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Chaos in open Hamiltonian systems 169

Ch. Lhotka:

Birkhoff normal form and remainder of the Sitnikov problem 179

A. Pál:

Adaptive Lie-integration 191

ii



Preface

The 5th Hungarian-Austrian Workshop on Celestial Mechanics took place
from 9th until the 10th of April 2010 in Vienna, Austria. The workshop was
held in the Institute for Astronomy of Vienna University. From the Etvs Uni-
versity and from the host institute experts and PhD students gathered together
to discuss the challenges and new results of the actual problems of celestial
mechanics.

The workshop was held in the meeting room at the Sternwarte of the Vienna
University located in a magnificent park in the heart of Vienna. Following the
themes of the four previous events the focus for this workshop ranged from the
Trojan problem, dynamics in binary star systems and exoplanetray systems.
We were pleased to acknowledge the support of the host university.

The talks were characterized by a large spectrum, which is typical of the
workshops on celestial mechanics. Several talks discussed different aspects of
the trojan problem, such as the three Trojan problem, dynamics of trojan-like
planets in binary stars, the frequencies of their motion around the triangular
lagrangian points, etc. Several speakers focused on the formation and dynamics
of planetary systems, like exoplanets in higher order mean motion resonances,
evolution of exoplanets in binary systems, stability of exomoons and the forging
of the planets in the Solar System. Some of the presentation used sophisticated
mathematical tools in order to understand mean motion resonances, the Sit-
nikiv problem applying the KAM and the Nekhoroshev theorem. The theme
of a number of talks was the motion of Solar System bodies: dynamics of the
newly discovered moons of Pluto and of near-Earth asteroids. General prob-
lems were also addressed, among others chaos in Hamiltonian systems, adaptive
Lie-integration method and iterative solution approximation to the generalised
Sitnikov problem.

Budapest, 30 June, 2011

Áron Süli
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Abstract

We conducted a dynamical survey to find the properties of—and influences on—the

motion of hypothetical Trojan asteroids around Uranus. For low eccentric orbits, we

integrated a set of more than 6000 Trojans with different initial semi-major axes and

inclinations up to i = 60◦. The general integration time was set to 100 Myr, some

selected orbits were integrated for a time span covering the age of the Solar System. We

found two regions at which a Trojan can remain in a low libration amplitude state for at

least 100 Myr, one at low inclinations up to 6◦, and the other at higher inclinations from

40◦ to around 50◦. Using frequency analysis on the output of numerical integrations

we identified several important secular resonances. Those secular resonances with

Jupiter and Neptune affect the motion of the Uranus Trojans, and shape the stability

region around the equilateral equilibrium points. Although there is a fast depletion of

Trojans within 100 Myr, the two stable regions would support the long-time presence

of Trojans.

Keywords: planet: Uranus – minor planets: Trojan asteroids – secular resonances –

long-term stability

1 Introduction

Trojan Asteroids are considered common objects of the Solar System today.
They form a special group of asteroids in 1:1 Mean Motion Resonance (MMR)
with a planet, having roughly the same semi-major axis and orbital period.
Trojans are located near the so-called Lagrangian points L4 and L5, named
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after the French mathematician Lagrange1, who found five particular solutions
to the restricted three body problem. The points L4 and L5 form equilateral
triangles with the primary and secondary mass, thus a Trojan is leading (L4)
or trailing (L5) the planet it accompanies at an angle of about 60◦.

For a long time the solutions were considered without an implication for the
Solar System, but in 1906 the German astronomer Wolf2 observed the object
now known as (588) Achilles (Wolf , 1907), which turned out to be just the
first one of the class of asteroids moving around the Lagrange points of Jupiter
(Nicholson , 1961). Since then several thousand Trojans are known to accom-
pany Jupiter3; also Mars and Neptune Trojans have been found. Though there
is no lack of observational effort to find Saturn and Uranus Trojans, none of
these objects has been discovered yet.

The solutions found by Lagrange are strictly valid only for the restricted
three body problem, and consequently many studies of the Trojans applied this
model, e.g. Érdi (1988); Lohinger & Dvorak (1993) for the elliptic restricted
problem.

For a detailed study of the dynamics of Trojans—under the influence of
the giant planets—it is necessary to resort to numerical integrations. Some of
these studies were dedicated to Jupiter Trojans, e.g. Dvorak & Schwarz (2005);
Robutel & Gabern (2006), while others also treated the possibility of Trojans for
the other giant planets. The study by Holman & Wisdom (1993) concluded that
there were no signs for Saturn, Uranus and Neptune not to retain Trojan-like
asteroids for time scales of 20 Myr. Later Nesvorný & Dones (2002) intended
to give a broader picture on the Trojans of the outer planets. They considered a
primordial Trojan population orbiting Saturn, Uranus and Neptune, which was
depleted by various effects. Their results suggested that Neptune could still have
retained 50% of its original Trojan population, whereas for Saturn and Uranus
the numbers decreased by a factor of 100, but this still did not rule out the
possibility to detect Trojans. Marzari et al. (2003) used the Frequency Map
Analysis (FMA) to determine the long-term stability of Trojans of the giant
planets. Only for Jupiter and Neptune it was found, that a substantial number
of Trojans is possible, for the other planets a high diffusion rate is responsible
for short lifetimes.

The discovery of moderately inclined Neptune Trojans with i ≤ 30◦ (Shep-
pard & Trujillo , 2006, 2010) triggered investigations about highly inclined Nep-

1Joseph-Louis Lagrange (1736-1813)
2Max Wolf (1863-1932)
3for a list of Trojans see the web pages of the Minor Planet Center at:

http://www.cfa.harvard.edu/iau/lists/Trojans.html
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tune Trojans (Dvorak et al. , 2008; Zhou et al. , 2009). The latter investigated
the dynamical behaviour of highly inclined Neptune Trojans with inclinations
up to 60◦. They used a frequency analysis method and identified three distinct
stable regions, of which one lies at 51◦ ≤ i ≤ 59◦. To find stable Trojans for
such high inclinations motivated our present study of inclined Uranus Trojans,
since the earlier studies only considered inclinations up to 30◦.

2 Methods

Our basic model is the 5-body problem consisting of the Sun and the planets
Jupiter to Neptune, the Outer Solar System (OSS). The hypothetical Trojans
of Uranus are considered as massless test particles, moving under the purely
Newtonian gravitational attraction of the planets. The initial conditions for the
planets were obtained from the JPL ephemeris4. For the Trojans we used an
equidistant grid in the range aT ∈ 18.9(0.005)19.4 AU and iT ∈ 0(1)60◦. The
initial values of the elements (e,Ω,M) were set to the values of Uranus, and we
fixed ωT = ωU±60◦. For most of the work we only considered motion about L4,
since—apart from a slight shift in the position of the libration centre, due to the
choice of initial condition for the OSS—the motion is dynamically equivalent.

We integrated the equations of motion with the Lie-series method, based on
the work of Hanslmeier & Dvorak (1984). This method enables the user to
use an adaptive step-size, and in our application this is highly recommendable,
since Trojans can have close approaches with planets when their orbits become
chaotic. For this possibility we devised some methods to distinguish between
tadpole and horseshoe orbits.

First we have applied a criterion based on the libration amplitude defined
by σ = λ − λU, where λ is the mean longitude; we take a mean value by
〈σ〉 = σmax − σmin. If this value exceeds 180◦, then the Trojan leaves the
vicinity of L4 (resp. L5) and—by crossing the point L3—can librate about L5

(resp. L4); in this case we do not consider it to be a Trojan any more.
The next method we applied is the maximum eccentricity method (MEM),

which simply gives the highest eccentricity value a body has obtained during
the course of the integration. This value will only give a coarse measure of
regular or chaotic behaviour, but we can use it as a threshold. We have ob-
served that there is a rather sharp boundary of the libration zone (see Fig. 1).
The transition from libration to circulation occurs, whenever a Trojan obtains
a maximum eccentricity of e > 0.2. For an even larger maximum eccentricity of

4see http://ssd.jpl.nasa.gov/
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Uranus Trojans L4, a = 19.18 AU
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Figure 1: Cut in inclination for Trojans about L4, in all cases the values are given

after 100 Myr of integration time. The top picture shows the maximum eccentricity,

the middle picture depicts the escape time, and the bottom picture displays the libration

amplitude.

e > 0.5 it follows, that the body will have a large libration amplitude and will
move away quite fast from the vicinity of the libration point, thus we adopted
this as a cut-off value to distinguish libration from circulation.

The third method combines two empirical cut-off values for the semi-major
axis and eccentricity to give an estimate of the escape time of a Trojan. We
use the cut-off value from above for the eccentricity.

For carrying out the frequency analysis part we have used the program
package SigSpec5 by Reegen (2007). We convert the data from the numeri-
cal integration into the Laplace-Lagrange secular variables (h, k, p, q) (see Mor-
bidelli (2002) and Murray & Dermott (1999) for details) via the transforma-
tions k = e cos(ω + Ω), q = sin i cosΩ. Then SigSpec computes the spectral
significance levels for the DFT amplitude spectrum of a time series at arbitrarily
given sampling.

5for a description and the manual see:
http://homepage.univie.ac.at/peter.reegen/manual/3Manuals.html
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3 Results

This section summarizes the results obtained from the analysis of the dynamical
behaviour of the Uranus Trojans. We will briefly discuss different aspects that
became evident during our investigations.

3.1 Cut for L4

In a first step we studied the Trojans very closely located to the libration points
L4 and L5 by means of cuts for different inclinations, but for a fixed initial
semi-major axis of aL4

= 19.18 AU (resp. 19.28 AU for L5). The different
values are due to the choice of initial conditions, the “true” libration points in
a three-body-problem would lie in between these two values. The calculations
were carried out for 100 Myr, they reveal four distinct zones with low libration
amplitudes in Fig. 1, interspersed with zones of chaotic motion.

It is also well visible from Fig. 1 that there are two extended regions which
do not allow regular Trojan type motion, one ranges approximately from 14◦ ≤
i ≤ 30◦, and the other covers all values of i > 50◦. We will give an explanation
for this in the section with the frequency analysis.

3.2 Libration amplitudes

To give a more complete picture of the (a, i) parameter space we chose to com-
pare the libration amplitudes for two different times, i. e. after 1 Myr and 100
Myr. This will give an impression of the different diffusion speeds as well as
secular effects on the Trojans. However, Fig. 2 also shows the shrinking of the
low libration amplitude zone especially for higher inclinations. For low inclina-
tions the area shrinks as well, but at a lower rate. The arc shaped gaps in Fig.
2 (b) correspond to the locations already found in the cut in Fig. 1, and these
must correspond to secular resonances.

As a consequence of this calculations we could compile a figure showing
the different diffusion rates of Trojans. In total about 3100 initial conditions
for Trojans were considered, for every value of the inclination in steps of 1◦ we
traced how many objects had failed our constraints for Trojan motion mentioned
above. The results are shown in Fig. 3, the bold line summarizes the average
fraction of remaining Trojans over all inclinations. As expected from previous
analysis, the fraction of surviving test particles is highest for low inclinations,
whereas for inclinations between i = 20 − 30◦ it is lowest.
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Figure 2: Parameter plane semi-major axis vs. inclination: The colour code shows

the libration amplitude for (a) T = 1 Myr (top), and (b) for T = 100 Myr (bottom).

The white contour curves connect equal levels of the libration amplitude for selected

values as indicated in the inset, from 15 − 90◦. Note that low amplitude curves need

not necessarily be present for the bottom picture.
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Figure 3: Fraction of remaining Trojans versus escape time for different inclinations,

the bold line gives the summary over all inclinations. The slope of the curve is similar

to the one in figure 10 of Nesvorný & Dones (2002), but here we find that still about

20% of the Trojans survived after 100 Myr.

3.3 Secular frequencies

Using the program SigSpec and overlapping time-windows with a width of
∆t = 10 Myr we obtained a list of dominant secular frequencies in the signal of
the variables (k, q), which we had to compare to the known secular frequencies
in the OSS (see Tables 2 and 3 in Laskar (1990)). Table 1 gives an overview of
these secular frequencies.

We show in Fig. 4 as an example the analysis covering the first 10 Myr
of the Trojan with semi-major axis a = 19.185 AU, being the closest one to
the point of minimum libration amplitude. The proper frequency (solid curve)
is smoothly changing with increasing inclination, so that it can be separated
from the (nearly) constant secular eigenfrequencies of the planets (and their
combinations, horizontal lines). Whenever the proper frequency curve crosses
one of the horizontal lines, the Trojan enters into a secular resonance. This
effect is visible starting at low inclinations, where the curve crosses the 2g5 − g7
resonance with Jupiter and Uranus, which causes the lower gap in Fig. 2 (b).
At about i = 15◦ (for this value of the semi-major axis) the Trojan enters
into the linear secular resonance with Jupiter and this causes a fast increase
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Figure 4: Change of proper frequency (shown as the period in years) with inclina-

tion for a selected Trojan during the first 10 Myr. The upper curve corresponds to

the proper frequency, while the lower one is its combination with another frequency.

The horizontal lines are the quasi-static secular eigenfrequencies of the major planets

Jupiter (g5), Uranus (g7) and Neptune (g8), as well as some of their combinations.

The different types of symbols just denote an ordering of frequencies after their am-

plitude. The recovered periods in the range 15◦ ≤ i < 30◦ are artifacts, since in this

region the Trojans exhibit chaotic motion (cf. Figs. 1, 2).

in eccentricity and effectively removes the Trojans from the libration region.
Following the curve we observe that it enters into linear secular resonance with
Uranus, which causes the same effect but is acting on a somewhat longer time-
scale. The gap at i ≈ 35◦ in the upper part of Fig. 2 (b) is thus related to
another secular resonance involving Jupiter and Uranus (−g5 + 2g7), while at
inclinations i ≥ 50◦ also Neptune plays a role via g8. Since the secular periods
for Neptune are > 1 Myr they only take effect for longer integrations, and this
also explains the comparatively strong shrinking of the high inclination libration
zone in Fig. 2 (b).
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Table 1: Selection of important secular frequencies for the dynamics of Uranus Tro-

jans. These values (for simplicity given as periods) were detected in the dynamical

spectra of Trojans from the numerical integrations. The last line—denoting the quasi-

mean-motion-resonance between Uranus and Neptune—is mainly found in combination

with other secular frequencies from the table.

combination periods [103 yrs]
g5 305.2
g6 45.7
g7 419.2
g8 1928.0

2g5 − g7 240.1
−g5 + 2g7 666.8
g7 + s7 − s8 1650.6

MMR 2:1 Uranus/Neptune 4.236

4 Conclusions

We have shown that Uranus Trojans are possible at low (i ≤ 7◦) and moderate
(i ≈ 40◦) inclinations, for dynamical life-times of up to 5 × 108 years. There
are well separated zones in the inclination range investigated allowing for low
libration amplitude “classical” Trojan motion, cut by secular resonances. These
resonances involve the planets Jupiter, Uranus and Neptune, but not (directly)
Saturn, and they provide strong limitations on the long-term dynamical stability
of the Trojans. From a given number of primordial (captured) Trojans we find
that between 20% (for 100 Myr) and only 1% (for > 1 Gyr) remain (Nesvorný &
Dones (2002)), making it hard to find them. In our opinion the most promising
case would be to search for low inclination Trojans, but the effects of increasing
the eccentricity on the stability have still to be studied.
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Abstract

This paper is devoted to the stability study of three Trojan planets around a central

star of 1 MSun in a distance of 1 AU. In an earlier study it was found for three Trojans

in coorbital configuration, that if the angular separation is 47◦.4, their motion is stable.

We investigated the largeness of the stable region around the Lagrangian point L4 by

using numerical integrations, depending on the mass parameter and the distances of

the three planets.

Keywords: Trojan planets – celestial mechanics

1 Introduction

The discovery of a Jupiter Trojan in 1906 (Achilles by Max Wolf in Heidelberg)
proved that the equilateral equilibrium points in the three body problem Sun–
Jupiter–asteroid are in fact populated by celestial bodies. Ever since many
of such Trojan asteroids of Jupiter have been found and now we have know-
ledge of several thousands of objects in the 1:1 mean motion resonance (MMR)
with Jupiter. Many investigations have been undertaken in different dynamical
models like in the restricted three body problem (Érdi & Sándor , 2005; Érdi et
al. , 2007), but also in the realistic dynamical model of the outer Solar System
consisting of Jupiter, Saturn, Uranus and Neptune, like in e.g. Dvorak et al.
(2004); Freistetter (2006); Schwarz et al. (2004); Robutel et al. (2005), or in
a binary system (Schwarz et al. , 2009b).

In most of these studies the body close to the equilibrium point was taken
to be massless, but in fact even massive planets may stay there in stable orbits



16 R. Dvorak and Á. Bazsó
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Figure 1: Stability diagram for three equally massive Trojans: angular distance from

the Lagrange point L4 (i7c = 47◦.4) versus the mass (in mEarth). The colors indicate

the largest deviation from the equilibrium point in degrees.

(Beaugé et al. , 2007; Chiang & Lithwick , 2005). As an interesting problem,
we deal in this study with three massive bodies (planets) in the Trojan con-
figuration, such that they are close to the 1:1 MMR, having almost the same
semi-major axes and quasi circular orbits. The question of whether Trojans can
form around the equilibrium points, and if they would be observable in extraso-
lar systems was addressed by different investigations, e.g. Caton et al. (2000);
Davis et al. (2001); Laughlin & Chambers (2002); Ford & Gaudi (2006); Ford
& Holman (2007).

Our investigation was undertaken using numerical computations for different
initial configurations of the three planets. The basis of the present work was a
very interesting article ’On the dynamics of coorbital satellite systems’ by Salo
& Yoder (1988), where the authors put up to 9 bodies with equal masses on
a ring around a central body, but with different angular separation. For the
most interesting case for a possible realisation in satellite systems or extrasolar
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Figure 2: Zoomed stability diagram for three equally massive Trojans; captions like

in Fig. 1.

planetary systems, we limited our research to three massive bodies on a ’ring’.
But many more stable configurations are possible as was shown in a recent paper
(Smith & Lissauer , 2009), where on different rings around a central body up
to more than 200 planets may stay in stable orbits. The authors claim that in
extreme extrasolar planetary system – although almost infinitely impossible –
’advanced civilizations may choose to construct planetary systems of this type in
order to support a far larger population than on a single planet or even nested
planets’. In our study we stay as close to reality as possible and limit – as
mentioned – the dynamical system to three Trojans on a ring.

2 The model and the method of investigation

According to the results by Salo & Yoder (1988) two particles in the 1:1 MMR
are stable with an angular separation of 60◦; when we have 3 massive bodies
on a ring the stable equilibrium points (in the following the leading point will
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be called L4) are separated by 47◦.4 on both sides of the body in the middle
position.

Our model was the gravitational 4-body problem consisting of a central mass
(a star) and less massive bodies (planets) in the Trojan position as it was stated
before. We applied the Lie-integration code (e.g. Hanslmeier & Dvorak (1984);
Lichtenegger (1984)), an already well tested method using an automatic step
size which we have already used in many recent numerical computations (e.g.
Schwarz et al. (2009a)). In a first step the three planets were given the same
masses (m1 = m2 = m3) with a central star (m0 = 1MSun) and the semi-major
axes of the planets a = 1 AU. In a second step we gave the central Trojan planet
the mass of Jupiter and varied only the masses of the accompanying planets.
For different grids in masses (units in mEarth) and in angular distance λ from
L4 the stability plots were computed:

• Run 1 ∆m = 5mEarth for mEarth < m123 < 2mJupiter ; ∆λ = 1◦ for
0◦ < λ < 60◦.

• Run 2 ∆m = 5mEarth for 250mEarth < m123 < 2mJupiter; ∆λ = 1◦ for
15◦ < λ < 40◦.

• Run 3 ∆m = 1mEarth for 400mEarth < m123 < 500mEarth; ∆λ = 1◦ for
30◦ < λ < 38◦.

• Run 4 ∆m = 5mEarth for mEarth < m13 < mJupiter ; ∆λ = 2◦ for
0◦ < λ < 60◦ and m2 = mJupiter .

The length of the integration was set to 103 years for Run 1, 104 years for
Run 2, and 105 years for Run 3. Test computations up to 106 years have
shown that an integration time of 105 years is an appropriate choice to reveal
the ’fine’ structure of the dynamical behaviour of the system in question, but
shorter integration for only 104 years show already the main characteristics.
Run 4 was also undertaken for the moment for short time intervals of 103. As
stability indicator we used the maximum libration angle which turned out to
be very sensitive with respect to the stability of an orbit: λ < 100◦ was quite a
good limit for stable orbits!
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3 The Results for equally massive Trojan plan-
ets

In the respective Fig. 1 we show a stability diagram (results of Run 1) of
the equilibrium points, where we used the libration width as stability measure.
One can see that for all computed angular distances from L4 (x-axis) and small
masses up to the mass of Uranus the libration width stays within 100 degrees.
It is surprising that even such large librations do not lead to instability. Then,
for larger masses and larger initial distances to L4, the configuration is unstable
showing an interesting spike structure. The big unstable region without the
spikes has an edge which could be approximated by a smooth curve, the cusps
of the different spikes could also be approximated by a curve depending on the
mass ratio and the angular distance from L4. The small red strip on the border
of stable and unstable region seems to show an abrupt change-over between
stability and instability.

Fig. 2 (results of Run 2) has been done on a finer grid of initial conditions
and for an extended integration time. The spike structure is confirmed, but in
addition between these main spikes smaller ones (daughter spikes) seem to exist
and the unstable regions extends far into the stable region.

To have a better picture of the spikes a third integration Run 3, again for an
extended time (105 years), has been undertaken. On this fine scale it is visible
that there are even more unstable spikes between the main ones. These spikes
don’t have a smooth edge, a phenomenon which is visible in all of them. On the
contrary even in the unstable region sometimes tiny islands of stability arise.

Up to now we don’t have an explanation for the interesting structure, but
further computations on a fine grid (around stable islands in the unstable region
and unstable regions in the stable spikes will clarify this situation.

4 Results with a ’central’ Jupiter

For Run 4 (Fig. 3) we gave the central Trojan planet the mass of Jupiter and
changed the masses of the two neighbouring planets up to the mass of Jupiter.
Because of the rough grid chosen for these computations the unstable fingers in
the big stable zone are not well visible but they are present. It is interesting
to note that there is no significant difference observable if one compares the
respective results from Fig. 3 with the ones depicted in Fig. 1.
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Figure 3: Zoomed stability diagram for three equally massive Trojans; captions like

in Fig. 1.

5 Conclusions

In this working report we have shown our first results concerning the stability
of three planets in a 1:1 MMR with respect to the angular distance from the
equilibrium points. We started this investigation with a stability analysis of
3 equally massive planets (from 1 to 600 Earth masses) which move around
a central body with 1 Solar mass in circular orbits; all three are exactly in a
distance of 1 AU. We found a big stable region for masses up to 2 times Jupiter
for small initial angular distance λ from the equilibrium point and vice versa
for masses up to almost Saturn for large initial λ. The edge between stable
and unstable region is not smooth but shows an interesting finger like structure
which still needs to be explored in more detail. When the mass of the middle
planet was kept constant (1 Jupiter mass) and only the outer two planets’ masses
were changed from low to high masses the structure seems to be quite similar
to the equal mass studies. Next steps of research are to find the extension with
respect to the semi-major axis and particularly how the stability changes when



The Three Trojan Problem 21

E-JJJ-E

 10  20  30  40  50  60

distance from L_4

 0

 50

 100

 150

 200

 250

 300

m
as

s 
in

 m
_E

ar
th

 0

 50

 100

 150

 200

 250

 300

 350

 400

Figure 4: Stability diagram for configuration with a fixed central mass (m2 =

mJupiter); captions like in Fig. 1

three different masses are in Three Trojan orbits.
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1 Introduction

The first, basic model of resonance is the pendulum. The phase portrait of
many resonances is analogous to that of the pendulum: there are two regimes
of motion, libration and circulation, separated by a separatrix (Figure 1). In
the center of libration there is a stable equilibrium point corresponding to the
stable position of the pendulum, while the two branches of the separatrix connect
two unstable equilibrium points corresponding to the unstable position of the
pendulum.

In many problems of celestial mechanics, however, the phase portraits of
resonances are more structured than that of a simple pendulum. To study these
cases Henrard & Lemaitre (1983) introduced the second fundamental mode
of resonance. This model is very useful for studying dissipative systems, for
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Figure 1: The phase portrait of the pendulum. Φ and φ are action and angle variables.

example tidally evolving satellites or migrating planets. Capture into resonance
and passage through resonance can also be studied by using this model.

In a more general treatment (Murray & Dermott , 1999), it can be shown
that in the case of a k-order inner resonance of the form j : (j− k) between two
bodies of masses m and m′ orbiting a central body of mass mc, the dominant
part of the Hamiltonian, reduced to one degree of freedom, is

H = αJ + βJ2 + ε(2J)k/2 cos kθ, (1)

where

α =
(j − k)n− jn′ − k ˙̟

k
, β =

3

2k2

[
(j − k)2

ma2
+

j2

m′a′ 2

]
,

ε = fd (n2)1−
k

4
a3−k

a′
m′

mc
m1− k

2 ,

J =
√
µa (1 −

√
1 − e2), k θ = jλ′ + (k − j)λ− k̟.

Here a, n, e, λ, ̟ are the semi-major axis, mean motion, eccentricity, mean
orbital longitude, and longitude of the pericenter of the inner body with mass
m. The orbital elements of the outer body with mass m′ are denoted by prime.
In the expression of ε, fd depends on a/a′ through the Laplace coefficients and
its derivatives. In the present one-degree of freedom problem fd is considered as
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constant. The action variable J (where µ = G(mc +m) and G is the constant of
gravity) is proportional to e2. The angle variable θ describes the conjunctions
(λ′ = λ) of the two revolving bodies by giving the mean anomaly (M = λ−̟)
of the location of such occasions.

The Hamiltonian (1) depends on several parameters. These can be comprised
into a single parameter through a proper scaling transformation:

Φ =
J

η
, φ = θ + π (for k even), or φ = θ (for k odd), τ = βη t, (2)

where

η =

[
(−1)k 2β

ε

] 2
k−4

,

and τ is the new independent variable instead of the time t in the Hamiltonian
canonical equations. This transformation results in the Hamiltonian

H = δΦ + Φ2 + (−1)k2(2Φ)
k

2 cos kφ (3)

with one parameter

δ = α

[
4

ε2β(2−k)

] 1
4−k

.

The Hamiltonian (3) was thoroughly studied for k = 1 and 2 (Henrard &
Lemaitre , 1983; Murray & Dermott , 1999). The case k = 3 is also discussed in
(Murray & Dermott , 1999). Here some additional considerations are given for
k = 3 and comparisons with third order resonances of the restricted three-body
problem are also made.

2 Third order resonances

For k = 3, Equation (3) reduces to

H = δΦ + Φ2 − 2(2Φ)
3
2 cos 3φ (4)

with

δ =
4αβ

ε2
.

Introducing the variables

x =
√

2Φcosφ, y =
√

2Φ sinφ, (5)
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the Hamiltonian (4) takes the form:

H =
1

2
δ(x2 + y2) +

1

4
(x2 + y2)2 − 2(x3 − 3xy2). (6)

Curves of constant Hamiltonian are shown in Figure 2 for several character-
istic values of δ. For δ > 9 there is one stable equilibrium point at the origin.
At δ = 9 three bifurcation points occur. For 9 > δ > 0 there exist three pairs
of stable and unstable equilibrium points, beside the stable origin. The unsta-
ble equilibrium points reach the origin at δ = 0 that becomes unstable for this
value of δ. For δ < 0 there appear again three unstable points, beside the stable
origin and the other three stable equilibrium points. Note the 2π/3 rotational
symmetry of the figures.

Curves of constant Hamiltonian of (4) are shown in Figure 3 for the same
values of δ as in Figure 2. It can be seen that, in accordance with Figure 2,
libration of φ is possible around three values (0, 2π/3, 4π/3) for δ < 9.

3 Applications

The equations of motion of the restricted three-body problem were integrated
for initial conditions near the 7:4 and 4:1 resonances to make comparisons with
the model described in the previous section. The mass parameter was 0.001,
corresponding approximately to a Sun-Jupiter-asteroid system.

In the case of the 7:4 resonance, Figure 4 shows a series of librational solu-
tions for the initial values a = 0.692, e = 0.17 − 0.34 (the resonant value of a
is 0.688612 in the unit of the semi-major axis of the outer body). These were
obtained by computing the resonant angle variable φ = θ = 7λ′ − 3λ − 4̟
from the results of the numerical integration and by making use of the result of
Murray & Dermott (1999) that

√
2Φ = 2003.0 e in Equation (5). A comparison

with Figure 2 reveals that for a given librational curve the eccentricity does not
change as much in Figure 4 as in Figure 2. Also, the amplitude of libration of
the variable φ does not change much in Figure 4. This is also shown in Figure
5 for the smallest (0.017) and the largest (0.34) values of the initial eccentricity
for which the librational solutions were computed. In contrary, Figures 2 and
3 allow large variation in the amplitude of libration of φ from one librational
curve to the other. The numerical integrations show that for the 7:4 resonance
librational solutions exist above the resonant value of a in a narrow interval of
the semi-major axis, and in this interval for a given value of a in a narrow region
of the eccentricity.
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Figure 2: Curves of constant Hamiltonian of third order resonances in the x, y plane

for several characteristic values of δ (the values of H are given beside the curves).
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Figure 3: Curves of constant Hamiltonian of third order resonances in the Φ, φ plane.

(The values of H are different from those in Figure 2).
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Figure 4: Librational solutions in the case of the 7:4 resonance in the restricted

three-body problem (the eccentricity is increasing from the centre outwards).

Figure 5: Libration of the resonant angle variable φ = θ = 7λ′−3λ−4̟ for e = 0.17

(inner curve) and for e = 0.34 (outer curve).

In the case of the 4:1 resonance, the resonant angle variable φ = θ = 4λ′ −
λ − 3̟ librates for initial semi-major axes belonging to a very narrow interval
0.393 < a < 0.400 around the resonant value a = 0.396851. At the resonant
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Figure 6: Libration of the resonant angle variable φ = θ = 4λ′−λ−3̟. Upper panel:

a = 0.396851, e = 0.1, 0.2, 0.3, 0.4, 0.9 (to smaller eccentricities there correspond larger

amplitudes). Middle panel: a = 0.398, e = 0.4, 0.6, 0.8, 0.99. Bottom panel: a = 0.399,

e = 0.67, 0.80, 0.99.

value of a, θ librates for all initial e between 0 ≤ e < 1, for smaller values
of e with larger amplitudes. This is shown in the upper panel of Figure 6 for
e = 0.1 − 0.9. Above the resonant value of a, libration of θ is possible above a
lower limit of e, which increases as a gets larger. This is shown in the middle and
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bottom panels of Figure 6. For a = 0.398, the lower limit of e is 0.40 (middle
panel), while for a = 0.399 this limit is e = 0.67 (bottom panel). At a given
a, the amplitude of θ decreases as e increases. Similar features occur below the
resonant value of a.

