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PREFACE

The organizers of this workshop wish to express their deepest
appreciation to the participants for their clearly displayed
scientific competence, for their cooperation and for their un-
tiring efforts during the long lecture and discussion sessions.
The benefits were unquestionably mutual; the personal meetings of
scientists interested in the same or similar subjects created
natural resonances which will not damp out easily. In fact, we
expect that the forcing functions of mutual interests will lead
to further exchange of information and to several joint projects.
Examples of subjects of common interest to at least two or three
participants were basic problems of geo-dynamics, motions of as-
teroids and quantitative and qualitative behavior of galaxies.

One purpose of publishing the Proceedings of this workshop
1s to stabilize the cooperations already established and to call
the attention to other members of our profession, not so lucky
as to attend our workshop, to the proposed cooperative effort.
Our invitation is to all those interested in these projects to
join our future activities.

We also wish to thank for the support, cooperation and
understanding of our sponsors, the Hungarian Academy of Sciences
and the United States National Science Foundation.

We offer this volume to our colleagues in both countries
with the humbleness of the beginner, hoping that they will real-
ize that any faults are the faults of the organizer and all
credits should go to our participants and to our sponsors.

B. Balazs
EStvos Lorand University
Budapest, Hungary

and
V. Szebehely

University of Texas
Austin, Texas
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SELECTED RESEARCH PROJECTS IN CELESTIAL MECHANICS
AT THE UNIVERSITY OF TEXAS AT AUSTIN

Dr. Victor Szebehely, L. B. Meaders Professor
Department of Aerospace Engineering, University of Texas

Austin, Texas 78712, U.S.A.

Abstract
This paper reports on recent research on the inverse problem on

stability, on accuracy and on undeterminacy in celestial mechanics.

(1) The inverse problem of dynamics deals with the establishment of
the potential function (or in general of the force-field) when a
family of orbits is given. The linear partial differential equation
for the potential V 1in the two-dimensional case is

3V

Alx,y) V + B(xoy) 5+ Clxy) % = D(x,y) ,

where the functions A, B, C and D depend on the given family
of orbits. It is known that the inverse problem does not have a
unique solution corresponding to the fact that V is the solution
of a partial differential equation, which solution is expressed by
arbitrary functions of the combinations of the variables describing
the system. The linearity of the above equation is lost when
rotating (synodic) systems are used as in the restricted problem

of three bodies. Other generalizations are the extension to three
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dimensions, using generalized coordinates, finding potentials which
describe integrable dynamical systems, applications to stellar

systems, etc. See References 1-6.

(2) The measure and regions of stability of artificial and natural
celestial bodies is established using various stability criteria,
such as linearization, Hill's method, Lyapunov's characteristic
numbers, etc. The quantitative measure S is represented By the
dimensionless devi ation of the actual and critical values of a

constant of the motion, or by

C - C .
S = act crit

Ccrit

Stability requires S > 0 and the value of S = 0 corresponds to
bifurcation. This presentation is especially well adapted to Hill's
method where C is the Jacobian constant. Stability regions of
planetary and satellite systems are established within the solar
system and in binary systems using the above criterium reformulated

in terms of masses and orbital radii. See References 7-14.

Stability regions in the phase space are established around the
Earth-Moon libration points by numerical integration and the effects
of initial position and velocity errors are studied. In this work
the stability criterium is the requirement for continued libration as
opposed to other types of motions, such as chaotic

behavior. See References 15-18.

Stability investigations concerning the general problem of three
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bodies as applied to triple stellar systems are given in References 18
and 19. This work is aimed at present time to improve the assumptions

made in establishing our model.

A study in progress is the stability and long-time behavior of asteroids.
Hi1l's and Lyapunov's methods are used to study the effects of the
orbital parameters on the behavior of large numbers of asteroids and

comets.

(3) To separate errors of numerical integrations and of analytical
approximations from the truly random behavior of dynamical systems,
increased accuracy is needed. The approaches to this problem are

the method of regularization (introduction of new dependent and
independent variables), the introduction of the concept of time
element, and forcing the system to remain on some constant surface

in the phase space. These techniques allow long-time predictions
concerning the solar system and the accurate computations of relative

motions and possible collisions. See References 20-29.

(4) The most recent research interest is the problem of the non-
deterministic nature of celestial mechanics. Due to the fact that
systems of interest in our field are non-linear and non-integrable
we must rely on analytical and numerical approximations as mentioned
above. To this we must add our incomplete knowledge of the physical
laws governing these systems and the uncertainity of the initial
conditions used. In this way we might arrive at the conclusion that
celestial mechanics is a non-deterministic science and opén to

approaches used in statistical mechanics. This is a considerable
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change from the classical approach to dynamics according to which the

knowledge of the initial conditions determine completely the solution.

See Reference 30.

(5) Current research in satellite dynamics is discussed in Reference

31.
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RECENT PROGRESS IN THE THEORY OF TROJAN ASTEROIDS

B. Garfinkel
Yale University Observatory

New Haven, Connecticut, U.S.A.

ABSTRACT

In previous publications the author has constructed a
long=-periodic solution of the problem of the motion of the
Trojan asteroids, treated as the case of 1:1 resonance in the
restricted problem of three bodies. The recent progress re-

ported here is summarized under three headings:

1) The nature on the long-periodic family of orbits
is reexamined in the light of the results of the numerical
integrations carried out by Deprit and Henrard (1970). In
the vicinity of the critical divisor

' DEE Q)l - k“@’
not accessible to our solution, the family is interrupted by
bifurcations and short-periodic bridges. Parametrized by the
normelized Jacobi constant “2’ our family may, accordingly,
be defined as the union or admissible intervels, in the form
&:Uj {Ioc—ocj|>£j}; j =k, k1, «..00 .
Here, {dj(m)} is the sequence of the critical dj correspond-

ing to the exact [j:1 commensurability between the character-
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istic frequencies(.J1 andcu2 for a given value of the mass

parameter m.

Inasmuch as the "ecritical" intervals 'u,- uj‘<:€j can
be shown to be disjoint, it follows that, despite the clus-
tering of the sequence {xj} at o= 1{ as j—soo, the family
extends into the vicinity of the separatrix o« =1, which ter-

minates the "tadpole" branch of the family.

2) Our analysis of the epicyclic terms of the solution,
carrying the critical divisor Dk’ supports the Deprit and
Henrard refutation of the E. W. Brown conjecture (1911) re-
garding the termination of the tadpole branch at the Lagran-

gian point L3.

However, the conjecture may be revived in a refined
form, "The separatrix o= 1 of the tadpole branch spirals

asymptotically toward a limit cycle centered on L3."

3) The period T(«, m) of the libration in the mean
gynodic longitude A in the range
<
xl_XSXz
is given by a hyperelliptic integral. This integral is for-

mally expanded in a power series in m and u2 or Pss\ll - a?.

The large amplitude of the libration, peculiar to our
solution, is made possible by the mode of the expansion of

the disturbing function R. Rather than expanding about
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Lagrangien point L,, with the coordinates r =1, ©=T/3, we
have expanded R about the circle r = 1. This procedure is
equivalent to analytic continuation, for it replaces the
circle of convergence centered at L4 by an annulus |r - l|<€

with 0< B< 2T,

REFERENCES

Brown, E. W. 1911 Mon. Not. RAS 71, 438.

Deprit, A. and Henrard, J. 1970 "Periodic Orbits, Stability,
and Resonances", ed. G. E. 0. Giacaglia, p. 1 (Reidel,
Dordrecht ).

Garfinkel, B. 1977 Astron. J. 82, 368.

Garfinkel, B. 1978 Celest. Mech. 18, 259,

Garfinkel, B. 1980 Celest. Mech. 22, 267.



-17 -

ON THE VARIATION OF THE JACOBI CONSTANT
OF TROJAN ASTEROIDS
IN THE ELLIPTIC RESTRICTED PROBLEM OF THREE BODIES

B. Erdi
Department of Astronomy, E6tvos University

Budapest, Hungary

Abstract

A relation corresponding to the Jacobian integral of
the circular restricted problem of three bodies is derived
in cylindrical coordinates for the elliptic restricted
three-body problem. The unknown integral appearing in this
relation is evaluated for the case of Trojan asteroids us-
ing an asymptotic solution for their motion. Analytic ex-
pressions for the main variations of a parameter C* corre-
sponding to the Jacobi constant in the elliptic case are
obtained. It is shown that the main variations of C* depend
on two long periods, the period of the libration around the
point L4 and the period of the motion of the perihelion of
the asteroids. Upper limits for the amplitudes of the main

s . * .
variations of C° are also given.
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1. Introduction

One of the essential differences between the circular
and the elliptic restricted problem of three bodies is that
the circular problem possesses an integral, the Jacobian
integral, while in the elliptic case it does not exist.

Let us consider for the sake of simplicity the equa-
tions of motion of the planar elliptic restricted problem

of three bodies. These are (Szebehely, 1967)

Ex  ndy A AR
dv* 21%_44- ecosU x|
do? dv A4 ecosv b%

where x and 4 are the rectangular coordinates of the third
body with negligible mass, e is the eccentricity of the
relative orbit of the primaries,v is the true anomaly of
one of the primaries and S2(x,4) is the potential function
of the problem whose explicit form we do not need now. When
e=0, Equations (1) turn to the equations of the circular
restricted three-body problem.

Multiplying the first of Equations (1) bydx/da, the
second by d%/iv; then adding the results and integrating it

we obtain

(doV (dyV_ 2@ o [Qsine 1o
) +(d.:f/ - 14 e coswv 2e ('H—ecosv)"c&v C =)
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where C is a constant. For e=0 Equation (2) reduces to the

Jacobian integral
dx\* _ (d )1._ _
(dt) +(E%‘ =2Q-C 3)

where C is the Jacobi constant.

The importance of the Jacobian integral is that it
makes possible to establish regions in which motion can or
can not occur. However, this can not be done in the elliptic
case because of the unknown integral on the right hand side
of Equation (2). As the matter of fact,SE depends on x and
«3and thus this integral can be evaluated only when the sol-
ution for % and %,is known.

As the Jacobian integral has an important role in sta-
b 1lity problems and in many c(ases the elliptic restricted
three-body problem gives better Approximation than the cir-
cular one, the analysis of Equation (2), substituting the
Jacobian integral in the elliptic case, has been the subject
07 several papers. For example Ovenden and Roy (1961) dis-
cussed its application in long-time predictions. Szebehely
and Giacaglia (1964) considered the effects of the unknown
integral in Equation (2) for zero velocity curves. Williams
and Watts (1978) expanded the unknown integral about a Kep-
ler an solution to the prob em. Invariant relations for the
elliptic restricted three-body problem, substitﬁting Equa-
tion (2), were derived in fcrms of series expansions by

Vicelj and de Jonge (1978) and by Delva and Dvorak (1979).
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The subject of this paper is also the discussion of
Equation (2). The purpose of this paper is to evaluate the
unknown integral in Equation (2) in an actual case when the
solution for x and n/is known. This case is the case of
Trojan asteroids for which an asymptotic solution was de=-
rived by this author (Erdi, 1978, 1981). The basic idea is
to substitute this asymptotic solution into the expression
of &2 and then to calculate the integral in Equation (2).
Howéver, as the solution for the motion of Trojan asteroids
was obtained in cylindrical coordinates,it is suitable to
replace Equation (2) by another relation written in cylin-
drical coordinates also and to carry out the above mentioned
calculations in that new equation.

The motivation for this investigation comes from the
fact that the stability of Trojan asteroids may be studied
by using Equation (2). For example by numerically integra-
ting the equatiéns of motion one can calculate the value c*

of the expression

2 2
(&) + {3 A== @
From a comparison with Equation (2) it is clear that Cis
not constant - due to the effect of the integral on the
right hand side of Equation (2) - but its variation may

give an indication about the stability of'the motion of the
asteroids. The parameter (:”may be regarded as the Jacobian

sconstant®’ in the elliptic restric ed problem of three
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bodies. The purpose of this paper is to derive analytic ex-
pressions for the variation of c* (or more precisely for acf
which will be defined later in a somewhat different way)
thus supporting numerical investigations concerning the sta-

bility of Trojan asteroids.

2. Equations in Cylindrical Coordinates

In the author’®s theory of Trojan asteroids the follow-

ing equations of motion were used (Erdi, 1978)

g d 4 41— —p
dr (d«cr‘) 2’* =71¥ e,cosy [4' T+
'HL(E&—T* —-cosx)]
d (2do | 2) __ masina [y 4 (5)
H;('r dﬁ +'T) - {+e,cosvr [,1 R:]
A. Z A s
1+ 4+e cosvr P R?; Ri]

where +, «, z are the cylindrical coordinates of an asteroid
(see Figure 1), 4ris the true anomaly of Jupiter, e is the
eccentricity of Jupiter’s orbit, mAvis the mass of Jupiter

divided by the total mass of the Sun-Jupiter system and

T
A+ 2 ) R1= \/4+d‘1—2rc050(+-'z"
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The coordinates A and z are dimensionless, the unit distance

is the Sun-Jupiter distance.

Z

Asteroid

Jupiter
Figure 1

The coordinate system Sx%z in Figure 1 is centered at
the Sun, the plane Sx% is the orbital plane of Jupiter and
the axis Sx is directed to the perihelion of Jupiter. Equa-
tions (5) describe the motion of an asteroid under the as-
sumptions that its orbit around the Sun is perturbed only by
Jupiter and Jupiter’s orbit is an ellipse.

Multiplying the first of Equations (5) by d+/dv, the
second by cLaﬂhn the third by dzkiv, then adding the results
and multiplying it by the expression 1+ eJcosv>o, we obtain

after an integration according to «
4 [l e (a2 |-

id-_./wrcoso(+ iﬁ&-g—

,?lt
O
|
2
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where C is a constant of integration. Putting e, =0 into
Equation (6) it reduces to the Jacobian integral of the cir-
cular restricted problem of three bodies, written in cylin-
drical coordinates. Note, that €, is explicitly present in
Equation (6) only as a multiplier of the unknown integral
thus this term containes the effect of the eccentricity on
the motion in a very compact form. The purpose of this paper
is to evaluate the unknown integral in Equation (6) in the

case of Trojan asteroids using an asymptotic solution for

their coordinates Ty Ay Ze

3. Summary of a Theory of Trojan Asteroids

A solution of Equations (5) was derived for Trojan as-
teroids in the following three-variable asymptotic expansion

form (Erdi, 1981)

N
r= 1+ £+ (v, u,7) +0("1), (7a)
=
o= ot EN " N (70)
- ° ’tL, T)+ € “n(v; u‘;rc) +O(£ ) 3
n=

e
Tt [Ze“z,\w,u,»c) +0(e"™) (te)

=

O

where

€=\, @)
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w=¢(vr-1), 9)
T =& (v—1y) (10)

and 4, is the initial value of .

The reasons for assuming the solution in the form of
Equations (7) are the following.

1. Trojan asteroids are resonant asteroids, they are
in a 1:1 resonance with Jupiter as their orbital periods are
nearly equals. In case of resonance the largest perturbations
are proportional not to the perturbing mass but to the square
root of it (Brown and Shook, 1933). Thus the solution (7)
is expanded according to the powers of a:WEZ Note, that in
the Sun-Jupiter system m=0.000954 and £€=0.030885.

2. In Equations (7) the functions Ay, ctn, %, depend
on the variables 4, 4, T representing three different time -
scales of the motion of Trojan asteroids. The variable «
corresponds to the orbital revolution of the asteroids
around the Sun, while AL describes the long-periodic libra-
tional motion around the Lagrangian points L4 or L5. The
variable T is connected with the motion of the perihelion
of the asteroids (Erdi, 1978 ). The periods of the time-scales
are approximately 12, 150 and 3600 years, respectively.

3. In Equation (7a) the first term on the right hand
side is 1. This is so, because Trojan asteroids are nearly
at the same distance from the Sun as the Lagrangian points
L4 and L5 are and these latters have a dimensionless dis-
tance 1 from the Sun.

4. In Equation (7b) the first term in the expansion
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of o is ok (4,T). This term is not multiplied by &€ so it can
take large values. It can be shown that the function o ()
describes the main part of the long-periodic, large amplitude
librational motion around L4 or L5 (Erdi, 1978). On the other
hand, from the assumption that «, depends on T too, the de-
pendence of the librational period on the coordinate z can
be derived (Erdi, 1981).

5. According to Equation (7c¢) the coordinate z is pro-
portional to g”l. This is so, because for the majority of
the known Trojan asteroids €_<z<3sﬂz. The assumption Z ~§&
could be applied only in a few cases.

An additional assumption for the solution of Equations
(5) was that

e, =¢te, (1)

where the constant e, is not very large compared to unity.

Assuming the solution in the form of Equations (7) and
substituting them into Equations (5) a system of partial dif=-
ferential equations can be derived for the unknown functions
Ans Kps Zn» The solution of these new equations has been de-
terpined to O(E?) (Erdi, 1981). At this point it should be
mentioned that the three time-scales method, applied in the
above investigations, is a generalization of Kevorkian’s
two-variable method applied by him for the planar motion of
Trojan asteroids (Kevorkian, 1970).

In possession of the solution for 4, £ and z, the main
perturbations of the orbital elements of Trojan asteroids

were also derived (Erdi, 1981). The lengthy analytical ex-
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pressions will not be repeated here. However, these will be
used for the evaluation of the unknown integral in Equation

(6).

4. Calculation of the Unknown Integral

Introducing the function F as

the integral
dev= G (13)

is to be determined.

Substituting the solution (7) into Equation (12), F
will be a known function of the variables v, w and T, and
thus G will also depend on these variables. However, the
calculation of the integral needs care as F'depends onv ex-
plicitly and according to Equations (9) and (10) through 4«
and T implicitly. Because of the complicate analytic form
of the function F it is suitable to determine G instead of

Equation (13) from the equation

4G,
F= T (14)
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Expanding F and C}according to the powers of ¢

F=FK +eF+e&F+eR+ ... (15)
G=G,+eG+G+EG+ ... (16)

and substituting these series into Equation (14), a system
of partial differential equations can be obtained for the
determination of the unknown functions C%kby equating the
coefficients of the same powers of € on both sides of Equa-

tion (14). To n=3 these equations are

= %% . | Qan
ERE S o
SRR
318 18

.Equations (17) through (20) are enough to determine G, and
G, completely. However, C%.and (}Scan be calculated only in
part.

