els et al., 2001) and later as a white dwarf (Mugrauer & Neuh&user, 2005).
In our numerical investigation we determine the stable zone around the K1V
star for different eccentricities of the binary system in both stellar configurations
and compare the results of the systems. The planetary motion is analyzed by
means of (a) the Fast Lyapunov Indicator (FLI) and (b) the maximum eccentric-
ity (max-e). A study of mean motion resonances in the Gliese 86 system showed
that the perturbative effects due to the discovered planet are restricted to very
close orbits. Therefore, we distinguish 3 regions: (i) the inner zone (1Z)), which
is the region between the detected planet and the so-called habitable zone; (ii)
the habitable zone (HZ) is defined as the region around a star where liquid water
can exist on the surface of a terrestrial-like planet; and (iii) the outer zone (OZ)
which is the region outside the HZ, which is not influenced by the detected gi-
ant planet. For the computations different dynamical models were applied — i.e.
the restricted four body problem for the (1Z) and the HZ, the elliptic restricted
three body problem for the (OZ). In general, the motion of fictitious planets in
the Gliese 86 system is very stable. Only for high eccentricities of the binary
(> 0.75) chaotic motion occurs even in the HZ. In this case the stable zone
shrinks to a small region around Gliese 86, where the eccentricity of an addi-
tional fictitious planet should be < 0.5 due to perturbations of the detected giant
planet.

binary system: Gliese 86 — S-type orbits — stable regions — habitable zone — Fast
Lyapunov Indicators — maximum eccentricity
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1. Introduction

The discovery of extra-solar planets in binaries led to a growing interest of
stability studies of such systems, where we distinguish between 2 types of
motion': the planet (or P-) type motion when the planet moves around both
stars and the satellite (or S-) type motion, when the planet orbits one star. Up
to now we know 14 double star systems, where planetary companions were
found in S-type motion.

Dynamical studies of planetary motion in binaries were carried out during
the last 25 years. There are general studies using either the three body problem
(see e.g. Harrington (1977), Szebehely (1980), Szebehely & McKenzie (1981))
or the elliptic restricted three body problem? like the ones by Dvorak (1984 and
1986), Rabl & Dvorak (1988), Dvorak et al. (1989) and more recently by Hol-
man & Wiegert (1999), Pilat-Lohinger & Dvorak (2002), Pilat-Lohinger et al.
(2003) and Musielak et al. (2005). The last cited paper showed also an appli-
cation to binary systems with observed giant planets, where they have chosen
three systems with a close moving planet among which they selected as well
Gliese 86 — which is studied in detail in the present investigation. Furthermore
we have to mention that Benest studied in a series of papers several binaries
numerically (see Benest 1988, 1989, 1996, 1998 and 2003).

The binary Gliese 86 is about 11 pc away from the Sun in the constella-
tion Eridanus. The double star system consists of a K1 main sequence star
(m1 = 0.7Mg) and in all probability a white dwarf (with a minimum mass of
0.55Mg) at about 21 AU as proposed by Mugrauer & Neuhduser (2005) using
NAOS-CONICA (NACO) and its new Simultaneous Differential Imager (SDI).
The former detection by coronographic images using the ESO adaptive optic
system ADONIS (Els et al., 2001) identified a late L or late T brown dwarf
(BD) of about 50 Jupiter-masses moving at a distance of at least 18.75 AU.
But Els et al. could not explain the linear trend in the observation, as it can be
done by the new detection by Mugrauer & Neuhéuser (2005). However, the
first who suggested a white dwarf (WD) companion for Gliese 86 was Jahreif3
in 2001.

The planet is found to be very close to the K1 V star, at 0.11 AU with an
orbital period of less than 16 days (Queloz et al., 2000). Due to the CORALIE
measurements a minimum mass of 4 Mjypiier Was determined.

In our study we first examine numerically the dynamical behavior of ficti-
tious low mass planets in the binary Gliese 86, where we neglect the detected
planet in order to define the stable region for different eccentricities of the bi-
nary (€pinary). The results for both binary configurations (i.e. BD or WD as
secondary) gave rise to carry out further investigation of this double star using
ebinary = 0.2 and 0.7.
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Then we determine the mean motion resonances (MMRs) of the system
Gliese 86 and we divide the region between the detected planet at 0.11 AU
and the secondary (at 21 AU and 18.75 AU, respectively) into 3 parts: (i) the
inner zone (I1Z)) between the detected planet and the habitable zone, where
we can expect a gravitational influence of Gliese 86 b; (i1) the habitable zone
(HZ), where only the inner part might be perturbed by Gliese 86 b; and (iii)
the outer zone (OZ) outside the habitable zone, which is not influenced by the
giant planet. The results for the different regions are discussed in sections 4 —
6.

For the computations two dynamical models are used: (i) the restricted 4
body problem® (R4BP) for the IZ and the HZ, (ii) the elliptic restricted 3 body
problem (ER3BP) for the OZ.

Contrary to most other studies, we determine the dynamical state of the orbits
not only through straightforward orbital computations but we applied a chaos
indicator, with which it is easier to define the regions of long-term stability.
As chaos indicator we use the Fast Lyapunov Indicator (FLI) (Froeschlé et al.
1997) and combine the results with the evolution of the orbit’s eccentricity. In
the next section we describe the numerical methods and the initial conditions
for the computations.

2. Numerical setup

For the different numerical studies of the binary Gliese 86 we determine the
stable zones in the orbital element space mainly by means of the fast Lyapunov
Indicator (FLI). This chaos indicator measures the length of the largest tangent
vector

»(t) = sup [lvi(?)]] (D

(where 7 = 1,...n and n denotes the dimension of the phase space) and is
therefore, a fast method to distinguish between regular and chaotic behavior. It
was introduced by Froeschlé et al. in 1997. To carry out the necessary compu-
tations, we modified the n-body program* of R. Gonezi, (from the Observatory
of Nice, France).

Moreover, we check the stability of the orbital motion by calculating the
maximum eccentricity (max-e) (a) over the whole integration time and (b) for
successive subintervals (of either 50 or 500 years®) to verify the variation of
the max-e. This is an easy criterion to distinguish between regular and chaotic
motion which was used e.g. by Laskar in 1994 to show the long-term evolution
of the planets in the Solar System. In general it is called either maximum
action method (see Morbidelli, 2002, p. 106) or sup-map method (according
to Froeschlé & Lega, 1996 ). The computations for this study are carried out
using the Lie-series method, which has also an adaptive step size control for
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the correct handling of possible close encounters of celestial bodies (for details
see e.g. Lichtenegger (1984) and Hanslmeier & Dvorak, (1984)).

The initial conditions of the massive bodies are taken from the papers by
Els et al. (2001) — when the secondary ms is a brown dwarf (BD) — and by
Mugrauer & Neuhiduser (2005) — when the secondary msy is a white dwarf
(WD) — only the eccentricity of the binary (epinary) Was varied (see table 1) and
all angles — inclination (i), node (£2), perihelion distance (w) and mean anomaly
(M) — are set to zero.

Table 1. Orbital parameters of the binary Gliese 86

m1 (K1 Vstar) my (BD) ma (WD) ms (planet)

mass: 0.79 Mg 50 M;j 0.55 Ms 4 My
semi-major axis [AU]: 0. 18.75 21 0.11
eccentricity: 0.0-0.7 0.0-0.7 0.0-0.7 0.046

The initial conditions of the fictitious planets are given in table 2

Table 2. Initial conditions of the massless bodies

orbits in the R4BP orbits in the ER3BP
semi-major axis [AU]:  0.14 — 1. (with step: 0.01) 0.3 —10.5 (with step: 0.01)
eccentricity: 0.,0.1,0.2,...,0.5 0.,0.1,0.2,...,0.5
inclination [deg]: 0 0 —45 (with a step of 5)
Q,w, M: 0 0

and the integration time for the FLI computations is between 1000 and
100000 periods of the binary, which seems to be not very much. But we have
to point out that the dynamical state of an orbit can be determined with the
FLIs about 200 times faster than by calculating the Lyapunov characteristic
exponent (LCE)®. In addition we combine the FLI results with those of the
maximum eccentricity.

3. General stability studies

3.1 Stability of S-type motion around Gliese 86 A (without
the detected planet)

Since we do not have any knowledge about the binary’s eccentricity — nei-
ther from the detection by Els et al., 2001 nor from the new observations by
Mugrauer & Neuhiduser, 2005 — we study the region between the K1 V star
and the secondary (BD and WD, respectively) — where we neglect the discov-
ered giant planet — in order to define the stable zones of S-type motion around
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Gliese 86 for different eccentricities of the binary (€pinary = 0 to 0.9 with a step
of 0.05). As dynamical model we use the ER3BP, where the orbital behavior
is determined by (a) the application of the FLIs and (b) the max-e. The initial
conditions of the Gliese 86 system are given in table 1 of section 2 (i.e. m; and
both my). The massless bodies are started in circular motion at semi-major
axes between 0.3 and 12 AU with a step of 0.01 AU. And the computations
time is 100000 years (i.e. more than 1000 periods of the binary).
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Figure 1. The stability of a fictitious mass-less body in the gravitational field of the binary
Gliese86 AB, where the detected planet at 0.11 AU was neglected. One can see three zones
(stable,mixed and chaotic) for both configurations: dashed lines with open and full squares for
a WD and full lines with open and full circles for a BD as secondary.

The results of the FLI computations are shown in fig. 1 which splits the
(semi-major axis,epinary) Parameter space into 3 zones: (1) a stable zone whose
border (dashed lines with black squares (for me = WD)/solid line with black
circles (for ms = BD) is defined by the largest distance from Gliese 86 (= m)
up to which we have found only regular motion; (ii) a chaotic zone, where no
regular motion can be found — which is outside the dashed line with open
circles; and in-between the two border-lines one can see (iii) a mixed zone
where both regular and chaotic motion can be found (see e.g. fig. 5.a, where
these 3 zones can be clearly seen). For the old system (my = BD) one can
see that the border of the chaotic zone is nearly constant up to epinary = 0.2
with values around 7.2 AU. An increase of the binary’s eccentricity leads to
an almost linear shift of this border towards the host-star Gliese 86. Moreover,
one can recognize a quit similar development of both border-lines for high
eccentricities (epinary > 0.65), where the mixed zone is quite small. In contrast
thereto, we have a large mixed zone for eccentricities up to 0.5.

For the new system (mg = WD) the two border-lines show always a decrease
of the stable zone and an enlargement of the chaotic zone when the binary’s
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eccentricity is increased. Remark: As a comparison we did some computations
using the general three body problem with a planet’s mass of about 5 Jupiter-
masses. For such a system the stable zone shrinks significantly only for high
eccentricity motion of the fictitious planet (€pjaner > 0.3) .

According to the results illustrated in fig. 1, we have chosen two eccentrici-
ties of the binary: (1) €pinary = 0.2 and (i1) €pinary = 0.7 for which we carry out
further numerical studies.

3.2 Mean motion resonances

Secondary

semi-major axis [AU]

Habitable Zone

e
24¥¥!!!

3L, e b d
GI86 b 4 5t
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g ! | I A
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Figure 2. The mean motion resonances (MMRs) up to the order 20 of an additional fictitious
planet with respect to Gliese 86b (lower part) and with respect to the secondary (upper part).
The x-axis denotes the number of periods either for a fictitious planet (lower part) or for the
secondary — BD — (upper part), and the y-axis shows the position of the resonances (on a log-
scale). For a better understanding of the graphical presentation we give the following examples:
e.g. "2"atx = 1 and y = 11.14 (upper part of the figure) means 2:1 resonance of a fictitious
planet with the secondary at a=11.14 AU; and "2" at x = 1 and y = 0.174 (lower part) means
1:2 resonance of a fictitious planet with Gliese 86b at a = 0.174 AU. The hatching denotes the
region which is occupied by the secondary, and since we do not have any knowledge about its
eccentricity we marked this region for esecondary from 0 (left border) to 0.9 (right border). The
dotted region labels the habitable zone of Gliese 86. Here it is clearly seen, that the MMRs
do not influence the HZ of Gliese 86 except the high order MMRs with respect to the detected
planet, which are not that important. We have to note that the MMR-plot for the new system
(m2 = WD) is quite similar to fig. 2 — so it is useless to show both.

To get a first picture about the gravitational influence of the secondary (i.e.
the brown dwarf) and of the discovered planet on a fictitious planet moving
in the region between these two bodies, we computed the mean motion reso-
nances (=MMR) up to the order 20. Its representation is given in fig. 2, where
the lower part is with respect to the detected planet, the upper part is with re-
spect to the secondary and the dotted region labels the habitable zone. It is
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Figure 3. Stability maps of a fictitious massless planet in the IZ, where the eccentricity of
this planet is varied between 0 and 0.5 and the binary’s eccentricity was fixed to 0.7 (since we
expect perturbations of the secondary in the I1Z only for high values of epinary). (a) The left panel
summerizes the e-max results for the old system (BD as secondary) where the different gray
shades in the stable zone indicates regions of various maximum eccentricities which increases
permanently from 0.2 (black zone) around epjanet = 0.05 to 0.6 at eplanet = 0.5. Additionally,
one can see that initial circular motion belongs to a higher max-e level. The faintest region
represents the unstable motion where the maximum eccentricity was 1. (b) The right panel is
the result for the new system (WD as secondary), which shows the same overall structure. For
more details see section 4.

clearly seen that most of the resonances with respect to the detected planet are
concentrated to distances < 0.3 AU from the K1V star and only a few, very
high order resonances are in the habitable zone. Furthermore, fig. 2 explains
quite well the application of different dynamical models: (i) the R4BP for the
regions where we can expect an influence of the detected planet, i.e. the 1Z
and as well the HZ; (i1) the ER3BP for the OZ.