4 Conclusions

The model of the second fundamental mode of resonance describes well the qual-
itative behaviour of third order resonances. Quantitative differences, however,
occur regarding the amplitudes of variation of the eccentricity and the resonant
angle of third order resonances in the circular restricted three-body problem.

Libration of the resonant angle is possible in a very narrow interval around
the resonant value of the semi-major axis, for a limited range of the eccentricity,
depending on the semi-major axis. The lower border of the eccentricity range
increases with the increase of the semi-major axis. This indicates, that in the
model of the restricted three-body problem capture into a third order (for ex-
ample 4:1) resonance is very difficult since the semi-major axis must be very
close to the resonant value and even then the eccentricity must be above a lower
limit.
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1 Introduction

Mean motion resonances (MMR) play an important role in the dynamics and
stability of planetary systems. A MMR is an orbital resonance of the type
p : p+ q, where q is the order of the resonance. In the solar system the MMRs
with Jupiter are especially important as they shape the distribution of bodies in
the asteroid belt. The motion of an asteroid or a similarly small body moving
in the gravitational field of a central body and a planet can be represented in a
very good approximation by the restricted three-body problem (R3BP).
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2 The restricted three-body problem

The R3BP describes a system of two massive bodies – primary and secondary
– and a third massless body. It cannot be solved analytically, but it is possible
to find a representation in the form of a nearly integrable Hamiltonian system.
The equations of motion of the third body (or test particle) consist of an un-
perturbed Keplerian part due to gravitational attraction of the central body,
and a perturbed part due to the influence of the secondary. The Hamiltonian
formalism lets us write for the motion of the massless body H = H0 + µH1,
where H0 is the integrable Keplerian part and H1 is the non-integrable part due
to a small perturbation µ. The elliptic restricted three-body problem (ER3BP)
can be reduced to a form similar to the circular restricted three-body problem
using a non-uniformly rotating and pulsating frame of reference. In the planar
ER3BP the mutual distance between the primaries is fixed to be unity and the
plane of reference is set to the orbital plane of the primaries. Thus the sys-
tem can be described by a form where the positions of the primaries are fixed
and the motion of the third - perturbed - body is relative to the positions of
the primaries. The main difference to the circular R3BP is however, that the
Hamiltonian is time-dependent.

3 Construction of the mapping

Hadjidemetriou (1991) proposed a mapping method which has been used by
several authors Ferraz-Mello (1996); Efthymiopoulos & Sándor (2005); Lhotka
et al. (2008); Lhotka (2009) for the study of the dynamics of MMRs. The
mapping transforms the continuous flow of the Hamiltonian into discrete steps
while preserving the symplectic structure of phase space. Investigating the mo-
tion in the reduced phase space of the mapping makes it possible to understand
the motion in the original phase space of the Hamiltonian. In this section the
construction of a symplectic mapping for the planar ER3BP is shown. The pla-
nar ER3BP has two degrees of freedom, making up a 4-dimensional phase space.
Choosing a constant energy for the Hamiltonian H , one momentum can be ex-
pressed by the other canonical variables and therefore 4D phase space can be
reduced to a three-dimensional subspace.The analysis of the motion in the 3D-
subspace makes it possible to deduce the geometry of the original 4-dimensional
phase space.
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3.1 The disturbing function

The disturbing function in terms of the mutual distances of the bodies can be
written as

R(r, r′) =
1

∆
− 1

r
+

1

2

∆2

r′3
− 1

2

r2

r′3
(1)

where the mutual distance between the secondary and the perturbing body
∆ = r′ − r, r′ is the distance of the secondary from the primary and r the
distance of the perturbed body from the primary. Primed variables always refer
to the perturber, while unprimed variables refer to the perturbed body. The
relations given for the primed quantities are also valid for the unprimed ones,
respectively, and vice versa. The distance r in terms of Keplerian elements
is given by r = a(1 − e cosE). The eccentric anomaly can be expressed as
M = E − e sinE. Using these relations we can write

dE

dM
=

1

1 − e cosE
=
a

r
,
a

r
= 1 + 2

∞∑

s=1

Js(se) cos(sM) (2)

The mean anomaly M can be written as λ = M −ω. Using series expansions of
Eq. 2 the disturbing function can be expressed in terms of Keplerian elements
as R(a, e, a′, e′, λ, λ′, ω, ω′).

Introducing new canonical variables To simplify some terms of the dis-
turbing function all a′ are set to, corresponding to a scaled distance of the
secondary of 1. The e′ are replaced with the numerical value of the respective
eccentricity of the planet one wants to study. Further, ω′ can be set to zero,
corresponding to an arbitrary choice of the coordinate system in the planar
ER3BP. The disturbing function R(a, e, λ, λ′, ω) is then expressed in modified
Delaunay variables following the method described by Tsiganis (2007). The
canonical transformation is given by

λ = λ, Λ =
√
µ′a, γ = −ω, Γ =

√
µ′a
(
1 −

√
1 − e2

)
(3)

where the normalized mass of the secondary perturbing body is µ′ = m′

m′+M∗

,
where m′ denotes the mass of the secondary and M∗ the mass of the primary.

Expansion around the resonance Since we are interested in the behaviour
of the system in the MMR, the disturbing function for the investigated MMR has
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to be studied. The variable of the semi-major axis a in the disturbing function
is therefore replaced by the value of a at the exact location of the resonance

ares = a′
(

p

p+ q

)2/3

(1 − µ)1/3. (4)

Again following Tsiganis (2007), resonant canonical variables are intro-
duced.

ψ = pλ− (p+ q)λ′, Λ = pΨ, φ = γ, Γ = Φ (5)

Using Eq. 5 we get a disturbing function R(ψ, ψ′,Ψ, φ,Φ), where we can intro-
duce the new momentum J = Ψ−Ψres, where Ψres is the resonant angle Ψres =
1
p

√
µares. The resulting disturbing function is of the form R(φ,Φ, ψ, ψ′, J).

3.2 The symplectic mapping approach of Hadjidemetriou

The method of Hadjidemetriou (1991) allows the construction of a symplectic
mapping model from the continuous flow. The Hamiltonian is averaged with
respect to the short periodic terms of the perturbation to construct a mapping
preserving the structure of phase space. This is done by using the averaged
Hamiltonian as the generating function for the mapping equations. In this
section the averaging process and construction of the mapping is described.

Averaging the Disturbing Function To cancel out terms of the disturbing
function not associated with the MMR, R is averaged over the secular terms of
the motion of the disturbing body (the planet, in this case). This is done by
integrating ψ′ = λ′ over the period of the planet, so that

R(φ,Φ, ψ, ψ′, J) → R̄(φ,Φ, ψ, J). (6)

Constructing the averaged Hamiltonian The Hamiltonian function the
mapping is based on is constructed of a undisturbed, Keplerian part H0 and a
disturbing part H1 containing the averaged disturbing function R̄ (Eq. 6).

H = H0 − µR̄, H0 = − µ′2

2pΨ2
− n′(p+ q)Ψ (7)
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Introducing semi-Cartesian coordinates The action-and-angle variables
are converted into semi-Cartesian coordinates using the following coordinate
transformation

cosφ =
x√
2 Φ

, sinφ =
y√
2 Φ

, Φ =
x2 + y2

2
(8)

The resulting Hamiltonian H(x, y, ψ, J) is not necessarily centered in the origin
of the coordinate system, which would lead to distorted results. So, if necessary,
another transformation (x → X, y → Y ) has to be applied to translate the
coordinate system accordingly. The centered Hamiltonian H(X,Y, ψ, J) can
now be used to construct the mapping.

The generating function Following the method described by Hadjidemetriou
(1991); Tsiganis (2007); Hadjidemetriou (1993), the mapping is constructed
by means of a generating function W , which is defined as

W = W0 + 2 πH̄, W0 = Jψ +XY. (9)

The generating function is then used to calculate the mapping equations

∂W

∂Jn+1
= ψn+1,

∂W

∂ψn
= Jn,

∂W

∂Yn+1
= Xn+1,

∂W

∂Xn
= Yn (10)

which describe an implicit mapping. The Eq. 10 have to be solved for the
(Xn+1, Yn+1, ψn+1, Jn+1) to get the explicit mapping equations, which can then
be applied iteratively for each point in 4-dimensional phase space. Each step in
the mapping from (Xn, Yn, ψn, Jn) → (Xn+1, Yn+1, ψn+1, Jn+1) then represents
one orbit of the secondary. The successive (Xn+1, Yn+1, ψn+1, Jn+1) form the
trajectory of a point in four-dimensional phase space.

3.3 Surface Of Section

To represent the four-dimensional phase space on a two-dimensional surface,
a Poincaré surface of section (S.o.S.) has to be found (Poincaré , 1892). The
choice of criteria for the S.o.S. is not trivial. In this work a criterion proposed
by Tsiganis (2007) has been used:

ψ − Q̃ = π. (11)

It can be found writing the Hamiltonian in the form
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H =
1

2
βJ2 − µ′dΦ − µ′D̃(φ,Φ) cos(ψ − Q̃(φ,Φ)) (12)

where

D̃ =
√
A2 +B2, Q̃ = 2 arctan(

√
A2 +B2 −A

B
) (13)

A =
∑
D cos(kφ), B =

∑
D sin(kφ). (14)

Applying this criterion to the points of the trajectory in 4D phase space
eliminates the ψ coordinate and gives a trajectory in 3D phase space. A second
criterion,

J > 0 (15)

has to be considered to reduce the phase space to two dimensions and make
it possible to plot a 2D graphical representation of the trajectory.

4 Application to resonant motion in the solar
system

Several authors have investigated resonant motion using mapping methods see
e.g. Hadjidemetriou (1993); Dvorak (2008); Lhotka et al. (2008); Bazsó
et al. (2010). The described mapping method was applied to the 3:1 MMR
with Jupiter and the 5:3 MMR with Earth.

4.1 The 3:1 MMR with Jupiter

The 3:1 MMR with Jupiter is an unstable resonance, and the origin of the
Alinda family of asteroids. Since the 3:1 MMR is a resonance of the second
order (q = 2), the location of the resonance is calculated as

a3:1 = a′
(

p

p+ q

)2/3

(1 − µ)1/3 = 0.48 (16)

which is scaled to the location of the secondary and corresponds to a semi-major
axis of 2.50 AU. An overview of the input parameters used in the application of
the mapping model to this resonance can be found in Table 1.
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Figure 1: Projection of a 4-

dimensional trajectory onto the X-Y-ψ

coordinates (the ψ-coordinate is on the

z-axis of the plot).

Figure 2: Projection of another tra-

jectory in the 3:1 MMR with Jupiter.

The phase space portraits were created by iterating a grid of initial conditions
with starting values along the X-axis for 300 000 steps. In Fig. 1(a) and 1(b)
two trajectories in 4-dimensional phase space are projected into 3D. Fig. 3(a)
shows the trajectory from Fig. 1(a), projected into two dimensions, with the
points lying on the first surface of section condition (Eq. 11) plotted in brown
(see online version for color figures). For stable orbits, the trajectory of one
point in phase space describes an invariable curve. In Fig. 3(a) there are two
invariable curves, which are reduced to one applying the second criterion from
Eq. 15. This last step then gives the S.o.S. in the X-Y-plane, as described in
Eq. 8. Fig. 3(b) shows an unstable trajectory with the corresponding points on
the S.o.S. The points on the surface of section are scattered and do not describe
an invariable curve. The phase space portrait of the 3:1 MMR with Jupiter with
an initial grid of trajectories can be seen in Fig. 5(a). Only the points lying
on the surface of section defined by Eq. 11 and 15 are visible. The different
trajectories are color-coded. There are two fixed points, one elliptic (left) and
one hyperbolic (right), due to the 3:1 MMR being a second order resonance.
Around the fixed points regular (stable) motion is possible. Chaotic motion can
be seen on the left of Fig. 5(a) at the tips of the crescent-shaped curve.

As expected for a second order resonance, there are two fixed points around
which regular orbits can exist.
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Figure 3: Projection of the trajec-

tory from Fig. 1(a) onto the X-Y-

plane. Points on the S.o.S. are shown

as larger brown points, starting point is

shown in purple (see online version for

color figures).

Figure 4: Projection of a chaotic tra-

jectory onto the X-Y-plane.

Table 1: Input parameters for Jupiter.

semi-major axis a (scaled) 1
semi-major axis a 5.21 AU
eccentricity e 0.048
mass µ′ 9.54 × 10−4

ares (scaled) 0.48
ares 2.5 AU

Table 2: Input parameters for Earth.

semi-major axis a 1 AU
eccentricity e 0.0167
mass µ′ 3.0045 × 10−6

ares 0.71 AU

4.2 The 5:3 MMR with Earth

The 5:3 MMR was chosen because of the proximity of the current locations of
Earth and Venus to this resonance. Earth and Venus are located very close to
the 13:8 MMR, placing them right between the 5:3 and 8:5 MMR (Bazsó et al.
, 2010). The 5:3 MMR is also a second order resonance, so p = 3 and q = 2.
The location of the resonance is at

a5:3 = a′
(

p

p+ q

)2/3

(1 − µ)1/3 = 0.71. (17)

Since Earth already has a semi-major axis of 1, scaling is not necessary and
the location of the resonance is at an orbital distance of 0.711 AU. The input
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Figure 5: Phase space portrait of the

3:1 MMR with Jupiter.

Figure 6: Phase space portrait of the

5:3 MMR with Earth.

parameters used for the calculation of the Hamiltonian are shown in Table 2.
Fig. 5(b) shows the phase space portrait of the 5:3 MMR with Earth. As

in the 3:1 resonance, there are two fixed points surrounded by stable regions.
Stable regions of the phase space are represented as invariable curves, whereas
chaotic regions are represented by changing trajectories, as can be seen in the
outermost curve.

5 Conclusions

The Hadjidemetriou mapping model is a useful tool for the study of low order
MMRs. It was successfully applied to second order resonances in the solar
system, like the 3:1 MMR with Jupiter and the 5:3 MMR with Earth. However,
more work needs to be done on higher order resonances.
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Abstract

Chariklo and Chiron are two minor bodies classified as Centaurs but with somehow

slightly different properties. The first one is the largest known Centaur but its ro-

tational period is still unknown, the second one is a periodic comet characterized

by rapid changes in magnitude. Here we study their light curves in order to obtain

the rotational periods and their photometrical properties. Our main results are: (i)

Chariklo exhibits a statistically significant variability of 0.138 ± 0.036; (ii) for Chiron

a variability of 0.154 ± 0.056 is found; (iii) our data suggest a rotational period for

Chariklo of about 3.5 hours.

Keywords: Chariklo – Chiron – Photometry – minor bodies: Centaurs – periodic

comet
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1 Introduction

Centaurs are an unstable dynamical class of minor bodies which orbit around
the Sun between the orbits of Jupiter and Neptune. They are characterized
by very short dynamical lives, ∼ 106 − 107 years. The largest one known so
far is Chariklo, with a size ranging from 256.8±13.2

12.8 km for pV = 5.81±0.62
0.55 to

260.9±16.4
16.0 km for pV ∗ 5.63±0.76

0.65 (Stansberry et al. 2008). The early spec-
troscopic study by Brown et al. (1998) revealed that Chariklo’s spectrum is
characterised by a strong absorption around 2.05 µm, associated with the 2.03
µm water absorption band. More recently, Dotto et al. (2003) suggested the
presence on its surface of a mixture of tholins, amorphous carbon and water
ice in diverse percentage. Infrared studies confirmed the presence of water ice.
This together with chemical inhomogeneities can affect the determination of the
size of the object. Besides, this ice could emit gas, making difficult to measure
the real albedo. Chariklo has been studied several times aiming at measuring
its physical properties and, in particular, its rotational period, for which so far
no agreement has been found, it has been traditionally difficult to determine it,
because of the very small amplitude variation detected in the lightcurve. This
suggests either long period or one close to 24 hours (Davies et al. 1998; McBride
et al. 1999). Peixinho et al. (2001) claimed that it can be due to its almost
spherical shape without significant albedo variations on the surface or also that
its pole was facing the sun during previous observations.

Here we provide new observational material in an attempt to better constrain
Chariklo’s rotational period. The material presented here consists of multicolor
photometry obtained in the winter of 2006, when the object was visible in the
Hydra constellation.

Together with Chariklo and during the same observing run we have also
followed the prototype of the Centaur class, Chiron, which is a very peculiar
object. In fact it exhibits a dual existence, passing from total inactivity to a
significant cometary activity, and becoming this way one of the most massive
comets in the Solar System. Its orbit is chaotic, significantly more than that of
Chariklo. His path drastically changes every few decades when passing close to
the giant planets, its orbit becoming unstable and unpredictable. The detection
of a strong magnitude change between 1988 and 1989, when Chiron was at
11 astronomical units (AU), was accompanied by the presence of a cometary
coma close to the perihelion, where activity is supposed to be caused by the
sublimation of the carbon monoxide. Its size (the nucleus) as estimated by
Stansberry et al. (2008) is 233±14.7

14.4 km for pV = 7.57±1.03
0.87. Chiron therefore is

more reflective than Chariklo. As in the case of Chariklo, Luu & Jewitt (1990)
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reported the presence of water ice on the absorption lines around 2.0 µm. Its
low albedo was confirmed by Hartmann (1982), who found that Chiron has dark
chondritic-carbonaceous material and/or dirty ices like the asteroids of type C.
Luu & Jewitt (1990) suggested that the strong cometary activity was driven by
isolated explosive emissions of CO2 and other gases. During a period of activity,
Chiron can exhibit a coma of 20000 km (Silva & Cellone 2001); the presence of
the coma does not always coincide with Chiron’s maximum luminosity. These
bursts of activity are however not yet completely understood.

2 Chariklo

Figure 1: Chariklo’ position on the first (left panel) and last night (right panel).

The area is 6.49 × 9.01 arcmin2. North is up, east to the left. The arrow indicates

Chariklo’ motion over the whole run.

Chariklo was observed in the Hydra constellation on the nights of 2006 June
27 to 29, from JD 2453914.6153 to JD 2453916.7772. During the time we mon-
itored it, Chariklo moved by 267.2 arcsec, as shown in Fig. 1.

Observations were performed at the Las Campanas Observatory, using the
1.0-m Swope telescope equipped with the Site#3 2048 × 3150 CCD camera.
The field of view is about 14′8 × 22′8 with a pixel scale of 0.435 arcsec/pixel.
Chariklo observations were acquired during a 5 nights run, 3 of which were
photometric. Preliminary processing of the CCD frames was completed using
standard routines in the IRAF package. Both dome and sky flat-field frames
were obtained in each filter, and the images were also corrected for linearity
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(Hamuy et al. 2006; Carraro 2009). The average seeing was 1′′20 along the
entire 5 nights run (26 to 30 June, 2006). However, out of the 5 nights, only 3
(26, 28 and 30 June 2006) were photometric. In each of the photometric night
we observed 96 standard stars using an aperture of 14 pixels, from repeated
observations of the three fields Mark A, PG 1657, PG 2213 and SA 110 (Landolt
1992) at different air masses.

The following relations between the instrumental (lower case letters) and
the standard colours and magnitudes were adopted, as derived merging together
standard stars from the three different photometric nights, after checking that
they were stable:

V = 22.115(0.004)+ v − 0.068(0.007)× (B − V ) + 0.16(0.02)×X (1)

B = 22.084(0.004) + b+ 0.054(0.007)× (B − V ) + 0.30(0.02)×X (2)

I = 22.179(0.006) + i+ 0.058(0.009)× (V − I) + 0.06(0.02)×X (3)

(X =airmass). Second order color terms have also been computed, but they
turned out to be negligible. Aperture photometry of standard stars was obtained
with an aperture radius of 6′69 arcsec (14 pix).

We collected a grand total of 24 frames, as highlighted in Table 1, 20 in R, 3
in V and 1 in I. The instrumental photometry of Chariklo and several field stars
was extracted with the DAOPHOTII (Stetson 1987) package, using a fitting
radius of 5 pixels. We use 5 stable field stars as reference to shift Chariklo mag-
nitudes to the first night (June 27), which was photometric. We then estimated
aperture corrections on the field stars, that we applied to Chariklo measure-
ments - see Carraro et al. (2006) and Galiazzo (2009) for further details. This
correction turned out to be smaller than 0.10 mag in all filters. The final ap-
parent magnitudes are reported, together with their uncertainties, in Table 1.
At these data, this body has a phase angle of 4.34◦ and a mean magnitude in
the R-band of 18.08±0.02 for the 28th of June 2006. This compares nicely with
previous estimates, as illustrated in Table 2.

2.1 Light curve and rotational period

Up to now the only attempt to determine the the rotational period of Chariklo
from its light curve was carried out by Peixinho et al. (2001) which detected a
possible periodicity in the light curve of about 18.5 hours but with a confidence
level below 50%. For this reason we investigated whether the data presented
here support the presence of some significant variability and if they could give
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Table 1: Observational data for Chariklo. Mag is the apparent magnitude, σ error

is the sum of the magnitude of Chariklo and the weighted average of the magnitude of

the stars in common between the frames, A.M . the airmass, α is the solar phase angle

and t0 = JD2453910.
JD date UT date Filter Exp(s) A.M. Mag α(◦)
t0+4.6153 27/06 22:46:05 R 300 1.00 18.011± 0.050 4.34
t0+4.6267 23:02:24 R 400 1.00 18.115± 0.017 4.34
t0+4.6390 23:20:12 R 400 1.01 18.076± 0.012 4.34
t0+4.6514 23:38:03 R 400 1.02 18.093± 0.021 4.34
t0+4.7036 28/06 00:53:15 R 400 1.14 18.147± 0.027 4.34
t0+4.7097 01:01:55 R 400 1.16 18.177± 0.021 4.34
t0+4.7431 01:50:05 R 400 1.32 18.154± 0.026 4.34
t0+4.7492 01:58:54 R 400 1.26 18.166± 0.020 4.34
t0+4.7823 02:46:34 R 400 1.65 18.076± 0.030 4.34
t0+5.6383 23:19:11 R 400 1.01 18.196± 0.048 4.35
t0+5.6540 23:41:45 R 400 1.03 18.118± 0.053 4.35
t0+6.6185 29/06 22:50:38 R 400 1.00 18.264± 0.028 4.36
t0+6.6234 22:57:38 R 400 1.00 18.301± 0.018 4.36
t0+6.6282 23:04:39 R 400 1.01 18.261± 0.016 4.36
t0+6.6752 30/06 00:12:21 R 400 1.07 18.178± 0.033 4.36
t0+6.6994 00:47:11 R 400 1.14 18.179± 0.020 4.36
t0+6.7253 01:24:23 R 400 1.25 18.209± 0.023 4.37
t0+6.7507 02:01:00 R 500 1.40 18.239± 0.015 4.37
t0+6.7772 02:39:08 R 500 1.65 18.257± 0.017 4.37
t0+4.6328 27/06 23:11:17 V 400 1.01 18.709± 0.027 4.34
t0+4.6205 22:53:27 V 400 1.00 18.677± 0.024 4.34
t0+4.6482 27/06 23:33:23 I 400 1.01 17.542± 0.018 4.34

us some insight on a possible light curve periodicity. At first we inspected
accurately all the frames in our observations looking for possible dim sources in
the vicinity of Chariklo which could disturb our brightness determination. This
happened just in the first 4 frames (occultation of the star USNO-A2.0/0600-
14872238 ) of the first night which consequently where excluded from our time
series.

The stability of our reduced frames has been tested by looking at the vari-
ability of the brightness of a background star located near Chariklo on the CCD.
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Table 2: Data are shown in chronological order, all the absolute magnitudes were

calculated using the value, G = 0.15 ± 0.05 (Romanishin & Tegler 2005), for the

Centaur class: date of observation, heliocentric distance, geocentric distance, phase

angle, mean apparent magnitude in R- and I-band, the mean reduced magnitude in R-

band, the absolute magnitude in R-band. All the data were normalized at G = 0.15: the

absolute magnitudes in R-band evaluated before the 28th of June 2006 are extrapolated

by the mean apparent magnitude in the R-band in Table 1. The data are in order from

the top to the bottom of: McBride et al. 1999, McBride et al. 1999, Jewitt & Luu

2001, Peixinho et al. 2001,Dotto et al. 2003,Dotto et al. 2003, this study.

Date r ∆ α MR MI HR(< α >) HR

05/05/97 13.859 13.994 4.10 18.01±0.03 17.43±0.02 6.57 6.20
07/05/97 13.858 14.025 4.10 18.01±0.03 17.46±0.03 6.57 6.20
15/11/98 13.554 13.542 4.19 17.87±0.02 6.55 6.18
03/02/00 13.358 12.430 1.48 17.54±0.02 6.44 6.25
06/02/00 13.357 12.415 1.31 17.57±0.09 17.06±0.01 6.47 6.29
19/02/00 13.352 12.385 0.93 17.81±0.14 6.72 6.57
28/06/06 13.197 12.975 3.09 18.08±0.02 17.54±0.04 6.91 6.60

The brightness of the background star did not reveal any significant variability.

Considering that we only have few data, we studied the light curve with
mainly two different statistical methods.

We use the Period04 tool (http://www.univie.ac.at/tops/period04/), which
is based on the Discrete Fourier Transformation (DFT). Second, we fit the
data with a sinusoidal function through a classical weighted mean squares fit.
The remaining frames (having been excluded the first four) were analyzed by
using various values of the period window looking for periodicities in the range
2 hours to 48 hours. In this analysis we assumed that Chariklo’s shape can be
represented by a triaxial ellipsoid, with main axes a > b ≥ c and that rotation
occurs around c. With this simplifying assumption the light curve could be
approximated by a sinusoid. We hunt for a best fit periodicity by using a χ2

method derived from the Lomb-Scargle periodogram.

χ2(P ) =
N∑

i=1

(R(ti) −Ri)
2

σ2
i

N−1

; (4)
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Figure 2: The periodogram for Chariklo gives a period of (3.55 ± 0.01)h. With the

Fisher randomization test (Monte Carlo permutation procedure), the probability that

P does not have the computed-value is 0.012 and the probability of having a different

period is 0.002. Using 2.4-10 h for the period search window (no asteroids with a

rotational period lower than 2.4 h have been ever found, fission limit). The upper

limit is conventional because we try to avoid getting something around 24 h that is the

interval between observations.

So we study the light curve in different cases, starting always to fit with a
sinusoid; in this case the fitting of the sinusoid have been attempted by using
several methods: in our one, the Lomb-Scargle periodogram and the χ2 mini-
mization, taking special care in minimizing the noise made by the time window.
Using Period04 we find a period equal to (3.48 ± 0.03)h and an amplitude of
(0.047 ± 0.014)m, a result very close to the one that we have perform with the
periodogram (see Fig. 2).

Second, we fit the light-curve with a linear trend considering this fitting-
function: R(x) = A sin(kx+w)+R0+m∗x (x =time, P =period, A =sinusoidal
amplitude, R0 =apparent magnitude at time zero and m =slope;m is used to
model possible trends in the light-curve.). Having 13 degrees of freedom, the
critical value for χ2 at the 0.005 c.l. is χ2

0.995 = 29.82, so having attempted by
imposing m, the corresponding critical value is χ2

0.995 = 25.19. For this reason
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we find the light-curve with the best chi-square (χ2
0.995 = 5.07) and the period

becomes (3.49 ± 0.01)h, with A = (0.068 ± 0.007)m, again inside the range
suggested previously.

Figure 3: Light Curve for the differential photometry of 1997CU26 with equation

R(x) = −0.0684 sin(1.7988x− 0.6983) + 18.1311 + 0.0017x. Axis-x with the total-time

with zero-point at 22:30 UT June 27th 2006; axis-y with the apparent magnitude. At

the top the light curve of the control-star with his average magnitude

We also compute the period assuming m = 0 and the best solution for this is
P ≈ 30 hours, with an overimposed variability of period 3.2 - 3.7 hours. But ifm
is left as a free parameter the long term periodicity disappears, suggesting that
part of the “long term” variability is likely due to some residual trend in the data.
Since both the phase angles, the heliocentric range and the geocentric range do
not change appreciably over the three nights of observation, we investigated the
possibility that the trend is due to some systematic effect in the calibration
of the first night. It has to be noted that the gain in χ2 leaving m as a free
parameter is quite significant. Hence, a trend has to be included in the light–
curve model, which can not be explained as a result of a residual calibration
problem. Indeed, the analysis of the stability of the background stars did not
reveal any trend in their light curves. It can not be due to an alias with the
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Figure 4: Chiron’ position on the first (left panel) and last night (right panel). The

area is 13.78 × 18.00 arcmin. North is up, east to the left. The arrow indicates Chiron’

motion over the whole run.

time window too, as a simple Montecarlo analysis can demonstrate. It cannot
be excluded however that Chariklo’s real light curve is more complex than a
sinusoid, but the present data can not prove or disprove this hypothesis.

In conclusion, our data suggest a rotational period from the Chariklo light
curve of about 3.5 hours, with some hint for a more complex light curve.

3 Chiron

We secured photometric observations of Chiron during one run at June 2006
(∆̄ = 13.32AU et ᾱ = 2.30). Here we have all photometric nights and we
present a summary of the photometry in Table 3.

Due to the fact that the period of Chiron is well-known, we do a less peculiar
analysis on the light curve of Chiron in front of the one of Chariklo. So we
consider our best analysis to this data with this light curve which show strongly
the linear trend, which we calculated as 0.004 mag/h during the night from
June 26 to 28 and we find A = (0.056 ± 0.003)mag, obtaining a final period of
(5.91 ± 1.63)h, which is in the range (Fig. 5) of the official recognized value.

Then we look for the activity over the last 2 decades obtaining the light
curve over 20 years period integrated with the other researches on this Minor
body, calculating and correcting all the absolute magnitude assuming a G value
of 0.15, the most often adopted for this class of objects (Romanishin & Tegler
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Table 3: We have kept the proper error to the singular datum, because we need it

for finding the rotational period for few data, we did the weighted least mean square

method with a macro purpose-made to do this kind of thing adapting all to a sinusoid.

Mag =values of R magnitude, mR, at the proper UT-time, Filtr.=filter and α =solar

phase angle and t0 = JD2453910.

