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Abstract

The heating of solar and stellar chromospheres and coronae are one of the key fun-

damental and yet unresolved questions of modern space and plasma physics. In spite

of the multi-fold efforts spanning over half a century including the many superb tech-

nological advances and theoretical developments (both analytical and computational)

the unveiling of the subtles of coronal heating still remained an exciting job for the

21st century! In the present paper I review the various popular heating mechanisms

put forward in the existing extensive literature. The heating processes are, some-

what arbitrarily, classified as hydrodynamic (HD), magnetohydrodynamic (MHD) or

kinetic based on the model medium. These mechanisms are further divided based on

the time scales of the ultimate dissipation involved (i.e. AC and DC heating, turbulent

heating). In particular, attention is paid to discuss shock dissipation, Landau damp-

ing, mode coupling, resonant absorption, phase mixing, and, reconnection. Finally, I

briefly review the various observational consequences of the many proposed heating

mechanisms and confront them with high-resolution ground-based and satellite data

currently available.
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1 Introduction

The very high-temperature solar atmospheric plasma, in particular in the corona,
is mainly confined in magnetic flux tubes. The actual operating heating pro-
cess that generates and sustains this hot corona has so far defied a quantitative
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understanding despite efforts spanning over half a century. In this review paper
the most popular and viable heating mechanisms of the solar atmosphere are
briefly summarised. We start our journey from the lower chromosphere where
mainly a hydrodynamic approach is applicable, discuss the importance of the
magnetic field at transition region level, and arrive at the strongly magnetised
corona where the magnetohydrodynamic (MHD) descriptions seem to be a rea-
sonable approximation. We address, by recalling the latest results of theoretical
and observational studies, the source of plasma heating in the solar (and stellar)
atmosphere and how do perturbations propagate from the source and dissipate
efficiently resulting in a hot coronal plasmas.

Solar coronal observations go back a very long time, at least three millennia!
The Babylonian astronomers reported during a solar eclipse in 1063 BC that,
”...the day was turned to night, and fire in the midst of the heaven”. The next
great leap in coronal research was the spectroscopical discovery of the Sun in
the late 19th century. The so-called coronal ”green line” at 5303 Å was a real
puzzle for astrophysicists for half a century. The observed wavelength of this
mysterious spectral line did not match any known elements on Earth and it was
concluded that a new element, called coronium, was discovered. However, Edlén
in 1939 showed that the coronium line is emitted by highly ionised iron, i.e. Fe
XIV, at temperature well over 1 MK. Probably this was the moment when the
coronal heating problem was borned. Recent space observations, from Skylab in
the 70th through SMM, Yohkoh and in very present times SoHO, TRACE and
RHESSI, have investigated the solar atmosphere with unprecedented spatial and
temporal resolutions covering wavelengths from (E)UV, through soft and hard
X-ray to even gamma rays. These high-resolution imaging and spectroscopic
observations contributed to many discoveries in the solar atmosphere. The so-
lar atmospheric zoo, to the best of our knowledge today, consists of features
from small-scale X-ray bright points to very large coronal loops (Figure 1a).
For an excellent textbook on the corona see, e.g. Golub & Pasachoff (1997).
Soon after the discovery of the approximately few MK hot plasma in the solar
corona theoreticians came up with various physical models trying to explain the
apparently controversial behaviour of the temperature in atmosphere. The key
point is the observed distribution of temperature: the solar energy is produced
by thermonuclear fusion in the very hot (approximately 14 MK) internal core of
the Sun. This vast amount of energy then propagates outwards, initially in the
form of radiation (radiation zone) up to about 0.72R⊙ and later by convection
(convective zone) right to the solar surface (photosphere) continuously cooling
the solar plasma. Surprisingly, after reaching its minimum at the top of the
photosphere, the temperature starts to rise slowly throughout the entire chro-
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Figure 1: Left: The very inhomogeneous and dynamic solar atmosphere. Right:

Solar atmospheric temperature (red line) and density (yellow line) distributions as a

function of the height measure in km. The formation of popular lines for observations

is indicated by green. Note the logarithmic scales. Left figure is courtesy of H. Peter.

mosphere (up to around 20,000 K), followed by a very steep and sharp increase
in the narrow transition region (few 100,000 K) up to around 2 MK in the corona
(Figure 1b). Although going continuously away from the energy producing so-
lar core, instead of a temperature decrese, the tendency of temperature increase
was found (Figure 1b). Maintaining this high temperature requires some sort of
input of energy because, without it would cool down by thermodynamic relax-
ation on a minute-scale. Surprisingly, this non-thermal energy excess to sustain
the solar corona is just a reasonably small fraction of the total solar output (see
Table 1). It is relatively straightforward to estimates the entire energy budget
needed for the solar corona: approximately just a tiny 10−4 fraction of the Sun’s
total energy output is needed giving, at least in theory, a fairly easy task for
theoreticians to put forward various mechanisms that could divert 0.01% of the
total solar output into heating the corona. The question is today not where
does the coronal non-thermal energy come from, but how does it actually get
to the corona and how does it dissipate efficiently there.

2 Importance of Atmospheric Magnetism

With increasing spatial and time resolution more and more structures and their
dynamics were discovered at the solar surface and in the solar atmosphere.
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Table 1: Table 1: Average coronal energy losses (in erg cm−2 sec−1).

Loss mechanism Quiet Sun Active region Coronal hole

Conductive flux 2 × 105 105 - 107 6 × 104

Radiative flux 105 5 × 106 104

Solar wind flux < 5 × 104 < ×105 7 × 105

Total flux 3 × 105 107 8 × 105

Large-scale structures like sunspots, complex active regions, prominences, coro-
nal loops, coronal holes are observed in great details. On the other hand, the
improved resolution allowed to reveal fine structures like the magnetic pores,
dark mottles, spicules, supergranular cells, filaments, X-ray and EUV bright
points, etc. Since the discoveries of the solar cycle, the Hale’s polarity law,
the butterfly diagram for sunspots, the cyclic variations in sunspot numbers
the role of solar magnetic fields became a central theme. Soon it turned out
that these temporal phenomena are linked to the internal generation mecha-
nism of the global solar magnetic field. Skylab observations made it clear for
the first time that the x-ray emitting hot and bright coronal regions and the
underlying surface magnetic field concentrations are strongly correlated suggest-
ing that coronal heating and solar magnetism are intimately linked (Figure 2).
Models of solar (and stellar) atmospheric heating have to comply with the ob-
servational facts (Cargill 1993, Zirker 1993). Today it is evident that the solar
atmosphere is highly structured and is very likely that various heating mecha-
nisms operate in different atmospheric magnetic structures. In closed structures,
e.g. in active regions temperatures may reach up to 8 − 20 × 106 K, while in
open magnetic regions like coronal holes maximum temperatures may only be
around 1−1, 5×106 K. Next, observations also show that temperature, density
and magnetic field are highly inhomogeneous. Fine structures (e.g. filaments
in loops) may have 3-5 times higher densities than densities in their environ-
ment. The fluctuating brightness and the associated fluctuating velocities as
opposed to the quasi-static nature of the corona is a far-reaching observational
constraint what is not yet modelled on a satisfactory level. There is also little
known about how the heating depends on magnetic field strength, structure size
(length, radius, expansion) and age and progress is accepted in the near future.
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Figure 2: Left: The solar corona in the 171 Å SoHO EIT spectral line. Right: Con-

currently taken image of a SOHO MDI magnetogram at photospheric levels. Magnetic

field concentrations coincide with bright patches in the SoHO EIT image indicating the

role of magnetic field in the process of coronal heating.

3 Atmospheric Heating Mechanisms

In order to explain solar (and stellar) atmospheric heating mechanism(s) models
have to provide a mechanism or mechanisms that result(s) in a steady supply of
energy not necessarily on a steady way. Random energy releases that produce
a statistically averaged steady state are allowed for to balance the atmospheric
(chromospheric and coronal) energy losses and these models became more viable
(Mendoza-Briceno et al. 2004, 2005). Testing a specific heating mechanism
observationally may be rather difficult because several mechanisms may operate
at the same time. Ultimate dissipation occurs on very small spatial scales,
sometimes of the order of a few hundred metres that even with current high
spatial resolution satellite techniques cannot (and will not for a while!) be
resolved. A distinguished signature of a specific heating mechanism could be
obliterated during the thermalisation of the input energy. We should, instead,
predict the macroscopic consequences of a specific favoured heating mechanism
(Cargill 1993) and confirm these signatures by observations (Aschwanden 2003).
For example one could predict the generated flows (see e.g. Ballai et al. 1998)
or specific spectral line profiles or line broadenings (Erdélyi et al. 1998).

The heating process is usually split into three phases: (i) the generation of a
carrier of energy; (ii) the transport of energy from the locii of generation into the
solar atmospheric structures; (iii) and finally the actual dissipation of this energy
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Table 2: Table 2: Summary of the various popular heating mechanisms (see also

Ulmschneider, 1998; Erdélyi 2004)

Energy carrier Dissipation mechanism

Hydrodynamic heating mechanisms

Acoustic waves (P < Pacoustic cutoff ) Shock dissipation
Pulsational waves (P > Pacoustic cutoff) Shock dissipation

Magnetic heating mechanisms

1. Alternating current (AC) or wave mechanisms
Slow waves Shock damping, resonant abs.
Longitudinal MHD tube waves

Fast MHD waves Landau damping

Alfvén waves (transverse, torsional) Mode coupling, res. heating,
phase mixing, compressional
viscous heating, turb. heating,
Landau damping, res. absorption

2. Direct current (AC) mechanisms
Current sheets Reconnection

(e.g. turbulent or wave heating)

in the various magnetic or non-magnetic structures of the atmosphere. Without
contradicting observations it is usually not very hard to come up with a theory
that generates and drives an energy carrier. The most obvious candidate is the
magneto-convection right underneath the surface of the Sun. Neither seems the
literature to be short of transport mechanisms. There is, however real hardship
and difficulty in how the transported energy is dissipated efficiently on a time-
scale such that the corona is not relaxed thermally. A brief and schematic
summary of the most commonly accepted heating mechanisms is given in Table
2 (see also Narain & Ulmschneider 1996; Ulmschneider 1998; Erdélyi 2004).
The operating heating mechanisms in the solar atmosphere can be classified
whether they involve magnetisms or not. For magnetic-free regions (e.g. in
the chromosphere of quiet Sun) one can suggest a heating mechanisms that
yields within the framework of hydrodynamics. Such heating theories can be
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classified as hydrodynamic heating. Examples of hydrodynamic heating are,
among others, e.g. acoustic waves and pulsations. However, if the plasma is
embedded in magnetic fields as it is in most parts of the solar atmosphere, the
framework of magnetohydrodynamics (MHD) may be the appropriate approach.
These coronal heating theories are called MHD heating mechanisms (for reviews
see e.g. Browning 1991; Erdélyi 2004; Gomez 1990; Hollweg 1991; Pries &
Forbes 2000; Roberts & Nakariakov 2003; and Walsh & Ireland 2003). The
ultimate dissipation in MHD models invoke Joule heating or in a somewhat
less extent viscosity. Examples of energy carrier of magnetic heating are the
slow and fast MHD waves, Alfvn waves, magnetoacoustic-gravity waves, current
sheets, etc. There is an interesting concept put forward by De Pontieu et al.
(2005) where the direct energy coupling and transfer from the solar photosphere
into the corona is demonstrated by simulations and TRACE observations. For a
recent review on MHD waves and oscillations see e.g. Roberts (2004). Finally, a
popular alternative MHD heating mechanism is the selective decay of a turbulent
cascade of magnetic field (Gomez et al. 2000, Hollweg 2002, van Ballegooijen
1986).

Most of the hydrodynamic or MHD heating theories consider the plasma to
be collisional. If however, the plasma, whether magnetised or not, is collisionless
(and the plasma in the solar corona strictly speaking is!) one has to consider
kinetic approaches (for a review see e.g. Scudder 1995). A proper description of
the heating mechanisms is cumbersome and would require heavy computations
and kinetic codes. Compromising ways to proceed may be the Chew-Goldberger-
Low (CGL) closure or the semi-phenomenologic Abraham-Schrauner description
of the plasma, where the latter formalism is based on a closure hypothesis of
the kinetic equation that is not yet experimentally proven.

Based on the times-cales involved an alternative classification of the heating
mechanism can be constructed. If the characteristic time-scale of the pertur-
bations is less than the characteristic times of the back-reaction, in a non-
magnetised plasma acoustic waves are good approximations describing the en-
ergy propagation; if, however, the plasma is magnetised and perturbation time-
scales are small we talk about alternating current (AC-) heating mechanisms,
e.g. MHD waves (Roberts 2000, Erdélyi 2001, Roberts & Nakariakov 2003).
On the other hand, if perturbations have low frequencies hydrodynamic pulses
may be appropriate in a non-magnetised plasma, while if the external driving
forces (e.g. photospheric motions) operate on longer times-cales compared to
dissipation and transit times very narrow current sheets are built up resulting
in direct current (DC-) heating mechanisms in magnetised plasmas (Priest &
Forbes 2000).
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3.1 Hydrodynamic Framework

After the discovery of the hot solar atmosphere in the early 1940s the model
of acoustic waves generated by solar granulation were put forward as energy
carrier from the top of the convective zone into the corona. The very steep
density decrease causes the sound waves to develop into shocks. These acoustic
shocks dissipate their energy causing plasma heating in the solar corona.

After it was discovered that coronal plasma is heavily embedded into mag-
netic fields the relevance of the hydrodynamic heating mechanisms for the corona
part of the atmosphere was re-evaluated. It is believed today that hydrodynamic
heating mechanisms could still contribute to atmospheric heating of the Sun but
only at lower layers, i.e. possibly in the chromosphere and up to the magnetic
canopy (De Pontieu et al. 2004).

For late-type stars with spectral type of F to M acoustic shocks are important
heating mechanisms. In early-type stars (O to A) with no convection zone the
strong radiation plays the role of acoustic wave generator that steepens into
shock waves.

Finally, pulsational waves are mainly prominent in Mira-stars and in other
late-type giants where the wave generation is triggered by the κ-mechanism
(that is related to the opacity increase of the stellar envelope).

3.2 MHD Framework

At least as a first approximation the plasma is considered frozen-in in the vari-
ous magnetic structures in the hot solar atmosphere. The magnetic field plays
a central and key role in the dynamics and energetics of the solar corona (see
Figure 2). High-resolution satellite observations show the magnetic building
blocks that seem to be in the form of magnetic flux tubes (Figure 3) in the solar
atmosphere. These flux tubes expand rapidly in height because of the strong
drop in density. Magnetic fields fill almost entirely the solar atmosphere at
about 1,500 km above the photosphere. The flux tubes are shaken and twisted
by photospheric motions (i.e. by both granular motion and global acoustic oscil-
lations, the latter being called p-modes). This magnetic flux tubes are excellent
waveguides. If the characteristic time of these photospheric footpoint motions is
much less than the local Alfvénic transient time the photospheric perturbations
propagate in the form of various MHD tube waves (e.g. slow and fast MHD
waves; Alfvń waves). The dissipation of MHD waves is manifold: these waves
couple with each other, interact non-linearly, resonantly interact with the closed
waveguide (i.e. coronal loops) or develop non-linearly (e.g. solitons or shock
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Figure 3: TRACE images of the highly structured solar corona where the plasma is

frozen in semi-circular shaped magnetic flux tubes. Left: The magnetic field in the

solar atmosphere shapes the structures that we see, as the emitting gas can generally

only move along the field. Sometimes, however, packets of gas are accelerated so much

that they can shoot through the magnetic field almost in a straight line. Courtesy

Charles Kankelborg. Right: The image shows the evolution of loop system: an in-

creasing number of loops appears in the 1 MK range, probably as they cool from higher

temperatures that they reached during the main X-ray flare phase. Courtesy TRACE

(http://vestige.lmsal.com/TRACE/Public/Gallery/Images/TRACEpod.html)

waves can form), etc. For an extensive review on the observations of MHD
waves see e.g. Aschwanden (2003), while on theory see e.g. Roberts (2004).

In an inhomogeneous and magnetised plasma there are two particular dissi-
pation mechanisms of MHD waves that received extensive attention in the past
decades: resonant absorption and phase mixing. Although there are major the-
oretical advances on these two particular dissipation mechanisms unfortunatelly
we still have only indirect evidences that they may actually operate under solar
circumstances. Thanks to the fantastic imaging capabilities of TRACE, plenty
of observations of MHD wave damping in coronal loops are available (Aschwan-
den 2003) and some of these cases may be an excellent candidate of resonant
absorption. Further, it is less likely that phase mixing operates in closed mag-
netic structures, like solar coronal loops.
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3.2.1 Mechanism of Resonant Absorption

Let us consider an ideal inhomogeneous vertical magnetic flux tube embedded in
a magnetic free plasma such that the Alfvén speed has a maximum at the axis of
the tube and the Alfvén speed is monotonically decreasing to zero as a function
of the radial coordinate (Figure 4a). Let us suppose that there is a sound wave

Figure 4: Left: Schematic sketch of resonant absorption. The incoming driving wave

with frequency ωdriver is in resonance with local oscillations at the resonant point rA

where the driver’s frequency matches the frequency of the local eigenoscillations. Right:

Phase-mixing of surface waves caused by gradients in the background magnetic field (or

Alfvén speed) where the footpoints of the field lines are shaken in the y-direction.

continuously impinging horizontally at the boundary of this flux tube. If the
phase speed of this impinging (or driving) sound wave matches the local Alfvén
speed at a given location of the radius, say at rA, we say that the driving wave
is in resonance with the local Alfvén waves at the magnetic surface at rA. In
ideal MHD this would result in infinite amplitudes of the perturbations resulting
in large gradients. However, once the gradients of perturbations become large,
one cannot assume any longer the plasma is ideal, i.e. dissipative effects (e.g.
resistivity, viscosity) have to be considered at least within the vicinity of such
resonant location leading to energy dissipation. Such dissipation, i.e. energy
absorption of the driving wave, will result in heating of the plasma converting the
energy of the driving wave into localised thermal heating. Resonant absorption,
originally considered by plasma physicists as means of excess heating source
for thermonuclear fusion, seems to work very well when modelling e.g. the
interaction of solar global oscillations with sunspots; when applied to explain
the damping of coronal loop oscillations (Ionson 1978, Erdélyi 2001), etc.



Heating of the Solar Corona 17

3.2.2 Process of Phase Mixing

Heyvaerts & Priest (1983) proposed another interesting mechanism that is in a
way fairly similar to resonant absorption. There is a magnetised plasma that
is inhomogeneous in the x-direction of the xz-plane where the magnetic field
lines are parallel to the z-axis (Figure 4b). We perturb each field line in a
coherent (e.g sinusoidal) way in the y-direction. Along each of the field lines an
Alfvén wave will develop and will propagating in the z-direction with a speed
characteristic to that field line. Since the plasma is inhomogenenous the Alfvén
speed at two adjacent field lines is different and neighbouring oscillating field
lines will be soon out of phase after some time resulting in large gradients of
perturbations. At a given point when the gradients reach a critical value it is
not correct anymore to assume that the plasma is ideal and dissipative effects
have to be included in the analysis (just like in the case of resonant absorption)
resulting in local heating. This dissipation of the initial perturbations is called
phase mixing. Phase mixing is an excellent candidate for MHD wave energy
dissipation in open magnetic regions like coronal funnels, plumes, solar wind.

3.2.3 Magnetic Reconnection

Finally, if the characteristic time scales of magnetic footpoint perturbations are
much larger than the local Alfvénic transit times, magnetic tension is built up
gradually involving highly localised current sheets that may release their energy
through field line reconnection. This mechanism is called magnetic reconnection.
There is plenty of evidence that reconnection works under solar atmospheric
conditions at large scales releasing magnetic stresses at highly mixed polarity
fields. However, whether this mechanism is viable to heat the solar atmosphere
on micro- and nano-scales requires further detailed theoretical investigations and
observations. An interesting attempt of solving this debate is to consider the
power-law distribution of the various energy releases. It turned out that there is
a critical value of the modulus of power-law distribution, approximately equal
to 2, what could be measured by observing these small-scale energy releases. If
the measured power-law index is greater than 2 that would indicate the solar
atmosphere is heated by numerous localised events due to reconnection as a
result of e.g. the continuous shuffling of the roots of coronal fields. However, if
measurements would show a power index of less than two it is expected that a
more global heating mechanism may be responsible for the observed temperature
behaviour in the solar atmosphere. Unfortunately observations with the current
accuracy could not allow drawing a final conclusion!
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We have briefly listed a couple of popular heating mechanisms. We would
like to emphasise that most probably different heating mechanisms operate in
different solar and stellar structures. It is also likely that these mechanisms work
simultaneously and their signatures are present in the high-resolution spectral
and imaging data at the same time. Maybe the next-generation space mis-
sions like the much awaited Solar-B next year and Solar Dynamics Observatory
(SDO) somewhat after or later on Solar Orbiter (probably around the mid of the
next decade) will have the capability and capacity to answer the fundamental
astrophysical question of: how solar and stellar atmosphere are heated?

4 Stellar Outlook

From the viewpoint of an astronomer the Sun is just a fairly ordinary main-
sequence middle-aged low-mass star with a spectral type of G2V with an X-
raying corona. Non-degenerate stars of nearly all spectral types show UV and
X-ray emission and display evidence of chromospheric and coronal activities
as was measured by the OSO-series, the IEU and Einstein satellites. F, G,
K and M-stars have chromospheres and often coronae similar to the Sun where
radiation is generally attributed to surface convection of these stars. Late giants
and supergiants do not really seem to have coronae, while A-stars do not have
either chromospheres or coronae. Since chromospheres and coronae of average
stars do not receive energy from beyond the stellar atmosphere (except from
the T-Tau stars where chromospheric emission originates from mass-infall from
accretion disks) it means that stellar atmospheric emission depends solely on the
structure of the underlying stellar interior structure. With increasing computer
power one may expect that by carefully computing the energetics of surface
convection one can predict the chromosphere and corona of a star.
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Abstract

We present the difference in behavior of two transition region lines at very close tem-
peratures, observed with SUMER/SoHO. N v 1238.82 Å shows a series of explosive
events with broadenings mostly shifted to the blue. This is not seen in Ov 629.73 Å,
the behavior of which remains “quiet” throughout most of the time series.
Keywords: Sun: transition region - Sun: explosive events - Sun: line profiles

1 Introduction

It has been recognized that small-scale quiet-Sun transient events, which occur over
the entire solar disk, may provide direct evidence for magnetic reconnection, plasma
acceleration and heating (Harrison et al., 2003). Using space observatories, many
small-scale and globally distributed solar transient events have been reported in the
literature. Their potential role in fundamental processes in the solar atmosphere, such
as coronal heating, mass ejection, flare activity and wind acceleration, is currently
under active investigation.

One of the most discussed and studied occurrences in the literature are explo-
sive events, the term given to transient phenomena observed at temperatures around
1 × 105 K, first discovered and classified as turbulent events and jets by Brueckner
& Bartoe (1983). Explosive events are the product of magnetic reconnection (Dere
et al., 1984; Porter & Dere, 1991; Innes et al., 1997; Parker, 1998; Wilhelm et al.,
1998; Roussev et al., 2001). They tend to occur throughout the quiet-Sun network



22 B. Ishak et al.

where mixed-polarity magnetic features are present (Chae et al., 1998), appearing as
bi-directional jets (Innes et al., 1997). Recent observations have shown a birthrate of
explosive events of approximately 2500 events per second over the entire Sun, with an
average size of 1800 km (Teriaca et al., 2004).

The defining characteristic of an explosive event is a highly broadened red or blue
shifted spectral line, affecting either or both wings of the profile. The majority of these
non-Gaussian profiles are blue-shifted with velocities up to 150 km s−1. A description
on explosive events identification and their general characteristics can be found in
Teriaca et al. (2004).

In this work, we have analyzed a series of explosive events in the transition region
lines N v 1238.82 Å and Ov 629.73 Å.

2 Observation

2.1 SUMER

The Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrograph
onboard the Solar Heliospheric Observatory (SoHO) has been designed to give mea-
surements at high spatial and spectral resolutions over wide spectral coverage that
ranges from less than 500 Å to 1610 Å. Within this wavelength range, spectral imaging
of the Sun at short exposure times in the Extreme Ultra Violet (EUV) emission lines
permits studies of the essential physical parameters of the solar atmosphere. With
SUMER, the opportunity to study and analyze the density of plasma and its temper-
ature, abundances of species, velocity fields, topologies of the plasma structures and
their evolution at high temporal resolution of a few seconds has increased tremen-
dously.

Full discussions on the instrumentation and performance of the SUMER spectro-
graph are given in Wilhelm et al. (1995, 1997) and Lemaire et al. (1997).

2.2 Observational Data

The present data set was observed on 1999 June 1 from 09:13 UT to 11:01 UT with the
SUMER spectrograph, pointing at Solar X and Solar Y coordinates of (409′′,400′′). In
order to remain at the same location on the Sun, a rotational compensation of 0.75′′

has been applied to the X-pointing throughout the observation.
The observing sequence used slit 0.3′′ × 120′′, exposing for 25 s on detector B.

This detector has wavelength ranges of 330 Å to 750 Å for second order lines and 660 Å
to 1500 Å for first order. Spectral lines of first and second orders were obtained in the
observation. They were N v 1238.82 Å, Nv 1242.80 Å, C i 1249 Å and Si ii 1251.16 Å for
the first order, and Ov 629.73 Å and Mg x 624.95 Å for the second. We only consider
the lines Nv 1238.82 Å and Ov 629.73 Å for our analysis.

Table 1 shows the summary of the observation.
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Table 1: Summary of the SUMER spectral data taken on 1999 June 1.

Date 1999 June 1
Start Time 09:13 UT
End Time 11:01 UT
Pointing (X,Y) (409′′,400′′)
Detector B
Slit 0.3′′ × 120′′

Exposure Time 25 s
First Order Lines Nv 1238.82 Å, Nv 1242.80 Å, C i 1249 Å, Si ii 1251.16 Å
Second Order Lines Mgx 624.95 Å, Ov 629.73 Å

2.3 Data Reduction

To reduce the SUMER raw data, several steps are to be followed. In general, the
standard SUMER data reduction involves decompression, reversion, dead-time correc-
tion, local gain correction, flatfield correction, geometrical distortion correction and
radiometric calibration.

However, we do not go through either the decompression or reversion procedure
since the Flexible Image Transport System (FITS) files used in this analysis have been
decompressed and reversed onboard the space craft. Also, we do not apply the dead-
time correction procedure since it is only necessary when the total counts are above
50 000 per second, which is not the case in our data set.

In order to correct for non-uniformities in the sensitivity of the detector, a flatfield
correction is applied to the data set by choosing the closest date of observation for
the flatfield file to be used in this process. Since we want both the rest position of
the line profiles to be on the correct spectral pixel and the slit images straightened,
a geometrical distortion correction is also applied to the data set. Note that the
radiometric calibration, used to convert the detected intensity unit, i.e. counts per
pixel per sampling interval (in our case, second) to physical units, is also not applied,
leaving the data set in its original unit of counts per pixel per second.

Due to instrumental broadening, the full width at half maximum (FWHM) of the
line profiles needs to be corrected by applying the con width funct 3.pro routine. All
routines used in this analysis are available from the SolarSoftWare (SSW) library. We
have applied the Gaussian-fitting procedure to our data set to obtain the amplitude,
central position, FWHM and χ2 of the line profiles.



24 B. Ishak et al.

Figure 1: Image plots of Nv 1238.82 Å and Ov 629.73 Å time series taken on 1999

June 1, starting at 09:13 UT and ending at 11:01 UT, showing the variation in the

line width of a single Gaussian fit. Six different temporal locations are selected and

labeled (a), (b), (c), (d), (e) and (f), corresponding to the times 09:47 UT, 09:53 UT,

10:00 UT, 10:03 UT, 10:05 UT and 10:26 UT, respectively. The selected profile plots,

normalized to unity, are overplotted with the dash-lined quiet Sun profile for compari-

son.
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3 Results and Discussion

We have studied the two transition region lines, Nv 1238.82 Å and Ov 629.73 Å,
and found that they behave differently so far as some explosive events are concerned,
despite being formed at similar temperatures. The peak formation temperature of
Nv 1238.82 Å is 2 × 105 K while Ov 629.73 Å is formed at 2.5 × 105 K. These
temperatures are taken from CHIANTI (Dere et al., 1997; Young et al., 2003) data
base, using Mazzotta et al. (1998) ionization balance calculations.

For our data analysis, we have performed a single Gaussian fitting for both Nv 1238.82 Å
and Ov 629.73 Å to produce results in terms of amplitude, position, FWHM and χ2

of the line profiles. χ2 values are useful in determining the goodness of the fit.
Figure 1 shows an image plot of line width (FWHM) assuming a single Gaussian

fit for each time series of N v 1238.82 Å and Ov 629.73 Å. For clarity, the wider the
width, the brighter it appears in both images. The “black” pixels in the images are due
to bad fitting points. Plots of corresponding line profiles that have been normalized to
unity for selected locations (a), (b), (c), (d), (e) and (f), at times 09:47 UT, 09:53 UT,
10:00 UT, 10:03 UT, 10:05 UT and 10:26 UT, respectively, are shown below each image.
In each profile plot, the quiet Sun profile (dashed line) is overplotted for comparison.

As can be seen, except for profile (c), the line profiles of N v 1238.82 Å show
prominent blue shift compared to those of Ov 629.73 Å. For example, profile plot
labeled (b) of Nv 1238.82 Å shows an obvious shift to the blue part of the wavelength,
in which a deviation from the quiet Sun profile is apparent, while the corresponding
profile plot of Ov 629.73 Å indicates little evidence of any such shift.

Although these two profiles are taken at the same location on the Sun and ob-
served at the same time, the dissimilarity in their shape is conspicuous, demonstrating
the absence of the explosive events phenomena in the higher temperature line, i.e.
Ov 629.73 Å, in this observation. The reasons for the discrepancy between the two
transition region lines of Nv 1238.82 Å and Ov 629.73 Å are still under investigation,
however, inspection at other locations show similar Nv 1238.82 Å and Ov 629.73 Å
behavior. A possible explanation for the different behavior reported in Figure 1 may
be where in the solar atmosphere these events occur.

In follow up work, we will look at the time variability of the chromospherical lines
to test this idea. Furthermore, we plan to look at the formation process of the lines,
in particular whether there is an effect due to electron density dependent ionization
as in Doyle et al. (2005).
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Abstract

There are two main fundamental achievements in connection with statistical studies
of solar sunspots and sunspot groups. One of them is that the mean decay rates of
sunspot groups are lognormally distributed, the other one is that the decay rate of
sunpots is proportional to the relative radius of the spot. The preceding study is
based on the Greenwich Photoheliographic Results (GPR), the latter one is based on
the Debrecen Photoheliographic Results (DPR). Now the Debrecen Photoheloigraphic
Data (DPD) will be used to verify the above achievements and discuss the usefulness
of DPD for such statistical studies.
Keywords: Sun, sunspots, sunspot groups, decay

1 Introduction

Sunspots are very spectacular features. They appear in the solar photosphere as dark
areas compared to their environment. It is commonly known that this is caused by their
much larger magnetic field which originates from the bottom of the Sun’s convective
layer. In this layer a magnetic flux tube of some 105G is situated. Some perturbation
can lead to arising magnetic flux that can form a pair of sunspots in the photosphere
after about one month. It has been shown that just before these appear, the flux
tube takes a tree-shape: this is called a magnetic tree. Therefore, sunspots usually
appear in groups. After its birth, a sunspot begins to grow, it reaches a maximum
area, then it starts to decay and finally disappears. The latter phase is in the focus
of our investigation. A review on sunspots can be found in Solanki (2003). Several
papers studied the decay law of sunspots. There are two fundamental questions: what
is the decay law and why is that the decay law.
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The first paper on the form of decay curve was Bumba (1963). He concluded that
there are two types of curve. One of them is a rapid, exponential curve for the decay
phase and typical of non-recurrent groups. The other type is when the rapid decay
phase is followed by a linear phase. Later Moreno-Insertis et al. (1988) showed that no
such differences exist between recurrent and non-recurrent spot groups and a parabolic
decay law is more likely. In these two studies the Greenwich Photoheliographic Results
(GPR) was used. Most recently Petrovay and van Driel-Gesztelyi (1997) found evi-
dence for a particular parabolic decay law, specifically the decay rate is proportional
to the relative radius of the sunspot. They processed the very detailed Debrecen Pho-
toheliographic Results (DPR) that contains data not only for spot groups but also for
individual spots, but unfortunately only for the years 1977 and 1978.

The answer for the second question is an appropriate model that reproduces the
fundamental requirements. The spot boundary has to be sharp during the decay
phase; this is an obvious observational fact. The relation between the lifetime and the
maximum area of a sunspot group is linear (Gnevyshev, 1938; Waldmeier, 1955). The
central magnetic flux density has to be more or less constant in time. And finally, the
model has to reproduce the decay law. In Petrovay and van Driel-Gesztelyi (1997)
Table I. shows the predictions of different sunspot decay models. Among them the
turbulent erosion model (Petrovay and Moreno-Insertis, 1997) can satisfy all of the
above requirements.

Another interesting achievement is that the average decay rate of sunspot groups
follows a lognormal distribution. Assuming a parabolic decay law, this distribution
shape comes naturally (Mart́ınez Pillet et al., 1993).

The goal of this paper is to detect the lognormal shape of decay rate distribution
and the decay law, using the DPD catalogue. This is a preliminary work, hence we will
invoke only some basic statistics in order to decide whether this catalogue is suitable
for such an investigation or not. In Sec. 2 the catalogue will be introduced, and
selection criteria will be presented. Then we will describe the methods applied to test
the lognormality (Mart́ınez Pillet et al., 1993) and to try the parabolic decay curve in
Sec. 3. Finally, in Sec. 4 we will give a short discussion.

2 Data

DPD is a catalogue that will contain sunspot data from 1986 up to now. Now the
processing of daily solar white-light plates is partly completed: data are available
for the years 1986-1988 and 1993-1996 (Győri et al., 2003).1 Incomplete data are
also available for years 1989, 1997 and 1998. In the catalogue, areas and positions
of sunspots can be found for every day. This study invokes areas and corresponding
observational times in order to determine the decay rates. Because of the lack of
day-by-day sunspot identification, we could only use sunspot group data. It has to

1ftp://fenyi.solarobs.unideb.hu/pub/DPD
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be noted that the catalogue uses NOAA number that corresponds to an active region
which is not necessarily the same as a sunspot group.

Some selection has been made on the database. It was demanded that at least 3
observations had to exist for a group. This is the minimum number of data that is
required to calculate the instantaneuos and the average decay rate. Commonly, there
is a requirement for the position, because near the solar limb the foreshortening effect
causes a large error even if it is eliminated. In this study the absolute value of the
distance in longitude from the central meridian (LCM) is less than 65◦. Lastly, only
those spot groups have been included whose areas reach the value of 10 MSH2 at least
once.

3 Methods

3.1 Lognormality

The density function of a lognormal distribution is

1√
2πσ′D

e
−

(log D−µ′)2

2σ′2 .

Here D is the average decay rate of a sunspot group, derived from a linear fit to area and
time data. µ′ and σ′ are the mean and the standard deviation of log D, respectively.
Three methods have been used to test the hypotesis of lognormal distribution.

First, the skewness and the kurtosis of the distribution has been estimated:
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In the precise form of g1 and g2, they are multiplied by a factor that depends on
the sample size (n), but as we have n = 886, this factor is close to 1 with 10−3

error. If a random variable is lognormally distributed, it means that the logarithm
of the variable is normally distributed. The skewness and the kurtosis of a normal
distribution are equal to zero. The variance of g1 and g2 can be estimated from
var(g1) = 6

n
, and var(g2) = 24

n
. Another way is to generate similar samples with

Monte Carlo (MC) simulations and calculate the “real” variances of them. Here we
have used 250 simulations with sample size n = 900. The correspondig values are in
Tab. 1. Considering those values, g1 = −0.067 ± 0.082 and g2 = 0.201 ± 0.16, so we
say the test is positive.

21 MSH = 10−6
A1/2⊙
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Table 1: Estimation of skewness and kurtosis.

value var varMC

g1 -0.067 0.007 0.007

g2 0.201 0.027 0.023

However, higher moments of a distribution are not robust estimators, especially in
the case when we have significant outlier points in the sample. Hence, another standard
method has also been invoked. The χ2-test for goodness of fit leads to χ2 = 22. For
95% significance level, the corresponding χ2 value is 27.6 (for 17 degrees of freedom),
therefore this test is positive, too. The observed and the estimated density functions
are shown in Fig. 1.

Figure 1: The observed and the estimated density function: the crosses show the

observed histogram of decay rates; the solid line shows the estimated density function

scaled up with number of data. Both axis are logarithmic.

3.2 Decay law

The form of the decay law according to Petrovay and van Driel-Gesztelyi (1997) is

D = CDr/r0,
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Figure 2: Calculated instantaneous decay rate via relative equivalent radius are in-

dicated with points for the original (left) and with crosses for the binned (right) data.

The dashed line shows the linear fit to the data. The solid line comes from the tur-

bulent erosion model (Petrovay and van Driel-Gesztelyi, 1997). 2σ error bars for the

mean are shown.

where r is the equivalent radius of the spot, r0 is the maximum equivalent spot radius,
and CD = 32.0 ± 0.26. Here, D means the instantaneous decay rate. This result was
derived for individual sunspots using binned data from DPR. We have calculated the
intantaneous decay rates with the same method as described in the latter paper but
for spot groups using DPD. The results are depicted in Fig. 2. After binning the data,
we can fit 3.2 to the data. This resulted in CD = 26.0±1.12. The errors show that the
relative error for our study is larger than for the previous study. However, our value
for CD is a bit closer to that value, which comes from the turbulent erosion model.
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4 Discussion

Two statistical investigation has been made using DPD: the lognormal distribution
of decay rates and the decay law of sunspot groups. The hypotesis of lognormal
distribution was accepted, because both statistical studies led to positive results. This
confirms a previous achievement of Mart́ınez Pillet et al. (1993), which was made with
GPR. The other investigation was to try the parabolic decay law. From this study,
we can conclude that using sunspot group area data of DPD, the parabolic decay law
- where the instantaneuos decay rate is proportional to the relative spot radius - can
be verified.

