

SOFTWARE FOR PROCESS CONTROL
SURVEY

PREPARED FOR THE 4TH INTERNATIONAL IFAC/IFIP CONFERENCE
ON DIGITAL COMPUTER APPLICATIONS TO PROCESS CONTROL

by
Dr. Janoa Gert1er

Computer and Automation Institute, Hungarian Academy of Sciences,
Budapest, Hungary

Dr. Jan Sedlak
Institute for Industrial Management Automation (iNORGA),

Prague, Czechoslovakia

Published by the Computer and Automation Institute,
Hungarian Academy of Sciences, Budapest Hungary.

w C» Ä
'r

Késiül! a * OMKDK loksiorosltó Ölemében
F. Janocb Gyula

This paper is an attempt at presenting a survey on Software for Process
Control. Realizing the extreme extent of the field, the authors intended
to concentrate on the most relevant subjects and adopted the following
structure :

1. General properties of process control software
1.1 Specialities of process control computer applications
1.2 Structure of process control software
1.3 Preparation of process control software projects

2. The present status of process control software
2.1 Real-time executives
2.2 High-level general-purpose process control languages
2.3 Application packages and problem-oriented languages
2.4 Man-machine communication software

3. Servicing of process control software

4. Standardization.

Work was shared according to the authors’ experience and interest. Thus
Sections 1. (l.l through 1.3), 2.4 and 3« were written by J.S. while 2.1.,
2.2., 2.3« and 4• by J.G .

It should be noted here that process control software is a field where
commercial interests are rather significant. The special position of the

M ■/-* *
I U O O M A x . "M>L*ua

KÔMïTTÀM

3

1. GENERAL PROPERTIES OF PROCESS CONTROL SOFTWARE
In this introductory section, some general properties of process control
software will be dealt with, like

1. Specialities of process control computer applications
2. Structure of process control software
3. Preparation of process control software project.

1.1 Specialities of Process Control Computer Applications
Generally speaking, industrial control systems can be built on the
following five levels:

1. Long term planning and strategic management
2. Management and data-banks of industrial systems
3. Order handling and production planning
4- Operative production control
5. Process control

The use of computers in this third application area, especially on
the last two levels, brings in a store of new problems, in compari­
son with the two classical application areas. These areas are the
wellknown scientific and engineering computations (sec) and auto­
matic data processing (adp) . Table 1 presents a short comparison
of some traits pertaining to algorithms and computing techniques in
the three observed areas. It is concluded that the progress rate in
a computer application area is determined primarily by the
algorithmic knowledge and by the level of algorithm formulation^
Secondarily, other factors follow, among them especially the capab­
ilities of the computing techniques (i.e. hardware and software) to
fulfill all the requirements laid by the respective application
area.

The development of industrial control systems shows the following
main strides:

- securing the computer-plant-computer feedback information flow
- formulating timing correctly, in order to control the plant in
real-time (to ensure the correct time-pace of control)

- ensuring the required ordering of control programs by means of
multiprogramming, based on dynamic priorities and time require­
ments

- processing possible interrupts in the control system caused
outside the computer *

- ensuring the continuous (24 hour) performance of computer con­
trol

authors made it possible to take a most unbiased approach.

4

TABLE 1. CHARACTERISTICS OF THE THREE COMPUTER APPLICATION AREAS

No. OF
ITEM

CHARACTERISTIC
PROPERTY

SCIENTIFIC AND
ENGINEERING COMPUTATIONS

AUTOMATIC
DATA PROCESSING

INDUSTRIAL
COMPUTER CONTROL

1. ORIGIN 1950 1955 1962
2. LEVEL OF ALGORITHMIC

KNOWLEDGE
VERY HIGH LOW,WITH SUBJECTIVE

ELEMENTS
VERY LOW

3. FORMULATION OF
ALGORITHM

CLEAR HETEROGENEOUS NOT CLEAR

4. SURROUNDINGS OF
ALGORITHM

SMALL LARGE LARGE WITH FEEDBACK

5. INFORMATION FLOW SLIGHT SIZABLE SIZABLE OF TWO TYPES:
MAN - MACHINE
MACHINE - PLANT

6. WORK WITH DATA BANK NO YES YES
7. ALGORITHM STRUCTURE SEQUENCE OF PROCEDURES

PROCESSED IN SERIES
PARALLEL PROCESSING
OF PROCEDURES

PARALLEL PROCESSING OF
PROCEDURES IN REAL-TIME

8. RESULT OF ALGORITHM SIMPLE (OFTEN A SINGLE
VALUE)

COMPLICATED
(tabulation)

CONTINUOUS WORK OF
ALGORITHM WITH RESULTS AT
DISCRETE INSTANTS OF TIME

9. TYPES OF PROGRAM SINGLE PROGRAM SYSTEM OF USER PROG­
RAMS CONTROLLED BY
OPERATING SYSTEM

- MAN - MACHINE
- MACHINE-PLANT
- DATA PROCESSING,

COMPARISON WITH A
MATHEMATICAL MODEL

- OPTIMIZATION
THE FOUR TYPES OF PROG­
RAMS ARE CONTROLLED BY
RE.T.L-TIME EXECUTIVE
SYSTEM (CONTROL PROG­
RAM)

O '

10. TESTING OP PROGRAM STEP BY STEP,USING TEST
EXAMPLES WITH INTER­MEDIATE RESULTS

11. TUNING OP ALGORITHM

12. COMPUTER

13. PROGRAMMING TECH­
NIQUES

14• PROGRAMMING LAN­GUAGES

15. OPERATING SYSTEMS

16. FUTURE OP
PROGRAMMING LANGUAGE

FINDING THE OPTIMUM OP
CALCULATION SEQUENCE

RAPID PROCESSOR,FLOATING
POINT ARITHMETIC

SATURATED

FORTRAN IV
ALGOL 60
PL/1

NOT RELEVANT

ALGOL 68,
PL/1

SUCCESSIVE:
- SUBALGORITHMS
- GROUPS OP ALGO­
RITHMS

- WHOLE SYSTEM

SUCCESSIVE ADAPTATION
OP THE TESTED PROGRAM
POR REAL EXPLOITATION

MODULAR STRUCTURE OP
BASIC COMPUTER + PERI­
PHERAL EQUIPMENT WORK­
ING WITH ONE TYPE OP
INTERFACE,
MULTIPROGRAMMING

SATURATED

JOVIAL
COBOL
PL/1

YES, WORKING ON THE
BASIS OP PRIORITIES;
BACKING STORE
ORIENTED

PL/1 (n e w additions)

STATIC: SUBALGORITHMS,
POUR TYPES OP PROGRAMS
(зее 9)
DYNAMIC: SUCCESSIVE
REAL-TIME TESTING OP
CONTROL PROGRAMS WITH
POUR TYPES OP PROG­
RAMS, USING THE MODEL
OP THE PLANT
AFTER CONNECTION OP THE
INDUSTRIAL COMPUTER SYS­
TEM TO THE PLANT,ANOTHER
CHECK AND EVENTUAL COR­
RECTIONS OF THE SELECTED MATHEMATICAL MODELS,PLANT
CONSTANTS,ETC.
MODULAR STRUCTURE OP (OR MORE THAN ONE) PROCESSOR
+ PERIPHERAL EQUIPMENT
WORKING WITH ONE TYPE OP
INTERFACE, MULTIACCESS
UNIT, DIGITAL AND ANALOG
I/O UNITS, DMA, TIMER,
MULTIPROGRAMMING,
MULTIPROCESSING
IN DEVELOPMENT

MACROINSTRUCTION LAN­
GUAGES, ADAPTATIONS OP
SCIENTIFIC AND ENGINEER­
ING LANGUAGES
YES,WORKING ON THE BASIS
OP PRIORITIES AND TIME
CONDITIONS,MODULAR STRUG
TURE (WORKING ALSO WITH­
OUT BACKING STORE)
LTPL

end. of Table 1

- enabling control optimization
- carrying out diagnostics and/or evaulation of another algorithm

when the control algorithm does not use the computer.

1.2 structure of Process Control software
The algorithms of industrial process control in most cases are
performed by four types of programs (see Table 1, item 9). These
programs are controlled by a control program (real-time executive) .
An idealized structure of such a system is illustrated in Pig. 1.
The lower modules (l,2) handle all the feedback information flowe in
real-time, i.e., they control data-exchange between man and machine
and between plant and machine. P'or writing these program modules,
symbolic-address languages and macroinstruction languages are mostly
used. These modules usually work at the top priority levels in the
multiprogramming system. Module 4 contains the mathematically
formulated algorithms to process the measured plant data, and
decision algorithms to produce qualitative and quantitative informa­
tion to be flowed from the computer into the process. Management and
construction of data base for communication with the higher levels
of the system is also included in the latter nodule.

Fig. 1. INDUSTRIAL PROCESS CONTROL PROGRAM SYSTEM

7

Algorithmic programming languages are used to write mathematical
models. For writing the decision algorithms, however, it is necessary
to chooS' a programming language which can easily describe logical
conditions and ordering. These programs are mostly evaluated on low­
er priority levels. Module 5 contains the programs which modify, onithe basie of current results, the control algorithm. These algorithms
are often adaptive in nature; they are written in algorithmic lan­
guages. Module 5 can be evaluated either off-line or on-line (and
mostly on a low priority level) or sometimes its evaluation is
called by Module 3* Module 3 controls modules 1,2,4,5* In many
systems, Module 3 is the real-time executive as provided by the
computer vendor. However, for some particular applications, the
vendor’s executive is too small (in terms of services) or too large
(in terms of overhead). In such cases, special user executives
(control programs) are written incorporating (if possible) whole or
parts of the vendor’s system.