JD Filt. A.M. Mag ±σ α
t0+2.8037 R 1.05 16.921 0.023 2.36
t0+2.8221 R 1.07 16.932 0.026 2.36
t0+3.0228 R 1.13 16.936 0.035 2.35
t0+3.0284 R 1.15 16.924 0.024 2.35
t0+3.0344 R 1.16 16.908 0.032 2.35
t0+3.0404 R 1.19 16.954 0.022 2.35
t0+3.0464 R 1.21 16.935 0.021 2.35
t0+3.0614 R 1.28 16.981 0.021 2.35
t0+3.0674 R 1.31 16.996 0.021 2.35
t0+4.8536 R 1.28 17.014 0.017 2.25
t0+4.8596 R 1.25 17.065 0.019 2.25
t0+4.8656 R 1.22 17.091 0.021 2.25
t0+4.8888 R 1.14 17.066 0.014 2.25
t0+4.8949 R 1.13 17.046 0.014 2.25
t0+4.9009 R 1.11 17.074 0.011 2.25
t0+4.9233 R 1.07 17.061 0.012 2.25
t0+4.9294 R 1.07 17.070 0.038 2.25
t0+4.9354 R 1.06 17.030 0.017 2.25
t0+4.9414 R 1.06 17.040 0.017 2.24
t0+4.9474 R 1.05 17.032 0.018 2.24
t0+4.9535 R 1.05 17.035 0.0211 2.24
t0+4.9595 R 1.05 17.012 0.013 2.24
t0+4.9656 R 1.05 17.008 0.027 2.24
t0+4.9716 R 1.06 17.076 0.059 2.24
t0+4.9716 R 1.06 17.117 0.025 2.24
t0+2.9616 B 1.05 17.815 0.025 2.36
t0+2.8097 V 1.06 17.287 0.026 2.36
t0+2.9826 I 1.06 16.564 0.590 2.36

(2005)): Fig.6 and Table 4.

Looking at the light curve on the twenty (years), we see that the figure
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Figure 5: Rotational light curve of 2060 Chiron obtained UT 2006 June 26-28 at

Swope 1.0m Telescope on Las Campanas. The rotational period had a linear brighten-

ing trend. The equation of the curve is MR = 0.0560∗(1.0630∗h−1.1398)+16.9162+

0.0038 ∗ h.

confirms the trend of the previous ones, as it can be seen in Duffard et al.
(2002), so correcting the slope-parameter G does not get too much difference.
However the variations in the absolute magnitudes during the years show the
presence of the cometary activity of this body and we can see changement in
the range of the light curve when the coma is diluting itself, causing variations
in the reflected light of the nucleo. In fact we can think on the well studied of
back-scattering effect, so when the coma decreases its amplitude, the intensity
of back-scattering does the same in a proportionally way.

Colours and Conclusions

Chariklo looks much more red than Chiron and if we look the absolute magni-
tude in Table 2 and 4 is just like the opposite, Chiron is more brilliant in red
than 1997 CU26 of quite a magnitude of difference.

Here a comparison with some of the most recent data of the range of colours
(http://www.psi.edu/pds/asteroid/EAR A COMPIL 3 TNO CEN COLOR V3
0/data/tnocencol.tab) of Centaurs and the Sun. In particular for the Sun:
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Figure 6: Absolute R magnitude of Chiron from 1988 to 2006. The zero-point is

January 1st 1996. Relevant is the maximum of 1996 and the 3 maximum points, one

in 1991 and two in 2006.

Figure 7: Centaurs-Colour indexes (V −R) vs (R− I). Full dots for the Sun, Chiron

and Chariklo, in order from left to right.
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Table 4: r is the heliocentric distance, ∆ is the geocentric distance, α is the solar

phase angle, mR is the mean apparent R magnitude, HR(α) is the mean absolute R

magnitude and HR the reduced R magnitude. First three lines are taken from Luu &

Jewitt (1990), the 4th and 5th ones from Lazzaro et al. (1996); the 6th and 7th are

signed with a symbol, because they are not properly a medium, but single measures,

taken from Lazzaro et al. (1997); the two after are medium values taken from Duffard

et al. (2002) and the last two are our ones.

UT r ∆ α mR HR(α) HR

29/02/1988 12.60 12.33 4.4 17.10 ± 0.02 6.14 5.76
25/08/1989 11.56 12.20 3.8 16.40 ± 0.01 5.65 5.30
30/01/1990 11.26 10.39 2.4 16.11 ± 0.01 5.77 5.38
25/03/1995 8.538 7.557 1.22 15.850± 0.006 6.80 6.63
02/07/1995 8.494 8.764 6.51 16.231±0.017 6.87 6.38
29/01/1996 8.454 8.033 6.19 15.651± 0.012 (♣) 6.49 6.01
12/06/1996 8.465 8.133 6.60 15.694± 0.08(♣) 6.51 6.01
01/07/1998 9.012 8.411 5.40 16.409± 0.016 7.01 6.57
20/07/1999 9.445 8.959 5.10 16.671± 0.020 6.77 6.61
24/08/2001 10.891 10.460 4.90 16.230 ± 0.016 5.95 5.69
22/05/2006 14.115 13.723 3.83 17.103 ± 0.026 5.73 5.37
26/06/2006 14.175 13.332 2.35 16.948± 0.011 5.57 5.31

Table 5: Colour index (B − V ),(R− I),(V − I) of 2060 Chiron and 1997 CU26.

Minor Body Date (B − V ) (V − I) (V −R) (R− I)

Chariklo 26 June 2006 −− 1.17 ± 0.08 0.62 ± 0.07 0.64 ± 0.07
Chiron 26 June 2006 0.53 ± 0.05 0.72 ± 0.08 0.37 ± 0.08 0.36 ± 0.15

(B − V )⊙ = 0.642 ± 0.016,(R− I)⊙ = 0.332 ± 0.008,(V − I)⊙ = 0.688 ± 0.014
and (V − R)⊙ = 0.354 ± 0.010. There is a linear trend in (V − R) vs (R − I)
colours (Fig.7) and with a linear least square we obtain this linear relation in
colours: (V − R) = 0.50 ∗ (R − I) + 0.29. Colour indexes of Chiron are very
similar with those ones of the Sun (Holmberg et al. (2006)). Chiron is one of
the least reddish of the Centaur, instead Chariklo is quite over the average.

For (V −R) vs (B−V ), it seems that Centaurs are divided in 2 main families
with Chiron being a peculiar one with 2002 CB249 (the least Bluish, Fig. 8),
but again with a linear correlation (Fig. 9): (V −R) = 0.33 ∗ (B − V ) + 0.29.

Finally for (V-I) vs (B-V): (V −R) = 1.20 ∗ (B− V ) + 0.06. There is a very
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nice linear correlation and it is still possible to have 2 families (Fig. 10).
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Figure 9: Distinction in two families for Colour indexes of Centaurs (V − R) vs

(B−V ). We can see a couple of peculiar Cenataurs as Chiron and two main families,

that we have called the Asbolus Family (A.F.) and the Pholus Family (P.F.).

Figure 10: Colour indexes of Centaurs (V − I) vs (B − V ). The full dots are about

the Sun and Chiron, in order from left to right.
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Abstract

In 1962 Yoshihide Kozai found that above of a critical inclination the argument of

pericenter don′t precess rather than librate around 90◦ or 270◦, we name this the

Kozai-mechanism. I examined the Near-Earth Asteroids, in order to find out how

many of them are in the Kozai-mechanism. More than 10 years ago, some astronomers

examined this, but at that time they knew less than 500 Near-Earth Asteroids. Now

we know more than 6500.
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1 Introduction

Near-Earth Objects (NEOs) are comets and asteroids that have been nudged
by the gravitational attraction of nearby planets into orbits that allow them
to enter the Earth’s neighborhood. In terms of orbital elements, NEOs are
asteroids and comets with perihelion distance q less than 1.3 AU. Near-Earth
Comets (NECs) are further restricted to include only short-period comets (i.e
orbital period P less than 200 years).

The vast majority of NEOs are asteroids, referred to as Near-Earth Asteroids
(NEAs). NEAs are divided into groups (Aten, Apollo, Amor) according to their
perihelion distance (q), aphelion distance (Q) and their semi-major axes (a).

In 1998 NASA commenced its part of the ”Spaceguard” effort, with the
goal of discovering and tracking over 90% of the near-Earth objects larger than
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one kilometer by the end of 2008. There are several Near-Earth Object (NEO)
discovery teams: Lincoln Near-Earth Asteroid research (LINEAR), Near-Earth
Asteroid Tracking (NEAT), Spacewatch, Lowell Observatory Near-Earth Object
Search (LONEOS), Catalina Sky Surveys, Japanese Spaceguard Association
(JSGA), Asiago -DLR Asteroid Survey.

You can find these results in the Horizons System, or in the JPL Small-
Body Database Search Engine. The JPL HORIZONS on-line solar system data
and ephemeris computation service provides access to key solar system data and
flexible production of highly accurate ephemerides for solar system objects. You
can use JPL Small-Body Database search engine to generate custom tables of
orbital and/or physical parameters for all asteroids and comets.

In 1962 Yoshihide Kozai examined the secular perturbations of asteroids
with high inclination and eccentricity with analytical methods. He found that
above of the critical inclination (39.2◦) the argument of pericenter don’t precess
rather than librate around 90◦ or 270◦, while the oscillations of e and i are
coupled (Kozai , 1962). In 1979 astronomers discovered the first asteroid, which
showed this mechanism, the 3040 Kozai.

In 1995 Patrick Michel and Fabrice Thomas examined 10 NEAs by numerical
and analytical methods, which semi-major axes smaller than 2 AU (Michel &
Thomas , 1996). They found 4 asteroids which showed the Kozai mechanism,
but 2 of them has small inclination (i < 14◦) and the ω librate around 180◦.
An important effect of the mechanism is to protect the objects from encounters
with the planets. Two types of protection mechanisms are possible:

1. For bodies whose values of a and e are such that they could encounter
the planets only near perihelion (or aphelion), such encounters may be
prevented by the high inclination and the libration of ω about 90◦or 270◦

(even when the encounters occur, they do not affect much the asteroid’s
orbit due to comparatively high relative velocities)

2. Another mechanism for NEAs, is viable when at low inclinations when ω
oscillates around 0◦ or 180◦ and the asteroid’s semi-major axis is close to
that of the perturbing planet: in this case the node crossing occur always
near perihelion and aphelion, namely far from the planet itself provided the
eccentricity is high enough and the orbit of the planet is almost circular.

For main-belt asteroids (a > 2 AU) only the former mechanism can work, while
among NEAs both are possible. With both protection mechanisms, during the
stay inside the mechanism there are no drastic changes of a and the orbits
behave as if they were in a meta-stable state.
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Figure 1: The results of the calculations for the Midas and the Camillo.

Figure 2: The results of Michel & Thomas (1996) for Midas

2 Calculations

I used the Bulirsch-Stoer integrator. First I examined the same asteroids, which
was examined by Michel & Thomas (1996), these are the Midas, Camillo, 1986
PA and the Nereus. After that I calculated the orbital elements of other NEAs.
From the JPL Small-Body Database I found 309 NEAs, whose inclination is
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Figure 3: The results of Michel & Thomas (1996) for Camillo

larger than 39.2◦ and the perihelion distance q less than 1.3 AU, and 4149 NEAs,
with inclination smaller than 14◦. I have numerically integrated the orbital
elements of 104 asteroids with high inclination and 50 with low inclination to
1 Myr forward in time, as well as 4 asteroids with high inclination to 5 Myr.
The perturbing planets are Venus, Earth, Mars, Jupiter, Saturn, Uranus and
the Neptune. The program show the results every 10th year, in this way we can
see the little changes too.

3 Results

Midas I found that the orbit elements show the same changes that Michel &
Thomas (1996) have got over 1 Myr. The ω librate around 270◦ over 1
Myr.

Camillo In this case the changes of the ω show the same behaviour until the
first 0.5 Myr, after that the ω librate around 90◦ instead of 270◦.

1986 PA This asteroid has low inclination, and my results are not the same as
earlier. I didn’t find ω -libration around 180◦ from 700000 yr to 900000
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Figure 4: The results of the calculation for the 1986 PA and the Nereus.

Figure 5: The results of Michel & Thomas (1996) for 1986 PA

yr. The ω precess over 1 Myr. The other orbit elements show discrepancy
too.

Nereus The argument of pericenter precess and librate but don’t librate around
the expected value and at the right time. This asteroid has low inclination
too.
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Figure 6: The results of Michel & Thomas (1996) for Nereus

Izhdubar Its inclination is 63.46◦ and the argument of pericenter librate around
90◦ over 1 Myr. The eccentricity and the inclination are coupled oscilla-
tion, e being minimum, when i is maximum and vice versa.

DV24 Its inclination is 55.89◦ and the ω only precess. The inclination and the
eccentricity are coupled oscillation, but the period is shorter.

JW6 Its inclination is 51.31◦ and the ω first librate around 90◦, after one of the
periods it start librate around 270◦ for a long time and after that again
start librate around 90◦.

PT42 The orbital elements of this asteroid show an interesting behaviour.
When the precess of the ω turn to librating, the amplitude of the ec-
centricity and the inclination is higher.

I examined 104 asteroids which has high inclination and 50 asteroids which
has low inclination. From the previous 59 asteroids’ ω show the Kozai-libration
and from the latter only 9. When I calculated the orbital elements of 4 asteroids
with high inclination to 5 Myr, two of them show that the ω librate or precess
over 5 Myr, the other two asteroids show both behaviour.
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Figure 7: The results of the calculation for the Izhdubar and the DV24.
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Figure 8: The results of the calculation for the JW6 and the PT42.

4 Summary

I examined 104 high inclination NEAs and 50 low inclination NEAs. From
the 104 asteroids 59 show the Kozai-libration and from the 50 asteroids only 9
show this and 7 impact to the Sun. My results show that the Kozai-libration
is quite common phenomenon within the NEAs with high inclination. The
ω librate around 90◦ or 270◦, but NEAs with low inclination don’t show this
regular behaviour quite often, instead they show chaotic behaviour. The omega
changes chaoticaly because the perturbations of other planets are much stronger
than when the asteroids which have high inclination. When we want to say that
the NEA is potentially hazardous for an impact with the Earth, we have to do
more calculations with several initial value especially when we examine a low
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inclination asteroids.
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Abstract

Frequencies and resonances of librational motions in the elliptic restricted three-body

problem around the point L4 were determined and examined. We integrated the equa-

tions of motion of a fictitious Trojan body by changing the eccentricity e and mass

parameter µ of the system. Using Fourier transform we determined the frequencies

and resonances of the Trojan’s motion. The numerically found frequencies are in

good agreement with the analytical frequencies, and the determined resonances fit the

resonance curves of Érdi et al. (2007) considering secondary resonances at co-orbital

motions.
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1 Introduction

The elliptic restricted three-body problem (ERTBP) is a classical field of celes-
tial mechanics that has been studied for a long time by many authors. This
problem describes a system that contains three bodies, two of them moving in
elliptic orbits, and the third one has negligible mass, compared to the others.
The two larger bodies can be a star (with mass m1) and a planet (m2), and the
one with negligible mass an asteroid (m3). The most known example for the
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ERTBP is the Sun-Jupiter-asteroid system, where Trojan asteroids are librat-
ing around the L4 and L5 points of Jupiter. To date we know more than 4000
Trojan bodies in the Solar system, as asteroids and also Trojan moons.

The stability of motions near the Lagrangian triangular solutions is an inter-
esting question and has an extensive scientific literature (Danby, 1964; Bennett,
1965; Skokos & Dokoumetzidis, 2001; Marzari & Scholl, 2002; Érdi & Sándor,
2005; Freistetter, 2006; Érdi et al., 2007). Danby (1964) in his study on the sta-
bility of the triangular points in the elliptic restricted problem of three bodies
applied the Floquet theory to the first variational equations of motion for small
mass parameter (µ = m2/(m1 +m2)) and eccentricity, to obtain the transition
curves for stability of L4. He found that the transition curves form a ”V” -
like shape in the mass parameter - eccentricity plane. Below these curves the
triangular points are positions of stable equilibrium. The characteristic roots
of the variational equations were determined by Bennett (1965). He found that
the unstable region of L4 in the µ−e plane is divided into three parts, according
to the types of the four characteristic roots (2 real roots and 2 complex roots of
unit modulus; 4 real roots; 4 complex roots of non-unit modulus, respectively).
In the paper of Érdi et al. (2009) and Rajnai et al. (2010) escape times from
L4 are discussed. We note that in the unstable region of L4 the escape time -
the time until libration exists - increases along a curve which fits the transition
curve between the 4 real and the 4 complex roots.

The recent paper deals with the frequencies and resonances in the stable
region of L4. Motions around L4 were investigated, but due to symmetry the
results can be applied for L5 also. For the numerical computations we used
the equations of motion of the planar ERTBP, so considered only the effect of
Jupiter and the Sun on the Trojan’s motion.

2 Frequencies of motions

To study the problem we made the integration of the equations of motion for
several hypothetical systems, with different mass parameters and eccentrici-
ties of the primaries for initial conditions corresponding to librational motions
around L4. We used a grid to change µ from 0.0001 to 0.1 with a step size of
∆µ = 0.0001, and e from 0.0 to 1.0 with a step size of ∆e = 0.002. That means
approximately 500 000 mass parameter - eccentricity pairs, so the results can
be applied in general for several hypothetical and known Trojan systems.

To determine the librational frequencies we used Fast Fourier Transform
(FFT) part of GSL (GNU Scientific Library). The paper of Temperton (1983)
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contains the description of the algorithm. The integrations of the equations of
motion were made for 1250 periods of the primaries to get practicable Fourier
spectra, thus we could obtain the frequencies. In the stable region of L4 we
determined the four frequencies, normalized with the mean motion of the planet:
ns, nl, 1 − ns, and 1 − nl. Here ns and nl stands for the short and long periods
of the libration, and 1− ns, and 1 − nl are the consequences of elliptic motion,
because the Lagrange point L4 is moving in an elliptic orbit too.

The exact frequencies of librational motions around L4 in the circular re-
stricted three-body problem have been determined analytically and for compar-
ison with numerical methods. Table 1 contains this comparison for different
mass parameters. The last column shows the difference between the frequencies
obtained by the two methods, which appears only at the 4th decimal digit. This
indicates the precision of the numerical frequency determination.

Table 1: Comparison of the frequencies determined by numerical and analytical meth-

ods for e = 0

µ ns (analytical) ns (numerical) ∆ns

0.0001 0.999662 0.999299 0.000363
0.0002 0.999324 0.998699 0.000625
0.006 0.978763 0.97811 0.000653
0.01 0.963322 0.962517 0.000805
0.02 0.918191 0.91794 0.000251

µ nl (analytical) nl (numerical) ∆nl

0.0001 0.0259882 0.0257871 0.0002011
0.0002 0.0367635 0.0367816 -0.0000181
0.006 0.204995 0.204897 0.000098
0.01 0.268348 0.268066 0.000282
0.02 0.396138 0.396001 0.000137

Figure 1 shows the variation of the frequencies as a function of the mass
parameter, for the eccentricities e = 0.002, 0.02, 0.08 and 0.14. It can be seen,
that the variation is monotonous, and the change of the mass parameter affects
the frequencies more, than the increase of the eccentricity. Features of the
four figures in Figure 1 remain similar with the change of e, except the lack of
data increasing. At e = 0.02, 0.08 and 0.14 there is a lack of data in ns and
1 − ns, which is the consequence of the unstable region of L4. Bennett (1965)
determined the characteristic roots in the unstable region of L4 and found that
besides 2 real roots, 2 complex roots of unit modulus also exist. We could not
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Figure 1: The change of the four frequencies as a function of the mass parameter at

given eccentricities.

find the real roots in this region by the FFT, because the escape time of the
asteroid is too short and we could not get practicable Fourier spectra.

3 Resonances

Knowing the frequencies of the librational motions we can determine the reso-
nances. We used data in the surroundings of the resonances under study with
a small radius ±0.001.

For the four frequencies of the ERTBP 6 types of resonances are possible
(Érdi et al., 2007). In Figure 2 the so-called A-type resonances [(1 − nl) : nl]
are shown. These were computed by fixing the eccentricity and changing the
mass parameter, and searching for a frequency which agreed with the prescribed
resonant value within a tolerance 0.001, and then the eccentricity was increased
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Figure 2: A-type (1 − nl) : nl resonances in the stable region.

and the whole process repeated.The grey region indicates (µ; e) pairs for which
librational motions around L4 are stable during the integration time. The black
thick lines marks the resonances obtained by numerical integration. The dashed
white lines indicates resonances determined by Érdi et al. (2007) using Rabe’s
algebraic equation (Rabe, 1973) for the frequencies. The curves determined
by the two different methods fit very well at small eccentricities, since Rabe’s
equation can be used only for small and moderate values of e. The turning
points of the two kinds of resonance curves show the validity limit of Rabe’s
equation. Features of the other (B,C,D,E and F) types of resonances are similar,
they also agree well with the analytically determined resonance curves.

4 Summary

Librational frequencies and resonances of hypothetical Trojan asteroids were
determined using numerical methods, by changing the mass parameter and ec-
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centricity of a star-planet-asteroid system. The results are in good agreement
with earlier ones obtained by analytical methods. These can be applied to hy-
pothetical and also for known Trojans. A future work could be to determine
the frequencies in the unstable region of L4 with other methods to fill the lack
of data in Figure 2. It is also an interesting question what happens when the
resonance curves have intersections, how does this affect the stability of the
asteroid.
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Abstract

We present a detailed survey of the dynamical structure of the phase space around the

new moons of the Pluto-Charon system. We investigated the system in the framework

of the spatial elliptic restricted three-body problem. Stability maps were created

using chaos indicators both on the semi-major axis - eccentricity and semi-major axis

- inclination plane. The structures related to the 4:1 and 6:1 mean motion resonances

are clearly visible on the maps, but the detailed investigation of the resonant arguments

shows no evidence of the resonances. We showed the possibility that Nix might be in

the 4:1 resonance if its argument of pericenter or longitude of node falls in a certain

range. Recently we improved our model to the general four-body problem, which can

provide more accurate information about the stability, motion and possible resonances

between the moons and Charon, which is relevant, since the ’New Horizons’ mission

will reach and study the system in 2015.

Keywords: celestial mechanics - Pluto - moons

1 Introduction

Pluto’s first moon, Charon was found by Christy & Harrington (1978), which
greatly facilitated the study of Pluto. The Pluto - Charon system is remarkable,
since in the Solar system Charon is the largest moon relative to its primary, with
the highest mass ratio of 0.1166 (Tholen 2008, hereafter referenced to as T08).
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The discovery of Pluto’s new moons (Weaver 2005, Weaver 2006), Nix and
Hydra rendered the system even more interesting. They orbit the center of mass
of the system, which is very close to the Pluto-Charon barycenter. Thank to
this, in latter years numerous studies were devoted to the system. The most
important results are the following:

In 2006 two-body orbit solutions for Nix and Hydra were computed by Buie
using the Hubble Space Telescope (Buie 2006, hereafter referenced to as B06).
According to the results, the orbital periods of Nix and Hydra are close to
the ratio of 4:1 and 6:1 with that of Charon, respectively, indicating mean-
motion resonances. In this paper two bodies are in mean-motion resonance,
when n/n′ = p/(p+ q), where n and n′ are the mean motions, p and q are small
integers, where q is the order of the resonance. Some of Buie’s major conclu-
sions are: (i) Nix and Hydra are in nearly circular orbits, with eccentricities of
0.0023 and 0.0052, respectively, (ii) the orbits of the small moons are almost
coplanar with Charon’s orbit, (iii) the orbital periods of Nix and Hydra are
nearly commensurate with the period of Charon, but differ significantly from
the exact ratios of 4:1 and 6:1, respectively. We note that in B06 the eccentricity
of Charon was assumed to be zero. We demonstrated that the eccentricity of
Charon substantially influences the phase space of the Pluto–Charon system;
for details see Süli & Zsigmond (2009, hereafter referenced as S09).

In 2008 four-body orbit solution was computed by T08 fitting all the 22 pa-
rameters simultaneously. They studied whether the direct perturbations might
be too strong to permit a sufficiently accurate extrapolation forward to the ’2015
- New Horizons’ spacecraft encounter with Pluto. Also, with adequate data, this
four-body orbit solution should yield the mass for each member of the system.
Their major conclusions are the follows: (i) Pluto’s three moons are not quite
coplanar, (ii) the new moons’ orbit planes precess around the system’s invari-
able plane with periods of ≈ 5 and ≈ 15 years, (iii) the orbital eccentricities are
nonzero, but small for all three moons, (iv) there is no evidence of any mean
motion resonances. Nagy et al. (2006) studied the phase space of the Pluto–
Charon system in the framework of the spatial circular restricted problem. The
moons were treated as test particles and their semi-major axes, eccentricities
and inclinations were varied. Summarizing their results: (i) the region inside
42 000 km is unstable, thus no moon could exist there, (ii) both moons reside
in the stable region and the upper limit for the eccentricities are 0.17 for Hydra
and 0.31 for Nix, far greater, than the current values of the moons, (iii) in the
semi-major axis–inclination plane the 4:1 and 6:1 resonances are clearly visible
above ≈ 20◦ and ≈ 35◦, respectively. Our main goal was to extend the pre-
vious investigations using the spatial elliptic restricted and general four body
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problems. Detailed analysis can be found in the work of S09. This paper is
organized as follows: Section 2 describes the model and the initial conditions;
Section 3 is devoted to the methods and in Section 4 we present the new results.

2 Models and initial conditions

Since the orbital radii of the moons are much smaller than the Hill radius
(≈ 8.0 × 106 km) of the Pluto-Charon system, the moons are deep in Pluto’s
gravitational well, so the perturbations by the Sun can be ignored, as did T08.

First we applied the model of the spatial elliptic restricted three-body and
later the general four-body problem. We integrated the dimensionless equations
of motion. An obvious advantage of using such equations is that the results are
independent of the exact value of the semi-major axis of Charon. The unit of
length was chosen such that the separation of Pluto and Charon (the primaries)
is unity, i.e. the semi-major axis of Charon a1 = 1 A in all computations.

Let the unit of mass be the sum of the primaries, and the unit of the time
the orbital period of Charon. The orbital plane of the primaries was used as
reference plane, in which the line connecting the primaries at t = 0 defines a
reference x-axis. The initial orbital elements are given in S09.

We study the problem more generally by considering the effect of non-zero
inclinations on the orbital stability. The mass parameter µ = 0.104424 was
chosen according to the mass ratio of 0.1166, published in T08. To examine the
phase space in the vicinity of Nix and Hydra separately we varied the initial
orbital elements of the test particles. Stability maps were created for the (a−e)
and (a − i) orbital element space for both moons for different eccentricity e,
inclination i, argument of pericenter ω and longitude of node Ω values. In total
more than 14 million orbits were calculated, which resulted in 2 × 80 = 160
stability maps for each moon. Due to the very small step size in a and e, each
(a − e) stability map corresponds to more than 6 × 104 initial conditions, thus
providing a very fine resolution.

3 The applied methods

To compute the stability maps, the method of the maximum eccentricity (ME),
the Lyapunov characteristic indicator (LCI) and the relative Lyapunov indica-
tor (RLI) were used as tools for stability investigations of the massless bodies
representing the small moons.
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Table 1: The initial orbital elements for the test particles. In the upper part the

intervals of the semi-major axes along with the step sizes ∆ are listed for the stability

maps (a−e) and (a−i). The lower part shows the intervals (I) for the orbital elements

[e]k , [ω]l and [Ω]l and the respective step sizes (∆′). For details see S09.

Map a [A] e i [deg]
Nix [2.40,2.64] [0,0.4] [0,45]
Hydra [3.22,3.38] [0,0.4] [0,45]
∆ 10−3 10−3 1

[e]k [i]k [deg] [ω]l [deg] [Ω]l [deg]
I [0,0.4] [0,40] [22.9,337.9] [0,315]
∆′ 0.1 10 45 45

The ME method uses as an indication of stability a straightforward check
based on the eccentricity. This action-like variable shows the probability of
orbital crossing and close encounter of two bodies and therefore its value provides
information on the stability of orbits. This simple check was found to be a
powerful indicator of the stability character of orbits in previous investigations
(Dvorak et al. 2003; Süli et al. 2005; Nagy, Süli & Érdi 2006). In this work we
define ME as follows:

ME = max
t∈[0,104]TC

(e).

We plotted ME−, where:

ME− =

{
1 if ME = 1
ME − e0 otherwise

,

where e0 is the initial eccentricity of the test particle.

As a complementary tool, we computed also the RLI (Sándor et al. 2006)
and the LCI (Froeschlé 1984), which are well-known chaos indicators.

4 Results

Here we show the ME− stability maps, presenting one phase space structure for
Nix. On Figure 1 white solid lines are contour lines: along them ME− has a
constant value, this way they can draw the approximate boundary of the most
prominent structures. The white numbers are the corresponding ω values.
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Figure 1: The (a−e) stability map for 8 ω values for Hydra (upper) and Nix (lower).

The white curves correspond to contour lines indicating the shape of the resonances

as they would appear on individual maps for the ω displayed at the upper end of the

curves. In the upper panel along the contour curves ME− = 0.025. In the case of

Hydra along the contour curves ME− = 0.04.

4.1 Mass parameter

We performed two different runs to estimate the effect of the different values of
the mass parameter used by Nagy et al. (2006) and by T08. The structures for



78 Zs. Zsigmond and Á. Süli

the two mass parameter are almost identical, for µ = 0.104424 they are only
shifted along the horizontal axis. This is a consequence of the changes in the
coordinates of the barycenter. This shift could be important in the close vicinity
of mean motion resonances.

4.2 Charon’s eccentricity

In order to visualise the effect of the absence of the Jacobi-integral, we plotted
also the circular and the elliptic case for both moons. The differences are: in the
elliptic case the unstable zone is much larger and the center of the resonance
is shifted to larger semi-major axis, and the 4:1 and 6:1 resonances became
stronger for low eccentricities. The V-shape did not change significantly.

4.3 The stability maps

We investigated the orbits systematically by changing the initial orbital elements
of the test particle. In Figure 1, the results are summarized for the 8 values
of ω. The figure is dominated by a V-shaped gray structures, corresponding
to the 4:1 mean motion resonance between Charon and Nix. These resonances
can represent either ordered or weakly chaotic behaviour. The present positions
of the moons are in stable region both on the (a − e) and (a − i) parameter
spaces. On the maps the structures related to the 4:1 and 6:1 resonances are
clearly visible, but none of them contains any of the moons. As you can see in
Figure 1, in the case of ω = 157.9 for Nix it can show the possibility of active
resonance. But for Hydra we can not find any value, where the 6:1 resonance
would appear, since it is very weak in the vicinity of the moon. The ω = 67
seems the most strongest, because it approaches the axis the most, in this case
the value of eccentricity goes underneath 0.05. Since the eccentricity is really
small, it is hard to establish the ω values. More accurate orbit solutions could
result in such data, that places the Nix in resonance. The (a − i) maps give
the same results. Mention must be made that the planar and spatial cases
are almost identical, when the inclinations are very small (as they are for the
moons).