Substituting the known part of the solution given by
Equations (7) (£rdi, 1981) into Equation (12), one obtaines

for the functions F;

=0, (21)
0

) (22)

N
[
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F=F" w0+ o, (%)
=R w0+ w0 +E ) (24)

where as it can be seen F; and F; consist of different parts
according to their dependence on 4, A, T
From Equations (17) and (21) it follows that (5, does

not depend on 4, that is
L2,
G=G, (u,) (25)

and Ci:” is yet to be determined.

Equations (18), (22) and (25) give

3G, _ _ DG,
W T (6

As in this equation the right hand side does not depend on
+, the integration of Equation (26) accordihg to v would

give a secular term in Cﬁ. To avoid this let us suppose that

W — 9,
Then
G=G,(u,) | (27)
and

G=G, (x). (28)
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Equation (19) together with Equations (23),
and (28) give

.

il ¥ bG BGA BG: .
F; +‘E. - E\:'+-B(L & ?T

It is suitable to separate Equation (29) as

an __Fﬂx»
w2
26, _ e
D4 2
G

B,C —Ol

(25), - (27)

(29)

Now it follows that GL==G: =constant and thus it can

be added to the constant C in Equation (6).

Furthermore
G,_= Gg_ *(v,u,"c) + G:“(u.,'t) Go)
and
G=G, (W, +G (v (31)
where
%%
= j F:** dor (32)
and

(33)
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It can be calculated that F;_*g* is a periodic function of ¢

and F,_” is a periodic function of A4 and thus the integrals
¥ ¥ ) I %

(32) and (33) can be easily obtained Thus G,  and G,

%
can be regarded as known functions. However, (G = and G:

2
are yet to be determined.
Finally, Equation (20) is considered. By virtue of

Equations (24), (30) and (31) it can be written as

E + P 48 =

=3§G?:+§Gi** +z}c£" . i%“+ %%*. (34)

Equation (34) may be separated into the equations
%%L=E*“ _'B)%{:i ’ (35)
%:::F:* —}T%t’ (36)
%¥%;~==Fif' 37)

It can be determined from Equation (35) how Gb de~
pends on 4 and from Equation (36) the dependence of G:*

on A. Equation (37) gives

C;:‘=§F:0L’C + constant (38)

and this constant can also be added to C in Equation. (6 ).
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By continuing the above method the unknown functions
Gh'can be determined. Summing up the previous results the

main part of (G is

G=¢ |[F™du +fF3*oL»cJ+O(zl), (39)

Equation (39) shows that the main part of G containes only
long-periodic terms depending on AL and T. Short-periodic
terms depending on 4r will occur in higher orders. These

however will not be calculated in this paper.

5. Discussion of the Pirst-Order Terms

Calculating the functions Fm‘ and F; and completing

7
the integrals in Equation (39) one obtaines

G . —('_D4 -+ cosdo)c C°5(H°’C +\f{14) -
_( D, +sin o(o)c sin(A, +\K4) = (40)
—e, ( %’l cos Xy + %igsin o(°> +0(eY)

where D, '.D,L, Ho, H,‘, H,L, C and \{/M are constants. Moreover

| 83 2 4493 ,u 6 .
Dq—i—lk,s £ —283,,{ +0(&) (41a)

f

D, @+—9C§43§1&1 _MC‘A—O(JL@)) (41b)

2 28 31
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y

s = LR UG
23 _ A4 g% _ 4095 4 ¢

A=- - U - L+ 0, ]

ﬁz=-1%5+55;—‘§&1+3ﬁ£%@%“+ 044 (42¢)

where Q is a constant meaning nearly the amplitude of the
librational motion around the Lagrangian point L4. For the
majority of the known Trojan asteroids £ is in the range

0.0-0.5.
The parameter c<°describes the main part of the libra-

tional motion of the asteroids around L4

_T 3V g2, VD gl
%= =5 + -—\g'e— +——Zg—'zr +

3 92 D M
o (G fl)otpr
L
+ %f’cos&b— %‘TS%:( coshd +Q(£°)

where

d=\BU-FE T u+s  wo

and é is the function of T but this dependence can be ne-
glected now. ]

It follows from Equations (6), (12), (13) and (40)
that
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4 (s +olds +(881] -

d
— il 1—/*#cogo<+-—§142+ ﬁ C (45)
where
C= — (D4 +eosx,) e Ccos(ﬂofc+\{/u)_
-(D, +sinoko)e,C sin(RyT+ W) — (16)
(“%tc"s o, + g sin 0‘)+O(ee)+(,

and C is a constant.

Equation (45) may be regarded as an invariant relation
of Trojan asteroids in the elliptic restricted problem of
three bodies. The parameter C:*corresponds to the Jacobi
constant although (:*is not really a constant and its main
variations are given by Equation (46).

Using Equations (41), (42) and (43) an estimation for

the amplitudes of the terms in Equation (46 ) may be derived

‘(D4 +cos ot,Je, € <os(AgTHY,) +(D,+sinx,Jec sin(AgTy,)| = K4 (47)
where
— Va 85V/3 g3 685 4
K=ec(t+Z ¢ - ¢-Sape ., 20 +0E)ae)
and
e(%o-c_oscx +%i-smo( ) éKl @9)
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where

_1( 3+ 2, 5203 pl 6 '
=gt . 5 g 2L JF L O (50)
Ky. s\ 23 28 3 .

Table I shows the values of |<4for 30 known Trojan
asteroids obtained from Equation (48) with €U=O.O48 and
using the values of C and L given in one of the author’s

papers (Erdi, 1979).

Table I. Values of P<4for 30 Trojan asteroids

Around L4 PL objects
Nestor 0.00722 around L
Achilles 0.00536 9507 0.00918
Ajax 0.00488 6020 0.00766
Telamon 0.00369 2008 0.00613
Menelaus 0.00295 2706 0.00673
Hector 0.00320 4523 0.00415
Odysseus 0.00272 6844 0.00398
Agamemnon 0.00134 4596 0.00343
Antilochus 0.00117 4139 0.00289
Diomedes 0.00102 6541 0.00272
Around L5 6629 0.00250
Patroclus 0.00537 6540 0.00161
Anchises 0.00571 4655 0.00154
Priam 0.00493 6581 0.00115
Aeneas 0.00331 4572 0.00095
Troilus 0.00297 6591 0.00050

The values of P(lare in the range 0.00230-0.00208
for {=0-0.5.

Note, that the main variations of ﬂ:*have two different
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periods. One is the period TI of the libration around L4

described by K and it can be obtained from Equation (44) as
AN
5 3 2 g7 4 (51)
el (13 - F4)

Wl::

where —E is Jupite¥’s orbital period. The other is connected

with the time-scale of T and is given by

T = (52)
ed £ Ho
For { =0-0.5, 11:147.8-156.3 years and 1;;3684-3241 years.
Thus in stability investigations of Trojan asteroids numeri-
cal integrations should extend at least for about a 3600

years time-interval.
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PROBLEMS CONCERNING THE OUTER PLANETS

P. K. Seidelmann
U. S. Naval Observatory
Washington, DC 20390

R. L. Duncombe
University of Texas
Austin, TX 78712

THE DISCOVERY OF URANUS, NEPTUNE AND PLUTO

The Sun, Moon and the planets Mercury through Saturn have
been observable objects since ancient times. On 13 March 1781,
William Herschel was doing a systematic sky survey for double
stars when he discovered an object which was about sixth
magnitude and had a planetary appearance (Bennet 1981). Initially,
there were questions as to whether or not it was a comet, but
subsequent observations indicated that it had to be a planet,
Uranus.

On 1 January 1801, the minor planet Ceres was first
discovered. This was the beginning of the observational discovery
program of minor planets which continues to this day. Currently,
over two thousand minor planets have been discovered and their
orbits determined.

At the time of the discovery of Neptune in 1846, astronomy
was different from the astronomy of today in four significant ways;

1. The ephemerides of the planets were of limited accuracy.

2. There were no Palomar sky survey plates and systematic
star charts were of a limited accuracy.

3. Photography was not used.
4. The accuracy of observations was not as good as today.

In the 1840's, the best tables for the motion of Uranus were
those of Bouvard (1821). Bessel (1821) pointed out an error in
these tables, but it was not large enough to explain the dis-
crepancy between the observations and tables as indicated by Airy
(1832). 1In 1840, Bessel recognized the cause of the problem which
he attributed to the presence of an unknown planet. He was ready
himself to start work on the problem, an effort prevented by his
ill-health and eventual death.
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In France, Le Verrier began an investigation of the observa-
tion residuals of Uranus and published his first paper on the
subject on 10 November 1845. A fortnight earlier, Adams, having
accomplished similar work in England, communicated his predictions
to Airy. Airy inquired about the radius vector residual and
unfortunately receiving no reply, never started the search. On
29 July 1846, Professor Challis of Cambridge University, began a
search for this unknown planet based on the predictions of Adams.
Since he did not expect the prediction to be accurate, he planned
an extended search (Challis, 1846).

Le Verrier sent a request to Dr. Galle at Berlin requesting
that he initiate a search for this unknown planet. Le Verrier's
letter was received on 23 September 1846 and that night, Dr. Galle
discovered the planet Neptune 55 minutes of arc from the geocentric
position predicted by Le Verrier. The experience should be a
lesson to students and assistants that they can offer useful
suggestions and advice even to their professors. Professor Galle
was looking for a three second of arc disk, which he could not find.
It was the graduate assistant who suggested using the recently
published Berlin Academy Star Atlas #21 which had been printed in
1845. Using that atlas an eighth magnitude star was detected that
was not present in the atlas. That unlisted star was Neptune.

After the discovery, Challis realized that he had observed the
planet Neptune earlier, but had not pursued the comparison of
observed positions on different dates far enough to detect his
discovery. Adams and Le Verrier had independently predicted the
position of the planet Neptune, but the discovery was made in
Germany, based on the availability of accurate star charts and
confidence in the prediction of the unknown planet. Details
concerning the discovery of Neptune are given by Airy (1846),

Gould (1850), and Grosser (1962).

Figure 1 shows the difference between the observations and
the theory of Uranus that was available at that time. If the
theory and the observations agreed, all of the points would be in
a horizontal line. The longitudes are indicated on the top of the
figure while the dates are given on the bottom. The figure is
from Pickering (1909). The lines drawn are tests of Pickering's
* graphical method which was to be used for the prediction of Pluto.
It should be noted that the residuals in this case range from a
plus 40 seconds of arc to a minus 100 seconds of arc. Table 1
lists the orbital elements from the predictions of Adams and of
Le Verrier and the elements determined by Walker (1847) after the
discovery of Neptune. The predicted and discovery elements are in
close agreement and the longitude is particularly close to
discovery position of Neptune.

Percival Lowell (1915) predicted a planet beyond Neptune
based on his calculations. Again, the theory being used becomes
a factor. Figure 2 shows the differences in the longitude of
. Uranus between the 1873 theory of Le Verrier (1877) and the observa-
tions of Uranus. The difference in the magnitude of thé residuals
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should be noted; the maximum scale in this case is only 5 seconds
of arc. )

Figure 3 shows the residuals in longitude of Uranus based on
Gaillots' theory (1910). 1In this case, the scale maximum is 2.5
seconds of arc. While Lowell made his predictions of the presence
of an additional planet based on numerical calculations, Pickering
used a graphical method. Figure 4 shows a comparison of the
Uranus observations with (a) the Le Verrier theory of Uranus,

(b) Pickering's orbit of Uranus with a predicted planet "0", and
(c) the theory of Gaillot. (Pickering, 1928(a))

Figure 5 shows the comparison of Uranus's observations with
Newcomb's theory of Uranus (1898) as given by Pickering in 1928(b).
There is a 1.5 second of arc correction in the origin at 1904 to
put Uranus close to the theory of Newcomb. After the discovery of
Pluto, Pickering (1931) analyzed a plot (Figure 6) of residuals of
Uranus and included a prediction of another planet "P", The
observations used by Pickering are from Greenwich and Paris
compared to the Le Verrier theory and Washington's observations
compared to Newcomb's orbit, with a least squares correction being
cerformed by Morgan and Lyons (1930).

In 1894, Lowell Observatory was established on Mars Hill in
Flagstaff, Arizona. The observatory was expected to observe Mars
and also to search for a planet beyond Neptune. After Lowell's
death and a period of inactivity in the search for another planet,
the staff of Lowell Observatory initiated a new search program.
They hired a young amateur astronomer Clyde Tombaugh, to carry out
the observational program and eventually also to conduct the blink
comparison of the plates. Tombaugh's discovery of the planet Pluto
was announced on 13 March 1930, exactly on the 75th anniversary of
the birth of Percival Lowell and 149 years after Herschel had
discovered Uranus.

Figure 7, a and b, (Hoyt, 1980) shows the plates on which
Tombaugh discovered Pluto. The plates were taken on 23 and 29
January 1930, and revealed a 15th magnitude planet, which was
discovered by blinking the two plates. The area covered by
Tombaugh's search is indicated in Figure 8 (Tombaugh 1961). This
search was continued for almost 20 years and covered the areas

“darkly shaded to 16th and 17th magnitude and the lightly shaded
areas to the 14th and 15th magnitude. The discovery of Pluto has
been reviewed by Hoyt (1980), Tombaugh and Moore (1980) and
Whyte (1980). Subsequent research on Pluto is reviewed in a
number of papers which were presented in commemoration of the 50th
anniversary of its discovery (Icarus, Oct. 1980).

POST PLUTO DISCOVERY:

After the discovery of Pluto, there followed a period of orbit
determination and a wide variety of results were obtained
. (Seidelmann et al. 1980). Eventually, Eckert, Brouwer and Clemence
(1951) offered one of the first applications of modern methods of
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computation, using a sequential electronic computer, to simul-
taneously calculate the orbit of Pluto and the other four outer
planets.

Figure 9, a and b, shows a comparison between the observa-
tions of Pluto and the computation of Eckert, Brouwer, and
Clemence, which has been the basis for the ephemeris in the
Astonomical Almanac since 1960.

Photometric studies of the planet Pluto have indicated a
rotational period of 6.3867 days as given in Figure 10 by Neff,
Lane and Fix (1974). 1In 1950, using micrometer measurements,
Kuiper (1950) determined a diameter of 6000 kilometers for Pluto
with the possibility that it might be as small as 4000 kilometers.
From the near miss of an occultation of a star by Pluto, Halliday
et al. (1966) gave an upper limit for the diameter of 6,800
kilometers. With the then accepted mass value of 1/360,000 and
Kuiper's diameter for Pluto, a density of 50 grams per cubic
centimeter is implied. For comparison, the Earth has a radius of
6378.14 kilometers, a reciprocal mass of 328,900.5 and a resulting
density of 5 grams per cubic centimeter. The other planets have
densities which range from 0.7 grams per cubic centimeter for
Saturn up to the Earth's density. Thus, compared with these
values, the density of Pluto was unusually large. Later,
Cruickshamk, Pilcher, and Morrison (1976) observed evidence of
methane frost on Pluto and concluded, based on the implied albedo,
that Pluto should have a diameter of only 2,800 to 3,300 kilometers.

In 1978, Jim Christy, of the U. S. Naval Observatory, was
measuring Pluto plates which were taken to improve the orbit. He
detected an elongation of the image of Pluto, and not of the
background stars. Also, the elongation appeared to occur at a
regular interval. Figure 11 shows one of these images. It was a
new satellite, Charon (Christy and Harrington, 1978). The period
of revolution of this satellite appeared to match the light curve
period of 6.3867 days, but there is no reasonable way the presence
of the satellite can explain the amplitude of the light curve. It
must be assumed that the satellite is in synchronous rotation with
the planet. Recent investigations of the declination residuals of
_ Pluto by Reis, Duncombe, Van Flandern and Pulkkinen (1981) give a
slightly different orbital period for the satellite. Based on this
information, Harrington has reexamined the observations of Pluto
and its satellite, and determined an orbital period from the
position angle and separation measurements of 6.3871 days, +.0002.
The best determination for the value of the separation of the
satellite is 190,300 + 3000 kilometers or 0.88 + .01 arc seconds
(Harrington and Christy, 1980). The satellite permits the deter-
mination of the mass of Pluto, but first, let us examine the
history of the determination of Pluto's mass.

PLUTO'S MASS

Following the investigations of Wylie (1942) and Eckert,
Brouwer, and Clemence (1951), a mass of 1/360,000 solar masses was
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adopted for Pluto, which is approximately the mass of the ‘-rth. In
1968, faced with the "mplied density problem for Pluto and the fact
that the ephemeris of Neptune was systematically deviating ‘rom the
observations of Nentune, Duncombe, et al. (1968) used a projcction
technique as a tes- for the mass of Pluto. Figure 12 shows the
difference between the ephemeris and observations of Neptun= at
that time. The solution implied a reciprocal mass for Plu'o of
1,812,000, which i; about 1/6 the Earth's mass. The determication
was based on the use of normal points formed from the observations
of Neptune. A redi:scussion of all the individual observations of
Neptune, to elimina'e possible systematic star catalog effucts,
indicated a reciprocal mass of 3 million, approximately 1/10 the
mass of the Earth.

The discovery of the satellite of Pluto with its observed
period and separat.on indicates a reciprocal mass of 130 million
or 2/1000 the mass of the Earth. The history of the mass deter-
minations for Pluto (Table 2) was presented by Duncombe and Seidelmann
(1980) at the Fiftieth anniversary of the discovery of Pluto.
These data were put into graphical form by Dessler and Russell (1980)
and a curve was fit to the data (Figure 13). Based on this .information
Pluto will disappear in 1984, Unfortunately, some people tcook this
humorous prediction seriously.

THE PREDICTION OF PLUTO IN HINDSIGHT

The predictions of the location of Pluto by Pickering and
Lowell were close in longi:ude. Table 3 shows a comparison
between the predictions and the actual orbit and mass of Pluto.
Based on our current knowledge of the mass of Pluto. this body could
not have been the cause of the observed residuals in Uranus cr
Neptune. Thus, the discovery has to be due to an assiduous search
rather than to gravitational prediction.

We are left with some questions. Was it serendipity that
led to the di:covery of the planet close to the predicted place?
Have we discovered one of many bodies in the outer solar system?
Have we discovered the small body and left a larger body undis-
covered? Can the observation residuals be explained in terms of
inadequate theories?

Clearly. the predictions and discovery of Neptune were very
different than the pr dictions and discovery of Pluto. The dis-
covery of Neptune should be credited to good celestial mechanics,
while the discovery of Pluto should be credited to a thorough
observational search.