We come to the conclusion that DPD is suitable for such statistical investigation.
However, previously it has been shown that if we would like to get reliable information
about the decay law, we have to use sunspot data. Hence, further effort will intent
to identify sunspots day-by-day in the DPD catalogue. Another notable and relevant
factor that sunspot groups and active regions (i.e., NOAA regions) are not necessarily
the same and mixing them can lead to further errors in statistical studies.
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Abstract

The dynamics response of the solar coronal plasma in a magnetic flux tube undergoing
impulsive heating through the release of localized Gaussian energy pulses near the
loop’s footpoints is investigated. It was found that when a discrete number of randomly
spaced pulses is released, loops heat up and stay at coronal temperatures for the whole
duration of the impulsive heating stage provided that the elapsing time between pulses
is less than a critical one. For elapsing times longer than this critical value, coronal
temperatures can no longer be maintained and the loop apex cools down reaching
chromospheric temperatures. For a large number of pulses having a fully random
spatio-temporal distribution, the variation of the temperature along the loop is highly
sensitive to the spatial distribution of the heating. As long as the heating concentrates
more and more at the loop’s footpoints, the temperature variation is seen to make a
transition from that of a uniformly heated loop to a flat, isothermal profile along
the loop length. Concentration of the heating at the footpoints also results in a
more frequent appearance of rapid and significant depressions of the apex temperature
during the loop evolution, most of them ranging from ∼ 1.5 × 106 to ∼ 104 K and
lasting from about 3 to 10 minutes. This behavior strongly resembles the intermittent
variability of coronal loops inferred from SoHO observations in active regions of the
solar atmosphere.
Keywords: Sun: atmosphere, transition region, hydrodynamics, Sun: corona
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1 Introduction

The heating of the solar coronal plasma remains one of the most challenging problem
in solar physics. Several heating mechanism have been proposed but recent interest
has centered on the idea that flarelike discrete events heat the solar corona (Parker
1988). High resolution observations by space imaging telescope and spectrometers have
revealed a variety of very small scale activities at transition region that may serve as
building blocks of the heating mechanism (Innes et al. 1997; Harrison 1997; Pérez et
al. 1999; Erdélyi et al. 2001). Numerical models aimed at studying the nature of
localised energy deposition and their contribution to the coronal heating mechanisms
have been proposed e.g. by Sarro et al. (1999), Teriaca et al. (1999), Roussev et al.
(2001a,b), Bradshaw & Mason (2003), whereas Walsh & Galsgaard (2000) studied the
response of the coronal plasma to dynamical heat input generated by the flux-braiding
model. More recently, Mendoza-Briceño, Erdélyi, & Sigalotti (2002) and Mendoza-
Briceño, Sigalotti, & Erdélyi (2003) investigated the hydrodynamical behavior of closed
magnetic loops undergoing impulsive heating near the footpoints. They found that
when a discrete number ( <

∼ 10) of pulses are injected either periodically or randomly
in space with constant elapsing times, the average plasma temperature stays over a
million kelvins for the duration of the impulsive heating, with approximate isothermal
profiles along the upper, hot loop segments. These temperature profiles are consistent
with a heating function that decays exponentially from the loop’s footpoints towards
the apex in good agreement with observations of TRACE loops (Aschwanden et al.
2001).

In this paper, we report on the response of the coronal loop plasma to spatio-
temporal microscale heating near the footpoints. First, we explore the effects of in-
creasing the constant elapsing time between successive energy inputs on catastrophic
cooling for a discrete number of randomly spaced pulses and varied total length of
the loop. Second, we consider models with a large number of pulses where the energy
releases are now applied randomly in space and time as well as in their occurrence at
one or both footpoints. This gives rise to loop evolutions in which the heat injections
are fully random and asymmetric. Finally, for these latter models we also consider the
effects of varying the length of the bottom loop segments along which the localized
pulses are randomly distributed. This allows for hypothetical loop models undergoing
impulsive heating at the footpoints and across the transition region.

2 Hydrodynamic loop model

Coronal loops are modelled as semicircular magnetic flux tubes of constant cross sec-
tion anchored in the photosphere. Plasma motion along the tube can be approximately
described by solving numerically the standard set of transport equations for mass, mo-
mentum, and energy in one space dimension, including the effects of heat conduction,
radiative cooling, and heating.
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In this paper we assume that the heating deposition has a spatial and temporal
dependence given by

H(s, t) = h0 + H0

n
X

i=1

exp[−α(t − τi)]×

×
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»

−
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2

β2

–

+ λr,i exp

»

−
(s − sr,i)

2

β2

–ff

, (1)

where t is time, s the curvilinear coordinate along the field line, h0 = 3.6 × 10−4 ergs
cm−3 s−1 is the uniform background heating rate, H0 = 30 ergs cm−3 s−1 determines
the maximum amplitude of the impulsive heating, β ≈ 3.6×106 cm is the spatial width
of the heating, and α = − ln(0.1)/∆t so that 90% of the total energy is deposited
during a finite time taken to be ∆t = 150 s. We use heat pulses of total energy
Etot ∼ 1025 ergs. The elapsing time τi between successive pulses is chosen randomly
within the interval 20 ≤ τi ≤ 190 s. In addition, the pulses are centered at distances
sl,i = ∆L·RANl,i and sr,i = L(1 − ∆L·RANr,i) from the left and right footpoints,
respectively, where RANl and RANr define different sequences of random numbers
between 0 and 1 allowing for asymmetrical heat injections near the footpoints. Finally,
the parameters λl,i and λr,i are randomly chosen to be either 0 or 1 so that the
injections may arbitrarily happen at one or both footpoints. For each model calculation
four distinct sequences of n = 5000 random numbers were employed to determine the
parameters τi, sl,i, sr,i, and (λl,i, λr,i) in Eq. (1). In all models with constant τi, the
first pulse is always released at the beginning (t = 0) of the calculation.

To solve the hydrodynamic loop equations, we use the 1D finite-difference code
employed in previous models of impulsively heated loops (Mendoza-Briceño et al.
2002, 2003) and adopt many of the same parameters and assumptions that were made
in those earlier simulations with this code. We refer the reader to Sigalotti & Mendoza-
Briceño (2003) for a detailed account of the numerical methods and tests. All of our
model calculations begin with an initial loop configuration in hydrostatic equilibrium.
The initial cool atmosphere (≈ 0.55 MK) is such that the base pressure is always at
0.1 dyne cm−2 and is consistent with the value chosen for the background volumetric
heating rate h0. As in previous models, the total length of our basic loop model is
L = 1.0 × 109 cm (10 Mm), excluding the chromosphere. Additional calculations are
presented for loops with total length L = 5, 20, and 30 Mm. Appropriate boundary
conditions are applied at both footpoints by fixing the density and temperature there
to their initial equilibrium values. Given that p ∝ ρT , this results in a constant
pressure at s = 0 and L. In this way, the presence of a deep chromosphere is mimicked
by evolving the velocity at the loop ends, thereby allowing for a flow of mass across
the footpoints. All models are initialized the same way and the background heating is
always maintained in which case we expect the loop model to return to the equilibrium
density and temperature associated with this heating rate. Models with a discrete
number (= 10) of randomly spaced pulses are all identical except for the constant
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elapsing time τi between consecutive heat injections, which is varied from 60 to 240 s
for the L = 5 and 10 Mm loops and to higher values (up to 300 s) for the L = 20 and 30
Mm cases. Finally, the model calculations with a large number (up to 1000 or more)
of impulsive injections distributed randomly in space, time, and in their occurrence
close to the footpoints all start with L = 10 Mm; the only variations in the simulations
being the seeds generating the four distinct sequences of random numbers employed
in Eq. (1) and the length ∆L/L(=0.1, 0.2, 0.3, or 0.5) of the bottom loop segments
along which the pulses are injected.

3 Results and Discussion

Mendoza-Briceño et al. (2003) investigated the evolution of a 10 Mm loop when 10
randomly spaced pulses were released near the footpoints over loop segments of length
0.1L and with constant elapsing times between successive injections of either 60 or
120 s. It was found that the instantaneous temperature profiles of the evolving loops
were characterized by the appearance of localized thermal bumps along their hot coro-
nal segments. Such bumps bear a strong resemblance with the intermittent behavior
detected by Patsourakos & Vial (2002) from their analysis of light curves obtained in
the O IV and Ne VIII transition region and low corona emission lines, as recorded by
SOHO/SUMER in a quiet Sun region. The observed bursts exhibit a rather random
temporal variation and are presumably due to intermittent energy release followed by
its dissipation. In this way, Patsourakos & Vial (2002) concluded that the intermit-
tency of the examined signals is related to well-known types of transition events in the
corona such as explosive events, blinkers, and micro/nanoflares.

In this paper we further investigate the existence of a critical value of τi by per-
forming further simulations of the 10 Mm loop model along a sequence of increasing
constant elapsing times up to τi = 240 s. In particular, Fig. 1a shows the evolution of
the loop temperature when the time interval between the heat pulses is of 180 s. In this
case, the impulsive heating can maintain the overall loop temperature at around 1.5
MK for about 1700 s. As expected the loop temperature achieved is lower compared
to models having shorter elapsing times. After 1700 s, the loop cools down and returns
to the initial equilibrium atmosphere, which is maintained until the termination of the
calculation at 4000 s. The contour plot in Fig. 1a depicts the temperature variation
during the impulsive heating phase. It is interesting to note the oscillatory behavior
of the 0.5 MK contour line after about 2000 s, when the perturbations are relaxed
and the loop returns to its equilibrium state. Similar qualitative trends are found for
longer elapsing times up to the critical value of τi ≈ 215 s. For values higher than this,
the loop is maintained at coronal temperatures only for the duration of the first two
pulses. Soon after, the top temperature suddenly drops below the initial state towards
typical chromospheric values.

When the elapsing time is further increased to τi = 240 s, the evolution produced
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Figure 1: Evolution of the temperature when 10 pairs of heat pulses are injected

randomly over a segment of length 0.1L from each footpoint in a loop model of total

length L = 10 Mm. The time interval between successive injections are of 180 s (a) and

240 s (b), with the first pair of pulses being released at the beginning of the evolution

(t = 0). A projected contour plot is shown for the temperature variations, where only

contour lines for 0.5, 1.0, and 1.5 MK are shown.

is qualitatively similar (see Fig. 1b). In this case, however, the cooling of the top loop
segments lasts for a longer period (∼ 1900 s) until the last pair of pulses is released
(see Fig 2a). The spatial extent of the cool region around the loop apex is clearly
evidenced by the temperature contour plot. We estimate that about 20% of the loop
undergoes runaway cooling.

The critical elapsing time beyond which runaway cooling occurs is seen to depend
on the total loop length. In particular, we find that loop models with the same heat-
ing parameters and increasing length experience catastrophic cooling at progressively
higher critical elapsing times. For loops of length L = 5 Mm, the critical elapsing time
is τi ≈ 175 s. This value rises to about 215, 240, and 263 s for loops of length 10,
20, and 30 Mm, respectively. Loops with the same subcritical value of τi and varied
length evolve in a qualitatively similar fashion as we may see by comparing the time
variations of the apex temperature depicted in Figs. 2a and b for τi = 120 and 180
s. Since the timescale for heat conduction is τcond ∝ ρL2, conductive cooling is much
more effective in the shorter than in the longer loops. This explains why during the
heating stage the apex temperature in the 20 Mm loop oscillates about higher coronal
values compared to the 10 Mm model. Similar trends are also seen when comparing
the other model evolutions for L = 5 and 30 Mm. Larger values of the critical elaps-
ing time are therefore required in the longer loops to allow conductive cooling have
enough time to bring the loop apex past the equilibrium point, where radiative losses
dominate and eventually induce the runaway cooling of the loop summit.
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Figure 2: Time variation of the apex temperature for loop models of total length (a)

L = 10 Mm and (b) L = 20 Mm, undergoing impulsive heating through the release of 10

randomly spaced pulses near both footpoints. The elapsing time τi between successive

pulses is of 60 s (solid line), 120 s (dotted line), 180 s (dashed line), 220 s (dot-dashed

line), and 240 s (triple-dot-dashed line ) in (a) and 120 s (solid line), 180 s (dotted

line), 240 s (dashed line), 245 s (dot-dashed line), and 260 s (triple-dot-dashed line)

in (b). Catastrophic cooling to temperatures ∼ 104 K is evident for τi = 220 and 240

s in (a) and τi = 245 and 260 s in (b).

We now consider the evolution of the 10 Mm loop model when it is heated by a
large number of pulses distributed randomly in space and time near the footpoints. In
contrast with the previous models, the pulses may not be simultaneous in the sense
that they could appear randomly at one or both footpoints. The randomness in time is
obtained by choosing arbitrarily the elapsing time between consecutive injections from
the interval 20 ≤ τi ≤ 190 s. These values are all below the critical one for which we
would expect the loop to undergo catastrophic cooling to chromospheric temperatures.
Figure 3 shows the resulting temperature evolution for this loop model up to 15000 s,
when more than about 1000 pulses have been released. We may see that the hottest
segments of the loop reach temperatures higher than 1.5 MK, which are maintained
until the termination of the calculation. When the randomness of the impulsive heating
is varied, the evolution undergoes only quantitatively small changes. For instance, an
obvious change involves differences in the spatio-temporal distribution of the thermal
bumps which certainly modify the instantaneous shape of the temperature profiles
when compared at identical evolutionary times. The variation of the apex density
and temperature with time for the three model calculations is shown in Fig. 4.
One important feature in these plots is the sporadic appearance of temperature drops
accompanied by corresponding density rises. That is, during its impulsive heating the
loop apex suddenly cools to temperatures >

∼ 104 K and reheats to coronal temperatures
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Figure 3: Evolution of the loop temperature when a large number of heat pulses with

a random distribution in space, time, and in their occurrence at one or both footpoints,

is injected over a segment of length 0.1L from the feet in a loop model of total length

L = 10 Mm.

in a very short timescale. These variations in the local thermodynamic properties may
be related to the observed rapid time variability of coronal loops detected in active
regions of the solar atmosphere, which involves temperature variations in the interval
from ∼ 104 to ∼ 2.7×106 K (Kjeldseth-Moe & Brekke 1998). The predicted timescales
for these rapid variations are of ∼ 3–10 min, which are towards the lower end of the
range inferred observationally (∼ 10–30 min). This implies that a loop at a given
temperature that is missing in one location at a particular time may be present at
another time. Also note that the number of the temperature depressions is related
to the spatio-temporal dependence of the impulsive heating. We next consider the
effects of varying the length ∆L of the bottom loop segments along which the pulses
are randomly distributed for the same evolution model of Fig. 3. In particular, Fig. 5
depicts the integrated temperature profiles when ∆L/L = 0.1 (solid line), 0.3 (dotted
line), and 0.5 (dashed line). We may see that the form of the temperature variation
is highly sensitive to the spatial distribution of the heating. As a consequence of
distributing the pulses on a broader region, hotter loops are produced as confirmed by
the ∆L/L = 0.3 and 0.5 calculation models. We also notice that the upper, hot loop
segments become progressively less flat when the impulsive heating is more broadly
distributed along the loop. In particular, the form of the temperature variation for
the ∆L/L = 0.5 loop model is similar to that corresponding to a uniformly heated
loop as described by Priest et al. (1998) from X-ray observations of the diffuse corona.
Moreover, the results also imply that a quasi-isothermal temperature distribution along
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Figure 4: Variation of the apex density (left panels) and apex temperature (right

panels) with time for three loop models of total length L = 10 Mm each, undergoing

impulsive heating through the release of a large number of pulses. The spatio-temporal

random distribution of the pulses differ for each model. In all cases, the pulses were

injected over segments of length 0.1L from the loop’s footpoints. The upper two panels

correspond to the model evolution shown in Fig. 3.

the loop length is a clear signature of the heating being more strongly concentrated at
the footpoints as deduced by Aschwanden et al. (2001) from observations of TRACE
loops. Finally, we note that when the heating is less concentrated at the footpoints,
the occurrence of the rapid temperature depressions strongly diminishes. This result
is consistent with the observational lack of detected strong variability in the X-ray and
EUV emission lines at higher coronal temperatures (Kjeldseth-Moe & Brekke 1998;
Schrijver 2001).

4 Conclusions

In this paper we have described the evolution of a coronal loop model that has been
heated impulsively near the footpoints.

It was found that successive microscale energy inputs are quite capable of heating
up the loop plasma to typical coronal temperatures, which are, in general, maintained
for the whole duration of the impulsive heating. As long as the elapsing time between
successive pulses is increased in the 5 and 10 Mm models to ≈ 175 and ≈ 215 s, re-
spectively, the loop heats up towards progressively lower temperatures. For elapsing
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Figure 5: Time integrated temperature profiles for the model evolution of Fig. 3, when

the length of the bottom loop segments over which the pulses are randomly distributed

is 0.1 (solid line), 0.3 (dotted line), and 0.5L (dashed line). The temperature is given

in units of 106 K. In each case, the time integration was performed over the whole

evolution (≈ 15000 s).

times longer than these critical values, coronal temperatures can no longer be main-
tained as radiative cooling proceeds faster than impulsive heating. As a consequence,
the loop apex undergoes catastrophic cooling well below the initial state to typical
chromospheric temperatures (∼ 104 K). The precise value of the critical elapsing time
is seen to increase with increasing total loop length. In particular, catastrophic cooling
in the 20 and 30 Mm loop models occurs at about 240 and 263 s, respectively.

Finally, loop simulations with a large number of pulses, having a fully random
spatio-temporal distribution, confirm previous findings that the plasma would stay at
coronal temperatures during the impulsive heating stage. Variations in the randomness
of the heat releases produce qualitatively similar evolutions, differing mainly in the
spatio-temporal distribution of the localized thermal bumps that appear randomly
along the hottest loop segments. The model calculations also predict the occurrence
of sporadic and very rapid temperature depressions near the loop apex, which are
always accompanied by equally rapid rises of the apex density. These depressions may
involve strong temperature variations, most of them from ∼ 1.5×106 to ∼ 104 K, which
may last from about 3 to 10 min, and their number may be sensitive to the details
of the spatio-temporal distribution of the microscale heating. This behavior may be
related to the observed rapid time variability of coronal loops inferred from SOHO-
CDS observations in active regions of the solar atmosphere (Kjeldseth-Moe & Brekke
1998; Schrijver 2001). Moreover, when the pulses are less concentrated near the loop’s
footpoints, the evolution produces hotter loops and progressively less flat temperature
profiles in the upper parts of the loop along with an appreciably reduced number of
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the temperature depressions. This latter feature is consistent with the observational
lack of strong variability at very high coronal temperatures (Kjeldseth-Moe & Brekke
1998; Schrijver 2001).
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R. S. Polidan, & R. W. Pogge (San Francisco: ASP), 619

Harrison, R. A., & Hood, A. W. 2002, A&A, 392, 319

Innes, D. E., Inhester, B., Axford, W. I., & Wilhelm, K. 1997, Nature, 386, 811

Kjeldseth-Moe, O., & Brekke, P. 1998, Sol. Phys., 182, 73
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Roussev, I., Galsgaard, K., Erdélyi, R., & Doyle, J. G. 2001a, A&A, 370, 298

Roussev, I., Doyle, J. G., Galsgaard, K., & Erdélyi, R. 2001b, A&A, 380, 719
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Abstract

Time dependent magnetohydrodynamic computations on three solar radii, starting
with a current sheet initial configuration, is presented. A prominence formation and
eruption, trigger CMEs in ’raffales’, with a coronal streamer formation as last result.
Keywords: Sun, CME, MHD, numerical simulation

1 Introduction

One of the amazing feature of the solar activity are the explosive phenomena, especially
that which affect directly our planet life. Thecoronal mass ejections (CMEs) are huge

magnetized bubbles of gas ejected from the Sun into the planetary space, which add
to the solar wind. Large spatial scales are involved during a such process (average
width of 47deg). The timescales of CMEs events range between several minutes to
several hours. The CMEs are impressive phenomena: their velocities could rich from
10 to 2100 km/s, their masses range between 2× 1014 − 4× 1016 g, developing kinetic
energies between 1029 to 1031 ergs.

Observationally, the CMEs are related to prominences eruptions or to coronal
streamers disruptions, but also to big solar flares. CMEs are driven by the magnetic
field. A CME appears in the active zones with closed magnetic field configurations
stretched above the polarity inversion line. The material is coronal: once the CME
produces, it observes a exhaustion of the mater back the bubble. Before the disruption
of the material, strong movements are observed in zone. The ejection rate varies from
a phenomenon to another, depending on the causes.
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Many models and reviews were given within the past years and this topic is still
on the top of the actuality.

Wu et al. (2000) distinct three CME initiation processes: streamer destabilization
due to increase of currents via increase of axial fields, photospheric shears and plasma
flow induced at the boundary region of a streamer and coronal hole.

Klimchuk (cited by Poedts et al., 2002) reviewed the theoretical model for CME
initialization as follow:

(1) Directly driven models

(a) Thermal blast - characterized by a sudden release of thermal energy (Dryer,
1982; Wu, 1982) - CME associated with flares

(b) Dynamo models - real-time stressing of the magnetic field involves the rapid
generation of coronal magnetic flux (Chen, 1989)

(2) Storage and release models - three classes in which a slow buildup of magnetic
stress precedes the eruption

(a) Mass loading models - the field is loaded with mass (Low, 1999)

(b) Tether release models - the strain increase on a decreasing number of tethers
(Forbes & Isenberg, 1991)

(c) Tether straining models - total stress increases (Antiochos et al., 1999)

A 3-D numerical simulation of CMEs by coupled coronal and heliospheric model
was performed by Odstrcil et al. (2002). The coronal model is based on the 3-
D resistive MHD equations solved by a semi-implicit finite-difference scheme.. The
output of this model consists of a temporal sequence of the MHD flow parameters,
which are used as boundary conditions for the heliospheric solutions.

Forbes (2002) conclude that a CME is triggered by the disappearance of a stable
equilibrium as a result of the slow evolution of the photospheric magnetic field. This
disappearance may be due to a loss of ideal-MHD equilibrium or stability such as
occurs in the kink mode, or to a loss of resistive-MHD equilibrium as a result of
magnetic reconnection.

Our simulation is based on a prominence formation in a current sheet and its evo-
lution. The current sheets naturally appear in the solar atmosphere. They are linked
to the lines of magnetic polarity inversion line. They are places where prominences
form and seldom their are at the base of a coronal streamer.

2 2-D numerical simulation

The MHD equations are solved with SHASTA method used by Alfven code, developed
by Weber (1978). This code was described by Forbes & Priest (1982) and also by
Dumitrache (1999).

∂ρ

∂t
+

−→
∇(ρ · −→v ) = 0 (1)
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p = ρT (5)

The initial configuration is:

Bx =

(

sin(
πz

2w
), for |z| ≤ w

1, for |z| > w
Bz = 0

(6)

with vx = 0, vz = 0, where w(= 0, 25 from the computation grid) is the thickness
of the sheet , ρ = 1 and p = ρT .

The boundary conditions imposed on 49x97 mesh:

-at top (x=1)

∂Bz

∂x
=

∂Bz

∂x
= 0 (7)

∂Bz

∂x
= −

∂Bx

∂z
(8)

- at right (z=1)

∂Bx

∂z
=

∂Bz

∂z
= 0 (9)

∂Bz

∂z
= −

∂Bx

∂x
(10)

- at left - the symmetry axis (z=0)

∂Bx

∂z
= Bz = 0 (11)

- at bottom (x=0)

∂Bx

∂x
=

∂Bz

∂x
= 0 (12)
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Figure 1: Left: t=0.026; Right:t=0.031

3 CMEs ”en raffales”

Starting with a current sheet initial configuration and with β = 0.5 and Rm = 103,
we performed this numerical experiment on 3 solar radii.

We obtain a prominences configuration, after a cooling process in the sheet, at the
Alfven time t = 0.026. The temperature in the sheet is about 5000 K. The Figure 1
(left panel) displays the magnetic field lines at left, the density at middle and a half
of grid for the velocity vector field at the right. The symmetry axis of the vector field
is at left. At this stage, downward motions are registered.

The first CME starts at t = 0.031 (Fig.1, right), very impulsively with a v = 1245
km/s.

At t = 0.036 (Fig.2, left), the material is pushed to the lateral side of the current
sheet and upward. Its velocity does dot exceed 507 km/s. The exhaustion of the
matter is observed below the bubble, while the magnetic field picture displays plasma
insulation. Lateral legs of the old loop could be seen steel at the bottom of the figure
2 (left), while at t = 0.040 (Fig.2, right) the magnetic loop is reformed, but plasma
push strongly at the lateral side of the sheet. The legs of the old loop are ejected with
about 566 km/s and this could be considered the second CME.

At t = 0.042 (Fig.3, left) gravitational instabilities appear again. On the feet of
the old prominences, the matter is upward moved: as result a new CME consisting
from the leg’s material, appears again, but more impulsively. The velocity attain 715
km/s this time. From now, and continuing with the legs’ elongation at t = 0.043
(Fig.3, right), to t = 0.053 (Fig.4) the matter is expulsed en raffales. This could be
considered as the third CME.

The process of loop reforming replies at t = 0.077 (Fig.5, left). During this time,
after each CME, the temperature in the sheet increased very much and attains now
106K, so we have a hot coronal loop. At t = 0.081 (Fig.5, right) we assist at a new

magnetic reconnection, when the field lines open and a neutral O point from below
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Figure 2: Left: t=0.036; Right:t=0.040

Figure 3: Left: t=0.042; Right:t=0.043

the bubble of plasma which elongated to start in a new CME. This new CME produce
at t = 0.085 (Fig.6, left), but with low velocity (243 km/s). The temperature of the
ejected bubble reaches 2×106 K. After this CME, a coronal helmet streamer installed,
at t = 0.096 (Fig.6,right), with a temperature of 9 × 105 K at base and 1 × 106 K at
top.

The first CME produced after 17.9 h after start of the simulated process, where
the prominence formed in about 15 h. The second CME appeared after 23.2 h. New
mass collected in the sheet and a hot loop reformed. The lateral material pushing has
determined gravitational instabilities and new CMEs produced, at 24.36 h and 49.3
h. After 6.3 h from the last CME, the structure evolved in a helmet streamer con-
figuration, which had its proper dynamics that our simulation follow till the streamer
dissolution.

The regime of the velocities is displayed in Figure 7. The dot curve shows the
modules of the velocities on the bottom of the computational grid, the doted curve
represents the velocities at the middle of the grid and the solid one represents the top



50 C. Dumitrache

Figure 4: Left: t=0.047; Right:t=0.053

Figure 5: Left: t=0.077; Right:t=0.081

velocities, all of them considered on the symmetry axis.

The top-left side windows displays the modules of the velocities on all the compu-
tational grid. The axis with values from 0 to 15 represents moments of time (sixteen
values). The top of the histograms are shaded at the CMEs start moments; also the
correspondant points on the curves are shaded too. The solid curve with circle (cor-
responding to the top of the computational grid) is the most relevant for the velocity
evolution during the ”raffales”. It seems the firsts two CMEs are impulsive ones, but
the lasts are only a remanent process with slow movements of the matter.

4 Conclusions

Our simulation reveals a phenomenon reminding that observed by SOHO on 27 March
2001, the so-called ”cannibal coronal mass ejections”. In our simulation, a prominence
structure, formed in a current sheet, evolved in CME disruptions ”en raffales”.



MHD Simulation 51

Figure 6: Left: t=0.085; Right:t=0.096

These transient phenomena ”en rafalle” are expression of the small-scale reconnec-
tions in the current sheet. The reconnections produced between two open field lines
from both sides of a streamer current sheet and created a new closed field line (which
becomes part of the helmet with a prominence at the base) and a disconnected field
line, which moves outward. The CMEs are formed by plasma collected in the sheet
that is swept up in the trough of the outward-moving field line.

In this numerical experiment the first CMEs are impulsive, but the last ones moves
slow, proving that the energy storage was exhausted and the sheet will accomplish a
new equilibrium state. This new equilibrium permits that a new solar feature forms on
this site: a new stage of evolution concerning in a coronal streamer. We account that
the new feature is possible to form in our simulated case, with two shoks ”raffales” and
two slow CMEs later, and not in the ”cannibal” case, where all the matter and energy
is probable exhausted. On the other hand, the slowness is probable do to the second
and third CMEs which consist in the legs of a loop or in the matter from lateral side
of the sheet.

The streamer evolution will be treat in another paper.
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Figure 7: Velocity evolution during all process (see text exolanations).
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Abstract

The solar atmosphere offers a unique possibility to study tuubulent motions under
conditions presently unattainable in laboratory experiment or even numerical simula-
tions. This short review will focus on one controversial issue in turbulence theory, on
which some light can be shed by solar observations: anomalous turbulent diffusion.
Keywords: Sun: interior, MHD, Sun: rotation

1 Introduction: Random walk and diffusion on

the solar surface

Granular and supergranular flows on the solar surface lead to a random motion of
tracers, the most important of which are magnetic flux tubes. A simple random walk
of stepsize ∆x and timestep ∆t over a plane is known to lead to an increase of the
rms separation r of a tracer from its starting point (or of two tracers from each other)
according to the law

r2 = 4Dt (1)

where D = ∆x2/2∆t. The time development of a continuous distribution of tracers is
then described by a diffusion equation with diffusivity D.

As a first approximation, the advection of tracers by (super)granules may be rep-
resented by such a simple random walk/diffusion, identifying ∆x with the spatial scale
l of the cells and ∆t with their lifetime τ .
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This is the approach used in Babcock–Leighton-type models of the solar cycle
where poloidal fields are brought to the surface in a concentrated form in active re-
gions, and thereafter they are passively transported to the poles by transport processes
(diffusion and meridional circulation). The diffusivity in these models is a free parame-
ter: a best fit to the observations yields D = 600 km2/s. Despite the vectorial character
of the magnetic field, these 1D models have been remarkably successful in reproducing
the observed temporal evolution of the flux distribution. A possible explanation was
proposed in their model by Wang et al. (1991): they assume that field lines are verti-
cally oriented throughout much of the convective zone and this essentially reduces the
problem to one dimension. Some support for this conjecture has come from the 2D
flux transport models of Petrovay & Szakály (1999). Thus, in a first approximation,
1D models may be used for the description of meridional transport, as these fields
pervade the convective zone and are continuously reprocessed through it.

The empirically determined value of the diffusivity, 600 km2/s, seems to agree with
the primitive random walk model if the steps are identified with granular sizes/lifetimes.
Supergranulation, however, should lead to a diffusivity that is by an order of magni-
tude higher than this calibration. The continuous reprocessing of large-scale fields
throughout the convective zone offers a plausible explanation for this inconsistency:
the empirical value of the diffusivity reflects the turbulent diffusivity in the lower con-
vective zone where the pressure scale height is ∼50 Mm and the turnover time ∼1
month.

An alternative explanation was put forward by Ruzmaikin & Molchanov (1997)
who pointed out that, owing to the cellular nature of photospheric flows, identifying
cell size l and lifetime τ with random walk steps is an oversimplification. The fact that
a tracer cannot leave a cell during the cell’s lifetime, even if it was originally placed
next to its border, reduces the effective stepsize significantly. The resulting reduction
in D is very sensitive to the value of the Strouhal number St = τv/l and is especially
strong for St ≫ 1. This effect may be sufficient to reduce supergranular diffusivity to
the observed value.

2 Anomalous diffusion

The cellular and turbulent nature of the flow implies that a simple random walk
cannot account for the motion of magnetic elements. As a consequence, the actual
flux redistribution may differ from a simple (Fickian) diffusion process (Isichenko,
1992) and, instead of equation (1) in general one has

r = 2Ktζ . (2)

If ζ 6= 1/2 it is customary to speak of anomalous or non-Fickian diffusion, ζ > 1/2
corresponding to superdiffusion, ζ < 1/2 to subdiffusion. As equation (2) means a
unique relation between r and t one might formally still write r = 2K′(r)t1/2, leading
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to the concept of a “scale-dependent diffusivity”

D(r) = K′2 = K1/ζr2−1/ζ (3)

It is, however, clear that such a concept is in general useless for the description of the
evolution of a continuous field where no preferred scale exists. Anomalous diffusion
thus cannot be described by a diffusion equation or, indeed, by any partial differential
equation.

How can anomalous diffusion come about? One possibility was suggested by Schri-
jver & Martin (1990). Magnetic flux tubes are located at junctions of a fractal lattice
between supergranules, mesogranules and granules. Assuming that limitations exist
for the motion of individual flux elements along this lattice, for certain lattice prop-
erties subdiffusion may result. They made an attempt to detect subdiffusion by the
analysis of observed flux redistribution in the photosphere; however, ζ was not found
to differ from 0.5 within the observational uncertanties.

Being a multiscale phenomenon, turbulence can also naturally lead to a “scale-
dependent diffusivity”. In order to understand the nature of the diffusion process in a
turbulent medium let us consider the question how a random continuous velocity field
of a given characteristic scale λ (i.e. one level in the turbulent hierarchy) can be best
represented by a random walk with steps ∆x and ∆t. For the best representation one
should set ∆t = τL, the Lagrangian correlation time of the flow, as this is just the
time after which the advected particle experiences a significant change in its velocity.
The distance the particle travels in this time is ∆x = vτL = min(vτE, λ) where τE is
the Eulerian correlation time, λ the correlation length, and v the rms velocity. The
diffusivity for this random walk will thus depend on the Strouhal number St = τEv/λ;
assuming a non-cellular flow

D =



τEv2 if St < 1
λv if St > 1

(4)

In a multiscale flow both τE and v scale with λ:

τE ∼ λz v2
∼ λα−1 (5)

During the random walk, motions on scales exceeding the separation r of two tracers
do not contribute to their further separation while all other scales contribute to it. Of
these scales, according to equation (3), the smallest one will dominate in the diffusion
process for 2 − 1/ζ < 1 i.e. ζ < 1/2. In this case, then, the diffusivity will not
significantly depend on the separation for all scales above the viscous scale: turbulence
can never lead to subdiffusion.

In the case when the relatively largest scale λ ∼ r dominates, for given values of z
and α the anomalous diffusion exponent ζ can be determined by substituting (5) into
(4) and equating the resulting scaling exponent of D to 2 − 1/ζ, as given by (3). The
Strouhal number scales as St ∼ λz+α/2−3/2. For high Reynolds numbers, then, the
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Figure 1: Regimes of anomalous diffusion on the α–z plane. K is the Kolmogorov

point; the shaded area indicates the approximate position of the photospheric flow field

in the 1–30 Mm size range. (Non-cellular case)

sign of (St − 1) at the larger scales depends on the sign of the scaling exponent of St,
i.e. the line

2z + α − 3 = 0 (6)

defines two regimes in the α–z plane (Fig. 1). Above the line, in what is called Region
III (Avellaneda & Majda, 1992), one finds ζ = 2/(3 − α) (except in the case of a
cellular flow when ζ = 1/z —cf. the discussion at the end of Sect. 4.1). This Region
is clearly superdiffusive for all values of α > −1 (or z < 2). Below the line, in Region
II we have ζ = 1/(3− z − α), independent of cellularity, as here we have low Strouhal
numbers at the large scales. It is then clear that a second dividing line will also exist
at

z + α = 1 (7)

as below that line (Region I) ζ < 1/2 would result, in which case, as we have seen,
the smallest scales dominate the diffusion process. Region I is thus characterized by a
Fickian diffusion, while Region II is again superdiffusive. Point K in Figure 1 denotes
the case of a Kolmogorov spectrum, α = 5/3, z = 2/3, ζ = 3/2.
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3 Observational constraints on anomalous diffu-

sion in the Sun

In order to determine the place of photospheric velocity fields on the α–z diagram,
Ruzmaikin et al. (1996) fitted power laws to the spatio-temporal power spectra of
photospheric velocity fields with the result α ∼ 1.5–1.8, z ∼ 0.15–0.85. This would
localize solar turbulence to the neighbourhood of the Kolmogorov point K. However,
in Section 2.2.1 above we already stressed the perils of power-law fits to power spectra
of solar velocity fields. There is simply no theoretical reason or observational evidence
to suggest that these fields should follow a power-law spectrum from supergranular
scales down to the resolution limit. Indeed, the well known fact that meso- and
supergranular motions have a lower velocity amplitude than granulation, tells us that
α < 1 in the regime λ > 1Mm! Using observational estimates for these velocity
amplitudes and for correlation times one arrives at much more robust limits that are
in plain contradiction to the ones quoted above: α ∼ 0.0–0.7, z ∼ 0.9–1.8, leading to
ζ ∼ 0.48–1.2. These limits in themselves would indicate superdiffusion (shaded area
in Fig. 1).

Turbulent erosion models of sunspot decay can also be used to constrain anoma-
lous diffusion in the photosphere (Petrovay, 1998). The size of sunspots spans the
granular-supergranular size range that is of interest in this respect, and the fortuitous
property of the erosion models that they do show a characteristic scale, the radius
of the spontaneously formed current sheet, makes it possible to test for ζ by using
a scale-dependent diffusion coefficient with the current sheet radius as defining scale.
In this way, ζ is found to lie in the range 0.44–0.59, i.e. any deviation from a Fick-
ian diffusion seems to be modest, if present at all. A possible explanation for why
the diffusion exponent is lower than suggested by velocity power spectra may be that
superdiffusion due to turbulence is offset by subdiffusion effects due to diffusion on a
bond lattice.

Acknowledgement

This work was supported in part by the OTKA under grant no. T043741 and by
the European Commission through the RTN programme (European Solar Magnetism
Network), contract no. HPRN-CT-2002-00313.

References

Avellaneda, M., Majda, A. J. 1992, Phys. Fluids A, 4, 41

Isichenko, M. B. 1992, Rev. Mod. Phys., 64, 961



58 K. Petrovay

Petrovay, K. 1998, in E. R. Priest, F. Moreno-Insertis, R. A. Harris (eds.), A crossroads
for european solar and heliospheric physics: recent achievements and future mission
possibilities, ESA, Publ. SP-417, p. 273
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Abstract

In the present communication, we describe a simple model for the observed solar gran-
ulation. The proposed model is a phenomenological one, and describes the dynamics
of granulation as complex changing patterns observed on the Sun’s surface. Based on
some observed facts, we describe the variability of the granules form and the statistics
observed, as a continuous process of ”splitting” each granule in two pieces, in a roughly
constant area ratio. This process is named a dichotomic process, and produces in time,
granules of different forms and dimensions. Simulating such kind of dichotomic ”frag-
mentation” of the granules, starting with a given initial distribution, we can obtain
the distribution of the granules area at a given moment of time that can be compared
with the observed statistics.
Keywords: Solar granulation, dihotomic model, fractal interpretation

1 Introduction

Solar granulation is a common feature observed inspecting the Sun surface. Its mo-
saic, grainy structure is easy to observe in images obtained with a high resolution.
The origin of granulation is complex but mainly is due to the convection of the fluids
from the depth to the vicinity of the observed surface of the Sun. Many aspects con-
tribute to the feature observed: the temperature gradients in the convection zone, the
(differential) rotation of the Sun, the magnetic field from the vicinity, the composition
of the fluids (plasmas) and the mixing processes, and so on.

Extremely complex simulations of magneto-hydrodynamics near the Sun surface
to describe the convection and to understand the granulation are far to be satisfying
(Berger & Scharmer , 1999).
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In the present communication, we describe a much simpler version of a model for
the observed granulation.

The proposed model is a phenomenological one, and describes the dynamics of
granulation as complex changing patterns observed on the Sun’s surface. Based on
some observed facts, we describe the variability of the granules form and the statistics
observed, as a continuous process of ”splitting” each granule in two pieces, in a roughly
constant area ratio. Various hypotheses for the fragmentation mechanisms and a given
initial distribution can be used, in order to choose the best one. We will show that
such a simple model can reasonable describe some of the observed facts, giving some
hints for understanding solar granulation.

Convection is the dominant mechanism of energy transport in the envelopes of the
Sun. The flow in the free convection is driven by buoyancy forces, which are induced
by a temperature gradient between the lower and upper boundaries of the plasma in
a gravitational field. The convection zone is an extremely dynamic layer form of the
Sun, that shows itself in high resolution images, as a collection of relatively small,
variable form, patches named granules (Fig.1), one division equal 1000 km). At the
centers of granules hot solar gas rises and radiates its heat rapidly into space; the gas
is then diverted horizontally, and sinks back into the Sun in the darker intergranular
lanes. The sizes of the granules range from approximately 250 km (the limit set by the
telescope and the Earth’s atmosphere) to more than 2000 km with an average diameter
of 1300 km. Lifetimes of granules typically range from 8 to 15 minutes. Horizontal
and vertical velocities of the gas motion are 1 to 2 km/s.

Figure 1: A picture of solar granules
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Figure 2: Luminosity profiles on negative images of the surface

Examples of such convection pattern in gravitational field can be observed also on
Earth, for example in huge fire in the forests.

It is possible to try to describe as precise as it is possible, the dynamics of the
fluid circulation in the convection zone, but the huge amount of data needed, and the
complexity of equations and conditions are formidable. At least, simulations of this
dynamics can be done with limited accuracy, and the results are promising (Brummel
et al , 1995), giving us a much confident image of the convection. The result obtained
from simulation could be described as a ”forest” of jets of fluids that comes from inside
and ends at the surface, cooling the fluid, which after is sinking back in the depth of
Sun.