4.4 Results using the general problem

Newly we started to investigate the system using the framework of the general
four-body problem. The masses and their error limits were from work of T08.
Using the maximal margin of error, our initial results show that the moons
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are on orbits those very hard to estimate for larger time. First we calculated
the well-known Lyapunov-time (TL). The Lyapunov time reflects the limits of
the predictability of the system. By convention, it is measured as the time for
nearby trajectories of the system to diverge by e (Euler-number). We found that
for the new moons TL = 20 day. Since the ’New Horizons’ mission will reach and
study the system in 2015 (Stern 2002), it is very relevant to know the precise
positions of the system’s members. This claims further investigations which are
under way. Another plan is to calculate the resonant arguments for different
orbits. These preliminary results are that there are no evidences of resonance
in the measured positions of the moons. Accurate positions are needed to be
measured to find an evidence of resonance.
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Part Two

Exoplanetary Systems





PADEU
PADEU 20, 83 (2011)

ISBN 963 463 557
c© Published by the Astron. Dept. of the Eötvös Univ.
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Abstract

The moments of the mid-transit times of a transiting exoplanet will deviate from a

linear ephemeris due to mutual gravitational perturbations caused by a distant third

companion (e.g. a planet, a brown dwarf or a star). Beyond this so-called transit

timing variation (TTV), the duration as well as the depth of the consecutive transits

can be varied, too. We investigate the motion of a transiting exoplanet perturbed by

a third object, assuming that the planet is far enough from its host star that the tidal

effects are negligible. We give direct analytical form of the TTV for this case and we

study how it depends on different kind of dynamical and geometrical orbital elements.

We carried out several numerical integrations which show that the analytical formula

is well applicable in systems with extremely large eccentricity (even for e > 0.9),

too. As an application, we illustrate how the formulae work for the weakly eccentric

CoRoT-9b, and the highly eccentric HD 80606b. Finally, we illustrate the operation

and effectiveness of Kozai cycles with tidal friction in the case of HD 80606b.
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1 Introduction

The rapidly increasing number of exoplanetary systems, as well as the length-
ening time interval of the observations naturally leads to the search for pertur-
bations in the motion of the known planets which can give possibility to detect
further planetary (or stellar) components in a given system, and/or can produce
further information about the oblateness of the host star (or the planet), or even
might refer to evolutionary effects.

The detection and the interpretation of such perturbations in the orbital
revolution of the exoplanets usually depends on the TTV. Plotting the observed
minus calculated mid-transit times with respect the cycle numbers we get the
O − C diagram which having been the main tool for period studies by the
variable star observers (not only for eclipsing binaries) for more than a century.
Consequently, the effect of the various types of period variations (being real
or apparent ones) for the O − C diagram were already wide-spreadly studied
in the last one hundred years. Some of them are less relevant in the case of
transiting exoplanets, but others are important. For example, the two classical
ones are the simple geometrical light-time effect (LITE) (due to a further, distant
companion), and the apsidal motion effect (due to both the stellar oblateness
in eccentric binaries, and the relativistic effect).

The continuous long-term monitoring of several hundreds of stars with the
CoRoT and Kepler satellites, as well as the long-term systematic terrestrial
surveys give the excellent opportunity to discover transiting exoplanets (or as by-
products: eclipsing binaries) with the period of months. Then continuous, long-
term transit monitoring of such systems (combining the data with spectroscopy)
give chance to detect the traces of dynamical evolutionary effects (i. e. orbital
shrinking) already on the timescale of some decades. Furthermore, the larger
the characteristic size of a multiple planetary, stellar (or mixed) system the
greater the amplitude even the shorter period perturbations in the TTVs, as
was shown in details in the discussion of Borkovits et al. (2003).

In the last years several papers were published in the topic of TTVs, both
from theoretical aspects e.g. (without completeness) Agol et al. (2005); Holman
& Murray (2005); Holman (2010); Cabrera (2010); Fabrycky (2010); and
see further references thereins, and from observational aspects for individual
transiting exoplanetary systems which papers now are so copious that we cannot
list them. Nevertheless, most (but not all) of the theoretical papers above,
mainly concentrate on simply the detectibility of further companions (especially
super-Earths) from the TTVs.

In this paper we consider this question in greater details. We calculate the
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analytical form of the long-period (i. e. with a period in the order of the or-
bital period of the ternary component P2) time-scale perturbations of the O−C
diagram for hierarchical (i.e. P2 >> P1) triple systems. (Note, as we mainly
concentrated on transiting systems with a period of weeks or months, we omit-
ted the possible tidal forces. However, our formulae practically can be applied
even for the closest exoplanetary systems, too, because the tidal perturbations
become effective usually on a notably longer time-scale.) This work is a contin-
uation and extension of the previous paper of Borkovits et al. (2003). In that
paper we formulated the long-period perturbations of an (arbitrarily eccentric
and inclined) distant companion to the O−C diagram for a circular inner orbit.
(Note, that our formula is a generalized variation (in the relative inclination)
of the one of Agol et al. (2005). For coplanar case the two results become
identical.) Now we extend the results for the case of an eccentric inner binary
(formed either a host-star with its planet, or two stars). As it will be shown,
our formulae have a satisfactory accuracy even for such a high eccentricity, than
e1 = 0.9. Note, that in the period regime of some months the tidal forces are
ineffective, so we expect eccentric orbits. This is especially valid in the case of
the predecessor systems of hot-Jupiters, in which case some of the formation
theories predict very high eccentricities.

In the next section we give a very brief summary of our calculations. (A
somewhat detailed description can be found in Borkovits et al. (2003), Borkovits
et al. (2007).) In Section. 2. we discuss our results, while in Section. 3 we
illustrate the results with both analytical and numerical calculations on two
individual systems, CoRoT-9b and HD 80606b.

2 Analytical investigations

As is well-known, at the moment of the mid-transit (which in case of an eccentric
orbit usually does not coincide with the half-time of the whole transit event)

u ≈ ±π
2

+ 2kπ, (1)

where u is the true longitude measured from the intersection of the orbital plane
and the plane of sky, and k is an integer. Due to its key role in the occurrence of
the transits, instead of the usual variables, we use u as our independent time-like
variable. It is known from the textbooks of celestial mechanics, that

u̇ ≈ µ1/2a−3/2(1 − e2)−3/2(1 + e cos v)2 − Ω̇ cos i, (2)
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consequently, the moment of theN -th primary minimum (transit) after an epoch
t0 can be calculated as

∫ tN

t0

dt =

∫
a3/2

µ1/2

(1 − e2)3/2

[1 + e cos(u− ω)]2

(
1 +

ρ2
1

c1
Ω̇ cos i

)
du. (3)

In order to evaluate Eq. (3) first we have to express the perturbations in the
orbital elements with respect to u. As far as we consider all the orbital elements
(except of u) as constant, for the first term of the right hand side yield the
following closed solution

P I,II=
P

2π

[
2arctan

(√
1 − e

1 + e

∓ cosω

1 ∓ sinω

)
± (1 − e2)1/2 e cosω

1 ∓ e sinω

]
,

for the two types of minima, respectively. (Here P denotes the anomalistic or
Keplerian period which is considered to be constant.) Note, that instead of the
exact forms above, naturally its expansion is used widely (as in this paper).

As a next step, we have to calculate the long-period and apse-node perturba-
tions in u. A part of them practically come simply from the similar perturbations
of the orbital elements (or directly of the e cosω, e sinω functions), while others
(we will refer them as direct perturbations in u) comes from the variations of
the mean motion, i.e. with other words this means that in that case P no longer
will be constant.

Averaging the perturbation equations for the short-period variable (u) we
get the long-period (∼ P2) variations of the orbital elements, and consequently,
we get the analytical form of the long-period contribution of O − C. This can
be written into the following two different forms:

O − Cdyn ≈ P1

2π

AL

(1 − e22)
3/2

[AMM +ASS] , (4)

≈ P1

2π
AL

∑

n

An sin(nv2 + φn), (5)

where the amplitudes are

AL =
15

8

m3

m1 +m2 +m3

P1

P2
, (6)

AM,S = AM,S(e1, g1, ω1, im), (7)

A1,2,3 = A1,2,3(e1, g1, ω1, im; e2, g2), (8)

A4,... = A4,...(e1, g1, ω1, im; e2), (9)
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while for the phase-terms

φ, φ1 = φ, φ1(e1, g1, ω1, im; g2), (10)

φ2,3 = φ2,3(e1, g1, ω1, im; e2, g2), (11)

φ4,... = 0 + (0, 1) × π, (12)

and, furthermore,

M =
1

3
(v2 − l2 + e2 sin v2) , (13)

S = sin(2v2 + φ) + e2 sin(v2 + φ) +
1

3
e2 sin(3v2 + φ). (14)

Moreover, the pure geometric light-time effect gives a further contribution, as

O − CLITE = − m3

m123

a2 sin i2
c

(
1 − e22

)
sin(v2 + ω2)

1 + e2 cos v2
, (15)

and its amplitude is

ALITE =
m3

m123

a2 sin i2
c

(
1 − e22 cos2 ω2

)1/2

≈ 1.1 × 10−4 m3

m
2/3
123

sin i2P
2/3
2

(
1 − e22 cos2 ω2

)1/2
, (16)

where masses are in solar mass, while P2 is in days.
Note, the actual form of the above listed amplitude and phase terms (up to

the sixth order in e1 will be published very soon in Borkovits et al. (2010).

3 Discussion

The geometrical elements of the orbits, and the physical parameters, i.e. masses,
and dimensions of the orbits (via periods and their ratios) are separated. Con-
sequently, the properties of dynamical O−C can be investigated independently
from any particular system, the physical parameters form only a scaling param-
eter. We found, that the amplitudes above generally remain in one order of
magnitude for a wide range of the orbital parameters. Furthermore, in case of a
planet-mass third companion we can use the following simple, linear equation,

Adyn ≈ Am3

P2
, where A = 1

2π
P 2

1

mhost−star
is a known constant for any particular

transiting planets.
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Figure 1: Sample of TTVs caused by a hypothetical P2 = 10 000 day-period 5 MJ mass

third component for CoRoT-9b, at specific orbital parameters. (The pure, geometrical

light-time contribution plotted also separately, below the combined curve.)

Comparing the LITE amplitude to the dynamical one, keeping P1 as con-

stant, and increasing P2, the ALITE/Adyn ratio increases by P
5/3
2 , i.e. for rela-

tively more distant systems LITE tends to exceed the dynamical effect. Usually
this is the case in almost the known eclipsing hierarchical triple stellar systems,
but we can expect an opposite situation in many of the recently discovered
transiting exoplanetary systems.

The AM,S amplitudes depend only on the orbital elements of the transit-
ing planet, with the exception of the mutual inclination (im) of the two orbits.
Two of these four elements, namely inner eccentricity (e1), and argument of
periastron in the observational frame of reference (ω1) can be determined from
other sources (e.g. from radial velocity, as well as light-curves). Consequently,
for a specific system only two parameters remain, the argument of periastron in
the dynamical frame of reference (g1), and the mutual inclination (im). Conse-
quently, the expectable properties of the dynamical O−C can be mapped easily,
independently from the properties of the third body’s orbit. Furthermore note,
that for circular third orbit A2 = AS , and for any other n-s An = 0, so, for not
too highly eccentric third orbit simply AS contain almost all information on the
dynamical O − C.
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Figure 2: The first and second 8 year-long intervals of some O−C curves for CoRoT-

9b. The medium thick line, denoted by e2 = 0.3 belong to the curve shown in the right

panel of Fig. 1. The other parameters are identical.

4 Case studies

4.1 CoRoT-9b

CoRoT-9b is a transiting exoplanet which revolves around its Sun-like host star
approx. in the distance of Mercury. Its important parameters from Deeg et al.
(2010) are as follows: m1 = 0.99 M⊙, m2 = 0.0008 M⊙, P1 = 95.27 d, e1 = 0.11,
ω1 = 217o, i1 = 89.99o. According to the physical quantities, A ≈ 1.39 d2M−1

J ,
i.e. a Jupiter-mass further planet could produce 10−3 d half-amplitude varia-
tion already from the distance of Mars. Here we show the realization of some
curves for different geometry of the third companion (Fig. 1). Note, we found
a very specific case (which, for the limited space, is not shown here), i.e. at
some specific relative orientations of the two orbits (g1, g2) the O − C almost
disappears around im ≈ 45o. Nevertheless, this is not typical. We illustrate
also, that although the amplitude of the O − C curve usually grows with the
eccentricities (both inner and outer ones), the possible fastest detection of the
dynamical perturbations from the O−C strongly depends on the orbital phase
of the outer perturber. As one can see in Fig. 2, we can find such configurations
where the smaller full-amplitude variation can be detected much shorter. This
is because the detection mainly depends on the actual curvature of an O − C
curve.
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Figure 3: Sample of TTVs caused by a hypothetical P2 = 10 000 day-period 5 MJ mass

third component for HD 80606b, at the maximum eccentricity phase of the induced

Kozai-cycles.

4.2 HD 80606b

The high-mass gas giant exoplanet HD 80606b revolving on an almost 4-month
long period, extremely eccentric orbit around its solar-type host-star, was dis-
covered by Naef et al. (2001) via radial velocity measurements. Recently both
secondary occultation (with Spitzer space telescope, Laughlin et al. (2009)),
and primary transit (Moutou et al. (2009); Fossey et al. (2009)) were de-
tected. A thorough analysis of the collected data around the February 2009
primary transit led to the conclusion, that there is a significant spin-orbit mis-
alignment in the system, i.e. the orbital plane of HD 80606b fails to coincide
with the equatorial plane of its host star (Pont et al. (2009)). This result
makes it plausible that we can observe this planet near the maximum eccen-
tricity phase of a Kozai cycle induced by a distant, inclined third companion.
In the maximum eccentricity phase for a wide range of the initial parameters
im ≈ 39.23o, and 2g1 = 180o. We fixed this values, which together the spec-
troscopic e1 = 0.93 and ω1 = 121o makes the AM,S amplitudes completely
determined. Two of the O−C-s calculated such a way is plotted in Fig. 3. This
illustrates, that our analytical formula (calculated up to sixth order in inner ec-
centricity) works relatively well even for such a high eccentricity, too. In Fig. 4
we show also the numerically integrated dynamical evolution of the system for
100 and 1 million years with and without tidal dissipation. The Q-parameters
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Figure 4: Dynamical evolution of the orbital elements of HD 80606b in the presence

of a hypothetical P2 = 10 000 day-period, 5 MJ mass third companion. Thick curves:

tidal effects and dissipation are considered; thin curves: three-mass-point model. (Rel-

ativistic contributions are omitted.) Note, semi-major axis (a1) is given in R⊙.

were set to Q1 ≈ 4.1 × 107, and Q2 ≈ 1.7 × 104, for the host star, and its
inner planet, respectively. The period variation caused by the orbital shrinking
is ∆P1 ≈ 3 × 10−6 day cycle−1, which would produce 10−3 days departure in
transit times during ∼ 26 cycles, i.e. ∼ 8 years.
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Abstract

Hypothetical planetary systems similar to our Solar System were studied in order to get

a closer insight of habitability. The investigated systems consist of three inner rocky

planets (Venus, Earth, Mars) and two outer gas giants. The stability of the orbits of

the inner planets is discussed in the cases of different masses of the gas planets. It was

found that Jupiter could be four times and Saturn could be three times more massive

while the orbits of the inner planets stay stable. Similar calculations were made by

changing the mass of the Sun. In this case the position of the rocky planets and the

extension of the liquid water habitable and the UV habitable zones were studied for

different masses of the Sun. It was found that the orbits of the planets were stable for

values greater than 0.33 M⊙ where M⊙ is the mass of the Sun and at lower masses of

the Sun (at about 0.8 M⊙) only Venus, but for higher mass values (at about 1.2 M⊙)

Earth and also Mars are located in both habitable zones.

Keywords: Exoplanets – habitable zone

1 Introduction

New planetary systems containing one or more gas giants are discovered day
by day. Present instruments and methods are, however, not ideal for detecting
rocky planets, hence these discoveries are considered to be rare events. As in-
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struments are getting more and more developed the number of known terrestrial-
mass planets is expected to grow significantly.

Search for extraterrestrial life is also one of the main goals of ESA and NASA.
New interferometers of these space agencies are to be launched in the next
decade with the aim of discovering and characterizing new Earth-like planets.
Therefore it is important to investigate the conditions within which the orbits
of these planets are stable in the given system. Besides the dynamical stability,
spectral distribution of the radiation of the central star also affects habitability
of the system.

What would be the outcome in terms of the stability of the Solar System,
if the masses of Jupiter and Saturn had been formed in a different way from
the cloud envelope of the protostellar Sun? Is the Solar System unique? In this
work we discuss different cases similar to the Solar System to investigate the
conditions of habitability on rocky planets.

Our research program consists of two main parts. In the first part the
stability of the rocky planets is investigated as a function of the masses of the
gas giants and as a function of the mass of the Sun. This latter case is closely
related to the second part of our work which is the calculation of the extension
of the two kinds of habitable zones: the conventional liquid water habitable zone
and the ultraviolet habitable zone.

2 Stability calculations

The studied planetary systems are built up from three inner rocky planets:
Venus, Earth, Mars and two outer gas giants: P1 and P2, where P1 is closer
while P2 is located farther from the Sun. M1 and M2 are the masses of P1

and P2, respectively. By changing the masses of the gas giants from 0 to 10
MJ where MJ is the mass of Jupiter the integration was made for 5000 PS

(PS : period of Saturn) which is about 150000 years. Initial orbital elements
were obtained for J.D. = 2415020.0 epoch where P1 and P2 were chosen for the
parameters of Jupiter and Saturn, respectively. Stability of the inner planets is
described by the maximum of eccentricities and close encounters. For the latter
we investigated several parameters but finally chose the difference between the
distance of the outer planet’s pericentre and the distance of the inner planet’s
apocentre.

In the other case the planets’ masses were constants and the mass of the
Sun was altered between 0.1 M⊙ and 10 M⊙ where M⊙ is the mass of the Sun.
The integration time was the same as in the previous case that is 5000 PS .
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Figure 1: Stability maps for the three inner planets in function of the masses of M1

(axis x) and M2 (axis y). The ’+’ mark indicates our Solar System. Colours indicate

the number of stable planets: white - three, light gray - two, dark gray - one, black -

zero.

The stability was characterized by the pericentre and apocentre of the planets
and both habitable zones were calculated for a few masses. For the latter the
radius of the star was calculated from its mass using the formula constructed
by Zaninetti (2008).

Stability is investigated by calculating the extrema of the orbital elements
(semi-major axis, eccentricity, pericentre and apocentre distance). The planet is
considered stable if the difference between its maximum and original eccentricity
is less than 0.2. Fig. 1 shows the number of stable inner planets in function
of the masses of the giant planets. Axis x corresponds to the mass M1 while
axis y to the mass M2 (both in units of MJ). White colour means that all
three planets are considered stable according to the above criterion while black
indicates unstable regions (when all three planets are unstable). One can see
the ’+’ mark at coordinates (1, 1/3) which corresponds to one Jupiter and one
Saturn mass, so this is the case of our Solar System. The white region has a
very large extension which means that the orbits of the inner planets are stable
for a wide variety of the pairs of the gas giants.

Stability is not only determined by maximum eccentricities, but close en-
counters were also examined. To characterize the vicinity of neighbouring rocky
planets the difference between the locations of these planets was calculated at
every integration step. From these values the smallest was chosen as a measure
of the encounter (D). To get comparable results for the two planet pairs (Venus
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Figure 2: Stability map by close en-

counters. Colours indicate the number

of stable planet pairs: white - two, gray

- one, black - zero. The ’+’ mark indi-

cates our Solar System.

Figure 3: Stability map made from

the difference between the minimum

pericentre of the outer planet and

the maximum apocentre of the inner

planet. Colours indicate the number of

stable planet pairs.

– Earth and Earth – Mars) these values were normalized by the mean of the
original semi-major axes:

D =
min{encounters}

a1+a2

2

,

where a1 and a2 are the semi-major axes of the closer and the farther planet
from the Sun. The planet pair is considered stable if the ratio of the value
of the encounter and the mean of the original semi-major axes is greater than
0.2. In Fig. 2 the number of stable planet pairs can be seen. White and
black colours indicate the case when both and neither planet pairs are stable,
respectively. To characterize the vicinity of the orbits of neighbouring rocky
planets the difference between the outer planet’s minimum pericentre distance
and the inner planet’s maximum apocentre distance was calculated as well.
The orbits of the planet pairs are considered stable if the ratio of the difference
mentioned above and the mean of original semi-major axes is greater than 0.01
(i.e. the planets come very close to each-other). In Fig. 3 the number of
planet pairs with stable orbits can be seen. This is the worst case that can be
imagined, when the outer and the inner planets are located in their pericentre
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Figure 4: The minimum pericentres and the maximum apocentres of the planets in

function of the mass of the star. Different style of lines indicate different planets.

The vertical spotted line at 0.33 M⊙ is a limit for the stability: for lower mass values

the orbits of the planets are considered unstable and for greater values the orbits are

considered stable.

and apocentre, respectively, and these points and the Sun lie in a line. This
may occur but the most probable case may be somewhere between the cases
depicted in Fig. 2 and Fig. 3. In Fig. 3 white colour indicates that the orbits
are surely stable while in Fig. 2 it indicates that they may be stable. Even
in the worst case the stable (white) region is considerably large, hence Jupiter
could be four times and Saturn could be three times more massive while the
orbits of the inner planets stay stable.

The other problem that was investigated is also related to the stability of the
inner planets but in this case the masses of the gas giants were constants while
the mass of the Sun was altered between 0.1 M⊙ and 10 M⊙. The minimum
pericentre and the maximum apocentre distances of the planets are plotted in
Fig. 4 in function of the mass of the Sun. At low star masses the orbits of the
inner planets can overlap each-other, hence two or even all three planets can
encounter. From 0.33 M⊙ (vertical spotted line on the figure) the orbits of the
planets are considered stable regarding to the above-mentioned criterion (i.e.
the ratio of the value of the encounter and the mean of the original semi-major
axes of Venus and Earth is greater than 0.01).

In order to better understand the feature of habitability the two kinds of
habitable zones were calculated. The results of these investigations are to be
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thoroughly discussed in the next chapter.

3 Habitable zones

The liquid water habitable zone (LW HZ) is a region around a star in which
an Earth-like planet could support liquid water on its surface (Kasting et al. ,
1993). In the equation that describes the boundaries of the LW HZ the Solar
system the Earth is used as a reference for the calculations of other planetary
systems.

An idea from Buccino et al. (2006) was borrowed that there must be both
an inner and an outer boundary for sufficient and necessary UV radiation level
respectively (UV HZ). It is well known that this radiation induces DNA1 damage
(especially UVB and UVC), inhibits photosynthesis (UVA) and causes lesion in
a wide variety of proteins and lipids (Cockell , 1998). The action spectrum B(λ)
is commonly used as a measure of damage, quantifying the injurious effects of the
UV radiation on the biological processes in function of the wavelength (Coohill
, 1991; Horneck , 1995; Cockell , 1998). The action spectrum is determined
by exponential functions given by Modos et al. (1999) who measured the
spectrum by different dosimeters. The results of uracil dosimeter were chosen
for the calculations as uracil is a compound that can be found within the RNA2.

The biological effective spectrum for each value of wavelength can be ob-
tained by multiplying the action spectrum with the incident radiation. To get
a tractable expression for the calculation of the inner boundary, the Earth was
used again as a reference. This way the following inequality was obtained:

d2
inner

d2
⊕

≥

400nm∫
200nm

B(λ) ·R2
∗ ·E∗(λ) dλ

x ·
400nm∫
200nm

B(λ) ·R2
⊙ ·E⊙(λ) dλ

, (1)

where dinner and d⊕ are the distances of the inner boundary and that of the
Earth, R is the radius and E(λ) is the emitted energy of the star and of the Sun
at λ wavelength and x is the multiplicator of the terrestrial UV radiation that
still can be tolerated by DNA, proteins and photosynthetic process. In other

1The deoxyribonucleic acid (DNA) contains the genetic instructions used in the develop-
ment and functioning of all known living organisms.

2The ribonucleic acid (RNA) conveys genetic information and catalyzes important bio-
chemical reactions.
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Figure 5: The extension of the habitable zones in function of the mass of the star.

Black and gray lines indicate the conventional and the UV habitable zone (x = 2, y =

1/2), respectively.

Figure 6: The minimum pericentres and the maximum apocentres of the planets like

in Fig. 4. Between 0.8 and 1.2 M⊙ the extension of the habitable zones can be seen:

black and light blue lines indicate the conventional and the UV habitable zone (x = 2,

y = 1/2), respectively.

words this means that these important compounds can bear even x times of the
UV radiation on Earth.
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On the other hand the UV radiation is an important energy source needed
for chemical synthesis of complex molecules. An expression similar to Eq. (1)
can be formulated to describe the outer boundary of the UV habitable zone:

d2
outer

d2
⊕

≤

400nm∫
200nm

R2
∗ ·E∗(λ) dλ

y ·
400nm∫
200nm

R2
⊙ · E⊙(λ) dλ

, (2)

where douter is the distance of the outer boundary and y is the multiplicator of
the terrestrial UV radiation which is absolutely necessary for chemical reactions.
Obviously y should be set to be less than 1.

The boundaries of habitable zones were calculated for seven values of mass
in the 0.8 – 1.2 M⊙ interval using the definition of the LW HZ given by Kasting
et al. (1993) and equations (1) and (2) for the UV HZ. The values of x and y
are difficult to estimate since different compounds and organisms have different
level of tolerance (Cockell , 1998). For calculating the boundaries of the UV HZ
x = 2 and y = 1/2 were used. The extension of both habitable zones for the
seven masses of the star can be seen in Fig. 5. One can see that the UV HZ
has a similar extension to the conventional HZ and they overlap each-other, but
the UV HZ is located slightly closer to the Sun in the 0.8 – 1.2 M⊙ interval.
It can be seen that the Earth is located in both habitable zones even for lower
and higher masses of the Sun.

For detailed results see Fig. 6, where black and gray colours indicate again
the conventional and the UV (x = 2 and y = 1/2) habitable zones, respectively.
At lower masses of the Sun only Venus, but for higher mass values Earth and
also Mars are located in both HZ.

4 Summary

Stability of the orbits of the rocky planets was investigated for different masses of
the two gas giants. The inner planetary system remained stable for several mass
pairs, hence the fine-tune problem does not prevail. Yet, long-term investigation
would be worthwhile because Batygin & Laughlin (2008) found that Mars can
escape from the Solar System in 800 – 1200 million years.

In the other case when the mass of the Sun was altered, the orbits of the
planets were stable for values greater than 0.33 M⊙. Between 0.8 and 1.2 AU
the extensions of the two habitable zones were calculated and in almost all cases
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the Earth was located in both habitable zones. This result also suggests that
the Solar System is not considered to be unique.
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Abstract

Fifteen years after the first discovery of an extrasolar planet more than 450 are known.

Most of them are massive gas giants like Jupiter due to the detection methods. Nev-

ertheless more and more low-mass planets (Super-Earth) orbiting other stars were

found with the help of various ground based and space missions (e.g. MOST, CoRoT,

Kepler). The main goal of this work was an investigation of the dynamical stability

of potential additional massless planets in nine nearby extrasolar multiplanetary sys-

tems. Although there exists many global stability studies, as well as detailed studies

for some specific systems, up to now the influence of the inclination was not investi-

gated in detail. All these investigations need extensive numerical integrations as well

as sophisticated methods of analysis to study the stability of the orbits. The final

output is a list of all systems indicating in which systems additional planets may be

dynamically stable within the borders of the habitable zone. As well as a detailed

description about the influence of highly inclined orbits on the dynamically stability.

Keywords: dynamical astronomy, multiple exoplanetary systems, habitable zone

1 Introduction

Since the discovery of the first extrasolar planet around a main-sequence star by
Mayor & Queloz (1995) one of the primary goals of astronomers is the search
of further extrasolar planetary systems (EPS). Today more than 450 extrasolar
planets are known, but most of them are massive gas giants (GG) - mostly due
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to the detection methods. Thus in a next step scientists try to find terrestrial
planets orbiting other stars. The detection of terrestrial planets is quite easier
from space, than from the Earth. Therefore a lot of satellite missions, like
MOST, CoRoT or Kepler have been or will be launched within the next years
(for details see Fridlund (2008), ESA’s and NASA’s homepage).

Since most satellite missions can only observe a restricted sample of stars
in a finite time span of operation it is quite important to choose this target
systems very carefully. Up to now a major point of investigation, concerning
extrasolar systems, is their dynamical stability when several planets or host
stars (binaries) are involved. The literature on this type of studies is quite large
and different groups are working on it. In our study we will concentrate on
the dynamical stability of additional planets inside the habitable zone (HZ).
A few EPSs were already investigated with special attention to their HZs (e.g.
Gehman et al. (1996); Noble et al. (2002); Dvorak et al (2004); Schwarz et
al. (2005); Menou & Tabachnik (2003); Schwarz et al. (2007); Érdi & Sándor
(2005)).

The question of the existence of terrestrial planets in extrasolar planetary
systems is a hot topic since the first discovery of planets outside our Solar system.
One of the first studies was done by Jones et al. (2001), who investigated the
stability of hypothetical additional planets in 4 known systems via numerical
integrations (according to them Rho Vrb and 47 Uma could host additional
terrestrial planets, Gliese 876 and Ups And were found to be unlikely to have
additional planets in the HZ). Turnbull & Tarter (2003) applied Hill’s definition
of stability and compiled a catalogue of habitable systems for the SETI target
selection. An extensive investigation was undertaken by Menou & Tabachnik
(2003) concerning the orbital stability of terrestrial planets in all EPSs known at
this time via numerical integrations. About half of the known systems turned
out to possibly host additional planets in the HZs. Furthermore Jones et al.
(2005) examined whether hypothetical terrestrial planets could stay long enough
in the HZ to be able to develop a biosphere. By using the results of a detailed
study of 7 systems as models, half of the investigated 111 systems were found
to possibly host additional terrestrial planets.

The goal of this work is to investigate possible target systems, according
to the Darwin All Sky Target Star Catalogue (DASSC) (see Kaltenegger et al.
(2008)) of upcoming space missions. The DASSC contains about 75 systems
in which at least one extrasolar planet have already been found. Among these
systems we have investigated 9, which have two or more planets. Since such
multiplanetary systems are extensively investigated, we focused our investiga-
tion on the influence of inclined orbits of the test-planets (TP) on the stability
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in the HZ, since the influence of inclined orbits on the stability is not well de-
termined yet. Earlier theoretical studies (Funk et al. , 2009, 2010) have already
shown, that highly inclined orbits (i ≈ 30◦ − 40◦) could - under certain cir-
cumstances - be very low eccentric and long term stable, which is one of the
necessary conditions for habitability.

2 The dynamical model and the methods

In all cases, the motion of the planets will be considered in the framework of
pure Newtonian forces and all the celestial bodies involved will be regarded as
point masses. As a model we choose the restricted n-body problem, consisting
of the star, the known planets and massless test planets within the HZ. For the
TPs we will use a fine grid of initial conditions. We will vary the semi-major
axis covering the complete HZ (∆a = 0.01 or 0.05 AU), but we will also perform
computations with a certain range of initial inclinations (0◦ < i < 60◦, ∆i =
5◦) of the TPs. All initial conditions for the known planets are summarized in
Table 1.