PRESENT STATUS

What is the current situation with regard to the observations
of the outer planets? Pluto has a short history, and the observa-
tions are photographs of a 15th magnitude object and stars of a
similar magnitude, which are subject to a r.m.s. uncertainty of
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about 3 arc seconds. With the 250 year rbital period of Pluto
and an observational history of less than 70 years, it is possible
to fit the observations but the ephemeris should be expected to
have a limited life-time and no conclusions can be drawn from the
observation residuals. Figure 14, a and b, shows the comparison
of the observations with the most recept ephemeris of Pluto.

For Neptune, the observational history covers 134 years of
the approximately 160 year period of the planet. Figure 15, a
and b, shows the comparison of observatio s with the ephemeris
in right ascension and declination. 8eid lmann, et al. (1971)
determined an ephemeris of Neptune which it the observational
data. Ten years later that ephemeris shows a systematic deviation
from the observational data. This experi nee continues a pattern
established in the studies of Newcomb (18 2), Wylie (1942), and
Eckert, Brouwer and Clemence. For some v asomn, the ephemerides
calculated for Neptune are valid for pred ction for only a short time
period before systematic deviations from he observational data appear.
In addit on there are two 1795 observations of a star (later
identified as Neptune) given in Lalande's diayy. These observations,
which cannot be reduced rigorously to the adopted catalog reference
system, differ from the Neptune ephemeris by approximately 12 arc
seconds in right ascension and a little less tﬁan 1 arec second in
declination Kowal and Drake (1980) have documented observations by
Galileo in 1613 of Neptune with respect to the Jupiter satellite
system. These observations are not subjeet to star catalog errors and
are an independent type of observation. They differ from the ephemeris
by approximately 30 arc seconds in right ascension and 40 arc seconds
in declination. There is some uncertainty as to whether Galileo's
observations accurately indicate the position of Neptune or only the
direction of Neptune with respect to the satellite system. The
uncertainty is based on Galileo's indicgtion of the scale distance for
that observation. At this time it is clear that the prediscovery and
post discovery observations of Neptune ca .not be satisfied by a single
ephemeris.

Uranus has an orbital period of approximately 80 years. There
are observations dating back to before 17 0, so a complete orbital
period of observations exist before the 1 81 discovery and an
orbital period of modern observations exists since 1900. Figure 16,
a and b, shows a comparison of the observations since discovery with
an ephemeris adjusted to these observations. Every effort has been
made to eliminate systematic effects due to instruments and star
catalogs. It is evident from Figure 16a that there is a slight run-
off between the ephemeris and observatio s
there is a slight run-off between the ephemeris and observations
for the most recent time.

There are observations of the Viking spacecraft in orbit
around Mars for a period of six years. While the time period is
short, the observations are very accurate and they indicate a
different value for the mass of Uranus than is currently adopted
by the IAU It is not possible to satisfy the Mars observations
data and all of the observations of Uranus in the same solution.
If only the observations of Uranus since 1900 are included, the
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Viking observations can also be satisfied.

Figure 17 shows the comparison between an ephemeris fit to
the optical observat ons dince 1900 in a solution that included the
Viking observational data for Mars. It is evident that a systematic
deviation remains for the @ata before 1900. Thus, the conclusion
must be drawn that thére ate still systematic problems with the
observations of Urafug. While the discovery of Neptune and Pluto
have significantly reduced thé observational residuals of Uranus,
there still remains a problem representing the motion of the planet.

Figure 18, a and b, shows the comparison of right ascension
and declination observatiofis 8f Saturn with the recent ephemeris
of Saturn. Figure 19, a afid b, shows the comparison of right
ascension and declination obsérvations of Jupiter with the recent
ephemeris of Jupiter.

IMPLICATIONS OF THE CURRENT DATA

It is possible that there are systematic differences between
the star catalogs prior to, afid after, 1900. These systematic
effec s could be affecting the observation data. It is known from
observations of the minor planets that systematic effects are
piresent between the observations prior to, and after, 1900. It is
also true for the minor planets that visual observations compromise
the majority of the obsetvations before 1900, while photographic
observations make up most of the data after 1900.

Is it possible that the effect of another planet, undiscovered
and existing in the outer part of the solar sytem, is being
observed? Such a planet could be sufficiently south of the
ecliptic plane that it would have eluded the systematic search of
Tomb ‘ugh Lest one adopts this solution too precipitously,
however, it should be pointed out that prior to 1900 there were
residuals in the observations of Mercury and these data led to the
predi tion and naming of a planet, Vulcan, interior to the orbit
of Me cury. There were even reports, during solar eclipses, of
obser.ati ns of Vulcan. The actual answer to the problem of the
residuals of Mercury came with the theory of relativity by Einstein.
Thus, the possibility that there may be some ulterior correction to
our g-avitational model canno’ be discounted.

There are severa possible approaches to finding another planet.
Based on the observation residuals for each of the outer planets, a
direction to a perturbing body that would produce these residuals
can be determined Then one can s=ek consistency amongst the
directions from different planet- as a criterion for the validity
of such tests. Also, préselected est objects can be included in
numerical integrations in the ho e of reducing the residuals in the
observations of these planets. Another approach 1s to note the
peculiar nature of the satellite system of Neptune, with one
satellite in a very elliptical orbit, one satellite in a retrograde
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orbit and. in addition, the planet Pluto in an orbit which intersects
the orbit of Neptune. The hypothesis exists that maybe some object
came close to this Neptunian system and caused the presently observed
state of the satellites of Neptune, while ejecting Pluto from the
satellite s stem.

It is also possible to do a systematic search for an undiscovered
planet using current plate files acquired for proper motion studies,
to make special observations of limited areas based on predictions
from the above approaches, or to make a whole new <ky survey The
chances of finding another planet obviously depend on whether such
a planet rcally exists, how bright it is, how fast it m:ght be
moving at the time of search, how accurate the predictions are from
the celestial mechanics calculations, the quality of the astrometric
search observations and the thoroughness of the examination of the
search plates.

Finaily, the question will arise as to whether this new
discovery deserves the notation of being another planet. With the
reduced mass of Pluto, the separation between minor and principal
planet is not clearly defined. How massive or large does an
object have to be to be classified as a principal planet?

CONCLUSION

We have improved the ephemerides of the planets based on the
new set of astronomical constants for inclusion in national
ephemerides beginning with 1984, However, we still have some
remaining discrepancies. Certainly, the ephemerides for Neptune
and Pluto will need improvement in about a decade. The ephemeris
of Uranus has, of necessity, been based only on observations since
1900, because a consistent ephemeris could not be prepared based
on all the available observational data. With the new ephemeris,
the observation residuals of Uranus are admittedly smaller. However,
two planets have already been discovered based on the motion of
Uranus. Are there more?



- 45 -
REFERENCES

Airy, G. B. 1832 Reports of British Association I, 154.
Airy, G. B. 1846 Royal Astr. Soc. Month Not. 7, 9, p 121.

Andersson, L. E. and Fix, J. D. 1973 "Pluto: New Photometry and
a Determination of the Axis of Rotation", Icarus 20, 279-283.

Bennett, J. A. 1981 '"The Discovery of Uranus'", Sky and Telescope,
March 1981.

Bessel, F. W. 1840 Populare Vorlesungen p 448.
Bessel, F. W. 1824 Astron. Nachrichten 2 Nr., 48, p 441.
Bouvard, A. 1821 Conn. des Temps p. 341, 342,

Challis, J. 1846 Special Report of Proceedings in the Observatory
Relative ta the New Planet, Cambridge Observatory.

Christy, J. W. and Harrington, R. S. 1978, "The Satellite of Pluto"
Astron J, 83, 1005-1008.

Cruickshank, D. P,, Pilcher, C. B. and Morrison, D. 1976. 'Pluto:
Evidence fof Methane Frost', Science 194. 835.

Dessler, S. J. and Russell, C. T. 1980, "From the Ridiculous to the
Sublime: The Rending Disappearance of Pluto'", E0S 61, p 44,
Oct 28, 1980.

Duncombe, R, L. and Seidelmann, P. K. 1980 "A History of the
Determination of Pluto's Mass'", Icarus 44, 12-18.

Duncombe, R. L., Klepczynski, W. J. and Seidelmann, P. K., 1968
"Orbit of Neptune and Mars of Pluto'", Astron. J. 73, 830.

Eckert, W, J., Brouwer, D., and Clemence, G, M. 1951. Astron.
Papers of Amer. Ephem. XII.

Gaillot, M. 1910 Annales of the Paris Observatory, 28.

Gould, B. A. 1850 "Report on the History of the Discovery of
Neptune," Smithsonian Institution, Washington, D. C.

Grosser, M. 1962. The Discovery of Neptune. Harvard University
Press.

Halliday, I., Hardie, R. H., Franz, 0. G., and Priser, J. B., 1966.
"An Upper Limit for the Diameter of Pluto," Publ. Astr. "Soc.
Pacific, 78, 113.



- 46 -

Harrington, R. and Christy, J. W. 1980 "The Satellite of Pluto II"
Astron. J. 85, 168-170.

Hoyt, W. G. 1980, "Planets X and Pluto," The University of Arizona
Press, Tucson, Arizona.

Kowal, C. T., and Drake S. 1980. '"Galileo's Observations of Neptune"
Nature 287, p 311-3.

Kuiper, G P. 1950 "The Diameter of Pluto", Publ. Astr. Soc. Pacific
62, 133.

Le Verrier, U, -J. 1845 Comptes Rendus XXI, p 1050.

Le Verrier, U. -J. 1849 "Recherches sur le mouvements De La Planete
Herschel'",. Connaissance des Temps. Paris.

Le Verrier, U. -J. 1877 Annales de L Observatoire de Paris, XIV.

Lowell, P, 1915. 'Memoir on a Trans-Neptunian Planet,'" Memoires
of the Lowell Observatory, 1, 1.

Morgan, H. R. and Lyons, U. S. 1930, '"On the Tables of Uranus and
Neptune'", Astron. J. 40, 97.

Neff, J. S., Lane, W. A, and Fix, J D., 1974. "An Investigation
of the Rotational Period of the Planet Pluto," Pub. Astron.
Soc. Pacific 86, p 225.

Newcomb, S. 1898 Tables of Neptune, Tables of Uranus, Astronomical
Papers of the American Ephemeris, VII.

Pickering. W. H. 1928. (a) '"The Next Planet Beyond Neptune', Popular
Astronomy XXXVI, 143,

Pickering, W H. 1928. (b) "The Orbit of Uranus,'" Pooular Astronomy
XXXVI, 353.

Pickering, W. H. 1931. '"Planet P, Its Orbit, Position and Magnitude.
Planets S and T .'" Popular Astronomy XXXIV p. 385.

Pickering, W. H 1909. '"A Search for a Planet Beyond Neptune,"
Annals of the Astronomical Observatory of Harvard College LXI,
pt II, Cambridge, MA.

Reis, J. Duncombe, R. L., Van Flandern, T. C. Pulkkinen, K. F. (1981)
"The Period of Charon der'ved from the Observed Barycentric
Motion of Pluto" BAAS 13, 573

Seidelmann P. K., Kaplan, G. H , Pulkkinen, K. F., Santoro, E. J.
and Van Flandern, T. C. 1980. ‘Ephemeris of Pluto,' Icarus,
44, 19-28.



..47-.

Seidelmann, P. K., Klepczynski, W. J., Duncombe, R. L., and
Jackson, E. S. 1971. '"Determination of Mass of Pluto"
Astron J. 76, 488-492.

Tombaugh, C W. and Moore, P. 1980 Out of the Darkness: The
Planet 'luto, Stackpole Books, Harrisburg, Pa.

Tombaugh, W W. 1961. "The Trans-Neptunian Planet Search" in
Planets and Satellites edited by G. P. Kiuper and B. M.
MiddIehurst, The University of Chicago Press, Chicago §
London .

Walker, S C. 1847 "Elements of the planet Neptune" Proceedings
of the American Philosophical Society 4 332-335.

Walker, S C. 1847 “Elliptic elements of the planet Neptune,"
Proceedings of the American Philosophical Society 4, 378.

Whyte, A. J. 1980. The Planet Pluto,Pergamon Press, Oxford
Wylie, L. R. 1942 A Comparison of Newcomb s Tables of Neptune

with observations 1795-1938, Publ. U. S, Naval Obs. Ser. 2
15, part 1.



_48-
Figure Captions

Fig. 1. The difference between the observations and the theory
of Uranus in 1845.

Fig. 2. The difference between the observations and the 1873
theory of Le Verrier for Uranus in 1915.

Fig. 3. The difference between the observations and the 1903
theory of Gaillot for Uranus in 1915.

Fig. 4. Comparison of Uranus observations with (a) Le Verrier's
Theory, (b) Pickering's orbit with a predicted planet "0" and
(c) Gaillot's theory.

Fig. 5. Comparison of Uranus observations with Newcombs' 1904
theory of Uranus. There is a 1"5 correction in the origin at
1904 to put Uranus close to the theory of Newcomb.

Fig. 6. Comparison of Uranus observations from Paris and Greenwich
with Le Verrier's theory and observations from Washington with
Newcomb's theory.

Fig. 7. Pluto discovery plates taken on 23 and 29 January 1930.

Fig. 8. The area covered by the trans-Neptunian planet search
of Lowell Observatory 1929-1945.

Fig. 9. Comparison of Pluto Observations with the integration of
Eckert, Brouwer, and Clemence in (a) right ascension and (b)
declination. .

F&g. 10. The light curve of Pluto for an assumed period of
693867; magnitude reduced to mean opposition versus phase.

Fig. 11. The Elongated image of Pluto indicates the existence of
a satellite of Pluto.
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Fig. 12. Comparison in right ascension of observations with
numerical integration for Neptune with a reciprocal mass of Pluto
of 1812Q04Q.

Fig. 13. Estimated Mass of Pluto versus time. The dots are
experimental data, the solid line represents the equation which is
the best fit curve on which the theory is developed.

Fig. 14. Comparison between Pluto observations and a recent
ephemeris in (a) right ascension and (b) declination.

Fig. 15. Comparison between Neptune observations and the 1984
ephemeris in (a) right ascension and (b) declination.

Fig. 16. Comparison in (a) right ascension and (b) declination
between Uranus observations, 1781-1980, and an ephemeris fit to
all the data,

Fig. 17. Comparison in (a) right ascension and (b) declination
between Uranus observations 1781-1980 and an ephemeris fit to
Uranus observations post 1900 only.

Fig. 18. Comparison between Saturn observations and a recent
ephemeris in (a) right ascension and (b) declination.

Fig. 19. Comparison between Jupiter observations and a recent
ephemeris in (a) right ascension and (b) declination.
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Table 1. Neptune Elements
Elements Walker LeVerrier Adams
a (mean distance) 30.25 36.15 37.25
e (eccentricity) 0.00884 0.10761 0.12062
i (inclination) 154 154" * *
Q (longitude of node) 131°%17138" # *
w (longitude of Perihelion 0°12'25" 284°45' 299°11"
P (period, in years) 166.381 217.387 277.3
m (mass, sun = 1) 0.0g00666 0.0801073 0.080150
326 32" 329757

(longitude 1847.0) 32877'57"

*Not predicted



Table 2. Mass Determinations
Date Investigator Observations Mass in terms
of the Earth
1848 J. Babinet Neptune 12
1899 H. Lau Uranus 9
1908 W. Pickering Uranus 2
1909 B. Gaillot Uranus, Neptune 5
1913 P. Lowell Uranus, Neptune 6.6
1928 W. Pickering Uranus, Neptune 0.75
1930 J. Jackson Neptune 1.0
1931 Nicholson and Mayall Neptune 0.94
1981 E. Bro&n Uranus 0.5
1940 V. Kourganoff Uranus 1.0
1942 L. Wylie Neptune 0.91
1951 Eckert, Brouwer, Neptune 1.0
and Clemence
1955 Brouwer Uranus, Neptune 0.82
1968 Duncombe, Klepczynski, Neptune 0.18
and Seidelmann
1971 Seidelmann, Klepczynski, Neptune ~0.11
Duncombe, and Jackson
1971 Ask, Shapiro, and Smith Uranus, Neptune 0.08
1976 Cruikshank, Pilcher, Albedo 0.004
and Morrison
1978 Christy and Harrington Satellite 0.002




Table 3.

MEAN DISTANCE
PERIOD, YEARS
e
LONG PERIHELION
DATE PERIHELION
Q
ya
LONG 1930.0
MAGNITUDE
MASS (EARTH = 1)
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P. Lowell
1915

43.0
282
0.202
204%9
1991.2

10°
10297
12 to 13

6.7

Pluto, Predictions and Actual

W. H. Pickering
1919

55.1
409.1
0.31
28091
1720.0
100°
15°
102%
15
2

Actual
Pluto

39.5
248
0.246
222%
1989.9
10996
17%
108%s
15
0.002
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Lowell Observatory

Figure 7
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SATURN-ITS RINGS AND SATELLITES, A CELESTIAL MECHANICS
LABORATORY

P. K. Seidelmann
U. S. Naval Observatory, Washington, D. C. 20390

Introduction

From February to May 1980, when the rings of Saturn were
presented edgewise to the Earth, several observing groups,
using special equipment, undertook programs of observation
aimed at detecting the faint E-ring (Feibelman, 1967) and
inner moons, reported after the 1966 ring-plane crossing
(Dollfus 1968, Fountain and Larson 1977, Aksnes and Franklin
1978).

A subset of the Space Telescope Widefield/Planetary Camera
Investigation Definition Team sought to make these observa-
tions with a Charge Coupled Device (CCD) camera and learn
about such a camera at the same time. The people observing
in Flagstaff were W. A, Baum, Lowell Observatory, D. Currie,
U. of Maryland, D. Pascu and P. K. Seidelmann of U. S. Naval
Observatory. J. A. Westphal, the Principal Investigator of
the WF/PC Team, and G. E. Danielson of Caltech participated
at California Observatories. Other members of ‘the WF/PC
team are J. E. Gunn, Princeton, A. D. Code, U. of Wisconsin,
T. F. Kelsall, Goddard Space Flight Center, J. Kristian, Mt.
Wilson Observatory, C. R. Lynds, Kitt Peak National Obser-
vatory and B. A. Smith, U. of Arizona.