The slanted line defines the peri-center distance of the secondary for different
eccentricities — from 0 (upper left position) to 0.9 (lower right position) — which
indicates already an influence on the HZ for high eccentricity motion.

4. The orbital behavior of fictitious planets in the inner
zone

For the study of the region, where we have to expect an influence of the de-
tected giant planet according to the MMR result, we use the R4BP and the ini-
tial conditions given in section 2 for the massive bodies. The parameter space
of Gliese 86 is explored in two planes: the (ag, €pinary)— and in the (ag, €planct)—
plane”. We determine the orbital behavior by means of the FLI, which are
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computed for at least 1000 periods of the binary. Low values of the chaos
indicator label regular motion which is given by the dark region in fig. 3.a.

The study in the (ao, €pinary)—plane for circular planetary motion is not
mapped since it can be described easily as the border between regular and
chaotic motion is at ag = 0.19 AU for all eccentricities of the binary. Within
the chaotic region a stripe of stable motion (at agp = 0.15 AU) for all epinary
was found, which is connected to the 8:5 MMR with Gliese 86b. And in
the stable zone two small chaotic islands appear: one at ag ~ 0.23 AU for
0.2 < epinary < 0.4 (next to the 1:3 MMR) and one at ag ~ 0.206 AU for
€binary = O (close to the 2:5 MMR).

The results of a similar study for various eccentricities of fictitious planets
(eplanet) and a fixed eccentricity of the binary (i.e. 0.7) are given for both sys-
tems (BD and WD as secondary) in figs. 3.a and b. Comparing the two plots
one can see the same overall structure: (1) An increase of the planet’s eccen-
tricity invokes as expected an increase of the chaotic region (white regions) (2)
The border between regular and chaotic motion is dominated by the appear-
ance of mean motion resonances. Which can either stabilize the motion — like
at 0.15 AU for epjanet = 0 (8:5 MMR) or at 0.16 AU for 0.05 < eplaner < 0.1
(7:4 MMR) — or destabilize the motion (faint stripes in the dark region — like
the 3:1 MMR at about 0.23 AU); Both max-e plots show quite constant level-
curves for the maximum eccentricity in the stable region so that we do not ex-
pect a significant influence of the detected giant planet especially on the outer
part of the IZ for the BD secondary and at least for low-eccentricity motion of
the fictitious planets in the case of a WD secondary.

5. The habitable zone around Gliese86 A

The HZ is roughly speaking the region around a star, where conditions sim-
ilar to that of the earth can be found for a terrestrial-like planet, so that a bio-
sphere can be built. One of the most famous work thereto was published by
Kasting et al. in 1993, which is still a reference work for many studies nowa-
days. However, the discovery of numerous extra-solar planets® motivated sci-
entists of different fields of research to improve the definition of the HZ based
on the actual knowledge of research (Lammer et al. — ISSI project, 2005)°.

Stability studies are important contributions thereto, since long-term stability
of planetary motion in the HZ is a necessary requirement for the development
of a biosphere. The wideness of the HZ is limited to a small region, depending
on the spectral type and the age of the host-star, therefore the planet’s eccen-
tricity has to be small enough if we require that the planet is always in the
HZ.

In the case of Gliese86 A the HZ is — according to Kasting et al. (1993)
— between 0.48 and 0.95 AU. As the detected gas giant moves at 0.11 AU,
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Figure 4. Maximum eccentricity plots of the HZ of Gliese86 A (x-axis) for fictitious planets
with different initial eccentricities (y-axis) upper panel for a BD secondary and lower panel for
a WD secondary. The gray shades indicate the different values of max-e, where the darkest area
shows in each plot the region of highest maximum eccentricity. For more details see the text.

its gravitational influence on the HZ is not very strong, as it can be seen in
fig. 2, where only high order resonances can be found in this zone. The most
important question for the binary Gliese86 AB is, where was the planet built.
If it was formed at a distance between 4 and 5 AU and migrated towards the
star through the HZ, an already existing terrestrial-like planet would have been
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ejected from the system. But if the gas giant was built closer to the star —maybe
quite near to the region, where it was found (see Wuchterl et al., 2000), then
we can expect terrestrial-like planets in the HZ (which cannot be detected up to
now). However, there are only a few studies that deal with the difficult problem
of planetary formation in binaries (see e.g. Kley, 2001; Kley & Burkert, 2000;
Nelson, 2001 or Nelson & Papaloizou, 2003), which needs still a lot of work.

Our stability study shows the HZ of Gliese 86 in a very stable state up to
an eccentricity of the binary of 0.75 (for a BD secondary) an 0.7 (for a WD
secondary). While for higher epinary the HZ will be chaotic (see fig. 1).

In a dynamical study of the HZ it is important to control the evolution of
the orbit’s eccentricity, which should be small enough so that the planet moves
always in the HZ. Therfore, we show the results of the max-e study for both
systems (BD and WD as secondary). As dynamical model we used the R4BP,
where we studied the influence of the giant planet on a massless body in the
HZ. Figs. 4.a and b summarize the results of the two systems, which show con-
stant level lines of the max-e for initial eccentricities of the planet > 0.09 in
both plots. More precisely, the value of the max-e level curve corresponds to
the initial value of epjanet. For lower values of the planet’s eccentricity differ-
ences can be clearly seen. However, the darkest region shows always the zone
with the highest max-e value, and the “finger-like* shape — which is different
for the two systems — indicates the region of lowest e-max.

The border of the so-called “continuously habitable zone (CHZ)” (i.e. the
region, where the whole planetary orbit is in the HZ) depends — from the dy-
namical point of view — on the initial eccentricity of the planet in the HZ. In
table 3 the boundaries for the CHZ are given for different eccentricities of the
fictitious planets — up to 0.33, which is the largest eccentricity for the HZ of
Gliese A to find a whole planetary orbit in this zone (for higher eccentricities
the CHZ would not exist anymore).

The inner boundary for circular motion is in both panels around 0.52 and the
outer boundary is around 0.88 AU for the old system and about 0.83 AU in the
new system. For low eccentricities of the planet it is clearly seen that the two
border-lines disperse up to €pjanet = 0.06, due to lower values of max-e, while
a further increase of the planet’s eccentricity leads to an increase of the max-e
value, where the two border-lines will converge. In both cases one can see the
inner border at 0.565 AU and the outer border at 0.852 AU for epjanet = 0.15.

For a better understanding of the max-e level curves in the dynamical maps
of figs. 4.a and b, we show as an example the evolution of the maximum ec-
centricity for an initial €pjane; 0Of 0.06, where the max-e value is constant (i.e.
0.06) up to a semi-major axis of 0.66 AU and increases linearly afterwards to
0.116 at 0.98 AU. In fig. 5 one can see different time evolutions of the max-
imum eccentricities for various initial semi-major axes of the planet (0.5 AU,
0.6 AU, 0.7 AU and 0.99 AU) where we computed the maximum eccentricity
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Table 3. Boundaries for planetary motion in the HZ of Gliese 86

eplanct  inner boundary [AU]  outer boundary [AU]

0.06 0.5106 0.9245
0.07 0.5161 0.9159
0.08 0.5217 0.9074
0.09 0.5275 0.8991
0.1 0.5333 0.8909
0.11 0.5393 0.8829
0.12 0.5455 0.8750
0.13 0.5517 0.8673
0.14 0.5581 0.8596
0.15 0.5647 0.8522
0.20 0.6000 0.8167
0.25 0.6400 0.7840
0.30 0.6857 0.7538
0.33 0.7164 0.7368

for intervals of 500 years. All curves show a very regular behavior, certainly
with different amplitudes and periods depending on the semi-major axis: (a)
the variation of the semi-major axis from 0.5 to 0.66 AU causes a reduction of
the amplitude and the period of the max-e curve (see lower 2 lines of fig. 5) and
(b) on the contrary the variation of the semi-major axis from 0.67 to 0.98 AU
blows up the amplitude and reduces the period of the curve (see upper 2 lines
of fig. 5). This plot explains very good the difference between constant level-
curves (lower 2 lines) — where the max-e value corresponds to the initial epjanet
— and an increase of the maximum eccentricity depending on the semi-major
axis (upper 2 curves).

6. Planetary motion in the outer zone

In figs. 6a-d we summarize the numerical results of the region outside the
HZ in the two systems. As expected the more massive WD reduces the stable
zone: for epjpary = 0.2 from more than 7 AU to less than 6 AU (compare
the left panels) and for a high eccentricity motion of the binary (epinary =
0.7) the border of stable motion is shifted from 2 AU to less than 1.5 AU.
The most significant features of the max-e result (lower panels) are the non-
dependency of the stable zone on the inclination of the planet up to about
38 deg, while higher inclinations show a decrease of the stable zone due to the
Kozai resonance — which influences the whole zone at these high inclinations
since we recognize an increase of the eccentricity according to the gray shades.
The same behaviour was found for the new system, but the constant border
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Figure 5. Time evolution of the maximum eccentricity for 4 different start positions of the
planet: 0.5 AU, 0.6 AU, 0.7 AU and 0.99 AU, the initial eccentricity of the planet is in all cases
0.06; epinary 1s set to 0.7 and the computation time is 1Myrs. The different behavior of the curves
is described in the text (section 5).

between regular and chaotic motion is shifted to nearly 5 AU for epipary = 0.2
and nearly 1.3 AU for epinary = 0.7.

In the upper two panels of fig. 6 one can see that an increase of the planet’s
eccentricity leads to a slight decrease of the stable zone as it was already found
in the old system with the BD secondary (see Pilat-Lohinger et al., 2003).

7. Conclusion

In our numerical stability study of the binary Gliese 86 we divide the investi-
gated region between the detected giant planet at 0.11 AU and the secondary (a
white dwarf at about 21 AU or a brown dwarf at about 18.75 AU) into 3 zones:

(i) IZ — inner zone — is the region from 0.14 to 0.48 AU which is influenced
gravitationally by the giant planet, mainly by mean motion resonances,
which can stabilize or destabilize the region.

(ii) HZ is the habitable zone, which is from the dynamical point of view very
stable for this system, especially for weakly eccentric motion of the bi-
nary. From the 3 cases of HZ:

1 the HZ is between the host-star and the detected giant planet,
2 the giant planet moves in the HZ,
3 the HZ is outside the discovered giant planet,

that we can distinguish from the observations for dynamical studies,
Gliese 86 A is an example for the third case. As a consequence we can



The stability of exoplanets in the binary Gliese 86 AB 115

= 0.7 (WD)

FLI - results for e =0.2 (WD) FLI-resultsfore, -

binary

4 ] 5 0.5 14 15 ] i) 50

(=]

semi-major axis [AL] semi-major axis [AL]
MEC -- Chinary = 0.2 MEC -- Bhinary = 07

inclination [deg]
inclination [deg]

'
1 2 3 4 5 G 7 & ] 1.0 1.5 20 25 30

semi-major axis [AU] semi-major axis [AU]

Figure 6.  Stable zone for planetary motion in the binary Gliese 86 AB: the upper two panels
show the results of FLI computations in the new system (the WD secondary) and the lower two
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the figures.

say, it has from the dynamical point of view a high probability of host-
ing an Earth-like planet in the habitable zone, as it was also found in the
study by Menou and Tabachnik (2003).
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But for such systems the most important question is, where the giant
planet was built — at or beyond 5 AU or closer to the position, where
it was found — but this cannot be answered by pure dynamical studies.
Although if the FLI result shows the HZ fully stable, an additional max-
e study is necessary to define the dynamical continuously habitable zone
(CHZ), within which the fictitious planets remain all the time.

However, we have found that even for an eccentricity of 0.7 of the binary
the whole HZ of Gliese 86 is stable.

(iii) OZ — outer zone — is the outermost region, where the detected planet
has no influence, so that the stable zone depends only on the mass-ratio
and the eccentricity of the binary. A comparison of the old (the BD
secondary) and the new system (the WD secondary) shows the expected
decrease of the stable zone in the new system due to the higher mass of
the secondary.

In a future work we will use this binary to study the influence of a hot-Jupiter
on the HZ in detail.
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Notes

1. According to Dvorak (1986) there are 3 types of motion in binary systems but since the libration-
(or L-)type motion is limited to certain mass-ratios of the two massive bodies (~ 1/25), studies of binary
systems can be restricted to the S-type and P-type motion.

2. The elliptic restricted three body problem studies the motion of a massless body moving in the grav-
itational field of two massive bodies, which move in Keplerian orbits around their center of mass.

3. In the restricted four body problem we study the motion of a massless body in the gravitational field
of the primary (= m1), the secondary (= m2) and the giant planet (= m3)

4. The program of R. Goncezi applies the Bulirsch-Stoer method for the orbital computations and deter-
mines also the Lyapunov Exponent in its original version.

5. The time interval for the maximum eccentricity depends on the chosen integration time.
6. private communication with C. Froeschlé and E. Lega

7. ao is the initial semi-major axis of a fictitious planet; epinary is the initial eccentricity of the binary
and eplanet is the initial eccentricity of a fictitious planet.
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8. Due to the observational techniques all detected planets are gas giants - but hopefully the planned
space missions (like COROT, Darwin, TPF, ...) will find terrestrial-like planets in the HZ of other sun-like
stars

9. An ongoing project supported by the International Space Science Institute in Bern, Switzerland

10. Before the discovery of extra-solar planets it was claimed by A. Boss that the formation of gas planets
is at or outside 5 AU (which is called snow-line).
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Abstract To investigate the effect of a star approaching a planet-star system I made calcu-
lations for the orbital elements of the planet and initial conditions of the intruder
star.

As aresult of these calculations [ got 2D and 3D graphicons about the changes
of parameters at close encounters between stars.