In order to study the dynamical evolution of extrasolar systems, efficient nu-
merical integration methods are necessary. We used the Lie-Series Integration
Method (Hanslmeier & Dvorak , 1984; Lichtenegger , 1984; Eggl & Dvorak ,
2010) which is also capable of dealing with large eccentricities and close encoun-
ters between bodies. To analyze the data we used the maximum eccentricity
method, which is a good tool for such investigations. It verifies the orbital ec-
centricities, which should not be too high to ensure that the distance to the host
star and therefore the radiation on the TP does not change too much.

3 Results

In Fig. 1 we show the results of our calculations for all investigated systems.
On the x-axis we plot the semi-major axes of the test-planets (covering the
HZ) and on the y-axis there inclination. The color code corresponds to the
maximum eccentricity values where red show low and violet high eccentricities.
The name of the corresponding system is shown in the upper left corner of each
plot. To estimate the amount of stable, low eccentric orbits we determined
the percentage of orbits with maximum eccentricities below 0.2 for each system
(results are given in Table 1, last column). Additional we give there also the total
number of integrated orbits and the total amount of orbits with eccentricities
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Figure 1: Maximum eccentricity plots for all investigated systems: Upper left graph:

HD 69830, upper right graph: HD 190360, lower left graph: 55 Cnc, lower right graph:

47 Uma. The inclination is plotted versus the semi-major axis of the test-planets. Red

and orange corresponds to low eccentricity values, while dark blue and violet shows

highly eccentric motion (see color code).
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Table 1: Systems in the DASSC in which more than one planet has been found

(multiple planetary systems). Columns 1 - 5 give the name of the system, informations

about the host star and some orbital elements of the discovered planets. The number

next to the systems name give the reference from which we took the orbital elements

(1: Correia et al. (2010), 2: Mayor et al. (2009), 3: Lovis et al. (2006), 4: Vogt

et al. (2010), 5: Fischer et al. (2008), 6: Pepe et al. (2010), 7: Mayor et al. (2009),

8: Gregory & Fischer (2010)). The last column gives the percentage of orbits with

maximum eccentricities below 0.2 and in brackets the total number of orbits and the

number of stable ones (for a detailed description see section 3).

Name SpType aPlanet ePlanet mPlanet HZ stable HZ?
m [M⊙] [AU] [MJup] [AU] [%]

GJ 876 b M4 V 0.208 0.025 1.935 0.14 - 0.28 0 (195-0)
GJ 876 c 0.32 0.13 0.27 0.560
GJ 876 d1 0.021 0 0.018

GJ 581 b M3 0.04 0 0.049 0.05 - 0.20 0 (208-0)
GJ 581 c 0.31 0.07 0.17 0.017
GJ 581 d 0.22 0.38 0.022
GJ 581 e2 0.03 0 0.006

HD 69830 b K0 V 0.079 0.1 0.033 0.70 - 1.50 63 (221-140)
HD 69830 c 0.86 0.186 0.13 0.038
HD 69830 d3 0.63 0.07 0.058

HD 128311 b K0 V 1.099 0.25 2.180 0.50 - 1.05 0 (156-0)
HD 128311 c4 0.84 1.76 0.17 3.210

55 Cnc b G8 V 0.115 0.014 0.824 0.65 - 1.30 11 (182-20)
55 Cnc c 0.94 0.24 0.086 0.169
55 Cnc d 5.77 0.025 3.835
55 Cnc e 0.038 0.07 0.034
55 Cnc f5 0.781 0.2 0.144

HD 190360 b G6 IV 3.92 0.36 1.502 0.85 - 1.80 1 (260-3)
HD 190360 c4 0.96 0.128 0.01 0.057

HD 160691 b G3 IV-V 1.497 0.128 1.676 1.10 - 2.20 0 (299-0)
HD 160691 c 1.08 0.091 0.172 0.033
HD 160691 d 0.921 0.067 0.522
HD 160691 e6 5.235 0.099 1.814

HD 82943 b G0 1.19 0.219 1.750 1.00 - 2.05 0 (286-0)
HD 82943 c7 1.15 0.746 0.359 2.010

47 Uma b G0 V 2.1 0.032 2.530 1.00 - 2.10 17 (299-51)
47 Uma c 1.06 3.6 0.098 0.540
47 Uma d8 11.6 0.16 1.640
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below 0.2.
According to Table 1 it can be easily seen, that in 5 (GJ 876, GJ 581,

HD 128311, HD 160691, HD 82943) of the investigated systems no additional
planets can be expected within the borders of the HZ, because some of the
known planets move inside or very close to the HZ and therefore will disturb
any further planets. The other 4 show some quite interesting features, which
we will discuss now in more detail:

• The system HD 69830 (Fig. 1 upper left) shows the largest stable region
within the HZ. Furthermore the strong influence of the 1:2 mean motion
resonance with the planet HD 69830 d is visible at 1 AU. Markable is
also the very low-eccentric region around an inclination of approximately
35◦. The arc-like structure in the lower right corner of the graph could
be caused by the influence of a secular resonance. Similar structures have
already been found by Pilat-Lohinger & Funk (2010) in the investigation
of the stable region in the binary γ Cephei.

• In the system HD 190360 (Fig. 1 upper right) the stable region is still
quite large, but the arising eccentricities are already higher (between 0.2
and 0.3). Additional one can see the stabilizing effect of the 4:1 (at 1.56
AU) and the 5:1 (at 1.34 AU) mean motion resonances with HD 190360
b.

• The systems 55 Cnc (Fig. 1 lower left) and 47 Uma (Fig. 1 lower right)
show only very narrow stable regions inside the HZ. Particularly the sys-
tem 55 Cnc has just a very small stable region for low inclinations around
1.1 AU (probably connected to the 5:3 mean motion resonance with the
planet 55 Cnc f). Additional one can see a low eccentric region between 1.2
and 1.3 AU for higher (30◦ ≤ i ≤ 45◦) inclinations. The system 47 Uma
shows a quite stable region between 1.0 and 1.4 AU. Again one can see the
perturbing influence of the 2:1 mean motion resonance with the planet 47
Uma b at 1.32 AU and a very low eccentric feature for an inclination of
30◦.

3.1 The influence of the inclination

In all 4 cases one can find a region with lower eccentricities for high inclinations
(≈ between 30◦ and 40◦). Since this low eccentric region have also been found
in an earlier study by Funk et al. (2010), we investigated this region for two
example systems (47 Uma and HD 190360) in more detail.
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Figure 2: The orbital elements e, i (left graphs) and ω (right graphs) of the systems

47 Uma (upper panels, a = 1.24 AU, i = 30◦) and HD 190360 (lower panels, a = 1.36

AU, i = 35◦). The eccentricity is given in red and the inclination in blue (For a better

visibility we substracted here the initial inclination of 30◦ respectively 35◦).

Therefore we choose some single orbits in both systems. Fig. 2 shows the
orbital elements (e, i, ω) of two of this orbits. In the upper line we give the
results for an orbit in the HZ of the system 47 Uma and in the lower row for the
system HD 190360. The initial conditions of both chosen orbits are summarized
in Table 2.

Table 2: Initial conditions for the two investigated orbits.

System a [AU] e i [◦] ω [◦] Ω [◦] M [◦]
47 Uma 1.24 0 30 0 0 0

HD 190360 1.36 0 35 0 0 0

In Fig. 2 (upper left and lower left graph) we give the eccentricity (red)
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and the inclination (blue, note that we substracted the initial inclination of 30◦

respectively 35◦ for a better visibility) and in the upper right and lower right
graph the argument of periastron (ω). For both orbits one can see, that the
eccentricity and the inclination are coupled and that the argument of periastron
circulates alternately around 90◦ and 270◦. This behaviour, which shows similar
characteristics like orbits in Kozai resonance, leads to very low eccentric long-
term stable orbits for inclinations between approximately 30◦ and 40◦ (a detailed
description in the restricted three body problem can be found in Funk et al.
(2010)). Our study of TPs in multiplanetary systems showed, that this effect
can still lead to low eccentric long-term stable orbits even if further perturbers
(additional planets) are present. The presence of further planets just yields to
a noise like structure in the orbital elements.

4 Conclusions

In the presented study we investigated the dynamical stability in the HZ of
9 multiplanetary systems, which are listed in the DASSC. Because almost all
multiplanetary systems are already quite well investigated we focused our work
on the influence of inclined orbits on the stability. Earlier studies have already
shown, that highly inclined (30◦ < i < 40◦) orbits could lead to low eccentric,
long-term stable orbits.

Our investigations showed, that in 5 of the 9 systems no additional planets
can move on regular orbits. Nevertheless it could be possible, that also in this
systems some stable configurations (e.g. Moons or Trojan planets) might exist.
We focused our further study on the 4 remaining systems, in which we could
found at least some stable orbits. Within this 4 systems two (HD 69830 and
HD 190360) show a quite large stable region in the HZ, while for the other two
(55 Cnc and 47 Uma) just a relatively narrow stable region could be found.
All 4 systems show the previous mentioned low eccentric region for inclinations
between 30◦ and 40◦

Thus in a next step we investigated exemplarily some single orbits in the
systems 47 Uma and HD 190360. This test demonstrated, that orbits in the
highly inclined, low eccentric region showed a coupling between the eccentricity
and the inclination and the argument of periastron circulates alternately around
90◦ and 270◦. Both behaviours have already been found in an earlier study in
the restricted three body problem. So according to our results we can conclude,
that this effect can lead to highly inclined, low eccentric, long-term stable orbits
also if additional perturbers (planets) are present.
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Abstract

The stability of exomoons was studied using theoretical and numerical methods. The

results show that exomoon can exist in a wide range of the parameter space. However,

a hot Jupiter-class planet cannot have any exomoons unless the exomoon has higher

density than the Earth.
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1 Introduction

The first exoplanet (HD 114762b) was discovered in 1989 using a ground-based
spectrometer Latham et al. (1989). It was a so-called hot Jupiter: a Jupiter
mass planet orbiting very close to its host star. Development of the observation
technology allowed to discover several hundred exoplanets. Today 490 exoplan-
ets are listed in The Extrasolar Planets Encyclopaedia (http://exoplanet.eu).

Most of the firstly discovered exoplanetary systems contained only one ex-
oplanet. Using more developed instruments the number of multiple-planet sys-
tems increase. Number of planets in multiple-planet systems also increase. For
example, Gliese 581, which contains four planets (Mayor et al. , 2009) or HD
10180 with seven possible planets (Lovis et al. , 2010). The rise of complexity
will not stop. The next main stage is discovering of the first exomoon.

How can an exomoon be discovered? There is a problem. The mass and
the diameter of exomoons are commonly supposed relatively small, maximum
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Earth-size. The small mass causes small, almost invisible effects on radial ve-
locity curve. The small diameter causes small effects on light curve, moreover
these effects are not periodic, except in resonant systems. These make difficult
to detect an exomoon. But planet and its moon orbit each other which causes
transit timing effects. Detecting these effects seems to be the most hopeful
method to discover exomoons (Kipping , 2009; Szabó et al. , 2006).

There are two variations in the transit. The first is the transit time variation
(TTV). Its amplitude is proportional to the mass of the moon times its semi-
major axis. The second is the transit duration variation (TDV). Its amplitude
is proportional to the mass divided by the square root of the semi-major axis.
Therefore, detecting TTV and TDV enable us to determine separately the mass
of the moon and the semi-major axis of the orbit of the moon (Kipping , 2009).
Current ground-based telescopes could detect an Earth-mass exomoon in the
habitable zone around a Neptune-like exoplanet Kipping (2009).

We can detect exomoons using TTV and TDV methods. The next important
question is where we should look for exomoons. In this paper, we study this
question in a dynamic aspect.

2 Limitations: Roche limit and Hill sphere

In our Solar System the giant planets have the most moons, therefore it seems
to be logical searching for exomoons around giant exoplanets. But if the planet
and its moon orbit too close to the host star, the surface temperature of the
planet and its moon is high. This circumstance restricts the composition of the
moon. It is hard to imagine that there are ’hot icy’ exomoon (hot Europa or
hot Titan) around a hot Jupiter.

On the other hand, if the planet orbits too close to the star, the Roche limit
can extend over the Hill sphere. An astronomical body’s Hill sphere is the region
in which it dominates the attraction of the satellites. The radius of this sphere
can be calculated using the approximation

rHill ≈ a(1 − e) 3

√
mplanet

3mstar
, (1)

where a, e and mplanet are the semi-major axis, eccentricity and mass of the
planet, respectively, and mstar is the mass of the star.

The Roche limit is the distance within which a celestial body, held together
only by its own gravity, will disintegrate due to a second celestial body’s tidal
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Figure 1: Stability map of hypothetical exomoons on a planet mass vs. semi-major

axis of the moon plane. The brighter gradients correspond to stable orbits while dark

colours indicate instability. RHill denotes the Hill radius and RR denotes the Roche

limit at several planet’s orbit semi-major axis. The upper dotted line denotes the main-

motion resonance 1:5 while the lower dotted line indicates the main-motion resonance

1:6. One can see that if the semi-major axis is under 1/9 AU the moon’s orbit can be

just marginally stable. Here a Sun-like star was supposed, and the density of the moon

was supposed 6000 g/cm3

forces exceeding the first body’s gravitational self-attraction. The Roche limit
can be calculated:

RRoche = Rplanet
3

√
2
ρplanet

ρmoon
, (2)
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where Rplanet is the radius of the planet, ρplanet is the density of the planet and
ρmoon is the density of the moon.

One can see, if the Roche limit extends beyond the Hill sphere, exomoons
cannot exist further. We can calculate the semi-major axis of the planet’s orbit,
where the Roche limit and the Hill sphere are equal. It can occur

RR=H ≈ Rmoon
1

1 − eplanet

3

√
48

mstar

mmoon
, (3)

which is equivalent with

RR=H ≈ 3

√
36

π

1

1 − eplanet

mstar

ρmoon
, (4)

where Rmoon is the radius of the moon and mmoon is the mass of the moon.
In the case of the system Gliese 581, RR=H was found to be 7 ×10−3 AU ,

which is much smaller than the smallest semi-major axis in this system. Con-
sequently, all known planets in the system Gliese 581 can have moons. Here we
supposed that the density of the moon is equal to 6000 g/cm3.

Exomoon can exist between the Hill sphere and the Roche limit. However,
the stability of the orbit of the moon is not evident. In the following, we study
the stability of the orbits of the moons using numerical methods.

3 Numerical investigations

A model of the restricted three body problem was used to calculate the stability
of the moons’ orbits. The three bodies orbit in the same plane, and their orbits
are circular. The moon was massless. Our distance unit was the semi-major
axis of the planet, and our mass unit was the mass of the star. Initially all orbits
were circular, and the mean anomalies were zero. The semi-major axis of the
moon ran from 0.0001 to 0.1 and the mass of the planet ran from 1.5× 10−5 to
0.015.

Integrating the equations of motion we used the method of Lie-integration
(Hanslmeier & Dvorak , 1984; Pál & Süli , 2007), and the maximum eccentricity
(Dvorak et al. , 2003; Süli et al., 2005; Nagy et al., 2006) was calculated in order
to characterize the stability.

The main concept of the Lie-integration is to provide the power series coeffi-
cients of the solution in the form of recurrence relations (Hanslmeier & Dvorak



Stability of exomoons 117

, 1984; Pál & Süli , 2007). Although the actual equations forming these recur-
rence relations depend on the problem itself (this makes the Lie-integration not
so widespread, since the derivation of these formulae are not always obvious),
the integrator itself is very effective and there are several possibilities to make
it adaptive. In addition, contrary to other methods, this method is capable to
reach arbitrary precision without the loss of expensive computing time (Pál ,
2010).

The values of maximum eccentricity were plotted on Fig. 1. Black colour
marks the unstable systems and the yellow colour marks the most stable systems.
One can see that exomoons can be stable until half of the Hill sphere. There is
a gap in the stable domain. It is located at the 6:1 main motion resonance.

Calculating the Roche limit, we suppose an Earth-like moon with 6000 g/cm3

density. The Roche limit extends over half of the Hill sphere, when the semi-
major axis of the planet’s orbit is less than 0.1 AU in the case of a Sun-like star.
In this case, no moon can exist around the planet. However, a moon with two
times higher density can exist up to 0.08 AU .

In the case of the Gliese 581 all of its planets are located in the stable region,
consequently all of these planets can have moons.

4 Conclusions

The complexity of the discovered exoplanetary systems increases. The most
complex system contains six planets. The next stage would be the discovering
of an exomoon. Using TTV and TDV methods, an exomoon can be observed.
An important question is the existence of exomoons. The question was studied
using theoretical and numerical methods. Theoretically, a moon can exist if the
Hill sphere is larger than the Roche limit. Numerical investigations show that an
orbit can be stable until the half of the Hill sphere. Comparing the two results,
we pointed out that exomoons can exist in a wide range of the parameter space.
However, a hot Jupiter class planet cannot have any exomoons unless the moon
has extremely high density, more than twice the Earth’s.

References

Dvorak, R., Pilat-Lohinger, E., Funk, B., Freistetter, F. 2003, A& A, 398, L1

Hanslmeier, A., Dvorak, R. 1984, A& A, 132, 203

Kipping, D. M. 2009, MNRAS, 392, 181



118 I. Nagy

Latham, D.W., Stefanik, R.P., Mazeh, T., Mayor, M., Burki, G. 1989, Nature, 339,
38L

Lovis, C., Segransan, D., Mayor, M., Udry, S., Benz, W., et al. 2010, Submitted to
A&A

Mayor, M., Bonfils, X., Forveille, T., Delfosse, X., Udry, S., et al. 2009, A& A, 507,
487
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Abstract

We present the www-tool “ExoStab”, which aims to help verifying the stability of a

terrestrial planet moving in a single star - single giant planet system. ExoStab uses

results of the so-called Exocatalogue (Sándor et al. , 2007) to visualize the dynamical

state of a certain region in a planetary system. Three options are available: (1)

stability of an additional planet (2) stability of the habitable zone (HZ) (3) stability

of an additional planet with respect to the HZ. Given some basic parameters of the

planetary system, ExoStab displays a general stability map for the system and a zoom

of the HZ or of the region where a new small planet is expected. For a brief walk-

through of the functions of ExoStab, the extra-solar planetary systems HD121504,

HD141937, HD145377 and HD48265 have been selected to serve as examples.

Keywords: Extra-solar planetary systems, dynamical stability, terrestrial planets,

habitable zones

1 Introduction

The search of Earth-mass planets is currently a venture of great scientific and
public interest, as it is an important step towards answering the question “Are
we alone in the universe?” Since undertakings of such importance tend to lie
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on the brink of technological feasibility, terrestrial planets are hard to spot,
let alone easy to have their orbital elements determined with sufficient accu-
racy. Therefore it is of utter importance, to make a check on the dynamical
stability of suspected system configurations, as this might help narrowing the
set of possible orbital parameters significantly, or rule out additional planets
altogether. By now, about 500 extra-solar planets have been observed. Their
host systems may be classified as: single-star single-planet systems – single-
star multi-planet systems – planets in double star systems. As most of the
observed extra-solar planetary systems (EPSs) are part of the first group (see
e.g. http://exoplanet.eu), the ExoStab project’s first priority was to set up and
visualize stability conditions for additional small1 planets such configurations
may be hosting. The dynamical stability of planets can be established (1) by
exploring the phase space of each EPS separately (see e.g. Rivera & Lissauer
(2000); Laughlin & Chambers (2002); Menou & Tabachnik (2003); Dvorak
et al. (2003); Barnes & Raymond (2004); Asghari et al. (2004); Érdi et al.
(2004); Raymond et al. (2006); Rivera & Haghighipour (2007); Schwarz et al.
(2007a,b); Pilat-Lohinger (2008) and many others), or (2) by using stability
maps computed in advance for a large set of orbital parameters. Approach (1)
has the disadvantage, that one has to re-explore the phase space of an individual
EPS after each modification of the known planet’s orbital parameters. This is
not necessary when using method (2), since the stability properties of the inves-
tigated EPS can be re-established easily from existing stability maps. Sándor
et al. (2007) compiled such a catalogue of stability maps which is implemented
in ExoStab. Using the planar elliptic restricted three body problem (ERTBP),
Sándor et al. (2007) examined the stability of an additional Earth-like planet
in single-star single-planet systems. The ERTBP describes the motion of a third
body of negligible mass in the gravitational field of a star and a giant planet
(GP), without having any influence on the motion of the two massive bodies.
Test-computations have shown that this model describes quite well the behav-
ior of Earth-mass planets moving in low-eccentric orbits (e < 0.2) around their
host-star. For larger masses of the third body the results of the ERTBP can be
considered as a first approximation. The main advantage of using the ERTBP
is to gain computation time. In order to determine the stable regions for an
additional planet in a single-star single-planet system, it is necessary to study
the orbital motion of the system for a sufficient number of revolutions and for
a large set of orbital parameters. It is obvious that this will be very time con-

1The terms “small body” or “small planet” used in this paper include Earth-sized and even
larger bodies respectively, as long as their mass is negligible compared to the system’s giant
planet’s.
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suming, so that alternative methods and simplification – allowing shorter and
faster computational runs – are desirable. In order to be able to use a very fine
grid for the stability maps, Sándor et al. (2007) applied chaos indicators – the
Relative Lyapunov Indicator (RLI, see Sándor et al. (2000, 2004) and the Fast
Lyapunov Indicator (FLI), Froeschlé (1997)) – in their study. The reason for
integrating as many orbits as possible was the desire for detailed information on
the stability of the so-called “habitable zone” (HZ) of a planetary system. The
term “habitable zone” dates back to studies by Huang (1959, 1960) and denotes
the region around a star where a planet could support carbon based life forms.
There have been various ideas concerning its definition, varying from distinct
surface temperatures (Dole , 1964) to sustaining liquid water for a substantial
time-span. Following Kasting et al. (1993) we take the occurrence of liquid
water as a guideline for the boundaries of the HZ, where the luminosity of the
host star takes the dominant role in its determination.

However, ExoStab is not restricted to visualize the stability of the HZ of a
planetary system only. Additionally, the user may define a region of interest,
which will then be displayed by ExoStab. One can also verify whether a defined
area overlaps partly or fully with the HZ in the respective system. The different
options provided by ExoStab will be introduced in Section 2, where we describe
in brief the implementation of stability maps and the architecture of our Inter-
net tool. In Section 3 we show the application of ExoStab using the single-star
single-planet systems HD121504, HD141937, HD145377 and HD48265 as exam-
ples. Finally we will sum up those cases for which ExoStab cannot be applied.

2 ExoStab

ExoStab is a www based application that is using data of the Exocatalogue’s
(Sándor et al. , 2007) stability maps in order to offer a quick overview of the
dynamic state of additional, small planets in a single-star single-giant-planet
system.

2.1 Stability Maps

The Exocatalogue (Sándor et al. , 2007) is a collection of 552 stability maps,
where the motion of test-planets has been analyzed for 23 different mass-ratios2

(µ) of the GP and the star, their mutual distance being normalized (set to unity).

2µ = m2/(m1 + m2), where m1 and m2 are the masses of the star and the giant planet,
respectively.
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Figure 1: Example for an additional planet in the inner region. The upper panel shows

the stability map of HD48265, created by ExoStab. Blue indicates stable regions, green

to red chaotic ones. The white rectangle delimits the region where the (fictitious) new

planet is expected. The lower panel shows a zoom of this region.

µ has been varied from 1 × 10−4 to 5 × 10−2, and the eccentricity of the GP
has been increased from 0 to 0.5 (= y-axis of the stability maps). Additionally
the starting position of the GP has been modified (for details see Sándor et al.
(2007)). For all mass-ratios µ the inner region (i.e. between the star and the
GP) – where the distance to the star was varied from 0.1 to 0.9 – and the
outer region (i.e. outside the GP) – from 1.1 to 4 – was studied concerning
the stability of motion of the test-planet. To distinguish between stable and
chaotic motion the chaos indicator, RLI (see e.g. Sándor et al. (2000, 2004)
was used for the whole numerical study of the Exocatalogue. The FLI (see e.g.
Froeschlé (1997), as well as the Maximum Eccentricity Method (MEM) (see e.g.
Dvorak et al. (2003)) were used to verify the results of the RLI computations3.

3The three methods have been applied successfully to several exo-planetary systems in
order to determine the dynamical state of motion (see e.g. Érdi et al. (2004); Sándor et al.
(2004); Dvorak et al. (2003); Funk et al. (2009); Pilat-Lohinger et al. (2008a,b) and many
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Figure 2: Example for an additional planet in the outer region. The upper panel

shows the stability map of HD145377, created by ExoStab. For details see Fig. 1.

The results of these three methods were in good agreement, so that the fastest
method (the RLI) was applied for the whole study.

Using the results of the Exocatalogue to investigate an EPS’s stability re-
quires a manual search for the appropriate stability map via calculation and
matching of the corresponding µ values as well as a conversion of the system’s
dimensions into appropriate units. This will now be done by our tool ExoStab.

2.2 Web-Interface of ExoStab

The www-tool ExoStab is available at http://univie.ac.at/adg/exostab and pro-
vides the following options concerning a stability investigation of single-star
single-giant-planet systems:

1. Stability of an additional planet

2. Stability of the habitable zone (HZ)

3. Stability of an additional planet with respect to the HZ

others).
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Some basic information on the system in consideration is needed:

• mass of the host-star (Mstar)

• mass of the known GP (MGP )

• the distance of the GP from its host-star (aGP )

• the GP’s eccentricity (eGP )

• the uncertainty in eccentricity4 (±∆eGP )

Details about the specific input for the different options of ExoStab are discussed
in sections (3.1 - 3.3). Given the appropriate input, ExoStab determines the
system’s mass-ratio, filters the corresponding stability data from the Exocata-
logue (Sándor et al. , 2007), converts the normalized units into system-units,
and plots a stability map. In this stability map, stable regions are represented
in blue color and the chaotic ones vary from green to red. By the term “stable”
we mean, that trajectories of a system are located in an ordered region of the
phase space, while chaotic regions are characterized by exponential divergence
of initially neighbored phase space trajectories.

2.3 ExoStab: Programming and Architecture

ExoStab is implemented in PHP 5.0 and uses a MySQL database in conjunction
with raw data files containing RLI values of the ERTBP for a given set of
parameters as backend. The underlying data model consists of a table called
map which stores the following attributes: mass of star, mass ratio between
the GP and the star(µ), the boundaries of the stability analysis (inner or outer)
concerning the distance of the test particle from the main bodies, and the path to
the corresponding Exocatalogue data file. Within the application, the PHP class
StabilityMap contains all methods used to generate a visual image showing color-
coded RLI values plotted against user defined parameters, a so-called “Stability
Map”. The class also handles an interface to the database to search, store,
delete or update Stability Maps. A short description of the most important
methods contained in that class follows:

• createStabilityMap: Reads the data file corresponding to the user’s require-
ments from the file system, stores the data into a vector and dynamically
creates an image resource using GDlib (graphics library written in C). The

4If no uncertainty in eGP is provided, a standard value of ±0.005 will be applied.
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color of each pixel is calculated in the lookup color method. In order to
make the coloring of stability regions as intuitive as possible, the following
color functions (RGB) have been chosen to represent the RLI-values given
in the original Exocat data:

r = 0.8 − nRLI
g = sin(3.4 ∗ nRLI)
b = nRLI
0 ≤ r, g, b ≤ 1

with nRLI denoting the normalized RLI Value:

nRLI = − log10 RLI
10

The subsequent color-value vector in standard RGB code is then given
by:

(R,G,B) = (r, g, b) · 255

Therefore highly chaotic regions will be represented in red, and stable re-
gions will tend to be blue.

• addAxisToStabilityMap: Draws axis and axis labels in actual system units
for the newly generated image.

• createHabitableZoneImage: Builds the zoom-able Habitable Zone image
based on the search criteria entered by the user.

• drawZone: Draws a rectangle in the specified color onto the current Sta-
bilityMap plot, in order to denote the stability region requested by the
user.

The user interface is generated employing the Smarty template engine for
a clear separation of application code and presentation layer. After the user
entered the required parameters for a search in the ExoStab system, a validity
check will be performed to avoid erroneous input. If all entered parameters
are correct, they are passed and the calculations necessary to determine the
matching Stability Map will be performed. In case that the user’s requests are
not represented in the available data, the application will return a corresponding
error message. With the data from the chosen Stability Map, the methods
described earlier are being executed.
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Mstar MGP aGP eGP

[M⊙] [MJ ] [AU ]
HD 48265 0.93 1.2 1.6 0.24 (± 0.1)
HD 145377 1.12 5.76 0.45 0.307 (± 0.017)

Table 1: Exemplary systems for the stability of an additional planet in a single-

star single-giant-planet system. In the system HD48265 the discovery of small planet

moving in the region between the host-star and the GP is assumed. HD145377 was used

to show the stability of an additional planet moving outside the orbit of the known GP.

M denotes respective masses, a semi-major axis and e eccentricity. The data was

taken from http://exoplanet.eu.

3 Application of ExoStab

3.1 Stability of an additional planet

In order to check for the stability of a newly discovered planet within a system,
that is hosting a GP, some extra information on the additional planet is required:
(i) its semi-major axis with respect to the host-star and (ii) the probable error
in the semi-major axis.

According to the input ExoStab searches the appropriate result from the
Exocatalogue and generates a stability map in coordinates of the EPS in con-
sideration. Fig. 1 shows the system HD48265 as an example, in which a newly
discovered small planet (which is fictitious in this case) moves in the region be-
tween the host-star and the known GP. The necessary input parameters for the
use of ExoStab on HD48265 are given in Table 1.

The stability map for this system drawn from the appropriate result of the
Exocatalogue – using a more intuitive color code5: here blue defines the zone
of stable motion and green to red indicate chaoticity – is shown in the upper
panel of Fig. 1. A decrease of the stable region when increasing the giant
planet’s eccentricity is clearly visible. Additionally, one recognizes vertical green
lines that indicate perturbations within the stable region due to mean motion
resonances (MMRs) with respect to the GP. The white rectangle marks the
region, where the newly discovered (in this case fictitious) planet is expected
according to observations. Its position and size are given by the semi-major
axis of the terrestrial planet (aTP ) and its error (∆aTP ) on the x-axis. The

5In the Exocatalogue stable regions are yellow and orange and red to black colors mark
chaotic motion.



ExoStab 127

GP’s eccentricity (eGP ) and its corresponding error (∆eGP ) define the size of
the rectangle in y-direction. The lower panel of Fig. 1 is a magnification of the
area within this rectangle, which shows the perturbation due to the MMRs more
clearly. In this context we have to point out that the data used to generate these
stability maps contains aligned starting positions of the three celestial bodies
only, with the GP being started from its pericenter in case of eccentric motion.
The Exocatalogue encompasses stability maps for various starting configurations
of every mass-ratio of the star and the GP. Therefore, in case of a possible
dominance of MMRs in the stable region in question, we recommend users
of ExoStab to check on changes of the dynamical behavior for various initial
starting positions at MMRs in the Exocatalogue (the appropriate mass-ratio of
the planetary system for the Exocatalogue will be provided by ExoStab).