Our observations were made on the 61 inch astrometric reflec-
tor of the U. S. Naval Observatory Flagstaff Station. D.
Pascu and P. K. Seidelmann made further observations in May
1981 with similar instrumentation. This paper describes

the observational program and its results, which indicate

the interesting celestial mechanics problems presented by the
Saturn system.. Parts of this paper are included in papers

by Baum et al (1981), Seidelmann et al (1981) and Harrington
and Seidelmann (1981). :
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Instrumentation

A coronmagraphic system, designed by Baunm, (Baum, et al 1981)
was us-d (Figure 1). The Saturn disk the A and B rings,
and the classical satellites were simultaneously masked,
leaving only the E ring and its surrounding background to
be optically relayed to the detector. This procedure per-
mitted exposures up to 4 minutes in duration (equivalent to
several hours photographically) without saturating the CCD
and causing an overflow of excess charge. A different mask
was made for each night, and it was designed for Saturn and
the satellites to be placed behind different parts of the
mask as the night progressed. These focal-plane masks, as
well as the pupil mask, were made by photo-etching a thin
beryllium-copper sheet and coating it afterward with carbon-
black.

Portions of the Cassegrain image passing the focal-plane mask
were relayed to the detector by a Wray transfer lens. The
transfer lens was set for a 2:1 image reduction, resulting in
a scale of 28 arcsec/mm. The field lens near the Cassegrain
focus, together with the front elements of the transfer lens,
produced a sharp image of the exit pupil of the telescope
(i.e., an image of the primary mirror together with the
shadow of the secondary cage and supporting struts) at the
iris plane of the transfer lens. When a pupil mask, of the
form shown in Figure 1, was put in place of the iris of the
transfer lens, the borders of the four quadrants of the pupil
were deleted from the beam before it reached the detector.
The detector was the ground-based CCD camera system developed
at the California Institute of Technology for the Space
Telescope Wide Field/Planetary Camera Investigation Definition
Team. At the time of the Saturn observations of March 1980
this camera contained a developmental 500 x 500 pixel Texas
Instruments CCD, housed in a $iquid—air dewar and thermo-
statically maintained at -120°C. Each pixel was approximately
15 x 15 um, so the total detec:.or area was 7.5 x 7.5 mm. In
May 1981 an 800 x 800 pixel CCD wag installed and the
temperature was maintained at -131°C. Each pixel was 15 x 15
um. The CCD was oriented such that the pixel array was not
aligned with the Saturn ring plane, diffraction axes, nor
telescope motion axes. The exposures were made through a
filter having a central wavelength (A_.) of 700 nm and a full-
width-at-half-maximum (FWHM) of 260 nfi. Exposure times were
controlled by an electronic interval timer and a Uniblitz
shutter. Images were digitized with a 16-bit A/D converter
and were recorded on magnetic tape. tandard procedures were
used for bias subtraction and for determining relative pixel
sensitivities.



E-Rin

The best E-ring photometry was obtained during the nights
immediatelg fqollowing ring—glane passage in 198Q. The

total field covered by the detector was 215 x 215 arcseconds,
and each pixel was 0.43 x Q.43 arcsecond. Saturn was at a
distance of 8.448 a.u. fraom the Earth, so a Saturn radius
(RS) was 9.865 arcseconds, and 1 arcsecond was 6126 km.

Three different versions of part of a sample CCD frame are
reproipcad in Figure 2. It was a 60-second exposure obtained
at 087387 UT on 15 March 1980. The top version represents
the original flat-fielded image displayed with six of the
full 16 bits of dynamic range, such that the most significant
bits in the original scene are clipped, resulting in isophotal
contouring of the brightest areas. Except for scattered
light, nearly all of the signal in the ring plane belongs to
the E ring. The Saturn disk, the A and B rings, and the
principal satellites are all occulted Several star images
can be seen, including one at 7.2R. that might be mistaken
for a satellite near the western egd of the E ring.

In the middle version of the image in the figure, the
scattered light due to Saturn has been largely removed within
two rectangles containing the E ring. This was done by fitting
the radial distribution of scattered light wi'th a smooth
function and subtracting it from the top version. The bright
peak of the edge-on E-ring profile at 3.8 R, becomes readily
apparent, and a new 18.3-magnitude satellité can easily be

seen at 4.8RS on the west side.

The bottom version of the image is similar to the middle
version, but the contrast has been increased ("stretched')
to show more of the outskirts of the E ring. At the center
of the bottom version we have superimposed part of another
frame to indicat: the location of the edge-on A and B rings
(with the disk of Saturn masked) at the same image scale.

Across the bottom of the figure is a scale indicating the
distances to the previously known satellites of Saturn.

Figure 3 shows an enlargement of the west side of the E-ring
and an image of 1980S25 which is a satellite at the LS
libration point of Tethys.

Each image was sliced into narrow strips_(1 x 45 pixels)
perpendicular to the ring plane, ".e., 4.6 from a nor:h-south
line. They were approximately adjacent to one another outward
from Saturn. A traverse of the data within each of these
strips yielded a plot of relative E-ring brightness versus
distance from the ring plane. Each traverse was then fitted



with a Gaussian curve, expressable in terms of two numbers:
an area and a width. The area, after calibration, is a
measure of the integrated edge-on brightness of a single-
pixel-thick slice across the E ring; while the width (either
o or FWHM]}, after deconvolution, represents the edge-on
spread of the E ring above and below its central plane. One
should bear in mind that these edge-on parameters do not
represent the spatial distribution of ring material; they
are a two-dimensional projection of a three-dimensional
spatial distribution.

The traverse areas from several frames, re-expressed in terms
of l-arcsecond-thick slices and translated into stellar
magnitudes, are plotted in Figure 4 against radial distance
outward from the center of Saturn. Three of these profiles
represent the west side of the E ring while the other three
represent the east side, but they are all plotted with the
radial distance from Saturn increasing to the right so that
the west and east sides, as well as profiles from different
dates, can readily be compared with one another. The reality
of any difference must be judged with reference to the
amplitude of the noise indicated by the scatter of the
plotted points. As already mentioned, very little of this
noi-e is of instrumental origin; it is primarily due to the
fundamental vn statistics of the photoelectrons. As a result,
the noise is lowest for the longest exposure (profile W1) and
highest for the shortest exposure (profile El).

Figure 5 is a simple superposition of the six edge-on E-ring
profiles of Figure 4. The abscissa is labelled in units of
Saturn radii The few additional points at large radii,
plotted as crosses, are means of 7 to 10 traverses each.
Semi-major axes of the orbits of Mimas, Enceladus, Tethys,
Dione, and Rhea are indicated by their encircled initials.
The rectangle labelled A marks the inner and outer edges of
the A ring.

The well-defined peak falls at 3.8R., just a bit inside the
Enceladus orbit, as would be expectgd if the true maximum of
three dim.nsional distribution coincides with the Enceladus
orbit. Although the profile may change slope in the vicinity
of the Tethys and Dione orbits, the relationship of the E
ring to Enceladus appears to be of a totally different
character. The observational evidence suggests a causal
connecti n between Enceladus and the E-ring. Figure 6 suggests
that there may be slight bunching of E-ring particles in the
vicinity of the trailing Lagrangian point (LS), but the
evidence is marginal. An alternative interpretation might be
to suppose the presence of an "Enceladus B'" satellite,
embedded in the E ring and librating around the Lg point.



Satellites

As of TAUT 3574 more than 140 observations of new satellites
were reported in the circulars by all observers since

November 1979. TIdentities Between many of these 'new"
satellites were noted in the circulars and three new satellites
were recognized. These are 1980S1 (S10) (mag. 14) and 1980S3
(S11) (mag. 15) which move in nearly the same orbit at a
distance of 245 from Saturn and 1980S6 (S12) (mag. 18), known
as '"Dione B'" because it is located at the L point of Dione-
Saturn. Voyager discovered three inner satellites S13, 14,
and 15. However, there remained observations that did not

fit any of these objects. '

a. Orbital computations

Initially, numerical integrations were computed for objects

in orbits similar to 198081, 1980S3, and 1980S6 and also for

2 day and 6 day orbits, to determine whether perturbations

due to the large classical satellites had a significant effect
during the short time span of the observations. The dyamical
model was planar, included the J, and J4 terms of Saturn's
potential function and perturbatfons dué to satellites I
through VIII, but excluded perturbations due to the Sun. No
significant perturbative effects were detected over a short
time period.

Next, approximate ephemerides were computed for these three
satellites which were used to make a first pass at selecting
those observations associated with each orbit. Improved
orbits were derived by differential correction to the selected
observations and the selection process was repeated.

b. Co-orbiting 1980S1 and 1980S3

Smith (IAUC 3483) had suggested that 1980S1 and 1980S3 were
in the same orbit. The orbit of 1980S1 is about the same as
that given for 1966S2 by Fountain and Larson (1977) and by
Aksnes and Franklin (1978). The present precision of the
motions does not permit confident identification of 1980S1 or
198083 with either 1966S1 or 1966S2. .

The two satellites known as 1980S1 and 1980S3 have revolution
pericds of approximately 16 hours 40 minutes and differ by
only 28 seconds. Superficially, this indicates that the
centers of the satellites would be within 48 kilometers of
each other around March 1, 1982, and were in that relative
position in mid-January 1978. Either these satellites are
very transitory phenomena, or there is‘some dynamical
mechanism, such as libration, that preserves the stability

of the system. A series of numerical integrations of the
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Saturnian satellite system was undertaken to examine this
question.

The dynamical model included Saturn with oblateness (using

the values of J2 and J4 given in the 1981 ASTRONOMICAL
ALMANAC), the first eight major satellites, :lus whatever

test satellites were under investigation. All orbits were
rotated (rather than projected, to preserve frequencies) into
the plane of the rings of Saturn, a significant approximation
only for the outer two satellites. Masses and orbital
parameters were again taken from the 1981 ASTRONOMICAL ALMANAC.
The test satellites were assumed to be isolated, in that the
perturbations of the Sun and Jupiter were not considered. The
test masses were first deduced from the reported magnitudes,
and these were used for most experiments. The masses were
later revised downward when Voyager I data on the sizes of

the satellites became available.

In the major experiment, masses of 2 x 108 ana 8 x 107°

of the mass of Saturn were used, and the system was integrated
from February 16, 1980, forward to April 3, 062, and
backwards to November 15, 1867. It was found that there is
indeed a libration in the difference in longitudes of the
satellites, with a period of 2570 days, sgch that the
satellites never get closer than about 15°, which is about
40,000 kilometers.

Figure 7 shows the motion of 1980S3 with respect to 1980S1

in a coordinate system that is pulsating and rotating such
that the later satellite remains fixed on the x-axis.
Presented are the two librations prior to February 1980;
these are good examples of the extremes of the possibilities.
At first glance these resemble the orbit in the restricted
three-body problem that is the separatrix between tadpole
orbits around L, and L. and the horseshoe encompassing LS’
L,, and L. (Sée Rabe®1961 for the first numerical

e%plorat n of this problem in the small secondary case, and,
for examrle, Garfinkel 1977 for more recent theoretical work.)
However, the period of the separatrix is infinite, and in any
case the motion here is not simple periodic.

The stability of this motion is of paramount importance,
although 1t can not be resolved unambiguously for periods
comparable to the age of the solar system. However, a few
results firom this and auxiliary experiments may shed some
light an the problem First, almost 28 complete librations
were covered in the main experiment, and there is absolutely
no indication of evolution or disintegration of the basic
behavior. Second, the shorter-period was decreased by up to
three standard deviations of its determined value and the
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longer one increased by three of its standard deviations and
the system was reintegrated. Although the libration period
decreased (since the synodic period decreased), the basic
librational behavior was maintained. Third, the masses of the
test satellites were varied, and again the libration periods
changed, but the basic behavioggwas maintaingd. Indeed, the
finally adopted masses (6 x 10 and 1 x 10 times that of
Saturn), based on the observed sizes and an assumed specific
gravity of 1.0, only increased the period of the libsation to
3000 days, and decreased the minimum separation to 6 . Fourth,
the removal of the major satellites did not affect the apparent
stability over the test period. We conclude that this
libration is at least quasi-stable and that there is no need
to assume that the satellites had to have formed recently or
are about to disappear. It should be noted that the analysis
of the 1966 observations by Larson et. al. (1981) suggests

S11 was following S10 by 137° in December of that year, with
the distance decreasing Assuming S11=1980S3 and S10=1980S1,
this is consistent with a libration period of approximately
2500 days, more consistent with the somewhat larger masses
used in the initial experiments. Qualitatively, the motions
of these two satellites can be considered as undergoing two
phases. During the period when they are separated by more
than 150° the dominant perturbations are those of the major
satellites. Of particular significance in this regard is the
2:1 resonance with Enceladus and the 4:1 resonance with Dione.
However, as the satellites approach each other, their mutual
perturbations become the significant factor, and the motion

is that predicted by standard restricted three body theory,
i.e. libration about one of the triangular libration points
which prevents a close approach. However, each circulation
around a libration point is different, because of the
perturbations produced around opposition. Thus,6 the

specific value. of relative radius or velocity do not repeat
for each libration. In time, therefore, we may see all members
of the family of periodic orbits traced out by these two
satellites.

The fact that we see these two satellites exhibiting thi: kind
of librational motion suggests that such behavior is neither
unstable nor implausible. This in turn gives added credence to
the suggestions that a similar behavior between very small
particles and large clumps of particles or individual bodies
may explain the known ring structure around three planets.

d) 1980S& ("Dione B")

The discover of thi satellite by Laques and Lecacheux
(IAUC3457) came as a surprise considering Kuiper's (1961)
completéness 1 mits Even more surprising was the finding
that it was associated with the L4 point of Dione-Saturn
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(Lecacheux et al 1980, Reitsema et al 1980). That
conclusion is confirmed and the libration period is
appraoximately 800 days, in agreement with that reported
by Reitsema et al (1980Q).

d) 1980S13, 1980S25 (Tethys librators)

At this point in the identification process in 1980 there
remained at least one and possibly three satellites (outside
of Mimas' orbit) distinct from Dione B. An attempt was made
to fit the observations with preliminary orbits of 2 days and
6 days. Our observational material was re-examined for
additional or negative observations. A good image was found
in a set of exposures taken on 15 March which had been noted
before but not measured because of poor reference images. A
new solution favored a two day period.

Subsequently, observat ons of satellites made on 16 March
and 19 May were reported (IAUC3545) and the 8 April obser-
vations were revised (IAUC3549). A new fit with these
additional observations resulted in an orbit of 1.84 days.
The observations and the residuals from that solution are
listed in Table 1. This orbit suggests an association with
the orbit of Tethys which has a period of 1.8878 days.
However, an integration of this provisional orbit shows
circulation with respect to Tethys, but with destabilizing
close encounters.

Assuming that the 19 May observation is not related to 1980513,
we find that a 1.99 day period orbit fits the March and April
dates better, as indicated by Table 2, but a re-examination of
our observational material disclosed three negative observa-
tions; 1980 March 13.33946, 14.21292, and 14.25936

Significantly, these orbits show the observations to be close
to the L, point of Tethys-Saturn in April and L. point in March
and May." (Tables 3 and 4) Thus an alternative”and preferred
interpretation is that two objects are involved; 1980S13 and
the leading triangular libration point (L4) of Tethys and
1980525 at the following (LS).

The objects are either solid bodies or significant accumulations
of E-ring material. A provisional analysis shows the April
observations to be approximately 65 degrees ahead of Tethys
while the March and May ohservations are about 40 degrees
behind, Due to the lihration motion, the March and May
observations should not necessarily be at the same elongation
and thus, a solution for a unique angle is probably incomplete.

The 1981 observations by Veillet at CERGA and Smith at U. of
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Arizona have confirmed the L, and L. point satellites of
Tethys. However, Pascu and éeidelménn's observational data,
as reduced so far, did not detect the L. satellite of Tethys
and did detect some images that did not’fit the above orbits.
These data are still being analyzed. Also unfortunately the
reported observations were not measured positions, but
interpreted data giving an angular position with respect to
Tethys. Voyager IT did confirm both 1980S13 and 1980S25 as
solid body satellites located at the L4 and LS points
respectively in the Tethys orbit.

e) F-ring satellites?

Table 5 lists those observations which do not fit any of the
previous orbits, nor can they be accounted for by a single
orbit. Except for 1980S22, the observed magnitudes and
separations correspond roughly to what one would expect for
the F-ring and its satellites, but the observations do not
accurately fit an orbit with the announced periods of the
F-ring satellites.

f) Orbital Elements

Table 6 gives the orbital elements for these satellites, listing
the synodic period (days), the orbit longitude at 12.0 March
1980=JD2444310.5 uncorrected for light time (greatest eastern
elongation corresponds to zero longitude), and the apparent
orbital radius at epoch (derived from the period and oblateness).
The values of the orbital radii tabulated were consistent

(within the errors) with the semi-major axis derived from the
differential correction solutions. The quoted errors are the
internal standard errors of the linear corregtions.

i
Table 7 gives a comparison between the prbital periods &nd
longitude at epoch given by Reitsema et al (1980), Synnott
et al (1981) and this paper. The difference between Synnott
et al and the other 'determinations should be expected for 1980S6.
The determinations are based on observations taken at different
times and thus différent locations in the motion of the
satellite around the libration point. :

Conclusion

Thus the Saturn system contains rings extending out into the
satellite orbits. Voyager has indicated extensive structure
in the rings. There are satellites sharing orbits, at
librations points, as ring guardians and with resonance
relations. :

Truly, the Saturn/system is a celestial mechanics laboratory.
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Figure Captions

Figure 1. Instrument assembled for observing Saturn's
rings and satellites. The Cassegrain image of Saturn
was focused on the focal-plane mask, and portions of the
image passing it were relayed to the CCD by the transfer
lens. A co:onagraphic mask at the exit pupil suppressed
telescopically diffracted light.

Figure 2. Three versions of part of a sample CCD frame
(60-second exposure, 0838 UT on 15 March 1980) showing
both ansae of the E ring. Top: original "flat-fielded"
image in overflow display mode. Middle: scattered light
of Saturn subtracced from two rectangular areas containing
E-ring data Bottom* same as middle image, but with more
contrast stretch and with superimposed image of the A and
B rings. Below the images is a scale marked in units of
Saturn radii (Re). Orbital radii of the classical inner
satellites are §lso indicated.

Figure 3 An enlargement of the west side of the E-ring
and an image of 1980S25 which is a satellite at the LS
libration point of Tethys. The image at a distance from
the ring is a star.

Figure 4. Six edge on brightness profiles of the E-ring.
Samples of the west ansa: W1=1006 UT March 14, W2=0810 UT
March 15, W3=0838 UT March 15. Samples of the east ansa:
E1=0909 UT March 13, E2=0810 UT March 15, E3=0838 UT March
15. The gap in W3 is due to a satellite image, while those
in E1 and E2 are due to faulty pixel columns in the CCD.