Keywords:  Stellar — Close Encounters — Exoplanets

1. Introduction

Examination is made of the effect of a star approaching a planet-star system.
When a passing star encounters a planetary motion, it causes the changing of
the semimajor axis a, the eccentricity e, and the inclination 7 of the planet’s
orbit. Calculations were made for penetrating encounters, when the approach
of the intruder was less than a, and for close encounters, when the closest
approach of the intruder was 1-10 a.

First let’s consider the examined parameters and some of the results. Lyt-
tleton and Yabushita [1] calculated the variation of the orbital elements. A
Gaussian distribution of star velocities was assumed in order to estimate the
cumulative effects of series of encounters. They used the central-limit theo-
rem of probability and supposed that the velocity of the passing perturbing star
was v = 20 km/s, the star density 0.1 star/pc>, and the examined time was
T = 4-10" years.

If stars are passing at a distance of some ten times greater than a, the cumu-
lative effects are found to be of the order of 10~* for Ae and Ai, and 106 for
%. For close stellar encounters direct numerical integrations show that both
capture and disruption (expulsion of the planet) can occur.

119
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Yabushita [2] examined the stellar perturbations of orbits of comets with
long-periods and extremely eccentric orbits when the shortest distance between
the passing star and the Sun is greater, than the aphelion distance of the comet.
It was found that although the energy perturbation is only a few percent of the
bounding energy of the comet, changes in 7, (perihelion distance) of a few AU
can occur. Close encounters were investigated by numerical integration using
random initial conditions. The probability of the expulsion of comets depends
on the closest approach p and is 0.031 for p = 102 AU, 0.006 for p = 103 AU,
and 0.001 for p = 10* AU.

Hills [3] reported the results of computer simulations of close encounters
between a planet-star system and a stellar intruder. Using a Shampine-Gordon
(variable order, variable stepsize) integrator the inputs were the closest ap-
proach p and the velocity v of the intruder. When p was 2 — 3a, the result
was orbit-increasing or dissociating of the planetary system. For p > 3a mild
shrinking occured. Close encounters are disruptive, in many cases disruption
can occur. Another case is the planet capturing, when the stellar intruder cap-
tures the planet.

The effect of the mass and the impact velocity of the intruder was studied
by Hills and Dissly [4]. In their simulations the mass of the intruder was 0.1
- 100 times the mass of the star of the star-planet system. They examined
the cross sections for dissociation, the changing of the orbital energy and the
eccentricity of the planet. According to their results if the impact velocity is
less, than the orbital velocity, the planet’s orbit shrinks, otherwise it expands.
The star-planet system is soft if the bounding energy of the system is less than
the kinetic energy of the intruder. Contrary to a myth that hard binaries shrink,
soft binaries expand in encounters with stellar intruders, one should speak of
fast or slow intruder limit (between the expanding and the shrinking) rather
than soft or hard binary limit. This behaviour was first noticed by Aarseth and
Hills [5], but they simulated star-star systems, not star-planet systems. Their
study was based on computations relative to binary stars in which the binary
and the intruder had nearly the same masses that is all three masses were equal.
They examined the influence of encounters of the major planets with random
massive objects.

Distant encounters and their importance on the dynamical evolution of plan-
etary systems was studied by Brunini [6]. He considered the two-body prob-
lem with a massive primary and with smaller secondary in circular orbit. The
system was perturbed by a third massive body. Closest approaches and high
velocity encounters were examined too. In the case of penetrating encounters
the closest approach is less, than the separation of the system. The change of
the internal energy can be described accurately by an impulse approximation.
In this case the time of relevant interaction is shorter than the orbital period
of the system. Distant encounters take place in a time span longer than the
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orbital period. The relative position of the binary members changes consid-
erably. The interaction cannot be described by impulse approximation. The
interaction can be studied by means of the Fokker-Planck equations or direct
numerical integration. Brunini [6] made an application to the outer planets
of the Solar System. Distant encounters may excite the orbital velocity of the
planets. The secular transfer of impulse increases the orbital eccentricity, if e is
negligible before the encounter. If the orbit is eccentric, the above eccentricity
increaments adds to e quadratically, as in a random walk. It was made some ap-
proximations: the eccentricity of the planets was constant, perturbations from
other planets were considered negligible. The regions of chaotic motion were
very small. Brunini [6] obtained surprisingly high Ae values, which was 0.003
for Neptune, with the closest star-star approach p = 230 AU. The observed
eccentricity for Neptune is 0.0085.

An application to the Kuiper belt was made too by Brunini [6]. In this case
an algorithm was used to determine the effect of successive perturbations on
binary systems by distant passing intruders. The algorithm is valid for eccen-
tric orbits. Random passing stars almost completely thermalise the belt beyond
some thousands AU from the Sun. The flattened structure of the Kuipert belt
cannot extend much farther than this distance.

The frequencies of stellar encounters in an enviroment depend on the
number-density of stars and the relative velocities. Table 1 shows the frequen-
cies of encounters in some enviroments.

Table 1. Encounter frequencies. The large encounter-frequency at the Galactic Centre is due
to the large velocities of stars.

enviroment stellar density  encounter frequency
Solar environment 0.1 star/ pc“ 1 —esﬁz?uggir
Stellar cluster 1.5 star/pc? 20 —esfizf;ucr;l;?
Galactic Centre 100 star/pc® 100 encouster

2. Application of the model to intruders

The Lie integration is a fast integration method for the differential equations
of motion of celestial bodies, applying Lie-series. The basic idea to use the
implicit Lie transformation to integrate the n-body problem is due to Grébner
[8], Hanslmeier and Dvorak [6] simplified the calculation of the Lie-terms and
derived a recurrence formula. They solved in an optimal way the 2-body prob-
lem, then they derived a similar method for the solution of the n-body problem.

This integration method has two major advantages. First, it is a relatively fast
method, about 3 - 10 times faster than the n-body problem of high accuracy by
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Schubart and Stumpff [9]. Second, because larger step lengths can be used
(e.g. a step length of 135 days for Jupiter), roundoff errors are smaller.

The Solar System is not isolated in space. Random passing stars, molecular
clouds, and our galaxy, the Milky Way can play a role in the dynamical evo-
lution of the planetary system and the cometary cloud. The dynamical effect
of random passing stars is not negligible for the major planets. The effect of
the passing stars could had been stronger, when the Solar System was young,
especially if the Sun and the planets had come into existence in a stellar clus-
ter. If it happened so, we do not know how much time the Solar System had
spent in its parent cluster, how many closeup stellar approaches had formed its
dynamics. I investigate the effect of close encounters taking place between a
passing star and Sun or a star in an exoplanetary system.

I examined a special three-body problem, in which a stellar intruder is act-
ing on a star-planet system. | was interested in whether the orbit of the planet
shrinks or increases. My goal was to calculate the changing of the orbital ele-
ments (semimajor axis, eccentricity, inclination) of the planet and the changing
of the bounding energy during the approach of the intruder to the system.

For the calculations I selected a special star-planet system, in which the mass
of the star is 1 Sun-mass, and the mass of the planet is 1 Earth-mass. The initial
orbit of the planet is circular, the semimajor axis a of the orbit is 1 AU, so the
circular velocity v of the planet is 30km/s. The basic plane of reference for
the calculations is the planet’s orbital plane.

The mass of the stellar intruder is 1 Sun-mass too, the relative velocity u
between the two stars is 30km/s. In the initial position the passing star is
at Rinir = 1720 AU from the star of the star-planet system. In a spherical
coordinate system two angle are necessary for the position, A and 3. The angle
A is measured along the orbit of the planet, its value is between 0 and 360o0.
The direction of A = 0o is opposite sense to the direction of the initial velocity
of the planet. The angle 3 is between the intruder star and the plane of the
planetary orbit, with values between —90 and 90°. The initial velocity vector
of the passing star is parallel to the star-star section, and its initial distance
from this section is p. If gravity did not work and the intruder star conserved
the direction of the initial velocity, then the minimal distance between the two
stars would be p. The value of p is between 5 and 20 AU in the computations.

With these initial conditions I obtained the following results.

2.1 Bounding energy

The bounding energy of a celestial body is its mechanical energy, which is
the sum of the kinetic and potential energy. Fig. 1 shows the change of the
bounding energy in time.
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Figure 1.  changing of bounding energy in time

The approach occurs about the 100 000th day. The value of the bounding
energy oscillates before and after the approaching. The bounding energy of
the planet is not proportional to the semimajor axis of its orbit because the
potential energy of the intruder star is significant during the approach. The
period of the change of the semimajor axis period of the planet before and
after the approaching is the period of the planet-circulation, 360 days, but at
the approaching it is 180 days.

2.2 Orbital elements

I investigated, how do the size, form and tilt of the orbital plane of the planet
change, so the examined orbital elements are the semimajor axis a, the eccen-
tricity e and the inclination ¢ of the planet.

2.3 Changing of a in time

The changing of the semimajor axis becomes significant when the approach-
ing intruder star is at 100 AU from the star-planet system. To show the effect
of the distance on the changing of the semimajor axis I made calculations for
p = 5 and 10 AU. In case of these values of p the effect of the gravitation of
the intruder star is strong enough, but the star-planet system does not perish. In
Fig. 2 we can see the result, the rising and then the declining of the amplitude
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Figure 2. changing of a in time

of the semimajor axis-undulation; after relatively grand oscillations the new
value of the semimajor axis is almost the initial; the difference between the
initial and the final semimajor axis is low. The maximal amplitude of the os-
cillations of the semimajor axis is a hundred times greater, than the initial-final
difference. When the value of p was 10 AU, the maximum of the undulation
of the semimajor axis occured later than at p = 5 AU. The cause of this is
the later pericentrum passage on the p = 10 AU orbit. The curves show that
the period of the change of the semimajor axis is close to the half-period of the
planet-circulation.

24 Changing of e in time

The value of the eccentricity of the orbit undulates and usually becomes
greater during the passing, particularly at low initial values of p (see Fig. 3).
The period of the change of the eccentricity is close to the half-period of the
planet. The amplitude of the undulation is greater, than the difference between
the initial and the final value of the eccentricity. When p = 10 AU, the max-
imal amplitude of the oscillations of the eccentricity is thirty times greater,
when p = 5 AU, two times greater, than the initial-final difference. When the
amplitude of the undulation is the biggest, the distance between the maxima
following each other is about the half-period of the planet.
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Figure 3. changing of e in time

2.5 Changing of 7 in time

For the computation of the changing of a and e I used the planar three-body
problem, but for Fig. 4 the motion of the three bodies is not planar, the angle
between the initial velocity of the intruder star and the orbital plane of the
planet is 2.8°. When p = 10 AU, the maximal amplitude of the oscillations
of the inclination is forty times greater, when p = 5 AU, three times greater,
than the difference between the initial and the final inclination (see Fig. 4).
The approaching in both cases reduced the inclination of the orbital plane. The
period of the change of the inclination is close to the half-period of the planet-
circulation.

2.6 Changing of a, e, i in A

In Fig. 5, Fig. 6 and Fig. 7 the differences between the initial and final values
of the orbital elements a, e and ¢ are shown for different values of \, where A
is the initial longitude of the planet along its orbit. The initial inclination of
the orbital plane is 2.8°. When p = 4 AU, the semi-major axis vs. A function
has two maxima at A = 105° and at A = 295°, the maxima of the eccentricity
vs. A function are at at A = 110° and at A = 300°, and the maxima of the
inclination vs. A\ function are at at A = 55° and at A = 275°. For bigger values
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of p the maxima of a, e, ¢ are shifted to the right. When a grows, e and ¢ grow
as well.

2.7 Changing of a, e, i in 3

B is the angle of arrival of the intruder star with respect to the orbital plane
of the planet. The initial inclination of the orbital plane is 0.0°. The difference
between the initial and final value of the semimajor axis of the planet is biggest,
when 3 = 0 (see Fig. 8). The orbit in all cases decreases. The final eccentricity
is biggest, when 3 = 0 too. The change of the inclination is 0, when § =
0°, and maximal, when 3 = 35° (see Fig. 9 and Fig. 10). The curves are
symmetrical with respect to the initial conditions.

2.8 Changing of a, e, i as the function of p = z,

Let the parameter p equal to the zp-component of the initial position of the
intruder star. In Fig. 11, Fig. 12 and Fig. 13 we can see the difference between
the initial and the final values of the orbital elements in the case of different
values of zg and y9. When z is smaller than 2.5, a decreases, the orbit shrinks,
its eccentricity significantly grows. When yo = 3, the difference between the
initial and the final inclinations can be 4.5°. The cause of the asymmetry of
the curve in Fig. 13 is the non-zero initial inclination of the orbit of planet.
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2.9 Changing of the orbital elements at close encounters

Fig. 14, Fig. 15 and Fig. 16 show the changing of a, e and 7 at close en-
counters, when the intruder star arrives perpendicular to the orbital plane of
the planet. The parameters x and y mean the shift of the initial velocity vector
of the intruder star. Their unit is AU. If both x and y are zero, the initial ve-
locity vector points to the parent star. For other x, y values the initial velocity
vector is parallel to the parent star-intruder star line and the coordinates of the
intruder star is z and y on the plane which is perpendicular to the line. The
change of a, e, 7 is indicated as the function of x and y. Fig. 14 shows, that the
difference between the initial and the final semimajor axis is great, when the
approach between the intruder star and the planet is close. Negative semima-
jor axis means, that the final value of the semimajor axis is also negative, and
the planet is not bound. The initial value of the eccentricity is 0. According
to Fig. 15 the new value of the eccentricity can be very big - especially if the
planet is free. Fig. 16 shows, that the inclination can have any value.