Let us discuss now the structure of process control software. There
are well-known vendor programming systems which have reached certain
stability. These programming systems are generally noted for their
considerable extent and complexity. Exploiting them requires substan­
tially more preparation than usual with SEC and ADP systems. The in­
dividual vendor systems are now described in high-quality manuals.

195Л 6P 6,5 7p! I I I I I I I I • I I I I I I I I I I

FORTRAN

ALGOL

II.
H

IV. a n s i s t a n d a r d

BASIC FORTRAN (II.)
FORTRAN (IV .)

PRELIM REVISED58 60 62 'SO
I....I..... I------------- ■ =

ALGOL 68

PL/1
NPL P L / l I.....I-----

JOVIAL

COBOL

I------------------------------------ -- ►
EXTENDED

60 61 63 EC MA ANSI ISO STANDARD
!••••»----- 1------1---------■ i ---^

FORMAL
DEFINITION

Fig.2. COMPARISON OF THE DEVELOPMENT OF SEC AND ADP PROGRAMMING
LANGUAGES

8

While process control software of the different vendors differs con­
siderably, a stride for standardization is also experienced (see
Section 4») • Unfortunately, process control software as a whole is
still in the state of development, in comparison with the SEC or ADP
areas. Por instance, ALGOL 60 and FORTRAN in the SEC area were stand­
ardized as early as in 1964 while COBOL for the ADP area naturally
later in 1968 (see Pig. 2.) .

Within process control programming, the following components can be
discerned :

- executive systems
- programming languages
- application packages
- man-machine communication software.

These components are necessarily accompanied by support software
for testing and tuning the complicated program systems.

Executive système for these purposes have a rather unified function
today. They coordinate the execution of the various programs and
control the resources of the system, on the basis of time-require-
ments and external events. The highly modular structure of executive
systems enables to do rather efficient process control even without
peripheral memory. A more detailed description of the real-time
executive systems is included in Section 2.1.

Process control programming languages have their very hard way to
standardization. The macroinstruction languages ^ ^ , so early ab­
andoned in the SEC and ADP areas, have rendered very useful services.
It is these languages in which now, in addition to most process con­
trol programs, also the basic software for process computers (e.g.
executive systems, compilers, etc.) is mostly written. Developments
in industrial computer languages are much varied, and can be classi­
fied into the following three categories 3 ;

- adaptations of the SEC languages
- new industrial computer languages
- languages for the non-programmers (e.g., form or dialog based).

The first two trends should in no sense astonish us. They could be
observed as early as the origin of the ADP area. The third trend,
generally based on a properly chosen macroinstruction system and on
a syntactically described library of basic control algorithms, is

9

constructed in such a way that the user-technologist can employ it
with success without having any special programmer education.

There are many different users of industrial control computers
today. Each of them wants to use his system at different levels.

Therefore the suppliers must obviously have the right hardware and
complete and effective software. This is the reason for the gradual
spreading/enhanching of application software. Among various applica­
tion packages, we can find Linear Programming System Packages for
on-line process optimization, Telemetry Application Packages, Gas
Chromatography Packages, Logic Sequencer for engineering logic se­
quence diagram manipulation, etc. On the other hand, control comput­
ers are equipped with various peripheral control packages and driv­
ers. A choice of them depends on the configuration of the control
computer installed. Interactive packages have also appeared for such
purposes. Let us mention for instance the plotter package, display
package, file manager packages, etc. Special applications packages
have been created for terminal communication systems which, beside
the special hardware, require special software as well.

.3 Preparation of Process Control Software Projects
Specialities of the third computer application area appear also in
designing industrial control systems. The conventional and char­
acteristic stages, namely

- pilot study
- planning hardware implementation
- development of application
- installing hardware
- control of the real object and improving this control

are well known from the development and realization of control sys­
tems. Managing real-time projects forms a special area of computer
sciences today. Beside correctly defining the objectives of control
and determining the control algorithm, it is necessary to pay a spe­
cial attention to working team structures. Here the fundamental task
is to ensure a mutually understandable inter-team language. This ne­
cessity appears as early as during preparatory activities. Co-ope­
ration between the technologist (who defines the task) and the sys­
tem analyst/programmer is a basic requirement. This co-operation
starts at the early stage of formulating the control algorithm, i.e.,
well before programming. Here we can mention two working phases,
namely

- system specification
- system analysis for programing.

The technologist should carefully prepare for the co-operation in
system analysis by describing his requirements in the form of system
specification. Prom the methodological point of view, it is conven­
ient to progress from a complete list of variables and plant para­
meters, through specifying their functional relations, to a specific­
ation of all the control components present in the system. Thus the
following items are prepared:

- a short description of the major control objectives and overall
system (including its surroundings)

- a detailed description of the controlled object (plant)
- a specification list of variables and plant parameters and, if
necessary, a set of rules for data file ordering and management

- a set of rules for Information flows between man - control Com­
puter, control computer - controlled plant and also for direct
man-plant communication

- a list of algorithms for data processing, for comparison with
the mathematical model and for decision-making based on this
comparison. Along with this, it is necessary to determine mu­
tual links between algorithms and requirements for their proc­
essing in real-time

- a testing example for the whole system and for each of its sub­
systems. The testing examples should be representative for both
static and dynamic tests.

The details of the individual items of system specification are
adjusted to the particular control project.

System analysis for programming begins with an algorithm written
down in clear form. An internationally standardized algorithmic lan­
guage, available for writing algorithms, is not yet in existence. Up
to now, mathematical languages, technologist languages, flowchart
diagrams, decision tables, table layouts with various headings and,
for describing time-relations, bar diagrams have been used.

Industrial control systems have mostly been specified without a deep
knowledge of industrial computer technique. Therefore, it is very
important to perform an analysis of the control algorithm from the
point of view of the implementation before starting to write a
program.

11

This phase is finished with a mutually understandable formulation of
the control algorithm in a form suitable for programming. No matter
whether the process is discrete or continuous, system analysis
consists of the following activities:

- checking of the algorithm for consistency and completeness
- removal of unnecessary redundancies from the algorithm (i.e.,
leaving only redundancies needed for testing)

- implementation of some additions to the algorithm, found neces­
sary in course of the analysis

- clarification of variables, including their scope, range and
acceptable processing error

- clarification of the computer approximation of functions de­
signed in the algorithm

- clarification of the control loops from functional and timing
points of view (defining the time-pace of control)

- incorporation of the interrelations between individual control
loops revealed by system analysis, to be taken into account in
timing

- clarification of the activity of the control algorithms during
various phases of their operation (starting, running state,
alarm state) , in relation to another (conventional) control
contingent working simultaneously with computer control

- defining the computer configuration for a realization of the
algorithm

- checking by means of a testing example, supplied by the technol­
ogist , in accordance with a predetermined plan (input data and
intermediate results varying with time)

- checking the demands towards the man/process interface (possi­
bility of affecting the process, messages on control states,
etc.)

- assignment of program priorities (also taking time into account)
in accordance with the designed decomposition of the control
algorithm.

A necessary conslucion of this system analysis is the approval by
the technologist of a new version of the control algorithm. It is
also necessary to determine regulations governing possible further
changes by the technologist. It is desirable to limit the number of
these changes because the volume of work needed to realize the algo­
rithm cn the computer, after the system analysis, is relatively
great.

At the same time, a written formulation of the new version of con­
trol algorithm is considered as a documentation for further team
work during realization of the algorithm on the computer, and also
for later acceptance of the tested program for normal exploitation
in the controlled plant.

Experience has shown that system analysis improves the quality of
the technologist ’s original algorithm contained in system specifica­
tion. Such a course of activities detaches algorithm development
from programming. Mixing of these two activities was one of the ear­
lier erroneous courses of work on industrial control projects.

The timely and detailed preparation of the control algorithm thus
speeds up system realization. Also, the necessary technical supple­
ments to the computing system can thus be prepared with sufficient
time-lead. This proven course of control algorithm development will
prevent us from getting into the unpleasant state of "never finished
industrial control systems.

2. THE PRESENT STATUS OF PROCESS CONTROL SOFTWARE

When surveying on the present status of process control software, we
will concentrate on four major areas:

1. Real-time executive systems
2. High-level general-purpose process control languages
3. Application packages and problem-oriented languages
4. Man-machine communication software.

Assembly level and macro programming will not be discussed because of
its strictly machine-oriented nature.

This part of our survey is mostly based upon a considerable amount of
up-to-date written information, placed at the authors disposal by the
courtesy of several leading vendors of process control systems. The list
of the manuals directly utilized to this work is found in the references
Also a good use was made of an excellent survey by Herbert E. Pike ^

2.1 Real-time executives
The operation of process computers is controlled by time and events.
Some programs are due to execute at specific instants of time or
after a certain delay or repeatedly at certain intervals. Other
programs are initiated by external events originating from the proc­

13

ess or operator. Programs just executing may also request some other
programs. And internal events, like completion of an I/O operation,
require some action of the computer as well.

The house-keeping of process computers is organized by the real-time
executive software system (in some systems it is named differently
like operating system, director, etc.). The fundamental functions of
the real-time executive are

- allocating system recourses (like operative memory, central
processor, etc.);

- handling peripheral operations;
- handling events;
- time-scheduling.

Program, priority, data
The system deals with two sorts of codes program and data. The
program code describing the job to be done by the computer is
broken into pieces. There are 3 major types of program units:

a. Tasks (programs, core-loads). These are relatively large
executable and generally relocatable program units. They are
activated solely through the executive system and are
scheduled mostly on a priority basis.

b. Routines. These are relatively small program units for fast
servicing of different events. They are activated by the
executive system unconditionally.

c. Subroutines♦ These pieces of program are activated directly by
the tasks and may be ^ ^

- dedicated, that is available for one task only;
- common, that is, available for several tasks but not

interruptable;
- re-entrant, that is, available for several tasks and

interruptable.