In analogy to Fig. 1, Fig. 2 shows the generated stability maps for planetary
system HD145377, where a fictitious planet is expected in the outer region, i.e.
its orbit is beyond the GP’s. The zone of chaotic motion increases again linearly
with the eccentricity of the GP. Close to the border of regular and chaotic motion
we see perturbations due to MMRs as well. The other features are similar to
the first example.

3.2 Stability of the Habitable Zone

This topic requires many assumptions, e.g. on the mass of the planet, its
overall composition, stage of planetary evolution, albedo, even on cloud for-
mation. Experimenting with CO2, N2, H2O atmospheric compositions Kasting
et al. (1993) were able to derive HZ boundaries for spectral types M0,G2 and
F0, and different planetary masses ranging between Mars-sized and about ten
times the mass of the Earth, assuming different water-loss scenarios.

Among those, the most universally applicable - because least dependent on
initial conditions - are:

• the runaway greenhouse-effect setting in after all surface water was vapor-
ized, thus being a delimiter of a possible distance towards the star

• and the “snowball-climate-collapse” that, assuming a maximum green-
house effect, denotes a sudden rise in the planet’s albedo due to glaciation
and CO2 condensation and serves therefore as an outer boundary.

We incorporated these limits, that are valid for a roughly Earth sized planet
around a ZAMS host star (see Table 2) into ExoStab as presets, presenting an
alternative to a fully user-defined HZ. At this point, the authors would like to
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spectral type M0 G2 F0
HZ: inner limit [AU] 0.24 0.84 1.50
HZ: outer limit [AU] 0.47 1.67 3.06

Table 2: Inner and outer limits of the HZ for ZAMS spectral types M0, G2, F0 (Kast-

ing et al. , 1993)

stress, that the HZ for the Solar System has been more rigorously shown to have
a stretch between 0.95 − 1.37[AU ], and a CHZ of 0.95 − 1.15[AU ] (see Kasting
et al. (1993)). Yet, for the sake of model consistency, we chose to implement
the somewhat larger estimates based on runaway and maximum greenhouse
effects. The fact, that there is a substantial number of assumptions involved
in the process of calculating HZs may seem a little unsettling. Yet, as of now,
there still is very little spectroscopic data of Exoplanets available, thus leaving
lots of room for educated speculations. For recent developments in the field of
determining HZs see e.g. Selsis et al. (2007); Lammer et al. (2003, 2007);
Kaltenegger et al. (2007).

Having gracefully defined the borders of the HZ, one should not forget to
check, whether the planet actually stays there long enough to qualify as bio-
compatible. After all, subtle changes in the planet’s orbit or its obliquity may
have massive effects on the solar radiation influx, and therefore the habitability,
as can be seen from the example of Earth’s glacial periods (see e.g. Milankovitch
(1941); Laskar et al. (1993); Berger et al. (2005)). Changes in a planet’s or-
bital elements require perturbing forces, which may arise from a companion
star, other planets or even the galactic potential6. Thus it is essential to inves-
tigate the dynamical properties of any multi-planetary system where one body
is suspected to be within the HZ. As ExoStab is - as of yet - designed to work
specifically for single-star, single-giant-planet systems, we distinguish 3 types of
HZ from a dynamical point of view:
I: the inner HZ stretching between the host-star and the GP (comparable to
the Solar System)
II: the outer HZ which is outside the orbit of the GP, that will be the case for
close-in planets and
III: the giant planet HZ when the GP was discovered in the HZ. However,
the type III HZ cannot be studied via ExoStab.

6As the model for ExoStab was the ERTBP, no perturbation through the galactic potential
has been included
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Mstar MGP aGP eGP spectral
[M⊙] [MJ ] [AU ] type

HD 121504 1 0.89 0.32 0.13 G2V
HD 141937 1 9.7 1.52 0.41 (± 0.01) G2/G3V

Table 3: Exemplary systems for different types of HZ. M denotes respective

masses, a semi-major axis, e numeric eccentricity. The data was acquired from

http://exoplanet.eu.

In order to determine the type of HZ and the dynamical state of orbits in
this region the following parameters have to be known:

• masses of star and GP

• semi-major axis of the GP

• GP’s eccentricity and its corresponding uncertainty

• borders of the HZ or the stellar spectral type

If a predefined stellar spectral type option is chosen, and thus the HZ auto-
matically generated, its borders will be set according to Kasting et al. (1993),
as was explained previously. Systems HD 121504 and HD 141937 will serve as
examples (see Table 3). Fig. 3 shows a stability map of HD121504 generated by
ExoStab using the option of a predefined stellar spectral type of G2. One can
see clearly, that the HZ of this system is of type II and dynamically stable. The
picture was truncated at 1.28 AU, as nothing will interfere with the stability
from there on to the outer border of the HZ at 1.67 AU. A zoom into the region
of the HZ also provided by ExoStab, but not displayed here, since the whole HZ
is stable in our example.

An obvious restriction poses the fact, that using the combination of the
ERTBP for stability analysis and the HZ borders following Kasting et al. (1993)
contains a trade-off. When the planetary masses become much smaller than
Earth’s mass, the stability model will become more reliable, whereas the as-
sumptions on the planets atmosphere will no longer be consistent. Thus, the
optimum configuration concerning the GP and the terrestrial planet would be
somewhere around a Jupiter to Earth mass ratio.
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Figure 3: Stability map for the HD121504 system created by ExoStab. Blue denotes

stable regions and green and red the chaotic zone. The orange rectangle frames the

HZ, which lies in the stable zone, so that HD121504 could host another minor planet

according to the orbital dynamics. As there was no uncertainty in eGP given, an error

of ±0.05 was assumed.

3.3 Stability of an additional planet with respect to the
Habitable Zone

One of the most interesting aspects of the ExoStab application is the option of
checking whether a newly discovered terrestrial planet may be situated within
the system’s HZ, and if that configuration would be a stable one. Being a
combination of the options described in sections 3.1 and 3.2 the input required
encompasses - apart from standard data on the system (Mstar,MGP , aGP , eGP ,
±∆eGP ) - the extent of the HZ (see section 3.2 for details) plus the semi-major
axis (aTP ) and its uncertainty (±∆aTP ) of the suspected, or confirmed minor
planet. Please note, that the stability calculation’s initial conditions were such
as the minor planet was having no eccentricity. Initial eccentricity of the minor
body is currently in progress, and cannot be accounted for until now, as are
different relative starting positions and inclinations. The resulting plots will
depict the planet’s stability domain, the dynamical state of the HZ, as well
as a zoom of their common overlap, should there be one. As an example,
we assumed a fictitious minor planet in the system HD141937 (see Table 3)
situated at aTP = 0.7 with an uncertainty of ±∆aTP = 0.2. Fig. 4 shows,
that, even though the minor planet may theoretically be situated within the
HZ, dynamically it is more likely that its orbit resides at the border of the
influence zone of the GP. Though, given the overall dynamical situation in the
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Figure 4: Stability Map of a type I HZ around HD141937 (orange rectangle) plus

a fictitious planet at aMP = 0.7 ± 0.2AU (white rectangle). In this case, there is

a possibility that the planet resides within the HZ, but the overlapping area is highly

chaotic (red).

plot, one would recommend to revise this fictitious observation.

3.4 Caveats

Even if ExoStab is applicable to most of the EPS, there are some restrictions
that are summarized as follows:

• Since the model used for ExoStab is the RTBP, the mass of the additional
planet should remain negligible compared to the system’s GP.

• ExoStab stability data contains cases only, in which all three bodies have
been started aligned. This affects the terrestrial planet’s behavior around
MMRs, therefore we recommend, that users of ExoStab refer to the Exo-
catalogue, if the system in question exhibits strong influences of MMRs.

• At the moment, ExoStab provides dynamical states for nearly circular
initial conditions of the terrestrial planet only. Also the mutual inclination
of the planet to the plane of the star and the GP should not be excessive.
A study about eccentric and inclined motion of the additional planet is
still in progress.
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• ExoStab should not be used to investigate so-called “Hot Jupiter” systems,
as physical properties of these systems, that have not been included in the
Exocatalogue’s models, become non-negligible (e.g. influence of radiation,
gas-drag, etc.).

• The borders of the preset for the HZ of G2 stars have been chosen accord-
ing to runaway and maximum greenhouse effects, and does not correspond
to the commonly accepted values for the Solar System.

• From the viewpoint of dynamics, only two cases, namely the GP moving
outside or inside the HZ, can be studied via ExoStab. Unfortunately, the
data of the Exocatalogue does not contain stability maps of the GP orbiting
within the HZ, therefore a possible stable Trojan motion can, up to now,
not be accounted for. A detailed investigation on this topic was performed
by Schwarz (see e.g. Schwarz et al. (2007a,b)) and some of the results
can be obtained via the “catalogue of fictitious trojan planets in extrasolar
systems” (http://www.univie.ac.at/adg/Research/exotro/exotro.html)

4 Conclusion

We introduced the world wide web application ExoStab, that provides a quick
view on the dynamical behavior of additional, terrestrial planets in single-star
single-giant-planet systems. Given a small set of parameters (like the masses
of the host-star and the GP, semi-major axis and eccentricity of the GP) of
the extra-solar planetary system a stability map can be generated, that denotes
stable and chaotic regions inside and outside the GP’s orbit. Since we know
that there is a special interest in the stability of Earth-mass planets, especially
if they are discovered in the HZ – where such a planet could support carbon
based life forms – our tool ExoStab provides 3 types of stability checks: (i) a
newly discovered, additional (Earth-mass) planet lies within a stable region; (ii)
the presumed HZ of its host-star permits stable planetary motion and (iii) the
new planet orbits within the presumed HZ. The resulting stability maps offer a
detailed picture of the dynamical properties of the terrestrial planet in the user
specified regions of interest. Further investigations, where the initial eccentricity
of the terrestrial body, or relative inclinations between the two planets as well
as different relative starting positions of the two planets are in progress and will
be implemented as soon as possible.
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Abstract

This paper is devoted to the stability of possible, inclined Trojan planets in double star

systems. We investigated the size of the stable region around the Lagrangian point L4

by using numerical integrations, depending on the mass ratio and the eccentricity of

the secondary star. The dynamical model we used was the spatial elliptic restricted

three body problem. We created a catalogue of initial conditions where a Trojan planet

can be stable. These results could be useful for future observations and help to detect

such objects.

Keywords: Trojan planets, celestial mechanics, double stars.

1 Introduction

Today we know of more than 490 extra solar planets, but only 40 are in binary
systems (see http://exoplanet.eu by Jean Schneider at ). In future we will find
many more planets in multiple stellar environments, because of the fact that
seventy percent of all stars in the solar neighbourhood are members of binary
or multiple-systems (67 % for G-M stars, Mayor et al. (2001), ∼ 75% for O-B
stars, Mason et al. (2001); Verschueren et al. (1996)).

When we speak of dynamical stability of planets in binaries, we categorize
motion as follows:
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Figure 1: Initial condition diagram (semi-major axis versus mean anomaly) for the

CR3BP for the mass ratio µ = 0.033, with different initial velocities: vT (upper graph)

and vKep (lower graph). Dark grey marks stable orbits (low emax) and white denotes

escapers.

1. S-Type: The planet orbits one of the two stars.

2. P-Type: The planet maintains an orbit around both stars.

3. T-Type: A planet may move close to the equilibrium points L4 and L5.

As an example, our Solar System hosts a substantial asteroid population around
L4/L5 of the Sun-Jupiter system. That means that the Jupiter’s Trojans are
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Figure 2: Size of the stable region around L4 in the CR3BP. The upper line shows the

calculations for vT whereas the lower line shows the one with vKep. The integrations

were done for 106 years.

Table 1: Orbital elements of two binary systems, with a mass ratio µ smaller than

1/25.

Name Sp. type mass [Msun] µ a [AU] e
51θ Vir A A1lvs 2.98 0.26 – –
51θ Vir B ? 0.08 0.26 9.91 ?
53ξ Uma A G0V 1.1 0.35 – –
53ξ Uma B ? 0.04 0.35 15.99 0.39

moving either close to 60◦ ahead of or 60◦ trailing Jupiter sharing an almost
identical semi-major axis.

In this paper we are investigating T-Type motion in binary star systems.
Motion near the Lagrangian points (L4 and L5) only remains stable for a mass
ratio µ < 1/25 of the primary bodies. In our last article (Schwarz et al. ,
2009a,b) we found, that there are 6 double stars with mass ratios below this
stability limit, according to the catalogue of physical multiple stars (Tokovinin
, 1996). Out of the 6 binaries 2 systems are well known binary systems with
orbital elements, given in Table 1. Four candidates are registered without known
orbital elements: HD223099 (µ = 0.03), SB 152 (µ = 0.035), SB 667 (µ = 0.03),
and SB 831 (µ = 0.03).

Theoretical studies suggest that Trojans are a frequent by-product of planet
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formation and evolution processes. Hydrodynamic simulations of a proto-pla-
netary disk have been undertaken by Laughlin & Chambers (2002); Chiang &
Lithwick (2005); Beaugé et al. (2007); Ford & Gaudi (2006); Ford & Holman
(2007) examined the sensitivity of transit timing observations for detecting Tro-
jan companions of extra solar planets. They demonstrate that this method of-
fers the potential to detect terrestrial-mass Trojans using existing ground-based
observatories.

2 Numerical Setup

As shown in Schwarz et al. (2005) the restricted three-body problem (R3BP)
provides valid approximations for up to Neptune mass Trojan planets, and is
therefore the dynamical model of choice for our investigations. In order to
perform a stability analysis we used the orbital escape of the Trojan planet on
the one hand (planetary eccentricity emax = 1) and the Lyapunov Characteristic
Indicator (LCI) on the other hand. LCI denote the finite time approximations
of the maximal Lyapunov Exponent (LCE).

For our test calculations we used N-body integrators contained in the lie-
package (e.g. Hanslmeier & Dvorak (1985); Eggl & Dvorak (2010)) and our own
Bulirsch-Stoer-based code that solves the equations of motion in the binary’s
co-rotating system.

3 Initial Conditions

A common simplification of the Trojan planet’s initial conditions consists of the
initialization on the secondary’s orbit, starting the particle at the Lagrangian
point without altering its initial, specific Keplerian velocity. This approach is
valid for small mass ratios µ = msec/(mprim +msec), but it will yield consid-
erable deviations from the analytical solutions of the circular R3BP (CR3BP)
for µ as large as in the binary systems under investigation (see Fig. 1). The
reason for this behavior lies in the trivial fact that velocities on Keplerian orbits
are proportional to the square-root of the sum of the masses of the orbited pri-
mary and the orbiting particle. The Lagrangian equilibrium solutions - being
at rest in the binary’s co-moving frame - rotate with the secondaries’ Keplerian
velocity, which will be different from the Trojan’s. A Trojan’s purely Keplerian
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Figure 3: Maximum eccentricity plots for upper two graphs: µ = 0.001 (left) and

µ = 0.005 (right); mid-upper two graphs: µ = 0.008 (left) and 0.01 (right); mid-

lower two graphs: µ = 0.013 (left) and 0.015 (right); lowest graph: µ = 0.020.

In all plots the initial inclination of the test-planets is plotted versus their eccentricity.

Black and violet mark stable orbits (low eccentricity) and yellow denotes escapers. The

integrations were done for 104 system revolutions.
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initial velocities (vKep) and the correctly scaled ones (vT ) are related via:

vT =

√
mprim +msec

mprim +mT
vKep (1)

where mprim,msec and mT denote the masses of primary, secondary and Trojan
respectively.

3.1 Different results for different initial velocities

In order to demonstrate the implications of an oversimplification of initial con-
ditions, we created stability maps of the CR3BP and analyzed the size of the
stability region around the Lagrangian point L4. We varied the semi-major
axis a between 0.9 and 1.1 and the mean anomaly M between 0◦ and 180◦

with the appropriate grid of initial conditions, with a step size of ∆a = 0.0025
and ∆M = 2◦. We started the Trojan planet in the Lagrangian point L4

(MTrojan = 60◦, eTrojan = esecondary = 0) and integrated for 103 periods. The
mass ratio µ was varied between 0.02 and 0.045 with a step size of ∆µ = 0.0005.
During our test computations with the initial vKep, we found that the stable
region shifted from the M = 60◦, a = 1AU domain. An analytical determina-
tion of the location of the altered zero-force equilibrium point was performed
using the equations of motion of the CR3BP including the Trojan’s initial, rel-
ative velocity. Numerical results are in agreement with the analytically derived
solutions and are presented in Fig. 1 for a mass ratio of µ = 0.033. In addition
we calculated the percentage of stable orbits in the stability maps - as shown in
Fig. 2 - where we compare the two cases: purely Keplerian initial velocities and
the correctly scaled ones. We can conclude, that carelessness concerning initial
velocities does not only cause a shift of the stable region, but alters its critical
mass ratio, too (see Fig. 2).

4 Results of the 3 dimensional case

Observations in the Solar System have shown, that Trojan asteroids can have
very large inclinations. Therefore it is essential to study inclined orbits in the
case of Trojan planets. We started the test-planets in the Lagrangian point1 at
a normalized distance of 1 AU from the central star, and constructed a grid of

1Trojan and gas giant share the same eccentricity
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Figure 4: Cuts related to the emax plots (Fig. 3) for the following mass ratios:

µ = 0.005, µ = 0.008, µ = 0.010 and µ = 0.013. The left graph show the cut for an

initial inclination of 25◦ and the right one for 40◦. The integrations were done for 106

system revolutions.

initial conditions. The initial eccentricity of the Trojan e was set equal to the
binary’s ebin. We varied the eccentricity 0 < e < 0.9 (step ∆e = 0.01) and the
inclination 0◦ < i < 90◦ (step ∆i = 2◦) of the Trojan planet. The mass ratio
µ was altered from 0.001 to 0.02 with a stepping of ∆µ = 0.001. This study is
an extension and correction of the former work by Funk et al. (2009) who were
using oversimplified initial conditions as described earlier. We extended our
investigation using a larger range of initial conditions: eccentricity (extension
from e = 0.3 to e = 0.9) and µ (extension from µ = 0.015 to µ = 0.020). The
different results due to initial velocities vT and vKep are clearly visible for mass
ratios down to µ = 0.005 (Fig. 3 upper left graph). Our investigations showed
that for a mass ratio of µ = 0.001 Trojans are stable up to binary-eccentricities
of e = 0.77.

The mass ratio µ = 0.005 shows a finger-like unstable structure, which ap-
pears in the range of 10◦ < i < 37◦ and e > 0.2 of the stability map (Fig. 3
upper right graph). For µ = 0.008 we see an increase of this unstable island
to smaller eccentricities (e ≥ 0.2). In the result of µ = 0.010 the unstable,
finger-like structure is shifted towards the large unstable region for i > 60◦.

For mass ratios of µ ≥ 0.013 we are close to the limit separating brown
dwarfs from gas giants. This border is defined via the minimum mass required
to cause substantial fusion (approximately 13 Jupiter masses, e.g. Basri &
Brown (2006)). When we look at the results for µ = 0.013, the unstable region
is growing in size and shifted towards smaller eccentricities, and the finger-like
structure disappears in the large unstable zone at i < 60◦. For the mass ratio
µ = 0.015 the stable region shrinks below an initial eccentricity of e = 0.3.
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We also checked the long term validity of our results by choosing cuts in
parameter space (for i = 25◦ Fig. 4 left graph and i = 40◦ Fig. 4 right graph),
where we increased integration time up to 106 system revolutions. These test
calculations showed, that there is no large difference between an integration
time of 104 and 106 system years. The origin of the finger-like structure is
unclear, but we suppose that secondary resonances play a major role (see also
Érdi et al. (2007a,b); Robutel & Gabern (2006)). In contrast to the simulations
with initial eccentricities (e = ebin), the circular cases did not show escapes up
to initial inclinations i = 60◦ for all investigated mass ratios, shown in Fig. 3
(calculation time 106 years). Further investigations have to be done to identify
the definitive origin of the finger-like structure.
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Chiang, E. I., & Lithwick, Y. 2005, ApJ, 628, 520.

Eggl, S., Dvorak, R., 2010, LNP, 790, 431
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Áron Süli
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Abstract

Models of planetary formation are developed based on the observation of our Solar

System, star-forming regions and circumstellar disks and on an the ever increasing

number of exoplanetary systems. The solar nebula theory and the planetesimal hy-

pothesis are discussed. The latter is found to provide a viable theory of the growth of

the terrestrial planets, the cores of the giant planets, and the smaller bodies present in

the Solar System. The formation of solid bodies of planetary size should be a common

event, at least around young stars which do not have binary companions orbiting at

planetary distances. Stochastic impacts of large bodies provide sufficient angular mo-

mentum to produce the obliquities of the planets. The masses and bulk compositions

of the planets can be understood in a gross sense as resulting from planetary growth

within a disk whose temperature and surface density decreased with distance from the

growing sun.

Keywords: planet formation – solar system

1 Introduction

The origin of the Solar System is one of the most intriguing problem of science.
For more than two centuries, scientific ideas about how the planets came to be
were based almost entirely upon theory. There were few constraints on such
speculations: astronomers knew that stars rotated and that the Sun’s planet
are in almost circular orbits. But beyond these meager knowledge, those who
speculated on the Solar System’s origin had nowhere to turn except to their
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own fantasy of how a gigantic amount of cosmic matter might have organized
itself into a Sun and planetary system. Astronomers, using the laws of physics
as then understood, offered variations on the same answer: the Sun and the
planets were born form a rotating disk of cosmic gas and dust. The flattened
form of the disk constrained the planets that formed from it to have orbits lying
in more or less the same plane, all moving in the same direction the disk had
turned. This hypothetical disk, the solar nebula, is where any discussion of the
origin of our Solar System must begin.

The idea of the solar nebula was first proposed by Emanuel Swedenborg
(1734), and further developed in the course of the 18th century by the Prussian
philosopher and physicist Immanuel Kant (1755). Although his treatment of
the problem was only qualitative, its precepts were remarkably similar to those
considered fundamental today. Kant pictured an early universe evenly filled
with thin gas. He thought such a configuration would have been gravitationally
unstable, so it must have drawn itself together into many large dense clumps
of gas. Kant correctly assumed that these clumps of gas were rotating and also
recognized the importance of this rotation: as they shrank the rotation spun
them out into flattened disks. From one of these disks was our Solar System
forged.

The first indirect evidence for disks came from studies of T Tauri stars,
which are similar in mass to our Sun but very young - roughly a million years
old. In the 1980s astronomers realized that about a third of T Tauri stars
have ”infrared excesses”, that is, the amount of infrared radiation they emit is
too great to be consistent with their output at visible wavelengths. This can be
understood if the stars in question are surrounded by halos of dust kept warm by
short-wavelength radiation from the stars; the dust then reradiates the energy
it receives at longer (infrared and radio) wavelengths. However, the strong
infrared signatures implied the presence of enough dust, if distributed evenly
in a sphere, to completely block our view of such a star at visible wavelengths.
Only if the dust were arranged in a flattened disk, tilted somewhat to our line
of sight, could we expect to see the star itself.

The observational evidence of disks around young stars that were first di-
rectly observed in the mid 1980s, initially in the form of dusty debris disks such
as those seen around Vega (Aumann et al. , 1984) and β Pic (Smith & Terrile
, 1984), and later in the form of the gas-rich disks that we now term “proto-
planetary” (Sargent & Beckwith , 1987). Advances in telescope technology in
the intervening two decades has resulted in the detection, both directly and
indirectly, of many more disks around young stars, and these protoplanetary
disks, or proplyds, are now understood to be commonplace. The Hubble Space
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Figure 1: Spectral energy distribution of the dust around a solar-type star.

Figure 2: Examples of “proplyds” (protoplanetary disks) observed by Hubble Space

Telescope in the Orion Nebula. At the center of each is a young, energetic T Tauri

star. The disks surrounding them are two to eight times the diameter of our Solar

System.

Telescope could capture such disks at visible wavelengths in the Orion nebula,
an active stellar forming region (Fig. 1). The Orion disks are far larger than
the Solar System, and the available material in them are more than enough for
planetary systems. The host stars of these disks are very young, at most a few
million years old.

Today we realize that Kant, by and large, got it right, and the widely ac-
cepted model, the Solar Nebula Disk Model, also known as the Planetesimal
Hypothesis roots in the same fundamentals as Kant’s theory. The development
of the Solar Nebula Disk Model (hereafter SNDM) has interwoven a variety
of scientific disciplines including astronomy, physics, geology, and planetary sci-
ence. Since the dawn of the space age in the 1950s and the discovery of proplyds
and extrasolar planets in the 1990s, the models have been both challenged and
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refined to account for new observations.

The first unambiguous discovery of an exoplanet around a main sequence
star 51 Peg was announced on October 6, 1995 by Mayor & Queloz (1995).
In order to better understand the physical processes involved in the formation
of planetary system it is inevitable to observe and study a large sample of
extrasolar system. By now this is exactly the situation: since the detection
of the planetary companion of 51 Peg the number of exosystems has exceeded
300 providing several constraints and a striking variety of planetary systems
for scientist to formulate a general theory for planet formation. On the other
hand theoretical studies of planetary formation have become another front line
research in the field of astronomy.

2 Stages of planet formation

The process of planetary growth is generally divided for convenience into sev-
eral distinct stages. The currently accepted sequence of planetary formation is
outlined in the following sections.

2.1 Early stage: from dust to planetesimals

In what follows I shortly discuss how dust grains grow from sub-µm sizes to ∼
km-size bodies. As the temperature T decreases various chemical compounds
condense into microscopic grains (≤ 10−6 m). Preexisting condensates from the
interstellar matter may also be present. Growth of particles then proceeds by
collision.

Observations of dusty disks around T-Tauri stars imply that ≥ 1% of the
condensed matter remain in dust phase, which may indicate that collision of
particles do not by all means lead to agglomeration of the solid particles. Al-
ternatively it may result from the disruptive collisions between planetesimals,
when large amount of dust are ejected.

The motions of small grains in a proplyd are strongly influenced by the gas.
The coupling between the gas and the solids with diameter ≤ 1 cm is well
described by Epstein’s drag law, whereas larger bodies are subject to Stokes
drag (Adachi et al. , 1976).

The gaseous component of the proplyd is partially supported against the
stellar gravity by a pressure gradient in the radial direction, so gas rotates
around the star slower than the local Keplerian velocity.
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Larger particles (≥ 10 cm) moving at nearly Keplerian speed thus encounter
a headwind, which removes part of their angular momentum and causes them
to spiral towards the star. Inward drift is greatest for mid-sized particles, which
have large surface area to mass ratios and orbit with approximately Keplerian
velocities. This inward migration effect is hardly relevant for (i) small particles
(≤ 1 mm), which are so strongly coupled to the gas that the headwind they
experience is very weak and for (ii) large bodies (≥ 1 km) whose angular mo-
mentum is much larger than that of the gas they collide during one revolution.
Peak rates for inward drift occur for particles that collide with roughly their
own mass of gas in one orbital period. These bodies have radius approximately
1 meter and drift in the terrestrial region of the solar nebula at a rate of up
to ∼ 106 km/yr, i.e. a body with mass in the range between 102 g and 108 g
has a decay time at 1 AU as short as 102 or 103 years! Thus, the material that
survives to form the planets must complete the transition from cm size to km
size rather quickly.

This problem is the ”crux” of the SNDM: How to form planetesimals re-
mains the biggest challenge for modern research in planet formation, and many
of the details of this problem still elude us. More recently, several authors have
proposed different mechanisms (e.g. aggregation of dust can occur within tur-
bulent eddies) that may provide solutions to the meter-size problem. Once this
meter-size barrier is passed, continued growth via binary accretion leads to the
formation the so called planetesimals. In what follows it is supposed that at the
end of the early stage a large number of planetesimals orbit the Sun. The set-
tling time of the disk dictates the formation timescale for planetesimals. Most
models predict a few 104 years.

2.2 Middle stage: from planetesimals to protoplanets

The star’s gravity is the dominant force upon planetesimals. The largest per-
turbation to the orbit of a planetesimal is the gravitational interaction with
other solid bodies. The most important non-gravitational forces experienced by
a planetesimal is the mutual inelastic collision (kinetic energy is not conserved)
and gas drag. Gravitational torques may lead to significant orbital evolution of
bodies larger than a typical planetesimal.

2.2.1 Runaway growth

While gas is still present in the disk eccentricities and inclinations of planetesi-
mals are damped due to aerodynamic gas drag. This counteracts the net effect
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of collision and scattering and as a result velocities remain low. The simplest
accretion picture was first quantified by Safronov (1969). Consider a sphere of
radius R moving with velocity v through a uniform medium of density ρ. Then
the accretion rate is

dm

dt
= πR2ρv. (1)

This rate is the geometrical accretion limit, and ṁ ∼ m2/3. However, the
gravity of the body plays an important rôle by gravitationally enhancing the
cross-section of the body. This effect was first recognized by Safronov: bodies
that are larger than the typical size can accelerate their growth rate due to grav-
itational focusing (i.e. gravitationally enhancing the cross-section) (Safronov ,
1969; Greeberg et al. , 1978):

dM

dt
= πR2

(
1 +

(
vesc
vrand

)2
)
, (2)

where R is the body’s physical radius, vesc = k
√

2M/R is the escape velocity
from the body’s surface, and vrand represents the velocity dispersion of planetes-
imals. The second term in the parentheses represent the gravitational enhance-
ment of the accretion cross-section. The quantity 2θ = vesc/vrand is known as
the Safronov number, and 1+2θ is referred to as the gravitational enhancement
factor.

The runaway growth phenomenon has been seen in numerical simulations
(cf. ?Kokubo & Ida (2000)). Their results show that the most massive bodies
have significantly smaller eccentricities than the remainder of the population,
presumably they have been damped by dynamical friction (equipartition of the
kinetic energy). With runaway accretion the timescale for growth reduce to
≤ 105 years. The simulations indicate that the typical separation between
protoplanets formed in this phase is ≈ 4 − 10 mutual Hill-radii.

The mass of the protoplanets depends on the assumption of planetesimal
sizes. In a swarm of m = 1023 − 1024g (radius 200 - 400 km) planetesimals,
Ida & Makino (1992a,b) calculated ∼ 10−3 − 10−2M⊕, where the mass of the
Earth, M⊕ ≈ 6 × 1027g. Considering a perhaps more realistic population of
planetesimals with mass ≈ 1019g, for the protoplanets ∼ 10−5 − 10−6M⊕ are
obtained. Thus, although runaway accretion is much more rapid than other
modes of accretion (see oligarchic growth below), it ceases long before proto-
planets approaching an Earth mass can form.
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2.2.2 Oligarchic growth

As it was discussed above the initial growth mode in a disk of accreting planetes-
imals is runaway growth, where the mass doubling time for the largest bodies
is the shortest. Runaway growth allows relatively short formation times and it
is followed by a more lengthy phase of oligarchic growth mode when the largest
bodies are still orders of magnitude below an Earth mass. The timescale of
oligarchic growth dominates over that of runaway growth.