Figure 5. Mean edge-on brightness profile of the E-ring
in March 1980. This was produced by superimposing the six
profiles of Figure 4 and adding a few points (crosses) at
large R.. The dots were derived from single-pixel-wide
travers%s across the ring, while each cross is a mean of 7
or more traverses. Orbital radii of ‘he A ring, Mimas,
Enceladus, Tethys, Dione, and Rhea are indicated.

Figure 6. Test for variation in the height of the peak of
the edge-on brighrness profiles. Heights here are based on
the points between 37 and 39 arcseconds in the profiles of
Figure 4 From left to right, the points here ace w2, W3,
‘El, W1, E2, E3 These data are plotted in a rotating
coordinate system tied to the orbital motion of Enceladus.
L4 and L. indicate th: equilateral 1 'bration points that
Saturn afd Enceladus would have if they constituted an
isolated dynamic system. Ordinate units are the same as in

Figure 4, and error bars are *+1 o in length.
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Figure 7. The motion of 1980S3 in a coordinate system that
is pulsating and rotating nonuniformally, such that 1980S1
remains fixed at negative unit distance on the x axis.
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TABLE 1. OBSERVATIONS OF 1980 S 13
DATE D 0-C IAUC DESIG

MAR 13.36949 -44.10 0.77 3496 80S25
MAR 13.38126 -44.60 0.89 3496 80S25

MAR 15.35059 -46.76 0.62 3605 80S32
MAR 16.01000 36.30 1.39 3549 80S29

APR 8.31764 -46.50 --1.13 3466 80S13
APR 8.35208 -45.20 -2.08 3466 80S13

APR 12.02800 -41.40 1.91 3484 80S24
MAY 19.34000 31.50 --0.07 3549 80S30

TABLE 2. OBSERVATIONS bF 1980 S 13

DATE D 0-C IAUC DESIG
MAR 13.36949 -44.10 0.94 3496 80S25
MAR 13.38126 -44.60 0.32 3496 80S2S
MAR 15.35059 -46.76 -1.39 3605 80S32
APR 8.31764 -46.50 0.26 3466 80S13
APR 8.35208 -45.20 -0.20 3466 80S13
APR 12.02800 -41.40 0.08 3484 80S24

TABLE 3. OBSERVATIONS OF 1980 S 13 NEAR TETHYS L4 POINT

DATE D 0-C IAUC DESIG
APR 8.31764  -46.50 3466 80S13
APR 8.35208  -45.20 3466 80S13

APR 12.02800 -41.40 3484 80S24
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TABLE 4. OBSERVATIONS OF 1980 S 25 NEAR TETHYS LS POINT

DATE D IAUC DESIG
MAR 13.36949 -44.10 3496 80S25
MAR 13.38126 -44.60 3496 80S25
MAR 13.35059 -46.76 3605 80S32
MAR 16.01000 36.30 3549 80S29
MAY 19.34000 31.50 3549 80S30

TABLE 5. UNIDENTIFIED OBSERVATIONS

DATE D 0-C JAUC DESIG
MAR 13.29000 23.00 3463 80S07
MAR 15.19000 19.00 3483 80S23
MAR 16.12600 19.75 3574 80S31
MAR 20.88500 -58.05 3474 80S22
MAR 20.89900 18.90 3497 80S20
MAR 20.90800 20.12 3497 80S20
MAR 20.91500 21.89 3497 80S20
MAR 20.92500 21.72 3497 80S20
MAR 20.92800 21.66 * 3497 80S20
MAR 20.97800 -51.74 3574 80S22
MAR 22.97300 -22.44 3497 80S21
MAR 22.97400 -22.00 3497 80S21
MAR 22.97700 -21.72 3497 80S21
MAR 22.98300 -21.67 3497 80S21
MAR 22.98800 -21.79 3497 80S21
APR 12.01530 -24.80 3470 80S18
APR 12.02710 -25.60 3470 80S18
APR 12.02990 -26.12 3470 80S18
APR 12.03330 -26.35 3470 80S18

APR 12.03890 -26.12 3470 80S18
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TABLE 6. SATELLITE ORBITAL ELEMENTS
ORBITAL ORBITAL

SATELLITE SYNODIC PERIOD LONGITUDE  RADIUS
1980 S1 06945 + 0.0001 306° + 1 24811
1980 S3 0.6942 + 0.0001 134° + 2 24803
1980 S6 2.7351 + 0.0005 2° +1 6160
1980 S13 1.8389 + 0.0003 246° + 2 47131
1.9985 + 0.0012 313° + 41 50v00

Epoch 12 March 1980 = J. D. 2444310.5

TABLE 7. COMPARISON OF ORBIT DETERMINATIONS
SYNODIC PERIOD

AND THIS SYNNOTT  REITSEMA
SATELLITE  ORBITAL LONGITUDE PAPER ET AL ET AL
1980S1 P 046943 0?6948

A 306 301

[o]

1980S3 P 046943 046943

A, 134 132
198056 p 2?7368 2?7373 ' 2?736%

A 2 14 1

Ao for JD2444310.5
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TWICE AVERAGED RESTRICTED THREE-BODY PROBLEM
AND ITS APPLICATION TO STUDY THE EVOLUTION

OF ORBITS OF ASTEROIDS

F. Veres
Observatory of the Hungarian Academy of Sciences

Baja, Hungary

Abstract

The paper deals with the twice averaged restricted three
body problem., First we show a general analitical solution for
the planar case and then we give a particular solution for the
spatial case. The results of the analitical solution are com-
pared with results obtained by numerical integration.
Introduction

We suppose, that a massive central object and a massive
perturbing body revolve around the baricentre on elliptic or-
bits. Around the central object nearer to it then the pertur-
bing body revolves the particle of negligibly small mass on a
slightly perturbed elliptic orbit, Because of the slightness
of the perturbations, the disturbances of second order are neg-
ligible compared to first order ones. We study the evolution
of the orbit of the particle. For this we have to take into ac-
count the secular perturbations of first order. To get these
we have to average the disturbing function by the mean anoma-
lies of the perturbing body and the particle. For averaging we

us: the Gauss-scheme, i, e. the two mean anomalies are varied
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independently, This method causes the loose of resonant terms.

Since in the case of resonance the resonant terms can have a
great effect on the evolution of orbit, our method can be app-
lied only for the study of non-resonant motion. First we treat
that case, when the particle and the perturbing body revolve
in the same plane. In this case after averaging the disturbihg

function has the following form:

I~ 5 ¢
R: = Z SLC&Q w

€:0
)

< a\et2ptl ¢ N (@)

. A 2 (e')
SL-;)(?) L+2p+1 K

P:

(1_e|7.>2+2.p+% L+ZP+4(Q>’P£P

where g is the constant of gravity; n is the mass of pertur-
bing body; (W is the longitude of the pericentre of the orbit
of particle, measured from the pericentre of the orbit of dis-
turbing body; Q‘. ef, a , € are the semi-major axes and
eccentricities of the perturbing body and the particle respec-
tively. The H(:) and K(:) functions are polynomials where the
smallest exponent equals to Q 5 Tlp are numerical coeffici-
ents.

Since 1{ does not depend on the mean anomaly of the par-
ticle and does not depend explicitly on time, the semi-major
axis of the orbit Q@ and T{ itself are prime integrals. Conse-
quently the equations of motion can be integrated in quadratu-
res, i, e, the dependence of € and W on time can be determi-
ned by analitical methods.’R is an implicit function of €
and W , so it makes the study of integral curves possible,

and by this the classification of the types of motion.
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Results

According to our results there exist three qualitativly
different types of motion: the libration, the circulation and
finite motion. In the first case W librates around W = O,
while € varies periodically. The maximum amplitude of the lib-
ration is T /2, the amplitude of variations in € has the or-
der of e| . In the case of circulation W increases secularly,
and € varies periodically. € has its greatest value at W= O,
and the smallest value at W =T, In the case of finite motion
(W) 1increases secularly and € increases up to 1. This means
the orbit to become so elliptic, that the particle falls into
the central body.

In the course of further computations we suppose the ec-
centricity of the orbit of perturbing body to be small. Suppo-
sing the central body to be the Sun, the perturbing body to be
the Jupiter and the particle to be an asteroid this condition
is satisfied. Final formulae were determined by an accuracy
of e:L.

In the Sun-Jupiter-asteroid systems the circulation oc-

curs most - -frequently. The formulae for this case are as fol-

lows
W = N(ﬁ—{c)+o(43&,\N({-{o)+dLsiMlM({:--’co)
e =e,+e, e N(t-t )+ ezmlN(‘th)

The N, d1,0l7',€°. €,

ned from initial conditions. Time { is measured in Jovian ye-

. €, constants can be determi-

ars. Applying the obtained formulae ‘for asteroid Vicia

{No.1097) we get the following values:
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N = 0.16825 degree/Jovian period
d, = -8°533

d, = 09531

e, = 0.28519

e, = 0.03298

e, = -0.00157

Simultaneously the equations of restricted three-body
problem were integrated numerically with the input data of Vi-
cia for an interval of 1950 Jovian years. The agreement proved
to be good, except on value of N, for which the analitical the-
ory gave a result % less. Further studies proved the diffe-
rence to be a consequence of neglection of secular terms of
second order. Taking into account the latter ones, the diffe-
rence decreases down to 2 %.

Further on we discussed the spatial case. \le supposed the
inclination of the orbit to be small and the case of circula-

tion to be realised. We obtained the following results:

e septhet 8 esN(t-t)+ 6 cmlNEt-)- T (5 cnZMt-t,)

%= (N &) t)od, simN(E-t,)rdy sim2N(Et,) + 220 sim2HE-,)

i) pk%mw(f»tz)]

{:g w = 7§ELir {,g r« (t ‘f.1>

Applying these formulae for asteroid Apollo (No.1862) the re-

sults are as follows:
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tg w = 0.6594tg0.12033(t-594,78)

12 = 51.12[1+0.39390c050. 24076 t-594. 78)]

e = 0.54362+0.02149¢c0s0.03967(t-1414,57)~
-0.00062c0s0.07934(t-1414,57) -
-0.00393cos0.24076( t-594., 78)

=0.03967(t-1414,57)-4,175in0.03967( t=1414.57) +
+0.115in0.07934(t-1414.57) -
-0.42s5in0.24076(t-594.78)

In the above formulae the angles are measured in degrees

and time in Jovian years from the epoch of 26th Aug 1973.

The numerical integration was also performed for Apollo for an

interval of 4000 Jovian years. According to the obtained re-

sults the error of all parameters in the above formulae is
less than 2 %.
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NONSINGULAR OSCILLATOR ELEMENTS

W. T. Kyner
Department of Mathematics and Statistics
The University of New Mexico
Albuquerque, New Mexico 87131
1. Introduction.

The construction of transformations to improve the numerical integration

of the perturbed Kepler problem,

k4 :7£=£ (&N}

can be motivated by many reasons such as the need to solve a particular problem,
an interest in a mathematical concept such as stability or regularization or,

as in this paper, curiosity about the numerical advantages of transformations
that were used in studies of the qualitative properties of solutions.

The coordinates of the phase space presented in this paper are called
oscillator variables and oscillator elements. They are defined for nonrecti-
linear orbits and are nonsingular for small eccentricities and inclinations.
The true logitude is used as in independent variable. If a time e%ement
(see below) is added to the system, then the solutions of the trénsformed
equations of the main problem of artifical satellite theory (J2 perturbation
only) are weakly stable on manifolds of constant energy. Numerical tests

indicate that these variables are well suited for high precision computations

of bounded orbits subject to general perturbationms.

2. The Oscillator Variables.
The oscillator variables are based on the orbital plane geometry in which
the motion in the orbital plane is partially decoupled from the rotation of the

orbital plame. Since most of the non-Hamiltonian theories of celestial mechanics
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employ this geometry, no claim of originality is being made here.
As usual, the orbial plane is defined as the plane through the center of
mass of the attracting body whose normal is the angular momentum vector (per

unit mass),
.
C=IXr.

Clearly, the nonvanishing of ¢ is essential in this development, i.e., only
nonrectilinear orbits are allowed.

A rotating frame is defined by

=r/fr ,W=¢cle , V=WxT.

I

Hence
r=xU, =30+ (c/r)V , c=cH .

The position of the rotating frame relative to an inertial frame is determined

by three Eulerian angles

[N
n

the inclination of the orbital plane,

L]
n

the longitude of the ascending node,

Y = the argument of latitude.

. Any vector G can be represented relative to the two frames by
= = ! ] v
G Gll + Gzi + GBE Glg + GZX + Gaﬂ .

The components relative to the two frames are related by a rotation matrix B ,

G G!

1 1

: - Al

G2 =B G2

. G G}
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where B = (U,V,W) . Its components are
B, =cosw + (sin i siny)(sin i sinQ)/(1 + cos i)
B21 = gin w - (sin i siny)(sin i cosR)/(1 + cos 1)
B31 = gin 1 sin
812 = -sinw + (sin i cosy)(sin i sin®) /(1 + cos i)
B22 = cos W - (sin i cosy)(sin i cos)/(1 + cos 1) (2)
B32 = sin i cos ¢
B13 = sin i sin Q@
323 = -sin 1 cos Q
B33 = cos i

with w = ¢ + @ , the true longitude. The matrix , B is the inverse of the
matrix A given in Goldstein [1] and its components have been rewritten for
computational efficiency. This representation is singular for retrograde polar
orbits.

By means of standard techniques of rigid body mechanics, the equations of

motion can be written

2
Q_§_= (c2/r3) - (u/rz) + Pi
de”’
g% = rPé 5 %% = (r/c)Pé cos ¥

3)

g% = (r siny/c sin i)Pé
dy _ 2y _ '

at (c/x7) (r/c)P3 sin § cot i

The orbital plane variables (r,f,c,i,ﬂ,w) determine the state of the system.

If tﬁey are known, then r and é‘ can be computed with the aid of the

rotation matrix B.
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If the perturbing force is zero, then it is easy to derive the linear

oscillator equations

2
L am + Wwm = e
d

(4)
2

JLE (sin i siny) + (sin i siny) = 0 .
dy
These equations motivated the introduction of the oscillator variables that were

used by the author [2] to establish the existence of invariant manifolds for the

oblate planet problem. Define

z) = (/1) - (/e , 2, = ~(E/c)

z3 = sin 1 sin ¢ , z4 = sin 1 cos ¢ .

Then if P = 0 , the equations

are equivalent to (4).
Let
Zg = c cos i, the polar component of angular momentum,

Zg =W = Y + Q , the true longitude.

Then the oscillator variables- (21’22’23’24’25’26) are equivalent to the orbital

,plane’ variables (r,r,c,i,2,y) and are defined for all nonrectilinear orbits
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with the exception of polar retrograde orbits. Since

dw _dy  d2 _ 2 ' i -1
gt = dr + i (c/x7) + (r/c)P3 sin ¢ sin i(1 + cos i) (5)
these orbits are excluded. The singlarity (1 + cos i)_1 also occurs in the

rotation matrix B . It can be suppressed in several ways, e.g., if 9 is

replaced by -Q , it becomes (1l - cos i)'-1 .

3. The Oscillator Elements.
In this section five oscillator elements are defined. They are constant
if the perturbation is zero and are nonsingular for all but rectilinear orbits.

The first two, 3 and x, , are defined by the equations

(1/r) - /e®) = (e/p)cos £ = (e/p)cos(w-i)

N
n

1

= (e/p)(cos dcos v + sin & sin w)

= xl cos w + X, sin w , B
z, = (-t/c) = (-e/p)sin £ = (-e/p) sin(w-&)

(e/p)(-cos & sin w + sin & cos w)

-X, sin W+ x_ cos w

1 2

where f denotes the true anomaly, ® the longitude of perigee, e the eccen-

tricity, p the parameter of the conic, w=f + & , and
x; = (e/p) cos & , x, = (e/p) sin &

The-.variables X3 and x, could be defined by similar formulas in terms

of 24 and zZ, but it is more convenient to set



- 112 -

c sin i sin @

]
"

3
X, = -c sin 1 cos @
xs =c¢ccos i,

the components of ¢ , the angular momentum vector. Then

sin 1 sin ¢ = sin i sin(w-Q)

N
[}

(—1/c)(x3 cos w + x, sin w)

4

z, = sin 1 cos p = sin i cos(w-Q)

(-l/c)(--x3 sin w + x, cos w) .

Let

cos w -sin w ]
’

sin w cos w

then

z X
1] , [ 3] - (-1/c)¢(w)[ 3] )
24 X4

—
N N
N [
[ SO
]
(=4
~
£
—
] »
[\S

and

—
] [
N b=
———
n
o
N
£
—
N N
N [t
{ SN
o
——
» ]
&~ w
————
[}
1
(2]
o
~
4
~
—_—
N N
& w
———
.

The oscillator elements (xl,xz,x3,x4,x5) are well defined for all nonrecti-

linear orbits with a modification required for polar retrograde orbits.
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4. The Time Element.

The set (xl,xz,x3,x4,x5,w) has five slow variables and one fast variable.
The instability of solutions to the Kepler problem is well displayed in this
coordinate system since a small change in the initial value of w can result
in a large change in position and velocity. However, the solutions on manifolds
of constant energy are stable in coordinate systems that employ a time element
(a slow variable) as a sixth variable. We shall use a time element that has
no fi¥st order (in J2 ) secular terms for the elliptic orbits of the main
problem of artifical satellite theory.

Let us first consider
Q=M-nt

where M is the mean anomaly and

3/2 =2

n = |2(total energy| /n
is thg Cunningham mean motion [4]. For the Kepler problem, Q = Mo , the mean
anomaly at epoch. For the main problem, Q is constant (to first order in Jz )
at successive perigees, hence, it can be considered to be the oscillatory part
of M (for more details see [3]). Therefore, on manifolds of constant energy,
the solutions to the main problem are weakly stable.
’ The variable Q is not well defined for nearly circular orbits so we

shall modify it slightly. Let

x6=M+E)—nt=w—Et+F (5)
where
_ - _ B(e) sin f 2,1/2 e sin f
F(xl,xz,x3,x4,x5,w) =M~ f = -2 arctan T+ 68(e) cos T e(l-e") T+ecosF*
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1/2 1/2

(1+e) - (1-e)
B(e) = .
are)’? 4 (1-e)1/2 ‘ ool

The variable X is well defined for nonrectilinear orbits with 0 < e < 1 .
If t is the independent variable and X sXgseeerX, are known then w
can be found by iteration (if the perturbation is zero, (5) is equivalent to

Kepler% equation). To avoid this w is taken as the independent variable and
t = (x6—w-F)/E

is computed as needed. The position and velocity at prescribed times can be
found by interpolation. The equations of motion in terms of these variables

is given in an appendix.