A mark of importance is attached to each task, its priority.
Priority may be

- either a permanent attribute of a task;
- or assigned to it when the task is activated.

L4

In some systems, a limited number of priority levels exist (e.g.
7 levels ^ , 4 levels) and each task is attached (statically
or dynamically) to a certain level. In other systems, any natural
number within relatively wide limits (e.g. 0 to 99 ^ ^ , 0 to
255 ü 3) may be assigned as priority of a task.

The data units are either dedicated (associated with a specific task)
or common data units. The latter serve for data communication between
the different tasks. A common data unit is accessible for any task,
if declared so in the task. The access of a particular task may be
of read-write or read-only type ^ ^ .

Core allocation
In very small systems with no background memory the whole code re­
sides in core. In other systems which include bulk memory (disc or
drum) the core is divided into two major parts. One part accomodates
the executive system (whole or part of it) and may also contain core­
resident routines, tasks and common data areas. The other part serves
as running area for the bulk-resident tasks. There are several ap­
proaches to handling this running core:

a. Only one bulk-resident task may stay in core at a time ^ ^ *
A 3 .

b. The running core for bulk-resident tasks is segmented at
system generation time and each group of bulk-resident tasks
is associated with a particular segment (only one task at a
time may occupy a segment ^ ^ ,A ^).

c. The whole running core for bulk-resident tasks is dynamically
allocated in run-time -̂A ^ ,A ^ .

Bulk-resident tasks due to run for any reason need to be first
transferred to core. They are placed on a core waiting queue
(thread) and given access to core in the order of their priority.
With respect to the bulk-resident task just staying in core, several
solutions exist:

a. The newly activated task, even if of higher priority, has to
wait until the task just staying in the core running area
(or its assigned segment) is completed ^ ^ .

b. Some previously specified tasks are interrupted and swapped
by higher priority tasks ^ ?» A ^ .

c. Higher priority tasks always interrupt and replace lower
ГА 2lpriority ones L -1 .

15

CPU allocation
Tasks which have been activated and stay in core (either as core­
resident tasks or following a bulk-to-core transfer) compete for
the изе of the central processor unit. They are placed by the exec­
utive on the CPU waiting queue and are serviced in the order of
their priority.

Whenever the executive starts operating, it takes over the central
processor by interrupting the task just running. The outcome of the
executive action as to the use of the central processor may be:

a. Control is unconditionally returned to the interrupted task
following a short executive computation (perhaps execution of
some routines ^ ^,A ^) .

b. A priority-based selection is made from the CPU waiting queue
to сЬоозе the task that will be allowed to run (this may and
may not be the one just interrupted) .

c. An unconditional transfer is done to another task.

If more tasks have the same priority, they are serviced
IÂ 3- either first-in first-out

- or in pure time-sharing C* I]

A special features under "crisis-time activation", the priority of
the task is ai
specific time
the task is automatically increased if it is not executed within a

CA 11

The executive investigates the CPU queue to make a selection fol­
lowing

- an external event (process or operator interrupt)
- an internal event (i/O or bulk-memory interrupt)
- a timer interrupt
- an executive call
- completion, termination or suspension of the running task
- lapse of a given time ^ .

(in each particular system, only different parts of this list are
incorporated.)

Following a lasting interruption of a task (type b. or c. above) ̂
return to the interrupted task may happen

- directily from the interrupting task (since the interrupting

task can also be interrupted, this is a chained recursive or­
ganization of tasks) ^ ’A 1 ̂ ;

- through the CPU waiting queue according to priorities (this is
an independent organization of tasks) f-A ^,A ^,A -*»л 1̂ .

In order to ensure return, register contents are saved for the inter­
rupted task.

Peripheral handling
Input-output operations are handled by the executive system through
specific calls from the requesting tasks. Core-to-bulk and bulk-to-
core transfers in course of the execution of tasks are treated in a
similar way.

Requests for peripheral operations are placed on the waiting queue
of the respective peripheral device. The method of sequencing and
servicing the requests is different in different systems?

a. The requests are sequenced first-in first-out ^ 5 .
b. There are two groups of requests, normal and priority, the

priority requests preceding the normal ones (within a group:
first-in first-out) ^ ^,A 4) .

c. The requests carry the priority of the requesting task ̂ ^ ’A 3.
d. The requests are assigned priority by the requesting task [А Ъ .

Some peripheral operations (some outputs), once requested, do not
require return to the initiating task. Those which do are, in most
systems, handled in two different ways?

a. After issuing a request, the task continues its execution. The
completion of the peripheral operation is signalled as an
internal event and is serviced (buffered) by a routine without
affecting the scheduling of the tasks.

b. After issuing a request, the task suspends its execution. The
completion of the peripheral operation is signalled and, in
addition to being serviced by a routine, causes release of the
initiating task. It then returns to execution through the CPU
waiting queue.

17

Task states
Summarizing the foregoing, we draw up a simplified scheme of task
states (Pig. 3«) • A task is always in one of the following states:

Pig. 3« Task states.

- Running
- Ready
- Blocked
- Inactive
The states Running and Inactive are
self-explanatory. In state Ready are
the tasks waiting on the CPU queue.
In state Blocked are the tasks wait­
ing on the core or some peripheral
queue or being suspended (by them­
selves or the operator) until an ex­
ternal event, a specific time or
synchronization (actually, this state
comprises several sub-states).

The possible state-transitions are:
Inactive -*
Inactive -*

Blocked -*

Ready

Running

Running

Ready

Running

Blocked: an inactive bulk-resident task is activated;
Ready: an inactive task residing or staying in core

is activated;
Ready: the blocking condition is lifted (core found,

peripheral operation completed, event happened,
time elapsed, synchronization done);

Running: the task is of the highest priority among the
ready tasks;

Ready: the task is interrupted by a higher priority
one ;

Blocked: the task is suspended waiting for the
. completion of a peripheral operation, the
occurrence of an external event, specific
time or syrchronization with another task;

Blocked: a ready bulk-resident task looses its running
. core;

Inactive:the task is completed or terminated.

Note that tasking is discussed here as implemented in most exist­
ing systems. Some new ideas will be introduced in connection with
high-level languages (see oection 2.2).

Event handling
Handling of external event3 (interrupts) is similar to that of in­
ternal events. If an event occurs, the executive takes over and lo­
cates the event. Then the response to an external event is either
or both of the following actions:

a. An interrupt service routine is executed (without affecting
the schedule of tasks).

b. A task Í3 activated, generally by being placed on the core or
GPU queue in accordance with its priority, or exceptionally
by direct transfer of the control of the CPU ® 9 (this
activation may also be organized аз an interrupt service
routine).

Interrupt service routines are associated with events through tables
Га hand may be microprogrammed L . In most systems, interrupt service

routines possess the highest priority with no priority sequencing
among themselves. In some cases ^ , they are arranged into
different levels of priority and serviced accordingly.

External events are signalled to tl stem through special hardware

Time-scheduling
Tasks that need to be executed at a specific instant or after a
certain delay or at certain intervals of time, are placed on a time
queue accordingly. The time queue is updated automatically at fre­
quent times. Whenever a time-scheduled task becomes due, an inter­
nal event (interrupt) is signalled and the task is placed on the
CPU (or core) queue. Its priority is pre-specified by the user.

Executive calls
Executive са11з Commands, etc.) serve for the communication of
tasks with the executive. They are used to

- activate, time-schedule, synchronize, suspend or terminate a
task

- assign or change priority
- request peripheral operations (including bulk-transfer and file-

operations)
- obtain information of task states
- obtain information of time.

Executive calls are serviced by special routines.

facilities like "interrupt lines"
fÄ 9l"interrupt status words" ^ J .

"event flags" ^ ^ or

19

2.2 High-level general-purpose process-control languages
In this section, the high-level general-purpose process control
languages will be discussed. These languages are especially meant
for process control (or, generally, real-time) applications but are
general-purpose in the sense that they are not oriented at any par­
ticular machine or application area within process control.

General-purpose process-control languages are principially proce­
dural languages. This means that most of their statements are execut
able (describe operations) , and the sequence of execution of the ope
rations is primarily determined by the order of these statements. In
addition, these languages include some non-sequential specification-
type statements as well.

Process control applications possess two basic characteristics that
programming languages should comply with*

a. Executive operations like tasking and I/O must be directly
programmable.

b. Run-time efficiency of the programs (in terms of CPU time and
core-space) is crucial.

High-level general purpose process-control languages are developed
- either by taking a general algorithmic language (like ALGOL,
FORTRAN or PL/l), adding some features for executive operations
and (perhaps) omitting some others and imposing certain restric
tionB in order to improve run-time efficiency,

- or by defining a new language.

With the proliferation of languages and unification of language-
principles the difference between the two approaches is diminishing.

A considerable number of high-level general-purpose process-control
(or real-time) languages have been published in the recent years.
Some of them are real-time extensions of FORTRAN ^
B ^ while the others are based on other general algorithmic
languages or are more or less new ones ^ 8,B 10,B 11,B 12,В 13,
В 14,В 15,В 1б,В 18,В 19,В 20,В 22J ̂ jjos-fc real-time Fortrans are
implemented on a particular machine. The proliferation and
acceptance of the other languages ranges from valuable academic
exercises to relatively widely used national standards.

20

We are trying to avoid any classification or evaluation of the re­
ferenced languages and will restrict ourselves only to showing their
basic characteristics. "Purdue Fortran" will be first discussed as a
synthesis of several Fortran extensions. The real-time properties of
some non-Fortran-type languages will also be treated through the ex­
ample of a few selected languages.