2 The model

2.1 The morphology of granules

The variation in luminosity and the form of the end part of the columns (the granule)
shows variation in space and time, and defines (in a loosely speaking way) the bound-
aries of granules. Our computer image analysis of granule luminosity could be seen in
figure 2 (luminosity profiles on negative images of the surface). From this analysis we
can conclude that a very sharp and well defined boundary of a granule is difficult to
find. However, having high-resolution images it is possible to describe some statistical
characteristics of the granules.

Very high-resolution pictures (0”.25 - Pic du Midi Observatory) used for analyzing
solar granulation using computer-processed images found that the distribution of the
number of granules increases continuously towards smaller scales. This means that the
solar granulation has no characteristic or mean scale. Nevertheless, the granules appear
to have a critical scale of 1”.37, at which dramatic changes in properties of granules
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occur; in particular, the fractal dimension changes at the critical scale (Roudier et al ,
1991).

2.2 Fractal analysis of solar granulation

The study of turbulent phenomena has been a demanding task in astrophysics. The
photosphere of the Sun is one of the few places in astrophysics where turbulent motion
could be, in principle, observed directly. The high spatial resolution, which can now be
attained, and the development of new ways to describe and analyze chaotic systems,
i.e. the concept of fractals changed our possibilities, today.

We made fractal analysis of some images in order determine the fractal dimension
(D) of the granulation filed (Munteanu et al , 1994). The method used was the box-
counting one. Determination of the fractal dimensions of the solar granules, using
luminosity analysis has some difficulties because of the uncertainties of the granules
boundaries. The results of our work reveal that there are variations of the fractal
dimension, if we analyze pictures of granules in regions in which exists sunspots, (D
= 1.37) or pictures in regions without such features (D = 1.81). The same, large
distribution of fractal dimension for granulation was obtained by Brundt et. al (Brundt
et al , 1991), but without a correlation to the regions on the Sun.

2.3 Granule statistics

Being interested in the granule structure and their geometry and dynamics, we focused
on the image analysis and recognition of patterns, and on the statistics of the gran-
ules population. We used images obtained by The Swedish Solar Vacuum Telescope.
Almost all the conclusions described here were drawn using this source.

For the statistics of inter granular distances, we made extensive measurements on a
large surface of the Sun. Radial distribution function (number of granules versus inter
granular distance) was computed from the list of all distances found on the image,
measured and processed using a special design computer code. The ”position” of a
granule used for computing the distances, was defined using different algorithms: the
geometrical mean of the roughly ellipsoidal granules, the point of highest luminosity
inside the granule boundary, or a simple visual center of the granule. The results
obtained for the distribution are practically the same for all methods of finding the
position of the granules.

The whole investigated region was divided in 10 rectangular fields, and the radial
distribution function of the inter granular distances was computed. The results are
presented in figure 3, for nine regions. A striking and unexpected result appeared,
without exception: all the distributions show asymmetry. The distribution suggested
that a deconvolution of the asymmetric distributions in two symmetric Gaussians
could be possible. Figure 4 shows the experimental points (dots), the two Gaussian
distributions (green line) and the reconstructed - convoluted distribution (red line).
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It is without doubt that the deconvolution works well. If this deconvolution has any
physical meaning is another question.

Analyzing the parameters of the Gaussian distributions, it was also evident that
the positions of the two maxima are correlated in each investigated region. Such a
correlation could be seen in figure . The chart of the region studied is also presented
here. The two groups of distributions have distinct average distances between granules.
We denoted ”line 1” and ”line 2” the two distinct distribution found in each region.
We can consider that the analysis reveals two distinct ”populations” of granules.

Results and conclusions:

The slope of graphs: position of line 1 versus position of line 2 is 1.64 considering
all the points (the red line),

The line of slope 2 is shown for comparison (the black line),

The points 1, 2, 3, 5, and 7 are from regions free of sun spots;

The points 6, 8, and 9 are from regions near sunspots; they are the most distant
points from the best fit line,

Part of the dispersion of the fitted parameters of the deconvolution could be at-
tributed to the difficulties of assessing the center of the granule from the images.

The whole trend suggests that the two populations could be a result of a splitting
mechanism applied to the ”mature” granules, that suddenly reduces approximately to
half the average distances between granules. This is a statistical inference which we
can explain simply using a phenomenological model.

2.4 The dihotomic model

We tried a phenomenological model, namely a dihotomic model. We consider the
following scenario:

The grains are in continuous change of form and size. There are moments when
grain splits in two smaller grains. The population statistics at one moment contains in
fact at least two different populations. The distribution shows after several generations
of splitting process an increases of the diversity of grains size.

New grains are added to the distribution, and the small ones disappear. The
result is a statistically stable structure of two distinct populations of grains. A simple
example of a dihotomic fragmentation and self-similarity could be used as a model
for the dynamics of the two populations in equilibrium. The main hypothesises are:
constant ratio of division, K, and a conservation of the initial area (or other measure,
denoted here by V) at the moment of division. These two hypothesises could be written
as:

V0 = V1 + V2 ; K =
V2

V1

To summarize the results, after one division, the parts are:
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Figure 3: The computed radial distribution function of the inter granular distances
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Figure 4: Representation of experimental points, Gaussian distribution and

reconstructed-convoluted distribution

V1 =
V0

1 + K
; VK =

V0K

1 + K

After n-divisions (generations) the size of p-fragment has:

Vp;n,K = V0
Kp

(1 + K)n
, p = 0, 1, 2, 3, ..., n

The lowest size are: Vmin = V0

(1+K)n The largest size are: Vmax = V0K

(1+K)n The

difference and ratio are: d = Vmax − Vmin = V0
Kn

−1
(1+K)n and r = Vmax

Vmin

= Kn; The

mean values are: V̄ = V0

2n and N̄ = 2n

Figure 5 shows the distribution after N = 11 generations, with a fragmentation
ratio K = 1.6

We can make this process more “realistic” if we add a noise in the fragmentation
ratio: K = K0 + Knoise(t) , that can be used in computation. The result of such a
noise, is a spreading (and smoothing) of the distribution groups (Fig.6).

If the time between generation, splitting and disappearance of the grains is short,
just two generations could be seen in the distribution, and the distribution is “smoothed”
by the random size of generated grain, and of the moment of splitting. In addition,
this could account for the limitation of the maximum size of a grain, explained by this
mechanism of splitting. The moment of splitting is probable triggered in the column
of the convection tube, by some instability in the flow.
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Figure 5: Distribution after N=11 generations

Figure 6: Distribution groups

2.5 The dynamics of granules evolution

In order to see if this mechanism could be real, we examined the movie pictures
of the granulation dynamics. The series of the images was observed with a fast
frame selection system on June 5, 1993, at the SVST (La Palma) in cooperation
with G. Scharmer (Stockholm) and G. W. Simon (Sunspot); N. Hoekzema (Utrecht),
W. Mhlmann (Graz), and R. Shine (Palo Alto) were involved in the data analysis.
Technical data: wavelength 468 ± 5 nm; exposure time 0.014 s; rms contrast (uncor-
rected) between 7 and 10.6 %. The images were registered, destretched, corrected for
the telescope’s point spread function, and sub sonically filtered after interpolation to
equal time steps. For each frame, both area and total time are indicated.

A sequence of these time-lapse series of the evolution of the solar granulation is
represented in figure 7. Qualitatively (this analyze is at the moment under computa-
tion, using a special code for pattern recognition and granule characteristic extraction)
the above phenomenological model seems to be correct.
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3 Conclusions

The fractal structure of the granulation field suggests some self-similar mechanism
that acts in the dynamics of the convection.

The simple model of dihotomic self-similar fragmentation could reasonable ex-
plain the presence of the two distinct populations observed in the statistics of radial
distribution of distances between granules The dynamics of fragmentation, which is
revealed in the motion pictures of the Sun’s surface, qualitatively confirms the idea of
continuously dihotomic fragmentation of large granules.

This model gives a simple phenomenological mechanism that could describe the
facts found in the statistics of granules and gives us a hint about the phenomena
inside the convection zone. We can make the hypothesis that the convection tube in
his upward moving can exhibit instabilities that split the tube, most probable in two
adjacent tubes, and a hierarchy of splitting could follow this process.

The assemble of the tubes will exhibit self-similarities revealed in the measured
fractal dimension.
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Figure 7: Movie pictures of the granulation dynamics
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Abstract

Nonlinearity is a direct consequence of large scale dynamics in the solar atmosphere.
Here, the nonlinear steepening of waves balanced by dispersion generates solitary
waves. Nonlinear waves can also appear in the vicinity of resonances, influencing
the efficiency of energy deposition. Here we review recent theoretical breakthroughs
that have lead to a greater understanding of many aspects of nonlinear waves arising
in homogeneous and inhomogeneous solar plasmas.
Keywords: Sun: waves, MHD, Sun: wave heating

1 Introduction

One of the most interesting processes in solar and astrophysical plasmas is the com-
plicated interaction of plasma motions with magnetic fields. These media are highly
non-uniform and as a consequence are a natural environment for magnetohydrody-
namic (MHD) waves. Waves can transport energy and momentum. When part of
their energy or momentum is transferred to the plasma they can heat and acceler-
ate the plasma (e.g. resonant absorption). Waves can carry information about the
medium in which they propagate, therefore they can provide a unique tool for plasma
diagnostics.

In the present contribution we review two important nonlinear waves arising in
inhomogeneous solar plasmas. Firstly, solitary waves arising in structured plasmas
(i.e. waveguides) are discussed in different structures and for different dispersions.
Secondly, nonlinear waves generated in the vicinity of resonant positions (slow reso-
nance) are revisited and we show how nonlinearity will influence the efficiency of heat
deposition.
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2 Nonlinear waves in waveguides

One of the basic properties of solar plasma is that is structured, the magnetic field is
not distributed smoothly over the surface of the Sun, but it tends to accumulate in
entities called magnetic loops, the building blocks of the solar corona. These structures
can support, e.g. longitudinal wave propagation over long distances. The effect of the
structuring is that it introduces dispersion, i.e. a modification in the propagation
characteristic of the wave.

Solitons are finite-amplitude waves of permanent shape which owe their existence
to the balance between nonlinear wave-steepening and wave dispersion. Nonlinearity
appears for waves of finite amplitude and generally is a consequence of large scale
dynamics. Dispersion could arise due to two different effects. Geometrical dispersion
appears for waves propagating in a magnetic guide (flux tube or sheet). This dispersion
does not depend on the reaction of the external media and its value is defined by
the geometrical scale of the duct (the tube diameter or the thickness of the sheet).
Alternatively, waves in open ducts could have dispersion due to the reaction of the
external media. It is not always simple to separate these two sources of dispersion in
spite of their different behavior. Furthemore, physical dispersion appears due to plasma
(magnetic) effects (generalized Ohm’s law or Finite Larmor Radius (FLR) effects). In
general, these two dispersive effects give rise to different dispersive behavior but they
have the same result: creation of a new length scale in addition to the natural length
scale of the waves, i.e. their wavelength.

Guided waves in solar and space plasmas are investigated in two cases: magnetic
slab (Cartesian geometry) and magnetic tube (cylindrical geometry). The dynamics
of solitary waves are best described in the so-called thin flux tube approximation. For
a motion v(z, t) along a tube (slab or cylinder) of cross-sectional area A(z, t), the one-
dimensional equations of continuity, longitudinal momentum, isentropic energy and
flux conservation are

∂

∂t
(ρA) +

∂

∂z
ρvA = 0,

∂v

∂t
+ v

∂v

∂z
= −

1

ρ

∂p

∂z
,

∂

∂t

„

p

ργ

«

+ v
∂

∂z

„

p

ργ

«

= 0, BA = const,

where the quantities p(z, t), ρ(z, t), B(z, t) and v(z, t) are supposed uniform across the
tube.

In a magnetic slab of width 2a with the magnetic field along the structure, the
dispersion relation of slow sausage modes with their wavelength (k−1) much larger
than the width of the slab is (Roberts, 1981)

ω/k = cT − α1|k|, α1 =
1

2

ρe

ρe

„

cT

vA

«3

acT , (1)
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where cT is the tube speed (the propagation speed of slow magnetoacoustic waves in
an unbounded medium). The α1|k| term in Eq. (1) arises due to dispersion and in
the long wavelength limit is a small quantity. If the amplitude of slow waves becomes
large enough, the nonlinear evolution of these waves is described by the Benjamin-Ono
(BO) equation written for the z-component of the velocity perturbation (Roberts &
Mangeney, 1982; Edwin & Roberts, 1986; Ballai et al., 2002)

∂v

∂t
+ cT

∂v

∂z
+ βv

∂v

∂z
+

α1

π

∂2

∂z2

Z

v(z′, t)

z′ − z
dz′ = 0, (2)

where β is a coefficient which depends on the characteristic speeds (sound, Alfvén and
cusp speeds). The single-soliton solution of this equation is the algebraic soliton,

v(z, t) =
A

1 + [(z − st)/L]2
, (3)

where A is the velocity amplitude of the soliton, s and L are the speed and scale of
the soliton related by

s = cT +
βA

4
, L =

4α1

Lβ
. (4)

In a magnetic cylinder with radius R, the dispersion relation of slow surface sausage
modes in the long wavelength limit is

ω/k = cT − α2k
2K0(|k|λ), (5)

where K0(x) is the modified Bessel function of the zeroth-order. The quantities α2

and λ depend on characteristic speeds and the radius of the tube and λ2 can be
both negative or positive quantity. If these waves steepen into nonlinear waves, their
evolution is described by the Leibovich-Roberts (LR) equation (Roberts, 1985),

∂v

∂t
+ cT

∂v

∂z
+ βv

∂v

∂z
+

α2

π

∂3

∂z3

Z ∞

−∞

v(z′, t)dz′

[λ2 + (z′ − z)2]1/2
= 0. (6)

Although this equation was derived 20 years ago, there is no known analytical so-
lution, however, numerical investigations showed that it has a solitary-like solution
(Weisshar, 1989). If the propagation speed of the slow waves inside and outside the
tube are approaching each other, the LR equation reduces to a nonlinear wave equation
without dispersion which describes shock waves with zero-width. If the internal cusp
speed approaches either the external sound or Alfvén speed (supposing a magnetized
environment), the LR equation reduces to the Leibovich equation describing nonlinear
waves on a cylindrical vortex core. The LR equation is valid provided λ2 > 0. If
λ2 < 0, then slow leaky sausage modes will propagate in the tube draining energy
away from the structure. In this case, the LR equation can be modified to describe
slow leaky sausage modes as (Ballai & Zhughzda, 2002)

∂v

∂t
+ cT

∂v

∂z
+ βv

∂v

∂z
+ α1

∂3

∂z3

"

Z −|λ|+z

−∞

+

Z ∞

|λ|+z

v(s, t) ds
p

λ2 + (z − s)2

#

= 0. (7)



76 I. Ballai

One of the limitations of these equations is that the solitary wave solution appears
only up to some critical amplitude. This amplitude threshold appears because the
dispersion relation has a maximum, i.e the maximum value of the dispersion is not
enough to smooth out the front of the waves if the amplitude of the waves exceeds
a critical threshold value. Thus, the (LR) equation describes the nonlinear behavior
of weakly nonlinear slow sausage modes whose phase velocity in the linear limit has
an extremum. For solitons with negative dispersion this limitation does not occur,
instead they are subject to an aperiodic instability.

There is one aspect which so far has been neglected, and this is related to the
dissipative character of the plasma. In fact, the right choice for a dissipative mechanism
depends on the location where physical processes are to be studied and also on the
physical mechanism itself. For instance, Ohmic dissipation of wave propagation in
the solar corona does not result in significant damping (unlike viscosity or thermal
conduction) but this dissipative effect must be taken into account when studying
effects which require small length scales, e.g. coronal heating.

When dissipation is taken into account, solitary waves will exhibit a slow damp-
ing, which means that the energy and momentum of solitary waves are not conserved
quantities any longer. The most important dissipative mechanisms are viscosity, ther-
mal and electrical conduction and radiation. If we take into account the first three
mechanisms, the solitary wave equations must be supplemented by an extra term
proportional to ∂2v/∂z2 which results in an algebraic decay of the soliton. If radia-
tion is considered, the nonlinear equations will have an extra term proportional to v
which leads to a slow exponential decay of the solution. Illustrations of when these
dissipative terms are added to a nonlinear evolutionary equation are the Leibovich-
Roberts-Burgers or the Korteweg-de Vries-Burgers equation.

Dispersion can arise not only due to a geometrical structuring, but also due to the
presence of the magnetic field, through, e.g. the Hall term in the generalised Ohm’s
law. Strictly speaking, Hall MHD is relevant to plasma dynamics occurring on length
scales shorter than the ion inertial length, c/ωi, where c is the speed of light and ωi

is the ion plasma frequency. Inclusion of the Hall term in the magnetohydrodynamic
induction equation is known to affect the polarization of waves because it includes the
dispersion of Alfvén waves near the ion cyclotron frequency.

The nonlinear wave evolution in the presence of a Hall effect in a viscous plasma has
been studied in connection to the acceleration of the solar wind. When the nonlinear
steepening of compressional waves is balanced by the broadening of the wavefront
caused by the Hall effect, we obtain that the dynamics of solitary waves propagating
in a super-radial magnetic field is described by the Korteweg-de Vries-Burgers (KdV-
B) equation

∂v

∂t
+ cf

∂v

∂z
+ α1v

∂v

∂z
− α2

∂3v

∂z3
− α3

∂2v

∂z2
= 0, (8)

where cf is the phase speed of linear waves and the coefficients αi depend on char-
acteristic speeds and the angle of propagation with respect to the magnetic field.
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Choosing a nearly-parallel propagation, we obtain that solitons arising from the non-
linear steepening of compressional slow waves are able to accelerate the plasma, while
solitons which are generated by the nonlinear steepening of fast waves will decelerate
the plasma. The speed at which the solar wind is accelerated by means of solitons
agrees very well with the observed speeds by UVCS-SOHO at 1.3R⊙.

Solitary waves have unique properties which make them special for mathematics
and their applications to other fields: (i) Integrability: Before the discovery of solitons,
mathematicians were under the impression that nonlinear PDEs could not be solved,
at least analytically. However, solitons showed us that it is possible to solve PDEs (at
least the solitary wave equations) exactly, which gives us a tremendous ”window” into
what is possible in nonlinearity. (ii) Nonlinear superposition: In linear theory, there
is a simple way to generate a new solution from known ones, just by multiplying them
with a scalar and adding them together. This is known as superposition. Before the
discovery of solitons, there was no analogue of this construction for nonlinear equations,
but the way that a 2-soliton solution can be viewed as a combination, although not
a simple linear combination, of two 1-soliton solution leads us to the recognition that
(at least for solitons) there is a nonlinear superposition principle, as well. (iii) The
particle-like behaviour of solitons leads to a large number of applications. This is
true to some extent: there are soliton models for nuclei and the technique known as
bosonization allows us to view fermions as being solitons in appropriate situations.
Recently, the transport of energy and information along DNA chains was described
by the so-called Davydov-solitons. Solitons have also a series of other applications
in fields like oceanography, fiber optics, telecommunications and geophysics. Solitary
waves carry a large amount of energy, therefore if they are dissipated over short length
scales they could provide, e.g. the energy required to heat the coronal plasma (resonant
solitary waves).

3 Nonlinear resonant waves

Resonances are ubiquitous every time MHD (magnetohydrodynamic) waves are driven
in inhomogeneous plasmas. However in weakly dissipative plasmas ( as in the case of
solar plasma) driven MHD waves show nearly resonant behaviour, which deviates from
the resonant behaviour in ideal plasmas only in thin dissipative layers surrounding the
ideal resonant positions.

A very important property of these nearly resonant waves is that their damping rate
is almost independent of the values of dissipative coefficients. As a result, the damping
rate of nearly resonant MHD waves can be many orders of magnitudes larger than the
damping rate of MHD waves with the same frequencies in homogeneous plasmas. This
property of resonant waves being strongly damped in weakly dissipative plasmas has
attracted ample attention from plasma physicists since the transferred energy can
be converted into heat (Sakurai et al., 1991; Ruderman et al., 1997a; Ballai et al.,
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1998a) or it might give valuable information about the density of the plasma and the
characteristic scale of inhomogeneity.

Resonant absorption can be considered as an effective process of generating small
length scales comparable to the dissipation length scales. The local oscillation modes
of an inhomogeneous plasma are represented by continuous spectra for slow MHD and
Alfvén waves and a discrete spectrum for fast MHD waves. The resonant absorption
occurs when the frequency of a laterally driven oscillation matches the local slow
and/or Alfvén wave frequency and a resonant field line is created which transfers
energy from the surface disturbance to its environment.

Usually, the importance of the dissipation is characterized by the viscous and
magnetic Reynolds numbers (if viscosity and magnetic diffusion are considered as
dissipative effects) and we denote by R the total Reynolds number which under solar
conditions is a very large number (106 in the photosphere and up to 1012 in the corona).

Linear theory of resonant absorption has shown that in the vicinity of a resonant
position the perturbations have steep gradients and large amplitudes and therefore the
linear theory in this region can break down and nonlinear theory has to be considered.
Nonlinearity in the dissipative layer was first taken into account in the theory of
resonant absorption by Ruderman et al. (1997a) and Ballai et al. (1998a) where they
studied the nonlinear evolution of slow resonant MHD waves in the isotropic and
anisotropic dissipative layer using a Cartesian geometry. These theories were applied
to study the resonant absorption of sound and fast magneto-acoustic waves in solar
structures (Ruderman et al., 1997b; Ballai et al., 1998b; Erdélyi & Ballai, 1999). One
of their main results was that in contrast to the linear theory, the coefficient of wave
energy absorption was dependent on the particular type of dissipation. They have also
found that the general tendency of nonlinearity is to decrease the absolute value of
the coefficient of wave energy absorption when the wavelength of the incoming wave
is much larger than the characteristic scale of the inhomogeneity and nonlinearity is
considered weak.

Characteristic quantities used to scale the problem are ǫ (the dimensionless ampli-
tude of perturbations away from the dissipative layer) and the total Reynolds number.
One way to determine the importance of nonlinerarity is to calculate the ratio

δ = f
∂f

∂θ
/ν

∂2f

∂x2
= ǫR2/3, (9)

where f is any large variable, i.e. the most singular perturbations (e.g. for slow wave
resonance, the most singular are the parallel component of the velocity and magnetic
field perturbation). Linear theory works as long as δ ≪ 1, i.e. ǫR2/3 ≪ 1. For a
typical value of ǫ ≈ 10−2 to have resonant absorption described by linear theory, we
need R ≪ 103 which is in contrast to previously accepted values. Based on these
scalings, it is obvious that resonant absorption is a nonlinear phenomenon.

In nonlinear theories perturbations cannot be Fourier analysed. However, to be
as close as possible to the linear results, we suppose that waves are plane periodic
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propagating modes with permanent shape, i.e. all perturbations depend only on θ =
z − V t so they are periodic with respect to θ.

Outside the dissipative layer, the plasma dynamics can be described by the linear
ideal MHD system of equations which can be reduced to two coupled first order PDE

∂u

∂x
=

V

D

∂P

∂θ
,

∂P

∂x
=

ρ0DA

V

∂u

∂θ
, (10)

where

D =
ρ0DADC

V 4 − V 2(v2
A + c2

S) + v2
Ac2

S cos2 α
,

DA = V 2 − v2
A cos2 α, DC = (v2

A + c2
S)(V 2 − c2

T cos2 α). (11)

In the case of cylindrical tube when the equilibrium magnetic field is such that B0 =
(0, B0ϕ(r),B0z(r)) and the wave-vector now has a helical component, therefore the
running variable is θ = mϕ+kz−ωt. The governing equations outside the dissipative
layer are

D
∂ur

∂r
= C1ur + ωC2r

∂P

∂r
,

ωrD
∂2P

∂r∂θ
= c3ur − ωrC2, (12)

where the coefficient functions are given by
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«–
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«2

+
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A
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0ϕ,

fB =
m

r
B0ϕ + kB0z,

and the coefficients D, DA and DC are similar to the equations given by Eq. (11)
with V replaced by ω.

In the present study we only focus on the slow resonance given by the condition
V 2 = c2

T (x) or ω2 = ω2
C(r). The resonant position (x = xC in Cartesian geometry

and r = rC in cylindrical geometry) is a regular singular point of the system of Eqs.
(11)-(12) and as a consequence, the solutions are obtained in form of Fröbenius series.
The equilibrium quantities have a slight change across the dissipative layer and they
are approximated by the first non-vanishing term in their Taylor expansion. These
expansions are valid in a layer wider than the dissipative layer since the characteristic
scale of the inhomogeneity is larger than the scale of dissipation.

Inside the dissipative layer, the solutions are obtained in form of asymptotic ex-
pansions. In order to connect the solutions in the two regions (inside and outside
the dissipative layer) we use the so-called matched asymptotic expansions developed
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by Nayfeh (1981). Both the internal and external solutions have to coincide in the
overlap regions.

The dynamics of resonant slow waves in the vicinity of the resonance propagating
along the magnetic field is given in cartesian geometry (with isotropic anisotropy) by

(x − xc)
∂v‖
∂θ

+ Φ1v‖
∂v‖
∂θ

+ k
∂2v‖
∂x2

= Φ2P (θ), (13)

and in cylindrical geometry

(r − rc)
∂v‖
∂θ

+ Ψ1v‖
∂v‖
∂θ

+ k
∂2v‖
∂r2

= Ψ2C(θ), (14)

where the function C(θ) is a sum of the θ-derivative of the total pressure and a function
containing the ϕ-component of the magnetic field.

There are two interesting points to be mentioned. The coefficient Φ1 and Ψ1 in
Eqs. (13)-(14) are similar to the coefficient of the nonlinear terms found for solitons
and it provides a measure of nonlinearity in compressional modes. Secondly, in the
coronal case, where all transport coefficients are anisotropic, the nonlinear governing
equation is modified in the dissipative term (the third term in the LHS) and instead
of having a 2nd order derivative with respect to the transversal coordinate, we have a
2nd order derivative with respect to θ. Eqs. (13) and (14) should be understood in
the sense that the nonlinear behaviour of slow waves in the vicinity of the resonance
is driven by the variation of the total pressure.

When solving the MHD equations for the entire domain, the resonances are con-
sidered as singularities, therefore the evolution of physical quantities in the vicinity of
resonances are given as jumps (connection formulae), exactly as the Rankine-Hugeniot
relations for shock waves. The jump in a quantity Q across the dissipative layer can
be calculated with the aid of

[Q] = lim
x→xC

{Q(x) − Q(−x)} .

When connecting the solutions, the jump conditions serve as boundary conditions.
In the case of Cartesian geometry, the jumps in the total pressure and the normal
component of the velocity are given by

[P ] = 0, [u] = Ω1P

Z ∞

−∞

∂v‖
∂θ

dx, (15)

and in cylindrical geometry by

[P ] = Λ1P

Z ∞

−∞

v‖ dr, [u] = Λ2P

Z ∞

−∞

∂v‖
∂θ

dr. (16)

Here P is used for the Cauchy principal part because the integrals are divergent at
infinity.
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When calculating the efficiency of the resonant absorption (coefficient of wave
energy absorption) it is found that the effect of nonlinearity is to decrease the net
coefficient of wave absorption. This means that the largest amount of energy stored
in nonlinear waves does not go into increasing the absorption rate but into generating
a mean flow outside the dissipative layer. This turbulent flow is generated by the
absorption of wave momentum in the dissipative layer and its amplitude is determined
by the balance of forces created by resonant absorption and shear viscosity. The mean
shear flow is a piecewise continuous function of r (e.g. in cylindrical geometry) but its
vorticity has a jump given by

[vϕ = A1

Z ∞

−∞

*

„

∂v‖
∂r

«2
+

dr, [vz] = A2

Z ∞

−∞

*

„

∂v‖
∂r

«2
+

dr, (17)

where the coefficients A1 and A2 depend on characteristic speeds, the location, rC , of
the resonance and the dissipative coefficients and <, > is the mean value of a quantity
over a period. Estimates of this mean shear flow give us speeds of the order of 0.1km/s
in the solar photosphere and a few km/s in the solar corona. Observation of this
flow might be a first indirect evidence for resonant absorption in solar plasmas. The
properties of generated mean turbulent flow are not fully understood and they are an
important topic for further investigations.

The results presented here considered that the equilibrium is static; in reality the
plasma is very dynamic, showing motion on all time and space scales. Including an
equilibrium steady flow, Ballai & Erdélyi (1998c) obtained the governing equations
inside and outside the dissipative layer, as well as the jump conditions across the
singularity.

The model described here considered a simplified atmosphere. Possible further
investigations could be performed for a more realistic equilibrium (e.g. equilibrium
quantities vary not only across the field but also along the field, inclusion of gravity,
etc.). The governing equations were obtained in the limit of weak nonlinearity and
long wavelength approximation. Recently, Ruderman (2000) considered the analysis of
resonantly interacting waves in the limit of strong nonlinearity. He has obtained that
the decreasing tendency of the coefficient of wave energy absorption by nonlinearity
does not persist in this limit for intermediate values of wave vector. In the long
wavelength limit, however, he found that the difference between strong nonlinear and
linear limit does not exceed 20%.
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Ballai, I. & Erdélyi, R. 1998 Sol. Phys., 180, 65
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Abstract

We investigate the effect of stratification by gravity on the propagation of linear mag-
netohydrodynamic (MHD) waves along a magnetic flux tube. For a quiescent environ-
ment linear wave propagation is governed by a Klein-Gordon equation. We consider
the presence of a background flow in the tube and show the response to various atmo-
spheric footpoint drivers. We solve for three drivers corresponding to a monochromatic
source, a delta-function pulse and a sinusoidal pulse. This work is motivated by the
vast amount of recent observational evidence supporting the existence of waves and
flows in solar MHD waveguides.

1 Introduction

The effect of stratification on the propagation of MHD waves is important, especially
in the lower atmosphere. These effects, of course, have been considered previously (e.g
Rae and Roberts, 1982). In this paper we consider take a look at the effect of flows
upon wave propagation in such atmospheres.

Recent observational evidence gives strong support to the long discussed possibility
of flows in the solar atmosphgere. Waves will be influenced and possibly even gener-
ated by their presence. A detailed derivation of steady flow effects on MHD waveguides
can be found e.g. in Terra-Homem, Erdélyi & Ballai (2003). The identification of a
fast wind originating from the polar coronal holes has been established for many years
(e.g., Watanabe, 1975; Gloeckner and Geiss, 1998). Observations from SOHO and
TRACE have indicated the presence of steady flows in the south polar coronal hole
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and the equatorial quiet Sun-region (Buchlin and Hassler, 2000). Bi-flows, associated
with tens of thousands of small scale explosions, have been found in the chromosphere
(e.g., Innes et al., 1997; Perez et al. 1999; Sarro et al., 1999; Teriaca et al. 1999;
Roussev et al. 2001a,b,c, etc.). Background flows have been noted in arched isolated
magnetic flux tubes, steady flows have been observed in slender magnetic flux tubes
and in return flows from spicules. Thus there is a clear need to study the effect of such
flows on the wave characteristics in the solar atmosphere, as flows may influence not
just the dynamic properties of wave propagation, but also wave dissipation (Erdélyi
1996; Erdélyi & Goossens 1996; etc.).

2 Wave Propagation in an Elastic Tube

The Sun’s photospheric region exhibits enormous complexity, being both highly dy-
namic and highly structured, with magnetic structuring over many scales. Further,
stratification due to gravity is important and must be taken into account. The use of
slender flux tube theory (wavelengths much greater than tube width) allows an ana-
lytical description (see Roberts and Webb, 1978). Consider a general slender elastic
tube in a stratified atmosphere (e.g. Rae and Roberts 1982; Erdélyi & Fedun 2004).
The atmosphere is stratified such that

p′

0 = −gρ0(z), (1)

where the prime (′) shows a derivative with respect to the z direction. The gov-
erning equations of the system are given by the linearised equations for continuity,
momentum and energy

∂

∂t
(ρ1A0 + ρ0A1) + (ρ0A0u1)

′ = 0, (2)

ρ0
∂u1

∂t
= −p′ − ρg, (3)

∂p

∂t
+ p′

0u1 = c2
0

„

∂ρ

∂t
+ ρ′

0u1

«

, (4)

where perturbed quantities are functions of z and t and equilibrium quantities are
functions of z only. It is assumed that vertical motions are dominate and thus are
considering sausage modes only.

With the introduction of c(z) (Lighthill, 1978)

1

c2
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1

c2
0

+
ρ0
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„
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«

p1=0

, (5)



Wave Propagation In Stratified 1-D Waveguides 85

then Q(t, z) (a scaled velocity) can be seen to satisfy
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and N2
0 , given by

N2
0 = −g

„
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0

ρ0
+

g

c2
0

«

, (8)

is the square of the Brunt-Väisälä frequency. Notice that (6) is a Klein-Gordon
type differential equation, with all its attendant features (see Rae and Roberts 1982,
Roberts 2004).

2.1 Addition of a Background Flow

We extend the earlier work of Rae and Roberts by the addition of a background
flow inside the tube. A full treatment, with the flow, U0, varying with height, is as
yet unavailable since the problem becomes rapidly intractable. Here we consider the
simpler, but physically less realistic, case of steady flow inside the tube, such that
U ′

0(z) = 0. The addition of the flow modifies the governing equations and following a
similar method, Q(t, z) can be shown to satisfy
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and
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S =
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ρ0R
1

2

"

„
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0ρ1)

«′

+
gU0c

2

c2
0

A0(ρ
′

0A1 + A′

0ρ1)

#

, (11)

and where

D

Dt
=

∂

∂t
+ U0

∂

∂z
. (12)

Equation (9) describes the wave motion in a general elastic tube with the presence
of a steady background flow. It should be noted that Eq. (9) is not of the Klein-Gordon
type and also note the term S, given by (11), is a function of the perturbations ρ1 and
A1. We are seeking a result that is a function of the scaled velocity Q only and thus
to proceed we take S as being negligible.

2.1.1 Basic Formation of Solution

In order to demonstrate some of the features of (9) we consider further simplifications
to a straight (A′

0 = 0) and rigid tube (c = c0). Further, if the gas inside the tube is
considered isothermal (c0 is a constant) then (9) reduces to that describing isothermal
acoustic-gravity waves with a background flow

D2Q

Dt2
− c2

0(z)
∂2Q

∂z2
+ Ω2

a(z)Q = 0, (13)

where

Ω2
a =

c2
0 − U2

0

4Λ2
0

, (14)

where Ω2
a is a modified acoustic cut-off frequency, and Λ0 is the isothermal scale

height, given by Λ0 = p0/ρ0g. If we consider Fourier forms of solution, ei(ωt−kt), we
obtain the following dispersion relation

ω2
D = k2c2

0 + Ω2
a, (15)

where ωD = ω + U0k is the Doppler-shifted frequency.

To solve (13) analytically we consider Laplace transformations in time. Since we
consider an isothermal medium, c0 and Ωa are constant. A wave source is introduced
into the atmosphere by applying a driver, A(t), at z = 0. Thus the atmosphere
is bounded and it is assumed that the atmosphere is initially at rest with no wave
motions or derivatives of wave motions present. Further it is assumed there are no
wave motions at z = ∞. The problem is a homogeneous Klein-Gordon type equation
with inhomogeneous boundary conditions. We can thus obtain the general solution,
given by
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Q(t, z) = A0((t− (tc− tu))H(t− (tc− tu))+

Z t

0

A0(t+ tu− τ ) ·H(t+ tu− τ ) ·P (τ, z)dτ,

(16)
where

P (τ, z) = − z

2Λ0

J1

`

a
√

τ 2 − t2c
´

√
τ 2 − t2c

× H(τ − tc), (17)

and

a =

s

Ω2
a

c2
0

(c2
0 − U2

0 ) =
c2
0 − U2

0

2Λ0c0
, tc =

c0z

c2
0 − U2

0

, tu =
U0z

c2
0 − U2

0

, (18)

where Ω2
a = (c2

0 − U2
0 )/4Λ2

0, a can thus be thought of as an acoustic cut-off fre-
quency analogous to ωa(= c0/2Λ0), but having been modified by the presence of the
flow, from this point on referred to as the flow acoustic cut-off. Note the fact the as
U0 → 0, Ωa → ωa, a → ωa, tc → z/c0 and tu → 0, thus we return exactly to the
Sutmann et al case. We consider only the case for U0 > 0 in this analysis.

We now solve the general solution for variuos prescribed drivers, namely a monochro-
matic driver, an impulsive driver and finally a sinusoidal driver, each applied at z = 0.

3 Monochromatic Source

As per Sutmann et al. (1998) we consider first the boundary conditions to be sat-
isfied by a source of monochromatic acoustic waves, generated continuously with the
frequency ω and amplitude Q0. Thus we have

A0(t) = Q0e
−iωt. (19)

Substituting this boundary condition into (16) we obtain

Q(t, z) = Q0

»

e−iω(t−(tc−tu)) × H(t − (tc − tu)) +

Z t

0

e−iω(t+tu−τ)P (τ, z)dτ

–

. (20)

Notice the removal of the Heaviside function from (16), this is due to the fact that
in the interval (0, t), H(t + tu − τ ) = 1 since we consider tu to be positive. Let the
integral in this expression be given by I = I1 − I2 where

I1 = −e−iω(t+tu) z

2Λ0

Z

∞

0

J1

`

a
√

τ 2 − t2c
´

√
τ 2 − t2c

H(τ − tc)e
iωτdτ, (21)
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and I2 being the same, save for the limits being now (t,∞). The integral I1 may
be evaluated directly, however the integral I2 cannot be evaluated analytically unless
we apply the condition τ >> tc and thus t >> tc. Thus we take

I2 ≈ −e−iω(t+tu) z

2Λ0

Z

∞

t

J1(aτ )

τ
eiωτdτ. (22)

We have applied the condition that τ is large and so J1(aτ ) can be expanded
asymptotically, thus

J1(aτ ) ≈
r

2

πaτ
cos

„

aτ − 3π

4

«

, (23)

and by applying the exponential form of the cosine function we obtain

I2 = −e−iω(t+tu) z

4Λ0

r

2
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»
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∞

t
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τ 3/4
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Z

∞

t
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τ 3/4
dτ

–

. (24)

Which may be evaluated (see Sutmann et al. (1998) Appendix B for a detailed
discussion) to give
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z
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„
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. (25)

Substituting I1,2 into (20), we obtain

Q(t, z) = Q0e
−iωtu

»

e−i(ωt+tc

√
ω2−a2)−

− z

2Λ0

r

2

πa

1

t3/2

1

a2 − ω2
(a sin θ + iω cos θ)

#

, (26)

where θ = (at − 3π/4), being an expression fully describing the atmosphere re-
sponding to a source of monochromatic acoustic waves, valid for w 6= a. Following the
discussion in Sutmann et al. (1998) we see the velocity Q(t, z) is again comprised of
two ocscillations superimposed upon each other. Firstly, the forced atmospheric os-
ciallations at the driving frequency ω, representing well-known prpoagating acoustic
waves for ω > a and evanescent waves for ω < a. Secondly, we have the free atmo-
spheric oscillations at the frequency a, given by the second term on the RHS, decaying
with t−3/2 and increasing linearly with z.
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4 Delta Function Pulse

Here we consider the source to be a single pulse of δ- function form. Thus the boundary
condition is

A0(t) = Q′

0δ(t). (27)

The δ-function has a non dimensional argument, hence Q′

0 has different dimensions
to Q0. Thus we introduce a non-dimensional time, t′, by t = Rt′, where R = 2π/a.
Letting Q0 = Q′

0/R and by assuming t′ >> tc/R > tu/R, the fist term on the RHS of
(16) disappears and we obtain

Q(t′, z) =

Z t′R

0

Q0Rδ(t′ − τ ′)P (τ ′R, z)dτ ′, (28)

thus by employing a fundamental property of the δ-function and rewriting for
Q(t, z) we obtain

Q(t, z) = Q0RP (t, z),

= Q0R
z

2Λ0

J1

`

a
√

t2 − t2c
´

√
t2 − t2c

, (29)

and since t′ >> tc/R the Bessel function reduces to J1(at) which can be evaluated
asymptotically as before, giving

Q(t, z) = −Q0R
z

2Λ0

r

2

πa

1

t3/2
cos θ, (30)

where θ = (at − 3π/4), being very similar to the no-flow case in from apart from
the change in frequencies.