2.10 Stellar intruder at star-two planets system

What is the effect of another planet? I tried to show it. I calculated the
change of the orbital elements of the planet in the presence of an additional
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planet which has one Jupiter-mass and the semimajor axis of its orbit is 5 AU.
Let us sign it with .J, the planet of Earth-mass with F/, and the home star with
S. In Table 2 the number 45.3 in the column of S — E means, that the final
bounding energy is 45.3 per cent of the initial one, so the orbit expanded. In
Table 2 we can see, that the expansion of the orbit is greater in .S — E system
than in S — F — .J system. It should to investigate if this is true establishment
in the case of different masses end semi-majos axes of the second planet .J.

Table 2 shows the probability of shrinking of the orbit of the inner planet in
a star-planet (S — F) and in a star-two planets (S — E' — .J) system. We can see
that in the presence of a new, Jupiter-mass planet in the model, the probability
of the shrinking of the orbit of the inner planet is bigger.

3. Conclusions

I considered encounters between star-planet systems and an intruder star and
determined the effect of the distance- and angle parameters of the passing star.
The examined encounters were close. The change of the semi-major axis and
the inclination of the orbit of planet is significant, when the stellar approach is
close - 4-5 a -, but they quickly fade, when the minimal distance between the
two stars is greater.
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Table 2.  The relative changing of the bounding energy in the presence and absence of a second
planet. S — E means a Sun-Earth, S — FE — J means a Sun-Earth-Jupiter system. The Earth-
mass first planet has 1 AU semimajor axis orbit, the orbit of the Jupiter-mass second planet 5 AU
semimajor axis. The probability of the shrinking of the orbit of the inner planet is expressed by
per cent for different values of A and S3.

) 3 S-E S_FE—J
00 00 453 99.1
450 0.0 438 100.0
90.0 00 322 99.3
180.0 0.0 433 100.0
2700 0.0  33.9 99.2
0.0 450 413 97.5
00 900 9.1 98.3

Is there any pragmatic significance of the investigation of such close ap-
proaches? Neither in our Solar System, nor in any exoplanetary system there
was any observation of close stellar encounter yet. Are they frequent events at
all? We know that when two galaxies merge in one another, impacts of stars
do not occur. Close encounters between stars are still extraordinary. In the en-
vironment of the Sun only one closer than 100 AU encounter is to be expected
within 10'2 years. However, close approaches are more frequent in dense core
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star-clusters. If the Solar System were born in a stellar cluster, it could have
several close approaches, these encounters could affect the dynamics of the
planetary system. Tracks of such stellar encounters, their effects on the dy-
namical evolution may be observable in the Solar System and exoplanetary
systems, if they could be separated from the effect of the planets.
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Abstract The probability of detection of Earth-like exoplanets may increase after the
launch of the space missions using the transit photometry as observation method.
By using this technique, however, only the semi-major axis of the detected planet
can be determined, and there will be incomplete information regarding its orbital
eccentricity. On the other hand, the orbital eccentricity of an Earth-like exo-
planet is a very important parameter, since it gives information about its climate
and habitability. In this paper a procedure is suggested for confining the eccen-
tricity of an exoplanet discovered by transit photometry if beside the Earth-like
planet, an already known giant planet also orbits in the system.

Keywords:  exoplanets — planetary transit — restricted three-body problem — stability — chaos
detection

1. Introduction

After the discovery of the first extrasolar planet around 51 Pegasi (Mayor &
Quéloz, 1995), more than 190 exoplanets have been observed. The detection of
exoplanets has a great importance, since they form planetary systems around
their hosting stars, and by studying the main properties of these systems the
characteristics, the formation and the evolution of the Solar System could be
treated as a part of a more general phenomenon. The above picture is unfor-
tunately rather ideal than complete yet, since the exoplanets observed by now
are mainly Jupiter-like gas giants. This is the consequence of the fact that by
using radial-velocity measurements, which is the most effective ground-based
observing technique, there is no chance to detect Earth-like planets yet.
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On the other hand, one of the most challenging questions of exoplanetary
research is the discovery of the Earth-like planets. Beside their importance in
testing and improving the formation theories of the planetary systems, another
major question is their habitability. If an Earth-like planet revolves in the hab-
itable zone of the hosting star, there may be chances of developing (a water
based) life on its surface. The habitable zone is that region around the star,
where liquid water can exist on the surface of a planet (Kasting et al 1993).

In order to find Earth-like planets, there are space missions in construction
and planning phase. Such a mission is COROT (sponsored by CNES, ESA
and other countries) to be launched in 2006, the Kepler Mission (NASA) with
a launch in 2008, Darwin (ESO), and Terrestrial Planet Finder (TPF, NASA)
with a launch in the next decade. The first two missions (COROT and Kepler)
will use the transit photometry as detection technique, which is based on mea-
suring the periodic dimming of the star’s light intensity caused by an unseen
transiting planet. Measurements performed by these instruments will provide
the semi-major axis a of the transiting planet calculated from Kepler’s third
law ;

a k2

T 472(
where T is the period of the transits, m, is the mass of the hosting star, and m,,
is the mass of the transiting planet, respectively (% is the Gaussian gravitational
constant). In the case of Earth-like planets m, << m, so neglecting m,, does
not affect significantly the accuracy of a. An uncertainity in the semi-major
axis a can appear since the stellar mass is known only with limited accuracy.
If this is for example 3%, the inaccuracy in a will be 1%. (We note that the
mass of the hosting star can be determined by spectroscopic observations and
by stellar model calculations.) However, in this paper we do not investigate the
error propagation due to these uncertainities in stellar mass and semi-major
axis, we intend to perform these studies in a future research.

In this paper we present a procedure which helps in confining the orbital
eccentricity and inclination of the transiting planet if (i) the duration of the
transit is known, and (i) there is another (giant) planet in the system. We derive
such an equation, which connects the mass and the radius of the star, the semi-
major axis, the eccentricity, the argument of the periastron, the inclination of
the transiting planet, and the duration of the transit. In this equation there are
three unknowns, namely e, w, and ¢. By fixing i, the corresponding (w, ) pairs
can be visualized as curves on the w — e parameter plane. Thus the problem
is underdetermined and there is no way to confine the orbital eccentricity e of
the transiting planet.

On the other hand, as suggested by planetary formation scenarios, we ex-
pect that next to the Earth-like planets Jupiter-like giant planets can also be
found in the majority of the planetary systems. Having discovered an Earth-

My + M),
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like planet around a star, by using complementary techniques (as observations
by Space Interferometry Mission and ground-based Doppler spectroscopy) ad-
ditional more massive planets can be identified in the system, and their orbital
parameters can be determined too.

The presence of a giant planet (beside the transiting one) results in that both
ordered and chaotic regions can be found in the phase space of the system.
If the trajectory of the Earth-like planet is in the ordered region of the phase
space, the motion of the planet is stable for arbitrary long times. If the initial
conditions of its orbit are in a chaotic region of the phase space, the motion of
the planet can be unstable after a certain time. In this paper we exclude those
orbital parameters of the transiting planet, which result in chaotic motion. We
shall demonstrate that in some cases it is possible to determine an upper limit
for the eccentricity and a lower limit for the inclination of the transiting planet.
We stress again that the eccentricity is a very important orbital parameter not
only from dynamical point of view but also in studying the habitability and
climatic variations of the Earth-like planet.

The paper is organized as following: first we derive a connecting equation
between the duration of the transit and some important parameters of the star
and the transiting body, then we solve this equation numerically. After examin-
ing the solutions of this equation, we map the stability structure of the system
assuming the presence of a known giant planet. Then we can determine lower
limits for the inclination and an upper bounds for the eccentricity of the transit-
ing planet depending on the eccentricity and the semi-major axis of the known
giant planet.

2. A connecting equation between the orbital parameters
of the transiting planet

In this section we shall derive an equation between the orbital parameters of
the transiting planet, the star’s mass, and the duration of the transit from the
geometry of the transit.

Let us suppose that the star’s disc is a circle with a radius R, and a planet is
moving in a front of this disc with an average velocity vy. If the duration of
the transit is denoted by 7 and the lenght of the path of the transiting planet is
d (see Fig. 1), the following approximation holds:

oo L (1)
T

We note that according to Kepler’s second law, the velocity of the planet is
changing during the transit (except in the case of circular orbits), however this
change is negligible, if the planet orbits far enough the star. Since the triangle
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in Fig. 1 is a pythagorean one, it can be written

d\ 2
R =m?+ (§> . )
From Equation (2) the lenght of the transit’s path d can be expressed as
d =2v/R? — 12 cos? i 3)
where, according to Fig. 2,
m = rcosti, 4)

where ¢ is the inclination (e.g. the angle between the orbital plane and the
tangent plane to the celestial sphere), and r is the distance between the center
of the star and the planet.

star’s disc

path of the transit

Figure 1. The transit of a planet in the front of the stellar disc. The straight sections denoted
by R, m, and d/2 form a pythagorean triangle.

By using the well known formula for r:

a(l—€?)
" 1+4ecosv’

&)

(where a is the semi-major axis, e is the eccentricity, and v is the true anomaly
of the transiting planet), and Equations (1) and (3), the average orbital velocity
of the transiting planet (vy) can be written as

2
Ve = %\/ R2 — [a(l—_GQ)I cos2i . (6)

1+ ecosv

On the other hand, vy can also be approximated on the basis of the two-
body problem. In the coordinate system (&, n), in which the axes of the orbital
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Figure 2. Side-view of the transit, where r is the distance of the planet from the star’s center
and ¢ is the inclination of its orbital plane.
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Figure 3. The transit as viewed from above. At the mid of the transit vy is nearly equal to ¥.
The coordinate system (&, 7) is the rotation of the coordinate system (z,y) by w.

ellipse are on the axes £ and 7, the components of an orbital velocity vector are
(see Murray and Dermott, 1999):

¢ = — [Hgnw, 7
p

n = \/E(eJrcosv),
p

where p = a(1 — €?) is the parameter of the ellipse and u = k?(m. + my),
m and m,, are the stellar and planetary masses, respectively. Let (z, y) denote
a cartesian coordinate system where the x-axis is parallel to the line of sight
(e.g. the line connecting the center of the star to the observer). From Figure
3 it can be seen that the system (&, 7) is the rotation of the system (x,y) by
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w, which is the argument of the periastron of the transiting planet. Thus in the
coordinate system (z,y) formulae (7) transform as

r = Scosw—r')sinw, (8)
y = Esinw+ncosw.

From Fig. 3 it is clearly visible that the average velocity of the transiting
planet v, can be approximated with g, which is the velociy of the planet at the
mid of the transit. (We note that this approximation fails for large eccentricity
of the transiting planet.) Then by using the above approximation and Equations
(7) and (8) we find

vtrmy:—\/gsinvsianr\/g(eJrcosv)cosw. 9)

Studying again Figure 3, it is also true that at the mid of the transit
v+ w = 360°, (10)

thus the average orbital velocity of the transiting planet is

'Utr:\/g(l—l—ecosw). (11)

Combining Equations (6), (10), and (11) we obtain the following equation:

2
ﬁ(l—l—ecosw)—g\/R?— [a(l——e2)] cos?i =10, (12)

P T 1+ ecosw

where the unknown quantities are the eccentricity e, the inclination 7, and the
argument of the periastron w. The other quantities, such as the semi-major
axis a, the mass parameter (u), the radius of the star (&), and the duration
of the transit (7) are known with certain accuracies already discussed in the
Introduction.

3. Solution and analysis of Equation (12)

According to the last paragraph of the previous section, the unknown quan-
tities in Equation (12) are the inclination ¢, the argument of periastron w, and
the eccentricity e of the transiting planet. Thus by fixed values of 7, Equation
(12) can be solved numerically, and the (w, e) pairs of the solutions can be
represented as curves on the w — e parameter plane.

In order to study the solutions of Equation (12), we give specific values for
the parameters in Equation (12). Let us assume that the mass of the transiting
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planet is 1 Earth-mass, and it revolves around a 1 Solar-mass star with radius
R = 6.96 x 10® m, in an elliptic orbit characterized by a = 1 AU, e = 0.1
being its inclination ¢ = 89.95°. Then we suppose that the direction of the
observation of the planetary transit is w = 30°. It can be calculated easily that
in this case the duration of the transit ise 7 = 0.488029 day.

0.5

0.4 -

0.3 -

eccentricity

0.2

0.1

i =89.89

0 50 100 150 200 250 300 350
argument of periastron

Figure 4. Solutions of Equation (12) for different inclinations when 7 = 0.488029 day.
The original solution, which results in the above 7, is marked with a filled circle at w = 30°,
e =0.1,and 7 = 89.95°.

By observing transits caused by the above planet, we can measure their du-
ration 7 and period 7', from which the semi-major axis a can be calculated.
In our case 7 = 0.488029 day, and for different values of ¢ the corresponding
w — e curves are plotted in Fig. 4. We show these curves only for e < 0.5 since
we think that larger values of e are unrealistic for Earth-like planets. We also
mark the real (w,e) solution by a filled circle on the curve corresponding to
1 = 89.95°, but as we can see, there is no way to restrict efficiently the infinite
set of solutions. The only restriction is that the solutions can not be chosen
from the region above the w — e curve corresponding to ¢ = 90°.

Equation (12) has an infinite set of solutions formed by pairs of (w, €) values.
If only the duration of the transit is known, it is not possible to choose which
(w, e) pair represents the real parameters of the transiting planet.

4. A possible confinement of the eccentricity of the
transiting planet

In this section we shall investigate the case when, beside the newly discov-
ered planet, an already known giant planet orbits around the hosting star. The
presence of such a planet makes the problem non-integrable and both ordered
and chaotic regions can be found in the phase space of the system. We sup-
pose that the most probable orbital solutions of the transiting planets are those,
which emanate from the ordered regions of the phase space. The orbital pa-
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rameters of the transiting planet, which would result in chaotic behaviour are
unlikely, since in long terms the orbit of the planet could be unstable, there-
fore these solutions might be avoided. We expect that the presence of a second
(giant) planet r epresents a dynamical constraint reducing the infinit set of solu-
tions of Equation (12) by giving an upper limit for the maximum eccentricity of
the transiting planet. We shall also demonstrate that by studying the solution-
curves of Equation (12) together with the stability structure of the w — e plane,
a lower bound for the inclination can also be determined. In what follows we
shall investigate the stability in the (w — e) plane within the framework of the
planar restricted three-body problem.

In order to map the stability properties of the (w — e) plane we used the
Relative Lyapunov Indicator (RLI) (Sandor et al. 2000, 2004). The initial w
and e values are chosen from the intervals e € [0, 0.5] and w € [0°, 360°] with
Ae = 0.025 and Aw = 2°. The initial value of the semi-major axis of the
transiting planet is always a = 1 AU, while its true anomaly is calculated from
Equation (10) as v = 360° — w (see also Figure 3).

For each pair of the initial (w, €) values we assign the RLI of the correspond-
ing orbit calculated for 500 periods of the transiting planet. If the RLI is small
(~ 10712 — 10713, the corresponding orbit is ordered and stable. If the RLI
~ 10711 — 1079 the orbit is weakly chaotic. In practical sense this orbit could
be (Nekhoroshev) stable for very long terms as well, however, it can not be
stable for arbitrary long time. Thus the regions characterized by these RLI
values can already be the birth places of unstable orbits. Orbits having larger
RLI ~ 1078 — 107°, are strongly chaotic orbits, and they will be unstable after
certain time. In our stability maps the ordered regions are denoted by light,
the weakly chaotic regions by grey, and the strongly chaotic regions by dark
shades.

In what follows we consider the cases where the parameters of the known
giant planet having 1 Jupiter mass are the following: a; = 2.0 AU, e; = 0.1,
0.2, and 0.3 respectively. We fix the angular elements of the giant planet to
A = w = 0° In Fig. 5, Fig. 6, and Fig. 7 we show the dynamical structure
of the w — e parameter planes for increasing values of the eccentricity of the
giant planet. In these figures we also plot the solution curves of Equation (12)
by using 7 = 0.488029 day.

From Fig. 5 it can be seen that there are two upper bounds for the eccen-
tricity of the transiting planet depending on whether the transit occurs near the
periastron, or near the apoastron. If the transit is near the periastron w < 80°,
the upper limit of the eccentricity is e < 0.3, since the w — e curves cross
the chaotic region around this value. If the transit would happen at the apoas-
tron w € [180°,200°], the upper limit of the transiting planet’s eccentricity is
higher, e < 0.4. The real solution is marked (as a filled circle) on the curve
corresponding to 7 = 89.95°.
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I
log(RLI)

Figure 5. The stability map of the w — e parameter plane, when a; = 2.0 AU and e; = 0.1.
The w — e curves for different ¢ are also plotted when 7 = 0.488029 day.
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Figure 6. The stability map of the w — e parameter plane, when a; = 2.0 AU and e; = 0.2.
The w — e curves for different ¢ are also plotted when 7 = 0.488029 day.

In Fig. 6, corresponding to e; = 0.2, there are two upper limits of the eccen-
tricity of the transiting planet as well. For w < 80° the eccentricity is e < 0.27,
for w € [150°,220°] the eccentricity is e < 0.22. In this case a lower limit can
be given for the inclination too, 7 > 89.°85.

If the eccentricity of the giant planet is e; = 0.3, see Fig. 7 the maximum
upper limit of the transiting planet’s eccentricity is e < 0.18. However, in
this case there exists a lower limit e > 0.05 as well. If the transit would take
place around the periastron the corresponding w and e values would result in
weakly chaotic orbits. A lower bound of the inclination in this case is ¢ >
89.89°. Among the three possible values of the giant planet, this latter would
represent the most effective dynamical constraint for the orbital parameters of
the transiting planet, whicharea = 1.0 AU, e = 0.1, w = 30°, and ¢+ = 89.95°.
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Figure 7. The stability map of the w — e parameter plane, when a; = 2.0 AU and e; = 0.3.
The w — e curves for different ¢ are also plotted when 7 = 0.488029 day.

We have also investigated the cases when the semi-major axis of the known
giant planet were smaller and larger than 2 AU. If a; is smaller, a smaller
e1 is enough to result in an effective dynamical constraint. If a; is larger,
the eccentricity of the giant planet should be larger as well for an efficient
dynamical constraint.

5. Conclusions

The detection of Earth-like extrasolar planets by using ground based spectro-
scopic methods is beyond the present capabilities of observational astronomy.
In the near future there will be launched space instruments such as COROT
and KEPLER which are devoted to observe such planets by using transit pho-
tometry.

In this paper we addressed the question whether it is possible to determine
the orbital elements of Earth-like planets discovered by transit photometry if,
apart from the period, the duration of the transit can be measured too. We
supposed that the mass and the radius of the hosting star is known. We derived
an equation, which connects the stellar and planetary masses, the duration of
the transit, the semi-major axis, the eccentricity, the argument of periastron and
the inclination of the transiting planet. By fixing the inclination, this equation
contains two unknown variables, the argument of periastron w and eccentricity
e of the transiting planet. Thus the solutions for different inclinations can be
represented as curves on the w — e parameter plane.

In the last section of the paper we assumed that beside the transiting Earth-
like planet a giant planet orbits around the star as well. This assumption is quite
reasonable if we accept the formation theories of planetary systems supporting
the simultaneous presence of both rocky, Earth-like and gaseous, Jupiter-like
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planets. Since the detection of giant planets is possible by measuring their
radial velocity by Doppler-effect, we assumed their orbital parameters to be
known. By using the framework of the restricted three-body problem, we in-
vestigated the influence of the known giant planet to the w — e parameter plane
of the transiting planet. We found that on the w — e parameter plane there
appeared chaotic regions as well, which in long terms may result in unsta-
ble motion for the transiting planet. Assuming that chaotic behaviour for the
transiting planet are unlikely, we could determine an upper limit for the eccen-
tricity, and a lower limit for the orbital inclination of the transiting planet.

In a future work we plan to extend our studies by investigating systemati-
cally the stability structure of the (w — e) parameter plane for various values
of the giant planet’s semi-major axis and eccentricity. Since the mass of the
hosting star is known only with a limited accuracy, we also plan to follow the
propagation of this error throughout the method presented in this paper. In our
future investigations we intend to consider the cases of more massive transiting
planets as well.
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Abstract
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In this article we examine, that terrestrial planets in extrasolar planetary systems
can have stable orbits in the 1:1 mean-motion-resonance (MMR) with a Jovian
like planet. In our stability study of the so-called Trojan planets in the habitable
zone, we used the restricted three-body problem with different mass ratios of the
primary bodies. The application of the three-body problem showed that even
very massive Trojan planets can be stable in the 1:1 MMR. From the approxi-
mately 145 extrasolar planetary systems with about 170 planets only 15 systems
were found where a giant planet is in the habitable zone. In our numerical stud-
ies we examine the orbital behaviour and the size of the stable zone respectively
of extrasolar systems where the initial orbit of the gas giant lies fully in the habit-
able zone. The investigation of either the initial mean anomaly (M) or the initial
argument of perihel (w), showed, that the variation of w yield more stable orbits
than the variation of M.

trojan planets — exoplanets — habitable zone

1. Habitable planets

Today we have only observational evidence of extrasolar planets of 7 earth
masses (Gliese 876 d) and larger. The size of such planets is to large for forma-
tion of life and only a few of these planets lie in the *Habitable Zone’ (=HZ™).
That’s the reason why a study of dynamical stability of possible additional ter-
restrial planets (planets with a size comparable to Earth) is a hypothetical one.
But what we can do is to ask, which dynamical configurations are possible to
host a habitable planet in the HZ of an extrasolar planetary system? From the
dynamical point of view, there are four possible configurations for terrestrial
like planets in the HZ (shown in Fig. 1).

149
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Figure 1. Four different classes of orbits where possible terrestrial planets may exist.

1 The HZ is outside the giant planet (=OHZ): Most of the discovered gas
giant (=GG) planets are located very close to their star. From the dynam-
ical point of view, there may exist terrestrial planets with stable orbits in
the HZ and sufficiently small eccentricity over time scales long, enough
to develop a biosphere.

2 The solar configuration (=SOL): When a Jupiter like planet moves far
enough from its central star to allow additional planets moving on stable
low eccentric orbits closer to the star inside the HZ.

3 The satellite configuration (=SAT): A terrestrial planet that orbits a GG
in the HZ (as the ones orbiting Jupiter, e.g. Europa) could have the right
conditions to develop a biosphere.

4 The Trojan configuration (=TROJ): When the GG moves in the habitable
region a terrestrial Trojan planet may move in a stable orbit around the
Lagrangian equilibrium points L4 or Ls.

Menou and Tabachnik (2003) quantified the dynamical habitability of extra-
solar planetary systems in general via simulations of their orbital dynamics in
the presence of potentially habitable terrestrial plantes. The OHZ and the SOL
configurations have been the subject of a number of investigations (e.g. Séan-
dor(2006), Erdi and Pal (2003), P4l and Sandor (2003), Dvorak et al. (2003a,
2003b and 2004)). If the gravitational zone of a GG overlaps with that of a
terrestrial planet in the HZ, gravitational perturbation can push the terrestrial
planet out of the HZ. For this reason, we focus our work on the dynamical
stability of the TROJ configuration, in which possible terrestrial planets have a
1:1 MMR with a GG. Nauenberg (2002) found a stable configuration for mo-
tions in the 1:1 MMR, where the more massive planet has an almost circular
orbit, while the smaller body has a high eccentric orbit. Further investigations
of the TROJ configuration focused on Trojan planets in the HZ (Erdi and Séan-
dor (2005)). We are mainly interested in Trojan planets in 1:1 MMR with a
GG that moves fully in the HZ. The main goal was to see how many orbits
(of the Trojan planets) of the stable region are fully in the HZ after the calcu-
lation. These stable orbits are a main requirement for a possible formation of
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life. Laughlin and Chambers (2002) considered the possibility of two planets
ina 1:1 MMR as a result of an interaction with the protoplanetary accretion
disc. We emphasize that the discussion of habitable regions around a host star
is an interdisciplinary one: astrophysics is involved, because the spectral type
and the age of the host star define the HZ (e.g., Lammer et. al. (2003)), atmo-
spheric chemistriy is fundamental when we considering planetary habitability
(e.g., Kasting et. al. (1993)), and astrodynamics is important with regard to the
determination of the orbital stability.

2. Numerical setup

More than 170 extrasolar planetary systems were discovered (Extrasolar
planets catalogue maintained by Jean Schneider?), 14 systems are binaries and
18 are multiplanetary systems. Only 10 single-star systems have a giant planet
in the HZ and an initial eccentricity smaller than 0.3, which is important for the
stability (see Schwarz, 2005 p.65). We selected in Table 1 six planetary sys-
tems, namely HD93083, HD17051, HD28185 , HD108874 and HD27442 (the
bold written), for which the initial orbit lies fully in the HZ. We studied their
size of the stability region by using direct numerical integrations of the equa-
tion of motion. The other systems which lies only partly in the HZ were also
investigated, see Schwarz et al. (2005a) and Schwarz (2005b). The integration
was carried out with the LIE-integration method — which uses an adaptive step
size (Hanslmeier and Dvorak, 1984; Lichtenegger, 1984) — in the dynamical
model of the elliptic restricted three-body problem consisting of the central
star, the GG and a hypothetical (massless) terrestrial planet. The integration
time was up to 10° years.

2.1 Initial conditions

We have taken the following initial conditions for the terrestrial planet: first,
the semimajor axis of the massless planet (starting at the fixed semimajor axis
of the GG) was computed for a grid with Aa = 0.003AU. The argument of
pericenter w of the massless planet extends from 20° to 140° and has a grid-
size of Aw = 2°. The extension and the geometry of the stable region for the
Trojan planet of several extrasolar systems varies. We change the number of
the calculated orbits for each system to reduce the calculation-time (the larger
the unstable region the more calculation-time were needed). During the inte-
gration time, the largest value of the eccentricity (=emax) of the hypothetical
Trojan planet was determined. The so called maximum eccentrictiy method
(=MEM) shows how much the orbit differs from the circular one. For larger
eccentricities it becomes more probable that the asteroids have close encoun-
ters and collisions. The stability criterion for a Trojan was, that the eccentricity
should not exceed e=0.5; this is good measure which were tested and compared
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to other definitions like crossing the line of syzygy ( alignment of Sun, Jupiter
and the Trojan).