ÍB 3Purdue Fortran L я
"Purdue Fortran" has been developed by the Fortran Committee of the
Purdue Workshop on Standardization of Industrial Programming Lan­
guages, to unify the different process control extensions to Fortran.
Part of the proposed language extension has already been adopted as
an ISA standard while the rest is being considered.

The language extension takes ANSI Standard Fortran (X3-9-1966) as a
basis and consists of a set of standard procedures. These realize
different actions which are generally needed in a computer process
control system but are not included in the Standard Fortran. The
procedures are grupped as follows;

- tasking
- process I/O
- file-hangiing
- day and time information
- bit-string manipulations
- bit manipulations.

The full list of real-time procedures (tasking, process I/O and day-
and-time) is given in Table 2.

21

Table 2.

Tasking procedures

1. START (i,d,k,m)
2. TRNON (i , j ,m)
3. WAIT (j,k,m)

4. HOLD (i,m)
5. RELSE (i,m)
6. EXIT
7. ABORT (i,m)
8. LINK (i,m)
9. EST (i,m)

10. UNE3T (i,m)
11. CHNGE (i,j ,m)
12. STTSK
13- CON
14- UNCON
15. FREZE
16. THAW (i,j,m)

The formal parameters are:
i - name of an integer array that specifies the task (for 8, 9

and 10: program unit) concerned;
j - for 1, 2 and 3s the length of time (direct of referenced) ;

for 11: the assigned priority; for 12: name of an array into
which the information will be placed; for 13 through 16: name
of (or reference to) the event,

к - reference to the units of time;
m - indicator of the disposition of the request.

Process I/O procedures

1. AISQ (i,j,k,m) - sequential analog inputs
2. AIRD (i, j ,k,m) - random analog inputs
3. AO (i,j,k,m) - analog output
4. DI (i,j,k,m) - digital input
5. DOM (i,j,k,n,m) - duration-controlled digital output
6. DOL (i,j,kl,k2,m) - latching digital output

- start a task after a specified time delay
- start a task at a specified time
- delay continuation of a task for a given

time
- suspend continuation of a task
- release a task from suspended state
- terminate a task (self)
- terminate a task (other)
- segment a task
- establish core-residence
- cancel core-residence
- change task priority
- interrogate task status
- connect a task to an event
- eliminate an event connection
- disable a connected event
- enable a connected event

The formai parameters ares
i - number of analog points or digital. word3, resp.;
,j - reference to the acquisition (or transmittion, resp.) and con­

version information;
к - name of the array where the information will be placed or ta­

ken from, resp.;
n - duration
ra - indicator of the disposition of the request.

All process 1/0 procedures are available in two variants, one caus­
ing suspension of the calling task and the other not (e.g. AIoQW and
AIoQ, resp.) .

Day and time information procedures

1. TIME (j , m) - t ime о f day
2. DATE (j ,m) - calendar date

The formal parameters are:
i - name of the array where the information will be placed;
m - indicator of the disposition of the request.

end of Table 2.

Other languages
Wow the characteristics of some non-Fortran-type high-level general-
purpose process-control languages will be described. As examples,
four languages will be taken which are currently being investigated
by the European Group of the Long-Term Procedural Language Committee
of the Purdue Workshop. The languages are CORAL 66 ^ ^ , RTL/2
\b 20,В 2lj f pEARL [B 16,В 13 and procOL ^ 22 ,B 2^ .

For a class of languages, like CORAL 66 and RTL/2, run-time effi­
ciency has been the primary objective. These languages exhibit a
straightforward structure and contain no explicit real-time features.
Real-time operations like tasking and I/O are implemented by machine
dependent procedures and macros. Assembly (or machine) code sequences
may be inserted into high-level program texts and also macro-instruc­
tions defined and used throughout the program. Note that both CORAL
66 and RTL/2 have been implemented on several machines and are used
relatively widely.

23

In more sophisticated languages like PEARL and PROCOL, in addition
to the more or less complete arithmetic features of the modern gener­
al languages, special language-level facilities are available for
real-time operations. These real-time facilities fall in the follow­
ing groups :

- system description
- tasking
- synchronization
- process I/O.

System description in these languages in necessitated by the fact
that they deal with events (interrupts) and external variables
(process or consol points) through symbolic names. Symbolic names
are linked with the corresponding physical points at system genera­
tion time. For events, a physical point may be a single hardware
interrupt, a group of such interrupts or a "software interrupt"
(executive operation); their specification is dependent on the
hardware system. For external variables, the type and number of the
peripheral equipment and the connection point is to be specified
(in PEARL, also the complete data-path). Further, system description
in PEARL also comprises specification of the computer, including
type, features of the CPU, core size and channels.

Tasking will be discussed, slightly simplified, along the line of
PEARL (tasking facilities in PROCOL may be considered a subset of
those in PEARL) . The particular areas to be treated are

- task generation
- task activation
- other task-operations
- scheduling
- event-handling.

Tasks are generated statically or dynamically. Static task genera­
tion means that task-names are introduced and associated with the
code of the task once for ever. Under dynamic generation, first only
the name of the task is declared and the code is associated with the
task upon activation.

Activation of a statically generated task is described by the
statement

[schedule]] ACTIVATE task-identifyer [WITH PRIORITY priority] ;
That is, activation is done according to a programmable schedule

and priority (for dynamically generated tasks, also the actual code
is described here).

Further tasking instructions are :
(schedule) SUSPEND task-identifyer

for suspending an activated task;
(schedule] CONTINUE task-identifyer (WITH PRIORITY priority]

for continuing a suspended task and/or re-assigning priority;
(schedule] DELAY task-identifyer [DURING duration | UNTIL instant)

for delaying a task for a duration or until a time-instant;
(schedule) TERMINATE task-identifyer

for terminating an acitvated task;
(Schedule] PREVENT task-identifyer

for cancelling pending schedules of a task.

The general (though slightly simplified) syntax of the "schedule"
part of tasking instructions is:

{[empty 1 ON event] (bmpty | AFTER duration) (AT instant}
{empty I EVERY duration fmpty) UNTIL instant (DURING duration]}

This syntax is self-explanatory. "Schedule" makes it possible
- to attach a tasking operation to a (symbolic) event;
- to have a tasking operation performed at a certain instant of

time or after a specific delay;
- to have a tasking operation performed repeatedly with a specif­

ic frequency, either leaving the end of the sequence open or
limiting it by setting, for the last performance of the opera­
tion, an instant or a duration (from the first operation);

- to prescribe any meaningful combination of the above, e.g.

ON event AFTER duration EVERY duration DURING duration;
(the 20 possible combinations are shown in Table 3.) .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ON X X X X X X X X
AFTER X X X X X X X X
AT X X X X
EVERY X X X X X X X X X X X X X X X
UNTIL X X X X X
DURING X X X X X

Table 3*

25

In addition to attaching tasking operations to events (as shown
above) , any other statement may be attached as well using the RE­
SPONSE statements

RESPONSE event : unlabeled statement.

Further, special instructions are available to ENABLE and DISABLE
events and to generate software-type interrupts ("signals").

To synchronize tasks and to control usage of common resources by
several tasks, semaphores (special integer variables) are used in
both PEARL and PROCOL. Semaphores are accessible only for the
special instructions REQUEST and RELEASE. A REQUEST operation
decreases the value of the semaphore variable by one, should the
result be non-negative; otherwise the task containing the REQUEST
operation is suspended. A RELEASE operation increases the value of
the semaphore by one, clearing the way for the highest priority
request among the eventual pending ones to be serviced. Semaphores
may be used, for example,

- to synchronize two tasks, that is, to ensure that a task does
not proceed beyond a given point (instruction) before another
task performes a certain operation;

- to block access by the other tasks to a common data area while
one task is exclusively using it;

- to indicate whether or not there is free space in a limited-
length buffer attached to some equipment jointly used by sever­
al tasks.

The way process input-out put is handled is slightly different in the
discussed two languages.

In PEARL, there is a special statement for process I/O, having the
form

MOVE source TO sink.

In case of an input, "source" is the symbolic name of the communica­
tion register of a device and "sink" is the name of a memory loca­
tion; in case of an output, vica versa. The MOVE statement does not
•imply any transformation of data. If such a transformation (conver­
sion, coding, decoding or calibration) is necessary, a GAUGE option
is attached to the MOVE statement. This contains the call of a
previously declared procedure which, with the appropiate actual
parameters, performs the required transformation.

In FROCOL, there are separate INPUT and OUTPUT statements. They
include, in addition to the symbolic designation of the data-source
and sink, reference to a formatting scheme. Formatting for an input
consist of

- feasibility checking,
- filtering,
- conversion,
- logical checking.

For an output, formatting includes
- filtering (eliminating drastic changes) ,
- conversion,
- logical checking.

For each formatting item, the user may choose either the standard
treatment (with specific parameters) , or introduce new procedures of
his own.

2.3 Application packages - problem-oriented languages
All major manufacturers provide with their process control systems
several application packages. These packages are pre-written comput­
er programs that

- operate in close connection with (and utilize several internal
facilities of) the real-time executive system;

- take care of a particular functional area common in a class of
process control applications.

When dealing with application packages from a user’s point of view,
one has to concentrate on two basic aspects;

a. What is the particular functional area it is intended for and,
within this, what are the services it provides.

b. What is the programmer’s interface to the package, that is,
how to program the software-hardware system for a specific
task, (in most cases, this interface is a special problem-■ %ioriented language.)