5 Sinusoidal Pulse

The final case we consider is a sinusoidal pulse generated at the lower boundary and
lasting for one wave period P , where P = 2π/ω. Thus the boundary condition is given
by

A0(t) = Q0 [H(t)− H(t − P )] e−iωt. (31)

Considering the first part of (16) we see that since we are mainly concerned with
t >> tc and our analysis is for c0 > U0 we can see that the arguments of both Heaviside
functions are positive and so they cancel each other out. Thus we have
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Q(t, z) = Q0

Z t

0

P (τ, z)H(t + tu − τ )e−iω(t+tu−τ)dτ −

−Q0

Z t

0

P (τ, z)H(t + tu − P − τ )e−iω(t+tu−τ)dτ. (32)

In the interval (0, t) the first Heaviside function is unity since we assume tu positive,
however two cases can be considered for the second, depending on the relative values
of P and tu. For the case of P < tu then in the interval (0, t) the Heaviside function
is unity and so the two terms cancel resulting in Q(t, z) = 0, implying there is no
atmospheric response to the sinusoidal pulse. For P > tu then we see that the limits
of integration may be changed to be between (0, t − b), where b = P − tu. Thus we
can write (32) as

Q(t, z) = Q0

Z t

0

P (τ, z)e−iω(t+tu−τ)dτ − Q0

Z t−b

0

P (τ, z)e−iω(t+tu−τ)dτ, (33)

and thus combining the two integrals together by changing the limits and rewriting
it in the form two integrals, I1 and I2 so Q(t, z) = I1 − I2, giving

Q(t, z) = Q0

Z

∞

t−b

P (τ, z)e−iω(t+tu−τ)dτ − Q0

Z

∞

t

P (τ, z)e−iω(t+tu−τ)dτ, (34)

and solving asymptotically and then by parts and taking the first term only, as in
Section 3, giving

I1 =
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and
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z
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e−iωtu

»

a sin

„
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„

at − 3π

4

«–

. (36)

Since we are dealing with large times we can expand the 1/(t − b)3/2 in equation
(35) binomially and taking the first term only the combined result is
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Q(t, z) =
z

2Λ0

r

2

πa

1

t3/2

1

a2 − ω2



a

»

sin

„
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4
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–

+
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where θ = (at − 3π/4).

References

Buchlin, E. & Hassler, D.M. in AAS/Solar Physics Division Meeting, Vol. 32, 201
(2000)
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Abstract

Discovered nearly 20 years ago near the Earth’s bow shock, the identification and
separation of Hot Flow Anomalies (HFAs) from other events is still under debate. We
have used the observations of instruments FGM, CIS, and RAPID aboard the four
Cluster spacecraft to detect and study these phenomena. The definition and basic
features of HFAs (size, direction of tangential discontinuity, electric field, speed of
propagation) have been refined, several series of events identified, and a preliminary
statistical analysis carried out. After combining data from RAPID and FGM the pitch
angle distributions of protons have been calculated. The measured and calculated
features of HFA events are confronted with the results of hybrid simulations.
Keywords: hot flow anomaly, Earth’s bow shock, tangential discontinuity

1 Introduction

ESA’s cornerstone mission, CLUSTER has been the most successful magnetosphere
project since the satellites were launched in 2000 (Escoubet et al., 1997). The orbits
of the four satellites cross the most important parts of the cosmic neighborhood of
our planet. Their apogee are upstream of the Earth’s bow-shock during spring on the
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Northern Hemisphere. This fact, using FGM1 and CIS2 instruments allows to detect
the relatively rare phenomena called HFA3 effectively whereas the RAPID energetic
particle instrument provides additional information. We processed the measurements
of CLUSTER from February 1 through April 8, 2003 and identified nearly 50 HFA
events, performed a statistical analysis and refined their basic features. After com-
bining data from the RAPID and FGM instruments pitch angle distributions were
calculated using a transformation into the plasma frame (Facskó, 2004). Although no
perfect theoretical explanation of HFAs has been made so far, the two hybrid simula-
tions developed seem to reproduce the basic features (Thomas et al., 1991; Lin, 1997,
2002, 2003). The observations of the HFA events found are confronted with the results
of these hybrid simulations.

The outline of the paper is as follows: identification, analysis, measured and cal-
culated features of hot flow anomalies are described in Section 2. The comparison of
hybrid simulations with observations is presented in Section 3. A summary is given in
Section 4

2 Hot Flow Anomalies

No detailed theory has been presented yet which could reproduce all properties of HFAs
since they were discovered (Schwartz et al., 1985; Thomsen et al., 1986). Reconnection
and ion-beam instability are assumed as energy source of HFAs (Thomas et al., 1991;
Lin, 1997). The formation and development of HFAs have been modeled by hybrid
simulations (Thomas et al., 1991; Lin, 1997, 2002, 2003). Several features of HFAs
were given and their sketch was constructed based upon single spacecraft observations
(See: Fig. 1, left panel based on Sibeck et al. (1999); Fig. 1, right panel). The main
problem of detecting HFAs is the relatively small size of the volume affected. Satellites
must have been at the right place at the right time. The Cluster project has changed
this situation revolutionary: the four satellites cover huge space and all satellites have
suitable instruments detecting HFA events. Lucek et al. (2004) made the first attempt
to use 4-point measurements and examined 3 HFAs within a short time interval when
the s/c separation was small (≈100 km).

2.1 Detecting HFAs

Figure 2 depicts a typical hot flow anomaly event and represents criteria for searching.
HFAs are the result of the interaction of a tangential discontinuity with the bow-shock
of the Earth (Schwartz et al., 2000) or of other object (Øieroset, 2001). We set up the
following conditions, which might indicate the presence of a HFA:

1Flux Gate Magnetometer
2
Cluster Ion Spectrometer

3
Hot Flow Anomaly
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Figure 1: Left: The supposed structure of HFAs: a tangential discontinuity crosses

the bow-shock and they form a hot, tenuous diamagnetic cavity. HFAs seem to be

a bulge on both bow-shock and magnetopause. Right: Sketch of the HFA event on

February 16, 2003. The normal vector of the tangential discontinuity, the direction of

the electric field and the location of the bow-shock and the magnetopause are calculated

and plotted.

• Behavior of the magnetic field, measurements of FGM (Fig. 2, 2nd panel):

– HFAs appear as a bulge on the bow-shock so one should search them
upstream of the shock. That means that the magnitude of the magnetic
field has to be near the average interplanetary value.

– The event begins when the magnitude of the magnetic field drops.

– FGM observes fast fluctuations in the magnitude of the field and its direc-
tion turns around.

– After the HFA B reaches its value prior to the event.

• Behavior of the solar wind, measurements of CIS HIA4:

– The solar wind slows down, its flow direction might turn back (Fig. 2, 3rd
panel).

– The plasma temperature increases up to several 10 MK (Fig. 2, 4th panel).

– The plasma density decreases (Fig. 2, 5th panel).

• The fluxes of energetic particles usually increase in the four lower energy chan-
nels of RAPID but not always. One can obtain an angular resolution of the

4
Hot Ion Analyser
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Figure 2: The first HFA event, detected at 10:45-10:50 UT, on February 16, 2003.

Top panel: proton fluxes in four energy channels measured by RAPID aboard Cluster-1.

2nd panel: components and absolute value of magnetic field. 3rd, 4th and 5th panels:

components of the solar wind speed, parallel and perpendicular temperature, and the

particle density of the solar wind.

particle fluxes (16× 12pixel) and calculate pitch angle distributions by combin-
ing data from the RAPID and FGM instruments (Fig. 2, 1st panel).

• The right direction of electric field seems to be the most important condition.
The E field focuses particles towards the tangential discontinuity so that its
direction should point towards it on both sides.

We found about fifty candidates of HFA events after processing Cluster measure-
ments from February to April, 2003 when the separation between the 4 s/c was of the
order of 10,000 km.



Hot Flow Anomalies 97

Figure 3: Pitch angle distribution of 28-69 keV protons during the HFA event at

10:45-10:50 UT on February 16, 2003. Left: PAD calculated with 128s averaged mag-

netic field. Right: Average of four PADs calculated with 32s averaged magnetic field.

2.2 Pitch Angle Distributions

After combining data from the RAPID and FGM instruments pitch angle distributions
(PADs) of the lowest energy (28-69 keV) protons were calculated for the HFA event
10:45-50 UT on February 16, 2003. The sensitivities of the IIMS5 detector heads have
significantly decreased since launch, we have corrected for this, then the fluxes were
transformed to the frame of solar wind using actual CIS solar wind speed measurements
and spectral slope from RAPID (Compton-Getting effect). Unfortunately, the cycle
of collecting a full directional distribution was about 128 s, 32 times the spin period
of Cluster. The simplest choice is to average the magnetic field direction over this
period and then compute the pitch angles accordingly. However, the direction of B
usually changes much more rapidly than that (Fig. 3, left panel). In lack of higher
resolution information one can try to average the B directions over shorter periods
(say 32 s instead of 128 s) and assume that the measured directional distribution does
not change significantly over that time. Then one has 4 different PADs for the 128 s
period which can be averaged. We carried out the two procedures, divided the [−1, 1]
interval of cos α into subintervals, added the fluxes and counted the number of points
of those points which have suitable pitch angle. We calculated the average flux of
subintervals and then we plotted both pitch angle distributions (Fig. 3, right panel).

2.3 Statistical Aspects

As a result of a survey of the period between February 15 and April 20 about 50 events
were found that fulfilled out requirements for HFA events. Most of them were seen by

5
Imaging Ion Mass Spectrometer
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all Cluster satellites while some of them only by one or two spacecraft. Summarizing
their general parameters we found that x component of the solar wind decreased
usually by 200-400 km/s (in 3 extreme cases the plasma speed became antisolar but in
some other events the drop was not more than 50 km/s). Vz changed significantly in all
events because they were observed at higher latitudes. The proton density as measured
by the HIA sensor of CIS dropped to or below 1/cm3 in most cases (about 80% of all),
and the parallel proton temperature increased to more than 10 MK in nearly all events.
The magnetic field in the cavity was usually below 3nT. The differences observed in
parameters at different spacecraft are generally small. The energetic proton signatures
associated with these events were highly variable: in about 20 cases the 28-69 keV
proton flux peak exceeded 1000 p/(cm2 s sr keV) for at least one spacecraft. The
particle events usually exhibited smooth profiles starting before and ending after the
plasma and magnetic field signatures.

The events were not randomly distributed in time, many of them appeared in
sequences within about 1-2 hours (4 on 16 February, 4 on 17 February, 3 on 7 March,
7 on 17 March, 5 on 19 March, 7 on 21 March, and 4 on 24 March). This may indicate
preferable conditions rather than grouping of discontinuities. In most cases the solar
wind velocity and dynamic pressure was very high compressing the magnetopause and
the bow shock.

3 Hybrid Simulations

The hybrid simulation of the plasma is a combination of a full particle approach and
a fluid approach. It models the plasma dynamics by treating the ions as particles and
the electrons as a charge-neutralizing fluid. Many kinds of hybrid code exist; ions can
be treated as macroparticles, the electron fluid might be massless or can have finite
mass, the network of the simulation might be two or three dimensional, Cartesian or
curvilinear, adaptive or not adaptive. Thomas et al. (1991) and Lin (1997, 2002, 2003)
have developed hybrid HFA simulation codes. We studied, checked and compared their
result with our observations.

3.1 Results

The hybrid code developed by Thomas et al. (1991) studied the close surroundings
of HFAs. The tangential discontinuity intersected the bow shock perpendicularly and
they sliced the simulation space and made magnetic field, temperature and particle
density diagrams. The form of both magnetic field and particle density diagrams is
similar: two small peaks appear at the beginning and the end of the event and both
quantities decrease in the middle of the event. The temperature increases in his model.

The other hybrid code developed by Lin (1997, 2002, 2003) uses larger simulation
space. A solid target is inserted into superalvénic flow and bow shock form. The flow is
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Figure 4: Two methods for HFA size estimation. A0, A1: estimation with one

spacecraft. B0, B1 and C1: estimation method with two spacecraft.

parallel with the x axis of the simulation box. A tangential discontinuity is generated
in the flow after forming bow shock. The angle between the normal vector of the
tangential discontinuity and the direction of the flow might be variable. Simulations
with different angles were performed. The results predict that the size of HFAs are of
the order of 1-3 Earth radii. The form of the profiles look alike in the first simulation,
however, the temperature increases to a value 100 times higher, the solar wind speed
decreases to 50-80%. The density of the solar wind decreases to 55-75% in the middle
of the event but increases to 140% at the rim.

3.2 Comparison with observations

Analyzing fifty HFA events we can say that the shape of the temperature, the density
and the magnitude of the magnetic field profiles qualitatively agree with the results
of simulations. The quantitative result is not so close, however, these simulations
were performed for idealistic and very simple cases thus we must not expect a better
accordance. The simulations also describe well the attendance and development of
HFAs.

We used two different methods to estimate the size of HFAs (See Fig. 4). The
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spacecraft enters into the HFA in A0 at t0 and leaves it in A1 at t1. The HFA is
traveling with the solar wind till the satellite is flying inside of the structure thus we
get the distance from the d = vSW · (t1 − t0) equation. We might neglect the speed
of the satellite because vs/c ≪ vSW . This is not very accurate because the solar wind
speed might change and the HFA is not frozen into the plasma of the solar wind. So
we have used another multispacecraft method, too (See Fig. 4). The B spacecraft
intersects the border of HFA in B0 at t0. The C spacecraft do the same in C1 at t1.
However, the position of the HFA changes until the second (C ) satellite intersects its
border. We can calculate the new position of the B0 point from the position of the B0

and the speed of the solar wind using the −→r B1
= −→r B0

+ −→v SW · (t1 − t0). The HFA
size must be larger than the distance between B1 and C1. We calculate this distance
from the coordinates. If more then two spacecraft detect the same HFA then we can
calculate all distances and use the longest.

We obtained very exciting result after determining the size of the HFA events.
The size of the affected region seems to be 2-10 Earth radii with the first method
based upon the time of pass. If at least two spacecraft cross HFA we could estimate
the minimal diameter of the event. This second method gave values of 0.65-2.2 Earth
radii. Both results are in agreement with the forecast of the simulations. Actually the
first method based upon the time of cross doesn’t seem to be accurate. Its error larger
then the second method thus it is more practical to use this method if it is possible.

4 Summary

We set up conditions for HFA events and processed the mesurements of CLUSTER
RAPID, FGM and CIS instruments between February and April, 2003. We found
about fifty new events and developed a method for calculating transformed pitch
angle distributions taking the Compton-Getting effect into account. We demonstrated
our method by calculating of two kinds of PADs for the same HFA event. We also
estimated the size of HFAs and compared with observations and found agreement with
predicted values.

The second simulation (Lin, 2002) with different angles between the tangential
discontinuity and the direction of the flow indicated that the size depends on this
angle (γ). Higher γ values result in larger HFA up to about 80o. If γ is greater than
80o, the size decreases. The size of HFA also depends on the directional change of
the magnetic field before and after the tangential discontinuity (∆Φ). Unfortunately
it seems to be very difficult to determine the values of these γ and ∆Φ angles, so this
problem needs to be solved in the future.

A new research area was created when Mars Global Surveyor discovered HFA
events around Mars (Øieroset, 2001). This fact might be the first proof of that HFAs
are general phenomena. HFAs might appear where bow shock and tangential discon-
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tinuity interacts: around Jupiter, Saturn, ahead of CME6s, at the heliopause, or in
interstellar clouds as well. The solution of this problem deserves further experimental
and theoretial research.
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Abstract

In this paper we study the oscillations of a magnetic medium periodic in the x-direction
with B parallel to z in the presence of a steady equilibrium field aligned flow. The
case with no gravity and stepwise profile for B(x), allowing a normal mode analysis,
is studied and the dispersion relation for linear compressional waves is derived. The
propagation of waves is studied in particular case modelling the propagation of waves
in the penumbral filamentary structures in the photosphere.
Keywords: Sun: magnetohydrodynamics(MHD) waves, Sun: magnetic field

1 Introduction

The recent observational evidence for the existence of waves and oscillations in the
solar atmosphere has invigorated theoretical developments in this field. Waves are
responsible for carrying energy and momentum, creating instabilities, generating phe-
nomena like magnetic reconnection, phase mixing, etc. They can serve as a unique
tool for plasma diagnostics due to their capability of carrying information about the
medium in which they propagate.

Solar and space plasmas have a very dynamic character, showing steady flow on
all sorts of time and space scales. This property is confirmed by recent ground and
space-born satellite observations Steady flows have been observed in the photosphere,
chromosphere (November et al. 1979, Athay and Dere 1991), corona (Winebarger et
al. 2002) and beyond, in the solar wind (Gabriel et al. 2003)). Therefore, theoretical
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models should include the presence of an equilibrium steady flow. Equilibrium flows
are known to introduce a series of new effects such as Kelvin-Helmholtz and resonant
instabilities, negative energy waves, etc.

Observations have also revealed that the solar plasma is structured and this is
determined and controlled by the magnetic field. In the photosphere, the magnetic
field is concentrated in thin flux tubes with field strengths exceeding 1000 G (Spruit
1981). The flux tubes extend well into the chromosphere and corona contributing to
the net heating of the solar upper layers, creating solar spiculae (Roberts 1979, James
and Erdélyi 2002) and even contributing to the solar wind acceleration.

Many solar features (e.g. the granular pattern in the photosphere, the penumbra,
plume/interplume, etc.) show a transversal periodicity (or quasi-periodicity). Waves
propagating along magnetic structures with a transversal periodicity is likely to ’feel’
the effect of this structure provided their transversal wavelength is of the same order
as the transversal spatial organisation scale. Effects of periodicity, though it is not
perfect on the Sun’s surface, could possibly be observationally detected on diagnostic
ω-k diagram. The possibility of wave propagation in a periodic structure has been
discussed by Hollweg (1982), Berton and Heyvaerts (1987) and Uralov (2003) in the
linear regime, while the steepening of linear waves into nonlinear waves (solitons) in
periodic structures has been studied by Hollweg and Roberts (1984) and Ruderman
et al. (2001).

Here we present some preliminary results on the propagation of compressional
MHD waves in a magnetically periodical structure with field aligned flow. Weak field
regions alternate with strong field regions modelling the filamentary structure of the
penumbra.

2 Derivation of Dispersion Relations

We consider an ideal, perfectly conducting fluid permeated by a magnetic field of
constant direction along the z-axis, and periodic along the x-axis. We suppose that the
wavelengths are smaller than the gravitational scale-height, i.e. gravitational effects
are neglected.

A field-aligned equilibrium steady flow is present in the system. In the present
paper we suppose that the medium consists of alternating magnetic slabs (with width
Li and Le) with homogeneous magnetic fields inside them (Bi and Be, with Bi > Be)
and sharp discontinuities at the boundaries. Let us denote by L = Li + Le the
periodicity of the medium. The continuity of the total pressure at each boundary
requires an equation of the type

d

dx

„
p0 +

B2
0

2µ

«
= 0, (1)
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which, in particular, leads to a density contrast in two adjacent regions

ρi

ρe
=

2c2
0e + γc2

Ae

2c2
0i + γc2

Ai

, (2)

where c0i,e and cAi,e denote the sound and Alfvén speeds in the two layers, γ is the
adiabatic index and µ is the magnetic permeability.

We perturb the system of linearized ideal MHD equations and write all physical
quantities in the form f0 + f where f0 are the equilibrium values and f their Eule-
rian perturbations. Since the equilibrium quantities depend on x only, we write all
perturbations as

f = bf(x)ei(ωt−kzz).

The dispersion relation of linear compressional MHD waves can be written as (Roberts
1981)

d2v̂x

dx2
− q2v̂x = 0, (3)

where the magnetoacoustic parameter, q2 is defined as

q(x)2 =

`
k2

zc2
A − Ω2

´ `
k2

zc2
0 − Ω2

´

(c2
0 + c2

A) (k2
zc2

T − Ω2)
, (4)

with Ω = ω − kzv0 being the Doppler-shifted frequency and cT = c0cA/(c2
0 + c2

A)1/2

the tube (cusp) velocity. The quantity q2 is constant in each region and it can take
both, positive and negative values.

The solutions of Eq. (3) inside and outside the slab can be written as


bvxi = αie

qix + βie
−qix

bvxe = αee
qex + βee

−qex (5)

where the coefficients αi, βi, αe and βe are four constants which can be determined
by matching conditions at the boundaries of two adjacent regions (at x = Li/2 and
x = Le+Li/2). Due to the periodicity of the medium we employ a method widely used
in solid state physics. We introduce the quantity K0 (called the Bloch wavenumber)
which plays the same role as the wavenumber kx in a homogeneous medium. According
to the the Bloch’s theorem, a solution of the Eq. (3) which is bounded at infinity can
be written as

bvx = aF (x)exp[iK0x] + bF (−x)exp[−iK0x], (6)

where F (x) is a periodic function with the period L. Then

bv(L)

bv(0)
= cos K0L.
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In the case of surface (q2
i > 0) and body (q2

i < 0) modes, the dispersion relations
can be written as

cos(K0L) = cosh(θi) cosh(θe) +
1

2

„
S +

1

S

«
sinh(θi) sinh(θe), (7)

cos(K0L) = cos(θi) cosh(θe) +
1

2

„
S −

1

S

«
sin(θi) sinh(θe), (8)

S =
ρi

ρe

qe

qi

k2
zc2

Ai − Ω2
i

k2
zc2

Ae − Ω2
e

. (9)

The dispersion curves ω(kz) will depend upon the Bloch’s wave number, K0, as a
parameter.

According to the relative magnitude of the characteristic speeds c0, cA,and cT in
the internal and external regions, various situations are possible depending on the
signs of the quantities q2

i and q2
e . For a simpler representation it is convenient to use

the following dimensionless quantities

Rρ =
ρi

ρe
, RT =

Ti

Te
, RB =

Bi

Be
, RL =

Li

Le
, (10)

where Ti and Te denote the temperatures in the two regions. In these new notations,
Eq. (2) can be rewritten as

c2
0i

c2
Ai

=
γ

2

RρRT

R2
B

R2
B − 1

1 − RρRT
. (11)

In what follows, the dispersion relations are solved for incompressible and com-
pressible plasmas.

2.1 Incompressible Modes

A first insight into the properties of the possible modes propagating in periodic plasma
structures can be acquired by considering the incompressible plasma limit which yields
a relatively simple analytical solution. This solution enables us to gain a better un-
derstanding of the behaviour of the different modes with respect to the equilibrium
steady flow. For an incompressible plasma (γ → ∞) q2(x) = |kz| > 0, i.e. only surface
trapped modes are allowed to propagate. The dispersion relation of surface waves (Eq.
(7)) becomes

cosΦ = cosh(θ) cosh(
θ

RL
) +

1

2

„
S +

1

S

«
sinh(θ) sinh(

θ

RL
) (12)

where

S = Rρ
c2
Ai − (c − v0i)

2

c2
Ae − (c − v0e)2

, θ = kzLi, Φ = K0L. (13)
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and c = ω/kz is the phase speed of the waves. The numerical investigation of these
modes requires the function c(θ) satisfies Eqs. (12) and (13), where Φ is a parameter.
Inverting Eq. (12) yields

S2 − 2
cos Φ − cosh(θ) cosh( θ

RL
)

sinh(θ) sinh( θ
RL

)
S + 1 = 0 = S2 − 2US + 1, (14)

with
cosΦ − cosh(θ) cosh( θ

RL
)

sinh(θ) sinh( θ
RL

)
= U. (15)

Using this notation, Eq. (14) can have two roots

S± = U ±
p

U2 − 1, (16)

where the ± sign corresponds to sausage and kink modes, respectively. In Eq. (16)
we have to impose that U2 ≥ 1, i.e. the quantity S is real. Since

S =
c2
Ai − (c − v0i)

2

c2
Ae − (c − v0e)2

Rρ, (17)

the dispersion relation of fast magnetoacoustic modes propagating in periodic struc-
tures in incompressible limit is given by the roots of

c2(Rρ − S±) + 2c(S±v0e − Rρv0i) − Rρ(c
2
Ai − v2

0i) + S±(c2
Ae − v2

0e) = 0. (18)

Eq. (18) posses two real roots corresponding to two possible sausage or kink modes
provided

RρS

Rρ − S
>

Sc2
Ae − Rρc2

Ai

(v0i − v0e)2

If the two equilibrium flow speeds are set to be zero we recover the results by Berton
and Heyvaerts (1987).

Before turning to the general case, let us first discuss two particular cases, i.e
RL → 0 (the isolated slab) and RL → ∞ (homogeneous plasma). In the case of an
isolated tube, U = − coth θ, so the phase speed of fast surface sausage modes is given
by

c2
+ − 2c+

v0e tanh θ
2

+ v0iRρ

tanh θ
2

+ Rρ

−
(c2

Ae − v2
0e) tanh θ

2
+ (c2

Ai − v2
0i)Rρ

tanh θ
2

+ Rρ

= 0, (19)

while the propagation speed of fast surface kink modes is described by

c2
+ − 2c+

v0e coth θ
2

+ v0iRρ

coth θ
2

+ Rρ

−
(c2

Ae − v2
0e) coth θ

2
+ (c2

Ai − v2
0i)Rρ

coth θ
2

+ Rρ

= 0, (20)
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identical to the results obtained by Nakariakov and Roberts (1995). This form of Eqs.
(19) and (20) allows us to interpret the effect of the equilibrium flow. In both equations,
the second terms owe their existence to the equilibrium internal and external flows.

In the limit of homogeneous plasma, we let RL → ∞ and we obtain the well-known
propagation speeds for sausage and kink modes

c+ = ±cAi + v0i, c− = ±cAe + v0e (21)

where here the ± indicates forward (parallel to the magnetic field) and backward
(anti-parallel to the magnetic field) propagation.

In the general case we can derive analytical solution for the phase speed of sausage
and kink modes propagating in the incompressible periodic plasma in two extreme
limits corresponding to thin (θ ≪ 1) and thick (θ ≫ 1) slab.

In a thin slab, U can be approximated as

U ∼ −
2RL

θ2
sin2 Φ

2
, (22)

which in the case of θ → 0 leads to the approximate expressions

S+ ∼
1

2U
, S− ∼ 2U. (23)

These expressions can now be used to obtain the phase speed of fast sausage and kink
modes as

c2
+ − 2c+

4
RLRρ

θ2 sin2 Φ
2
v0i + v0e

1 + 4
RLRρ

θ2 sin2 Φ
2

−
4

RLRρ

θ2 sin2 Φ
2
(c2

Ai − v2
0i) + c2

Ae − v2
0e

1 + 4
RLRρ

θ2 sin2 Φ
2

(24)

and

c2
− − 2c−

4RL

θ2 sin2 Φ
2
v0e + v0iRρ

Rρ + 4RL

θ2 sin2 Φ
2

−
4RL

θ2 sin2 Φ
2
(c2

Ae − v2
0e) + Rρ(c

2
Ai − v2

0i)

Rρ + 4RL

θ2 sin2 Φ
2

(25)

In the wide slab limit, S± → −1 and the dispersion relation is given by

c2
∞ − 2c∞

v0e + v0iRρ

Rρ + 1
−

Rρ(c
2
Ai − v2

0i) + c2
Ae − v2

0e

Rρ + 1
= 0 (26)

The possible modes propagating in a incompressible periodic structure for an arbi-
trary θ and RL are shown in Figure 1. All characteristic speeds are expressed in units
of the internal Alfvén speeds and the following notations have been used

a =
cAe

cAi
, Mi =

v0i

cAi
, Me =

v0e

cAi
.

Figure 1 depicts the possible modes propagating in a periodic structure when no plasma
flow is present in the system.
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Figure 1: The phase speed of sausage (solid line) and kink modes (dashed lines) as

a function of the dimensionless wavelength, θ for an incompressible periodic plasma

with a = 10 and a = 1 and Mi = Me = 0.

As expected, these modes are identical to the results obtained by Berton and
Heyvaerts (1987). Since the equilibrium state is static, the modes are symmetric
with respect to the horizontal axis, therefore in Figure 1 we plot only the forward
propagating modes. The possible modes are allowed to propagate between the two
Alfvén speeds, the grey regions are the intervals where waves become leaky. The
phase speed given by the dispersion relation has been plotted for Φ = π/3 and for
three different values of RL(0.1, 2.5, 10). A simple visual inspection shows that waves
are more dispersive for small values of RL, i.e. for transversal dimensions of the
adjacent slabs close to each other. The phase speed of both types of waves is increasing
with increasing the RL number. In general, sausage waves (with positive dispersion)
propagate faster that kink modes (with negative dispersion). For large values of θ
both, sausage and kink modes will tend towards the positive value of c∞ given by Eq.
(26).

When an equilibrium flow is taken into account (Figures 2-3) the symmetry of
the modes is broken although the propagation windows of the forward and backward
propagating modes are shifted by an amount proportional to the flow speed. Figures
2 and 3 were obtained for two values of Φ(0, π/2) and for three different values of
RL(0.1, 2.5, 10). We have considered the case RB > 1 with a = 0.1 and Rρ = 0.5,
Mi = 0.04 and Me = −0.02.

Repeating the plotting for other values of Φ, we can observe that the dependence
of the phase speed on θ is very similar to the case obtained for Φ = π/2, only small
changes are observed for intermediate values of θ. When Φ = 0, sausage and kink
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Figure 2: The same as in Figure 1 but now Mi = 0.04, Me = −0.02 and Φ = 0 (left

panel) and Φ = π/2 (right panel)

modes show a significant dispersion for small values of RL, and for values greater than
1, waves are weakly dispersive. When Φ 6= 0 the behaviour of oscillating modes is
similar to the case obtained in a static equilibrium.

2.2 Compressible modes

The dispersion relations for surface and body modes have a rich variety of solutions.
In what follows we only the slender-slab (θ ≪ 1) approximation.

Surface modes propagate with phase speeds given by the dispersion relation (7),
which in the θ ≪ 1 limit reduces to

−
4 sin2 Φ

2

θ2
≈ q2

i +
q2

e

R2
L

+

„
S +

1

S

«
qiqe

RL
. (27)

If Φ 6= 0, the two possible modes propagate with phase speeds given by

c ≈ v0i ± cTi

(
1 +

c2
Si

c2
Aic

2
i

»
RLRρ

c4
Ai

c2
i

+ c2
Ae − (v0i ± cTi − v0e)

2

–
θ2

8sin2 Φ
2
RLRρ

)
(28)

and

c ≈ v0e ± cTe

(
1 +

c2
Se

c2
Ae

»
c4
Ae

c2
e

1

RLRρ
+ c2

Ai − (v0e ± cTe − v0i)
2

–
θ2Rρ

8sin2 Φ
2
RLc2

e

)
(29)

In a compressible plasma in the thin slab limit, body modes can also propagate and
their dispersion relation is given by

−
4 sin2 Φ

2

θ2
≈ −q2

i +
q2

e

R2
L

+

„
S −

1

S

«
qiqe

RL
, (30)
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Using the same method as in the case of surface waves, we obtain a dispersion relation
of body waves in the thin slab approximation which is similar to the equation describing
surface modes to the second order terms in Eqs. (28)–(29). Since the second order
terms in these equations contain a term proportional to the very small θ2, changing
the sign from plus (surface modes) to minus (body modes) will not affect our results
significantly.

3 Waves in photospheric structures

A possible photospheric application would be the study of wave propagation in sunspots’
penumbra. Viewed in white light, sunspots consist of a dark, central umbra surrounded
by brighter, radially striated penumbra made up from alternating bright and dark
filaments. Martinez Pillet (2000) suggested that these horizontal tubes might have
diameters around 100 km.

The magnetic field in the umbra is vertical, but as soon as we approach the penum-
bra, the field lines tend to be horizontal, relative to the solar surface. Observations
by Beckers and Schröter (1969) suggested that, while the magnetic field in the dark
filaments is nearly horizontal, the field in the bright filaments is inclined to the hori-
zontal with a mean inclination of 10◦-15◦. However, here we will suppose that in both
types of filaments, the magnetic field is horizontal. Observations also showed that the
magnetic field strength is weaker in dark regions than in the bright ones.

The plasma dynamics show a systematic inward (towards the umbra) plasma flow
in the bright elements of the umbra and outward Evershed flow occurring mostly in
the dark filaments. The most important motion in the penumbra is the radial, nearly
horizontal (field aligned) outflow of plasma responsible for the Evershed effect seen
in spectral lines formed in the penumbral photosphere. This motion is thought to
be a siphon flow driven by a pressure difference between the footpoints of arched
magnetic flux tubes. The siphon flow is probably also responsible for the reversed,
inward Evershed flow seen higher up in the penumbral atmosphere, in chromospheric
spectral lines such as Hα (Schlichenmaier, 2002).

Radially outward propagating running penumbral waves have speeds of 10-20 km
s−1, repeating with a period in the range of 200-300 s with a horizontal wavelength
of 2.3-3.8 Mm (Giovanelli, 1974). These propagation speeds are larger than the lo-
cal sound speed, therefore they might be fast magnetoacoustic waves. Penumbral
structures also support waves with periods around 5 min, which are related to the
interaction of the sunspot with the resonant acoustic (p-modes) in the surrounding
quiet Sun.

The possible modes arising in penumbral fine structures modelled as a periodic
structure in the long wavelength limit (slender slab) are shown in Figures 3. Plots are
obtained for three values of Φ (π/10, π/2, π) and three value of RL (0.1, 2.5, 10). All
characteristic speeds are normalized to the internal Alfvén speed.



112 A. Marcu and I. Ballai

0 0.2 0.4 0.6 0.8 1
KzLi

0.36

0.38

0.4

0.42

0.44

C

aTi+M i

aSi+Mi

RL=0.1 ____ RL=10 _ _ _

0.1Pi

Pi0.1Pi

Pi

0 0.2 0.4 0.6 0.8 1
KzLi

-0.63

-0.62

-0.61

-0.6

-0.59

-0.58

-0.57

-0.56

C

M i-aTi

M i-aSi

RL=0.1 ____ RL=10 _ _ _

Pi

0.5Pi

0.1Pi

Figure 3: The phase speed of surface modes as a function of the dimensionless wave-

length, θ arising in an compressible periodic plasma (sunspot’s penumbra). The solid

lines correspond to RL = 0.1 and dashed lines to RL = 10. (a = 0.8 , aSi = 0.533,

aTi = 0.47, Mi = −0.1 and Me = 0.2)

With an Alfvén speed in bright regions of 15 km s−1, we choose cSi = 9 km s−1,
cSe = 8 km s−1 and vAe=12 km s−1. For the equilibrium flow we choose Mach numbers
such as Mi = −0.1 and Me = 0.2.

Since the ratio of the widths of two adjacent slabs appears in the dispersion relation,
the dependence of the phase speed (in Alfvén speed units) with respect to RL for a
thin slab is shown in Figure 4.
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Figure 4: The phase speed of surface modes as a function of the dimensionless wave-

length, θ, and RL < 1 (left panel) and RL > 1 (right panel) in photospheric penumbrae.

The presented findings are preliminary results and a full investigation on the ef-
fect of equilibrium flows on the propagation of linear compressional MHD waves in
periodic structures is underway. Part of this investigation will be the calculation of
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the threshold for negative energy waves which can appear in these structures. Further
models will be made for the plume/interplume system and the spaghetti structures in
the solar wind.
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Abstract

The propagation of MHD waves in a structured magnetic flux tube embedded within
a straight vertical magnetic environment are studied analytically. The motivation be-
hind this study comes from the observations of damped loop oscillations showing that
only part of the loop is homogeneous. The magnetic tube considered contains two
characteristically distinct parts, namely an internal straight core, and a surrounding
uniformly twisted magnetic annulus envelope. The general dispersion relation is de-
rived. Modes of oscillations are examined from this general dispersion relation that is
suitable for obtaining information on not just oscillations but some instability proper-
ties of this complex tube structure. Both short and long wavelength approximations
are considered analytically for the symmetrical mode and with small twist.

1 Introduction

The recent launch of sophisticated satellites such as SOHO and TRACE, that have
imaging telescopes on-board, have lead to very detailed data and a surge in the devel-
opment of the theory of oscillations of MHD waveguides. Numerous oscillatory periods
within the Sun’s surface have been observed and, in an attempt to account for these
periods, numerous theoretical models developed (see reviews e.g. Aschwanden (2003);
Roberts (2004); Roberts & Nakariakov (2003)). We consider one specific area of the
many theoretical models: the effects of magnetic structuring. The role of magnetic
structuring on wave existence and propagation has been studied in some detail (see e.g.
De Pontieu et al. (2004); Erdélyi et al. (2004), James et al. (2003), Mendoza-Briceno
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et al. (2004), Ruderman & Erdélyi (2003), Taroyan et al. (2004)). Here I discuss previ-
ous literature on this specific aspect of coronal seismology. Gravity effects are ignored,
the emphasis being on the role of the magnetic structuring and, from the basic MHD
equations, dispersion relations are found and specific analysis carried out.

2 Waves in a Strongly Inhomogeneous Medium

When the wavelength is greater than or approximately equal to the length-scale the
inhomogeneous nature of the medium determines the behavior of any disturbances.
Within the Sun and the solar atmosphere the principal causes of inhomogeneity are
gravity and the magnetic field. Gravity creates a vertical stratification in plasma pres-
sure and the magnetic field can cause the plasma pressure to increase in a direction
normal to the field. These stratifications introduce significant effects, namely ampli-
fication (of the wave amplitude (increase or decrease) as it propagates), evanescence
(regions in which waves, otherwise oscillating spatially, may decay exponentially) and
surface modes (a discontinuity in the medium (magnetic, pressure,...) may give rise
to decaying surface waves and will modify the ’body’ waves).

2.1 A Magnetic Interface

Ignoring effects due to gravity, we are now interested in the effect of magnetic struc-
turing. Assume that in the basic state the plasma is permeated by a magnetic field
B0(x)ẑ, working in Cartesian coordinates x, y, z. Then the pressure and density are
structured by the x-dependence of the magnetic field and the basic states are found
to be

p0 = p0(x), ρ0 = ρ0(x),
d

dx

„

p0 +
B2

0

2µ

«

= 0, (1)

for the pressure, density and total (gas + magnetic) pressure. Linearised perturba-
tions from this state are taken and the continuity, momentum, induction and energy
equations, after Fourier analysis, give a single ODE for v̂x(x). Consider the magnetic
interface:

B0(x) =



Be, x > 0,
B0, x < 0,

(2)

with B0 and Be both constants. Considering pressure continuity at x = 0 leads to

d2v̂x

dx2
− m2

0v̂x(x) = 0 for x < 0, (3)

and
d2v̂x

dx2
− m2

ev̂x(x) = 0 for x > 0. (4)
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where

m2
0(x) =

(k2c2
0(x) − ω2)(k2v2

A(x) − ω2)

(c2
0(x) + v2

A(x))(k2c2
T (x) − ω2)

, c2
T (x) =

c2
0(x)v2

A(x)

c2
0(x) + v2

A(x)
, (5)

and m2
e is defined in a similar way to m2

0 except that the Alfvén and sound speeds
appropriate to x > 0 are taken.
It is the presence of the discontinuity in B0(x) that is responsible for the existence of
surface waves which may arise if m2

0 and m2
e are both real and positive. Solving (3)

and (4) for v̂x(x) gives

v̂x(x) =



αe e−mex, x > 0,
α0 em0x, x < 0.

(6)

In writing this solution we are excluding laterally propagating waves, so only the
surface modes arise. Then, using the continuity of both v̂x(x) and of the total pressure
perturbation p̂T (x) across the interface x = 0 the general dispersion relation for the
magnetic interface is

ρ0(k
2v2

A − ω2)me + ρe(k
2v2

Ae − ω2)m0 = 0, (7)

valid for m0 and me both positive and for l = 0. From this one is able to expand,
simplify and conclude that the existence of the magnetic interface supports the prop-
agation of surface waves (see e.g. Roberts (1981a)).

2.2 Waves in a Magnetic Slab

First consider a magnetic slab (Edwin & Roberts (1982)) with zero field surrounding
it so that

B0(x) =



B0, |x| < x0,
0, |x| > x0,

(8)

with pressure p0 and density ρ0 inside the slab, pe and ρe outside. The two regions
are related by

pe = p0 +
B2

0

2µ
, ρe =

 

c2
0 + 1

2
γv2

A

c2
e

)

!

ρ0 (9)

where co and ce are the sound speeds inside and outside the slab and vA is the Alfvén
speed in the slab. Again, attention is confined to two-dimensional disturbances so
velocity perturbation component vy and wavenumber l are supposed zero. Again, the
boundary conditions, v̂x(x) and p̂T (x) continuous across the boundary x = ±x0 are
used and the general dispersion relation recovered as:

(k2v2
A − ω2)me =

„

ρe

ρ0

«

ω2m0

 

tanh

coth

!

m0x0, (10)
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valid for ω2 < k2c2
e. Further analysis discovers the existence of slow magnetoacoustic

waves, both as a body wave and as a surface wave and fast magnetoacoustic waves
only if the slab is cooler than the surrounding plasma also as body and surface waves.
When the slab is considered thin in comparison to the wavelength (long wavelength
approximation that is of interest for photospheric and coronal conditions) the kink
mode vibrates as a single thin string and sausage mode vibrates as both surface and
body waves.
Expanding the above case to one of a slab embedded in a magnetic environment certain
differences were discovered. The dispersion relation for this case is found to be:

ρe(k
2v2

Ae − ω2)m0

 

tanh

coth

!

m0x0 + ρ0(k
2v2

A − ω2)me = 0, (11)

for me > 0. First, considering incompressible motions, m0 and me both tend to k and
thus the modes are Alfvén surface waves. The sausage and kink modes both exist but
their general behaviour regarding phase speeds exchanges for vA greater or less than
vAe. For compressible motions, the transcendental nature of (11) makes the analysis
more difficult but when taking the slender slab (long wavelength) approximation the
situation become slightly easier. It is supposed that m0x0 → 0 as kx0 → 0 so that
tanh(m0x0) ≃ m0x0 for kx0 ≪ 1. Equation (11) then reduces to

ρ0(k
2v2

A − ω2)me + ρe(k
2v2

Ae − ω2)m2
0x0 = 0, (12)

which, for the tanh function (corresponding to the sausage mode) gives solutions indi-
cating that the sausage modes are only weakly affected by the external field. For the
kink mode (coth) the dispersion relation becomes

ρe(k
2v2

Ae − ω2) + ρ0(k
2v2

A − ω2)mex0 = 0 (13)

which, when solved, shows the external field to dictate the behaviour for a sufficiently
thin slab. Only one mode is shown to exist.

For a finite slab, applicable to coronal structures which have been observed as
about one tenth wide as they are long, some other simplifying assumptions are made.
In the limit of large kx0 both kink and sausage modes result in

m0ρe(k
2v2

Ae − ω2) + meρ0(k
2v2

A − ω2) = 0 (14)

for the dispersion relation which can be reduced to a cubic and solved. Two cases
are considered, firstly a small non-zero external field then a large external field with
small plasma beta. Sausage and kink modes are both found to exist and behaviour
for various situations are discussed.
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2.3 Wave Propagation in a Magnetic Cylinder

After observations in Hα and soft and hard X-rays, it became quite clear that cylin-
ders would be a better approximation to the tubular structures seen in the corona and
photosphere (Edwin & Roberts (1983)).

With the equilibrium configuration, in cylindrical coordinates (r, θ, z), taken as

ρ, p, B0 =



ρ0, p0, (0, 0, B0), r < a
ρe, pe, (0, 0, Be), r > a

(15)

using Fourier analysis and continuity across r = a and needing bounded solutions at
r = 0 the dispersion relation was found. For surface waves (m2

0 > 0)

ρ0(k
2v2

A − ω2)me
K

′

n(mea)

Kn(mea)
= ρe(k

2v2
Ae − ω2)m0

I
′

n(m0a)

In(m0a)
, (16)

and for body waves (m0 = −n0 < 0)

ρ0(k
2v2

A − ω2)me
K

′

n(mea)

Kn(mea)
= ρe(k

2v2
Ae − ω2)n0

J
′

n(n0a)

Jn(n0a)
, (17)

where Kn, In, Jn, are Bessel functions and the dash denotes the derivative with respect
to the argument. Three cases of study were chosen for the complex array of modes
given by equations (16) and (17).
Incompressible modes. In the incompressible limit (c2

0 → ∞, c2
e → ∞), m0 and me

become |k|. The kink and sausage modes are then given explicitly and it is noted
that the phase speed for the kink mode is not monotonic as a function of k but has
a maximum/minimum and the sausage mode is monotonically increasing/decreasing.
This max/min feature of the kink mode is absent in the slab case so can be deduced
to be a reflection of the geometry of the magnetic field.
Photospheric tubes. The dispersion relations were solved for photospheric values,
paying particular attention to the slender tube case and not including stratification.
The kink mode with phase-speed close to ck is considered and it is noticed that the
corresponding equation is of the general form previously discussed. This suggests
this mode may propagate nonlinearly as a solitary wave. By similar argument it is
concluded that two kink (surface) modes exist, a slow and a fast mode, the slow mode
having phase-speed close to cT .
Coronal loops. The coronal conditions, i.e. vAe, vA > ce, c0, imply that there are
no longer surface waves present but two classes of body waves can occur - fast, which
is of particular interest, and slow body waves, which i shall not mention in detail.
Fast kink modes, when vAe > vA, are sustained in dense loops with periods on an
Alfvénic timescale and it is found that these body waves have a low wavenumber cut
off implying that only wavelengths shorter than the diameter of a loop can propagate
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freely. The sausage mode, however, has a much shorter period, approximately one
tenth of that of the kink mode. Sausage and kink fast modes exist only in high density
loops. However, the slow modes appear in both high and low density cylinders.

2.4 Wave Propagation in Twisted Magnetic Cylinder

Granular shear motions in the photosphere can introduce a twist to the flux tube and
prominences often appear to have twisted field lines so the study of this modification
to the straight flux tube is of some importance (Bennett et al. (1999)). Twisted
tubes have been studied before but only in terms of stability. Bennett et al. (1999)
investigates the details of different modes in a uniformly twisted flux tube embedded
in a straight magnetic field given by:

B =



(0, Ar,B0), r < a,
(0 , 0 , Be), r > a.

(18)

The plasma is taken as incompressible, with the field and plasma pressure being struc-
tured in the radial direction. Again, using continuity of total pressure pT and pertur-
bation velocity vr across r = a and searching for a bounded solution at r = 0 and as
r → ∞ leads to the recovery of dispersion relation

(ω2 − ω2
A0)

xI
′

m(x)

Im(x)
− 2mωA0

A√
µρ0

(ω2 − ω2
A0)

2 − 4ω2
A0

A2

µρ0

=

x1K
′

m(x1)

Km(x1)

ρe

ρ0
(ω2 − ω2

Ae) +
A2

µρ0

x1K
′

m(x1)

Km(x1)

. (19)

In this equation the dash, as before, denotes derivative with respect to the argument of
the bessel function, ωA0 and ωAe are the internal and external alfvén speeds, x = m0a,
x1 = |kz|a and

m2
0 = k2

z

„

1 − 4A2ω2
A0

µρ0(ω2 − ω2
A0)

2

«

. (20)

This is the dispersion relation for waves in an incompressible magnetic tube with
uniform twist embedded in a straight magnetic environment. For an incompressible
tube with no twist there are no body waves but when twist is introduced body waves
appear. It was found that as twist is increased the body modes cover a wider range
of the phase speeds and become more distinct. As the value of kza increases the
distribution of the body waves decreases showing that long wavelength modes display
body mode features. A dual nature is discovered where body waves exist for long
wavelengths but surface wave characteristics are displayed for shorter wavelengths.
When m = 1, the kink modes, it is noted that the phase speed of the body modes
tends to infinity as kza → 0, so waves with larger wavelengths propagate with larger
phase speeds. Bennett et al. (1999) explored further the cases of large and small
kza. These approximations, when plotted and compared to the full dispersion relation
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solved numerically, provide a useful check and cast additional light on the behaviour
of the various modes.

2.5 Wave Propagation in Twisted Magnetic Annulus

The interpretation of damping of loop oscillations by resonant absorption given by
eg. Robbrecht et al. (2001); Ruderman & Roberts (2002); Goossens et al. (2002) in-
dicates that the coronal flux tubes are homogeneous for only a percentage of their
radius (∼5−45%) being inhomogeneous, in the first approximation, both in the centre
and in the surrounding plasma. To model this we consider, not only the structuring
of a filament surrounded by a coaxial shell as already considered by, among others,
Mikhalyaev & Solov’ev (2004), but also added twist that makes the annulus inhomo-
geneous. We consider a uniformly twisted magnetic annulus embedded in a vertical
straight magnetic field.

B =

8

<

:

Bi = (0 , 0 , Bi), r < a,
Ba = (0, Br,B0), a < r < R,
Be = (0 , 0 , Be), r > R.

(21)

For equilibrium state there is no background flow and gravity effects are neglected.
Careful analysis is used to find the dispersion relation in terms of the Bessel functions
Im(z), Km(z) and their derivatives:

ΞaK − Ξi + ΞaKΞi
A2

0

µ

ΞaI − Ξi + ΞaIΞi
A2

0

µ

Km(moa)

Im(moa)
=

Km(moR)

Im(moR)

ΞRK − Ξe + ΞRKΞe
A2

0

µ

ΞRI − Ξe + ΞRIΞe
A2

0

µ

. (22)

where

Ξi =
|k|a I

′

m(|k|a)

ρi(ω2 − ω2
Ai)Im(|k|a)

, Ξe =
|k|R K

′

m(|k|R)

ρe(ω2 − ω2
Ae)Km(|k|R)

and

ΞαX =

(ω2 − ω2
A0)

m0αX
′

m(m0α)

Xm(m0α)
− 2mBωA0√

µρ0

ρ0(ω2 − ω2
A0)

2 − 4B2ω2
A0

µ

for
α = a, R,
X = Bessel fncs I, K.

From this equation, setting first a = 0 then setting twist to zero and a = 0 one can
corroborate this result by recovering the general dispersion relations from Bennett
et al. (1999) and from Edwin & Roberts (1983).
Setting m = 0, for the sausage modes, let us consider both the long/short wavelength
approximations for slender annulus (|kz|(R−a)≪1).
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Long wavelength. Let us denote m0a = x, m0R = y. Letting ka < kR ≪ 1, the
dispersion relation reduces to:

K0(x)

I0(x)

1 +
caθ

2icAz

K
′

0(x)

K0(x)

1 +
caθ

2icAz

I1(x)

I0(x)

=

1 +
cRθ

2icAz

K
′

0(y)

K0(y)

1 +
cRθ

2icAz

I1(y)

I0(y)

K0(y)

I0(y)
. (23)

If twist is small it follows from equation(23), after expansion of the Bessel functions
and noting that x, y ≪ 1:

1 +
1

2icAz

„

caθ

xK0(x)
− cRθ

yK0(y)

«

=
K0(x)

K0(y)
, (24)

and, since y = R
a

x and cRθ = R
a

caθ we obtain

xK0(x) = − caθ

2icAz

, (25)

a transcendental equation determining x. We are now left to determine cph from

c2
ph = c2

Az

„

1 ± 2caθ/cAz√
x2 − k2a2

«

.

Short wavelength (1 ≪ka<kR). We introduce the following notation.

c0 = ρ0(c
2
ph − c2

Az), ci = ρi(c
2
ph − v2

Ai), ce = ρe(cph2 − v2
Ae),

ca = ρ0c
2
θ, cR = ρ0c

2
Rθ and ϕ0 = K0(ka)

I0(ka)
I0(kR)
K0(kR)

After some algebra we find that:

ϕ0 =
ce − c0

ce + c0

ci − c0

ci + c0

„

1 − 1

x

c2
i − cic0 − 2c0ca

c2
i − c2

0

+
1

y

c2
e − cec0 − 2c0cR

c2
e − c2

0

«

. (26)

This is of too high order in cph to be solvable. However, it is possible to further
simplify for the slender annulus limit. So, for k(R − a) ≪ 1, we find

ϕ0 ≈ 1 + 2(R − a)m0, (27)

and using the fact that x, y ≫ 1 (short wavelength) and k(R−a) ≪ 1 (slender annulus)
equation (26) can be reduced to give

(ce + c0)(ci + c0) = (ce − c0)(ci − c0) (28)

which yields the solutions

c2
ph = c2

Az, c2
ph =

ρiv
2
Ai + ρev

2
Ae

ρi + ρe

= c2
k, (29)
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a similar result to that found by Bennett et al. (1999).
It remains, in the near future, to study, for these dispersion relations, cph as a

function of wavenumber kza and to investigate the existence and behaviour of the
various modes. Further study will hopefully lead to examining the case of a twisted
annulus without the discontinuity in magnetic field at the inner annulus boundary in
the hope to extend understanding of heating processes within the solar atmosphere.
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Abstract

Observations of flaring loops in radio, visible and x-ray bands show quasi-periodic
pulsations with periods from a few seconds to several minutes. Recent numerical
studies have shown that some of these oscillations can be interpreted as standing
slow magnetoacoustic waves. Energy deposition from the flare excites the second
standing harmonic, with a period determined by the temperature and loop length. The
excited longitudinal oscillations can be practically dissipationless and can, possibly,
be considered MHD autowaves. Numerical simulations with a wide range of flare
durations and choices of heat deposition location show that the second harmonic is a
common feature of flaring loops.
Keywords: Sun: corona, Sun: oscillations, MHD.

1 Introduction

Observations of the solar corona provide us with many observations of oscillations and
waves in a variety of wavelength bands and with a huge range of periodicities. We are
interested in quasi-periodic pulsations (QPP) observed in coronal loops during solar
flares. The flare causes a temporary increase in the intensity of the signal from the loop,
followed by a cooling phase in which the intensity returns to its normal level. Quasi-
periodic variations in intensity are seen during this cooling phase. These pulsations
have periods from a few seconds up to thirty minutes. The two main mechanisms
proposed for these oscillations are the sausage mode and slow magnetoacoustic mode.
For the sausage mode there exists a cut-off which imposes a limit of around 20 s on the
period. (Nakariakov et al., 2003) However, post-flare oscillations often show periods
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much longer than this and thus the sausage mode cannot explain all observations. In
this study, we develop further an alternative suggested in Nakariakov et al. (2004):
flare-generated acoustic oscillations.

There are numerous observations of quasi-periodic compressible pulsations in coro-
nal loops. For example, Wang et al. (2003) present a review of hot coronal loop os-
cillations as observed by SUMER with periods between 7 and 31 minutes. Harrison
(1987) presents solar X-ray pulsations observed by the Hard X-Ray Imagining Spec-
trometer on the Solar Maximum Mission and reports a 24 minute periodicity. Similar
oscillations but of shorter periodicity are presented by McKenzie et al. (1997) and
Terekov et al. (2002). Wang and Xie (2000) observed flare associated pulsations in the
microwave band with a period of about 50 s. Pulsations have been observed simul-
taneously in X-ray and microwave bands, for example by Fu et al. (1996) and Tian
et al. (1999). Similar oscillations, have been observed in the stellar case such as the
oscillation with a period of 220 s observed by Mathioudakis et al. (2003) on the star
Peg II.

2 Numerical Model

We model coronal oscillations using a 1D radiative hydrodynamic code. The numerical
code is a 1D version of the Lagrangian Re-map code (Arber et al., 2001). This code
includes effects such as thermal conductivity, gravitational stratification and radiative
losses. For the radiative loss function we use form given by Rosner et al. (1978) ex-
tended to a wider temperature range. (Peres et al., 1982; Priest, 1982) The simulation
domain consists of a hot (initially 1 MK) coronal loop with a dense, cool (104 K)
plasma region at each footpoint. This region mimics the chromosphere and acts as a
source of plasma to fill the loop during the flare.

The flare is modelled by the application of a Gaussian heat pulse given by

EH = E0 exp

„

− (s − s0)
2

2σ2
s

« »

1 + QP exp

„

− (t − tp)
2

2σ2
t

«–

, (1)

where the energy deposition width is σs and its duration is σt. The flare amplitude
is Qp. This function includes time independent background heating which is applied
in order to maintain the equilibrium. The magnitude of this background heating is
given by E0. For simplicity this background heating is applied at the same position
as the flare. The default values for the various parameters are given in Tab. 1. In our
analysis of the results times are quoted relative to the flare peak time, ie. t − tp.

In the first phase of the simulation, the loop is allowed to settle into an equilibrium
between radiative losses and the time independent heating function. Next the flare
causes the temperature to rise and heat travels down the loop by thermal conductivity.
This in turn causes evaporation of material from the model chromosphere to fill the
loop. After the flare peak the loop cools and its temperature and density return to
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Table 1: Default simulation parameters.

Parameter Value

Loop Length L 55 Mm
Initial Temperature T 1 MK
Background Heating E0 0.004 erg cm−3 s−1

Heating Width σs 7 Mm
Flare Peak Time tp 7200 s
Flare Amplitude QP 2 × 104

Flare Location s0 0 Mm (Apex)

their initial values. We study the oscillations which appear in the density, temperature
and velocity profiles during this cooling process.

3 Data Analysis

We consider acoustic waves set up in a coronal loop due to an impulsive energy de-
position. We observe these waves by analysing temperature, density and velocity
time-series from the simulations. Temperature oscillations are of smaller amplitude
than the velocity and density oscillations and therefore we don’t examine them. The
time series that we use are the variations at the apex. The structure of standing
modes is such that odd numbered modes have a node in density at this point while
odd numbered modes have a node in velocity. The standing wave has a frequency
given by

fn(T ) = 152

√
Tn

L
. (2)

The wave frequency changes with temperature and the temperature changes through-
out the flare development. Thus, we can identify not the standing not just by the
frequency, but by the appropriate modulation of the frequency with time. We use a
Morelet wavelet transform (Torrence and Compo, 1998) to observe the distribution of
wave power over both time and frequency.

Fig 1 shows time-series for the density at the loop apex and the average loop
temperature for a typical flare. (σt = 100) As described in the previous section the
density and temperature are seen to rise until the flare peak and then return slowly to
their initial values. The density reaches its peak value after the temperature. Quasi-
periodic variations can be clearly seen in the density, and less clearly in velocity.
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Figure 1: Time evolution of the number density at the apex (upper panel) and average

temperature (lower panel) for the σt = 100 s flare. (Qp = 2 × 104 and s0 = 0)

Before taking the wavelet transform we use a low pass filter to remove the long time
scale variations from the signal. Fig 2 shows the filtered density from the 100 s flare
and the wavelet the transform of this signal. This plot shows peaks in the wave power
firstly around 200 seconds after the flare with a period of approximately 80 seconds
and then later around 900 seconds after the flare with a period of approximately 180
seconds. The solid curved line across this plot shows the period of the harmonic. This
oscillation with an amplitude of around 5–10% is the second harmonic standing mode
acoustic wave.

As odd numbered modes have a node at the apex, it is unsurprising that the
fundamental mode is not seen in these density plots. Fig 3 shows the velocity signal and
its wavelet transform. There is no significant oscillation in the immediate aftermath
of the flare with some oscillations appearing later. The wavelet transform shows that
this later oscillation has power in the fundamental, second and fourth harmonics. We
therefore conclude that the fundamental mode is not strongly excited by the energy
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Figure 2: The relative density oscillation ne/ne0 at the apex for the 100 s flare (shown

in Fig. 1) and a wavelet transform of the same signal. The curved lines across the

wavelet transform show fundamental (upper dashed), second (solid), third (dotted) and

forth (lower dashed) harmonic periods.

deposition.

4 Discussion

The example shown in the previous section is a fairly typical simulation result. The
second harmonic is seen to be the dominant excited mode for a wide range of flare
parameters, while the fundamental mode is rarely seen. The second harmonic is a sym-
metric mode, and it would be natural to assume that the application of the flare at the
apex leads to a symmetric oscillation. This, however, is not the case. The second har-
monic continues to dominate, even when the flare energy is deposited asymmetrically
at one footpoint. (Tsiklauri et al., 2004)

By examining the parameters of solar and stellar oscillations we can consider
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Figure 3: The relative velocity oscillation V/CS at the apex for the 100 s flare (shown

in Fig. 1) and a wavelet transform of the same signal. The curved lines across the

wavelet transform show fundamental (upper dashed), second (solid), third (dotted) and

forth (lower dashed) harmonic periods.

whether or not they are likely to be second harmonic standing acoustic waves as
predicted by the simulations. Mathioudakis et al. (2003) studied white light oscilla-
tions during a flare on II-Peg and reported a period of 220 seconds. That paper gives
estimates for the temperature and loop length of 200 MK and 500 Mm respectively.
Using these values and Eq. 2, we can derive a value for the period of 233 seconds. This
is consistent with the observed periodicity.

Considering solar observations Wang et al. (2003) examine a number of loop os-
cillations seen by SUMER. Many of these oscillations are not flare associated, but
one example flare associated oscillation is that seen on the 29th of September 2000.
An oscillation with a period of 28 minutes is observed in a loop with an estimated
length of 515 Mm. This time, we can use Eq 2 to make a estimate of the temperature.
This gives us a value of 4 MK. The observations are made using spectral lines at a
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temperature of 6.4 MK.

The oscillations have two interesting properties. Firstly, they can persist for a
number of oscillations with no significant damping, and sometimes even amplification.
Secondly, they are often seen to disappear quite suddenly. The main dissipation mech-
anism for slow waves is well known to be thermal conductivity. From simple linear
theory, the damping times for our example flare is 1.2 wave periods. Despite, this
very strong damping several clear oscillations can be seen in Fig 2. As the oscillations
appear despite the strong damping, then there must exist some instability which is
amplifying the waves. One possible mechanism is the thermal instability. The simula-
tion contains a heat loss function (L) which gives the radiative losses from the plasma
as a function of temperature. In the temperature regime at which oscillations occur
dL

dT
< 0, meaning that cooler plasma loses energy more quickly. This instability can

amplify waves. Waves may therefore exist in a balance between amplification due to
thermal instability and high frequency dissipation. In order to test this hypothesis we
run the flare simulations with radiative losses switched off. No oscillations are then
seen in our example 100 s flare. If the waves are sustained by thermal instability then
the waves would disappear suddenly when the temperature falls into the stable regime.
This explains the sudden disappearance of the oscillations.

5 Conclusions

Observed quasi-periodic oscillations in coronal loops can be interpreted as standing
magnetoacoustic waves. Hydrodynamic simulations of these waves show that energy
deposition from a flare can excite standing modes and that the second harmonic is the
most easily excited mode. This second harmonic seems to be the natural response of
the loop to energy input and occurs for a wide range of energy deposition parameters
such as position, duration and amplitude. The second harmonic is excited even for
asymmetric energy deposition. The period of the oscillations can be calculated from
the loop length and plasma temperature.

The acoustic waves interpretation is often excluded on the basis of strong ther-
mal conductivity. Calculations based on the thermal conductivity suggest that the
oscillations in our simulations should not occur. In the absence of thermal instability,
these oscillations disappear and we therefore suggest that the waves exist as a result
of competition between thermal over-stability and thermal dissipation.
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Abstract

Electron Cyclotron Resonance Ion Sources (ECRIS) are important tools of the atomic
physics research, which find applications in the field of physics, medicine etc. The
most important part of the ion sources is the complex plasma, which determines their
performance but is still less known. Therefore we need to make efforts to find out
more about them to improve ion sources. For this reason we started local plasma
diagnostics research project, at the ATOMKI-ECRIS in Hungary and continued our
work at the NIRS-ECRIS in Japan. In the framework of the project we studied the cold
plasma of the source, developed a new method to evaluate the ion current flowing to
the probe that is useful to calculate local electron density.We designed a mechanism
to position the probe and determined various electron density distributions. Using
emitting probes we determined the plasma potential and its distribution.
Keywords: ECRIS, ECR plasma, Langmuir-probe, plasma diagnostics
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1 Motivation

The Electron Cyclotron Resonance Ion Source is one of the most successful machines
built for Highly Charged Ion production (HCI). ¿From their late ′70 invention, the
ion sources have been developed from complex prototypes to high-performance, highly
sophisticated experimental facilities. ECR ion sources can be used in diverse research
fields as stand-alone machines or injectors of high-energy accelerators. They were
found useful in basic research and application either (e.g. tumour therapy, production
of new materials etc.). The core of the source is the ECR plasma, which is decisive fac-
tor regarding the performance of the ion source. However, the theoretical knowledge
we have on ECR plasma is incomplete, therefore diagnostic research of the plasma is
important. Diagnostic methods canbe divided in two groups, global and local meth-
ods. Global methods provide overall information on the plasma parameters using the
intense electromagnetic radiation coming out of the source, so there is no possibility
to determine the local values of the plasma parameters. However, knowledge of the
local plasma parameters and their evolution during (e.g. beam optimization process,
biased-disk on/off etc.) external interventions would be of great interest in better un-
derstanding of the source and explore hidden possibilities. In case of ECRIS’s mainly
global diagnostic methods have been applied, while physicists just nowadays started
to show interest in using local diagnostic methods.

2 Short presentation of the ECR ion source

Detailed description of ECR ion sources are described by many authors (e.g. Geller
1996; Brown 1989; Wolf 1995). This paper presents the block diagram (Fig.1.) of the
ECR ion source.

¿From left to right one can see the microwave system responsible for plasma igni-
tion and support, the magnetic system responsible for the confining of the plasma, the
extraction system which allow us to extract ions from the plasma using electrostatic
fields, the gas feed system which allow us to introduce different gases to obtain different
plasmas (eventually other mechanisms to create plasmas from solid state materials),
the vacuum system which is crucial for highly-charged ion production, and the radia-
tion protection and safety systems which are important from the user and apparatus
protection point of view. There are many possibilities to make experiments in the
complex ECR plasma. The plasma is created by high-frequency microwaves and con-
fined by complex magnetic trap. The magnetic trap is formed by the superposition of
two different magnetic filed configurations, an axial field created by DC4 solenoid coils
and a radial field created by permanent magnets. It is important that in the central
region of the plasma chamber, the resulted field can be imagined as constant induction
egg-shaped surfaces embedded in each other. One of these surfaces play crucial role in
plasma ignition and maintenance. This surface is the so-called Resonant Zone, the in-
ner region of this surface is the so-called hot plasma, while the outer region is the cold
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Figure 1: Block diagram of an ECR ion source.

plasma. The magnetic induction of the resonant zone is such that the frequency of the
circular motion of the electrons equals the frequency of the microwaves introduced in
the plasma chamber. When an electron goes through the resonant surface, stochastic
resonant energy exchange occur between the electron and the microwaves. This is
the so-called ECR heating. However, only the velocity component perpendicular to
the magnetic field can be increased in this way, while the parallel remain unchanged.
This way large anisotropy occur. Due to this fact, energetic electrons are trapped in
the resonant zone. They collide with neutral atoms or low charged ions, which loose
electrons step-by-step. These electrons form a negative cloud while ions are trapped
due to electrostatic interaction between the electron cloud and ions. The final result
of these processes is plasma ignition. As another result of a collision between electron
and ion the anisotropy can completely or partially disappear, the electron is no more
trapped and can get out of the resonant zone and get into the cold plasma. In this
region electron cannot get energized by the microwaves, they cannot ionize, and most
likely they escape from the magnetic trap, or mirrored back toward the resonant zone
(Geller 1996).

3 Langmuir probe and ECR ion source

Depending on the particular plasma region we have to deal with and the plasma pa-
rameter we want to determine we have to choose properly the probe configuration.
There are many choices, e.g. simple cylindrical probe, double cylindrical probe, emit-
ting probe etc. Because the ECR plasma is complex there are many difficulties we
have to deal with. Here we mention some of them, detailed description can be found
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in (Kenéz 2002a).

• the plasma is confined in a strong and inhomogeneous B − min magnetic trap,

• small plasma and chamber dimensions at high frequency microwaves (> 5 GHz),

• presence of multiply charged ions of different atomic species,

• secondary electron emission of the probe,

• sputtering of the probe metal caused by energetic particles of the plasma.

By careful design of the probe and careful definition of the experimental conditions
many of these difficulties can be handled or their influence can be minimized. The
experimental data we obtain is the voltage-current (U-I) curve of the probe. Fig.2.
shows typical probe U − I curves.

Figure 2: Langmuir probe U − I curves. D-distance between the probe and BMIN

plane of the source

These were measured in the cold region of the ECR plasma (oxygen plasma, source
tuned for O1+ production). For the measurements we used cylindrical probe with 0.4
mm base diameter and 3 mm height. To calculate plasma parameters we fitted the
[-50,0] voltage region assuming Maxwell-Boltzmann statistics for the collected electron
component (Kenéz 2002a).

4 Theoretical model

The ECR plasma is confined in a magnetic mirror trap, which affects mostly the elec-
trons of the plasma and makes the probe theory complicated. Plasmas confined in
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magnetic fields cannot reach a complete equilibrium state; in consequence they can be
described using different temperatures for the motions perpendicular and parallel to
the magnetic field. In such cases one can expect that the slope of the probe character-
istics give the parallel electron temperature (Chen 1965). The particle distribution of
an ECRIS is well described by a ”loss-cone” distribution (Dory 1965), which presents
Maxwellian character for the particle motion parallel to the magnetic field. Thus we
consider Maxwell-Boltzmann electron distribution function for the parallel component.
Description of a theoretical model dealing with the case of singly charged ions could
be found in (Chen 1965).

4.1 Multiply charged ions

Theoretical models concerning Langmuir probes do not take into account the fact that
ECR plasmas contain multiply charged ions of different atomic species, so we have to
include them into the calculations to evaluate the probe data correctly. An exact
ion distribution function is not available, so it has to be introduced empirically. We
assume that the plasma conditions are well reflected by the extracted beam when the
plasma contains mostly lower charge states (Dou 1998). The electron density can be
calculated as (Kenéz 2002a):

ne =
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αjj
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where ne is the electron density, M the ion mass, A the normal area of the probe
with respect to the magnetic field lines, e the elementary charge, kB the Boltzmann
constant, j the charge state; Iion

sat the saturation ion current and Te the parallel electron
temperature, determined from the mean square fit of the characteristics; j+ the average
charge and αj the percentage composition of the beam, determined experimentally
from the beam spectra.

4.2 Multi-component plasma

The vacuum of the source always contain residual gas (N, C, H...), while highly charged
ion production needs gas mixing. All these atoms getionized in the plasma and eventu-
ally collected by the probe so they should be considered when more accurate electron
density calculations are the objectives. Generalization of Eq. (1) is straightforward
(Kenéz 2002a). We only have to make a summation for the different components of
the plasma.
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where now j+ is the estimated average charge of the multi-component plasma and
αk,j is the percentage composition of the beam (k denotes the different plasma com-
ponents), determined experimentally from the beam spectra. The experiments have
shown that differences between the electron densities yielded by the two models are
significant when great amount of residual gas atoms are present in the plasma or two
gases are used.

5 Experimental results

5.1 Axial electron density distribution. Biased-Disk effect

The current collector surface of the probe was set on the symmetry axis of the source.
Probe U−I curve series were taken in different plasmas tuned for different charge state
production, e.g. O1+, O3+, O5+, Ar4+, Ar1+, Ar11+ etc. During data acquisition
the probe was moved step by step in the cold plasma region. Data processing was
performed using all theoretical models presented in section 4. Three purposes were
followed: electron density distribution along the source axis, effect of the multiply
charged ions on the electron density calculated with the different models and study
of the so-called Biased-Disk effect. The Biased-Disk is an internal electrode, which is
negatively biased with respect to the ion source potential. When is turned on and its
voltage is optimized, the extracted ion current can increase with a factor of 4 − 10
depending on the optimized charge state. However, it is not completely understood
the mechanism of this effect. Fig.3. presents the results of an experiment performed
in Ar plasma, ion source tuned for Ar8+ production. Two series of U − I curves were
taken in Biased-Disk ON/OFF cases, respectively.

Conclusions. Moving the probe from the edge of the plasma chamber toward
the resonant zone, the electron density increases. As it can be seen on the figure,
withinin a relatively short distance (20cm) the electron density increases by one order
of magnitude (true for every experiment we performed). Taking into account the
different charge states of every atomic species, we calculated differences between the
electron densities values calculated using SCSC and MCMC models up to a factor of 3
(Kenéz 2002b). Performing experiments increasing the charge state of the optimized
ion we observed that that the calculated values of the electron density also increased.
This is in agreement with the assumption that increasing the charge state of the
optimized ion, the average charge state of the plasma ion component must also increase
which naturally must be followed by an increase of the electron density. This result
shows that for realistic description of the ECR plasma, multiply charged ions must
be taken into account. We also showed that the Biased-Disk does not affect the cold
plasma regions. The difference between the electron density values calculated for the
Biased-Disk ON/OFF cases, are below the error limit (Kenéz 2002b).
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Figure 3: Axial electron density distributions; Biased-Disk ON/OFF cases. Effect of

the multiply charged ions

5.2 Azimuthal electron density distribution

The intersection points of the end plane of the plasma chamber and those magnetic
field lines which cross the resonant zone is a star-shaped configuration. Due to the
cylindrical symmetry of the coils and the hexapole permanent magnet, the stars have
three identical branches at each end of the chamber, but 60 degrees rotated. The
purpose of the next experiment was to determine the electron density distribution
in the branches of the stars. The holder of the probe was introduced on the axis of
the source, so its current collector surface could be rotated on a given radius circle
(e.g. 14mm). Measurements were performed in the cold plasma region, in different
axial planes, in a 100-degree angle region of only one branch of the injection side star.
For this experiment low ionized O plasma was generated. We calculated the electron
density using the models presented in section 4, but due to the low average charge of
the plasma ion component (close to 1) no relevant differences we observed. But it is
important to note, that using MCMC model the differences were larger than the error
limit. It can be seen on Fig.4., that the electron density has maximum value in the
middle plane of the star, than falls rapidly.

Outside the star-shape no electron current could be measured, only a little ion
current, which proves that ions are electrically confined. Moving toward the resonant
zone the electron density increase as we showed at the axial measurements, while the
angular region where the plasma is located widens. The result of this experiment
is the first three-dimensional electron density distribution of the ECR plasma in the
literature (Kenéz 2004).



142 Kenéz et al.

Figure 4: 3D - electron density distribution

5.3 Plasma potential measurements using emitting probe

The experiments presented in this section were performed at the all-permanent NIRS-
ECRIS, Japan. For well-known reasons, e.g. electron current suppression caused by
the confining magnetic field, in case of ECR plasmas simple Langmuir-probes are
not suitable for plasma potential measurement (Kenéz 2002a, Chen 1965). However,
another type of probe, the emitting probe is available for this purpose. Let’s see what
makes possible to use emitting probes for plasma potential measurement. Curve 1 in
Fig.5. is a typical cold probe characteristic curve.

There are two important points in this curve, one is the so-called floating potential
(Vf ) where the total probe current is zero and the other one is the plasma potential (Vp)
where the plasma and the probe are on the same electric potential, there are no electric
fields, the number of the collected charged carriers is determined by their energies. Due
to the larger mobility of the electrons, Vf is negative for simple Langmuir-probes used
in the cold regions of the ECR plasma. When a probe is heated (Fig.1. curves 2,3
and 4) it starts emitting secondary electrons. Due to the secondary electron emission,
the shape of the probe voltage-current (U − I) curve changes in some regions. When
the probe potential is above the plasma potential, the low energy secondary electrons
are trapped by the positive potential barrier of the probe so they cannot leave and do
not contribute to the total current. Decreasing the probe voltage below the plasma
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Figure 5: Probe voltage-current curves; curve 1 - cold probe, curves 2,3 and 4 -

heated, emitting probe (increasing heating current)

potential, the secondary electrons are repelled by the probe and enter into the plasma
contributing to the total current. It can be seen on the figure, that proportionally to the
heating current, the steepness of the transition region of the curves is emphasized. Of
course, the number of the secondary electrons increases proportionally with the probe
temperature. This means, heating continuously up the probe, the floating potential
gets higher and higher closing to the plasma potential, which is the saturation value
of this process. Taking into account these considerations, ensuring sufficiently high
secondary electron emission, the emitting probe can be used to determine the local
plasma potential and consequently its distribution in ECR the plasma. Emitting
probes can be simply realized making a loop of tungsten (or other material) of little
dimensions and insulating it properly from other conducting parts of the ion source.
The probe must have a heater electrical circuit and another circuit to bias it to different
voltages with respect to the plasma chamber (which is on high voltage) and to measure
the current. The emitting probe used at the present experiments was made of 0.1mm

diameter tungsten wire and approx. 1 mm length. The emitting probe was made
splicing one 0.1 mm diameter tungsten wire with two 0.1 mm diameter copper wires
(Kenéz 2002b) and introduced inside a two-bored (2×0.4 mm) ceramic insulator tube.
For test experiments different kinds of plasmas were generated at different microwave
power using Ar, N and O as working gas. The ECR plasma contains highly charged
heavy ions, which collide with the probe sputtering it. Due to this effect, the lifetime
of the probe is limited. However, carefully controlling the experimental conditions
we reached lifetimes as long as 10 hours. The behavior of the emitting probe and
ion source was tested. During heating when the probe was kept in fixed position the
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plasma was only slightly disturbed. The disturbance was slightly higher when the
heated probe was moved inside the plasma chamber. The heated probe was used only
in the cold regions of the ECR plasma. To determine the local plasma potential, U −I

curves were taken while the heater current was step-by-step increased to get higher
and higher emission. Using these curves the behavior of the floating potential was
analyzed. It was observed that corresponding to the theory, the floating potential
increased as the probe temperature increased and finally saturated (Fig.6.).

Figure 6: Evolution of the floating potential during continuous heating of the probe;

the saturation value is the local potential

Under these circumstances we consider that the saturation value of the floating
potential is the local plasma potential.

6 Conclusions

We adapted a method well known in the filed of plasma physics and successfully applied
to calculated local plasma parameters and parameter distributions in the complex
ECR plasma even though many difficulties are encountered. Both theoretical and
experimental work has been done. We developed new theoretical model to take into
account the multiply charged nature of the ECR plasma. We also measured the
first three-dimensional local electron density distribution. Using the emitting probe
method, we measured local plasma potential. Further experiments are needed to build
the three-dimensional plasma potential map of the cold ECR plasma.
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Abstract

The paper presents a self-consistent discharge model of gas discharges, the hybrid
model. The applicability of the model is illustrated on a helium gas discharge. With
the hybrid model the role of molecular ions in helium glow discharges is investigated.
Because of the uncertainties in the determination of the electron temperature the
effect of kTe (used as an input parameter of the model) on the calculated discharge
characteristics is investigated.
Keywords: dc glow discharges, hybrid models

1 Introduction

Low temperature, cold-cathode glow discharges are used in various application fields:
in the semiconductor industry for plasma etching and deposition, for lighting and laser
purposes, for plasma display panels, in analytical chemistry as spectroscopic sources
for the analysis of solid materials, etc. In order to optimize these applications, a good
insight into the glow discharge processes is desirable. Numerical modelling proved to
be a powerful technique for this purpose.

Glow discharges are composed of many regions, which have very different emission
light intensity, electric field and charge density distributions. The most important
part of the glow discharges is the cathode region with the cathode sheath and the
negative glow. In this region are created the charges which are necessary for the self-
sustainment of the discharge. Many applications use the cathode region because of
the strong light emission characteristic to the negative glow and also because of the
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presence of high energy electrons and consequently of active radicals. Further in our
work we talk about glow discharges which contains only the cathode sheath and the
negative glow region.

In this paper, the basics of hybrid model are described and the applicability of
hybrid modelling is illustrated on a helium gas discharge.

2 Hybrid model

Hybrid models consist of a fluid model and a Monte Carlo model. The fluid model
makes it possible to describe the motion of charges which are in hydrodynamic equi-
librium with the electric field in the low electric field region (negative glow). With
the Monte Carlo model the electrons which move in the high electric field present in
the cathode vicinity can be traced. The fluid models are based on a two-component
fluid description of the plasma. The self-consistency is achieved by solving the Poisson
equation together with the continuity (Eq. 1) and momentum transfer equations (Eq.
2) for fluid species (positive ions and electrons):

∂ne

∂t
+ ∇(neve) = Se,

∂ni

∂t
+ ∇(nivi) = Si, △V = −

e

ǫ0
(ni − ne), (1)

where ve and vi are the mean velocities, Se and Si are the source functions, ne and
ni are the densities of electrons and ions, respectively, e is the elementary charge, V is
the electric potential and ǫ0 is the permittivity of free space. The mean velocities ve

and vi are calculated from the momentum transfer equations for electrons and ions:

Φe = neve = −neµeE −∇(neDe), Φi = nivi = niµiE −∇(niDi), (2)

where µe(i) and De(i) are the mobility and diffusion coefficients of electrons (ions) and
Φe(i) are the corresponding fluxes. The set of fluid equations is closed by the equation
describing the production of primary electrons at the cathode j−c = γj+c , where γ is the
secondary electron emission coefficient and j+c and j−c are the ion and electron current
at the cathode, respectively. The source functions of the fluid species are calculated in
the Monte Carlo routine for fast electrons, which are traced in a potential distribution
obtained from the fluid model (Surendra et al., 1990; Fiala et al., 1994; Donkó et al.,
1998).

In the MC algorithm random numbers are used to determine the positions and the
types of the collisions. The random numbers (R01) have a uniform distribution in the
[0,1) interval. The primary electrons emitted from the cathode and their secondaries
produced in ionizing collisions are traced until they are absorbed by the anode or, due
to their energy losses in inelastic collisions, they are no longer capable of producing
any additional ions. The r(t) trajectory of electrons between successive collisions is
followed by direct integration of their equation of motion:

m
d2r

dt2
= eE, (3)
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where e and m are the electron charge and mass, respectively and E is the electric
field. The free path of electrons is assigned randomly and the position of the collision
is calculated from (Boeuf et al., 1982):

Z

s1

s0

nσ[ε(s)]ds = − ln(1 − R01), (4)

where s0 is the position of the last collision and s1 is the position of the next collision
measured on the curvilinear abscissa s, n is the background gas density, σ is the sum
of cross sections of all possible elementary processes, ε is the kinetic energy of the
electron.

The type of the collision which occurs after the free flight is chosen randomly,
taking into account the values of cross sections of different processes at the energy
of the colliding electron. The source function of ions Si is accumulated from the
individual ionization processes. The electrons are transferred to the slow electron
group when their (kinetic+potential) energy falls below the ionization potential of
the gas atoms. Here the potential energy is considered to be the difference between
the maximum value of the potential in the discharge and the potential at the actual
position of the electron. In the hybrid model the Monte Carlo and fluid models are
solved iteratively until the stationary state of the discharges is reached.

3 Modelling of helium glow discharges

3.1 Description of the self-consistent model

It is well known that in helium glow discharges at high pressures ≥ 100 mbar high
density of molecular ions are present in the discharge and are responsible for the strong
UV and VUV radiation. At low pressures (several mbar) the molecular ions have been
investigated only in positive column discharges. At pressures higher than 10 mbar
in positive column discharges molecular ions become the dominant ions (Ichikawa
et al., 1980). The aim of our work is to investigate low pressure negative glow helium
discharges and to answer the two main questions: (i)Are the molecular ions present and
do they play an important role in the self sustainment of low pressure negative glow
helium discharges? (ii) How does the molecular ion to atomic ion density ratio change
in the discharge with pressure? In order to answer these questions we investigate
similar glow discharges (pL = const., j/p2=const.) in the 2-60 mbar pressure range.
Four different discharges are studied at the conditions which correspond to the same
pL = 6 mbar cm and reduced current density j/p2 = 0.027 mA cm−2 mbar−2: (i) p
= 2 mbar, j = 0.108 mA cm−2, L = 3 cm (ii) p = 6 mbar, j = 0.972 mA cm−2, L =
1 cm, (iii) p = 20 mbar, j = 10.8 mA cm−2, L = 0.3 cm and (iv) p = 60 mbar, j =
97.2 mA cm−2, L = 0.1 cm.

The discharges are described by a one-dimensional hybrid model which combines
a fluid model for atomic and molecular ions and slow electrons, the Monte Carlo (MC)
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simulation of fast electrons, and a diffusion-reaction model of the metastable species (it
has been found from the literature that the metastables play on important role in the
formation of the atomic and molecular ions). In the simulation the fluid, Monte Carlo
and metastable models are solved in an iterative way until the stationary state of the
discharge is reached. The structure of the hybrid model and the transfer of physical
quantities between the three submodels are presented on the flowchart shown in Fig. 1.
The elementary processes taken into account in the model are summarized in Table 1
(for a more detailed discussion see Ref. (Kutasi et al., 2001).) For fast electrons we
take into account elastic scattering (p1), excitation to metastable and several higher
excited states (up to n = 5) (p2-p3) as well as ionization (p4). The excited atoms
(including the n = 3 to n = 5 states) can participate in associative ionization process
(p5) in which molecular ions are created. The singlet and triplet atomic metastables
may convert into triplet atomic and molecular metastables, respectively (p6-p7). The
singlet atomic metastables also may convert to ground state atoms due to collision with
the gas atoms (p8). The atomic and molecular ions are partly created in metastable-
metastable associative ionization processes which result in the loss of metastables (p9).
The metastables are also lost in deexcitation processes (p10-p11). The atomic ions
convert into molecular ions through the ion conversion process (p12). The atomic
ions are lost through collisional radiative (p13) and radiative recombination (p14).
The molecular ions are lost through dissociative recombination (p15) (this process
was not taken into account in the model of (Kutasi et al., 2001)), collisional radiative
recombination (p16) and three body recombination (p17) processes.

Table 1: Elementary processes considered in the model. He(S), He(T) and He(M)

denote the singlet atomic, triplet atomic and molecular metastables, respectively.

Proc.
id.

Reaction Process Proc.
id.

Reaction Process

p1 He+e−→He+e− p10 He(S)+e−→He+e−

p2 He+e−→He(S,T)+e− p11 He(T)+e−→He+e−

p3 He+e−→He∗+e− p12 He++2He→He+
2 +He

p4 He+e−→He++2e− p13 He++2e−→He∗+e−

p5 He∗ + He → He+
2 + e− p14 He++e−→He+hν

p6 He(S)+e−→He(T)+e− p15 He+
2 +e→He(11S)+He(23S)

p7 He(T)+2He→He(M)+He p16 He+
2 +2e−→He∗2+e−

p8 He(S)+He→2He p17 He+
2 +e−+He→He∗2+He

p9 He(S,T)+He(S,T)→He++He+e−

He+
2 +e−
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Figure 1: Flowchart of the model.

The input parameters of such a hybrid model are the discharge voltage, gas pres-
sure, rate coefficients of different processes, the electron collisional cross sections, dif-
fusion and mobility coefficients, the temperature of bulk (slow) electrons kTe, and the
secondary electron emission coefficient γ. One part of these parameters can be de-
termined experimentally, the other part can be found in the literature, however there
is a lack of data for the (i) electron temperature and (ii) secondary electron emission
coefficient. Hybrid models of negative glow discharges conventionally use a constant
characteristic energy for the slow electrons, which is chosen to be kTe = 1 eV in almost
all studies. In some previous investigations on low pressure negative glow discharges
cold electron temperatures significantly lower than 1 eV have been found. These stud-
ies include laser based diagnostics of Den Hartog et al. (1989), theoretical calculations
of Arslanbekov et al. (1998), Langmuir probe measurement of Bogaerts et al. (1995),
Angstadt et al. (1993) and Ohsawa et al. (1991), Thomson scattering measurements of
Gamez et al. (2004). In all of these works cold electron temperatures ranging between
0.08 and 0.5 eV have been found. Considering these data, the 1 eV value, used in most
hybrid model-based simulations, may be too high. As the determination of the elec-
tron temperature in a wide pressure range is difficult in our work we also investigate
the effect of the slow electron temperature on the discharge characteristics.
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3.2 Results of the model

First the discharge characteristics calculated for 2 mbar pressure are presented. The
model predicts the formation of cathode sheath - negative glow structure, see Fig. 2(a);
the electric field falls nearly linearly from the cathode, and it is closely zero in the
negative glow region. The charge density distributions - shown in Fig. 2(b) - indicate
the presence of a quasi-neutral plasma in the negative glow and the dominance of
the positive ions in the cathode sheath. According to the calculated charge fluxes
Fig. 2(c) a part of the ions flows to the anode, which is the consequence of the small
negative field present in the anode vicinity, due to the reversal of the electric field in
the negative glow, see Fig. 2(d). The modelling results show that the position of the
field reversal coincides with the position of the maximum density.
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Figure 2: (a) Axial distribution of the electric field; (b) Density distribution of the

slow electrons (—), atomic (•) and molecular (– – –) ions; (b) Flux of the slow elec-

trons (—), atomic (•) and molecular (– – –) ions; (d) Axial distribution of the electric

field enlarged for the negative glow.

The dependence of calculated discharge characteristics on the assumed value of the
electron temperature is studied in details in the forthcoming part of the paper. First
the dependence of the current density on kTe at different pressures is studied. The
results are illustrated in Fig. 3: the current density increases with increasing electron
temperature. The results show that in order to obtain by modelling the experimental
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current density the electron temperature in the discharges of 2-60 mbar pressure have
to be chosen in the 0.1 - 0.3 eV range. Assuming higher kTe values in the hybrid
models the current density can be strongly overestimated. At low pressures assuming
an electron temperature of 1 eV introduces a 20% error in the current density, however
with increasing pressure this error raises and at 60 mbar reaches 60%. This strong
dependence of the current densities on the electron temperature let us conclude that for
correct modelling the accurate determination of the electron temperature is required.
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Figure 3: Calculated current density (•) as a function of the assumed electron tem-

perature at different gas pressures. The heavy horizontal lines in the panels represent

the experimental current density at U = 350 V.

In the following the percentage of molecular ions in the negative glow as a function
of the assumed kTe is studied and presented in Fig. 4(a). The percentage of molecular
ions decreases with increasing electron temperature, in comparison with the 0.1 eV
case, at 1 eV the percentage of molecular ions decreases by about 10% at p = 60 mbar.
The results show that in the 0.1-0.2 eV range, the percentage of molecular ions de-
creases by about 5% in the case of 2, 6 and 20 mbar, while at 60 mbar increases by
about 2%. In the case of kTe = 0.2 eV - which is supposed by us to be a realistic value
for the electron temperature - at 2 mbar 6% of ions are molecular ions, at 6 mbar 16%,
at 20 mbar 30% and at the highest pressure investigated 60 mbar 42%. In Fig. 4(b)
the percentage of the ion current carried by molecular ions at the cathode as a func-
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Figure 4: (a) Percentage of molecular ions in the negative glow as a function of

the assumed electron temperature at 2 mbar (⊓⊔), 6 mbar (◦ ), 20 mbar (△), 60 mbar

(▽). (b) Percentage of the ion current carried by the molecular ions at the cathode

and (c) percentage of secondary electrons released by molecular ions at the cathode as

a function of the assumed electron temperature at 2 mbar (⊓⊔), 6 mbar (◦ ), 20 mbar

(△), 60 mbar (▽).

tion of the assumed electron temperature is presented. The ratio of the molecular
ion current I

He+
2

to the total ion current shows a slight dependence on the electron

temperature. In the case of kTe = 0.2 eV at 2 mbar 5% of the ion current is carried
by the molecular ions, at 6 mbar this percentage increases up to 12% and at 60 mbar
reaches 22%. The self sustained mode of operation of the discharge is assured by the
ions arriving at the cathode surface which induce the emission of secondary electrons.
Fig. 4(c) shows the percentage of secondary electrons released by the molecular ions,
r = 100 × γ

He+
2

I
He+

2

/(γ
He+

2

I
He+

2

+ γHe+IHe+). At 2 mbar 3% of electrons are released

by the molecular ions, at 6 mbar 7% and at 60 mbar 15%. These results give us an
insight about the increasing importance of molecular ions in the self-sustainment of
the discharge.
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4 Summary

In the paper the hybrid model and the investigations carried out on a helium glow
discharge in the 2-60 mbar pressure range have been presented. The calculations have
been carried out for similar discharges (pL and j/p2 const.) at a constant discharge
voltage V = 350 V. Besides the role of molecular ions in the discharge the effect of the
electron temperature on discharge characteristics have been investigated. The model
have shown that even at low pressures like 6 mbar 16% of ions are molecular ions and
they play on important role in the secondary electron emission. The comparison of the
measured and calculated current densities indicated that the electron temperature in
the 2-60 mbar pressure domain is in the 0.1-0.3 eV range, which is significantly lower
than the kTe = 1 eV value conventionally used in hybrid models. We have shown that
by assuming kTe = 1 eV – as the majority of hybrid models do – the current density
of the discharges can be significantly overestimated.

From our investigations we conclude that for correct modelling the accurate exper-
imental determination of electron temperature is necessary and in the case of helium
discharges even at low pressures the presence of molecular ions should be taken into
account.
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Abstract

Nowadays the only direct evidence for a model Universe with non-zero cosmological
constant is the Hubble diagram of the distant Ia type supernovae. Other observations,
e.g. the WMAP measurements, do not support the existence of a non-zero cosmological
constant without any doubt (see Blanchard et al. (2003)). Therefore there is a growing
interest in studying the redshift distance diagram of SN Ia supernovae to verify the
existence of Λ 6= 0 cosmological constant. In this paper we show that (i) there is a
correlation between the statistical residuals of SN Ia distance moduli in the Hubble-
diagram and the calculated internal extinction values of the host galaxy. It suggests
that there is something wrong with the previous estimations of internal extinction.
Furthermore, we show that (ii) the correction for these correlation results a Hubble-
diagram which does not support models with ΩΛ ≃ 0.7, rather an Einstein-de Sitter
Universe.
Keywords: SN Ia:general, cosmology:miscellaneous

1 Introduction

It seems evident that after an alternative explanation of the WMAP results (Blanchard
et al., 2003) the Hubble-diagram of the distant Ia type supernovae will become a more
fundamental (and maybe the only direct) evidence for a cosmology with non-zero
cosmological constant. Therefore there is an increasing interest in studying the fine
details of this diagram to exclude the possible alternative explanations.

Type Ia supernovae (SNe Ia) have an important role in the chemical evolution of the
Universe and the determination of cosmological distance scale. This later application
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is based on their well defined MV = −19.4 ± .5 maximum luminosity (Richardson et
al., 2002).

It is worth noting that the mean absolute magnitude of SNe Ia is assumed to be a
universal standard in the whole Universe. Therefore they are used as standard candles.
The paper of Tonry et al. (Tonry et al. (2003) and references therein; ”TONRY”
in what follows) concluded that ΩΛ ≃ 0.7 and ΩM ≃ 0.3, where ΩM is the ratio
of the density of the non-relativistic matter in Universe to the critical density and
ΩΛ = λc2/(3H2

o ), where λ is the cosmological constant, c is the velocity of light,
and Ho is the Hubble constant. Previously, both the High-z Supernova Search Team
(Schmidt et al. (1998), Riess et al. (2000)) and the Supernova Cosmology Project
(Perlmutter et al. (1999)) came to the conclusion that supernovae (SNe) between
redshifts of z ≃ (0.3−1.0) had in the average ≃ 0.28 mag higher distance moduli than
expected assuming ΩM ≃ 0.3 and ΩΛ = 0 (Riess, 2000).

Recently, two independent studies queried the reality of the nonzero cosmological
constant deduced from the studies of high-redshift type Ia supernovae in the last
years. Rowan-Robinson (2002) argued that the internal extinctions in the host spiral
galaxies are underestimated, and he obtained inconclusive evidence for the positive
cosmological constant. Mészáros (2002) used pure statistical arguments, and also
showed that the introduction of the positive cosmological constant is premature yet.

The paper is organized as follows: After defining some important cosmological
quantities and equations related to SNe Ia the statistical studies mentioned above are
further extended in this paper. Out of 230 supernovae in TONRY dataset 188 have
given extinction values. We separated it into subsamples with respect to their extinc-
tion values. Then the whole sample of 188 supernovae and its different subsamples are
tested whether the statistical structure of the redshift distance relation depends on
the internal extinction. These tests suggested that distances obtained for the high z
part of the dataset were not independent from the internal extinction. Therefore any
cosmological conclusion drawn from the supernova data should be taken with care. A
more extensive sample of supernovae containing much more objects is highly required
for a more reliable analysis.

We give the results of these tests. We show that former investigations, for ex-
ample Choudhoury et al. (2004) failed to recognize the inadequacy of the removal of
internal extinction from the data because of the improper definition of the subsamples
investigated.

Using the result of statistical tests connected with the internal extinction values of
SNe Ia we conclude that the corrected Hubble-diagram does not support models with
ΩΛ ≃ 0.7, rather an open Universe with Ωm ≃ 0.1 matter.
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Figure 1: Left: The distance modulus-redshift relation of SNe Ia. The data-set is

form Tonry et al. 2003. There are three cosmological models marked in the figure.

The ”empty model” is dominated by only the cosmological constant, there is no matter

density: Ωm = 0, ΩΛ = 1. The ”accelerating model” is the today mostly accepted flat

model, with cosmological constant, or dark energy: Ωm = 0.3, ΩΛ = 0.7. The ”matter-

dominated model” is a flat model without cosmological constant: Ωm = 1, ΩΛ = 0.

Right: The deviation of the measured distance moduli from the calculated ones of the

empty Universe. The uppermost curve represents the acceelrating model, the zero line

belongs to the empty model, the lower curve is the Einstein-de Sitter Universe.

2 Observational cosmology with SNe Ia

The luminosity distance (DL) of cosmological objects depends on some cosmological
parameters. These parameters determine the structure of the space-time. In the prac-
tice we measure some appropriate quantities of celestial objects from which we can
calculate their luminosity distances. If we have the value of luminosity distance, we are
in the position to compare these data with the predictions of theoretical models. SNe
Ia are especially good objects for measurements like this because they are standard
candles, i.e. their absolute luminosities (after corrections) are the same everywhere in
the Universe. We can measure the redshift, and the apparent brightness of an indi-
vidual supernova and one can calculate from these data the luminosity distance. The
latest extensive data-set (Tonry et al. 2003) lists the logarithm of the redshift, multi-
plied by the speed of light c, and the logarithm of the luminosity distance multiplied
by the present value of the Hubble constant, H0. In this case there is no need for the
accurate value of H0. If we draw the distance modulus-redshift relations of different
models we obtain the left side of Fig. 1.

The following equation specifies the relationship between the apparent magnitude
and the redshift of an object:

m = M + 5 log
10

Q(z, Ω) (1)
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Figure 2: Histogram of simulated SNe extinctions (left), and the real sample (right).

The extinction is in magnitude on the horizontal axis. There is a well pronounced peak

at AV = 0 due to the objects at the front side of the host galaxy. The second smaller

peak can be accounted for objects at the opposite side.

where

Q(z,Ω) =
DLH0

c
(2)

As it was noticed at the beginning of this section the DL luminosity distance
strongly depends on some cosmological parameters. By definition the distance modulus
is the difference between the apparent and the absolute magnitude: µ = m − M so
Eq. 1 can be written in the following form using this definition:

µ = 5 log
10

Q(z, Ω) (3)

In the redshift range investigated there are only small differences between the
different models: we displayed in the left panel of Fig. 1 the deviation of the distance
moduli obtained from different models and the distance modulus calculated from the
empty Universe ∆µ = µi − µempty (Fig. 1, right)

3 Data and statistical methods

Before putting the supernova data into a scatter plot, let us cast a glance on the
sample! The extinction values scatter between 0 and 4.1 magnitudes with a median of
0.2 magnitude. Except a few outliers the data are concentrated in the 0-1 magnitude
range. The distribution of the extinction values can be well understood if we compare
it with a simple model. Assuming that the Ia type supernovae belong to the old disc
population with a scale height of 340 pc and the interstellar dust concentrate to the
plane of the host galaxy within a layer of 100 pc FWHM the observed distribution
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Figure 3: Histogram of z distribution in the TONRY sample. The vertical dashed

line indicates a cut between the low and high redshift part of the sample.

of internal extinction is simply a projection effect. The peak near to zero extinction
comes from supernovae in front of the host galaxy. Fig. 2 shows a comparison of the
simulated distribution of the observed internal extinction along with that of TONRY
data. In both samples there is a peak at AV = 0 corresponding to the objects at the
front side of the host galaxy. Both samples have another peak at AV ≃ 0.3, which can
be accounted for objects at the opposite side of the host. Despite of these similarities
the peaks of the real sample are less pronounced probably due to observational errors.

The distribution of redshifts in the TONRY sample is bimodal. There is a dip at
around z = 0.25. Having a cut at this point we defined two different subsamples. The
high z subsample is interesting from at least two point of views. First, the calculated
distance moduli from different cosmological models depart from each other exceeding
the error of direct measurements obtained from SN Ia supernovae. Second, as we
demonstrate below the estimated internal extinction in the high redshift part has
some interrelation with the distance modulus which is not the case at z < 0.25.

The calculated distance moduli obtained from the observation of SN Ia events
assumed to be independent from the internal extincion listed in the TONRY sample.
It is easy to infer from the low redshift subsample that this is really the case. In the
z > 0.25 range, however, at the low extinction part the majority of the SN Ia distance
moduli exceeds those obtained from an empty Universe. Distance moduli from an
empty Universe can be treated as an upper bound for those obtained from models
without cosmological constant. Only in models of non zero cosmological constant can
be exceeded this bound. The excess of SN Ia distances exceeding the empty case is
considered as a firm evidence favoring the non zero cosmological constant.

The difference between distance moduli obtained from the observation of SN Ia
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Figure 4: The absorption-luminosity distance relation of the low (left) and high-z

(right) subset (data source: TONRY). On the vertical axis the standardized deviation

from distance moduli calculated in an empty Universe is given. Vertical dashed line

mark the median of the extinction data. Horizontal dashed line marks the reference

level of an empty Universe. Note the difference between the left and the right panel. In

the z < 0.25 case the distribution of residuals is symmetric to the reference level of an

empty Universe, independently from the extinction. On the contrary, the low exinction

part (left from the median line) of the z > 0.25 panel clearly has an excees of the

points above the reference line but it disappears at higher extinction values displaying

a pronounced negative trend.
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events and calculated from an empty cosmological model assumed to be independent
from the internal extinction of the host galaxy. As we demonstrated in the right panel
of Figure 4 it is not the case in the z > 0.25 range. While the absorption values right
from the median are symmetrical to the line representing the empty model, left from
it, however, there is a remarkable asymmetry because there are more points above
the line of the empty model than below it. If there was no interrelation between the
distance moduli residuals and the internal extinction this trend would not be present.
(The detailed calculation of the statistical significance of this trend will be published
in a forthcoming paper). 1
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Figure 5: Dependence of the uncorrected standardized residual on the corrected ex-

tinction represented by the f background variable. Full line displays the obtained rela-

tionship between the uncorrected residual and internal extinction.

It is obvious, the distance moduli obtained from SN Ia observations have to be
freed from the interrelation with the internal extinction before using it for testing

1It is interesting to note that some recent papers (for example Choudhoury et al. (2004))
divided the sample into two parts as follows: They cut off points with high absorption values
and fitted some model on the remainder. As one can see on Fig. 4 this remainder subset really
shows an excess of points above the zero level of the empty Universe.
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cosmological models. To calculate statistically the effect of interrelation we introduced
an f stochastic background variable representing the relationship between ∆µ distance
moduli residuals and the AV internal extinction:

AV = A0 f + εA (4)

s = s0 f + εs (5)

where s = ∆µ/σµ is the standardized residuals of distance moduli, A0, s0, εA, εs are
constants and noise terms, respectively. Estimation of f and other quantities in this
system of equations can be performed by using factor analysis which is a standard
procedure in multivariate statistics (the details will be given elsewhere). Based on this
solution we can remove the effect of the background variable responsible for the inter-
relation between the residual and internal extinction and obtain the correct luminosity
distances appropriate for testing cosmological models. Fig. 5 shows the dependence of
the uncorrected standardized residual on the corrected extinction represented by the
f background variable.

With the procedure outlined above we ceased statistically the interrelation between
the distance moduli residuals and internal extinction displayed in Fig 4. It is worth
noting that these corrections have also an effect on the data-points of low extinction
values which were the firm basis of arguing for the existence of a positive cosmological
constant.

4 Cosmological constant revisited

As a result of the corrections mentioned above we obtain a new luminosity distance-
redshift diagram. While former results suggested the existence of a hump in the data
(Fig 6, left), and the best fit was an accelerating model with Ωm = 0.3, ΩΛ = 0.7,
after our correction the situation became highly different. Fig. 6, right shows that the
modified SNe Ia data prefer a standard solution which seems to be open and contains
only matter. It is interesting to note that due to our treatment the scatter of SN Ia
distance moduli residuals decreased, as one can infer from comparing the two panels
in Fig. 6.

5 Conclusion

Recently, it is commonly accepted that the expansion of the Cosmos is accelerating.
However, there are some papers, which argue against the introduction of a cosmological
constant with different arguments. Mészáros (2002) used pure statistical arguments
to show that the use of the cosmological constant is premature yet. We also have done
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Figure 6: Previous and new data plotted against z. As old sample favors a flat

accelerating model (left) the new (right), statistically corrected one rather fits a matter

dominated Universe. The labels are the same as Fig. 1, the new curve on the right

panel is the fit.

statistical study on the newest TONRY dataset. We investigated the absorption-
luminosity distance relation statistically on those data which have z > 0.25. We found
that there is an interrelation between the distance moduli residuals and the internal
extinction of host galaxies in this part of the sample. We used statistical methods
to calculate quantitatively this interrelation. After correcting for this effect the new
residual Hubble-diagram does not fit a flat model with a positive cosmological constant
instead, the best fit is an open matter-dominated model.

There is a need to explain the physical nature of the interrelation between distance
muduli residuals and internal extinction of host galaxies. Does it have an astrophysical
basis or it is only a byproduct of the data reduction?
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Abstract

In the article “Cosmic Rays VIII” of Popescu et al. (2005) we gave an model for the
observed cosmic rays between 5 · 1015 and 3 · 1018 eV. Their surse is presumed to be
supernova of stars that explode in their winds. The observed cosmic abundance at the
source are affected by spallation in the supernova shell, by the difference in ionization
degree (being one two times ionized) at the injection in the supernova shock, the stars
with initial masses 15M⊙ ≤ M ≤ 30M⊙ having a different contribution to them than
the stars with 30M⊙ ≤ M ≤ 50M⊙ and this is 2:1 for the elements with Z ≥ 6. Still,
the abundances after these corrections are different by a factor Zi/ZHe where Zi is the
atomic number for the element i and ZHe the one for He. This paper is dedicated to
the explanation of this factor and its physical meanings.
Keywords: cosmic rays, Wolf-Rayet stars, fractal density distribution

1 Introduction

To understand why we need a preacceleration of cosmic rays (CRs) and a phase
space dispersion before injection in the supernova shock of the particles found in
the Wolf-Rayet (WR) wind we will do a breaf presentation of our previous results
(Popescu et al. , 2005) on PeV-EeV energy range CRs.

These results are showing that the ions that can be found in the atmospheres
of stars with the initial masses of 15M⊙ ≤ M ≤ 50M⊙ are possible to be the CRs
observed particles with abundances affected by spallation and ionization losses. Also
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Table 1: ki exponent values for even-Z elements in the case that α = 2
3
. The preac-

celeration correction factor is (Zi/ZHe)
k (Popescu et al. , 2005)

elem. i Z k

H 1 -

C 6 0.876± 0.022

O 8 0.998± 0.0265

Ne 10 1.145± 0.022

Mg 12 1

Si 14 1

Fe 26 1

it was shown that the mass fraction for one even-Z element with an atomic number
Z ≥ 2 from CRs is Xi = αXi,RSG + (1 − α)Xi,WR.

We are having here a different contribution to CRs abundance of stars that explode
as supernova in RSG stage or in WR stage, α factor being approximative equal with
2/3.

Also, ionisation loss is responsable for the underabundance in the observed CR
elements with FIP≥ 10 eV (the first ionization potential). We can consider Si as
reference element for overabundance of elements with FIP ≤ 10 eV (Silberberg & Tsao ,
1990). The FIP correction factor will be, in this case, 4.0088 ÷ 4.878. In this way,
we can see that the elements with FIP less than 10 eV are having an mass fraction
larger than the elements with FIP greater than 10 eV (and relative to Si), by a factor
of ∼ 4. This happens to be exactly Z2

injection, the initial degree of ionization squared.
Therefore, cosmic ray particles of an element with an initial degree of ionization of
Z2

injection are more likely to be injected by a factor of 4.
After introducing the spallation correction of the mass fractions in the massive

stars atmospheres (Tsao et al. , 1998) we still remain with a difference between the
all above effects corrected mass fractions in massive star winds and the observed CRs:
(Xi/XHe)

observed CRs = f · (Xi/XHe)
corrected wind, where:

f = (Zi/ZHe)
ki . (1)

The k values can be seen in Table 1.
Now we can wonder from where it’s coming this factor. We will see that in

a radiative instability (Owocki , 1994), thermal instability (Alfvén waves induced -
Gonçalves et al. (1998)), forward (Lucy , 1982) or reverse (Moffat , 1994) shocks in
the wind, that are driving turbulence, it is appearing a phase space separation. Also,
in a radiative accelerated wind (CAK theory - Castor et al. (1975); MCAK theory -
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Pauldrach et al. (1986); etc.), the ions are differently accelerated in function of the
resonant line absorbtions of photons.

2 The Model

2.1 The Radiative Acceleration

A differentiated acceleration for the atomic species that can be found in the winds of
WR stars (considered as having the same ionization degree) will give a phase space
disperssion. This means that the acceleration as function of the local bulk velocity
for oxygen must be bigger that the one for carbon, and the carbon acceleration bigger
that the one for helium. The above affirmation is sustained by the radiation-driven
wind model (Cassinelli , 1979), condition in which momentum is transferred from the
radiation field to the gas by scattering of radiation in spectral lines. The radiative
acceleration for a particular element found in the wind is given as the sum of all the
radiative accelerations provided by single lines (Castor et al. , 1975). In CAK (after
Castor, Abbott and Klein) theory it is shown that this sum can be parametrized by:

grad =
1

cN(r)
σth(r)σBT 4

effMCAK(t), (2)

where MCAK(t) = kt−α is the force multiplier and encapsulates the atomic physics
of the line list for numerical computation, c - the speed of light, N(r) - the particle
number density at the distance r from the base of the wind, σB - the Stefan-Boltzmann
constant, Teff - the effective temperature at the photospheric radius R∗. In our work
the effective temperatures, and also the terminal velocities v∞ and the stellar masses
for Galactic WR stars were taken from Garćıa-Segura et al. (Garćıa-Segura et al. ,
1996), from Crowther et al. (Crowther et al. , 1995), and from (van der Hucht ,
2001) (from here we are making also a selection for WR stars without companion,
after their spectral type). In the expression of the force multiplier the constants
k and α represent the number of scattering lines and the ratio of weak to strong
lines, respectively (Abbott , 1980) and, for computational purposes, were taken from
(Pauldrach et al. , 1986). The depth parameter t is defined by (vth is the thermal
velocity of the carbon ion and σTh the Thompson total cross section for scattering of
radiation):

t = σThvth(dv/dr)−1. (3)

The radiative acceleration in the equation (2) is written in the isothermal case. A
more accurate radiative acceleration takes into account a temperature distribution for
a spherically grey atmosphere in radiative equilibrium (Milne-Eddington temperature
distribution) (Lucy & Abbott , 1993).
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In our model we don’t find useful to take a T(r) distribution, the radiative ac-
celeration from (2) being taken in the isothermal approximation. This is because the
particles are begining to be injected in the supernova shock very close to the stellar
surface, and we are interested how those particles behave, before injection, till one to
three stellar radius distance in the atmosphere, and if there appears a phase space
separation as function of their type.

2.2 Velocity and Acceleration Laws

In the previous section we said that in order to have a phase space dispersion we must
first have: aO(vO) > aC(vC) > aHe(vHe).

The most popular velocity law (so-called β-law - Castor & Lamers (1979)) which
describes the bulk motion of the accelerated bulk material is:

v(r) = v∞(1 − R∗/r)β. (4)

In an aproximation of a point source stars, the CAK theory predicts a velocity law
with β = 0.5. When are considered also the finite disk effects, the CAK theory yields
β = 0.8 (Friend & Abbott , 1986). Puls et al. (Puls , 1996) succesfully used a value of
β = 1 for the prediction of OB stars mass loss. Still, observations of LPV subpeaks in
WR winds, suggested much larger values of β (Robert , 1994), the spectral analysis of
WR spectra with a clumped wind model (Schmutz , 1997) being consistent with these
values of β ≃ 4 − 8.

The acceleration law that follows from (4), as function of the local bulk wind
velocity, is:

a(v) = β
v2

R∗

"

„

v

v∞

«−1/2β

−

„

v

v∞

«1/2β
#2

. (5)

In Lépine & Moffat (1999) is illustrated the a(r) and βa(v) behavior for different
values of the parameter β. Appart from other important remarks that can be made
related to these representations, it can be seen that, for the same particle velocities
we have a spatial separation (into blobs - Moffat et al. (1988)) and a constant βa(v).
For our purposes it is also useful to see that, for a star with a specified photospheric
radius R∗, at a constant r and different β values we have a phase space dispersion due
to different particle velocities.

If the blobs follow a velocity law (4) the time spent between x0 = r0/R∗ and
x = r/R∗ is: T = R∗

v∞

R x

x0

dx
(1−1/x)β , so that most time is spent near x0 for likely β

values. For x0 = 1, t is infinite (unless β < 1) for all x. Statistically speaking, this
means that for the (4) β-law blobs should never be observed other than at x = 1. In
addition, any v(r) law with v = 0 at x = 1 requires infinite wind density for mass flow
continuity (Brown et al. , 1995). This difficulty can be avoided by allowance for an
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initial velocity v(x = 1) = vth = ǫv∞, where vth is the thermal velocity of the carbon
ion near the “dynamical photosphere”. Then, the modified β-law becomes:

v(r) = v∞[ǫ + (1 − ǫ)(1 − R∗/r)β ]. (6)

At the same ǫ values the acceleration in the first two stellar atmosphere radius
distances is more efficient for small β values. The conclusions that follows from
Lépine & Moffat (1999) and Brown et al. (1995) is that we can have a phase space
separation for different atomic species that are present in the WR wind and if we want
to have aO(rO) > aC(rC) > aHe(rHe) we must have first βO < βC < βHe, which
means that (see Lépine & Moffat (1999)) we need that aO(vO) > aC(vC) > aHe(vHe)
at the same velocity value.

2.3 Code Equations

For a phase space separation we take the factor f from the equation (1) equal with
the ratio of accelerations (see eq. (5)):

aC(vC)

aHe(vHe)
=

βC

βHe

„

vC

vHe

«2

2

6

4

“

vC

v∞

”− 1

2
βC

−
“

vC

v∞

” 1

2
βC

“

vHe

v∞

”− 1

2
βHe

−
“

vHe

v∞

” 1

2
βHe

3

7

5
=

„

ZC

ZHe

«kC

≃ 3kC , (7)

aO(vO)

aHe(vHe)
=

βO

βHe

„

vO

vHe

«2

2

6

4

“

vO

v∞

”− 1

2
βO

−
“

vO

v∞

” 1

2
βO

“

vHe

v∞

”− 1

2
βHe

−
“

vHe

v∞

” 1

2
βHe

3

7

5
=

„

ZO

ZHe

«kO

≃ 4kO , (8)

where kC = 0.764±0.022 and kO = 0.984±0.0265 (see table 1) and the He velocity
is a (6) β-law:

vHe(rHe) = v∞[ǫ + (1 − ǫ)(1 − R∗/rHe)
βHe ]. (9)

In (7), (8), and (9), β will take values between 4 and 8 (Schmutz , 1997) (with the
specification that βO < βC < βHe). The photospheric radius will be determined from
the relation:

R∗ =
p

Lnuc/(4πσBTeff ),

with Teff the effective photospheric temperature, σB - the Stefan-Boltzmann con-
stant, and Lnuc - the nuclear luminosity of the star, given by an empirical form of the
mass-luminosity relation (Langer , 1989a), with the fitting coefficients found by Heger
et al. (Heger & Langer , 1996).
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(7), (8), and (9) will be the first three equations from a system of seven with seven
variables. We will try to prove that at any given r, 30M⊙ ≤ M ≤ 50M⊙, ǫ (from
the non-zero initial velocity condition in (6)) we are having a phase space dispersion,
meaning a convergence for the system of equations. The system variables are:

• The distances at which the particles reach in the wind before their injection in
the supernova shock. Assuming that C, O and He (the choice of these atomic
species will be later explained) are becoming wind particles at the same moment
of time and that are simultaneously injected in the supernova shock. The last
approximation is possible because the bulk velocity in the wind is in the best
case 0.1 from the shock velocity. So, the quantities that are to be determined
are (∆r)1 ≡ a = rC − rHe and (∆r)2 ≡ b = rO − rHe (in (9) will be made
the substitution rHe = rC − a), where rC ≡ r will be the distance at which
is reaching the carbon in the wind and it will be given (through an iteration
loop) values from 1R∗ to 3R∗ with the step smaller than the Alfvénic damping
lengths. The Alfvénic damping lengths can be understood as limits to the size
of the formed blobs (self-similar domains) through thermal instability due to
Alfvén waves (Gonçalves et al. , 1998). Gonçalves et al. found that the blob
diameters must be 3×105 ≤ dblob ≤ 1.4×106 cm. Consequently, our correlation
length (r0) and our iteration step (rC → rC +∆rC) will be chosen in the interval
defined by r0 ≡ dblob/2, and 1.5 × 105 ≤ ∆rC ≤ 7 × 105 cm, respectively;

• particle densities, NO(rO) and NC(rC) in the volume of the sample of radius
RS,i. The sample volume will be considered spherical and its radius equal with
the distance from the base of the wind at which the particle i (C, O or He)
is injected in the supernova shock, ri ≡ RS,i. Also, the correlation length
r0 < RS,i;

• The velocities vO(rO), vC(rC) and vHe(rHe) .

Our “reduced” depth parameter will be t̃ = t(dv/dr), with t from (3). So, the
wind equation in the assumptions made by Biermann et al. (Biermann & Cassinelli ,
1993), after doing the integration, will look like:

y2
− (1/y) = −g̃rad(ln x − x ln x + x). (10)

In the equation (10) the dimensionless value of x ≡ r/[cm]. Re-writting (10) for i
element (O, C, or He) at x = rin and x = rfin (rfin = rin + ∆r; ∆r ≤ r0 = 7 × 105)
distances, corresponding to yin ≡ vi, in and yfin ≡ vi, fin, respectively, and making
their substraction we get:

v2
i, fin − v2

i, in −
1

vi, fin
+

1

vi, in
= −g̃i, rad(ln ri, fin − ln ri, in − ri, fin ln ri, fin+

+ri, in ln ri, in + ri, fin − ri, in). (11)
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Let now consider the case of two WR stars of equal masses, terminal veloci-
ties, and effective temperatures, one in WC pre-supernova sequence and the other
in WO pre-supernova sequence. For this purpose we are using real stellar data from
(van der Hucht , 2001; Garćıa-Segura et al. , 1996; Crowther et al. , 1995). We sup-
pose that in the wind of the WR star of WC spectral type is no O, but just He and
C, while in the wind of the WR star of WO spectral type is no C (just He and O).
This is allowed knowing that a WR star passes through both, WC and WO sequences,
excepting the case when the star explodes as supernova before that, but even so, due
to the fact that we are observing in CRs the contribution of all (and is no reason to
think that the number of WR stars which explode in WC sequence is larger than for
the ones that explode in WN sequence) WR stars as a unique spectral slope, this is
allowed.

At a rC for the WC sequence star we compute the velocity vC(rC) (eq. (11)). With
this velocity we “go” to the WO sequence star (v′

O(r′O) = vC(rC)) and we compute
r′O. Then, having r′O, we are “coming back” at the WC sequence star (rO = r′O) and
we compute the velocity vO(rO). In this way, we will be able to write the equations
for a WR star in the intermediary sequence WC/WO, in whose wind we find He, C
and, also, O:

v2
O − v2

O,in −
1

vO
+

1

vO,in
= −g̃O,rad[ln(rC + b) − ln rO,in − (rC + b) ln(rC + b)+

+rO,in ln rO,in + (rC + b) − rO,in], (12)

v2
C−v2

C,in−
1

vC
+

1

vC,in
= −g̃C,rad[ln rC−ln rC,in−rC ln rC +rC,in ln rC,in+rC−rC,in],

(13)

v2
He − v2

He,in −
1

vHe
+

1

vHe,in
= −g̃He,rad[ln(rC − a)− ln rHe,in − (rC − a) ln(rC − a)+

rHe,in ln rHe,in + (rC − a) − rHe,in], (14)

where we consider that all the wind particles are originating at the stellar surface,
rO,in = rC,in = rHe,in = 1R∗, and rHe = rC − a and rO = rC + b. These are the
fourth, the fifth, and the sixth equations of our system of equations.

In the equation (13) for the WC sequence WR star (see also (2)and (3)):

g̃C,rad =
1

c(NC(rC) + NHe(rHe))
σThσBT 4

eff [k(σThvth)α].

Also, in (12) (for the WO sequence WR star):

g̃O,rad =
1

c(NO(rO) + NHe(rHe))
σThσBT 4

eff [k(σThvth)α],

and, in (14) (for the WC/WO sequence WR star):
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g̃He,rad =
1

c(NO(rO) + NC(rC) + NHe(rHe))
σThσBT 4

eff [k(σThvth)α].

In the approximation that all the WR wind particles are at least one time ionized,
let us define a self-similar particle distribution (the ionic density in the in blobs). For
this we must observe that the structure function (Farge , 1992; Lépine & Moffat , 1999;
Muzy et al. , 1993) study of wavelet images of the WR surounding nebula is showing
that there we have self-similar structures (Grosdidier et al. , 2001; Schertzer & Lovejoy ,
1987) and that the power law of the energy dissipation is that of a compressible
turbulence (Grosdidier et al. , 2001; Moffat , 1994; Sylvestre et al. , 1999). The
distribution of the number of structures (blobs), N, with the number of free electrons
in a blob, Ne, reads (Richardson et al. , 1996):

dN

dNe
≃

∆N

∆Ne
=

(1 − γ)N0

N1−γ
e,max − N1−γ

e,min

N1−γ
e ,

with N0 - the total number of blobs at any time, Ne,min and Ne,max - the mini-
mum and, respectively, the maximum number of free electrons contained in any blob:
Ne,max = 10Ne,min , Ne,max = 2× 1046 (Richardson et al. , 1996). Also, γ = n−D (n
- the space dimensionality = 3; D - the fractal dimension = 2.32).

In our case:

NC(rC)−NHe(rHe) =
(1 − γ)(N̄0,C(rC) + N̄0,He(rHe))

N1−γ
e,max − N1−γ

e,min

[Ne(rC)−Ne(rHe)]N̄
−γ
e , (15)

NO(rO)−NHe(rHe) =
(1 − γ)(N̄0,O(rO) + N̄0,He(rHe))

N1−γ
e,max − N1−γ

e,min

[Ne(rO)−Ne(rHe)]N̄
−γ
e , (16)

where the equations (15) and (16) are for our WR star in WC sequence and, re-
spectively, in WO sequence, when we consider that in the wind the spatial separation
of C from He (WC case) and of O from He (WO case) is giving an self-similar particle
distribution in blobs (each particle type is forming its own self-similar like blob struc-
tures). In the right side of (15) and (16), N̄0,C(rC), N̄0,(rC), and N̄0,C(rC) are the
average C, O and He densities, and we can find them from the matter conservation
law: Ṁi = 4πρ̄i(ri)r

2
i vesc.

Then, the average density ρ̄i(ri) (in g/cm3) for i wind element over the sample
(blob) volume: ρ̄i(ri) = Ṁi/(4πr2

i vesc), and if we consider that the total mass loss,
Ṁ(Xj) (j ∈ [1, i]) of each stellar surface element isotope (Woosley et al. , 1995)
(assuming that the surface mass fraction Xj is having a small time dependency - in the
the supernova deflagration time scale, comparatively with the stellar age): Ṁ(Xj) =
Xj,surf (t)Ṁ = Xj,surfṀ , results that:

ρ̄i(ri) = ṀXi/(4πr2
i vesc), (17)



Cosmic Rays Pre-acceleration 177

In (17), Xi =
Pi

j=1 Xj and the mass loss for Wolf-Rayet hydrogen depleted
WC/WO pre-supernova stars with initial masses between 30-35 M⊙ and 50 M⊙ is de-
scribed through the empirical formula given in (Langer , 1989b) and (Woosley et al. ,
1993).

The Xj surface mass fractions are the Langer & Henkel (1995) stellar evolution
computation results.

Since the average particle number density:

N̄0,i(ri) = ρ̄i(ri)/m̄ = ρ̄i(ri)/(µmH),

where the mean molecular weight µ ≡ m̄/mH (with m̄, the average mass of the
gas particle, mH , the mass of a hydrogen atom) and µion < µ < µneu (µion and µneu

are the mean molecular weights for the completely ionized and for completely neutral
gas, respectively) (Carroll & Ostlie , 1996), we will be able to write, with the help of
equation (17):

N̄0,i(ri) = ṀXi/(4πr2
i vescµmH). (18)

Also, in (15) and (16):

N̄0,i(ri) + N̄0,He(rHe) = [(N̄0,i(ri)/N̄0,He(rHe)) + 1]N̄0,He(rHe).

Observing from (18) that N̄0,i(ri)/N̄0,He(rHe) = (Xi/XHe) · (mHe/mi), we find:

N̄0,i(ri) + N̄0,He(rHe) = [(Xi/XHe) · (mHe/mi) + 1]N̄0,He(rHe), (19)

where the values of Xi are the sum of the isotopic mass fraction for C or O, and mi

and mHe are the atomic masses of i element and the atomic mass of He, respectively,
expressed in grams.

Now, if we consider that the free electrons in the WR wind are catched in the same
instability driven turbulent general motion as the ions and that they have a self-similar
distribution in the blobs and a random distribution between blobs, we have:

Ne(ri) = N̄e(f
2
i,eAi,bbr

−γ
i + 1 − f2

i,e) , fi,e < 1 (20)

with: fi,e =
KiRD

i,S

KiRD
i,S

+K′

i
R3

i,S

, Ai,bb =
Ai,ee

f2

i,e

and:

Ai,ee =
“

1 −
γ

3

” R−γ
i,S

R−2γ
i,S +

`

K′

K

´2

i
+ 2R−γ

i,S

`

K′

K

´

i

≡ rγ
i,0, (21)

and we get a full description of the densities that enter in the right side of (15)
and (16) by making the (19) and (20), and (from (18)):

N̄0,He(rHe) =
ṀXHe

4πr2
HevescµmH

.
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substitutions. In the above equation vesc is given by (Castor et al. , 1975). For N̄e

we take the average value between Ne,min and Ne,max over the volume of radius Ri,S .
After substitution, one last problem arises in (15) and (16) by the apparition of

the (K′/K)i ratios. This can be solved considering that the observed blobs are having
an universal fractal distribution where the fractal behavior ζ(p) for the p order (which
can be regarded as a spatial scaling of the analyzed image) of the structure function.
Because also the correlation length ri,0 for the i element in blobs is (like ζ(p) but with
a much smaller generality) a measure of fractality in the system and because Ri,S is
for certain a spatial scaling measure, we conclude that in three dimensional space, in
our particular case:

ζ(p)/p ≃ ri,0/Ri,S . (22)

With ri,0 from (21) and (22) we find:

(K′/K)i = R−γ
i,S [−1 +

p

1 − (γ/3) · (ζ(p)/p)−γ/2]. (23)

Subtracting (16) from (15) we get the seventh equation of our system of equations
for a WC/WO Wolf-Rayet star without companion.

3 Results and Conclusion

Our primal purpose was to show that the system of equations constructed on the
above assumptions converges to a solution for any value of the r ≡ rC in the range
1-3R∗. Our numerical code, made in IDL 5.2, was tested for convergence when we
independently varied quantities like the stellar initial mass (30M⊙ ≤ M ≤ 50M⊙; with
the corresponding effective temperatures, terminal velocities, mass fractions, etc.),
molecular weight (µion < µ < µneu), ǫ (vth = ǫv∞; 0.01 ≤ ǫ ≤ 0.1), or iteration step
∆r ≡ ∆C (when rC → rC + ∆rC ; 1.5 × 105 ≤ ∆rC ≤ 7 × 105). Our unique model
free parameter, p (0.1 < p ≤ 3), had also the not to be ignored purpose to enable
a rescaling of our computational lattice in such a way that the sample radius, Ri,S ,
never to touch the lattice border which would had meant a disaster (“explosion”) for
the system variables.

Indeed, the system converged in all the above situations, which meant that we had
a pre-supernova phase space dispersion between C, O, and He in the wind seen in the
observed CRs through the factor (Zi/ZHe)

ki .
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Abstract

Observations of dynamics of galaxies and plasma in the universe led us to the conclu-
sion that there exists a huge amount of matter that is invisible, the so called ”dark
matter”. Rotation curves of galaxies represent important evidences for introducing
this concept. In this article we present the data interpretation for the rotation curve
of NGC6503, introducing a new density distribution function in order to describe the
behaviour at large distances from the center of the galaxy. One of the result’s possible
implications is a change in the classical approach regarding the matter and its move-
ment in galaxies, as an attempt to explain the rotation curves of galaxies.
Keywords: dark matter, Newtonian Dynamics, rotation curves, density distribution

1 Introduction

Together with the cosmological issues regarding the actual state of our universe, ob-
servations of galaxies and clusters lead to the necessity of introducing new physics.

For example, in the observations of polar ring galaxies, measurement of the rotation
velocities within the disc and within the ring results in flat curves in both cases. This
implies that the velocity for large radii remains constant, if we assume a spherical
mass distribution. Moreover, nearly all-luminous elliptical galaxies contain about 1010

M⊙ of gas in the form of gas halos, with a size of at least 50 kpc. Due to the X-ray
emission of this hot gas its temperature could be estimated to be about 107 to 108

K, which implies a velocity of the gas particles that lies far above the escape velocity
derived from the visible mass. If this gas should be gravitationally bound, a lot more
mass is needed.
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One of the problems comes from the explanation of the rotation curves of the
galaxies. The Newtonian gravitational theory has been expected to describe in excel-
lent terms the dynamics in the extragalactic regime, but the estimated acceleration of
stars and gas are much larger than those generated by the visible matter. The amount
of light starts falling off near the edge of the galaxy, but the rotation speed doesn’t,
as one would expect, instead it remains almost constant and highly above the limit
given by the gravitational field produced by the visible matter. This phenomena was
explained by the existence of dark matter.

An attempt to explain the rotation curves of spiral galaxies could be to reconsider
the invisible mass distribution around the galactic center, without introducing a new
kind of matter, but an ordinary one, having a low density, but spread over a large
distance from the galactic center. In the following section we will present an alternative
approach computed for the particular case of NGC 6503, with the possible generalized
form.

2 Galaxies dynamics interpretation

2.1 Observations of rotation curves of galaxies

Spiral galaxies usually consist of two components, a flat, large disk which often contains
a lot of interstellar matter (visible sometimes as reddish diffuse emission nebulae, or as
dark dust clouds) and young (open) star clusters and associations, which have emerged
from them, often arranged in conspicuous and striking spiral patterns and/or bar
structures, and an ellipsoidally formed bulge component, consisting of an old stellar
population without interstellar matter, and often associated with globular clusters.
The pattern structures in the disk are most probably transient phenomena only, caused
by gravitational interaction with neighboring galaxies. A typical spiral galaxy contains
100 billion stars and measures 100 000 light-years in diameter.

Rotation curves are usually obtained by combining observations of the 21cm line
with optical surface photometry. Using 21-cm emission, the circular velocities of clouds
of neutral hydrogen can be measured as a function of r, the distance from the center
of the galaxy. The optical rotation curves provide high spatial resolution in the visible
disk, and in particular in the center, to trace central mass concentrations, while only
the HI gas extend far enough in radius to trace the outer parts, where dark matter
is supposed to be dominating. Using 21-cm emission, the circular velocities of clouds
of neutral hydrogen can be measured as a function of r, the distance from the center
of the galaxy. Observed rotation curves usually exhibit a characteristic flat behavior
at large distances, out towards, and even far beyond, the edge of the visible disks.
The fact that for most spiral galaxies, the dark matter is not dominant within the
optical disk, comes as a result of recent observations. A non-baryonic matter would
not follow the spiral instabilities in the disk. The dark matter component seems to
become important only for large radii.
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2.2 The data interpretation for the rotation curve of

NGC6503

In almost all cases, after a rise near r=0, the velocities remain constant out as far as
can be measured. In the following section we will present the data set for NGC6503.
Fig. 1 shows the rotation curve for the spiral galaxy NGC6503.

Figure 1: Rotation curve for NGC6503. The points are circular rotation velocities

as a function of distance from the center of the galaxy (Ref.2).

In Newtonian dynamics the circular velocity is expected to be

v(r) =
p

GM(r)/r. (1)

where, M(r) ≡ 4π
R

ρ(r)r2dr , and ρ(r) is the density profile, and is expected to
fall ∼ 1/

√
r beyond the optical disc. The fact that v(R) is approximately constant

implies M(r) ∼ r and ρ ∼ 1/r2.
The first segment of the slope, until approximately 2.5 kpc, can be fitted as a linear

dependence of the velocity with the distance and can be treated as a rigid rotator (see
Fig.2). This means that until that distance, the matter within the galaxy moves as a
whole.

If we assume that the stars have a circular orbit around the galactic center, the
rotation velocity of a star can be computed considering the centripetal acceleration
for a circular movement equal to the central force acceleration. We will consider
an expression for the central force as power law dependent on the distance, with an
unknown exponent, β:
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Figure 2: Left:Rigid rotator Right:Rotation curve for a rigid rotator

FG =
GmMr

rβ
=

mv2

r
= Fz. (2)

From Eq.(2) it follows that:

v(r) =

r

GMr

rβ−1
. (3)

where Mr is the mass within the orbit of radius r, (in our case, within approxi-
mately 2.5 kpc). The forces lying outside the orbit compensate exactly for cylindrically
and spherically distribution.

Assuming a spherically symmetric bulge with constant density ρ , then

Mr = ρ · Vr = ρ
4

3
πr3. (4)

Because up to r1, the innermost part of the galaxy has a rotation curve of v(r) ∼ r
, we have to choose β = 2 :

v(r) =

s

Gρ 4

3
πr3

rβ−1
∼

r

4

3
Gρ · r, forβ = 2. (5)

Considering that at distances larger then r1, the radius of the bulge, the mass
is negligible we will obtain a different dependence. If the total mass of the galaxy,
Mgal = Mr, therefore:

v(r) =

r

GMgal

rβ−1
=

p

GMgal · r−1/2, forβ = 2. (6)
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For that part (between 2.5 - 3.5 kpc), we obtain the usual Keplerian motion (Fig.
3), v(r) ∼ r−1/2, for the value of 2 of the exponent.

Figure 3: Left:Planetary revolution rotation Right:Rotation curve-Keplerian depen-

dence

But, for large r, as shown for many of the galaxies, the value of 2 for the exponent
does not give a correct velocity dependence. A choice could be to choose a new value
for β, but that will be a highly unphysically solution. However, we have another possi-
bility, i.e. to try to find if any physically reasonable variable mass density distribution
would be able to give the desired velocity distribution, far form the center.

2.3 The effect of the density distribution function at large

distance from the galactic center, on the velocity func-

tion

After approximately 3.5 kpc, the rotation curve tends to remain almost constant.
Considering different density distributions, we can compute the rotation velocity of a
body at a given distance from the center.

In Table 1 we summarize the results obtained. If we consider an exponentially
decreasing density that is expressed by an exponent, α, then a general relation can be
computed for the velocity function:

v(r) =

r

1 − e−αr − αr(1 − αr
2

)e−αr

r2
. (7)

If we consider that function and we calculate the corrections for luminosity and
mass/luminosity ratio parameters, we obtain

L = 0.46 · 1010L⊙. (8)
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Table 1: Rotation velocities for different density distributions

Geometry/density Rotation velocity

ρ = m
4πR3/3 v(r) ∼ r, r < R Spherical geometry

v(r) ∼ r−1/2, r > R

ρ = a/
√

r v(r) ∼ r3/4, r < R Spherical geometry
v(r) ∼ ct., r > R

ρ = a/
√

r v(r) ∼ r3/4, r < R Cylindrical geometry
v(r) ∼ r−1/2, r > R

ρ = ρ0e
−αr v(r) =

√

1−e−αr
−αr(1−αr

2
)e−αr

r2 Spherical geometry

and

M/L = 1.66M⊙/L⊙. (9)

The results are in concordance with the predictions.

3 Conclusions

Until approximately 2.5 kpc distance from the nucleus, the galaxy moves like a rigid
rotator, with a rotation curve v(r) ∼ r. Between approximately 2.5-3.5 kpc , the galaxy
has a rotation curve v(r) ∼ r−1/2. After approximately 3.5 kpc, the rotation curve may
be described by the dependence from Eq.7, for a density distribution ρ = ρ0e

−αr. The
corrections of luminosity parameter and mass-to-light ratio parameter for this density
function are in accordance with the observations and predictions, but at large radii,
this function shows a slowly decay of the rotation velocity with the distance from the
galactic center, while the observations show a rotation curve almost constant. Taking
into account the difficulties in observations and radius estimations, this discrepancy is
not representing an impediment.

The explanation for the rotation curve of NGC6503 that has been done considering
that the large distance behaviour is due to the existence of a massive dark halo is shown
in Fig.4, where the dashed and dotted curves are the contribution to the rotational
velocity due to the observed disk and gas, respectively, and the dot-dash curve is the
contribution from the presumed dark halo.

If we consider α as unknown parameter, we can adjust its value to fit the measured
velocity function for different galaxies. If it is possible to have just one value for α ,
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Figure 4: Rotation curve including the contribution of a dark halo (Ref.1)

and the whole velocity function could be fitted with enough accuracy, we can suppose
that it is not necessary to consider a new kind of matter (dark matter) to describe the
velocity function. It is enough to consider that extremely low density gases or dust
(that are so faint and therefore below the present observational limits), exponentially
radial distributed around the bulge, could give the same velocity function like the
observed one. This could be a reasonable hypothesis just considering the simplest idea
of gravitational accretion of dust and gases around a massive bulge. Our computation
shows that it is possible to find such value for α for at least several cases we examined.
A general dependence of the radial velocity function on distance for different values of
the α parameter is presented in Fig.5.

We will try to analyze in details also for other galaxies this dependence, in order to
find values for densities around the bulge at large distances. It will be a supplementary
proof if the values are indeed so low that it is beyond today’s observable limits. Also
we will compute, for that values the drag effect of the dust. If all these results could
be in reasonable limits, this hypothesis could be considered with much confidence.
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Abstract

We discuss two types of embedding for some submanifolds of a spacetime containing
a black hole into an Euclidean space and a Minkowski spacetime, respectively. We
comment on their meaning and usefulness and on the perspectives that the second one
opens for further investigations.
Keywords: black holes; embedding diagrams, geodesics

1 Introduction

The embedding diagrams for black holes are almost as old as the notion of black hole.
Although Oppenheimer and Snyder shown already in the late 30th that if a spherically
symmetric star is massive enough, its gravitational collapse cannot be stopped by
anything and a singularity of spacetime will be created, the rigorous notion of a black
hole was introduced only in the sixtieth by people like Penrose and Hawking who
were able to show that such singularities might exist without making assumption
of symmetry and showing that all of them have in common the fact that they are
surrounded by a special surface, called event horizon. The name of black hole was
coined, as far as we know, by John Wheeler, in the late sixtieth and he was, also, one
of the first to consider embedding diagrams, made popular by the classical book Misner
et al. (1971). In the classical embedding diagrams, usually, the equatorial plane of the
spacetime containing a black hole is embedded into the three dimensional Euclidean
space. Quite recently, Donald Marolf considered another kind of diagram, in which
another piece of the black hole spacetime is embedded into the three dimensional
Minkowski spacetime. In many respects, this embedding is more useful, because it
offers more information on the physical peculiarities of the spacetime. The aim of this
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paper is to review the general notion of embedding and then to shortly discuss the
two particular classes we mentioned already.

Figure 1: The Klein’s bottle

2 Embeddings: what and why?

The spacetime containing a black hole, as most of the spacetimes considered in classical
general relativity, is four-dimensional. On the other hand, we are living into three di-
mensional space. Therefore, we don’t have an intuitive picture of the entire spacetime.
What we can do, nevertheless, is to take lower dimensional pieces of spacetime (in our
case they will always be two-dimensional) and represent them as subsets (surfaces in
our case) of the three-dimensional Euclidean space we are living in. As a result, we
should get subsets of a very particular form. In the case of surfaces, we should have no
self-intersections or singular points (for instance corners or edges). A counterexample
is the cone, which is not a smooth surface (unless we remove its vertex). In most
papers dealing with the problem of embedding diagrams, the existence of embedding
is taken as granted. However, this is far from reality. An arbitrary two-dimensional
surface cannot be embedded into the Euclidean three-space. For instance, the widely
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known bottle of Klein (see figure 1) cannot be embedded into R
3. As we can see, it

has self-intersections. In fact, the Klein’s bottle is defined, initially, by factorization,
by identifying some subset of R

3 and it can be embedded only in Euclidean spaces
of dimension at least four. All we can claim, in the general situation, is that it can

(a) The pseudosphere (b) The surface of Kuen

Figure 2: Surfaces of constant negative curvature

be embedded into R
4. But this is only half of the story. The pieces of spacetime we

consider come equipped with a metric, which is induced by the metric of the ambient
spacetime. What we would like is to get an embedding that preserves the metrics.
In other words, if we put on the embedded surface (provided there is one) the metric
induced from the ambient Euclidean or Minkowski space, the embedding should be
an isometry. But, as a modern version of a celebrated theorem of John Nash claims,
a two-dimensional surface can only be embedded isometrically into R

6 or, if it is en-
dowed with an undefined metric, into the Minkowski spacetime of dimension 6 + 1.
Thus, the existence of embedding into the three-dimensional Euclidean space or into
the (2+1)-dimensional Minkowski spacetime seems to be rather the exception than
the rule. It should be emphasized, also, that the isometries we are speaking about are,
usually, local. Two surfaces can have the same coefficients of the first fundamental
form, but their shape can be different. For instance, the surfaces having the same
constant curvature are locally isometric, but as the two surfaces from the figure 2
suggest, their shape might be very different.
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3 Spherically symmetric black holes

Generally speaking, as we said before, a black hole spacetime is characterized by the
existence of a singularity (a point at which at least some of the components of the
curvature tensor become infinite), surrounded by an event horizon, i.e. a closed surface
which has the property that no information (not even light) can escape from its interior
towards the infinity. Some black holes (for instance the Reissner-Nordström black hole,
or the axially symmetric black hole), may have more than one horizon, although they
have, usually, different characteristics (see figure 3). Black holes spacetimes do exist
in theory of gravitation different from Einstein’s, but we shall confine to this in this
paper. As such, the metric of a black hole spacetime should be a solution of Einstein’s
field equations:

Rij −
1

2
gijR = kTij ,

where Rij is the Ricci tensor, gij is the metric, R is the scalar curvature, k is a constant
(Einstein’s gravitation constant) and Tij is the energy-momentum tensor, describing
the matter content of the spacetime. We will be interested, in particular, only in

(a) The Schwarzschild BH (b) The Reissner-
Nordström BH

Figure 3: Spherically symmetric Black holes

two spherically symmetric black hole solution of the Einstein’s equations. The first
one is the simplest one, the so-called Schwarzschild solution, depending on a single
parameter, the mass of the body producing the black hole:

ds2 = −

„

1 −
2M

r

«

dt2 +
dr2

1 − 2M
r

+ r2dθ2 + r2 sin2 θdϕ2, (1)
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and the Reissner-Nordström solution, depending on two parameters, the mass and the
charge of the body:

ds2 = −

„

1 −
2M

r
+

Q2

r2

«

dt2 +
dr2

1 − 2M
r

+ Q2

r2

+ r2dθ2 + r2 sin2 θ.dϕ2, (2)

We have to mention, however, that the equations we just mentioned actually describe
the metric in the exterior of the black hole or, to be more precise, in the exterior of the
event horizon of the black hole. Nevertheless, these metrics have analytical extensions
which are valid also on the other side of the horizon. The spacetime obtained through
the extension for the case of the Schwarzschild metric is called the Kruskal spacetime,
after the name of the mathematician who obtained this extension, in the fifties. What
it is, usually, embedded, however, is exactly a slice of the exterior part of the black
hole, therefore we shall not discuss these extensions.

4 Classical embeddings

Before the Marolf work, what was embedded was a spacelike slice of a black hole
spacetime. We shall exemplify on the particular case of the Schwarzschild spacetime.
The spacelike part of the spacetime is obtained, in this particular case, by just letting
t = const. We get, thus, a three-dimensional Riemannian space with the metric given
by:

ds2 =
dr2

1 − 2M
r

+ r2dθ2 + r2 sin2 θdϕ2. (3)

This is, however, impossible to visualize, therefore we shall content to embed into
the Euclidean space R

3 the “equatorial plane”, i.e. we let, also, θ = const(= π/2).
We are, left, thus, with a two-dimensional submanifold of the original Schwarzschild
spacetime, with the positively-defined metric

ds2 =
dr2

1 − 2M
r

+ r2dϕ2. (4)

To embed this submanifold into the Euclidean space means, in fact, to find a two-
dimensional submanifold of R

3 (in other word, a surface in the intuitive space) such
that the metric induced on this surface by the metric of the Euclidean space, i.e. its
first fundamental form to be exactly the metric (4). As shown in Misner et al. (1971),
such a surface can be described, in cylindrical coordinates, by

z =
p

8M(r − 2M) (5)

The plot can be seen in the figure 4. The event horizon corresponds to the bottom of
the diagram (as it corresponds to r = 2M). We will call this kind of embedding, when
a spacelike slice of the spacetime is embedded, a classical embedding diagram. This
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Figure 4: An embedding diagram for the Schwarzschild black hole for M = 1

kind of diagram is quite useful for the visualization of some phenomena. For instance,
in most books of relativity, a picture of an equatorial geodesic in the Schwarzschild
spacetime typically looks like that in the figure 5(a) while, instead, it should be

–10

–5

5

10

–10 –5 5 10

(a) The plane version

(b) On the embedded surface

Figure 5: A geodesic around a black hole

viewed as a geodesic on the embedded equatorial plane, i.e. it should look like in
the figure 5(b). Thus, the classical embedding diagram does help the intuition and
makes things clearer. However, it emphasizes only the curvature of the space instead of
emphasizing the curvature of the spacetime. In other words, generally speaking, what
has physical significance is the curvature of the spacetime rather than the curvature
of the spacelike section. For instance, the four-dimensional Minkowski spacetime has
zero curvature. Nevertheless, we can choose coordinates in such a way that the section
t = const are curved three-dimensional Riemannian spaces. Still, this has nothing to
do with physics, it just reflects a particular choice of coordinates. The four-dimensional
spacetime curvature, instead, is either different from zero in any coordinate system,
either zero in any coordinate system. It would be useful to have, therefore, also a
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way of visualizing two-dimensional slices for which the induced metric is non-defined.
Clearly, such slices can only be embedded into a Minkowski spacetime. It is exactly
what the Marolf’s embedding diagrams are doing and we shall dedicate the next section
to them.

5 Marolf’s embedding diagrams

The new kind of embedding were introduced in Marolf (1999) and discussed in more
details in Giblin et al. (2004). As we said previously, the idea is two embed a 2-
dimensional submanifold with a Lorentzian metric into the (2+1)-dimensional Minkowski
spacetime rather than into the Euclidean space. We mention that, as is the case with
the classical embeddings, the construction of a Marolf embedding is quite delicate and
it is only possible to be done in special situation, for instance when the spacetime has
spherical symmetry and, moreover, it is static. The black hole having this properties
are endowed with a metric of the form

ds2 = −φdt2 + φ−1dr2 + r2dθ2 + r2 sin2 θdϕ2,

where φ is a function depending only on r, due to the spherical symmetry and to the
static character of the spacetime. What is intended is to embed the (t, r)-part of the
spacetime, with the metric

ds2 = −φdt2 + φ−1dr2.

This should be embedded into the (2+1) Minkowski spacetime, with the metric given
by

ds2 = −dT 2 + dX2 + dY 2.

In fact, there are some technicalities that we are not going to discuss here (see Giblin
et al. (2004)), related to the fact that, usually, we cannot use the same formulae
to embed the entire submanifold, therefore we divide the Minkowski spacetime into
several regions and then embed different pieces of the submanifold in different region
and then we “past” them together to get the overall picture. The trick is, again, to
use cylindrical coordinates, but this time they are hyperbolic (as the metric of the
surface is Lorentzian, rather than Riemannian). In the figure 6 we represent the
diagram obtained for the Schwarzschild spacetime (Marolf (1999)). As one can see,
it is very different from the classical embedding diagram. In particular, one might
have difficulties to locate the event horizon on this diagram which is a smooth surface.
It turns out that the horizon correspond to Y = 0, while the singularity r = 0 is
inside the horizon, corresponding to infinite values of T (see Marolf (1999) for the
argumentation). The Marolf’s diagram is useful because it emphasizes the curvature
of spacetime and, also, because on this diagram one can represent the wordlines of
particles, instead of geodesic corresponding to constant values of the time coordinate,
as is the case for the classical embedding diagrams.
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Figure 6: The Marolf ’s diagram for the Schwarzschild black hole

For the Reissner-Nordström black hole (figure 7, Giblin et al. (2004)) the situation
is more complicated, because of the presence of two event horizons, corresponding to
the two solutions of the equation φ(r) = 0. It turns out that only for the part of the
2-submanifold lying outside the exterior event horizon the embedding is possible and
this is the one appearing in the figure.

6 Final notes and perspectives

The embedding diagrams are very useful tools both for teaching general relativity and
for a better understanding of different aspects of the geometry and physics of black
holes. In particular, the Marolf’s diagram should provide a lot of insight. Much remain
to be done in this respect. In particular, it would be nice to have, also, such diagrams
for relativistic stars and to attempt to study their evolution during the gravitational
collapse. A detailed study of the geodesics on these surface is also something that has
to be done. Some of these problems will be touched in Blaga (2005).
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Abstract

The paper is devoted to a qualitative analysis of the nonlinear, radial oscillations
of magnetic polytropes. The magnetic field is assumed to be purely toroidal. The
small adiabatic perturbations are investigated using the normal forms method. The
nonadiabatic effects, described with the aid of two additional terms, related to the
sources of the energy and energy damping, respectively, are analyzed with the aid
of the dynamical systems theory. The numerical examples confirm and complete the
qualitative investigation.
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1 Introduction

In this paper we study the stability of the polytropic stars in a weak toroidal magnetic

field. To investigate the radial oscillations of a star we use the radial approximation
of the Lorentz force proposed by Monaghan (1968). The study of the nonlinear radial
adiabatic oscillations of magnetic polytropes is made through the normal forms method.
The same problem was investigated using the multiple scales method by Das et al
(1994). The nonadiabatic effects are described using additional terms connected to
the energy production and loss. Their influence on the nonlinear radial pulsation of
magnetic polytropes is investigated with the aid of dynamical systems theory.
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2 Small perturbations of magnetic polytropes

The influence of a weak magnetic field on stellar oscillations can be obtained using a
perturbative method, so we consider the Lagrangean perturbation of the hydromag-
netic equilibrium equation:

∇P − ρ∇Φ +
1

8π
∇B

2 −
1

4π

“

~B · ∇
”

~B = 0. (1)

where P is the pressure, Φ – the gravitational potential and B – the induction of the
magnetic field. After long, but straightforward computations we obtain the equation
of small oscillations of a magnetic star:

ρ∂
2
t ξi = Lijξj , (2)

where the right hand side of the equation is

Lijξj = ∇i(Γ1P∇jξj) − (∇jξj)∇iP + (∇iξj)∇jP + ρξj∇j∇iΦ + ρ∇iδΦ

−
1

8π
(∇jξj)∇iB

2 −
1

4π
δBk

„

∂Bk

∂xi

−
∂Bi

∂xk

«

−
1

4π
Bk

„

∂δBk

∂xi

−
∂δBi

∂xk

«

−
1

8π
∇i(ξk∇kB

2) +
1

4π
(ξj∇jBk∇kBi + ξjBk∇j∇kBi) . (3)

To obtain the normal modes equation we consider the peculiar solution of the
former equation ξ(r, t) = ξ(r)eiσt (Anand and Kushwaha, 1962).

3 Radial oscillations of a polytropic star in a

toroidal magnetic field

The magnetic field destroys the spherical symmetry of the star, but in the first ap-
proximation to investigate the problem of stellar oscillation in a weak magnetic field,
we can use the radial approximation of the Lorentz force (Monaghan, 1968) which is

Z 1

−1

Z 2π

0

F (r)dνdϕ =

Z 1

−1

Z 2π

0

 

−
1

8π
∇B

2 +
( ~B · ∇) ~B

4π

!

dνdϕ (4)

where ν = cos θ, F (r) is the radial approximation of the Lorentz force and B – the
induction of the magnetic field.

Assuming that the magnetic field of the star is purely toroidal and that the nonzero
component of the induction of the magnetic field is Bϕ = Γρr sin θ (Roxburgh, 1966),
the equation of radial adiabatic pulsations becomes:

ρ0ar̈1 = −(1 + r1)
2
ˆ

P0(1 + r1)
−3γ(1 + ar

′

1 + r1)
−γ
˜′

− ρ0g0(1 + r1)
−2

−
Γ2ρ0

6π
(1 + ar

′

1 + r1)
−1
ˆ

ρ0a
2(1 + ar

′

1 + r1)
−1
˜′

, (5)
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where the dot stands for the time derivative, the prime – for the derivative with
respect to the radial variable (here the radius of the unperturbed configuration a), zero
index emphasizes that it is considered the value of the function in the unperturbed
configuration. The distance to the stars center in the perturbed case, denoted by r, is

r = a(1 + r1) (6)

where a is distance to stars center in equilibrium and r1, the adimensional radius, is
the difference between the distances to star’s center in unperturbed stellar radius.

Comparing this equation to that derived by Rosseland (1949) for radial adiabatic
oscillation of a star without rotation or magnetic field we conclude that the last term
from the left hand side appears because of the existence of the magnetic field.

4 Nonlinear radial oscillations of magnetic poly-

tropes

Expanding in Taylor series the right hand side of the equation (5) and keeping the
terms up to the first order Roxburgh and Durney (1967) obtained the equation of
linear pulsations of magnetic polytropes.

Keeping in the series expansion the terms up to third order in r1 we obtain the
following equation

ρ0ar̈1 = L(r1) + Q(r1) + S(r1), (7)

where the functions contain the terms of order one, two, three in r1. Their expressions
are two long to be reproduced here. If we consider that r1 is

r1 = ξ1(a)q1(t), (8)

with ξ1 is the eigenfunction corresponding to the fundamental mode of the equation
(5) we obtain

q̈1 + q1 = Aq
2
1 + Bq

3
1 , (9)

where the variable is proportional to time and the coefficients A and B depend on the
polytropic index and on the ratio between the magnetic and gravitational energy. This
equation (9) is the equation of the radial nonlinear oscillation of magnetic polytropes
obtained by Das et al (1994). They investigated it by using the multiple scales method.
We will find its approximate solution using the normal forms method.
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5 Adiabatic oscillations of magnetic polytropes

through normal forms method

5.1 Short description of the method

We are looking for an approximate solution of the pulsations equation. The small
parameter we choose is the amplitude of the initial oscillation, because from observa-
tional data it is between 0.05 and 0.15 for classical Cepheids, 0.01−0.08 for RR Lyrae
stars and 0.10 − 0.30 for W Vir (Buchler, 1990; Stothers, 1981).

Let q1 = λQ1, where λ is the initial amplitude and Q1 the unknown function, then
the equation (9) becomes

Q̈1 + Q1 = AλQ
2
1 + Bλ

2
Q

3
1, (10)

where Q1 = 1.0 and Q̇1 = 0.0 for the initial moment t = 0.
We replace the real unknown function Q1 with a complex unknown function of

complex variable to reduce the order of the differential equation we have to solve. The
complex variables ξ, ξ̄ are introduced by

ξ =
1

2
(Q1 − iQ̇1), ξ̄ =

1

2
(Q1 + iQ̇1). (11)

In these new variables the equation 10) becomes

ξ̇ = iξ −
iλA

2
(ξ + ξ̄)2 −

iλ2B

2
(ξ + ξ̄)3, (12)

equation which is written in a simpler form using a power series expansion with respect
to a new variable η. Let

ξ = η + λh1(η, η̄) + λ
2
h2(η, η̄) + λ

3
h3(η, η̄) + ... (13)

and
η̇ = iη + λg1(η, η̄) + λ

2
g2(η, η̄) + λ

3
g3(η, η̄) + ..., (14)

where hi(i = 1, 2, 3) are smooth function in η and η̄ and gi(i = 1, 2, 3) contain the
resonant terms ( i.e. ∼ eit). We mention that after we have determined and replaced
the functions which appear in (14), it became the normal form of equation (12).

5.2 Approximate solution of the radial nonlinear pulsa-

tions equation

Identifying the coefficients of the terms that contain λ at equal power, we are able to
specify the form of the functions gi and to write down the normal form of equation
(12) as

η̇ = iη − λ
2
i

„

5A2

6
+

3B

2

«

η
2
η̄. (15)
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with the initial condition η = 0 for t = 0. The solution of this equation is

η =
1

2
e

i

»

t−λ2

„

5A
2

24
+ 3B

8

«

t

–

, (16)

and the oscillations period is 2π + O(λ2). To simplify the form of the solution we
introduce the notation

τ
+ = t − λ

2

„

5A2

24
+

3B

8

«

t. (17)

The approximate solution of equation (10) is

Q1 = cos τ
+ + λ

„

−
A

6
cos 2τ

+ +
A

2

«

+
λ2

4

„

A2

24
−

B

8

«

cos 3τ
+

+
λ3

8

»„

−
A3

540
+

AB

12

«

cos 4τ
+ +

„

−
7A3

216
−

31AB

12

«

cos 2τ
+

−
19A3

9
− 5AB

–

. (18)

5.3 Concluding remarks

The numerical evaluations of (18) for different values of the polytropic index (n) and
ratio between magnetic and gravitational energy (h) revealed us, as expected, that
the precision of the computation is highly dependent on the initial amplitude, and less
sensitive at the values of n or h.

6 Radial nonlinear nonadiabatic oscillations of

magnetic polytropes

The dissipative phenomena are described with the aid of two terms introduced in the
equation (10). This idea and the form of these terms belong to Krogdahl (1955), who
use them to explain the shape of the light curves observed at Cepheids. The terms
added are µ dq1

dt
, with µ > 0, µ being a constant related to the energy sources of the

star and −µ

λ
q2
1

dq1
dt

, where λ is proportional to the energy loss.
If we substitute q1 = λQ1, the equation (10), in which we have added the two

terms describing the energy production and loss, becomes

Q̈1 + Q1 = AλQ1
2 + Bλ

2
Q1

3 + µ(1 − Q
2
1)Q̇1, (19)

which for λ = 0 is a van der Pol equation1. A qualitative study of the equation (19)
was done by Blaga (1998). It reveals that the number of the equilibrium points of

1In this case λ is a parameter connected to energy production and dissipation, not to the
initial amplitude as in the case of normal form method discussed above.
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the equation (19) depends on the polytropic index and the ratio between magnetic
and gravitational energy and their nature depends on the energy dissipation through
µ. For µ > 0 exists at least one periodic solution. For small positive values of µ the
origin is unstable, but there exists a stable limit cycle. From the physical point of
view, this means that, no matter which the initial conditions are the solution tends
asymptotically to that periodic solution. In the amplitude-frequency relation µ plays
no role as long as it is small.
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(a) Curbele radiale (t, x(t))
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(c) Ciclul limită din planul fazelor

Figure 1: Reprezentarea grafică a soluţiei ecuaţiei pulsaţiilor neliniare neadiabatice

pentru n = 3 şi h = 0.004

We conclude that the presence of the energy sources (µ 6= 0, µ > 0) in a polytropic
star does not contradict the existence of periodic orbits for the equation of radial
nonlinear pulsations. For µ = 0 (i.e. adiabatic pulsations) and µ 6= 0, µ > 0 (i.e.
nonadiabatic oscillations) the motion in the phase plane looks different. In the first
case the solution depends on the initial conditions and in the second case the amplitude
of the pulsation is independent of the initial conditions.

We emphasize that for small values of parameters µ şi λ, the magnetic field, through
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A and B, the nonadiabatic processes, through the damping coefficient, tend to diminish
the frequency of the oscillations. This thing could be observed from the figures 1(a)
and 1(b) in which we have represented the radial curves and the radial velocity curves
(t, x(t)), respectively (t, y(t)) for the first order differential system corresponding to
the second order differential equation (19). These were obtained solving it numerically
for n = 3 and h = 0.004 (where h is the ratio between the magnetic and gravitational
energy) and µ ∈ {0.05, 0.5, 1.0}. In figure 1(c) we have represented the limit cycle.
For small values for µ it is symmetric, this quality is lost for bigger values for µ, as
could be observed from the radial velocity curves (figure 1(a)).
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1 Introduction

The existence of extrasolar planets was a long-standing open issue of astronomy till
1995, when the first exoplanet has been discovered around the star 51 Pegasi by Mayor
& Queloz (1995). Since this discovery we know more than 133 extrasolar planets,
which form around their hosting star 117 exoplanetary systems. The majority of these
systems are single systems in the sense that they are consisting of only one planet,
and 13 are multiple systems consisting of two or even more planets.

Exoplanetary research focusses mainly on the observation of exoplanets. However,
there are other very important questions related to this field: one of these is the
investigation of formation scenarios of planetary systems, and another one, which is
addressed in this paper, is the dynamics and stability of such systems. Also a very
important question arising in the context of exoplanetary research is the problem of
habitability. Beside the very important atmospheric and geophysical characteristics
of an exoplanet, its orbital (dynamical) properties are also essential in studying its
habitability. From a human point of view, a planet is habitable, if the temperature on
its surface is high enough to keep water in liquid phase, see Kasting et al. (1993) for
a more detailed definition. We note however, that the question of habitability defined
above, has sense only in the case of terrestrial planets.
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Unfortunately, the exoplanets observed by now are gas-giants. This is the con-
sequence of the fact that by using radial-velocity measurements, which is the most
effective ground-based observing technique, there is no chance to detect Earth-sized
planets. Thus there are space missions aiming at the detection of Earth-like exoplanets
in planning phase, which hopefully will be launched in the near future.

The paper is organized as following: first we review shortly the basic characteristics
of exoplanets and exoplanetary systems discovered by now, then we describe briefly the
ground-based observing techniques, and the above mentioned space missions. After
discussing our method of stability investigation, we present our results obtained by
the stability investigation of hypothetical terrestrial extrasolar planets.

2 Characterization of exoplanets and their meth-

ods of detection

2.1 Properties of exoplanetary systems

Studying the orbital characteristics of exoplanets (see: http://www.exoplanets.org)
one can conclude that the exoplanetary systems discovered until now differ very much
from our planetary system, where the Jupiter-like gas giants are at larger distances
(from the Sun), and between the gas giants and the Sun there are the Earth-like
planets. In the case of the Solar System the orbital eccentricities of giant planets are
rather small, or moderate.

It is expected however, that by using other observing techniques Earth-like exo-
planets will be detected, and such planetary systems that are more similar to the Solar
System. In what follows we present the most important observing methods and the
space missions planned for observation of Earth-like exoplanets.

2.2 Methods of investigation

There are a couple of methods to observe extrasolar planets, the most efficient is
based on the Doppler-shift of the hosting star’s spectral lines. Another very promis-
ing method is the transit photometry. Although there are some results provided by
the OGLE program, a breakthrough is expected after launching space instruments
using transit photometry. Finally, we mention the interferometric methods. There
are grandious space missions as Terrestrial Planet Finder (NASA) or Darwin (ESA)
planned to launch in the future, which may use interferometric measurements. These
instruments will be able to detect even some signs (if there are any) of possible ex-
traterrestrial life. In what follows, we summarize briefly the Doppler-method and the
transit photometry.
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2.2.1 Radial velocity measurements

By now, this is the most efficient method to observe Jupiter-like exoplanets around
a star. The basic principle of this method is that the star and an unseen planet
move around their common barycenter, which results in the periodic displacement of
the star’s spectral lines. From this effect the radial velocity curve of the star can be
calculated, and various physical properties of the unseen planet can be deduced: mass
(m sin i), semi-major axis, eccentricity, etc. This method can be applied to detect 3-10
m/s change in radial velocity. We note that Jupiter causes a 12 m/s radial velocity
change in Sun’s motion.

2.2.2 Transit photometry and space instruments

Transit photometry can be applied if the unseen planet, its hosting star, and the
observer are approximatelly in the same plane. Planetary transit then results in the
periodic dimming of the star’s light intensity, however, a terrestrial planet causes only
a ∆m = 10−5 change in the light intensity! Clearly, this method can be used to detect
Earth-like planets only from space, thus there are space missions for observing Earth-
like planets in planning phase. Such a mission is COROT (COnvection, ROtation and
planetary Transit) sponsored mainly by CNES, partly by ESA and other countries. Its
planned launching date is 2006. COROT is a space telescope with a 30 cm diameter
mirror and an array of CCD’s as detectors. It has two scientific aims: stellar seismology
and the detection of few times larger terrestrial planets than Earth. The minimal
expectations of the program after observing 3 × 104 stars, and supposing that 5%
of them have Earth-like planets, are the detection of 10 exoplanets having radius
R = 2R⊕ and 6 exoplanets with radius R = 1.58R⊕.

Another space instrument, which is devoted entirely to observe Earth-like exoplan-
ets by using the transit photometry is KEPLER (NASA). Practically this is a large
Schmidt-telescope with 95 cm aperture, its mirror diameter is 1.4 m, and it has 42
CCD chips. The planned life-time of this instrument is 4 years, thus during this (in
ideal case) three transits with period 1.33 year can be detected. KEPLER is calibrated
to detect a transit of an Earth-sized planet with semi-major axis a = 1AU around a
star with mv = 12m apparent brightness.

Analysing the light curve and the period of the transit the orbital parameters of
an exoplanet can not be derived uniquely. More accurate orbital parameters can be
obtained if dynamical constraints are present. Such a dynamical constraint could be a
Jupiter-like gas giant, which results in appearing dynamically unstable regions in the
system, which are similar to the Kirkwood-gaps in the Solar System. If a hypothetical
object is placed in an unstable region its orbit would be chaotic. Thus by using a chaos-
detection method, orbital solutions which result in chaotic orbits can be avoided. This
can help in chosing the right orbital parameters of the observed exoplanet by using
the transit photometry.
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3 Method of stability investigation

A traditional way to detect chaotic behaviour of orbits in dynamical systems is the
calculation of the maximum Lyapunov characteristic exponent (LCE). The LCE of a
trajectory emanating from an initial point x∗ of the phase space is defined as the limit

L1(x) = lim
t→∞

1

t
log

||ξt||

||ξ0||
, (1)

where ξt is the image of an initial infinitesimal small deviation vector ξ0 after time
t. The evolution of ξt can be calculated by numerical integration of the equations of
motion together with their linearized equations:

ẋ = f(x),

ξ̇ = Df(x)ξ, (2)

where Df(x) is the Jacobian matrix evaluated at x. In the case of Hamiltonian systems
(dynamical systems describing the behaviour of planetary systems are Hamiltonian
systems) if L1(x) = 0, the orbit evolving from x is regular, if L1(x) > 0 it is chaotic.
A serious disadvantage of the calculation of the LCE is that it can not be obtained
after finite integration time, thus its value can only be extrapolated, which makes
the identification of weakly chaotic orbits very uncertain. Furthermore, weak chaos
plays an essential rôle in understanding the long-term stability of exoplanetary systems
(including the Solar System as well). Thus in recent years there has been a growing
interest in the development and application of fast chaos detection methods. Being
aware of the incompleteness of the references below, we refer to the FLI method of
Froeschlé et al. (1997), to the method of spectral distance by Voglis et al. (1998, 1999),
and to the SALI method of Skokos (2001). In Sándor et al. (2000) we introduced and in
Sándor et al. (2004) we refined the concept of the Relative Lyapunov Indicator (RLI),
which has also been proved in our investigations an efficient tool of chaos detection.
Before the definition of the RLI, we recall the definition of the finite-t Lyapunov
indicator originating from an initial point x0:

L(x0, t) =
1

t
log

||ξt||

||ξ0||
. (3)

The RLI method is based on the fact, that the finite-time approximation of two neigh-
bouring orbits, L(x, t) and L(x+δx, t) evolves similarly (as a function of t) for regular
orbits, and differently for chaotic orbits. In order to quantify the time-evolution of
L(x, t) for neighbouring regular and chaotic orbits, we introduced the idea of the
Relative Lyapunov Indicator (Sándor et al., 2000)

∆L(x, t) = |L(x + δx, t) − L(x, t)|, (4)

where δx << 1. Our investigations on different dynamical systems such as the re-
stricted three-body problem (Sándor et al., 2000); the 2D, 4D symplectic mappings,
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and the stability of certain exoplanetary systems Sándor et al. (2004); Érdi et al.
(2004); and Érdi & Sándor (2005) show that the curve ∆L(x, t) exhibits typical be-
haviour for regular and chaotic orbits, which differ essentially from each other.

Since the chaotic behaviour of orbits can be detected after a relatively short time
numerical integration, the method of the Relative Lyapunov Indicators enables us to
study a large set of initial conditions, thus to discover the regular and chaotic regions
of the phase space. In order to separate regular and chaotic regions of the phase space
we calculate the average value of ∆L(x, t) for a given integration time t∗:

〈∆L(x∗)〉t∗ =
1

t∗

t∗/∆t
X

j=1

∆L(x, j∆t). (5)

If x is in a regular region 〈∆L(x)〉t∗ is small, otherwise, if x is in a chaotic region
〈∆L(x)〉t∗ will be larger.

4 Dynamical stability of the habitable zones of

exoplanetary systems

In this section we present our results obtained in studying the dynamical habitability
of extrasolar planetary systems. After discussing the stability of the habitable zones
of individual systems, we present our concept on a stability catalogue for hypothetical
Earth-like planets. Finally, we discuss the case of Earth-like exotrojans. (The habit-
able zone is that region around a star where water can exist in fluid phase on a surface
of a planet.)

4.1 Stability of individual systems

The investigation of the stability of the habitable zones of exoplanetary systems began
with the work of Jones et al. (2001). They investigated four systems by long-time
numerical integration, and found that two of these systems could have stable Earth-
like orbits in their habitable zone. More recently, Menou & Tabachnik (2003) have
studied the stability of the habitable zones for 85 exoplanetary systems. They found
that one fourth of these systems might have stable habitable zones. In the above cases
the method of investigation was the numerical integration of the equations of motion
of fictitious Earth-like planets.

Instead of numerical integration of individual orbits, we have explored the semi-
major axis – eccentricity plane of some exoplanetary systems having two giant objects.
In our research (Sándor et al., 2004; Érdi et al., 2004) we studied the systems HD 38529,
HD 169830, and HD 168443. In these cases the habitable zones are between the two
giant planets.
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4.1.1 HD38529

The habitable zone of this system is between 1.4 - 3.0 AU. In Figure 1, left panel
we displayed the dynamical structure of the a − e plane between a = 0.6 − 2.0 AU.
Figure 1 shows how a small Earth-like planet would behave if it was started with initial
conditions corresponding to the points of the a− e plane of the plot. The dark region
on the right hand side indicates strongly chaotic motion, the light region on the left
ordered, thus stable motion. The grey strips correspond to the different mean motion
resonances. Studying Figure 1 one can see that near the inner edge of the habitable
zone a third planet with negligible mass can exist.

Figure 1: The a − e planes of HD38529 (left panel) and HD168443 (right panel)

4.1.2 HD 168443 and HD 169830

The a−e plane of HD 168443 systems are shown in Figure 1, right panel. The habitable
zone for HD 168443 is between 0.7− 1.3 AU, while for HD 169830 is between 1.4− 3.0
AU. In Figure 1 (right panel) one can see that the a − e plane is very chaotic. There
are some lighter regions, which seem to allow stable motion for the Earth-like planet,
but our careful analysis showed that all orbits are unstable.

The a − e plane of HD 169830 is very similar to HD 168443 therefore we do not
show it. The habitable zone of this system is very chaotic, thus it is very unlikely to
host Earth-like planets with stable orbits.

4.2 A stability catalogue of Earth-like exoplanets in exo-

planetary systems

As we mentioned before, by using data from transit photometry, the orbital parameters
of an Earth-like planet can be calculated only with some error limits. The presence
of another giant planet results in appearing chaotic (and therefore unstable) regions
in the system, thus it means a dynamical constraint, which can help in deriving more
accurate orbital elements. Our idea is to compile a catalogue of dynamical stability for
exoplanetary systems consisting of a giant Jupiter-like planet and a small Earth-like
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planet. This stability catalogue can be used to establish immediatelly the stability
properties of the habitable zones of the known exoplanetary systems too.

The planned catalogue uses as dynamical modell the elliptic restricted three-body
problem (ERTBP), assuming that the giant planet moves around the star in an elliptic
orbit with semi-major axis normalized to unity: ap = 1, eccentricity ep, periastron ar-
gument ωp, and mean anomaly at the epoch Mp. ERTBP depends on two parameters:
the eccentricity of the massive planet, and the mass parameter µ = mp/(ms + mp),
where mp is the mass of the giant planet and ms is the mass of the star. By using the
RLI we shall calculate the structure of the a − ep plane for several values of the mass
parameter µ, where a is the semi-major axis of the hypothetical Earth-like planet and
ep is the eccentricity of the giant planet. First we shall fix e = 0, ω = 0 M = 0,
ωp = 0, and Mp = 0. Later on we shall change Mp between 0◦ − 360◦.

The compilation of the above described catalogue has begun, in what follows we
present one ”page” of it. Figure 2 (left panel) shows the structure of the a− ep plane
for µ = 0.001 (the case of the Sun–Jupiter system), when the (normalized) semi-
major axis of the hypothetical Earth-like planet is larger than ap. The light regions
correspond to ordered, therefore stable orbits. There are grey ”V”–shaped strips,
which correspond to different mean-motion resonances. Increasing ep these resonances
overlap each other and a strongly chaotic, thus unstable behaviour appears.

By using this catalogue one shall easily decide whether the habitable zone (HZ) of
a given system is dynamically stable, or not. If the physical properties of the central
star, the eccentricity and the mass of the giant planet are known, it is easy to place
the system’s habitable zone on the a − ep plane. In Figure 2 (left panel) the HZ of
four systems are shown. Two of them is entirely in the chaotic region, but the HZ of
HD121504 is almost ordered, thus stable. The HZ of HD52265 is mainly in chaotic
region, but it contains stable regions too.

Finally we note that the dynamical properties of the a − ep planes are governed
by the different mean motion resonances between the giant planet and the Earth-like
planet. The most important resonances are marked in Figure 2 (left panel). These
resonances can represent both ordered (stable) or weakly chaotic (becoming unstable
after very long time) orbits, depending on the initial angular positions of the planets.

4.3 Stability of co-orbital Earth-like exoplanets

We speak of co-orbital motion when two planets move in nearly the same orbits.
In this case they are in a 1/1 mean-motion resonance. In the Solar System there
are many examples for this type of motion: the best known representatives are the
Jupiter’s Trojan asteroids. Thus it can be expected that co-orbital objects exist also
in exoplanetary systems. In our investigation (Érdi & Sándor, 2005) we studied that
case when the giant planet moves in the habitable zone of the system. Then habitable
Earth-like planet could exist only in the vicinity of the stable Lagrangian points of
the giant planet – star system since around a stable Lagrangian point there is a region
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Figure 2: One page of the stability catalogue (left picture). HD177830: the stability

around L4 (right picture).

of non-linear stability. Test particles starting from this region librate around the
corresponding Lagrangian point in stable orbits. We investigated 5 systems, in which
the giant planet is always in the habitable zone, and 4 systems, in which the giant
planet, due to its larger eccentricity, can leave temporarly the habitable zone. For our
computations we used the modell of the elliptic restricted three-body problem. We
found that in all systems co-orbital Earth-like planets can exist.

Figure 2 (right panel) shows such a stability region around the Lagrangian point
L4 of the system HD177830. On the x−axis there is the synodic longitude τ , which
is the difference between the mean longitudes of the hypothetical Trojan and the
giant planet; on the y−axis there is the semi-major axis of the hypothetical Trojan
planet. We take initial τ and a values from a regular grid on this plane, and assuming
that the remaining orbital elements (eccentricity, argument of periastron) are zero,
we calculate the RLI for each orbit originating from these initial conditions. It can
be seen that around L4 there is a stability region, which may host stable Earth-like
exotrojan planets for very long time in a very stable orbit.

5 Summary

The most efficient ground-based observation method of exoplanets is based on the
radial velocity measurements of a star. Unfortunately, this method is unable to detect
Earth-like planets. The existence of Earth-like planets, however, is a very important
question regarding the formation theories of the Solar System, where both rocky plan-
ets and gaseous giant planets have been formed. Thus there are space missions aiming
at the detection of Earth-like exoplanets in planning phase, which will be launched in
the near future.

In this paper we have investigated the dynamical stability of Earth-like planets in
exoplanetary systems. We have found that there are exoplanetary systems, which can
host Earth-like exoplanets even in such an exotic case that the Earth-like planets are
co-orbital companions of the gas giants. We have begun the compilation of a stability
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catalogue of Earth-like planets in exoplanetary systems, which can be used to establish
the stability properties of the habitable zones of the known exoplanetary sytems. This
catalogue will help in determining more accurate orbital elements of Earth-like planets
detected by transit photometry too.
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Sándor, Zs., Érdi, B., Efthymiopoulos, C., 2000, Celest. Mech. & Dyn. Astron., 78,
113
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Abstract

Zero velocity surfaces are deduced in the gravitational restricted three-body problem
by using the Jacobi-integral. These surfaces are the boundaries of the Hill’s regions:
regions where the motion of the third, massless particle around the two primaries is
possible. V. Szebehely generalized this result for the planar elliptic restricted three-
body problem. In a recent paper – Makó and Szenkovits (2004) – the authors presented
a generalization of this result for the spatial elliptic restricted three-body problem,
where the existence of an invariant relation was proved. From this invariant relation
the equation of the zero velocity surfaces can be deduced. In this paper we discuss
the pulsation and the change of the type of these zero velocity surfaces and we present
applications to the phenomenon of the gravitational capture. In the model of the
spatial elliptic restricted three-body problem criteria of the capture are deduced by
using the pulsating Hill’s regions.
Keywords: Elliptic restricted three-body problem, zero velocity surfaces, gravitational

capture.

1 Introduction

It is well known that the equations of motion of a body of infinitesimal mass moving
under the gravitational attractions of two massive bodies, which move in circles about
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their common centre of gravity (the circular restricted three-body problem, CRTBP)
admit of an integral, called after its discoverer, the Jacobi integral (Jacobi, 1836).
The Jacobi integral plays an important role in the study of the CRTBP, since it makes
possible certain general, qualitative statements regarding the motion without actually
solving the equations of motion. It has been used for example to construct surfaces of
zero velocity (ZVS) which limit the so called Hill’s regions of space in which the small
body, under given initial conditions, can move, and to derive a criterion (the Tisserand
criterion) for the re-identification of a comet whose orbit has suffered perturbations
by a planet.

Several authors have also used the circular Jacobi as an approximate integral of
the elliptical restricted three-body problem (ERTBP), when the two primaries revolve
on elliptical orbits. Thus Hill (1878) treating the Moon as an infinitesimal body in the
Sun–Earth–Moon system, and neglecting the eccentricity of the Earth’s orbit about
the Sun, concluded that the Moon’s distance from the Earth has a superior limit.

Ovenden and Roy (1961) starting from the integrals of the general three-body
problem (expressed in non-uniformly rotating rectangular coordinates), obtained for-
mal expressions for the Jacobi integral and the angular momentum integrals of the
ERTBP in terms of certain auxiliary functions. Using these expressions they con-
cluded that “the Jacobi integral of the CRTBP for long-term predictions in any real
case where the two massive bodies’ relative orbit has a finite eccentricity (however
small) is without justification even if the mass of the third body is infinitesimal”.

Szebehely and Giacaglia (1964) obtained in the planar ERTBP a simple form of
the equations of motion – similar to that in case of the CRTBP –, by using the true
anomaly of the primaries as the independent variable and by introducing a special
set of dimensionless variables describing the position of the third body. They also
deduced an invariant relation, the generalization of the Jacobi integral and proved the
pulsation of the zero velocity curves in the planar case.

Contopoulos (1967) deduced two integrals of motion in the plane ERTBP for orbits
with small eccentricity near the primaries. These integrals, given in the form of formal
series, depend periodically on the time, with frequency equal to that of the second
body.

Vrcelj and Kiewiet de Jonge (1978) derived an invariant relation – containing
also a nonintegrable term – generalizing the Jacobi integral to the ERTBP on the
basis of the classical perturbation theory and by making use of energy and angular
momentum integrals. This invariant relation was reduced and applied to calculate the
Jacobi constant for asteroids (Vrcelj and Kiewiet de Jonge, 1978a; Vrcelj, 1979).

In a recent paper (Makó and Szenkovits, 2004) the authors generalized Szebehely’s
(1964) result concerning the pulsating Hill’s regions to the spatial ERTBP. By using
the obtained invariant relation, necessary conditions of the gravitational capture of
small bodies was also deduced, in case of small eccentricities of the primaries and
bounded motion of the test particle.

The gravitational capture of small bodies by major planets is an interesting phe-
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nomenon in planetary systems, having applications to the study of comets, asteroids
and moons, and it can be studied by using different models of the celestial mechan-
ics. Several authors studied this problem, introducing different concepts of capture,
like weak capture (Belbruno, 1999; Belbruno and Marsden, 1997), temporary capture
(Brunini, 1996), longest capture (Vieira and Winter, 2001), resonant capture (Yu and
Tremaine, 2001), etc. Brunini, Giordano and Orellana (1996) studied the conditions
of the capture in the restricted three-body problem. Murison (1989) pointed out con-
nections between the gravitational capture and chaotic motions. An exciting study
has been dedicated to the capture of irregular moons – with non-circular orbits - by
giant planets (Astakhov et al., 2003). The authors confirmed with three-dimensional
Monte Carlo simulations that irregular satellites are captured in a thin spatial region,
where orbits are chaotic and that the resulting orbit is either prograde or retrograde
depending on the initial energy. In (Astakhov and Farrelly, 2004) the authors, using
the model of the ERTBP, show that the mechanism of the capture, presented in the
beforehand cited paper, survives perturbations due to the ellipticity of the planet’s
orbit, however, the planet’s ability to capture moons decreases with increasing orbital
eccentricity.

In this paper we put in evidence some properties of the Hill’s regions in the case
of the spatial ERTBP. The pulsation and the change of the type of these zero velocity
surfaces are evidenced. We present also applications to the phenomenon of the grav-
itational capture. In the model of the spatial elliptic restricted three-body problem
criteria of the capture are deduced by using the pulsating Hill’s regions.

2 Invariant relation in the spatial ERTBP

In the elliptic restricted three-body problem (ERTBP) two massive primaries (plane-
tary objects) P1 and P2, with masses m1 and m2 revolve on elliptical orbits under their
mutual gravitational attraction and the motion of a third, massless body P3, (m3 = 0)
is studied. The orbit of P2 around P1, in an inertial system is

r =
a

`

1 − e2
´

1 + e cos f
, (1)

where r is the mutual distance, a and e are the semimajor axis and the eccentricity of
the elliptical orbit (e < 1), and f is the true anomaly.

There are several systems of reference that can be used to describe the elliptic
restricted three-body problem. In our study a nonuniformly rotating and pulsating
coordinate system is used. In this system of reference (Figure 1) the origin O is in
the center of mass of the two massive primaries (Sun and Earth for example), and the
ξ̃ axis is directed towards m2. The ξ̃η̃ coordinate-plane rotates with variable angular
velocity, in such a way, that the two massive primaries are always on the ξ̃ axis, and
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the period of the rotation is 2π. Besides the rotation, the system also pulsates, to keep

the primaries in fixed positions
“

ξ̃1 = −µ, η̃1 = ζ̃1 = 0, ξ̃2 = 1 − µ, η̃2 = ζ̃2 = 0
”

.

In this system the equations of motion of the third massless particle are:

8

>

<

>

:

ξ̃′′ − 2η̃′ = ∂ω

∂ξ̃
,

η̃′′ + 2ξ̃′ = ∂ω
∂η̃

,

ζ̃′′ = ∂ω

∂ζ̃
,

(2)

where the derivatives are taken with respect to the true anomaly f , and

ω = (1 + e cos f)−1 Ω,

with

Ω = 1
2

“

ξ̃2 + η̃2 − eζ̃2 cos f
”

+ 1−µ
q

(ξ̃+µ)2+η̃2+ζ̃2

+ (3)

+ µ
q

(ξ̃−1+µ)2+η̃2+ζ̃2

+ 1
2
µ (1 − µ) .

Performing the same operations, which in the RTBP leads to the Jacobi-integral,
in the case of the spatial ERTBP we obtain an invariant relation of the form:

„

dξ̃

df

«2

+

„

dη̃

df

«2

+

„

dζ̃

df

«2

= 2ω − e
f
R

f0

ζ̃2 sin h

1+e cos h
dh − (4)

−2e
f
R

f0

Ω sin h

(1+e cos h)2
dh − C0.

This is the generalization of Szebehely’s invariant relation (Szebehely (1967), pp.
595) for the spatial ERTBP. Unforunately (4) is not an integral of motion, because it
contains not only functions of the coordinates and velocities (and the true anomaly f)
at any point of the orbit, but it depends also on the values of these quantities along
the whole arc of the orbit from the initial position up to a given position. The value
of the Jacobi constant C0 can be calculated at the initial moment t = t0, when f = f0

and when the two integral terms in (4) are vanishing:

C0 = 2ω
“

ξ̃0, η̃0, ζ̃0, f0

”

−

"

„

dξ̃

df

«2

+

„

dη̃

df

«2

+

„

dζ̃

df

«2
#

f=f0

(5)
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Figure 1: The spatial ERTBP.

3 Zero velocity surfaces in the ERTBP

The zero velocity surfaces (ZVS) in the ERTBP are given by:

2Ω

1 + e cos f
− e

f
Z

f0

ζ̃2 sin h

1 + e cos h
dh − 2e

f
Z

f0

Ω sin h

(1 + e cos h)2
dh = C0. (6)

These surfaces delimite the Hill’s regions, in which the motion of the third particle is
possible. Equation (4), depending also on the true anomaly f , is equivalent with

2Ω
“

ξ̃, η̃, ζ̃, f
”

= C (f) , (7)

where

C (f) = (1 + e cos f)

0

@C0 + e

f
Z

f0

ζ̃2 sin h

1 + e cos h
dh + 2e

f
Z

f0

Ωsin h

(1 + e cos h)2
dh

1

A . (8)

Equation (7) shows us that the ZVS are changing their dimensions, depending on the
variation of C (f), i.e. they are pulsating. Analyzing the expression (3) of Ω we can
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Figure 2: Zero velocity surfaces in the ERTBP.
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see that the type of the ZVS is also changes due to the variation of the true anommaly.
If the third body is far away from the primaries, a good approximation of Ω is

Ω = 1
2

“

ξ̃2 + η̃2 − eζ̃2 cos f
”

+ 1
2
µ (1 − µ) , (9)

showing us that the ZVS in this region is of type of an ellipsoid, cylinder or hyperboloid,
depending on the sign of cos f . In conclusion, geometrically it means that at every time
– or at every value of the true anomaly f – a different set of surfaces of zero velocity
are to be constructed. The shape and dimension of these zero velocity surfaces vary
in time (see Fig. 2). It is easy to see that for any value of the true anomaly these
surfaces admits two planes of symmetry: η̃ = 0 and ζ̃ = 0.

Assuming that the eccentricity 0 < e < 1 is small (as it is in the case of the Sun–
Earth system, e = 0.017), and the motion of the third particle is bounded, the sum of
the two integral terms in the equation (4) is smaller than the term 2ω (In the case of
the Sun–Earth–Moon system see Figure ).

Neglecting these small terms, we have the approximate equation of the surfaces of
zero velocity (4):

2Ω
“

ξ̃, η̃, ζ̃, f
”

− C0 (1 + e cos f) = 0. (10)

Using this approximate equation of the ZVS we deduced some necessary conditions
of the capture in the model of the ERTBP (Makó and Szenkovits (2004)).

4 Necessary conditions of the capture

To give necessary conditions of the capture, we approximate the zero velocity surfaces
(??) with the equations

2Ω◦

“

ξ̃, η̃, ζ̃
”

= C
∗

. (11)

This approximation is possible when e is small, and the third body moves near to the
plane of the primaries. In this case the term eζ̃2 cos f in (3) may be neglected, and
we can write Ω = Ω◦. Equation (11) and (??) show that the zero velocity surfaces
pulsate, and so an do the Hill-zones delimited by them.

Suppose that, for f = f0 the position and velocity of the third body is given, and

C
∗ = C

∗

0 = C (1 + e cos f0) . (12)

Then, from (??) and (12) we have

C
∗ (f) = C

∗

0
1 + e cos f

1 + e cos f0
. (13)

As we have seen in Section 2, as time as

C2 < C
∗

,
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the third body can not near to m2 if initially is not inside of the Hill-region surrounding
m2. By using this property we are able to give a necessary condition to the close
approach of one of the primaries by the massless body.

If the massless body in the moment corresponding to f0 was not in the Hill-zone
surrounding m2, and satisfied the condition

C2 < C
∗

0
1 − e

1 + e cos f0
(14)

then it never enter in this zone, and it can not be captured by m2.
An other condition can be formulated in the next form:
If the massless body in the moment corresponding to f0 is in the exterior of the

cylinder, and satisfies the condition

C1 < C
∗

0
1 − e

1 + e cos f0
(15)

then it never enter in the Hill-zone around m2.
The advantage of this conditios consist in fact that is not necessary the integration

of the equations of motion of the third-body, a simple evaluation of the expression
(14) or (15) is only necessary.
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Abstract

Hill’s (G. Hill, 1878) global and nonlinear stability theory has the advantage of being
applicable to a great variety of dynamical systems, including those occurring in the
solar system. He used his method originally to study the stability of the Moon as
influenced by the Earth and the Sun. V. Szebehely (V. Szebehely , 1978) showed
that in the model of circular restricted three-body problem the measure of stability
for the Earth’s Moon is very low. Using the invariant relation of the spatial elliptic
restricted three-body problem we show that the measure of stability for the Earth’s
Moon oscillate above stability critical value.
Keywords: Hill’s stability, Restricted three-body problem

1 Introduction

Consider a dynamical system with an integral of motion (such as the Jacobi integral
in the circular restricted three-body problem) given by

v
2 = C − V (x, y, z) ,

where v is the velocity, V is a generalized potential, and C is the constant of integration.
For a given set of initial conditions (x0, y0, z0, v0) we find

C0 = v
2

0 − V (x0, y0, z0) .
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The relation
v
2 = C0 − V (x, y, z)

must hold during the motion.

Definition 1 The equation of zero velocity surface (ZVS) according to initial condi-
tions (x0, y0, z0, v0) is

C0 = V (x, y, z) .

In general the ZVS separate those points in the space for which

C0 < V (x, y, z)

from those for which
C0 ≥ V (x, y, z).

In the moment t = 0 consider a test particle inside a closed ZVS, C = V (x, y, z).
If its integration constant C changes slightly, by some outside disturbing effect, then
its ZVS will change also. If this new region is still inside a simple closed surface,
the stability of the system will not change qualitatively. But if new region does not
represent the inside a simple closed surface, then the test particle may depart from
the system and its behavior may change suddenly.

Definition 2 The C1 value of integration constant is a critical or bifurcation of the
ZVS if at this value the topology of the ZVS changes.

If the actual value of the constant C is far removed from the bifurcation value
C1, we conclude that the system is more stable than if it is very close since, when
C − C1 ≈ 0, small perturbations may change the stability characteristics.

Definition 3 (V. Szebehely , 1978) The difference between the actual value of the
integration constant and bifurcation value is a measure of the stability of the system:

Mst = C − C1.

2 Zero velocity surfaces in the ERTBP

In the elliptic restricted three-body problem (ERTBP) the two massive primaries P1

and P2, with masses m1and m2 revolve on elliptical orbits under their mutual gravi-
tational attraction and the motion of a third, massless body is studied. The orbit of
P2 around P1, in an inertial system is

‖P1P2‖ =
a

`

1 − e2
´

1 + e cos f
, (1)
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where ‖P1P2‖ is the mutual distance, a and e are the semimajor axis and the eccen-
tricity of the elliptical orbit, and f is the true anomaly.

There are several systems of reference that can be used to describe the elliptic
restricted three-body problem. In our study a nonuniformly rotating and pulsating
coordinate system is used. In this system of reference the origin is in the center of mass
of the two massive primaries (Sun and Earth for example), and the ξ̃ axis is directed
towards P2. The ξ̃η̃ coordinate-plane rotates with variable angular velocity, in such a
way, that the two massive primaries are always on the ξ̃ axis, and the period of the
rotation is 2π. Besides the rotation, the system also pulsates, to keep the primaries

in fixed positions
“

ξ̃1 = −µ, η̃1 = ζ̃1 = 0, ξ̃2 = 1 − µ, η̃2 = ζ̃2 = 0
”

. In this system the

equations of motion of the third massless particle are:

8

>

<

>

:

ξ̃′′ − 2η̃′ = ∂ω

∂ξ̃
,

η̃′′ + 2ξ̃′ = ∂ω
∂η̃

,

ζ̃′′ = ∂ω

∂ζ̃
,

(2)

where the derivatives are taken with respect to the true anomaly f , and

ω = (1 + e cos f)−1 Ω,

with

Ω
“

ξ̃, η̃, ζ̃, f
”

=
1

2

“

ξ̃
2 + η̃

2 − eζ̃
2 cos f

”

+
1 − µ

r

“

ξ̃ + µ
”2

+ η̃2 + ζ̃2

+ (3)

+
µ

r

“

ξ̃ − 1 + µ
”

2

+ η̃2 + ζ̃2

+
1

2
µ (1 − µ) .

Performing the same operations, which in the restricted three-body problem leads
to the Jacobi-integral, in the case of the spatial ERTBP we obtain an invariant relation
of the form (Z. Mako and F. Szenkovits , 2004)

v
2 = 2ω − e

f
Z

f0

ζ̃2 sin h

1 + e cos h
dh − 2e

f
Z

f0

Ω sin h

(1 + e cos h)2
dh − C,

where v is the velocity of the third massless particle. For a given set of initial conditions
(ξ̃0, η̃0, ζ̃0, v0, f0) we find

C0 =
2Ω

“

ξ̃0, η̃0, ζ̃0, f0

”

1 + e cos f0

− v
2

0 .
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The zero velocity surfaces in the ERTBP according to initial condition (ξ̃0, η̃0, ζ̃0, v0, f0)
are

2Ω

1 + e cos f
− e

f
Z

f0

ζ̃2 sin h

1 + e cos h
dh − 2e

f
Z

f0

Ωsin h

(1 + e cos h)2
dh = C0. (4)

These surfaces delimite the Hill-regions, in which the motion of the third particle
is not possible. In three dimension space it means that at every time – or at every
value of the true anomaly f – a different set of surfaces of zero velocity are to be
constructed. The shape of these ZVSs vary in time. Therefore we might speak about
pulsating surfaces of zero velocity.

3 Measure of stability of the Moon in the Sun-

Earth-Moon system

In the case of the Sun–Earth system the eccentricity e = 0.0167 is small. Due to the
variation of f , these regions can pulsate, and near to the critical values they can change
they type. The critical points of the pulsating surfaces of zero velocity (4) correspond
approximately to the equilibrium solutions of circular restricted three-body problem
given by

Ci = 2Ω◦ (Li) , i = 1, . . . , 5, (5)

where Li are the Lagrange-points. For these constants we have

3 = C4 = C5 ≤ C3 ≤ C1 ≤ C2 ≤ 4.25

in generally, and in the case of the Sun–Earth system the critical value for L2 between
the two primaries is

C2 = 3.000893278,

and in L1, the Lagrange-point outside of the Earth the critical value is

C1 = 3.000889276.

For C > C2 the ZVSs delimit three regions where the motion of the small body is
possible (Figure 1). Two of these regions are closed around the primaries, the third
one is the exterior of the exterior surface. Between these regions the communication
is impossible.
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Figure 1: The ZVSs in ERTBP if C > C2.

The measure of stability of the Moon in the Sun-Earth-Moon system considered
in ERTBP model is

Mst

“

ξ̃(f), η̃(f), ζ̃(f), f
”

=
2Ω

“

ξ̃, η̃, ζ̃, f
”

1 + e cos f
− e

f
Z

f0

ζ̃2 sin h

1 + e cos h
dh

−2e

f
Z

f0

Ω
“

ξ̃, η̃, ζ̃, f
”

sin h

(1 + e cos h)2
dh − C2,

where (ξ̃, η̃, ζ̃) is solution of differential equation (2) at initial conditions of the Moon.

In figure 2 we show the variation of the Mst and variation of distance between
Earth and Moon, notated by r2. We observe that the measure of stability for the Moon
vary from 0.0004 to 0.00055 and the maximal value is in the pericenter and minimal
value is in the apocenter.

4 Conclusion

For the initial conditions of the Moon in the nonuniformly rotating and pulsating
coordinate system the Hill region around to Earth is bounded by closed ZVS. The
elliptical orbit of the Earth is not change the stability characteristics of the Moon.
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Figure 2: The variation of measure of stability.

We have been found that the measure of stability for the Moon vary from 0.0004 to
0.00055. The maximal value is in the pericenter and minimal value is in the apocenter.
Comparatively to other satellites around of other planets, the measure of stability for
the Moon is very low. For example the measure of stability for Mars’s Phobos and
Demos are approximately 0.0025 and 0.012.
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