Table 1. List of all single GG moving in the HZ of their host stars, depending on the spectral
type the host stars. Main parameters: Ist column: Name, 2nd column: spectral type, 3rd
column: mass of the star, 4th column: the minimum mass of the giant planet [=M.,], 5th
column: distance (semimajor axis a[AU]) from the central star, 6th column: initial eccentricity
of the extrasolar planet, 7th column: extension of the HZ [AU], and 8th column: partly inside
the HZ at the beginning (initial conditions) in [%] .

mass mass a HZ partly

Name Spec. [Msor]l  [Mjup]l [AU] e [AU] in HZ
[%o]
HD93083 K3V 0.70 0.37 048 0.14 0.40-1.30 100

HD134987 G5V 1.05 1.58 0.78 0.24 0.75-1.40 58

HD17051 GOV 1.03 1.94 091 0.24 0.70-1.30 100
HD28185 G5 0.99 5.7 1.03  0.07 0.70-1.30 100
HD108874 G5 1.00 1.65 1.07 0.20 0.70-1.30 100

HD27442 K2IVa 1.20 1.28 1.18 0.07 0.93-1.80 100
HD188015 GSIvV 1.08 1.26 1.19 0.15 0.70-1.60 100
HD114783 KO 0.92 0.99 1.20  0.10 0.65-1.25 50
HD20367 GO 1.05 1.07 1.25 023 0.75-1.40 76
HD23079  (F8)/GOV 1.10 2.61 1.65 0.10 0.85-1.60 35

3. Global results

The stability region around the Lagrangian points was studied in the model
of the elliptic restricted three-body problem by many investigations (e.g. Rabe,
1967, Lohinger and Dvorak, 1993 etc.). Furthermore, a study by Marchal
(1991) was undertaken in the framework of the general three-body problem
(where ms > 0%). These results were used to show the positions — in the stable
zone (see Fig. 2) — of all extrasolar systems where the gas giant is near the HZ.
This is given in Table 1, where mg is equal to one earth mass. Therefore it is
necessary to define the mass parameter y through the equation

3
o P gy 0 () (1)
which is used instead of the mass ratio in the elliptic restricted three-body
problem. The stability zone (Fig. 2 depending on the mass parameter p and
the eccentricity show that all selected extrasolar systems of Table 1 lie in the
zone of stable motion. Only HD141937 (partly in the HZ) which has a planet
with 9.7 Jupiter masses is close to the border (see Fig. 2) of unstable motion.
Consequently all planetary systems with one planet in the HZ can have stable
Lagrangian points (L4 and L5).
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We conclude that orbits of hypothetical Trojan planets with a small initial
p and e are stable. The stability analysis does not give any information about
the extension of the stable region around the equilibrium points. A more de-
tailed answer can be given with the results of numerical simulations of each
extrasolar systems under consideration shown in the next paragraph.
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Figure 2. Stability zone depending on the mass parameter 1 and the eccentricity e.

4. Results

Table 1 shows the parameters of all studied single* extrasolar systems. The
six selected extrasolar planetary systems — printed in bold in Table 1 — have one
GG lying at the starting positions fully in the HZ. Note that from the dynamical
point of view there is no difference to the other systems.

4.1 HD17051

HD17051 is a GOV star with one solar mass (Mg,,,=1.03) which hosts a GG
of 1.94 Jupiter masses (=M ;) on an eccentric orbit (€=0.24) with a semimajor
axis of a=0.91 AU. This system was calculated for 0.1 Myrs, to see how the
stability region shrinks — this is shown by the number of stable orbits — (see
Table 2). To get the number of stable orbits it was necessary to determine the
value of enax after 0.1 Myrs (this new e, of the stable region ranges from
0.06 to 0.32), as it is shown in Table 2. New enn,x means that we set the upper
limit for the Trojans eccentricity so that they are still in the region of stable
motion (more details about the MEM are shown in Sec. 2.1).
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The results are shown in Fig. 3 and Fig. 4, where we can see a convex struc-
ture which extends from w = 25° to 35°. The convex structure is getting flatter,
if the initial eccentricity is very small. After this convex region (well visible
in Fig. 4) the value of ey rises up to 0.32. Our calculations also revealed
that the en,x of the stable region was twice as large as that of the ej,; (shown
in Table 2), a result that illustrates how the size of the stable region and the
value of ey depends on ejyi. The numerical simulation shows that the stable
region extends from w = 20° to 65° and the semimajor axis from a=0.89 [AU]
to 0.94[AU]. We can conclude that 17% or 286 orbits of the 1680 calculated
ones are stable.

semimajor-axis [AL]
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Figure 3. This figure shows system HD17051 for a computation time of 0.1 Myrs. The light
region is the most stable whereas the dark region indicates chaotic motion.

4.2 Stability regions of HD93083 and HD27442

Both extrasolar systems have main sequence stars, but no sun like spectra.
HD27442 has a large stable region, because the new ep,x (shown in Table 2)
of the Trojan planet is very small and lies fully in the HZ after 0.1 Myrs (see
Fig. 6). The stable region of HD93083 which is smaller has an elongated
shape (see Fig. 4). That’s the reason, because the GG is very close to the star
(a=0.48 AU) and has a relatively large initial eccentricity (e=0.14) shown in
Table 1. The new enax (see Table 2) of the stable region go up to 0.26, but
nevertheless the orbits lie 96 percent in the HZ.
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Figure 4. Shows a 3D depiction for the system HD17051. A large MEM indicates unstable
motion.

Table 2. List of all results for four of the systems listed in Table 1, which illustrates the ex-
tension of the stable region of the Trojan planets after 0.1 Myrs. Ist column: name of the
investigated system, 2nd column: inital eccentricity of the GG, 3rd column: new emax of the
stable region, 4th column: number of the stable orbits vs. the calculated one, 5th column: min-
imum of the perihel with the new emax, 6th column: maximum of the aphel with the new emax,
7th column: partly in the HZ [%] after 0.1 Myrs. The number of the calculated orbits were
changed, because of the different geometry of the stable regions.

System Eini new Number of min. of max. of  partly in
€max stable orbits the perihel the aphel the HZ

/calc. orbits [AU] [AU] [%]
HD93083  0.14 0.00-0.26 318/2580 0.36 0.61 96
HD17051 0.24 0.06 -0.32 286/ 1800 0.62 1.20 87
HD28185  0.07 0.02-0.19 55571800 0.83 1.23 100
HD108874 0.20 0.11-0.30  421/2000 0.76 1.38 87
HD27442  0.07 0.00-0.19 360 /2000 0.96 1.40 100
HD188015 0.15 0.00-0.25 684 /2250 0.89 1.49 100

4.3 Stability regions of HD108874 and HD188015

From the examination of HD108874 and HD188015 - both are main se-
quence stars (G5) - followed that the Trojan planets of the GGs are mainly
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Figure 5. System HD93083 for a computation time of 0.1 Myrs. The light region is the most
stable whereas the dark region inidcates chaotic motion.
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Figure 6. System HD27442 for a computation time of 0.1 Myrs. The light region is the most
stable whereas the dark region indicates chaotic motion.

in the HZ with a new en,x (see Table 2) not higher than 0.29. The results are
shown in Table 2 or Fig. 7 for HD108874 and Fig. 8 for HD188015. The results
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show that the system HD108874 has a large stable region, but lies only partly
in the HZ, because the new ey, 1s to large. Whereas HD188015 has a large
stable region which lies fully in the HZ. We investigated Trojan like motion in
10 single planetary systems where the initial eccentrictiy is not larger than 0.3
and the gas giant lies partly or fully in the HZ. Than we selected 6 systems,
where the gas giant lies also mainly in the HZ. Numerical simulations show,
how much orbits of the Trojan planet lie in the HZ after an integration time
of 0.1 Myrs. That happens if the new e,y continues (during the integration)
very small so that the stable region in the HZ becomes very large. We found
out that from the six selected extrasolar systems only three extrasolar systems
are completely inside the HZ (see Table 2), but only two of them have Sun like
spectra.

semimajar axis [AL]

20 30 40 50 G0 70 80 o0 1Co

argument of pericenter deq]

Figure 7. Stability region for the system HD 108874 for a computation time of 0.1 Myrs. The
light region is the most stable whereas the dark region indicates chaotic motion.

5. Influence of the orbital elements M and w

In the last chapter the size and structure of the stable zones were investigated.
This was done by the variation of w, but former investigations (see Schwarz
2005a and Schwarz et al. 2005b) used the variation of M. Now we are able to
compare the variation of this two parameters and show if there is any differ-
ence. A variation of of M changes the location of the Trojans whereas, if we
use the orbital element w we change the location of the Trojans ellipse. Table 3
shows the calculation of the four extrasolar systems. In this table we compare
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Figure 8. Stability region for the system HD188015 for a computation time of 0.1 Myrs. The
light region is the most stable whereas the dark region indicates chaotic motion.

the number of stable orbits for M and w. It is well visible, that the number of
stable orbits is larger for w than for M. This can also be seen in the new enax
of the stable region. New en,x has two values,because the eccentricity of the
stable region is not homogeneous (Table 3 shows two values the upper and the
lower limit of the new ep.x). Therefore we have an example HD17051, were
the Fig. 3 and Fig. 4 shows how the new e,y is distributed.

Now I want to present the interaction of the initial M vs. the initial w (shown
in Fig. 8). The comparison of both orbital elements was done for the extrasolar
system HD17051 for an integration time of 10* years (initial conditions see
Table 1). The w and M extends from 0° to 360° and have a gridsize of Aw = 4°
and AM = 4°. The first thing to notice is that in Fig. 9 we have two stable
diagonal regions. The left region (goes from w = 275° to M=275°, the width of
the stable region is approximately between +-25°) shows the L5 region and the
right one (w = 50° to M=50° the width is also +-25°) that of L. There are also
two small stable regions in the left lower corner and in the right uper corner,
which belongs to the L4 and L5 regions. Another investigation of the extrasolar
systems (HD 28185) shows that the stable region (of w vs. M) depends on the
mass of the gas giant (HD28185 has a very massive gas giant Mj,,, = 5.7)
and the eccentricity of both (Trojan planet and gas giant). This investigation
(shown in Fig. 10) was undertaken for a smaller gridsize of Aw = 2° and
M=2° and also for an integration time of 10* years. For higher eccentricities
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the continous stable region will splitted in to two islands (see Fig. 10, lower
panel). We can conclude that there exist for a mass of the gas giant of about
M., = 6 and an initial eccentricity higher 0.15 no continous stable region.
The fact that we have a linear continous stable region for the Lagrangian points
give us the possibility to depict w and M in a simple ratio. This could be
used for future calculations to vary both orbital elements (w and M) during the
integrations.

Table 3. Results of four systems listed in Table 2, which illustrates the extension of the sta-
ble region of the Trojan planets after 0.1 Myrs for the variation of the mean anomaly and the
argument of perihelion. /st column: name of the investigated system, 2nd column: inital eccen-
tricity of the GG, 3rd column: new emax of the stable region for the mean anomaly, 4th column:
new emax Of the stable region for the argument of the perihel, 5th column: number of the calcu-
lated orbits, 6th column: Nr. of stable orbits for M, 7th column: Nr. of stable orbits for w, The
number of the calculated orbits were changed, because of the different geometry of the stable
regions.

System €ini new new Nr. of Nr. of Nr. of
Emax €max calc.  stable orbits stable orbits
of M of w orbits for M for w
HD17051 024 04-0.5 0.06-032 1800 73 286
HD28185 0.07 0.1-0.2 0.02-0.19 1800 161 591
HD108874 020 03-04 0.11-0.29 2000 159 421
HD27442  0.07 0.1-0.15 0.00-0.19 2000 926 1259

30 1t “E am 25 02 =
w [l

Figure 9. Stability region for the system HD17051 for a computation time of 10* yrs. The
light region is the most stable whereas the dark region indicates chaotic motion.
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Figure 10.  Stability region for the system HD28185 for a computation time of 10* yrs and
different initial eccentricities: e = 0 (upper Figure), eini = 0.07 (middle Figure) and ein =
0.15 (lower Figure). The light region is the most stable whereas the dark region indicates chaotic
motion.

6. Discussion

We investigated Trojan like motion in 10 extrasolar planetary systems by
using the restricted three body problem. The GG of the selected systems are
partly or fully in the HZ and the initial eccentricity dont exceed the value of
0.3. We checked the extrasolar sytems - by using the studies of Marchal - in
the 1:1 MMR for the selected systems, where the gas giant moves near the
HZ. We can conclude that only one of the investigated systems have no stable
region (HD 141937) and that the stable region of the Trojan planets are getting
smaller with larger values of i and e (see Fig. 2).

Numerical simulation were done to investigate the dynamical stability of
six extrasolar planetary systems, which lie fully in the HZ. The MEM were
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used to detemine the stability of the Trojan orbits. We find out that three sys-
tems dynamical lie completely in the HZ after a calculation time of 0.1 Myrs
(HD28185, HD108815 and HD27442), but only two of them have Sun like
stars (HD28185 and HD108815). The other three systems could also be can-
didates for habitable Trojan planets, because the stable orbits lie 87 percent
(HD17051 and HD108874) and 96 percent (HD93083) in the HZ. Another
part of this work was to investigate the interaction, if we change the initial
mean anomaly (M) or the initial argument of perihel (w) during the calcula-
tion. The comparison of both orbital elements was done for the extrasolar
system HD17051 and HD28185 for an integration time of 10* years. We could
find out that, if we vary the w there are much more stable orbits than for M.
Because of that, future calculations should include both orbital elements, to
become a more realistic simulation. Therefore further calculations should be
done to analyse the stability region of w and M for different masses, eccentric-
ties and inclinations.
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Notes

1. i.e. the region where possible terrestrial plantes can have (a) liquid water on the surface and (b) a
stable atmosphere shown in Fig. 1

2. The Extrasolar Planets Encyclopedia at http://www.obspm.fr/encycl/encycl.html
3. A thrid body, which always remains in the orbital plane of the primaries, feels their gravitaional
attraction, but does not influence their motion, because the mass is very small

4. that means only one planet in these extrasolar systems is known.
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Abstract It is well known that in low degrees of freedom dynamical systems chaotic be-
haviour appears. To examine this phenomenon the Sitnikov problem is a very
good example which is a special case of the restricted three-body problem. In
this paper we investigate the changing of the phase space structure due to the
variation of the initial positions of the primaries in the configuration.

Keywords:  dynamical systems — chaos — resonances

1. Introduction

The investigation of the dynamical systems in the past 50 years shows that
chaotic behaviour appears not only in difficult, many degrees of freedom sys-
tems but in simple configurations as well. Therefore one of the most relevant
tasks is to study these simple dynamical systems to understand the chaos, and
on the other hand it is a good starting point to investigate the more difficult
problems.

Out of the simplest and most interesting system in celestial mechanics is
the Sitnikov problem. Essentially, it is a special case of the restricted three-
body problem. Namely there are two equal masses m; and my revolving in
Keplerian orbits around each other, a the third massles body m3 moves on an
axis perpendicular to the plane of the primaries through its barycenter.