Functional areas
The major functional areas encountered in many process control sys­
tems are as follows;

- data acquisition and conditioning,
- direct digital control,

27

- supervisory control,
- sequence control,
- optimization.

Note that the border-lines between the separate packages of a parti­
cular vendor are not quite definit: data acquisition and processing
is included in most control packages, also some higher level con­
trol packages contain elements of the lower ones and there are pos­
sibilities for inter-package referencing.

The systems to be dealt with here are general process control pack­
ages. Apart from these, also several special packages have been deve­
loped to meet the needs of particular industries (e.g. steam power

include, as basic steps, scanning, filtering, conversion and limit
checking.

a. Scanning is acquisition of rough process data through the
respective input devices. The user selects the appropriate
scanning rate for each variable. A first limit-eheeking is
performed on these data to detect faults of the measuring
system.

b. Rough measurements are digitally filtered to reduce noise-
effects. The user may choose between first and second order
digital filters and specify his filter-parameters.

c. Conversion of the measured data is generally performed in two
steps. First the non-linearities of the sensor are taken care
of. Typical non-linear sensors are thermo-couples and flow­
meters. In the latter case, temperature and pressure are also
taken into account as correcting quantities. In the second
step, the linearized (or linear) measurements are converted
into the appropriate engineering units.

d. For limit-checking, most systems allow two upper and two lower
limits. The user may prescribe different response actions to
the violation of the inner and outer limits. Further, user
defined dead-bands may be attached to each limit value to
filter "return to normal" actions (messages). Also limit­
checking for the rate-of-change of variables is available.

generation

Data acquisition and conditioning packages [c 1,C 2,C 5,C 6,C 7,C I

Direct digital control packages ^ 2,(' '>,C ^ are primarily
based on the digital implementation of the conventional three-term
(PIi>) control algorithm. The user may choose sub-algorithms (p, I,
Pi) and specify his control coefficients.

The input to the algorithm is either the control error or its signed
square (e| e|). In some systems, the user may indicate if he wishes to
have setpoint-changes neglected in the differential term. А1зо
available is adaptive tuning with changing coefficients (or neg­
lected terms) upon high error or significant setpoint changes ^ ^ .

The output is either position or incremental type. Upper and lower
limits are specified for the absolute (position) value of the output
and maximum-per-step for its increments. If a calculated output
leads to violation of any of these limits, it will be reduced
accordingly ^ ^ . Also, a dead-band for the output increments may be
defined to make control operation more quiet ^ 3-J . In some systems,
incremental control is combined with position feed-back to base the
calculation of increments and checking for position limits on real
position instead of recursive computations ^ ^ .

A simple ratio-control algorithm is also available in most DDC
packages. In addition, some systems offer special compensator algo­
rithms like pure time-lag, Siam of multiple inputs and lead-lag ^ ^

Supervisory control packages IP 3,C 5) are mean ̂ for computing set-
point values or changes for analog or DDC controllers in continuous
processes. Supervisory control is generally done in a steady-state
or quasy steady-state manner. There are two ways to describe the
basic computations

a. Using a standard adjustement equation ^ ^ . This equation
provides the necessary change of a manipulated variable, based
upon the actual deviation of the controlled (feed-back) or
some measured (feed-forward) variable. There is a possibility
to consider deviations of three further variables. Up to four
adjustement equations with common variables may be handled
simultaneously.

b. Using special simplified procedural languages involved in the
package ^ 3,0 3 .

29

Additional facilities ^ ^ ,C includes
- limit-eheeking on the inputs of the algorithm;
- minimum output deviation (dead-hand) below which no control
action will be performed;

- absolute or incremental limits for the output;
- special actions or programs to obtain initial values for the

control calculations.

As far as timing of the control action is concerned, the user may
specify ^ ^ :

- a minimum time between two ad jus tements,
- a set-point movement rate,
- stair-function of up to four steps, expressed as fractions of
the calculated change of set-point versus fractions of a spec­
ified delay-time.

Sequence control packages ^ serve for programming batch-
processes or start-up/shut-down operations in continuous processes.
Their basic feature is the evaluation of logic conditions, involving
functions like AND, OR, EXOR, INVERT. Inputs to the logic equations
are

- ON/OPP type status informations from the process or consol,
- logic results of process variable comparisons (to limit or
each other),

- timing conditions (in logic form).

In addition to the special sequencing facilities, these packages
include some reduced data acquisition and control features as well.

An optimization package ^ ^ offers linearized solution to the
general non-linear optimization problem. The objective function is
either cost or profit. A user-written model of the system to be op­
timized provides, for a given input situation, either the dependent
variables or the partial derivatives of the objective function. The
standard program finds the optimum by the repeated application of
the Simplex algorithm to locally linearized regions of the model.
Hard (impassable) and soft (penalized) limits for all variables are
taken into account as well as limits regarding the permissible
change of system variables in each optimizing step.

Problem-oriented languages
To make an application package operable, it has to be programmed
for the given job. The objective of this programming is

- to fill up the data-files of the package, that is, to inform
the software of the actual numerical parameters;

- to specify the way of execution of the package, that is, to in-
clude/omit and link different program blocks;

- to describe non-standard operations.

Pitting packages to the particular job is implemented by means of
problem oriented languages which are provided as part of the package
Those languages meant for file-building and program-linking are of
specification type; their statements describe specifications for a
previously programmed sequence of operations instead of the opera­
tions themselves. On the other hand, languages for describing non­
standard operations are of procedural type, similar in this sense to
the general-purpose process-control languages.

Looking at the formal aspects of these languages, they may be
- strictly formatted languages,
- "fill in the blanks" systems,
- assembly-like languages,
- high-level (English-like) languages,
- conversational systems.

Note that some packages include two languages; one for specification
and another for describing non-standard operations.

The strictly formatted languages are meant for skilled programmers.
They use low-level (numeric and alphanumeric) symbols. There are
strict rules to govern the length and order of the symbols, the use
of delimiters and the card-layout. Such a language was developed as
means of specification for the 0P0 optimization package ^ ^ .

The "fill in the blanks" technique has been devised for unskilled
programmers. Basically this is also a strictly formatted system, but
the programmer need not care about formatting. He just has to fill
in pre-printed forms where the sequence and format of the answers is
fixed. Cards are then punched mechanically on the basis of the forms

31

"Pill in the blanks" technique is used In the supervisory control
packages BICEPS ^ * and PROSPRO ^ ̂ for file-building and pro­
gram linking. The forms contain blanks

- for the different numerical parameters of data acquisition and
conditioning (like filter and conversion coefficients etc.)
and control (like dead-band or time-delay);

- for the numerical codes of execution specifications (like type
of filter and conversion equation, absolute or incremental out­
put etc.) ;

- for references to programs describing non-standard operations.

In PROSPRO, the "fill in the blanks" technique is extended to some
non-standard arithmetic operations. This is achieved by introducing
a "general equation" and an "adjustement equation". The user may
select hie particular equation within the given scheme by specifying
his own coefficients (that may also be zero) . This again is performed
by filling in blanks in some special forms.

Instructions in an assembly-like problem oriented language consist
of a mnemonic operation code and up to two operands. An assembly­
like procedural language is provided in the PROSPRO package ^ ^
for programming non-standard operations ("general action") . The ava­
ilable instructions are

- arithmetic operations (variable equals variable/constant/equa-
tion, variable times/plus constant/variable, variable minus/
devided by variable);

- comparison (variable to variable/constant) ;
- conditional branch (result minus/zero/plus, compare low/equal/
high);

- unconditional branch;
- time operations (save real-time and calculate time difference);
- adjustement (feed-back or feed-forward, using the standard ad-
justement equation) ;

- program control operations (return to normal processing, etc.).

High-level problem-oriented languages have free-format English-like
statements, similar to those of FORTRAN and other well-known
languages.

A characteristic example of the use of high-level languages in 1C лprogramming process control packages is the DACS-AUTRAN system L ^ .
This comprises two free-format English-like languages, one for build-

ing fiién and linking program-parts of D/.O.J (Data Acquisition System)
and another for programming non-standard supervisory control.

The AUTRAN specification language has the following sorts of
s tatements:

- group-specifications (scan and output groups);
- input-point specifications (digital, pseudo-digital, analog,
external) ;

- output-point specifications (register, momentary, latching,
control device, analog controller, control valve);

- control operation specifications (controller, compensator, cal­
culator, switch);

- input processing (conversion, filtering, limit-eheeking);
- output processing (G-M relay, status sensor, output, output

limits) ;
- control processing (parameters for control operations);
- alarm response specification;
- timing (cycling) specification.

The supervisory control (procedural) language involves a version of
FORTRAN as a subset. Additional statements are;

- I/O variable list (with reference to DAC3 files) ;
- output statements (contact output, position and incremental
analog output) ;

- semi-output statements (setting DAGS variables);
- semi-input statements (getting value of DACS variables);
- equipment control statements (activate/deactivate points);
- tasking statements;
- logging statement.

Another high-level problem-oriented language is the procedural BPL
(Biceps Programming Language) ^ ^ , added to the BICEPS supervisory
control package to program non-standard operations. BPL is a very
simple language consisting only of a few fundamental features.
These are :

- constant and variable declarations,
- FETCH and STORE statement,
- basic arithmetic operations,
- conditional jump (with EQ, LT, LE, GT, GE as comparison opera­

tors) ,
- simple standard functions (like ABS),
- printing.

33

Conversational systems assume the least skill of the programmer.
Programming is performed through an alphanumeric I/O device (type­
writer) or display . After the programmer has indicated his intention
to communicate, the system asks a set of questions. The programmer
has to type in his answers

- either using an assembler-like language ^ ^ *
- or by making the right selection from the choice of answers
offered, together with the question, by the system ^ .