The oligarchic growth phase begins when the dynamical friction of the plan-
etesimals is insufficient to keep the eccentricities and inclinations of the pro-
toplanets very low. In such a configuration protoplanets are not sufficiently
isolated from one another to be dynamically stable for a long period of time.
Mutual gravitational scattering eventually pump up the relative velocities of
the protoplanets which decreases the collisional cross-sections and hence in-
creases the accumulation time. During the oligarchic growth the protoplanets
clear their feeding zone by either agglomerating the remaining planetesimals or
ejecting them out of the zone.

The final mass of the protoplanets can be approximated by the mass avail-
able within the feeding zone. For the case of a protoplanet on a circular orbit the
standard theory of the restricted three body problem places an upper bound on
the initial semi-major axis separation bH , that may lead to collision. It is con-
venient to introduce Hill-scaled units for planetesimal with mass m, eccentricity
e, inclination i, separation in semi-major axis a from the protoplanet:

eH ≡ ea

h
, iH ≡ ia

h
, bH ≡ ∆a

h
, (3)

where h = (m/3M∗)
1/3a is the Hill sphere of the protoplanet and M∗ is the

mass of the star in solar units. Neglecting gas drag and interactions with other
planetesimals, a planetesimal whose orbital elements satisfy the inequality:

3

4
b2H − e2H − i2H ≥ 9 (4)

cannot enter the protoplanet’s Hill sphere. For eH = 0 and iH = 0 this in-
equality gives bH ≥ 2

√
3 ≈ 3.46. Planetesimals on circular orbit and with zero

inclination with initial separation bH less than 2
√

3 will suffer a close encounter
and eventually merge with the protoplanet. Thus the accretion zone, often re-
ferred to as the feeding zone embedded in a disk of low random velocity extends
over the region

bH ≤ B, (5)
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where B depends on the magnitude of other perturbations on the planetesimals,
and typically is ∼ 3.5 − 4 in a quiescent disk.

Assuming that a protoplanet at astrocentric distance r has accreted all the
solid material within an annulus of width 2∆r is

M =

∫ r−∆r

r−∆r

2πr′σ(r′)dr′ ≈ 4πr∆rσ(r). (6)

Setting ∆r = Bh = Br(m/3M∗)
1/3, one obtains from Eq. (5) the isolation

mass to which a protoplanet during the oligarchic growth phase may grow:

M =

(
4πBr2σ

)3/2

(3M∗)
1/2

= 2.1 × 10−3

(
Br2σ

2
√

3

)(
M⊙

M∗

)
M⊕ (7)

For example, assuming B = 2
√

3, a minimum mass solar nebula with σ = 10
gcm−2 at 1 AU implies protoplanet isolation at 0.066M⊕; whereas σ = 3 gcm−2

at 5 AU implies protoplanet isolation at 1.36 M⊕.
Therefore at the end of this phase only such protoplanets are formed, whose

masses are a few percent of the Earth mass in the terrestrial region, and roughly
an Earth mass at Jupiter. One possibility to get larger mass is to start with
more than the minimum mass solar nebula. In this case the excess material
must be clear away. This can easily happen in the vicinity of Jupiter as that
planet is large enough to eject the bodies, but in the terrestrial region, where
material resides deep in the potential well of the Sun, it is not evident how the
extra material would be lost.

2.3 Late stage: from protoplanets to terrestrial planets

At the end of the middle stage we have a regular distribution in a of the proto-
planets with roughly constant mass. There is also a swarm of smaller planetesi-
mals, which may or may not be relevant. At the beginning of the late stage a.k.a
giant impact phase, most of the mass is contained in protoplanets, so dynamical
friction is no longer playing an important rôle in their orbital evolution. Even if
protoplanets form in circular orbits, mutual gravitational perturbations among
several bodies can induce eccentricities of ∼ 0.01, which is sufficient to enable
their orbits to cross so the bodies can suffer close encounters. These are the
initial conditions for the last stage of planet formation.

In this stage there are to few bodies to use statistical methods, therefore
to track the evolution of the system one must use direct N -body integration
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methods. Once the protoplanets have perturbed one another into crossing or-
bits, their subsequent orbital evolution is determined by close encounters and
collisions. Almost all simulations performed to date assume that the collisions
are inelastic and all the material in the colliding bodies end up in the resulting
body of the collision. However, giant collisions between protoplanets may not
always be accretionary: high-speed or off center collisions can actually erode
the body.

For dynamical environments typical of late-stage accretion models Agnor &
Asphaug (2004) estimated that more than half of all collisions between same-
sized planetary embryos do not result in accumulation into a larger body. While
their initial results are limited to a single mass ratio, they suggest that non-
accretionary collisions are typical during the end of terrestrial planet formation.
The collisional and dynamical accretion of planets are coupled. For example,
the reduced accretion efficiency appears to lengthen the timescale of planet
formation by a factor of 2 or more, relative to perfect mergers. The production
of significant erosional debris, however, might alter the dynamical environment
in ways that remain largely unexplored - for instance, damping the system to
lower relative velocities.

Benz et al. (1988) simulated giant collision between a proto-Mercury and
a planet one-sixth its size. According to the results it would lead to the loss of
most of the silicate mantle of Mercury and thereby account for its anomalously
high density. Other simulations in the field lend support to the giant impact
hypothesis for the origin of Earth’s Moon; during the final stage of accumulation,
an Earth-size planet is typically happen to collide with several objects as large
as the Moon and often as massive as Mars. The obliquities of the rotation axes
of the planets also provide evidence of the giant impacts during this epoch.

This stage of formation was pioneered by Chambers & Wetherill (1998), who
simulated the terrestrial-planet formation using N -body integrations, in three
dimensions, of disks of up to 56 initially isolated, nearly coplanar planetary em-
bryos, plus Jupiter and Saturn. Gravitational perturbations between embryos
until their orbits become crossing, allowing collisions to occur. Further inter-
actions produce large-amplitude oscillations in e and the i and prevent objects
from becoming re-isolated during the simulations. The largest objects tend to
maintain smaller e and i than low-mass bodies, suggesting some equipartition of
random orbital energy, but accretion proceeds by orderly growth. The simula-
tions typically produce two large planets interior to 2 AU, whose time-averaged
e and i are significantly larger than Earth and Venus. The accretion rate falls off
rapidly with heliocentric distance, and embryos in the “Mars zone” (1.2 < a < 2
AU) are usually scattered inward and accreted by “Earth” or “Venus,” or scat-



154 Á. Süli

tered outward and removed by resonances, before they can accrete one another.
The asteroid belt (a > 2 AU) is efficiently cleared as objects scatter one another
into resonances, where they are lost via encounters with Jupiter or collisions
with the Sun, leaving, at most, one surviving object. Accretional evolution is
complete after 3× 108 years in all simulations that include Jupiter and Saturn.
The number and spacing of the final planets, in the simulations, is determined
by the embryos’ eccentricities, and the amplitude of secular oscillations in e,
prior to the last few collision events.

A large number of simulations were conducted in recent years exploring a
wide range of initial conditions. In general the end result of all these simulations
is the formation a few (2 - 5) terrestrial planets on a timescale of about 108 years.
An important feature is that planetesimal orbits execute a random walk in semi-
major axis due to successive gravitational encounters. The resulting widespread
mixing of material throughout the terrestrial planet region greatly diminishes
any chemical gradients that may have existed in the early stages of planetesimal
formation.

The above described planet formation mechanism is unlikely to be as purely
sequential as layed out. Grain growth and even the accretion of large plan-
etesimals may well begin during the epoch when a proplyd is still accreting
and redistributing material. Given that the theories of each of these epochs
are still rather primitive, a sequential study of each stage is probably adequate.
However, to the extent that planetary growth depends on, e.g. the initial size
distribution of planetesimals, one must recognize that various processes cur-
rently being treated as separate events occur simultaneously and may effect one
another.

3 Conclusions

The planetesimal hypothesis provides a viable theory of the growth of the terres-
trial planets, the cores of the giant planets, and the smaller bodies in the Solar
System. The formation of giant planets, which contains significant amounts
of H2 and He, requires a rapid growth of planetary cores so that gravitational
trapping of gas can occur prior to the dispersal of the gas from the proplyd.

The summarized theory of planet formation provides excellent or acceptable
explanations of the causes of several of the 14 observed Solar System properties
listed in the Introduction, but less complete or satisfactory for several others.
Many issues remain to be solved: the details of planetesimal formation are still
poorly understand, although recent results suggest that several process including
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turbulence and migration of meter-sized bodies acting simultaneously might be
the solution. The details and consequences of giant impacts are not well known,
in terms of the fate of collisional debris and compositional changes induced by
the impacts. Moreover, a number of the effects of the external parameters could
be much more decisive in the formation process than we think it now.

An important challenge in the field of observation is that of directly imaging
a planet orbiting a solar-type star. The development of a new generation of
adaptive-optics systems, promises a great improvement in this field. All these
elements will permit us to better understand the mechanisms leading to the
formation of planetary systems like our own, and will thus represent an impor-
tant step toward the search for life in the Universe. Once earth-like planets
orbiting in the habitable zone are known, the search for life in these systems
will undoubtedly follow. In the very near future, humanity has to prepare itself
to find out that the whole Universe may be teeming with life.
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Abstract

The Gliese 581 planetary system is known to harbour four planets: a Neptune-sized

planet, two super-Earths, and a small rocky planet. Using the maximum eccentricity

and the minimum distance between the planets, we examine the long-term dynamical

stability of this 4-planet system and then, adding a 1-10 MEarth test planet within 0.3

AU, we look for possible stable regions for another planet. The present 4-planet system,

over the time span of the 10 Myr integration, does not remain entirely stable. The

eccentricity of planet e increases significantly and its stability could only be secured in

mean motion resonance with planet b. The addition of a fifth planet, independently

of its mass, introduces instability to the system. As predicted by the Titius-Bode

law and a similar but revised formula by Ragnarsson (1995), another planetary body

would be expected between planet c and d or beyond them. The instability in these

regions, however, is caused by the highly eccentric orbits of the two super-Earths.

Keywords: Gliese 581, planetary systems, N-body simulations

1 Introduction

In the last few years four exoplanets were discovered around Gliese 5811, all
of them based on precise radial velocity (RV) measurements with the HARPS

1A recent combination of the HARPS data set with measurements of the HIRES spec-
trograph at the Keck Observatory recorded over an 11 year time period led to the discovery
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vacuum spectrograph at La Silla Observatory in Chile (Bonfils et al., 2005;
Udry et al., 2007; Mayor et al., 2009). The observations indicate a 5.37-day
hot-Neptune (b), a 12.9-day and a 67-day super-Earth planet (c and d) and
a 3.15-day small rocky planet previously announced by Bonfils et al. (2005);
Udry et al. (2007); Mayor et al. (2009). See their parameters in Table 2. The
dynamical stability of the Gliese 581 planetary system has been the subject of
recent stability investigations and was found to be stable (Beust et al., 2008;
Mayor et al., 2009).

Due the inherent uncertainty in the RV measurements and that the contri-
bution of a yet unseen planet to the RV signal might be just below the actual
measurement uncertainty, we address the possible existence of a fifth planet.
Using the maximum eccentricity and the minimum distance between the plan-
ets as indicators of dynamical stability, first we investigate the stability of the
known 4-planet system, then we add a hypothetical lower mass planet inside
the 0.3 AU region from the star, and varying the mass of the test planet, we
look for potentially stable configurations.

1.1 Titius-Bode law

In addition to the stability investigations, we also calculated the distances of all
planets from the star in the Gliese 581 planetary system based on the Titius-
Bode law and a revised formula by Ragnarsson (1995). Although no physi-
cally relevant explanation of these empirical formulas has been found, they may
nevertheless serve as a tool to predict not yet discovered planetary bodies in
exoplanetary systems.

The Titius-Bode law (TBL) states that the semi-major axis of the plan-
ets are given, in astronomical units, by the formula an = 0.4 + 0.3 · 2n, n =
−∞, 0, 1, 2, . . . Adjusted to the Gliese 581 planetary system it can be written:

an = 0.03 + 0.01 · 2n, n = −∞, 0, 1, 2, . . . (1)

Ragnarsson’s new empirical formula (RF) is more accurate in describing the
Solar System, and is based on the symmetry in the logarithms of the semi-major
axes around Jupiter. Assuming that the hot Neptune in the Gliese 581 system
may play the same dominating role as Jupiter in our Solar System, RF can be
written:

of two more planets (f and g) in the Gliese 581 planetary system (Vogt et al., 2010). The
discovery of Gliese 581g was soon questioned by the HARPS team claiming that their latest
report including an additional 60 RV measurements can not confirm the presence of a planet
in an orbit of 37 days (Pepe et al., 2010).
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am = ab

[
(5/2)

2/3 |m|
]sign(m)

, m = n− 1, n = 1, 2, . . . (2)

where ab is the semi-major axis of Gliese 581b, parameter m = n − 1 is the
”jovicentric” planet number and m is negative for the inner planets (in this case
for planet e).

Table 1: Distances of the planets in the Gliese 581 planetary system based on the

Titius-Bode law and Ragnarsson’s formula (Ragnarsson, 1995).

Planet a [AU ] aTBL [AU ] aRF [AU ]
e 0.03 n = −∞ 0.03 m = −1 0.0217
b 0.04 n = 0 0.04 m = 0 0.04

n = 1 0.05 –
c 0.07 n = 2 0.07 m = 1 0.0737

n = 3 0.11 m = 2 0.1474
n = 4 0.19 –

d 0.22 n = 5 0.35 m = 3 0.221

The distances of the planets calculated from Eq.(1) and Eq.(2) are listed in
Table 1. Neither of these formulas seem to give back the actual values perfectly,
although both work for three out of the four planets relatively well, in fact,
it is remarkable how well RF fits for planet c and d. The TBL predicts three
more possible planets, but it is unlikely that at 0.05 AU, very close to the most
massive planet, another stable orbit would exist. From the other two predicted
planets between planet c and d, the planet at 0.11 AU is indicated by RF as
well. Because of this agreement and the overall better fit of RF, the region at
0.14 AU seems to be worth investigating further2.

2 Model parameters and methods

The 4-planet model of Gliese 581 and the initial orbital elements were taken from
Mayor et al. (2009) and are explained in Table 2. Unknown orbital elements
were set to zero, and we made the assumptions of coplanarity and sin i = 1 (an
edge-on system). For the mass of Gliese 581 we took 0.31M⊙. The integrations
were performed using Bulirsch-Stoer integrator, which accurately yields orbital

2Gliese 581g, the (yet unconfirmed) sixth planet discovered by Vogt et al. (2010) is orbiting
at a distance of 0.146 AU from its parent star with an orbital period of 37 days.
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positions. In case of the long-term stability investigation, the 4-planet system
was numerically integrated over 10 000 000 Pd, where Pd is the orbital period
of planet d. Instead of fixed time steps, adaptive step-size control was applied:
the integrations stopped when the integrator could not reduce the estimated
relative error of the next step below a certain accuracy (10−10) in case of the
smallest permitted time step, which was set to 1/2000 of the orbital period of
the innermost planet.

Table 2: Parameters of the Gliese 581 planetary system, after Mayor et al. (2009).

P : orbital period, mmin = m sin i, minimum mass, where i is the orbital inclination,

a: semi-major axis, e: eccentricity, ω: argument of pericentre.

Planet P [days] mmin [MEarth] a [AU ] e ω [deg]
e 3.15 1.94 0.03 0 0
b 5.36 15.65 0.041 0.02 0
c 12.9 5.36 0.073 0.17 −110
d 66.8 7.09 0.22 0.38 −33

For an indication of stability we used the maximum eccentricity method
(e.g. Dvorak (1993); Süli et al. (2005)). The behaviour of eccentricity shows
the probability of orbital crossings and close encounters of two planets, therefore
its maximum value provides information about the stability of the orbit. More-
over, close encounters were also taken into account through the determination
of the distances between the adjacent planets and the relations between their
pericentre and apocentre distances. These values indicate whether collision or
very close encounter happens, which may significantly alter the orbits of the
planets or may also eventually lead to the ejection of the less massive body.

With the addition of the fifth planet, we confined our study area between
0.01 and 0.3 AU. The semi-major axis of the hypothetical planet in this range
was varied with steps of 0.01 AU and its mass from 0 to 10 Earth-masses with
steps of 0.25, which resulted in altogether 1271 configurations. The integrations
were carried out over 50 000 Pd, but we introduced another constraint here: the
integrations stopped when the test planet approached the planets within 5% of
the mean of their semi-major axes.
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3 Results

3.1 Long-term stability (4-planet system)

In Table 3 we list the maximum evolution range of the semi-major axis, the max-
imum eccentricity, the minimum pericentre and maximum apocentre distances
of the four planets from the 10 000 000 Pd integration. To further characterize
the long-term stability, the distance between the positions of the planets was
calculated at every integration step and from these values the smallest was cho-
sen as a measure of the encounter (D). To describe the vicinity of the adjacent
planets’ orbits, for each planet pair, the difference between the minimum peri-
centre of the outer planet and the maximum apocentre of the inner planet was
calculated as well (K). To get comparable results these values were normalized
by the mean of the original semi-major axes. D, K and the normalized values
are listed in Table 4.

Table 3: Variation ranges for some orbital elements of the Gliese 581 system over the

10 million Pd integration. amax: maximum of the semi-major axis, amin: minimum of

the semi-major axis, emax: maximum eccentricity, rmin: minimum pericentre distance,

rmax: maximum apocentre distance.

Planet amax [AU ] amin [AU ] emax rmin [AU ] rmax [AU ]
e 0.0313 0.0299 0.2503 0.0231 0.0388
b 0.0408 0.0405 0.1214 0.0357 0.0457
c 0.0731 0.0726 0.1840 0.0595 0.0864
d 0.2200 0.2194 0.3821 0.1357 0.3036

Table 4: Calculated values characterizing the close encounters of the adjacent planets.

See text for details.

Planet pair D K D
a1+a2

2

K
a1+a2

2

e – b 0.0081 -0.0031 0.2290 -0.0865
b – c 0.0212 0.0139 0.3712 0.2439
c – d 0.0512 0.0493 0.3492 0.3362

Stability of the 4-planet system is examined via the following criteria as
defined in Dobos et al. (2010). First, the orbit of a planet is considered stable
if the difference between its maximum and initial eccentricity is less than 0.2.
This criterion is fulfilled for all planets except planet e, for which the difference
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is slightly more, 0.2203. The second stability condition regards the stability of
the orbits of the adjacent planets. A planet pair is considered stable if the ratio
of D and the mean of the original semi-major axes (see Table 4 third column) is
greater than 0.2. All planet pairs meet this criterion, meaning that there is no
such close encounter, which would affect the stability of the orbits. The third
criterion also concerns planet pairs, but applies a stronger restriction: the orbits
of the planet pairs are considered stable if the the ratio of K and the mean of
the original semi-major axes is greater than 0.01. For the e – b planet pair this
ratio is less than zero, because the minimum of the semi-major axis of planet b
is less than the maximum of the semi-major axis of planet e. This questions the
long-term stability of the two inner planets. The other two planet pairs fulfill
this condition.

3.2 Stability with an additional planet (5-planet system)

The aim of this investigation was to find regions of possible orbital stability
for an additional planet within 0.3 AU. Before analyzing the results of the
integrations, because of the applied constraint, we checked the duration of these
integrations. This is plotted using a logarithmic scale on Fig.1a as a function
of the mass and the semi-major axis of the test planet. It is clearly visible that
only a small number of the configurations (for given mass and semi-major axis)
could be integrated over the whole time period, this is indicated by the white
end of the color scale. Most of the integrations were stopped before (as shown
by grey and black), either because the integrator could only have ensured the
permitted error with a too small time step, or because a close encounter occured.
The orbit of the test planet, independently of its mass, quickly became unstable
near the inner planets, planet e and b; it survived only in a few cases with higher
masses, mostly between 0.10 and 0.14 AU, but an extensive stable region did
not appear. This means that the lifetime of the 5-planet system rarely reaches
50000 Pd and it is unstable.

To check whether this instability is an artifact showing up because of the
applied constraint or simply a characteristic of these 5-planet systems, we made
two other test runs: one without the additional restriction in the integration
concerning the close encounters and the other one with setting the initial eccen-
tricity to zero for all of the planets. Leaving out the additional constraint did
not increase the number of the stable configurations significantly. The duration
of the integrations for the system with initial e = 0 is plotted on Fig.1b. In this
case the integrations reached 50000 Pd for most of the configurations: broad
stable regions exist for the fifth planet almost independently of its mass, except
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Figure 1: Duration of the integrations for the different configurations of the 5-planet

system, (a) showing the nominal case with e 6= 0 and (b) the test run with initial

e = 0 for all of the planets. The greyscale indicates the lifetime of the different 5-

planet systems as a function of the mass and semi-major axis of the fifth planet.

White illustrates configurations which survived the longest, while for grey and black

the integrations stopped soon after the start.

only the very close vicinity of the original four planets. These proved that the
instability is indeed the characteristic of the 5-planet system.

4 Discussion

The long-term stability investigation with the present 4-planet model showed
that the Gliese 581 planetary system does not remain entirely stable over the
10 Myr time period: the eccentricity of planet e increases considerably, and it
can cross the orbit of planet b. This can lead to collision or ejection of the lower
mass planet e. Mayor et al. (2009) found that the 4-planet system is only stable
for sufficiently high inclinations (i ≥ 40◦), otherwise planet e is ejected after a
few Myr. Our results show that assuming i = 90◦ and a coplanar system, which
means the use of minimum masses and consequently even the overestimation
of stability, stability of the system could only be ensured if the lowest mass
innermost planet would orbit the star in mean motion resonance with planet b.

With the addition of a 1 − 10 MEarth planet inside 0.3 AU, the system
appears to be extremely unstable and only configurations with a few a, m
pairs sporadically remained stable, even during the relatively short time of the
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integration. Based on the distribution of the planets from their star and as
supported by the TBL and RF as well, the possible existence of a fifth planet
would be expected between planet c and d or beyond them. The lack of more
stable orbits in these regions, however, might be a consequence of the highly
eccentric orbits of the two outer super-Earth planets. The apocentre distance of
planet c is rmax = 0.0819AU , while the pericentre distance of planet d is rmin =
0.1364AU , hence there is only a narrow region between them where another
planetary body could longer occupy a stable orbit. The possibility of another
planet is not ruled out completely, but it must have special orbital elements or it
must be in resonance to avoid collision or ejection by the adjacent planets. This
naturally raises the question whether we see the Gliese 581 planetary system in
its original state – although this would require planetary formation and evolution
theories to support the existence of such highly eccentric orbits – or we see a
perturbed planetary system, presumably after distortion caused by the gravity
of a passing star nearby.

Eccentricities also might be lower for planet c and d, since planet searches
in RV data yield only a best approximate solution by fitting a number of plan-
ets and some of their assumed orbital elements. The best fitted solution may
improve with the incorporation of newly acquired data: the present 4-planet
solution for the Gliese 581 RV data may not describe the planetary system per-
fectly and the orbital elements of the planets may be different from the presently
known values3.
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Abstract

In this study we show a complex structure of the Hamiltonian phase space taking into

account the phenomena of chaotic scattering, i.e. when the system is open. This ex-

tended investigation gives us a qualitative overview about the invariant chaotic saddle

which is responsible for finite time irregular behavior. Numerical results confirm that

an invariant fractal set can be found in the phase space of these systems. Moreover,

due to the mixed phase space structure two different part of the chaotic saddle can

be identified. The first, where the number of non-escaping trajectories decreases ex-

ponentially, corresponds to the hyperbolic part of the saddle. The other one includes

the trajectories that may come close to the KAM islands, number of such orbits follow

power law decay.

Keywords: Escape times, chaotic scattering, stable and unstable manifolds, invariant

saddle

1 Introduction

Since the middle of 1980s when it was shown (Kantz & Grassberger , 1985) that
the chaotic transients play an important role in various dynamical systems, a
huge number of studies appeared dealing with this phenomenon. Nowadays it
is an established fact that the manifestation of transient effects in conserva-
tive systems is the chaotic scattering (Ott & Tél, 1993). Escapes from open
Hamiltonian systems, stickiness trajectories around the last KAM tori (Dvorak
, 1993), stable and unstable manifolds are common concepts in studies related
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to conservative mechanics (Ott , 2002; Contopoulos et al. , 2002). One can
also find many papers in celestial mechanics dealing with finite time chaotic
behavior, however, only few of them mention the chaotic saddle which plays a
crucial role in the transient chaos.

In this paper we have investigated three well-known simple dynamical sys-
tems. The first one, the Sitnikov problem (Sitnikov , 1960), is an excited system
with a time dependent potential. Strictly speaking this configuration yields the
“exact” scattering process, since the test particle can come far from binaries
plane along a straight line and it interacts with the scatterer objects close to
their common barycenter. This interaction almost results in an escape after
several oscillations around the barycenter. Nevertheless, it can happen that the
test particle being trapped and does not leave the system anymore but in this
case the initial conditions of the motion have to be on the stable manifold of
the chaotic saddle (Kovács & Érdi, 2009), we will see this in latter sections.
The other two systems are described by autonomous Hamiltonian; the planar
Hill problem (Simó & Stuchi , 2000) and the motion of an individual star in
a potential close to the center of a galaxy (Contopoulos & Efstathiou , 2004).
In these systems escape can occur when the energy is above the escape energy.
This means that the test particle can leave the system sooner or later. One can
imagine this process as a “half scattering” similar to the ionization of an atom
(Uzer et al. , 2006). Our aim is to show, using numerical methods, that the
scattering processes in conservative systems are related to chaotic saddles and
their manifolds.

2 The model systems

First we give the Hamiltonian of the Sitnikov problem which describes the mo-
tion of a mass-less particle along a straight line. This line is perpendicular to
the primaries plane and cross it at the common barycenter of the primaries.
The primaries are massive bodies with equal masses gravitating each other on
Keplerian ellipses. The Hamiltonian reads

H(z, ż, t) =
ż2

2
− 2√

z2 + r(t)2
, (1)

where z and ż are the distance to the barycenter and the velocity of test par-
ticle, respectively, r(t) is the relative distance between the primaries. If the
eccentricity is zero r(t) is constant and the motion is integrable. Allowing ec-
centric orbits various type of chaotic motion appear in the system. The phase
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space structure of the Sitnikov problem is well-mapped (Dvorak , 1993). In
the present work we have investigated the scattering of the test particle. As it
is mentioned in the previous section, the third body can oscillate around the
barycenter of the primaries. These oscillations can be periodic, quasi-periodic,
or aperiodic corresponding to the elliptic fixed points, KAM curves, and chaotic
bands in the phase plane, respectively. If we chose arbitrary initial conditions
outside the stable islands, the mass-less body comes close to the primaries plane,
makes some oscillations and then escapes to infinity. The motion during these
oscillations is aperiodic, i.e. chaotic for finite time, after leaving the system the
complex motion ceases.

Our second example is the planar Hill problem. In this particular case
of the restricted three-body problem we use Hill’s variables, a transformation
which allows us to investigate the neighborhood of secondary planet in detail.
The Levi-Civita regularization brings the Hamiltonian into the form of two
uncoupled harmonic oscillators perturbed by the Coriolis force and the Sun
action (Simó & Stuchi , 2000).

H(q1, q2, q̇1, q̇2) =
1

2
(q̇21 + q̇22 + q21 + q22) − 6(q21 + q22)(q

2
1 − q22)

2. (2)

Here qi are the regularized coordinates and q̇i are the conjugated momenta. At
lower energies one can distinguish two different type of motion, the direct Moon-
like motion and the retrograde lunar motion. When the energy increases, the
region corresponding to direct motion becomes more and more chaotic. Beyond
a critical value of energy zero velocity curves open and trajectories from previous
chaotic domain can escape. A detailed study of dynamics and center manifolds
can be found in Simó & Stuchi (2000).

Escapes have been studied by Contopoulos & Efstathiou (2004), for the
Hamiltonian:

H(x, y, px, py) =
1

2
(p2

x + p2
y +A2

x +B2
y) − ǫxy2, (3)

with A = ω2
1 = 1.6, B = ω2

2 = 0.9, and ǫ = 0.08. Eq. (3) describes a simple
approximation of the central region of a galaxy. As it is expected, regular and
chaotic orbits also exist below the escape energy. When the energy goes just
beyond the escape value almost all chaotic orbits escape to infinity. The higher
the energy the larger the escape region becomes and beyond some critical value
of energy the islands of stability disappear.
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Figure 1: (a) Escape times in Sitnikov problem. The brighter the color the higher is

the escape time. Filamentary structure of the stable manifold is well-visible far from

the stability islands. The preselected box is −10 < z < 10. Time units on colorbar

mean the revolutions of primaries. (b) The stable manifold of the chaotic saddle in

Sitnikov problem. Trajectories that leave the system backward in time trace out the

stable manifold in domain −8 < z < 8. The two relatively large white islands around

z ± 1.8 correspond to the 2:1 resonance. The eccentricity is e = 0.2.

3 Chaotic scattering

In this Section we determine the chaotic saddle and its manifolds numerically.
The chaotic saddle can be considered as the union of all the hyperbolic periodic
orbits on the saddle and of all the homoclinic and heteroclinic points formed
among their manifold (for the precise definition see Tél & Gruiz (2006)). One
will see that we can identify the fractal set in phase space which is responsible
for finite time chaotic behavior in all three systems. We have not focused on
the quantitative description of saddles (escape rate, average chaotic lifetime,
Ljapunov exponents), we give just a qualitative picture about the structure of
these objects.

In hyperbolic systems where transversality holds, i.e. the manifolds of the hy-
perbolic periodic orbits do not touch each other or cross near tangently, the
number of non-escaping trajectories from a predefined region of the phase space
decreases exponentially. However, this is not the case in systems with mixed
phase space. In such systems the exponential decrease also exists far from the
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Figure 2: (a) The stable (red) and the unstable (green) manifold of the chaotic sad-

dle in Sitnikov problem. Corresponding to the definition, the chaotic saddle (blue)

can be considered as a common part of its manifolds. (b) Chaotic saddle determined

numerically. The accordance is perfect. The eccentricity is e = 0.57.
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Figure 3: Poincaré sections of Hill’s problem. (a) Above the escape energy, the

retrograde motion is more resistant against the perturbation than the direct Moon-like

motion (later located previously around q ≈ 0.2 and q̇ = 0). Stable (green) and unstable

(red) manifolds of the saddle can be identified in the escape region. (b) The chaotic

saddle has the double fractal structure away from the edge of regular motion. The

regularized Jacobian constant is h = 0.057.

stable regions but in the vicinity of the regular islands a power-law decay can
be observed (Cristadoro & Ketzmerick , 2008). This different behavior is due
to the Cantori situated around the stable islands. The very dense debris of
destroyed KAM tori can be found in this region. It is clear that these objects
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are responsible for the stickiness effect in conservative systems (Efthymiopoulos
et al. , 1999). Additionally, we notice that Cantori belong to the chaotic saddle.

In fact the chaotic saddle has two different parts. One of them, the hyper-
bolic part, can be found far away from regular islands. Its fractal dimension is
between 1 and 2 corresponding to the partial dimensions along the stable and
unstable manifolds (Hsu et al. , 1988). Trajectories that escape from the system
after a short time evolve chaotically on this part of the set. The other part of
the saddle, the non-hyperbolic one, is located close around the quasi-periodic
islands. The structure of this part of the saddle is very similar to chaotic bands
located between the invariant curves around a stable periodic orbit. Both are
formed from the remnants of destroyed KAM tori. However the difference is
that trajectories wandering chaotically outside around the last KAM torus can
escape after some time to infinity, contrary to those which are located between
two invariant tori and cannot cross them, therefore cannot escape from the
system although the motion is chaotic forever.
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Figure 4: (a) Invariant curves around the chaotic domain at the center of a galaxy.

Red crosses represents 2000 trajectories slightly before leaving the system. Each cross is

located on the unstable manifold (green) of the chaotic saddle. (b) The stable manifold

surrounded by KAM curves (blue). One can identify the large escape times (green line)

“above” the stable manifold (red curve). Parameters can be found in the text.
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Figure 5: Poincaré surfaces of section of Hamiltonian (3) for Jacobian constant

h = 29. (a) The stable and the unstable manifold of the chaotic saddle. (b) Numerically

determined chaotic set.

3.1 Escape times, invariant manifolds, and chaotic saddles

First we demonstrate the relationship between escape times and the stable man-
ifold. Let us consider the Sitnikov problem. We can make a contour plot
that contains initial conditions and corresponding escape times (Fig. 1). Ini-
tial conditions have been chosen from a preselected domain of the phase space
(−10 < z < 10). If the test particle leaves this area, the calculation stops and
the actual time is stored, we regard this time as the escape time. In fact, a
trajectory escapes when its energy becomes larger than zero. In Fig. 1a the
bright regions correspond to higher escape times. Obviously, the inner part of
the phase portrait contains invariant curves, trajectories originating from these
initial conditions never escape the system. Trajectories in chaotic band cannot
cross the KAM tori neither inward, nor outward, therefore, these initial con-
ditions are also colored with brighter colors. Surprisingly, bright filaments can
be found far from inner region. For instance at z = 8 we cannot identify any
KAM curves but there are several trajectories remaining in the system up to
1000 revolution of primaries.

The escaping trajectories actually leave the system along the unstable man-
ifold of the hyperbolic periodic orbits (Contopoulos & Patsis , 2006). We know
that the union of the unstable manifolds form the unstable manifold of the sad-
dle. Hence integrating backward in time, due to the conservative nature of the
dynamics, one can have trajectories that follow the stable manifold of the saddle
and escape from the system when t < 0. We plotted in Fig. 1b the escaping
trajectories slightly before they leave the preselected region backward in time.
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Note that the correspondence with Fig. 1a is not perfect because the stable
(and also the unstable) manifold does not contain the regular islands. Cor-
rectly, the escape times trace out the stable manifold and the regular domains
in phase space, however, trajectories located in ordered region are not involved
in scattering process.

Determining the stable and unstable manifolds numerically is not a hard
task. It is worth having first the manifolds because then we can identify much
more faster the chaotic saddle. A quite convenient procedure to compute the
saddle can be found in Tél & Gruiz (2006). We are not going into the details
only give a brief overview of the required steps:

1. (a) We have to find the suitable initial conditions covering a part of the
saddle. One can be sure being on the saddle when the number of non-
escaping trajectories decreases exponentially, in this case the dynamics is
hyperbolic.

2. (b) The average lifetime of chaos can be determined from the escape rate.
The escape rate is the slope of the straight line fitted to the half logarithmic
plot of the exponential decay.

3. (c) Choosing the integration time (t0) 3-4 times the average lifetime of
chaos should be enough to construct the saddle.

If the first step comes true, this necessarily implies that the initial conditions
were in the vicinity of the stable manifold of the saddle. Simultaneously, the
end-points must be close to the unstable manifold of the saddle. The mid-points
of these trajectories (t ≈ t0/2) are then certainly in the vicinity of the saddle.

After the stable and unstable manifolds are identified, we are able to choose
initial conditions from the region where they cross each other. Accordingly to
the definition, the intersections of the manifolds are good starting points to
determine the entire saddle numerically, as it is shown below.

Fig. 2a and 2b show the invariant manifolds and the saddle in the Sitnikov
problem. One can compare the intersection points on the panel (a) with the
fractal structure plotted on panel (b). The accordance is well-visible. The
islands of 2:1 resonance are marked on panel (b). When we magnify the object
close to the regular islands we can see that the saddle becomes denser than in
outer regions. This phenomena is related to the power-law decay of trajectories
and also to the stickiness of Cantori surrounding the islands (Efthymiopoulos
et al. , 1999; Kovács & Érdi, 2009).

In Hill’s problem for Jacobian larger than the escape value, the zero velocity
curves open up and trajectories can leave the system. Fig. 3a shows KAM



Chaos in open Hamiltonian systems 177

tori and the escape region with the manifolds. Where the stable and unstable
manifold intersect transversely a clear double fractal structure has been traced
out (Fig. 3b). This domain corresponds to purely hyperbolic dynamics far from
regular islands. Close to resonances the manifolds are tangent, the exponential
decay of trajectories is not valid anymore, and the saddle becomes a dense fractal
set with fractal dimension close to 2. Therefore, this area around the stability
islands contains sticky trajectories.

Finally we present how escapes are organized in system (3). Beyond the
escaping energy in system (3) trajectories escape the system from the central
region. Fig. 4a shows the invariant KAM curves and 2000 trajectories (crosses)
which intersect the Poincaré surface before leaving. One can realize that the
pall-mall points on the surface of section lie on the unstable manifold. The
unstable manifold has been determined by 200000 initial conditions. Fig. 4b
shows the stable manifold on (x, px) Poincaré sections and the escape times
along the line px = 0. The results are in good agreement with the Sitnikov
problem, i.e. the higher escape times belong to the stable manifold.

The stable and unstable manifolds are plotted in Fig. 5a. At the edge of the
stable and unstable manifolds KAM tori are situated (not plotted here, see Fig.
4). As it is expected the saddle has a dense structure in this region. However,
the inner part of the scattering region provides the hyperbolic part of the saddle
(Fig. 5b).

4 Summary

In this paper we presented three simple models of celestial mechanics. It was
shown that for certain energies escape can occur in the systems. Trajectories
joining in the scattering process can escape the system sooner or later. Our
numerical simulations show that there is a well-defined fractal set in the phase
space which is responsible for irregular scattering dynamics. Qualitative inves-
tigations support the conception that chaotic saddle has two distinguished part,
the hyperbolic and the non-hyperbolic one. The later is related to Cantori lo-
cated at the borders of stable islands. In other words, the non-hyperbolic part is
responsible for sticky orbits and it is denser than the hyperbolic part of saddle.
The models were investigated for some particular parameter values by choosing
other parameter values the shape of the manifolds and the saddle may change
significantly, but in general chaotic scattering appears and in this case chaotic
saddle can be identified in the phase space as the backbone of finite time chaotic
dynamics.
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Abstract

We investigate the Birkhoff normal form of the Sitnikov problem up to normalization

order 12 in the small parameters, the eccentricity e of the primaries and the initial

distance η of the third body from the common barycentre. We derive the main fre-

quencies of the massless body within the parameter range e ≤ 0.2 and η ≤ 0.1 and

compare the results with direct numerical integration of the original equation of mo-

tion. We investigate the influence of the remainder on the normal form solution and

give local stability estimates close to the central equilibrium configuration based on it.

Keywords: Normal form, remainder, normalized solution, normal frequencies

1 Introduction

We consider a subsystem of the spatial restricted three body problem, with spe-
cial system parameters and geometrical configuration (Fig. 1). Two primary
bodies with masses m1 = m2 are moving on Keplerian orbits around their com-
mon barycentre. We set the invariant plane of motion, formed by the primaries
to be the (x, y)-plane in Cartesian coordinates and let a third massless body m
moving perpendicular to that plane. We label by r(t), z(t) the distance from
the origin of the primaries and the third body respectively for given time t and
label by vz(t) the velocity of the massless body. Starting the third body along
the z-axis with given initial position z(0) and velocity vz(0) the body performs
oscillatory type motion through the barycentre only.
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Figure 1: Geometry of the Sitnikov problem. Two primaries m1 = m2 move on

Keplerian orbits around their common barycentre with distance r = r(t). A massless

third body m moves perpendicular to the plane along the z-axis only.

The system was investigated by Sitnikov to show the existence of oscillatory
motion in the 3–body problem (Sitnikov , 1960). It is as much as simple without
loosing the main qualitative features of more realistic models found in Celestial
mechanics. The system can be seen as a generalization of the integrable MacMil-
lan problem, where the eccentricity is equal to zero and the 2-center problem, in
which the positions of the primary masses are kept constant and the third body
can move arbitrarily in the plane formed by the primary bodies. Although the
Sitnikov problem is one dimensional the motion of the small mass can not be
written in terms of quadratures. Therefore it allows stable and unstable motion
as well quasiperiodic and chaotic phase space trajectories.

The problem was investigated in great detail in Moser’s book (Moser , 1973).
From that time on, the system served as the basic model for various numerical
and analytical investigations (e.g. Dvorak (1993), Hagel & Lhotka (2005)).
The problem was further generalized, so that the third body can move off the
z-axis (Soulis et al. , 2007) as well to the case when the third body has a
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finite mass (Hagel , 2009). More recent investigations have been performed by
(Bountis & Papadakis , 2009) who extended the problem to an arbitrary number
of primary masses as well by (Érdi & Kovács , 2009) who investigated transient
chaos in the Sitnikov problem.

The outline of the present note is as follows: we setup the mathematical for-
mulation and derive an approximate Hamiltonian flow of the system in action
angle variables in Section 2. For this reason we expand the potential of the orig-
inal Hamiltonian around the central equilibrium and introduce the eccentricity
e and the initial distance η as small parameters. In Section 3 we summarize the
main steps behind the normalization algorithm. Using a sequence of canonical
transformations, close to identity, we remove the dependency on the angles to
higher orders. The Birkhoff normal form of the Sitnikov problem of order 12
in the small parameters is given at the end of this Section. We use it to derive
the normalized frequencies of the problem and compare them with the domi-
nant frequencies found in the time series of direct numerical integrations of the
equations of motion. To this end we analyze the influence of the remainder, not
in normal form, in Section 4 and give a kind of local stability estimate. The
summary of the present study together with the conclusions and an outlook on
ongoing investigations is put at the end of this Section.

2 The approximate Hamiltonian flow

If we set the gravitational constant G, the total mass of the system m1 + m2

as well the unit distance equal to unity the revolution period of the primaries
is given by P = 2π. In this setting the Hamiltonian system of the third body,
derived from the kinetic and potential energy reads:

H(z, v, t) =
vz

2

2
− 1√

z2 + r(t)2
, (1)

dz

dt
=
∂H

∂vz
,

dvz

dt
= −∂H

∂z
,

leading to the equation of motion in the Newtonian framework:

z̈ = − z

(r(t)2 + z2)
3/2

.

The system depends on time through r(t), itself being a function of the ec-
centricity e and mean anomaly M of the primary bodies respectively. Setting
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Figure 2: Comparison of the time evolution of initial conditions obtained from the

approximate Hamiltonian flow (dashed) with direct numerical integrations (thick) for

e = 0.2. The present approach is valid only in the limited domain of the phase space

around the central equilibrium point.

t0 = 0 together with n = 1 in M = nt+ t0 the two primaries pass the pericentre
at t = 2πk, k ∈ Z. In elliptic motion of the primary bodies and for small values
of e we may expand r(t) into:

r(t) =
1

2

(
1 +

e2

2
− 2e

∞∑

γ=1

∂Jγ(γe)

∂e

cos(γt)

γ2

)
,

where Jγ are Bessel functions of the 2nd kind (Stumpff , 1959). Furthermore we
restrict our investigation to small oscillations of the third body, z(t)/r(t) → 0,
and may expand the potential in the Hamiltonian accordingly:

− 1√
z2 + r(t)2

= −
∞∑

k=0

(
−1/2
k

)
z2k

r(t)2k+1
.

The approximate system is integrable for e = 0 and reduces to a harmonic
oscillator with frequency ω0 = 2

√
2. It is natural to introduce rescaled action
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angle variables of the form:

z =
√
ω0

−1ηJ1 sin(φ1),

vz =
√
ω0ηJ1 cos(φ1),

where η labels the (small) distance from the equilibrium and (J1, φ1) is the pair
of conjugated variables of order unity. Replacing the time t by φ2 and extending
the phase space via its conjugated action variable J2 we find the approximate
Hamiltonian, valid near the origin in phase space in the form:

H∗ = ω0J1 + J2 +
N∑

k=1

qk (J1; e, η) +
∑

(k1,k2)∈Z2

pk1,k2
(J1; e, η) · cos (k1φ1 + k2φ2) .

(2)
where p, q are polynomial functions in e and η. A comparison of the phase
space region close to the center of the approximate Hamiltonian flow and the
original equations of motion is shown in Fig. 2. The Hamiltonian model is only
valid close to the central equilibrium point.

3 Birkhoff normal form

By means of successive Lie-transformations we seek for a sequence of canonical
transformations {ws}s=1,...,r from intermediate

(
Jm

(s), ϕm
(s)
)

to new variables(
Jm

(s+1), ϕm
(s+1)

)
such that in the final variables J ′

m ≡ Jm
(r) and ϕ′

m ≡ ϕm
(r)

with m = 1, 2 we get the normalized Hamiltonian flow (Birkhoff normal form):

H ′ (J ′
1, J

′
2, φ

′
1, φ

′
2; e, η) = Z(r) (J ′

1, J
′
2; e, η) +R(r+1) (J ′

1, φ
′
1, φ

′
2; e, η)

dφ′m
dt

=
∂H ′

∂J ′
m

=
∂Z(r)

∂J ′
m

+
∂R(r+1)

∂J ′
m

,

dJ ′
m

dt
= − ∂H ′

∂φ′m
= −∂R

(r+1)

∂φ′m
,

where r is the order of normalization and Z(r) and R(r+1) are called the normal
form and remainder respectively. Note, that the non resonant normal form
does not depend on the angles. Assuming the remainder small the normal form
solution to the system is therefore given by (m = 1, 2):

φ′m(t) = ω′
m (J ′

1(0), J ′
2(0)) t+ φ′m(0),

J ′
m(t) = J ′

m(0) (3)
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which implies linear motion on the T
2-torus with conserved actions and fixed

frequencies for all times, where the shifted frequency in terms of the normalized
variables reads (m = 1, 2):

ω′
m (J ′

1, J
′
2) =

∂Z(r)

∂J ′
m

.

For the determination of the sequence of generating functions {ws} it suffices
to solve the homological equations of the form (Efthymiopoulos et al. , 2004):

〈h0, ws〉 + h̃s = 0

where at normalization order s the function h̃s is the oscillating part in hs =
h̄s (J1, J2) + h̃s (J1, J2, φ1, φ2), 〈·〉 are the Poisson brackets and h0 = h0 (J1, J2)
is the integrable approximation of the original Hamiltonian. In the case of the
Sitnikov problem we have:

h0 = ω0J1 + J2,

h̃s =
∑

(k1,k2)∈K\{0}

ĥs,k1,k2
(J1, φ1, φ2) e

i(k1·φ1+k2·φ2)

therefore using the form

ws =
∑

(k1,k2)∈K\{0}

ŵs,k1,k2
(J1, φ1, φ2) e

i·(k1·φ1+k2·φ2)

for the generating functions we immediately find

ws,k1,k2
=

ĥs,k1,k2

i (k1 · ω1 + k2 · ω2)
∀ (k1, k2) ∈ K\{0}

to be left with the normal form contributions h̄s (J1, J2) at normalization order
s only.

Remark: The index set K\{0} is strongly connected to the normalization
order s and therefore to the oscillating parts h̃s, stemming from the approximate
Hamiltonian flow of the Sitnikov problem proportional to pk1,k2

(J1; e, η) in Eq.
(2). Moreover, the normal form terms h̄s are related to the contributions of order
s in the functions qk (J1; e, η) in the same equation. The role of s is to group
terms of same orders of magnitude in H∗ and to ensure that the inequality
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hs < hs+1 is fulfilled for s = 1, . . . , r. The norm of the terms is connected
with the size of the parameters e and η. We checked numerically by use of d’
Alembert´s criterion that the convergence of the series expansion in the space
of parameters (e × η) is given by identifying hs with terms proportional to
eaJ1

2b, where a+ 2b = s, motivated due to the fact, that ηJ1 ∝ z2. The region
of convergence for this choice of the book keeping parameter s is bounded by
e ≤ 0.2, η ≤ 0.2 . The normal form for the approximate Hamiltonian at order
r = 12 of the third body for parameters (e, η) within the domain of convergence
turns out to be:

Z(12)
e,η = 2

√
2J ′

1 + J2 +
21e2J ′

1

31
√

2
+

89607e4J ′
1

238328
√

2
+

2772153831e6J ′
1

34657504
√

2
−

895725e8J ′
1

9982
√

2
+

693e10J ′
1

128
√

2
− 9ηJ ′2

1

4
− 8919e2ηJ ′2

1

7688
− 139122171e4ηJ ′2

1

753424
+

6145605e6ηJ ′2
1

9982
− 51975

512
e8ηJ ′2

1 +
47η2J ′3

1

32
√

2
+

1605986985e2η2J ′3
1

15622016
√

2
−

7096897485e4η2J ′3
1

3527552
√

2
+

28875e6η2J ′3
1

32
√

2
− 125η3J ′4

1

1024
+

777503175e2η3J ′4
1

1007872
−

606375

512
e4η3J ′4

1 − 5433η4J ′5
1

64
√

2
+

218295e2η4J ′5
1

256
√

2
− 53361η5J ′6

1

1024

We compare the frequency, derived from the normal form (Fig. 3, left) with
the frequency, obtained by frequency analysis of the orbit obtained by direct
numerical integration of the original equation of motion (Fig. 3, right). The
former is obtained by substituting the values for e and η into the derivative
of the normal form with respect to J ′

1, the latter by a fast Fourier transform
method. The small differences in the frequencies is i) due to the approximate
Hamiltonian model, only valid close to small parameters in e and η, ii) due
to the shift of the frequencies along the normal form construction and iii) due
to the fact, that we neglect the remainder in the equation for the frequencies,
which is present in the original equation of motion.

4 Estimates of the remainder

In the previous Section we found, that the influence of the remainder on the
normal form solution can become non neglectable, depending on the actual value
of the small parameters. Due to this fact the normal form solutions in Eq. (3)
are accurate for short times only. Nevertheless one can ask for the stability time
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Figure 3: Normalized frequencies of the motion of the third body in the Sitnikov

problem (left) vs. the main frequency of the small body in the same parameter space

obtained from direct numerical integration of the original equations of motion (right).

T up to which the dynamics of the original systems remains close to the normal
form dynamics. In a more formal way we may ask for a stability statement in
the Sitnikov problem of the form m = 1, 2:

∀|t| < T (e, η) : ‖Jm(t) − Jm(0)‖ < α(e, η)

where the stability time T = T (e, η) and the maximum variation in the actions
α = α(e, η) depend on the small parameters, since the norm of the remainder
itself is a function of the parameters (e, η) and the normalization order r:

∥∥∥R(r+1)
∥∥∥

e,η
=
∥∥∥R(r+1) (J ′

1, φ
′
1, φ

′
2; e, η)

∥∥∥ .

Here we define the norm of the remainder as (σ constant, fixed):

‖R(r+1)‖e,η =
∑

k∈Z2

|cj (J1; e, η)| e|k|σ .

The question is, if it is possible to find a minimum of the norm of the remainder
and connect it to the functions α and T in the stability theorem. It is possi-
ble to proof, that for the right choice of the small parameters the remainder
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Figure 4: Analysis of the remainder function R(r+1) vs. the order of normalization

r for different small parameters e and η (see text). The dark and light points label odd

and even orders in r respectively.

becomes exponentially small, leading to exponential long stability times also.
The interested reader is referred to papers concerning Nekhoroshev stability
(Nekhoroshev , 1977; Pöschel , 1993; Efthymiopoulos et al. , 2004) for further
reading. Nevertheless, in the case of the Sitnikov problem it is also interesting
to investigate the influence of the remainder for values of the parameters e and
η not leading to a Nekhoroshev-like statement.

The typical behaviour of the remainder is shown in Fig. 4. For sufficient
small parameters (e = η = 0.001) the norm of the remainder decreases as the
order of normalization increases (upper left). The actual size of the remain-
der depends on the given values for the parameters. For larger parameters
e = η = 0.01 the norm of the remainder increases also (upper right). In the
intermediate regime of parameters (e = η = 0.075) the remainder may decrease
at the beginning but starts saturating and increasing after an optimal order
of truncation (lower left). If the parameters become too large (e = η = 0.1),
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e η time
0.001 0.001 2.774 · 1012

0.01 0.01 404120

Table 1: Preliminary estimate of the stability time for small parameters e and η

derived from the remainder of the problem.

the norm of the remainder does not decrease at all (lower right). The normal
form procedure does not converge, the effect of the remainder harms the sta-
bility of the system. In Di Ruzza & Lhotka (2010) the remainder was used
to estimate the stability time in the Nekhoroshev sense, using the approach by
Pöschel (1993). Based on the theorem stated there we were able to identify sets
of parameters for which the exponential estimates apply. Preliminary results
are shown in Table 1. The stability time for the set of parameters e = η = 0.001
turns out to be 2.774 · 1012.

We derived the Birkhoff normal form of the approximate Hamiltonian flow,
valid around the central equilibrium of the Sitnikov problem for small parame-
ters e and η up to the order 12. From the normalized Hamiltonian we calculated
the normalized frequencies to the system and compared with the main frequen-
cies of the time series using Fourier analysis for various initial parameters. We
explained the difference between the normal form solutions and the original dy-
namical system by analysing the remainder of the Hamiltonian. An estimate of
the stability time for small parameters e = 0.001 and η = 0.001 is of the order
2.774 · 1012 using the standard approach described in the paper by Di Ruzza &
Lhotka (2010).
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Abstract

This paper discusses some aspects of the Lie-integration method, that is a very effective

algorithm for numerical solution of ordinary differential equations. We focus on the

details how this method can be make adaptive, without losing (expensive) computation

time.

Keywords: Numerical methods: Lie-integration, planetary systems

1 Introduction

Most of the problems related to celestial mechanics can be formalized using
ordinary differential equations (ODEs). Namely, the given set of equations of
motion (describing the dynamics of celestial bodies such as planets and stars)
is written in the compact form of

ẋi = fi(x) (1)

where x : R → R
N (x = (x1, . . . , xN )). One should note that all non-autonomous

equation can be transformed into such an autonomous form with the introduc-
tion of a new variable. In addition, higher order ODEs can also be transformed
into the above form by employing new variables. There are many types of in-
tegration schemes that aids the numerical computation of the solution of such
differential equations:
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• classic explicit methods (e.g. Runge-Kutta schemes, modified midpoint
method, Bulirsch-Stoer algorithm, see Press et al. (1992));

• symplectic mappings (for special /Hamiltonian/ problems, e.g. Leap-
Frog);

• implicit methods (e.g. modified Euler);

• Lie-integration: the power series expansion of the solution is computed and
the coefficients are then summed appropriately (see Gröbner & Knapp ,
1967; Hanslmeier & Dvorak , 1984).

The basic problem of the above mentioned algorithms is the following. The
numerical solution is performed with a given step size, however, it is not obvious
what is the “optimal” step size in order to obtain a certain (relative or absolute)
precision. In practice, we can do either

• analytic estimations for this optimal step size; or

• explicit variations in the step size (until the desired precision is obtained).

With the exception of the Euler method, all of the explicit methods must com-
pute the right-hand side of the ODE in instances that depend on the step size
itself, therefore step size variation (if it turns out to be too small or too large)
yields losing of computational time. On the other hand, analytic estimations
might be used as a hint for the integration step size, but it is not guaranteed at
all, whether the desired precision is reached or not.

In this paper we summarize the key points of the Lie-integration, focusing on
the methods that make this numerical algorithm to be a very effective adaptive
integrator.

2 Basics of the Lie-integration

Formally, the solution of the differential equation

ẋ = f(x) (2)

(where f : R
N → R

N ) can be written as

x(t + ∆t) = exp(∆tL)x(t), (3)
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where L =
N∑

i=1

fiDi and Di = ∂
∂xi

(L is the so-called Lie-operator). The expo-

nential function can be expanded as:

exp(∆tL) =
∞∑

k=0

∆tk

k!
Lk. (4)

The Lie-integration is the finite approximation of the sum in equation (4) (see
also Hanslmeier & Dvorak , 1984). The advantages of this method are:

• Yields the coefficients of the Taylor-expansion (of course, these can be
exploited for other purposes as well).

• The coefficients are computed using recurrence relations: the derivatives
Ln+1xi are written as the functions of the derivatives Lkxj (0 ≤ k ≤ n).

• If the coefficients are known, the computation of the sum is extremely fast,
for arbitrary values of ∆t. In other words, the coefficients do not have to
be re-computed if the step size is altered.

However, there is a rather relevant disadvantage of this algorithm. Namely, it
is not an explicit method: for each problem (set of differential equations), we
need a different set of recurrence relations that should be derived independently.
This derivation is highly not obvious (Hanslmeier & Dvorak , 1984; Pál & Süli
, 2007) and such a derivation requires intuition. Therefore, Lie-integration is
not a widespread method, although it is definitely more effective than the other
techniques.

2.1 Linearized equations

Since many analysis (for instance, stability studies) require the solution of the
linearized equations, here we briefly summarize the related equations if one
wishes to employ a method based on the Lie-integration. As it is described in
more details in Pál & Süli (2007) and Pál (2010), the solution of the linearized
equations can be obtained as follows. Let us write the original set of ODEs
(x : R → R

N ) and its linearized (ξ : R → R
N ) in the form

ẋi = fi(x), (5)

ξ̇i =

N∑

m=1

ξm
∂fi(x)

∂xm
. (6)
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Additionally, let us introduce the operator

L = L0 + Lℓ = fiDi + ξmDmfi∂i, (7)

where Dm = ∂
∂xm

and ∂i = ∂
∂ξi

(thus, L0 = fiDi and Lℓ = ξmDmfi∂i). This
extension of the original ODE does not modify the formal solution of equation
(3), since L0ξi ≡ 0 for all i = 1, . . . , N .

Using these notations, we can write the solution similarly to the original
equations:

ξ(t+ ∆t) = exp(∆tL)ξ(t). (8)

It has been proven (see Pál & Süli , 2007) that the derivatives Lnξk = (L0 +
Lℓ)

nξk can be computed in a simpler manner, namely:

Lnξk = ξmDmL
nxk = ξmDmL

n
0xk. (9)

On the right-hand side, there are only functions of the Dm derivatives (in prac-
tice, in the form of DmL

n
0 ).

3 Adaptive Lie-integration

The advantage of the Lie-integration scheme is that not only the step size that
can be varied, but one can alter the integration order as well, simultaneously
with the step size. In order to effectively reach the desired precision, an algo-
rithm can be built as follows. Let us define a minimal and maximal integration
(polynomial) order, Mmin and Mmax. Then,

1. the integration (i.e. the computation of the coefficients and the summation)
is performed for a given order M and step size ∆t.

2. if the desired precision (δ) is reached earlier (so, M < Mmin), then ∆t is mul-
tiplied (increased) by Mmax/Mmin and the sum of the power series is calcu-
lated again (including the computation of the subsequent Lie-derivatives).
This step might have to be repeated until M reaches Mmax.

3. If the precision δ is not obtained before the orderMmax, then ∆t is multiplied
(decreased) by Mmin/Mmax and the sum is computed.

4. If the given precision is reached between Mmin and Mmax, we proceed with
the next integration step.
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In practice, even machine precision (δ ≈ 2 · 10−16, for IEEE 64 bit numbers,
double types) can be reached without any additional tricks. To make the inte-
gration as fast as possible, one has to have some proper choices for Mmin and
Mmax. Of course, these values depend on the problem, the actual implemen-
tation and the value of the desired precision δ. In practice, Mmin ≈ 16 and
Mmax ≈ 20 is a good choice for the N -body problem and for machine precision.

3.1 Applications

The properties of a “regular” planetary system are: almost circular orbits; no
orbital intersections and regular motion on shorter timescales. Below, we list
some hints that can be exploited in order to make the previously discussed
adaptive Lie-integration to be more efficient:

• The integration order is not the same for the bodies: for the inner planets
higher orders are required for a certain step size (the orbital curvature is
larger) and for the outer planets, a smaller order is adequate.

• Optimize the “crosstalk” between the coefficients: terms related to the
interaction between the central body and a given planet have to be com-
puted up to a higher order than the terms related to mutual interactions
between this given planet and some outer planet(s).

• 1 ≪ N -body systems: although the initialization of the integration re-
quires O(N2) operation, we might save CPU time during the computation
of the 1 ≤ k Lie-coefficients by employing such an algorithm, thus such an
implementation might be an O(Np) one (where 1 ≤ p < 2).

The detailed analysis of the above mentioned possibilities are planned to be
done in the near future.

3.2 Implementation

Basic implementation of the above mentioned method is available for UNIX-like
systems. The “normal” implementation is a C code with ≈3,500 lines of code,
including a command-line interface that parses simple configuration files, some
basic chaos detection algorithms, and the full implementation of the adaptive
integration (as described above).

Regarding to the computation speed, we should note that the number of
basic arithmetic operations (addition, subtraction, multiplication) are scaled as
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N2O(M2), while the number of more complex operations (division, exponential
and power, square root) are scaled as N2, i.e. the number of these (the most
time-consuming) operations does not depend on the integration order.

4 Summary

In this paper, we showed that the Lie-integration is a very effective method, can
be applied easily without losing (expensive) computation time as an adaptive
integration scheme. In addition, if one needs for some analysis, the linearized
equations can be derived almost automatically. Also, there are possibilities
for analytical investigations if the model function is a result of an ordinary
differential equation. See also (Pál , 2010) for some practical applications of the
methods discussed in this paper (e.g. analysis of radial velocity variations in
multiple planetary systems, uncertainty estimations, and so on).

Acknowledgement

This work has been supported by the scholarship of the Doctoral School of the Eötvös
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