5. Conclusion.

The oscillator elements

»
]
§ =3

1 (e/p) cos

X
1]
{3

, = (e/p) sin

Xy = ¢ sin i sin Q
X, = ¢ sin i cos 0
XS =ccos i
x6 =w-nt+F
are well defined for nonrectilinear orbits with 0 < e < 1 . Since the

rotation matrix B is an algebraic function of the x's , cos w and sinw ,
it is easy to compute. Hence, perturbations given relative to the Earth fixed
frame are efficiently represented relative to the moving frame. The time
variable effectively supresses instabilities and permits highly accurate com-

‘putations over many revolutions. ' The element set was tested numerically with
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¥

’;w perturbations that included the effects of atmospheric drag, Sun-Moon

\\ perturbations and with realistic Earth potentials. They were found suitable

ji}f for those near-Earth orbits that must be computed with high precision.

Appendix: The Equations of Motion.

From

dw _ 2
it - (c/r7) +D

v g—‘-t:-=rp3'
a 2,3 2
—3 = (/r7) —(u/r)+Pi
at

where D = (r/c)Pé sin ¢ sin 1 (1 + cos i)-l , one obtains

where
20 0
[ 0 1] S, = (ur/cHP
J = , 3
P W v _ pt
1 0 S2 rz,P, Pl/c .
set

cos w sin w
-sin o cos w

Then -
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ME * 51
TS = Do (-w)Jo(w) + ¢(~w) ¥
) Xy S, ;
From
c= x31 +x,j+ XSE
and
d_c_ - - ' 1 * = 1 ._ '
F®oEX P=rUx (P LR APV AL P3H) r(PW P3!) .
one obtains
dx3
— = '
gt - (B3B3 - PaByy)
dxl‘ ,
— A
£ = T(P3By3 = P3Byy)
dxs
—— = '
gt - T(PBaz - P3Byy) -
There seems to be no easy way to derive
dax [ 1/2 Y2
6 _ . = y (1= e) —l
e (n-n) + Pl I~ = _l = cos f
1/2 _ 1/2
__2:2P._Pé(1e) ]le) +——| sin £
na —~ a(l-e®)
r sin i sin 1 ' g;__
+ 3 [1+cosi]P3-tdt
a’n
where instantaneous elements are employed. The factor
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1A o1 [a-ed %) [aed Y 2n 5

€ N la-ed12 T =D

e
17z

is well defined for nearly circular orbits. There are no small inclination

singularities.
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A COMPARATIVE STUDY OF THE EARTH’S MAGNETIC AND GRAVITY
FIELDS

G.Barta

Eotvds University, Geophysical Department, Budapest

Hungary

Abstract

The article contains a comprehensive summary of the results of in-
vestigations into the connections between magnetic and gravity fields of the
Earth. It was shown more than 30 years ago by means of studies concerning
long period variations of the permanent magnetic field of the Earth that to
the secular variation a wave of about 50 years period has been superimpo-
sed. The origin of the phenomenon should be found in the eccentricity of the
inner core of the Earth being similar to the eccentricity showing itself in
the magnetic dipole. .

The more accurate expansions into series of the geoidal figure - car-
ried out since the appearence of satellite observations - made it possible
tc; study the problem from the gravity side too. Some ten years ago it was
shown that the 6 big anomalies determining the geoid can be written as sums
of two influences and the position of the two sources can be deduced from
the characteristical points of the magnetic eccentricity. These similarities
of the magnetic and gravity field of the Earth raise - of course - a lof of
new problems /e.g. due to the shifting of eccentric dipole the gravity ac-
celerat‘ion observable on the Earth must show changes too/. Thus the study
of connections between the two fields of force can not be regarded as being

closed down in spite of the many similarities detected as yet.
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The original aim of my investigations taken up more than 30 years ago
on the magnetic secular variation was to ma ke up a uniform magnetic obser-
vation series which, in the Carpathian basin, had begunin 1871, but had
been interrupted several times for technical and political reasons. During
the investigations it turned out that there is a periodic pulsation of about
half a century in the magnetic annual mean value series measured in the
observatories of the Earth’s nor thern temperature zone, considering either
the declination or the vertical and horizontal intensities. Ths recognition
pointed forward beyond the original goal. Several characteristics of global
validity have been found in the secular variation recorded in the magnetic
observatories. The phenomena observed in the magnetic components can be
more closely related to the physical reality if we use a vector diagram rep-
resentation. It may be proved with the aid of the vector di agra;ns that the
half-a-century period in the components comes from a helicoid-like spatial
motion of the end point of the magnetic vector. The sense of rotation of the
helicoid is clockwise - seen from the direction of the main secular variation
- and the rotation period is about fifty years. The component of the secular
variation whichis perpendicular to the direction of the main variation is
called "transversal effect".

The transversal effect takes place in the normal plane of the variation.
The actually measured magnetic point now goes ahead, then falls behind the
averaged point. This is called the "longitudinal effect" of the magnetic se-
cular variation. The reason for thisis that the measured variationis oc-
casionally greater at other times less than the average one. Its periodis
also half a century. Itis interesting that either thé speeding up or the
slowing down of the secular variation takes place at the same time all over
the world.

It is obvious then that thereis a secondary effect of a period of about
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fifty years superposed on the magnetic secular variation., This effectis
characterized by features of global validity. Similarly, a half-a-century
period may be found iﬁ the amplitude of the Chandler period and in the an-
gular velocity of the Earth’s rotation, thatis in some phenomena closely
related to the rotation of our planet. From the similarity of the periods of
secondary phenomena we may conclude that the magnetic secular variation
is connected with significant mass motions. The internal mass distribution
of the Earth influences the Earth’s figure, in other words the sea level,
which represents the surface. Examining the mean sea level data of sev-
eral coastal stations certain relations suggesting a global character har
been found a period of about 50 years is recognizable in these data, too,
but in general this phenomenon depends so much on local and perhaps on
regional effects that only very few stations are suitable to obtain data/fmm
which conclusions of general validity can be drawn.

The magnetic secular variation has a pulsation of a period of about
50 years - as a component, If in a component part of a variation one re-
cognizes the common gene ral features outlined above, then the main va-
riation must well be of general nature. However, the so-called isoporic
charts, which show the change of the magnetic field, give a rather incohe-
rent picture of the variation. The reason for this is that when an isoporic
chart is compiled the changes of each of the components are represented
separately on different sheets of ma p, while the phenomenon itself takes
place not in separate components but in such a way that the end-point of
the magnetic vector recorded in an observatory traces a spatial curve, If
the properties of this path are being studied in separate components, the
particular local coordinate system of the observatory will be an inherent
part of the investigations, Obviously in such a treatment the vertical of

European or Asiatic or American observatories will mean different di-
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rections. In order to properly interprete the phenomenon we must choose a
standard coordinate system.

About 25 years ago we investigated the vectors of secular variation of
the geomagnetic field in a coordinate system fixed to the Earth’s centre.
First the variation vectors were orthogonally projected to the equatorial
plane and to two other planes perpendicular to the equator, with the aim of
searching for some general feature. After several attempts it was found
that if an axis of the coordinate system is chosen to point from the Earth’s
centre towards Pakistan as a projection centre, then in this projection the
vectors of secular variation converge near the projection centre. Thus the
symmetry center of the secular change is somewhere near to Pakistan. It
is to be noted that the magnetic dipole has long been known to be located
eccentrically towards the Marshall islands. This direction is at right an-
gles to the coordinate axis connecting the Ear th’s centre and Paki stan,
and’ again, both of these directions are perpendicular to the magnetic di-
pole axis. These three directions seem to have an important role in the
description of the magnetic field and its secular chan_ge. Indeed, the vec-
tors of secular variation - seen from the directions of magnetic eccen-
tricity and of the dipole axis - point out certain characterstic directions.

It has also been known long since that the Earth’s magnetic dipole
- now being eccentric towards the Marshall islands - has been drifting
westwards at a velocity of O, 2°/year. If - according to what is said
above - beside the magnetic secular variation the eccentricity of the
magnetic dipole is also assumed to originate from some kind of mass
asymmetry ‘n the "background", thren this must be apparentin the Earth’s
figure, too. When these investigations be gan - about 20 years ago - we
h‘ad only certain forms of hypotheses about the triaxiality of the Earth and

a general belief in geodesy was that the equatorial major axis of the Earth
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pointed tgwards Australia. Although this direction coincided with the di-
rection of eccentricity of the magnetic dipole, this conception was not more
than a guess owing to the inaccuracy of primary measurement data.

The first reliable geoid heights were computed from the perturbations
of satellite orbits 15 years ago. At the time we made an attempt at calcu-
lating the equatorial ellipticity from the equatorial section of the 1966 geoid
approximating it with a zonal spherical harmonic the axis of which was di-
rected towards Australia. The calculations gave the surprising result that
a spherical harmonic of this type could not fit well the equatorial section.
Varying the axis of approximation we determined the direction of best-fit-
ting ellipse and, subtracting it from the measured data, obtained a charac-
teristic antisymmetry in the residual map. Thus we came to the conclusion
that the equatorial section could be approximated not by one, but two zonal
harmonics with axes nearly at right angles to each other. This approximatim
is really very good. Assuming that the two reflection-symmetric figures ob-
tained in the approximation were rotation-symmetric, we drew a map of the
combined body. Surprisingly this combination reproduced the six well-known
anomalies of geoid, thatis the origin of the six large geoid aﬁomalies can
not be six separate, independent mass inhomogeneities, but the geoid is the
sum of two great effects.

The pairs of anomalies in the northern and southern temperate zones
are the antipodal superpositions of the two main effects. The axes of the
best-fitting component figures are not far away from those mentioned above
/Australia, Pakistan/.

Itis very demonstrative that this geoid ‘map has been computed solely
from the equatorial geoid heights, in other words the anomaly pattern of
temperate zones is implied in the eguatorial data. If a separate density in-

homogeneity is attri buted to every geoid anomaly, these inhomogeneities
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should satisfy this very peculiar condition the probability of whichis ex-
tremely small.

It is also worth mentioning that according to a schematic calculation,
if the inner core is eccentric and of high density, the level surface becomes
egg-shaped, peaked towards the direction of eccentricity. In our case the
zonal harmonic approximation gives an egg-shaped surface with its axis
and peak pointing towards Australia. Itis interesting that the rotation-
symmetric component the axis of which is directed towards India contains
no even spherical harmonics, soit has no ellipticity. The rotation symmetry
is represented by harmonics of order 3, 5 and 7. In this stage of investi-
gation, since we use only the equatorial data, the lines connecting the
oceanic anomaly pairs of temperate zones are perpendicular to the planc of
equator. In reality these lines are not perpendicular to the equator,instead
they are inclined to each other noethward. This suggests that the mass in-
homogeneity lying behind the geoidal figure is loc ated north of the equatorial
plane. And really, the magnetic dipole is shifted north of this plane.

In the next stage of research - to explain this distortion of anomalies -
we had to abandon the equator as a plane of approximation and search for a
better fit. This generalization of computations made the formulae extremely
complicated. The best approximation was difficult to determine because the
surficial "inhomogeneities" of topography have also an influence on the
geoidal figure, so not only the two rotation-symmetric effect but the irregular
surficial mass inhomogeneities are also represented in the deoid. Setting
out from the consideration that the influence of the surficial source bodies
dimini shes with the altitude more rapidly than that of the global sources,
moving away from the Earth’s surface we can separate the different types
of anomalies. To achieve this separation we have calculated the geoid for

1000, 2000. 3000, 6000, 10000, 20000 and 50000 km altitudes with the
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well-known method. The pictures at 20000 and 50000 km heights are rather

schematic and more than the equatorial ellipticity can not be observed. Be-

tween 5000 and 10000 km altitudes the effect of the Indian source is clearly
schematic. Their

discernible although the maps are still - schematic pattern means that the

effect of surficial disturbances is negligibly small at thi s height. Therefore

the data of the map corresponding to 6000 km altitude were chosen for the

purposes of further research. During the calculations a mathematical method

was found which determined the axial directions of the two approximating ro-

tation-symmetric figures quite uniquely. The calculations can be carried

out in two different ways: either from the data along the main circle given

by the two axes or from the complete map of data measured all over the

world. If the source body is a composition of rotation-symmetric figures, the

two definition will give the same set of spherical harmonic coefficients when

and only when the two axes of the approximation are properly chosen. In

this way we determined the best fit directions excluding the effect of sur-

ficial inhomogeneities. Then the geoid so obtained was extrapolated back

to the Earth’s surface. Finally the result - which was supposed to reflect

the effect of deep seated sources - was subtracted from the 'me.asured geoid

surface, thus giving the effect of the surficial sources.

The residual map reveals a correlation between the anomaly pattern
andf the relief of topography. The rows of positive anomalies of the residual
picture usually coincide with the big mountain ranges of the Ear;th and si-
milarly the system of O lines with the mid-oceanic ridges. Furthermore the
zonal asymmetry of geoid /its pear-shaped figure/ can be attributed only
to the deep-seated sources. The surficial.sour ces have no zonal harmonic

components. The polar ellipticity of the Earth may also be imagined as the
sum-* of tw;) parts corresponding to our conception. The major term is due to

the Earth’s rotation, and about 0.2 percent is attributed to the internal mass
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inhomogeneities.

The connection of magnetic and geoidal anomalies naturally calls forth
the conclusion that just like the magnetic field the gravity field alsounder-

goes a secular change. The degree of this change is very small, at most

several times 10 i gal a year.
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THE NEXT DEVELOPMENT IN SATELLITE DETERMINATION OF THE EARTH'S GRAVITY
FIELD

Professor W. M. Kaula
Department of Earth and Space Sciences
University of California, Los Angeles, California 90024

Abstract

Satellite-to-satellite tracking is expected to achieve ilO_Gm/sec accuracy
between co-orbiting satellites a few 100 km apart. The minimum sustainable
altitude is about 160 km. Tt is estimated that features of the gravity
field 110 km in extent should be resolvable. To achieve this resolution
economically, the analysis process should be iterative, treating the
residuals with respect to the best previous model as a time series for

each orbit of limited duration (e.g., one revolution), and determining

the mean correction to the potential for each duration by adjustments at
trajectory crossings.

Introduction

The GEOS-3 altimeter satellite has yielded an order-of-magnitude improve-
ment in knowledge of the Earth's gravitational field over the oceans:
after adjustment of orbits for agreement at track crossings, the accuracy
is better than +1 meter. A more accurate altimeter, SEASAT, was placed
in orbit, but failed after about one month. Global solutions based on
satellite altimetry have been published in the form of maps of the ocean
geoid (Brace, 1977; Rapp, 1979) and as spherical harmonic coefficients of
potential (Gaposchkin, 1980; Lerch et al., 1981).

However, to obtain the gravity field over the continents, as well as to
obtain the geoid distinct from the mean sea level (as desirable for ocean
dynamics studies), it is necessary to obtain more accurate measurements of
satellite orbit accelerations. The method most likely to achieve such
accuracy is satellite-to-satellite range-rate, for which u/sec = 10-6m/sec
accuracy at ranges of a few 100 km appears attainable (Pisacane et al.,
1981). The system proposed by the Applied Physics Laboratory, Johns
Hopkins University, will transmit at two frequencies, 94.0 and 40.5 GHz,
to overcome ionospheric refraction. It is expected that the stable fre-
quency standard will have better than +0.2 n/sec accuracy for four-
second averages, and that the main error will arise from noise in the
circuits translating the stable reference to the transmission frequencies.
The minimum altitude at which the spacecraft are sustainable long enough
for a global coverage is 160 km. At this altitude, variations in accelera-
tidn due to atmosphere drag can be +10 u/sec2. Hence it is essential that
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the satellite be made drag-free. It is planned to use the Disturbance
Compensation System (DISCOS) of Stanford University. In this system, each
spacecraft has a proof mass within an evacuated cavity. Capacitors detect
motion of the spacecraft with respect to the shielded proof mass, and
thrust is applied to maintain a purely gravitational orbit.

The gravity satellite (GRAVSAT) spacecraft is now expected to be the same
as for the next magnetic field survey (MAGSAT). The combination will not
only be more economic, but will improve the accuracy of the magnetic data
and produce coordinated data sets. It is hoped that a launch can be made
before the 1988 increase in solar activity.

Resolution

The effective "resolution" of the satellite-to-satellite range rate--the
size of the features in the gravity field it can measure--depends not only
on the overall accuracy of + 1 u/sec, but also on the spectral distribution
of this total error, and on the magnitudes of the spectral components of

the gravity field compared to these components of the error. In the 4-
second averaging time of the system, the spacecraft traverses 31.2 km,
equivalent to a maximum harmonic %, = 657. If the error spectrum is
"white'-—assumed tc be equally distributed among all frequencies--the error
per coefficient is i}O'ﬁ/(2x657)1/2 = +3x10-%m/sec in velocity, or (using
the 4 second interval) i_7x10‘9m/sec2 in acceleration at spacecraft alti-
tude. At the surface, the error will be [(6371-!-160)/6371]SZ times as great:
il.OZng7xlO‘9m/sec2 in acceleration or i(l.OZSQ/l)x7xlO‘10 in dimensionless
potential coefficient. The magnitude of an 2th degree coefficient is about
ilO‘S/l . Equating these two expressions gives 22180, equivalent to a
resolution of 110 km.

Various other estimates have been made (Breakwell, 1979; Douglas et al.,
1980; Pisacane & Yionoulis, 1980; Jekeli & Rapp, 19803 Rummel, 1980),

most of them for the accuracy of determination of mean values for squares,
and there has been some debate about how the different estimates should
be compared. However, the dominance of the 1.025% damping factor leads to
all the estimates falling within the range 100-200 km.

It therefore is the consensus that satellite-to-satellite range-rate will
undoubtedly yield a significant improvement in gravity field determination,
and that a greater task is to develop data analysis procedures which will
economically and reliably extract the information from the data. Improved
estimates of accuracy, or resolution, should be by-products of these
procedures.