The conversational technique can only be applied for specification
purposes. This approach has been taken in the OMNIBUS-DDC ^ ^ and
PM/C * 3 packages as well as in the CONRAD ^ ^ and CONSUL ^ ^
systems.

Though very convenient, the conversational technique is too slow to
handle large amounts of information. Therefore, most 3y3teras provide
an optional punched tape or card input with an assembler-like
specification language for system initialization, while conversation­
al programming is mainly reserved for additions and modifications
P 5,C fl

2.4 Man-Machine Communication Software
We noted in Table 1. that the existence of appropiate communications
(man-machine and machine-plant) is one of the characteristic proper­
ties of industrial control systems. To accomplish these communica­
tions, we need an appropriate hardware (devices of the controlled
plant, instruments, a control computer, terminals, etc.) and a good
software. Man-machine communications form an important part of the
activities mentioned in Section 1.3. and follow closely after system
analysis. These activities are

- programming (flowcharting, coding, debugging)
- testing (static and dynamic)
- verification on the real plant (tuning and long-term operation).

Man-machine interface (serving the process operator, control engineer
or programmer) should obey the following rules:

a. The communication system should be able to display numerical
values (variables and technical parameters), messages, to
register trends (also multiparameter) and to enter new plant
parameters or values.

34

b. Each parameter to be entered into a control system must
possess a functional specification (scan, alarm, control, log,
etc.).

c. It should be possible to make visible all input data before
entering them into the system.

d. All input data, changing parameters or conditioning operations,
must be registered automatically. This registration should
reflect contents of the respective memory address.

e. The possibility of the registration optionally of all the
alphanumeric requests which are displayed within the communica­
tion system, should also exist.

Note that items c. and d. simultaneously perform checks for fre­
quently occuring human errors.

Software for programming and testing will be discussed later in
Section 3* Here let us pay out attention to the human activity with­
in the industrial control system. This activity will be exercised
within the user programs contained mostly in modules 1 and 2 (see
Pig. 1.) . These user programs are executed by:

a. basic software (real-time executives, assemblers, compilers,
program development utilities e.g. editors etc., re-entrant
routines, data-base manipulation software);

b. communication software (peripheral device control packages and
drivers, terminal communication packages, software for multi­
plexors, buffering and core mapping for multiprogramming);

c. special programming systems for non-programmers (form or dialog
based).

Man-machine communication in basic software
Communication between man and basic software is enabled by the use
of special syntactical units of programming languages. For instance,
a flexible macroinstruction language was chosen to accomplish this
with DIRECTOR [Â Ï] . In addition to a language like this, the
programmer’s console is generally available with an access to a key­
board and a printer. These facilities mainly enable

a. to introduce new programs and names of entities (for data file
handling, etc.),

b. to change the specification of programs (necessary core/bulk
store, identification of source text, control of peripheral
units, etc.),

c. to cause program activations,

35

d. to provide the system with operational data,
e. to initialize calendar and real-time clocks.

Let us present examples of some macroinstructions :
: TIME

This macroinstruction [Ä 4] causes printing out the current "real­
time" of day.
$ ENTER AT CRISIS : PROG73;,,2,30,15,, : ,4,,1,10,3,,2,5,7,

This ENTER AT CRISIS macro instruct ion [A I] causes the activation of
PROG73 at 30 minutes and 15 seconds after 2 o’clock. After 1 more
minute and 10 seconds its priority changes to 3» Numer 4 (the first
digit after the colon) indicates that there is a subsequent CRISIS
time. Therefore after 2 more minutes and 5 seconds the priority of
this program changes to 7- The simple syntax of this language is evi­
dent from the above example.

Communication software
In process control, especially the equipment listed below is used
for communication:

- conversational typewriter (for programmers)
- conversational typewriter (for operators and technologists)
- output typewriter (or printer) for passive communication

(alarm, log, various messages, trend records)
- pen recorders for operators
- pen recorders (trend recording)
- displays
- light panels
- punched tape and card I/O units.

Here the obvious proviso is that all these units are connected with
the central processor unit through a unified interface. Then also
software can be built in a unified way in order that the following
three basic facilities can be provided:

a. Routines to handle and react to real-time events (like button
pressings, light-pen interrupts, etc.) initiated by man
through peripherals or terminals/modems.

b. Routines to build and manipulate data buffers and files
(display file, printer file, card file, etc.) .

c. Routines to organize and present information for process-man
communication (i.e., input-output routines for teletypewriters/
printers; routines to create standard layout plotting patterns
necessary for graphical aids, e.g., points, lines, circles,

characters, etc.).

Communication data structures realized by means of various I/O units
can, of course, be diversified. With display interface for instance
the following three properties of data structure are required ̂ ^ s

- It must represent the display sequence correctly, i.e., it must
imply the order in which the patterns are to be displayed.

- It must imply the number of words in the display file corres­
ponding to each pattern so that editing may be performed.

- It must have a way of associating a "neune" with a pattern.
Names may be assigned either by the user or by the system.
These names are used for all communications about the pattern
between the user and the system.

Prom another aspect, most displayable files are ̂ ^ :
- maps movable within a page;
- one-page displays which can be updated but not moved, magnified

or rotated;
- scrolls (a scroll is a tabular list which may be too large for
a screen and can therefore be scrolled backwards or forwards).

Software for non-programmers
Such software has been developed, for example, for continuous
process control and is built of separate pre-programmed algorithms
for industrial data manipulation, general control actions, operator
logs and console displays and process output control. To accomplish
man-machine communication, special control panels are used equipped
with keyboards (functional and numerical) and simple displays to
picture, as a rule, loop identifications, current values, new values
and various visible signals. Let us present the facilities as pro­
vided by one of these software systems, CONSUL В (a subset of the
CONSUL system ^ ^ , also cf. Section 2 .3 .) :

a. Basic modular facilities
- on-line assembly, modification and removal of control

loops in the control system;
- opening and closing cascade switches;
- monitoring of process and control variables and checking

parameters;
- interface with auto/manual stations.

37

b. Optional facilities
- measured value logging for all the loops in the system;
- trend logging for selected loops;
- alarm logging for all loops in alarm state;
- loop logging of all loop variables for adjusting the loop;
- chart recording of selected measured values, set points

and valve positions;
- background-mo de running of standard compiler and editing

programs and of user written background programs.

Prom the point of view of the future development of process control
programming, we may say those systems based upon macroinstruction
languages are closed. Their widespread use has proved their vitality
and justified their place in programming.

3. SERVICING OF PROCESS CONTROL SOFTWARE

Once we have finished the analysis of the algorithm of an industrial
control system from the programming point of view, we can write the
program in a chosen language. Then there are two main activities
awaiting us around the computer, namely

- removal of syntactical and semantical errors from the program
(debugging) ;

- verification that the program actually realizes the algorithm
(testing).

Of course, these two activities are very often interleaving. Formally,
testing starts when debugging is "finished". However, the errors found
during testing lead to program modifications which, having been performed,
must go through "a new" debugging. Such a successively approximating
activity is especially exacting in program development with real-time
objectives. Unfortunately, there is no exact rule as to when to stop
this and pass on to the phase of verifying the algorithm on a real
plant. Here it is necessary to combine computer science results on one
hand with general experience on the other hand. The around-the-computer
preparation of the "right" program should be associated with an automatic
creation of documentation on the program (including all the program
modifications). For this reason, it is not surprising that the right,
high-quality outfit of service programs brings a fair economic benefit
during idealization of control algorithms. However, relatively small
attention has been paid to these questions in literature.

38

Let us mention now the services performed by the individual utility
programs as they are successively met by the user:

- program preparation (i'P)
- debugging (db)
- testing (T)
- tuning (tn) .

Л simplified diagram of links between these activities is presented in
Pig. 4«, together with a list of the subjects which these activities
work with. The PP, DB, ТВ and TN acitivities are of course partially
realized by means of the computer. Por this геазоп, servicing software
has its specific structure (see Pig. 5») • If в (pp) stands for software
for PP and о (db) , В (тв) , В (TN) alike, the following relation is valid

S (pp) С В (DB) c s (ts) c. s (tn) .
Let us now try to characterize, briefly and gradually, the traits of
these parts of servicing software.

Fig.4. SERVICING SOFTWARE FOR
PROCESS CONTROL

llllllll S (TN)
Ш s (t s)
'Ш /, S (DB)
Ш S (PP)

Fig.5. STRUCTURE OF SERVICE
SOFTWARE FOR PROCESS CONTROL

39

Program preparation software
During compilation and assembly, syntactical and semantical analysis of
the source program text is important. Here it is convenient that both
the usual messages about the errors found and the so-called directives
^ ^ , i.e., control commands about the service activity of translators,
be contained in our programming languages. The individual service
routines then provide especially the following services:

a. editing ^ ^ and modification 3 Qf programs at any language
level used. Editing programs developed in any programming language
and for on-line or off-line use, can update the source text with
the corrections required.

b. loading data or absolute or relative programs in binary format
from any input device/file into core/bulk memory. During loading,
error checking and global label linkage is performed.

c. comparison (for checking purposes) of information read from any
input device or a file with the contents of core/bulk memory. The
differences found are indicated for instance on the programmer’s
console/teletypewriter.

d. dump of selected core area or bulk memory on any output device.
The information thus dumped is suitable for re-loading.

e. reporting about the different stages of program preparation. Mes­
sage level (i.e. depth of reporting) is selectable.

f. changing the time/date, task parameters, peripheral designation,
etc.

g. listing for documentation purposes (especially for activities DB,
TS and TN). Useful documentation items include: source program
listing, programs in intermediate languages (intermediate language
listing), external references (routine entry names, data names re­
ferred from external programs, external routine/data names, common
data names), symbol tables, physical memory maps, program unit
name listing, program structure listing.