Mac Millan (1913) [6] showed that in the circular problem, when the pri-
maries revolve on circular orbit, the problem is integrable and the solution is
expressed by elliptic integrals. The motion of the masless body is more vari-
ous when we allow the two primaries to move in eccentric orbits. In this case
quasi-periodic and chaotic orbits appear beside the periodic ones. The solution
of the problem was first given by Sitnikov in 1960 [9], after that many authors
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examined the existence of periodic orbits in this configuration. The first map-
ping model was derived by Liu and Sun (1990) [5], who showed that for small
eccentricities the phase space becomes very complex. Perdios and Markellos
(1998) [8] studied the stability and the bifurcations in the Sitnikov problem.
Dvorak (1993) [1] investigated numerically the problem by using Poincaré’s
surfaces of section. Martinez Alfaro an Chilart (1993) found that for certain
eccentricities the fixed points z = 2 = 0 in the center becomes unstable.
Kallrath et al. (1997) [4] explored the phase space in detail laying emphasis
on resonances. For small eccentricities Hagel (1992) [3] and Faruque (2003)
[2] applied perturbation methods and gave an analitical approximation to the
problem.

In this study we investigate the phase space structure for different initial
conditions, eminently for different initial positions of the primaries. For the
visualization of the results we use Poincaré’s surfaces of section.

2. Equation of motion

As mentioned above, we investigate the motion of a massles body which
moves along a line perpendiclar to the plane of the primaries through their
baricenter (see Fig. 1). By introducing suitable units we can write the equation
of motion. We choose the total mass of the primaries as mass unit, the rotating
period equal to 27, the semi-major axis of the orbit of the primaries as distance
unit (m; and my), so the Gaussian constant becomes 1. Then the equation of
motion of the massles body is

ﬁz7 (1)

where

r=+vR2+22, R=1-—ecosE. ()

R is the distance between the primaries , z is the distance of the massles
body from the plane of primaries, e is the eccentricity, and E is the eccentric
anomaly, which depends on the time according to Kepler’s equation:

t—T=F—esink. 3)

The 7 = 0 phase constant corresponds to the pericenter passage at t = 0.
Since the problem is only one degree of freedom, we can introduce the true
anomaly v as for independent variable instead of the time. (See [4].)
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fHy

Figure 1. The Sitnikov problem.

3. Structure of the phase space

We studied the Sitnikov problem for different initial conditions. On the phase
portraits we plotted many trajectories corresponding to different initial condi-
tions. The set of initial conditions was zg = 0.15 — 1.8 with Az = 0.05, and
the initial velocities were z = 0 in all cases. We choosed the integration time
to be 10000 periods of the primaries.

The circular case is equivalent to the two center problem, which was solved
already by Euler in 1764. In this case, when the third mass has bounded mo-
tion, the solutions are periodic or quasi-periodic depending on the initial con-
ditions. The trajectories corresponding to these latter give close curves on a
convenient surface of section in the phase space. Such curves are shown in
Fig. 2.

In the eccentric case we have more various phenomena in the phase space. It
is well known that increasing the parameter e the structure of the z — 2 space
is also changing (Kallrath et al., 1997) [4]. For initial conditions close to the
plane of the primaries the solutions are quasi-periodic motions by invariant
cueves on the surface of section (see Fig. 3). However, small islands appear
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-2 -1 0 1 2

Figure 2. Invariant curves in the circular case of the Sitnikov problem. There are 17 initial
conditions, zp = 0.2 — —1.8, Az =0.1.

25

-25

-2 -1 0 1 2

Figure 3. e = 0.4 and vo = 0° (pericenter passage). The islands outside the invariant curves
correspond to the 1:1 and 2:1 mean motion resonances. Between the islands there are escaping
trajectories.

for particular initial distances outsid these invariant curves. These formations
correspond to reasonances with the primaries. The massles body escapes from
the system in the region between the islands (see Fig. 3).

In this paper we investigated the changing of the phase portraits when the
primaries are not in the pericenter at £ = 0. We calculated the motions for four
initial positions of the primaries v9 = 45°, 90°, 135° and 180°. Fig. 4 and
Fig. 6 show the results.

The eccentricity of the binary was 0.4 (see Fig. 4). It can be seen that the 2:1
mean motion resonance (the two small islands in the Fig. 3) remains in all cases
except vg = 180°. For example in the case vop = 45° these islands dissolve
to three smaller ones (see Fig. 4, top left panel). In addition, chaotic motion
appears close to the separatrices. In Fig. 4 the bottom right panel shows a quite
distinct picture. Except for initial conditions close to the baricenter, there are
chaotic motions.
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05

Figure 4. e = 0.4. Top left panel: vo = 45°, the islands split up at the edge of the figure
and the trajectories appear close to the separatrix. Top right panel: vo = 90°, here it can be
seen that a separatrix appears also between the invariant curves, and the 2:1 resonance is more
unstable. Bottom left panel: vo = 135°, the area of the chaotic region increases between the
invariant curves and the 2:1 resonance. Bottom right panel: vo = 180°, the total phase space is
chaotic except some initial conditions close to the primaries’ plane.

Figure 5. e = 0.8 and vo = 0°. It is an interesting phase space portrait of the problem. Close
to this value of the eccentricity (0.8) the fixed point in the middle becomes unstable. This was
studied by Martinez Alfaro and Chiralt in 1993 [7]. In our case there is only one invariant curve
for the initial distance zo = 0.15. In [7] the center is unstable for e = 0.8558625.

Fig. 5 shows the case where the eccentricity of the primaries was 0.8 and
vo = 0°. This is an interesting phase space portrait, because the parameter e
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Figure 6.  The eccentricity of the primaries is 0.8. Top left panel: vo = 45°, the structure
of the phase space is very similar to that of Fig. 4. However, in this panel the resonances are
more complex. Top right panel: vo = 90°, the chaotic domain grows between the islands.
Bottom left panel: vo = 135°, there are many islands in the chaotic sea. Bottom right panel:
vo = 1807, the phase space is mostly chaotic.

is very close to the value where the stable fixed point becomes unstable in the
center of the 2 — Z plane [7]. We can see only one island which corresponds to
zo = 0.15 initial distance from the primaries orbital plane.

The four panels in Fig. 6 where e = 0.8 are similar to those of Fig. 4. There
are resonances and for this larger the eccentricity there are stronger separa-
trices. The phase space is also very chaotic when the primaries are in the
apocenter at t = 0.

4. Concluding remarks

We investigated the phase space of the Sitnikov problem for different ini-
tial conditions. Four initial positions of the primaries were studied beside the
pericenter passage. There are closed curves on the surfaces of section corre-
sponding to quasi-periodic orbits and small islands which means resonances.
These small islands break up with varying the initial true anomaly, or higher
order resonances appear. It is important to note that increasing the initial value
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of v more and more chaotic motion occur close to the separatrices. Finally, if
the initial true anomaly is 180° then almost the whole phase space is chaotic.
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Several methods used in celestial mechanics require to solve ordinary differ-
ential equations (ODEs) and also derived equations like linearized ones. Lie-
integration is known to be one of the fastest ODE-integrators and it is widely
applied in long-term investigations. However, an inconvenience of this method
is that auxiliary recurrence relations must be deduced which is different for each
problem.

We present a lemma which can be used to derive such recurrence relations
almost automatically for the linearized equations if the relations for the original
ODEs are known. This lemma is then applied to the equations of the classical 2-
body problem. The knowledge of such relations may imply other chaos detection
methods; some concerning (and preliminary) results are also presented.

Numerical integration — Lie-integration — Linearized equations

1. Introduction

The integration method based on the Lie-series ([1]) is widely used in ce-
lestial mechanics (see [2] and articles refering to it). The basis of this method
1s to generate the coefficients of the Taylor expansion of the solution by using
recurrence relations. Let us write the differential equation to be solved as

T; = fi(x)> (1)
where x isan R — RY and f = (f1,..., fn) is an RY — RY function. Let
us also introduce the differential operator

0
D; = — 2
1 (9:[:17 ( )
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and the derivation

5,0
Lo := X_; figy = FiD: 3)

The latter is known as the Lie-derivation which is also a differential operator:
it is linear and Leibnitz’s rule stands for it,

Lo(ab) = aLy(b) 4+ bLo(a). 4)

It can easily be proved that the solution of Equ. (1) at a given instance ¢ + At
is formally

x(t+ A) = exp (At - Lo) x(t), (5)
where N
exp (At - Lg) = Ak—fL’g. (6)
k=0

Hence, the Lie-integration is the finite approximation (up to the order of M)
of the sum in the right-hand side of Equ. (6), namely

N k N k
x(t + At) ~ ( Ak—t!L’(§> x(t) =" Ak—l; (L’gx(t)) . 7

k=0 =

The proof of Equ. (5) and other related properties of the Lie-derivation can be
found in [2].
2. Linearized equations

For numerous chaos detection methods the knowledge of the solution of lin-
earized equations is required. Let us again write the differential equation as

& = fi(x). (8)
The linearized equations can be written as
-, 9fix)
=D &ng ©)
m=1 m
Using the above conventions (see Equ. (2)) it can be re-written as:
& = EnDnfi- (10)
Let us introduce the differential operator
0
0; i= —. (11)
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Thus the coupled system of equations (both the original and the linearized) is
& = fi,
i fi 12)

Using the differential operators defined in Equ. (2) and Equ. (11), one can write
the Lie operator of Equ. (12) as

L = LO + L€ - szz + ngmfzgz (13)

Lemma. Using the same notations as above, the Lie-derivatives of & can
be written as
L™, = EmDm L"xp, = Em D Ly Tk (14)

Proof. Obviously, Equ. (14) is true for n = 0:
DmLOxk = Dinx = O, (15)
hence

EmDm Lz = Embmik = - (16)
Let us suppose that it is true for all 0 < j < n and calculate the (n + 1)th
Lie derivative of &:
L"e = L(&nDmL™xy) =
- (szz + ngszaz) (meanxkr) —
= [iDi§nDm L™z, +
—|—§j(Djfi)[5imDan£Ck + §mDm8iL"xk]. (17)
Here the last term (&,,, D,,, 0; L™ x},) cancels, because z and L™z forall0 < n
do not depend on . So:
L™, = fiDiémDmL ), + &(D; f;) Dil "y =
= SnfiDmDiL"z} + gm(Dmfi)(DiLnxk) =
= &n (fiDm + D fi) (DiL"xy) =
= EnDm(fiDi)(L"xy) =
= EnDmL(L"xy) = EnDm L Moy, = Dy L 2. (18)

Here we have used the Young’s theorem:
Dy, Di = D; Dy, (19)
and Leibnitz’s rule,

Din(fiDi) X = D fi(Di X) = fi(DmDi X ) + (D fi)(Di X),  (20)
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where X can be any function of x, in Equ. (18) X = L"xj. Thus Equ. (18)
is the same relation for n + 1, as Equ. (14) for n. Continuing the scheme
described above, the relation Equ. (14) can be proved for all positive integer
values of n.

3. Equations for the two-body problem

The recurrence relations for the Lie-derivatives of the equations of motion
of the N-body problem can be found in [2]. Here we present the equations
for the two-body problem with almost the same notations. Let us detone the
relative coordinates and velocities by r = (71,72, 73) and w = (w1, we, w3),
respectively and introduce the following variables:

p = |r]=+/r] + 7573, 1)
¢ = p? (22)
A = rjwyp 4+ rowg + ryws = ryw;. (23)

The total mass of the system is M + m. Using these notations, the equations
of motion are

ri = wi, (24)
w; = —G(M +m)or;.
(Here G = k2, the gravitational constant.) The differential operators D; and
A; are defined as
0

D; = — 25
1 ari Y ( )
0
A; , 26
B, (26)
and the Lie-operator of Equ. (24) can be written as
Lo =w;D; — G(M -+ m)@“,AZ 27)
It can be proved easily (see [2]) that the recurrence relations are
Ly, = L'w;, (28)
n
L"A = ) (Z) LFr, L *w;, (29)
k=0
" /n
Ly = —G(M +m)) ( k) LFoL™ *r;, (30)
k=0
Lo = p?) FuL""oLFA, (31)

k=0
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where

Fu = (=3) (Z) +(-2) (kil) (32)

Using the lemma Equ. (14) the recurrence relations for the linearized equa-
tions of Equ. (24) can be derived without knowing these equations explicitly.
Let us denote the linearized variables by &; and n; (respecting to r; and w;) and
introduce

o= (& om), (33)
D;

D; = ( Ai) ; (34)

ED = ZD;=&D; +nA;. (35)

Since the right-hand sides of the equations Equ. (28) — Equ. (31) are only
bilinear in the Lie-derivatives of 7;, A, w; and ¢, using Leibnitz’s rule the
recurrence relations for &;, w; and the auxiliary variables =ZD¢ and =DA can
be calculated automatically:

L"eg = L'y, (36)
n
EDL'A = ) (Z) (L& w; + DL Fay),
k=0
1 n
Ly = —G(M+m)) <k) [<EDLk¢)Ln_kTi +Lk¢Ln_k&] ’
k=0
EDL" ¢ = —2p7 % LMo+

+p2 zn: Fo [(EDL“_%)L’“A + L”_’“gb(EDL’“A)} .
k=0

For the initialization of the recurrence method, the value of EDL¢ = ZD¢

has to be known:
ED¢ = —3p & (37)
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Abstract In this article four chaos indicators were compared using the framework of the
2D standard map. These methods, namely the LCE, FLI, RLI and SALI may
provide a global picture of the evolution of the mapping. Until now a de-
tailed comparison of these methods have not been performed. This imperfection
should be supersede. This is the aim of the paper.
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1. Introduction

The problem to separate ordered and chaotic motion in dynamical systems,
especially in one with many degrees of freedom, is a fundamental task in sev-
eral area of modern research. In order to determine the type of an initial con-
dition in the phase space one needs fast and reliable tools. These tools are ex-
tremely useful in those cases when the inspected dynamical system has more
than two degrees of freedom and therefore it’s phase space can’t be explored
in a direct way or the classical method of Poincaré surface of sections can not
be applied.

The mathematical foundation of the theory of Lyapunov characteristic ex-
ponents (hereafter LCE) arose progressively in the literature. The use of such
exponents dates back to Lyapunov [9], but was firstly applied by [11] to char-
acterize trajectories. In his paper Oseledec provides a general and simple way
to compute not only the largest, but all the LCEs. The first numerical char-
acterization of stochasticity of a phase space trajectory in terms of divergence
of nearby trajectories was introduced by the classical paper of [6]. They found
that two orbits initially close diverge either linearly or exponentially depending
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Table 1. Enumeration and classification of the methods.

analysis of the orbits analysis of the tangent vector

1. Poincaré surface of section 1. Lyapunov characteristic exponents (LCE) [9]
2. Frequency analysis method (MFT) 2. Generalized Lyapunov indicators (GLI) [3]
[8]

3. Low frequency power spectra [16]
4. Sup-map method [8]

5. Spectral analysis method (SAM) [10]

. Spectra of stretching numbers [14]

. Spectra of helicity and twist angles [2]

. Fast Lyapunov indicators (FLI) [4]

. Spectral distance [15]

Mean exponential growth of nearby orbits
(MEGNO) [1]

8. Relative Lyapunov indicator (RLI) [12]

9. Smaller alignment index (SALI) [13]

N oL AW

on whether the initial points lie in an integrable or in a stochastic region of the
phase space.

In the last three decades much work, both analytical and numerical have been
performed to investigate the chaotic properties of classical dynamical systems.
In addition to the elaborated theory of LCE several new methods have been
developed in order to establish the true nature of an orbit in the shortest possible
timespan. These methods are based on the analysis of the orbits, or on the time
evolution of the tangent vector i.e. the solution of the linearized equations of
motion. Accordingly the methods can be classified in two groups (see Table 1).

In this paper the LCE, the FLI, the RLI and the SALI methods will be in-
vestigated and compared in the framework of the 2D standard map, defined by
the

Tit1 = T+ Vi
mod 27 (1)
Yit1 = yi — Ksin(z; +yi),

equations, where K > 0 is the non-linearity parameter. Throughout the paper
the K' = 0.3 case is considered. For this value of the non-linearity parameter
the complete phase space of the system and the vicinity of the hyperbolic point
(7,0) 1s depicted in Fig. 1.

In Section 2 the methods are shortly described. In Section 3 the speed of the
methods are presented and compared, and also their dependence on the initial
tangent vector £ is discussed. In Section 4 the results are summarized.
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Figure 1. The phase space of the standard map for K = 0.3. The vicinity of the hyperbolic
point is enlarged to visualize the initial condition of the weakly chaotic orbit.

2. Methods: LCE, FLI, RLI and SALI

Let us briefly review the definition of the different methods! The definition
of the largest LCE for an initial value problem or mapping

dy (¢
% = f(t.y). y(0)=yo, (2)
yit1 = M(yi), ¥Yi=0o = Yo, 3)
1s given by
1 HE@I _ .
LCE — 1 1 — lim (¢ 4
A 18 oy ~ A (B yo- o). 4)

where &(t) is the solution of the first order variational (i.e. linearized) equations
and the function (¢, yo, &) measures the mean rate of divergence of the orbits.
The linearized equations are:

dé(t) _ ot(t.y)

o Dy £ £(0) = &, (5)
0 i

Eiv1 = %&, Ei=o = &o- (6)
y

The value of LCE reveals the sensitivity of the given trajectory to the initial
conditions. The problem of the LCE is that it is defined as a limit. Though
the largest LCE can be calculated up to a (very) large time 7' but the limes
as ¢ tends to infinity cannot be evaluated numerically. Therefore the func-
tion y(t, yo, &o) is called the Lyapunov characteristic indicator (hereafter LCI),
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which is a finite estimate of the LCE. Thus the evolution of LCI(¢, g, §) is fol-
lowed up and we plot logLL.CI versus log ¢. If the curve has a negative constant
slope, the trajectory is ordered; if it exhibits an inflection of the slope, which
comes close to 0 and the function converges to a certain value, the orbit is
chaotic.

The FLI was introduced as the initial part (up to a stopping time ¢5) of the
LCE’s computation:

FLI(§(0).y0,t) = sup [I5(0)] 9
ij=1,....n
where n is the dimension of the phase space. To determine the FLI of a given
orbit one has to follow the evolution of n tangent vectors, which initially span
an orthogonal basis of the tangent space. The FLI tends to zero in both ordered
and chaotic regions as the number of iterations (in the case of maps) or the time
(in Hamiltonian systems) increases, but on completely different time scales
which makes it possible to separate the phase space.
The RLI was introduced as the difference between the LCIs of two initially
nearby orbits:

RLI(E(0). y0. ) = T/LCIE(0),y0, t) ~ LOKE0) yo + Ay t)l, )

where Az is the distance in phase space between the two orbits.

The basic idea behind the SALI method is the intoduction of a simple quan-
tity that indicates if a tangent vector is aligned with the direction of the eigen-
vector corresponding to the maximal LCE.

In order to check the directions of the vectors, the evolution of two tangent
vectors are followed. The parallel and the antiparallel alignment indices are
respectively defined as

d- = 1|6(t) = &@)l|,  dy = [[&1(t) + &()]].
The SALI is defined as the minimum of the indices:
SALI(t) = min (d4+,d_). 9)

SALI tends to zero when to orbit is chaotic, and to a non-zero positive value
when to orbit is regular. In the special case of 2D maps, SALI tends to zero for
every initial conditions but follows completely different time rates for ordered
and chaotic orbits.

3. Efficiency and dependence

Both the efficiency and the dependence was study in the case of four different
kinds of orbits. The initial conditions are given in Table 2, the corresponding
orbits are plotted on Fig. 1.



Speed and efficiency of chaos detection methods 183

Table 2. Classification of the orbits and initial conditions.

Orbit
Ordered Chaotic
non-resonant  resonant  strongly weakly
(1;0) (0;2.15)  (3.14;0)  (3.1024048;0)

First the number of iterations needed to establish with certainty the nature
of an orbit was determined. An orbit can be classified as ordered (regular) or
chaotic. An ordered orbit can be divided into two subclasses: non-resonant and
resonant. An orbit is non-resonant, when there does not exist such linear com-
bination of the frequencies of the motion which vanishes, otherwise the orbit is
resonant. The chaotic orbits may be further classified, accordingly to the rate
of divergence of nearby orbits. In this context, one can speak about strongly
and weakly chaotic orbits. If two initially nearby trajectories diverge fast, the
orbit is strongly chaotic, if the divergence is slow (comparing to the previous
case), we speak about weakly chaotic or sticky orbit. The above classification
is presented in Table 2, where also the initial conditions of the different orbits
for the standard map are listed.

In Fig. 2 the time evolution of the four indicators are plotted for the above
mentioned different kinds of orbits. The stopping time was set to 10? iterations.
In the case of FLI, RLI and SALI an additional stopping criteria was used:
whenever the FLI, RLI or SALI reached 102°, 1072° or 10716, respectively
the computation was stopped.

Between 1 and some times 10 iterations none of the methods is capable to
establish the type of the orbit: all four curves are overlapping each other in-
hibiting the classification. At the earliest at 100 iterations the strongly chaotic
orbit can be separated from the ordered one, but with certainty the classifica-
tion can be done at 1000 iterations.

In the case of LCI, FLI and SALI the indicator corresponding to the weakly
chaotic orbit (dotted line) follows exactly the curve belonging to the strongly
chaotic orbit (solid line) for the first 10 iterations. Afterwards the weakly
chaotic curve essentially follows the curves corresponding to the ordered or-
bits for approximately 10° iterations. In the case of LCI the classification is
only possible after approximately 10° iterations, when the curve has a turning
point, and its slope becomes zero. It is worth noting, that after some 10° itera-
tions the LCI suddenly jumps form 1.21x107° to 6.03 x 10~3, than it climbs to
2.55x1072 which is very close to the value belonging to the strongly chaotic
orbit (3.45x1072). This is a numerical evidence, that both orbits originate in
the chaotic domain. In the case of the FLI approximately 2x 10°, whereas in
the case of the SALI about 9 x 10° iterations are needed for the assignment.
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In the case of the RLI, the weakly chaotic curve does not follow any other,
but it wildly oscillates around 10~ 2. Between 100 and 1000 iterations it over-
laps with the ordered curves, beyond 10° it goes close to the strongly chaotic
curve. The classification is possible after 10% iterations.
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Figure 2. Variation of the CIs with the number of iterations for four kinds of orbits of the
standard map. The dotted curves correspond to the weakly chaotic orbit.

A careful examination of the curves in Fig. 2 allows one to distinguish also
between resonant and non-resonant motion. Although the curves correspond-
ing to a non-resonant and a resonant motion are separated in the case of FLI,
RLI and SALI, the oscillations prevent definite distinction between the two
cases. Therefore, following the idea of [5], the definitions are replaced by their
running average

Cl(t) = 5= > CI, (10)
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where CI denotes one of the methods and /V is the width of the running win-
dow. In the following N = 50 was used.

In Fig. 3 the running average of the indicators are shown. In the case of LCI
and SALI the two curves can not be distinguished from each other, whilst the
FLI and RLI curves are well separated after 100 iterations. It appears clearly

that using flTI(t) and I/{I\JI(t) resonant and non-resonant motion are clearly
separated. We note that the corresponding lines appear to be parallel. This
averaging technique does not influence the behaviour of the indicators in the
case of chaos.

10° 10" 10% 10° 10* 10° 10° 107 10® 10° 10° 10" 10% 10° 10* 10° 10° 107 10% 10°
10° T T T T T T T T 1020 T T T T T T T
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10107
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10° 10" 10% 10° 10* 10° 10° 107 10® 10° 10° 10" 10% 10° 10* 10° 10° 107 10% 10°
Iteration Iteration

Figure 3. Variation of the E?\I(t)s with the number of iterations for four kinds of orbit of the
standard map.

It 1s obvious, that the methods are sensitive to the initial direction of the
tangent vector £(0). To quantify therefore the methods’ dependence on the
direction of £(0), the tangent vector is rotated, and the indicator is calculated
up to several stopping times. This dependence is confirmed in Fig. 4 in which
the values of the Cls are plotted against the angle ¢, for the resonant, non-
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resonant and chaotic orbits for 1000 iterations. The ¢ is the angle between
€(0) and the (1,0) vector (x-axis). From Fig. 4 it is obvious that these values
are far from being constant when varying the angle ¢. In order to plot all four
curves together, a normalization was performed, i.e. the CI values were divided
by their maximum value (see Table 3).

The normalized curves have extremum at the same ¢, which is a natural
consequence of that, that all four methods are based on the evolution of the
tangent vector. The LCI and RLI are periodic with 7, since these methods are
based on one £(0), while the FLI and SALI are periodic with /2, because
they are based on two tangent vectors which are initially perpendicular to each
other.

Table 3. Dependence and relative variation for the resonant orbit.

LCI FLI RLI SALI
max  0.00653987 692.198 5.77967e-15 0.00307465
min  -0.00075530 489.790 2.97609¢-15 4.17417e-06
Acr  1.937 1.15 1.288 3.867

bmaz  81°.5(261°5)  81°.5(171°.5) 171°.5(351°.5) 81°.5(171°.5)
bmin  171°.5(351°.5)  36°.5(126°.5) 171°.0(351°.0) 36°.5(126°.5)
A¢  180° 90° 180° 90°

In Table 3 the maximum and minimum values for the resonant orbit are
listed. Introducing the quantity

(11)

min(C1
ACI:1—10g10< ( )>,

max(C1)

also the measure of dependence was determinded. According to the third line
of Table 3, we see that the SALI has the largest, and the FLI has the smallest
value which could already be observed in Fig. 4.

4. Summary

In this article a possible classification of the chaos detection techniques was
given, and four methods, namely the LCI, the FLI, the RLI and the SALI were
briefly described in Section 2. These methods were compared using the 2D
standard map. The efficiency of these techniques was tested via applying them
to four different types of orbits. It was shown that all the four methods are
capable to distinguish between strongly chaotic and ordered motion after ap-
proximately 100 iterations. To reveal the true nature of a weakly chaotic orbit,
it turned out that the new methods are not superior to the classical method of
LCI: in short time interval they failed to properly classify the orbit. This is
because the weakly chaotic orbit pretends regular behaviour for a priori un-
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the resonant (top), non-resonant (middle) and chaotic (bottom) orbit.
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Variation of the Cls as a function of the initial direction of the tangent vector(s) for
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known time interval. The length of this time interval may be considered as the
measure of chaos: the longer the interval the weaker the chaos is.

Introducing the running average technique, the FLI and the RLI can separate
between resonant and non-resonant orbits. This technique does not improve the
capabilities of LCI and SALI.

The sensitivity of the methods to the initial direction of the tangent vector
£(0) was demonstrated and compared. It was shown for three types of orbits
that the Cls have extremum at the same ¢, which is the angle between &(0) and
the z-axis. The LCI and RLI are periodic with 7, while the FLI and SALI are
periodic with /2. With the definition of Acy the dependence of the methods
were quantitatively described. The least sensitive is the FLI, the most one is
the SALL.

In the future it is necessary to calculate these methods on a large portion of
the phase space, and also to extend these calculations for Hamiltonian dynam-
ical systems.
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