Data Analysis

The following appear to informed consenses:

1. the reference surface for which the global potential is to be
calculated should be approximately at satellite orbit altitude: to avoid
the expense of integrating over a wide surface area to get accelerations
at the spacecraft, and to separate clearly the problem of potential determi-
nation from that of downward continuation;
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2. the determination from satellite-~to-satellite range-rate of varia-
tions in potential should be done orbit-by-orbit, primarily to have better
insight into what is happening and secondarily for economy; and

3. the data set for communication among investigators should be
earth-fixed locations (ry, ¢y, A1; r2, ¢2) and all three forms of dif-
ferences: velocity (Svy = A%), anomalous potential (AT), and acceleration
(Af4q), o that investigators do not have to differentiate numerically or
duplicaie Fourier analyses.

Consensus 2, improvement of the gravity field using orbit-by-orbit analyses,
is a considerable departure from classical methods in satellite geodesy,
where normal matries on the order of 1000x1000 may be solved. However, not
only would such global solutions from satellite-to-satellite range-rate be in-
ordinately expen=:ive, but they are unnecessary and inappropriate. The satel-
lite-t -satellite range-rate is most sensitive to wavelengths in the gravity
field comparable to the satellite spacing, whi'e it is insensitive to very
long wavelengths and to tracking station locations. Hence the range-rates
constitute a data set quite complementary to the ground station tracking
data, and analyses of the range-rates are most effectively treated as
analyses of time series which are residuals with respect to models of

the gravity field determined by the classical techniques. Important to

this mode of treatment, of course, is that the data constitute as con-
tinuous a time series as possible.

A logical sequence of steps which conforms to these principles follows.

1. Select a reference surface which is a close approximation to the
complete set of orbits used for a global solution The most evidence
surface is a sphere. However, the perturbations arising from the zonal
harmonics w-11l cause any orbit to depart some kilometers from circularity.
Hence an axisymmetric figure would be more appropriate, approximating:

[}

ro(¢) a~FAa(J2,¢)

_ 3 e
=a¥ads e

cos 2¢, o (1)
where a is semi-major axis, Jy is the oblateness factor (1.082x10_3), ag
is the equato-ial radius, and ¢ is latitude (Kaula, 1966: p. 40, with
inclination i = m/2). The resulting os~illations are thus +10.5 km.
Bender (1981) suggests further an offset of the center of the figure “4 km
southward, to accommodate odd zonal effects:

15 2e3. n
Ar(J3) z-a e(JB)cosM = =g—a (-5—-) 33531nmcosM
a J3
=Zg-—{sin¢+sin(2w-¢)} (2)
J2

where M is mean anomaly, n is mean motion, w is argument of perigee, and
J3 = -2.5x1076.

2. Select a reference potential field V, which is the best currently
available. This field is partly to calculate departures d6r of the
satellites from the reference surface. Hence it should include enough
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terms to assure that

2go v .
;;— e{6r(Vo)}§-< e{Ar}/StD (3)

where ¥ is the angular separation of the satellites, e(Ar) is the error

in range rate between the satellites, and §tp is the time interval between
data points. (See step 6 below). Thus a separation of 300 km, or y = 0.05,
e(At) = lu/sec, and 8ty = 4 secs require location error e{6r} < 3 meters.

3. Determine orbits using the reference potential, other appropriate
model parameters, and tracking data, for the purpose of locating the
satellites at the data points selected for analysis, step 6 below. The
primary criterion for the duration T of the orbits is minimizing e{ér}.

4. Fourier analyse the satellite-to-satellite range-rates AP for
each duration T. The data intervals Sty for the analysis should be deter-
mined mainly by instrumental considerations. The purpose of this analysis
is to obtain reliable accelerations Afd, step 5 below. Hence it may be
economic to break up the orbit duration T into several overlapping blocks.
With Fast Fourier Transform (FFT) techniques this step should not be a
major element of expense.

5. Obtain satellite-satellite accelerations ATy by differentiating
the Fourier analysis of Af with respect to time and transforming back to
the temporal domain. The time intervals 8ty for calculation of accelera-
tions should be determined mainly by what is thought to be resolvable
from the satellite-to-satellite range rate at satellite altitudes: 1i.e.,
smaller than the 14 seconds it takes to traverse 110 km.

6. Set up (0-C)'s for accelerations. At each time t for which there
is an "observed'" acceleration AY¥y(t) we also have:

a. the earth-fixed satellite locations gl(t), gz(t) from the
orbits calculated at step 3;

b. the reference potentials V,(rq), Vo(fz) and their gradients,
prescribed at step 2.

Define the complete potential at r;, i = 1 or 2, as:
V(r;) =V (r;) +T()

av
. o
- Vo(goi)4‘(ar )i Gri‘FT(Eoi)

v
N o
2V G TG i{&ri(vq) +8r (M I+ T(r ;)

2V (r) - g(r )6r (T) +T(r ;) (4)

Here, Voo(gi) is the reference potential V, at location rj calculated for
time t from the orbit determined at step 3 plus the reference potential
Vo3 T(roi) is the "disturbed" potential on the reference sphere rpj,
negligibly different from that at rj; and Sri(T) is the difference of the
actual location of the satellite from that obtained using the reference

potential Vo'
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The "calculated" acceleration AEC(t) is:

(F-1)(r;-1,)

Arc(t) = |51'521 = (VV]_-VVZ)-(El-!Z)/rlZ’ (5)
using astronomic/geodetic sign convention,
B, =, (6)

The figure is a sketch of the geometry, in which dry and Y have been
greatly exaggerated compared to what would exist in the actual system.

131 reference surface
N> ~

We thus can write in the plane defined by the Earth's center of mass 0
and the two satellites:

v v
2 - _1 X2
Arc(t) = [rl 3% sin @y X 5% sin aZ]
v av
+ -a—r—-cos ot1+aT-cos uz
om sinaloaT(ro,wl) Si““zo,aT(ro’wz)
= BE ARY Y “r 3
10 20
v 3. 8T, 9T, . '
+ [3-00) 157~ +5;71 4D, {gsr, (1)} -D, {gsr (D)} ™
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where
br o =Dy (o) -0y Woy)s ®
the operator

sinisy 3 i ?
i = ri '-3E+ (-1)" cos Oti—a-r—i, 9)

and the subscripts on aj,, rj, denote dependence on the orbit calculation
using the reference potential V, at step 3. (Given rj, rp, determination
of the orientation of the 0-1-2 plane necessary to get 3V;/3y from 3vy/3d
& 3V/dX is a problem of spherical trigonometry, while oy oj are obtained

from ry, Ty, T35, etc.).

For an orbital span T one can write the disturbing potential T(t) as a
Fourier series in time. Then for the horizontal derivatives

oT

_ Ll ot

3 n, ot (10)
where

o = tau/rt? a1

However, the radial derivatives 3T/3r and the orbital perturbations 6r(T)
cannot be evaluated from T(t) because this representation is not harmonic:
i e., not a solution of v2T = 0. Hence the 3T/3r and 6r(T) terms in (7)
must be set zero, and a determination of the Fourier coefficients for T
made by least squares from the residuals A;d-AfC In complex notation

0"
T=] 1 " (12)
w
sina sina
Ar,-Ar = Lo —2
d co T oY1 r Yy-2
1 2
. iwt iwt
227 wle 1-—e 2y (13)
n ©
ow

Not determined by this procedure is an additive constant Tpj, where the
subscript j pertains to the orbit. If the duration T corresponds to a
half revolution m/n, pole-to-pole, then in a single such durati.n nothing
would be learned to discriminate east-west variations of the fie d from
north-south. Also for w<<1/6ty = no/dw, the determination of T, will be
weak., Con.ideration should be given to a priori variances, since these
low frequency terms will be the best known in the reference fi 1d V.

7. Determine orbital additive constants for potential corrections.
Using the Iocations r,i, from a set of orbits j a globa set of corrections
to poten:ial T;(ry,,¢ A) is obtained. Next an adjustment must be made from
_condition equations at orbit crossings to determine the additive constants
Toy for eac . orbit. The adjusted set T(r, ¢,A) w 11 st1ll have a global
uninown additive constant, which should be set. so as to make the global
mean zero.
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8. Harmonically analyse the global field T(ro,¢,A) to determine
whether the corrections to the reference field V implied thereby are
plausible. If they are, a new reference field should be generated by
adding T to V, and steps 2-7 iterated Hence at each iteration the 3T/ 3r
and 6r(T) from the previous itera'ion are used, in effect. For the calcu-
lation of 6r(T) a spherical harmon‘c analysis of T is probably most
efficient. However, the 3T/dr may require a considerably higher degree,
so consideration should be given to inverse Stokes' integrations of the
residual potential over limited caps.

At UCLA, we are undertaking a simp‘'e simulation to improve insight and
procedures. A total potential V = V,+T is calculated from a limited
number of spherical harmonic coefficients. The or its are assumed to be
polar and circular plus perturbations &r as_calculated from V. The A§.o
are calculated from V, using (8), but the Arq are crlculated from the
complete potential V. After procedures are developed to recover the cor-
rection T from simple cases, the work will move to more complicated
situations.
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ORBIT DETERMINATION METHODS USED IN THE SATELLITE

GEODETIC OBSERVATORY

I. Almar - Sz. Mihdly - T. Borza - J. Adam
Satellite Geodetic Observatory

Penc, Hungary

Abstract

The Satellite Geodetic Observatory of the Hungarian Insti-
tute of Geodesy and Cartography is adopting and developing dif-
ferent programs of satellite orbit determination connected
with its tracking activity /phqtographic, laser and Doppler ob-
servations/.

The PREDICE prediction program is used in laser tracking
of geodetic satellites. It serves also for the improvement of
certain orbital elements.

Different short-arc programs have been developed for sta-
tion positioning. The SAMULPO program, which is based on a
first'approximation orbit by PREDICE, makes use of synchronous
laser and photographic observations to improve the original
3 vector-components in several points of a short arc. The re-
sult is utilized to derive coordinates of another laser station
observing simultaneously /FOTOLASER method currently in use in
the Intercosmos countries/.

Another short-arc program, called SADOSA, serves the pur-

pose of Doppler positioning by multilocation. It enables the
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user to provide rigorous geodetic adjustment of coordinates of
up-to 15 stations.

Among the unknowns the positional and velocity bias para-
meters of every orbit are also determined. Either range diffe-
rences or pseudo-range equations can be used. The coordinate
system can be defined optionally. The SADOSA program which
forms a part of a research agreement between JMR Instruments
Inc, California and the Satellite Geodetic Observatory provided
practical results in the first We;t-East Doppler Observation
Campaign in 1980 as well as in national and international
network computations.

Several programs were developed to investigate the con-
nection and transformation between different geodetic coordi-
nate systems. These programs are used mostly in the interpre-
tation of station coordinates determined by different technics
as well as in orbit determination and geodynam}cal investiga-
tions. '

Finally it is emphasized that the Satellite Geodetic
Observatory is ready to serve as a monitoring station of geo-
detic satellites providing continuously precise observations

in order to improve orbit calculation methods and procedures.
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EFFECT OF UPPER ATMOSPHERIC VARIATIONS ON

SATELLITE LIFETIMES

E. M. Both
Observatory of Hungarian Academy of Sciences

Baja, Hungary

Without any perturbations an Earth satellite would re-
main on a Keplerian orbit endless. Of the perturbing forces
of different origin, atmospheric drag causes a secular de-
crease of the semi-major axis and orbital eccentricity, so
satellites have finite lifetimes.

The theoretical lifetime of a satellite (L) can be deter-
mined by King~Hele's formulae, as a function of orbital decay
rate (%). The latter can be derived either from observations
or from any atmospheric model, Determining L for decayed sa-
tellites and comparing this to the observed lifetime, we may
not get any difference, However, there are such systematic
differences because of the exactly unpredictable variations
in the Earth’s atmosphere. The systematic errors enabled us
to demonstrate the effect of ll-year, semiannual and 27-day
variations on satellite lifetimes,

First we examined the dependence of King-Hele’s formulae
on orbital elements and atmospheric-parameters, We can state,
that L depends mainly on orbital eccentricity and perigee

height. The exact determination of the mass/area ratio of the
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satellite is also of great importance. Comparing these results
to the observed lifetimes of nearly 1000 satellites we exper-

ienced a good agreement, especially in the case of some groups
of satellites of the same mass, shape and size.

Demonstrating the ll-year cycle we used 48 satellites of
the same type, and their rockets. The satellites had nearly
the same orbit. The L values showed a strong correlation with
F, the weighted mean of F solar decimeter flux. The error of
computation, i. e, the difference between computed and ob-
served lifetimes showed no correlation with ¥, This proved,
that the ll-year variation can be considered as a variation
of the exospheric temperature, and this effect is taken into
account satisfactorily by King-Hele'’s method.

The semiannual effect could be demonstrated in the case
of 13 satellites, for which a long series of orbital elements
was available. The relative error of lifetime determination
showed strong correlation with density variations. Correcting
the observed } values by the semiannual density variation
ratio of CIRA-72 atmospheric model, the correlation ceésed.
This proves that King-Hele’s formulae do not take into account
the semiannual effect.

The same situation ‘is at 27-day cycle. The relative er-
rors show strong correlation with F index, characterizing the
active area component of solar radiation. Applying a 27 day or
longer running mean, the corgelation coefficient decreased,
while the correlation with F increased.

Summarizing the results we can establish, that King-Hele's
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method for satellite lifetime determination can be improved
by using a semiannual correction of any upper atmospheric

model and by the use of a running mean for at least 27 days.

References

1. Both E,: The study of the Earth’s upper atmosphere by the
use of satellite lifetimes (Ph.D. dissertation,1981)

2. CIRA-72 atmospheric model (Akademie-Verlag Berlin 1972)

3. Jacchia, L. G,: Thefmospheric temperature, density and com~
position: new models (SAO Spec. Rep., 375. 1977)

4. King-Hele, D. G.: Theory of satellite orbits in an atmo-

sphere (Butterworths, London 1964)



- 141 -

DYNAMIC PROCESSES IN BINARY SYSTEMS

L Patkéds
Konkecly Observatory
Budapest, Hungary

Abstract

According to the theory of the evolution of close binary sys-
tems the initially more massive component fills up the Roche
lobe in the course of its evolution, and mass transfer is start-
ed. It usually proceeds in two steps. In the rapid phase the
mass ratio is more than reve sed. The subsequent evolution pro-
ceeds on a slow, nuclear time scale while the originally more
massive, but now less massive star continues to give further
masses to the other component.

The eclipsing binary star SV Cam has been observed with the 50
cm Cassegrain telescope of KRonkoly Observatory’s Mountain Sta-
tion since 1973. Analysis of the obtained UBV light curves shows
the system to have three interesting peculiarities. First of
all there is a migrating distortion wave which is characteris-
tic of RS CVn type stars. This wave is caused by dark spots cn
the surface and it migrates towards increasing orbitai phase
on the light curve because of the differential rotation of the
stars. Flare activity in connection with the spotted region -
as- the second peculiarity - was also observed.

Moreover, a large-scale dynamic process also seems to exist in
the system. Judging by my Observations the starspot-activity

of SV Cam was at its minimum at the end of the year 1974. There
were no spots present, an undistorted "normal" light curve
could be observed. This was confirmed by another observation

a month later. Yet a further month later a brightness increase
of about 0705 between phases 0.25 and 0.65 appeared. The exist-
enée and the shape of this brightness increase were confirmed
by another observation four days later. On the light curve ob-



- 142 -

tained two months later the light-up had almost disappeared,
but remains of it were still recognizable between phase 0.45
and 0.55.

An analysis of the times of minima obtained between 1964 and
1981 /among them more than 50 personal observations/ shows
that there is a break in the O0-C curve at the beginning of

1975. The direction of the break indicates a period increase.
For a conservative system it means that the smaller secondary

component gave mass to the primary.

The observed phenomena could be interpreted as follows: The

secondary star of the system was in its quiet star-activity

phase at the end of 1974. This tranquil phase was suddenly in-
terrupted by the appearance of a stream of gas which landed on
the surface of the primary causing a hot spot there. That the
light-up originated from an area hotter than the stars them-
selves was confirmed by the B-V and U-B curves. The simul-
taneous appearance of dark spots on the surface of the second-

ary marks the beginning of a new starspot—-activity cycle.

The appearance of the new distortion wave was later confirmed
by further observations. Even the migrating direction was the

same as for previous waves.
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ROLE OF RANDOM FORCES IN STELLAR DYNAMICS

L.G. Balazs

Konkoly Observatory - Budapest - Hungary

Abstract

Our Galaxy contains some 1011 stars and diffuse materi-
al. A mechanical description of the stellar component would
require the solution of a system of some 1011 second order
differential equations. There are several approximations that
can be utilized to solve this problem: numerical integration, numerical
simulation, and the statistical approach. The force experi-
enced by a star has some stochastic nature and so has the
motion itself. The random effects of star - star encounters
probably do not play an important role in the life of the
Galaxy but cooperative phenomena and encounters with huge
clouds of diffuse material and stars may be very.significant.
The time derivative of stochastic processes in the equation
of motion is interpreted by mean square differentiation. In
the case of harmonic motion the approximate solution, which
"is consistent with observations is a random walk. In time
scales longer than some 108 years -one probably cannot avoid

taking into account the effect of random forces.

Our Galaxy is a highly complex system in which widely
different processes are going on :at the same time. Such
processes are: the shaping of the spatial distribution of
the matter of our stellar system, mechanical motions of many
Jkinds, star formation, the building up of chemical elements
and, at least in one case, biological evolution. If we re-

strict ourselves to describing the spatial distribution and
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motion of matter of our Galaxy then we describe it as a me-

chanical system in terms of the laws of mechanics.

The Galaxy as a mechanical system

The main interaction in our stellar system, as in gen-
eral in the world of cosmic bodies, is the gravitation keep-
ing together the different components of our Galaxy. The main
component is represented in the form of some 1011 stars mutu-
ally interacting gravitationally and besides these we find a
few per cent of diffuse material, gas and dust and, probably,
matter of an unspecified nature ("black dwarfs", massive neu-

trinos, etc.).

A mechanical description of the stellar component re-
quires our solving a system of second order differential
equations in the form of

n
X, = =— L ¢,. +F i=1,2,.....40n (1)
# i

and similar equations for the Y and Z coordinates. In these

equations Qij' Fx , n mean the gravitational interaction be-
i

tween stars, between stars and the remaininglpart of the
system, and the number of stars, respectively. We may add
further equations to this system describing the mechanical
behaviour of the remaining parts which are coupled to the
equation of motion of stars by perturbing forces of Fi It
is obvious in the case of stars that the integration of 10
unperturbed equations of motion is a hopeless task. Until
now one has integrated such systems numerically up to n be-
ing approximately a few thousand (harseth et al. 1979). Nu-
merical simulations (Miller 1978) proceed in n much further:
one divides the space into célls by a spatial grid and a-=-
voids the problem of close pair encounters by assuming that
two stars in the same cell do not interact with each other.
In this way the influences of long range forces are treated.

These numerical methods have resulted in significant suc-
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cesses in studying the mechanical behaviour of stellar sys-=
tems, At the same time however, they set up a difficult
problem: To what degree do the solutions represent the me-
chanical behaviour of the real Galaxy? To answer this ques-
tion we need to study other independent descriptions of our
stellar system and to compare them with the results of numer-
ical methods.

Suppose we have a system of particles interacting
gravitationally. Now we may ask: Is it meaningful to look for
the probability of finding a star in a given volume of the
6 dimensional phase space? The answer of statistical mechan-
ics is yes and we can get dN, the expected number of ob-
jects in a unit volume, from the expression:

dN = Nf(pi,qi,t)dV i=1,2,3 (2)

where N,pi,qi,t,dv are the number of objects, the impulse
coordinates, the spatial coordinates, the time and unit vol-
ume in phase space, respectively and f(pi,qi,t) is the
probability density function. In general the objects have
different masses. Therefore f(pi,qi,t) can be decomposed in the
form of

£(py,q;,8)=/£(p;,qstim) g(m) dm @)

where f(pi,qi,tlm) is the probability density function sup-
posing that mass (m) has a given value and g(m) is the
function characterizing the distribution according to m. We
can now interpret the spatial mass density by the expres-

sion:

o(qi,t)= N f/mf(p;,q;,tim) g(m) dmdp (4)

Using this density we can define a gravitational potential
by the Poisson equation:

ab= -49G (o + 0y) (5)
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where G and pq are the gravitational constant and the den-
sity of the diffuse material, respectively. The bar over ¢
discriminates this potential from the true potential of the
Galaxy which is "grainy" because of the presence of stars.
The statistical description of our stellar system means the
finding of the probability density function in phase space

or its moments. The statistical approach has the advantage
that is works well even in the case of a very large number of
objects.

Motions in a smoothed field

The mass density introduced in the preceding paragraph
may be treated as the smoothed density of stars belonging to
the same unit volume. The potential therefore defined by this
smoothed density is a smoothed version of the true potential.
The task of stellar dynamics is to find a solution to the
equations of motion in this smoothed graviational field or
in other words to solve the following system of second order

differential equations
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; (6)
The solution, in general, is very complicated and needs nu-
merical methods. In some limiting cases, however, we can get
rather simple analytic expressions.

If the star moves on a nearly circular orbit around
the centre of our Galaxy and the inclination of the orbital
plane is small then the motion perpendicular to the galactic
plane is harmonic and epicyclic in the galactic plane. The
epicyclic motion means harmonic motions in radial and tan-
gential directions relative to a point (the so called ep-
icentre) revolving around the centre of the Galaxy at the
star's mean distance to the tentre and with its orbital pe-

riod.

By a statistical description we have tried to con-
struct the probability density function in phase space.
The probability density function, however, relates by e-
quation (2) to the expected number of stars in a given u-
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nit volume. The true number of stars generally deviates
from this expected value and this deviation also has a
probabilistic nature. The true gravitational potential re-
lates to this true density by an equation similar to (5).
Additionally, matter does not fill the unit volume uniformly
because it is mostly condensed into stars and the distribution
of diffuse material is uneven too. All these have the conse-
quence that the deviation of the true force field from the
smoothed field has some probabilistic nature. It means that
we can not predict exactly the force acting on a star at a
given moment. The force experienced by a star in the course
of time, therefore, is a stochastic process and so is the
motion itself. Before entering into the details of mathemat-
ical description of stochastic forces it is worth estimating

their significance in stellar dynamical problems.

The nature of random forces

The most striking difference between the smoothed and
true distribution of matter in the Galaxy is the "grainness"
caused by the presence of stars. The dynamic influence of
the "grainy" structure of the potential field is generally
studied by means of star - star encounters which is a common
topic of textbooks dealing with stellar dynamics. Even a
very crude model is sufficent for estimating the order of
magnitude of the dynamic effects of star - star encounters
(see e.g. Woltjer 1967).

Let a star with a mass m encounter another star having
a mass M. Let the initial velocity and impact parameter be
equal to v and D, respectively. As a consequence of en-
counter the star will have a velocity component perpendicular
to the initial velocity. The duration of encounter (T), the
deflecting force acting on the star (F), and the velocity
increment (AVl) can be estimated by the following formu-

lae:
T -~ 2D/V
F - GmM/D?
AVL1 ~ 2GM/DV (7)

(The meaning of these quantities is displayed in Fig.1)



Figure 1

Due to the encounters the average kinetic energy associated
with V.1 steadily increases. By definition the time required
to equal the kinetic energy of motion in the direction of de-
flection with the initial kinetic energy is call d the time
of relaxation. Using the simple formulae given above for T,

F and AVl the time of relaxation (Tr) can be written as

T = V3
x 2
871G "MplnA

(8)

where A = Dmax/Dmin and p = mass density of perturbing
objects. Assuming that the perturbing objects are common pop I.

12 _ ,,18

disc stars Tr= 10 10 years, in the disc of the Gal-

axy. This time is 2 - 3 orders of magnitude greater than the
1010 years age of our stellar system. The effect of star-

star encounters, therefore, can be neglected. The situation
changes drastically, however, if we insert massive clouds in-
stead of stars in place of the perturbing bodies (Spitzer,
Schwarschild 1953). Assuming M =~ 106M® and p ~ O.O1M@/pc3 we

can get Tr ~108 years.

Besides the effect of encounters the so-called coopera-
tive phenomena such as streams, waves, instabilities contrib-
ute to the relaxation processes as well (Lynden - Bell 1967) .
In the next paragraph we shall give a more rigorous mathemat-
ical treatment of the effect of stochastic forces on the mo-

* tion.
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Mathematical description of the effect of stochastic forces

As it was mentioned in the preceding paragraph, if we
were to insert stochastic forces in the equation of motion
the motion itself would also become stochastic. Originally
the equation of motion contained normal functions of time
(explicit or implicit) and their time derivatives. If the
motion has a stochastic character then we must interpret
the time derivative of a stochastic process. One of the pos-
sible interpretations is the so-called mean square deriva-
tion (see e.g. Soong 1973).

By definition

lim lix(t + 1) -x (t) Il /1= x(t) (9)
-0
where || x (t) Il = E{x (t)2} and E{ } means the expected

value. This definition has the very suitable property

n n
e @ 2EL . 4 e (10)
dt dt

It means that the derivation and the operation of expected
value are changeable. The time derivative of mean motion,
therefore, equals the expected value of the stochastic time
derivative of the real motion.

It was mentioned already that in the case of orbits
with small eccentricity and inclination the motion is decom-
posed into harmonic motions. It is worth while, consequently,
to investigate how stochastic perturbation affects the motion
in a harmonic force field In the one dimensional case the
equation of motion is

¥4 wlx =y ) Coan

where w equals the frequency of unperturbed motion and Y is
a stochastic force having the properties:
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E {Y(t)} =0
and (12)
E {Y(t) ¥(s)} = ryy(t—s)

The first property means that Y describes only the deviation
from mean force, thought to be harmonic, and the second prop-

erty expresses the stationarity of Y. The solution is given

by the very plausible formula of 4
t
x (t) =/ h (t-s) ¥Y(s) ds (13)
o

where h (t) is called the impulse.response which is the solu-
tion of the deterministic equation with Dirac's delta pertur-
bation

Bo(t) + w?h (£) = 6 (t) (14)
assuming t20, h(o) = 0, h(o) = 0.

The first property in (12) leads to E {x (t)} =0

and the standard deviation can be expressed in the form of

2 2 tt :
9y = E {x (£)°} = //h(t=u)h(t-v)T__ (u-v)dudv (15)
0o Yy

An approximate evaluation of the integral in (15) is possible
if Syy(m), viz. the power spectral density of Y (t), is
relatively smooth with no sharp peaks. Under these condi-

tions (15) reduces to

S (w)
oi (0) = § X (20t - sin2ut) (16)
w

or in the case of large values of t to

S, (w)
o2ty = 3 X ¢ (17/a)

w



and similarly

IR

] g ' (17/b)
)-((t) P Syy(w)t /

Expressions (17) show that the standard deviation of coor-

dinates and velocities grows monotonically in the course of
time as in the case of random walk. In the next paragraph we
shall discuss how these predicted effects will be recognized

by observations.

Observational evidence of random forces

Formulae (17) can be tested in terms of observations
if we have objects in our Galaxy for which age, spatial po-
sition, or velocities are available, Such objects are open
clusters and nearby stars. In Figure 2 the dispersion of dis~-
tances form the galactic plane is displayed as a function of
time in the case of open clusters. Figure 3 shows the in-
crease of velocity dispersions of nearby stars in the course
of time. As one can infer the points displayed in Figure 2
and 3 can be fitted very well by 'straight lines correspond-
ing to (17).

62 _
km'
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Fig.2. Dispersions of distances from Fig.3. Increase of dispersions of ve-
the galactic plane as a function of locity camponents perpendicular to the
time in the case of open clusters. galactic plane as a function of time
Each point represents 20 clusters. in the case of nearby stars.

(Data fram LyngS 1980) (Data from Wielen 1977)
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As is well known, star formation takes place near to
the galactic plane and the newly born stars have nearly cir-
cular orbits and small velocity dispersions. It means that
even at t = 0 the dispersions do not vanish. The measured
variances, therefore, consist of two parts: the initial dis-

persion and an increment described by formulae (17) .

At this point we need to reflect on an important prob-
lem: Is the ob:erved increase of dispersions really caused
by random forces or are there other physically completely
different phenomena leading to the same observable result?
Following Wielen (1977) we shall consider three possibili-

ties for the increase of dispersions:
1. variation of typical velocity at birth,
2 acceleration.by global gravitafional field,
3. acceleration by stochastic fluctuation of forces.

As to the first possibility it seems probable that the con=-
ditions in which stars are born today are different from
those at the early phase of our stellar system. This means
that the longterm variation of dispersions could be ex-
plained but it is difficult to believe that this effect

could account for the rapid increase over some 108 years.

The second effect, on the contrary, is capable of explain-
ing the short term incrase in the dispersions but, as compu=
tations have shown, it is insufficient for longer time scales.
The best explanation appears to be the third possibility. In
this way we may conclude that when describing the dynamic be-
haviour of our Galaxy in time scales longer than some 108

years one must take into account the effect of random forces.
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DYNAMICS OF GALAXIES

R. H. Miller

University of Chicago, U S A

Abstract

A large computational project to study the dynamics of
galaxies has been in progress at NASA-Ames Research Center in
cooperation with Dr. Bruce F. Smith for the past 5 years.
Galaxies are represented as self-consistent self-gravitating
batches of particles whose responses are computed in a fully
three-dimensional n-body treatment using 100 000 particles.
Results are frequently unexpected and usually differ from
prior guesses. The principal discoveries from this work in
the past few years include: (1) Demonstration ‘that "cold"
axisymmetric disks, like our Galaxy, are dynamically
unstable; (2) Discovery that a prolate bar, rotating end-
over-end in space about a short axis, is the dynamically .
preferred form for rapidly rotating stellar systems;

(3) Discovery of sharp contractions of both members as two
galaxies pass near each other in a galaxy collision. This
sharp contraction precedes the "explosion" of the galaxy and
is responsible for most of the dynamical effects seen
following a collision; (4) Demonstration that the intermal

dynamics of a galaxy in a cluster of galaxies is affected on
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the timescale of the cluster crossing time; (5) Discovery
that tidal braking of galaxies rotating in the force field
of a cluster of galaxies can account for the observed slow
rotation of elliptical galaxies; and (6) Demonstration that
perturbations present as the Universe becomes matter-

growth rates to 1—2% accuracy, and that fluctuations

lO-u to 1077 at decoupling are sufficient to produce
present-day galaxy clusters and superclusters. Results from
these numerical experiments are usually so complex that
motion pictures are the only practical way to understand the

dynamics. Motion pictures were shown for two experiments.

Collisions of Disk galaxies in massive halos:. Each halo is

represented by 50 000 particles in a self-consistent steady-
state galaxy model. Disks, like the halos, are represented
by particles. Disk particles orbit along circular paths
centered in the halo potential. The initial disks represent
only 1% of the mass, but contribute all the light. Two
disk-halo combinations are thrown at each otﬁer along a
specified orbit. Several experiments with different initial
orbital parameters (parabolic, hyperbolic, different initial
orbital angular momentum) are shown, with different disk
orientations. Disk and halo particles are distinguished by
different colors in the film. Disks rapidly distort into
barlike forms in collisions with the disks initially ir the
orbital plane. Damage to the disks is about equally severe

whether the disks rotate prograde or retrograde to the
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collision. With initial disk normals along the line between
the two initial halos, rings form in the disks even at
surprisingly large impact parameters.

Gravitational Clustering of Galaxies in an Expanding

Universe: Smaller perturbations to the initial state and

integrations that represent greater total %xpansions can be

obtained with the galaxy ¢_namics programs than have been
possible previously. Forms that look like present-day
galaxy clusters and superclusters develop naturally from a
wide range of initial conditions. Large empty regions
between the superclusters, giving a cellular appearance, are
characteristic of the well-developed final states. This
lends support to the idea that present-day clustering
developed through gravitational processes, but it implies
that present-day clustering does not carry much information

about details of the Universe shortly after decoupling.
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ON THE OBSERVATIONAL VULNERABILITY OF THE MODELS
FOR THE GALAXY

B. A. Balézs

Department of Astronomy, E6tvos University
Budapest, Hungary

Abstract

Any scientific model must be as simple as possible and
vulnerable by measurements or observations. Herein some poss-
ible ways of checking the models for the Galaxy are discussed.

In contrast to Kapteyn’s distorted, small and "helio-
centric" galactic system, the models of Oort and Schmidt are
the first successful quantitative attempts to model the Galexy
(see References 1-2). The fundamental new data and ideas en-
tering into these models are of dynamical nature and concern
the gravitational force perpendicular to the galactic plane
and the differential galactic rotation. The basic idea behind
this set up is that, collectively, the motions of the stars
make up the dynamical structure of the galactic system, which
in fact determines the system’s geometrical structure asnd its
evolution.

In the last 20 years or so authors were making more
and more frequently use of e sizeable number of analogies
between our Galaxy and similar extragalactic systems. It

stands to reason that the basic parameters and properties of
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any model for the Galaxy must comply with the rotation curves,
surface brightness distributions, scale lengths, mass/luminos-
ity ratios and other caracteristics of similar stellar sys-
tems. For detailed discussions the excellent model of Ref. 3
is selected because practically all the significant parameters
and predictions of this model can be checked by observations
feasible with the aid of contemporary estronomical technics.
As far as the applicatibn of star counts to the determi-
nation of galactic structure parameters is concerned, using an
analytic smooth curve approximation of the empirical luminos-
ity funétion and an exponential disk plus a de Vaucouleurs
spheroid for the global distribution of matter the variations
of the calculated star densities with apparent magnitude, lati~-
tude and longitude agree well with the star count dats avail-
able for the observationally thoroughly covered range of
4 £ Oy 2 22, The luminosity function may increase strongly
outsids the available empirical limits. If the logarithmic
slope ~f the increase is around the not unreasonab e value of
0.2 dimwards of 16 absolute magnitude, the increment in counts
to 21 mag is negligible, but we can count with an approx. 20%
increase in the total counts up to 28th mag. The further ex-
tension of the empirical luminosity function is therefore very
important for checking galax models. This is one of the rea-
sons why the multicolour observation of the luminosity dis-
tribution up to the faintest stars in quite a number of
properly selected galactic clusters is planned with the aid

of the 6 m telescope (in the framework of an eastern european
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multilateral cooperation called "Stellar Physics and Evol-
ution").

Making use of dinamical considerations similar to those
introduced by Oort and the empirical rotation curve of our
stellar system (see Reference 4), it is possible to show that
the observational data require the existence of a third major
mass component in the Galaxy. On the one hand the computed ro-
tation curves of all the two-component models of the Galaxy
fall monotonically beyond 12 kpc, while the empirical one (see
References 3-4) is flat to at least 25 kpc, on the other there
is an irreconcilable difference in the circular velocity of
the sun, which can be derived empirically from the solar mo-
tion with respect to the local group of galaxies (see Refer-
ences 4-5), halo stars and also from the escape velocity
suggested by peculiar velocities in the solar neighbourhood.
The observational restrictions do not allow such low a value
as 170 kms'l, which is the maximum rotation velocity of the
standard two~-component model. These discrepancies can be re-
moved by invoking a third mass component of the Galaxy: a
massive halo the stellar content of which is esseptially de-
tectable by observations up to M= 28. (The halo can make
only a small contribution to the star counts in the currently
available data region my £ 21.) It is therefore expected, that
the existence of a massive.halo (with a mass of approx.
5.1011M®) will be confirmed or disproved in the near future
by direct (primarily Space Telescope) observations. (See

References 6-7.)
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In the concluding part some problems concerning the
models for the spiral structure of our Galaxy are discussed
having regard for the circumstance that at the present time
only the density wave theory of C. C. Lin has been developed
toward a coherent model to provide a quantitative viewpoint
from which it is possible to explain the spiral pattern (see
Reference 8). From the model parameters the value of the gal-
actocentric distance of the sun (RG) and the angular pattern
speed (flp) is discussed. The so called standard TAU value of

R@ is 10 kpc but in the last years there is a strong tendency

to correct it downwards (see References 5, 9-13). Herein

RO= 7 kpc is preferred. As far as the angular pattern speed is
concerned,()p is usually chosen so that the corotation radius
defined by C)(R,) =Q_p is equal to the distance of the outher-
most visible H II regions to the galactic centre (see Ref. 14).
It is possible to check the result of this procedure on an in-
dependent way using young open clusters ( T<3.2 1O7y) as spiral
tracers and moderately old ones (T<108y) as indicators of the
pattern speed (see References 15-16), which turns out to lie
somewhere between 33 and 36 km/s/kpc i. e. considerably larger
than the value originally accepted (see also References 17-22).
Therefore not the outhermost H II regions, but the stars in the
solar neighborhood lie in the zone of corotation and the spiral
waves propagate from the center to the periphery in the Galaxy,

quite in accordance with the results of Reference 23.
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