Degubbing software
We can distinguish the following debugging aids:

a. tracing which is provided for each programming language (similar­
ly as editing). The interpretative software package usually en­
ables the programmer to obtain various printout formats ^ ^ .
Tracing at the machine level language includes

- instruction-only printout;
- fully-executed-instruction printout including the resultant

contents of all the registers affected by the instruction;
- printout in either mode on program branching only;

40

- printout on tagged (pre-identified) instructions only;
- omitting n executions of some tagged instruction.

Similarly, formats are provided for higher level programming lan­
guages. The formats are obviously based on their syntactical ele­
ments (macro, statement) .

b. examination of program and data storage contents. A selected se­
quence of core memory locations are printed out in a selectable
format (program, octal number, integer, character, etc.).

c. changing the contents or type of numbers
(FIXED - FLOAT, FLOAT - FIXED).

d. searching uses a breakpoint technique to check a program at select­
ed points. The programmer can stop the program at pre-identified
points and then use some of the previous aids.

e. hardware debugging for an integrated check of computer systems by
test programs running in foreground.

Observations. 1. The debugging software may be used in foreground or
background. 2. "Long-Term Procedure Language" ^ ^ j_s intended to have
syntactical units especially designed for

- setting the conditions for debugging operations,
- executable statements for debugging operations,
- auxiliary listings useful for debugging,
- reporting (error messages, etc.) for debugging.

c
Testing software
In accordance with the diagram shown in Fig. 4., during testing the
algorithm of an industrial control system, a debugged program and a
testing example fo.ita the subject of testing. The testing example con­
tains sera© known data (generated by a small routine) and expected an­
swers as well as selected program checking points. The testing examp­
le must also contain bases for evaluating time-parameters of tasks.
Therefore, there are two stages of testing, namely static and dynamic
(cf. Section 1.3.). Both stages of course require their specific soft­
ware; they involve and utilize also the activities discussed earlier
(see Fig. 5.) .

a. Static testing software consists particularly of the following
elements;

- routines for generating example data
- testing procedures for testing task modules, these procedures

being able first of all to compare pre-identified results of
the tested module with expected answers and then to halt the
execution of the module under test if a specified condition

41

is met.
- core image software ^ provides additional information
about the state of the program system at the time when the
dump was taken. Thus we can receive a report which is not
included in the dump. Among different types of messages are:
system status, program (task) status, core map, trace history,
peripheral status, bulk status, background (free-time) status,
etc.

- query option facility, built into some macroinstruction
s y s t e m s ^ ^ , permits the programmer to insert in the tested
program extra program instructions for monitoring intermediate
data values at strategic program points. Subsequent transla­
tions can then progressively eliminate option items as
knowledge of the correct performance is increased. This query
option also permits several alternative sequences of code to
be held on the same program file (great program modulariza­
tion) .

b. Dynamic testing software is closely connected with the real-time
executive used. This testing software performs primarily the fol­
lowing activities:

- testing the intera3k cooperation (изег programs), this
cooperation being controlled under time conditions and
priorities in a multiprogramming environment;

- testing the behaviour of the program with respect to time,
with the registration of the actual path of execution (e.g.,
reporting on task’s /routine’s / subroutine’s labels as they
are passed).

Tuning software
This software operates mostly through real-time executive calls (cf.
Section 2.1.). Some of the software pieces discussed previously in the
present Section are also incorporated. Tuning itself can start when the
installation testing is finished. By means of this software are realized
the flexible modifications of the control algorithm as inferred from the
application of this algorithm on a real plant. A choice of the necessary
programming facilities to accomplish such a correction then depends on
the extent and depth of the required modifications as needed for the
industrial control system.

42

4. STANDARDIZATION
Standardization of industrial programming languages has for long been a
desire of many people active in the field. Like in many other areas,
standardization would result in a considerable saving of human efforts.
The primary benefit of standardized programming techniques consist in
transferability of software products from one system to another, but the
advantage of having to learn only one language is also significant.

This desire and recognition led to the formation of the Purdue Workshop
on Standardization of Industrial Programming Languages in 1969» The
Workshop, the far most significant effort towards this direction, has
been established with the very ambitious program of producing standard
proposals for the different levels of industrial languages within a
couple of years. Five committees were formed to start work in the fields
of

- glossary
- functional requirements
- problem-oriented languages
- industrial Fortran
- long-term procedural language.

It should be noted that a Technical Committee on Industrial Computer
Languages was also formed in Japan. Its three sub-committees (Problem
Oriented Languages, Fortran, Long-Term Procedural Languages) maintain
close cooperation with the respective Purdue bodies. Also a very active
subcommittee of the Long-Term Procedural Language Committee exists in
Europe.

To unify the usage of special terms of the field, the Glossary Committee
of the Workshop developed a "Dictionary for Industrial Computer Program­
ming" which was published by ISA (instrument Society of America) in 1972
^ ^ . Now a second edition is being prepared.

The role of the Functional Requirements Committee was to prepare the way
for the language committees, that is, to produce functional requirements
for industrial computer systems to serve as a basis for the development
of st-mdard industrial computer programming] This work was

The main objective of the Workshop has been developing the proposed
language standards. In this respect, however, the outcome is well behind
the original expectations. One of the reasons is certainly the voluntary
nature of the works many people active for one period or another, drop

completed and the results published in 1971

43

their affiliation because of their changing working conditions and
interest. The most serious reason, however, Í3 probably the difference
between company (and, in some cases, national) interests.

The Problem Oriented Language Committee has, for a long time, been
attempting to find its way of operation. After studying functional
requirements for and general features of problem oriented languages,
they arrived at the intermediate result that these languages, or at
least their procedural parts, should be considered as macro-forms of
some general-purpose procedural language. Thus a wide class of problem
oriented languages could be handled by translating them into the
standardized long-term procedural language. A couple of suitable trans­
latera are already available, but the lack of the definition of the
object language prevents real progress towards this direction.

Perhaps the overwhelming popularity of Fortran is the reason why an
industrial extension of this language proved to be most ripe, among the
three levels, for standardization. Indead, the Fortran Committee of the
Workshop succeeded in developing a proposal, containing special calls
for process I/O, bit string manipulations and some executive functions,
that was standardized by ISA in 1972 ^ ^ . A second proposal, dealing
with Fortran procedures for handling random unformatted files, bit
manipulation and date and time information, is just being considered by
ISA ^ ^ . A third and last one on task management is under final
development 'Q . Note that the first of the above extensions has been
standardized also in Japan ^ ^ , while the two others are being consid­
ered.

The Long-Term Procedural Language (lTPL) Committee was formed with the
aim of developing a high-level general-purpose process control language
that might replace industrial Fortran on the long run. The Committee
first decided to base thi3 language on PL/1, a choice later attracting
much criticizm. This aspect of the work has since then been shifted to
the X3J1.4. committee of ANSI (American National Standard Institute) ,
explicity dealing with the definition of a process control version of
PL/1. Meanwhile, the European subcommittee of LTPL has been formed and
gained strenth gradually; now most of the LTPL work is being done in
this group. They compare and evaluate existing process control languages
to find the best mixture recommendable as an international standard.
They have also established contacts with the respective committees of
ISO (international Standard Organization). Unfortunately, conflicting
national interests sometimes hinder also productivity of this group.

44

Just recently, the Purdue Workshop has been drastically re-organized. It
was merged with the Purdue-ISA Computer Control Workshop (covering
hardware and system aspects of computer control). Also, it was given an
international structure with three regional workshops in North-America,
Europe and Asia (japan) and an international workshop (named Interna­
tional Purdue Workshop on Industrial Computer Systems) integrating the
regional ones.

The Purdue Workshop is affiliated with ISA and IFIP. Similar affiliation
with IEEE and IFAC is under negotiation.

ACKNOWLEDGEMENT
The authors would like to thank the

Brown, Boveri and Cie Actiengesellschaft
Control Data Corporation
Digital Equipment Corporation
Ferranti Limited
GEC-Elliott Process Automation Ltd.
General Electric Company
Gesellschaft für Kernforschung MbH
Hewlett-Packard Company
International Business Machines Corporation
Société de Realisations en Informatique et Automatisme

for providing source-material to this survey. They also express their
gratutude to their master-institutions, the Institute of Computing and
Automation, Hungarian Academy of Sciences (Budapest, Hungary) and the
Institute for Industrial Management Automation, INORGA (Prague,
Czechoslovakia) for supporting thi3 work. Special thanks to Mrs. E.Fazekas
for the careful preparation of the manuscript.

45

reference;'.

E 1. Sedlak, J. : Development of Programming Меапз in the Regions of
Production Scheduling, Production Control in Real-Time. Ref.6.8.,
IFORS 70, Karlovy Vary, Czechoslovakia, Sept. 1970.

E 2. Holt, O.W.: General Purpose Programming Systems. Communications of
the ACM, Vol.l.No.5.pp.7-12 (l958)

E 3. De Latourne, J.Y. et Garelly, H.: Tour d ’horizon sur la programmation
des calculateurs industriels. Automatisme, Tome XVI.N0.11.pp.559-
570 (197-Т)

X 1. Pike, H.E.Jr. : Process Control Software. Proc.of the IEEE, £8, (l)pp.
(87-97) 1970

A 1. Director, Argus 500 Operating System. Ferranti Ltd.
A 2. RTMOS Real-Time Multiprogramming System for GE-РАС 4010 and 4020

Systems. Summary Manual. General Electric Co., Phoenix, Arizona,
1970. GET-6032A

A 3. RTMOS-30 For GE-РАС 30IO/2 Computer Systems. General Electric Co.,
1972. GET 6314

A 4. RTOS User Manual. GEC-Elliott Automation Ltd., 1973* SP-UM 3 25 238
A 5. Real-Time Executive Software System. Programming and Operating Manual.

Hewlett-Packard Co., Palo Alto, Cal., 1971* No. 02005-90001
A 6. Real-Time Executive File Manager. Programming and Operating Manual.

Hewlett-Packard Co., Sunnyvale, Cal., 1973- No. 29033-98000
A 7. RSX-11D Concepts and Facilities. Digital Equipment Corp., Maynard,

Mass., 1973. DEC-11-0XCDA-A-D
A 8. RSX-11D Programmer’s Reference Manual. Digital Equipment Corp.,

Maynard, Mass., 1973« DEC-11-OXDPA-A-D
A 9. - IBM 1800 Functional Characteristics. (iBM System Reference Library,

1800-01.) A 26-5918-5. 1966.
A 10. IBM System/7 Functional Characteristics. IBM Systems, GA34-0003-0,

1970.
В 1. Pike, H.E.Jr.: Procedural Language Development at the Purdue Workshop

on the Standardization of Industrial Computer Languages. V.World
Congress of IFAC, June 12-17, Paris, 1972. Paper 10.3.

В 2. Minutes Eight Workshop on Standardization of Industrial Computer
Languages, l'ardue University, October 1972.

46

В 3« FORTRAN reference manual. GE Process Computer Department. Manual
YPG14M, May 1965.

В 4* Diehl, W. and Mensh, M.: Programming Industrial Control Systems in
FORTRAN. IFAC-IFIP Symposium on Digital Control of Large
Industrial Systems. Toronto, Canada, 1968.

В 5* Roberts, B. C.s FORTRAN IV in а Ргосезз Control Environment. IEEE
Transactions on Industrial Electronics and Control Instrumentation,
lg. (2) pp. 61-63 (1968)

В 6. Hohmeyer, R. E.: CDC 1700 FORTRAN for Process Control. IEEE
Transactions on Industrial Electronics and Control Instrumentation,
15, (2) pp. 67-70. (1968)

В 7. Mecklenburgh, J. C. and May, P.A.s PROTRAN, a FORTRAN based computer
language for process control. Automatica, 6, pp. 565-579 (l970)

В 8. An Introduction to CONTRAN. Honeywell Inc. Special System Division.
Pottstown, Penna. 1965- SSD-20-ICMP 4/65-750

В 9« Schoeffler, J. D., Wilmott, T. and Dedourek, J.s Programming
languages for industrial process control. IFAC-IFIP Second In­
ternational Conference on Digital Computer Application to Proc­
ess Control, Menton, 1967« Instr. Soc. of America, Pittsburgh,
Penna., USA, ed.s W. E. Miller, pp. 371-388.

В 10. BCS Specialist Groups A language for real-time systems. The Computer
Bulletin, pp. 202-212 December 1967.

В 11. Processalgol (PROGOL) I. SINTEF, AVD. Reguleringstechnikk, Trondheim,
1968. 68 17E 480 165

В 12. Boulton, P. I. P. and Reid, P. A.s A process control language. IEEE
Transaction on Computers, C-18 (13) pp. 1049-1053. (l969)

В 13* Schoeffler, J. D. and Temple, R. H.s A real-time language for
industrial process control. Proc. of the IEEE, £8 (l) pp. 98-111
(1970)

В 14. Gertler, J.s High level programming for process control. The Computer
Journal, I2(l) pp. 70-75 (February 1970.)

В 15. Official definition of CORAL 66. Prepared by the Inter-Establishment
Computer Applications as a language standard for military
programming. Her Majesty’s Stationery Office, London, 1970.

В 16. Brandes, J. et al.s PEARL, The concept of a process- and experiment
oriented programming language. Elektronische Datenverarbeitung,
12 (lO) pp. 429-442 (1970)

47

Б 17-

В 18.

В 19.

В 20.

В 21.

В 22.

В 23-

С 1.

С 2.

С 3.

С 4-

С 5-

С 6.

С 7-

С 8.

Timinesfeld, К. H. et al.: A proposal for a process- and experiment
automation rela-time language. Gesellchaft für Kernforsch. MbH.
Karlsruhe, 1973.

Industrial Programming Language: LAI. CERCI-SES/v. In: Minutes Fourth
Workshop on .Standardization of Industrial Computer Languages.
Purdue University, October 1970, pp. 145-153*

PAS 1, Process Automation Language Description. BBC Actiengesellschaf$
Mannheim, October 1971« ZEK-ED and ZPF/L.ED1004 E (872.ol)

An Introduction to RTL/2. ICI Corp. Laboratory, Reading, England.
In: Minutes Eight Workshop on Standardization of Industrial Com­
puter Languages. Purdue University, October 1972, pp. 217-257*

RTL/2 Language Specification. In: Minutes Eight Workshop on
Standardization of Industrial Computer Languages. Purdue Univ.,
October 1972, pp. 259-320.

Ritout, M. , Bonnard, P. and Hugót, P.: PR0C0L: a programming system
adapted for process control. V. World Congress of IFAC, June
12-17, Paris, 1972. Paper 10.1.

Systeme PROCOL T 2000. Notice Technique. STERIA Le Chesnay, France.
Ref. 1 162 220/00 39 00

Control Data 1700 Computer System AUTRAN DACS, Software Reference
Manual Version l.o., Control Data Corporation, La Jolla, Cal.,
1971. No.3964450

GE-DDC Direct Digital Control. Summary Manual. General Electric Co.,
Phoenix, Arizona, 1969- GET-3558A

BICEPS Supervisory Control. Summary Manual. General Electric Co.,
Phoenix, Arizona, 1969* GET-3559A

0P0 On-Line Process Optimization. Summary Manual. General Electric
Co., Phoenix, Arizona, 1969* GET 6033

Process Monitor and Control (PM/c). Users Manual. General Electric
Co., Phoenix, Arizona, 1972. GET-6256

Ferranti Argus Consul. Flexible Software for On-Line Control.
Ferranti Automation System Division, Ferranti Ltd., 1968. ASD 19 21

MARCH Industrial Software for GEC 2050 Computer. GEC-Elliott
Automation Ltd., New Parks, Leicester, 1972. A.1001-80, A 1002-
200 through 205

IBM 1800 Process Supervisory Program (PR0SPR0/1800)(1800-CC-02X),
Users Manual. IBM 1967, 1968. H20-0474-1

48

с 9.

С 10.

С 11.

С 12.

F 1.

Р 2.

G 1.

G 2.
D 1.

D 2.

D 3.

D 4.

D 5.

IBM 10 0 Process Supervisory Program (PR0SPR0/1800)(l800-CC-02x)
Language Specification Manual. IBM 1967, 1968. H20-0472-1

Process Monitor and Control (PM/C) for GE-3010/2 Process Computers.
General Electric Co., 1972. GEA-9643

SEER (steam Electric Evaluating and Recording) System Manual.
General Electric Co., Phoenix, Arizona, 1970. GET-3566-A

BATCH Sequencing System. Poxboro Co., Poxboro, Mass., 1968. TIM-R-
97400A-5-4

Thornhill, D.E., Brackett, J. W. and Rodriguez, J. E.: A sample
interactive graphics program. Course Notes for Two-Day Seminar on
Programming Techniques for Interactive Computer Graphics, NEL,
Glaslow, England, 1968.

Mc Laughlin, M. E.: Argus software for process control, message
switching and general real-time applications. Ref.4.9», IPORS 70,
Karlovy Vary, Czechoslovakia, Sept. 1970.

Gruenberger, P.s Program testing and validating. DATAMATION, 14,
No.7-, PP- 39-47 (1968)

DEACON/CIA User’s Manual, General Electric Co., GET-6257, 1973*
Glossary Committee, Purdue Workshop on Standardization of Industrial

Computer Languages: Dictionary of Industrial Digital Computer
Terminology, Instrument Society of America, Pittsburgh,
Pennsylvania, 1972.

Anon., "Industrial Computer System FORTRAN Procedures for Executive
Functions and Process Input-Output", Standard ISA-S61.1,

Anon., "Industrial Computer System FORTRAN for Handling Random
Unformatted Piles, Bit Manipulation, and Data and Time Informa­
tion", Proposed Standard ISA-S61.2, Instrument Society of America,
Pittsburgh, Pennsylvania, 1972.

Anon., "Working Paper, Industrial Computer FORTRAN Procedures for
Task Management", Proposed Standard ISA-S61.3, Purdue Laboratory
for Applied Industrial Control, Purdue University, West Lafayette,
Indiana, 1972.

FORTRAN Subprograms for Industrial Computer System. JEIDA-20-1973-
In: Minutes Ninth Workshop on Standardization of Industrial
Computer Languages, Purdue University, West Lafayette, Indiana,1973.

49

D 6. .Functional. Requirements for Industrial Computer Systems. In: Minutes
Fifth Workshop on Standardization of Industrial Computer Language
Purdue University, West Lafayette, Indiana, 1971.

D 7. Curtis, R. L. : Functional Requirements for Industrial Computer
Systems. Instrumentation Technology, 18, No. 11, pp. 47-50
(November 1971) .

M\Gm
* LÍD0MA ' ;yc ’ / V AŰÉkiA

KÜN fYTÁRA -

50'

	Oldalszámok������������������
	_1���������
	_2���������
	1��������
	2��������
	3��������
	4��������
	5��������
	6��������
	7��������
	8��������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������
	46���������
	47���������
	48���������
	49���������
	50���������
	51���������
	52���������
	53���������
	54���������

