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Preface

The object of this book is to present Hilbert space theory as a useful language 
for applied mathematics and to present the basic facts and methods in a form 
suitable for engineers and scientists who apply mathematics.

For this purpose the text also contains many applications of Hilbert space 
theory, and we have emphasised the methods that are based on Hilbert space 
theory rather than giving a lot of material. The bulk of the applications 
revolve around reproducing kernel Hilbert spaces and causal operators. Sever­
al applications are treated here for the first time at an introductory level.

We have made an effort to make the book self-contained; however, an 
important problem remains concerning integration theory. To avoid this 
problem, the theorems are also formulated for non-complete spaces if it is 
possible and natural to do so, and the non-complete Lg-spaces, consisting 
of continuous functions with an L2-norm, are introduced. In spite of this, the 
concepts of measurable function and Lebesgue integral cannot be completely 
avoided since the most fundamental theorems are valid only for complete 
spaces. The reader can find a short and satisfactory integral theory in Gohberg 
and Goldberg (1981), Appendix 2 (see also Naylor and Sell (1982), Appen­
dix D).

The content of the book can be summarised as follows. Chapter 1 gives the 
fundamental concepts that are indispensable for understanding modern techni­
cal-mathematical literature dealing with normed spaces. The major part of 
this chapter is the Contractive Mapping Principle, which shows, with a few 
devices, the power of abstract space methods.

Chapter 2 gives a detailed and rather elementary account on Hilbert space 
geometry centred around the Projection Principle.

Chapter 3 comprises a reproducing kernel Hilbert space (rk h s) theory. The 
emphasis is not on the usual application in analytic function theory, but rather 
on the various rk h s models in differential equations, interpolation and control 
where the Hilbert space structure is enriched by the addition of some external 
structure. However, the rich applications in stochastic processes have been



almost completely omitted because of the complicated background required 
to understand them.

Chapter 4 contains standard material on spectral theory, presented in as 
simple a form as possible.

Chapter 5 gives a mathematical theory of causal operators. Causal operators 
can be established in IAspaces by Hilbert space methods using truncation 
operators; however, in some other cases this does not work. For example, in 
most R K H S  the truncations are not operators of the space. A unified Hilbert 
space approach is developed in the monograph by Feintuch and Saeks (1982) 
and, following the classical L2-theory, the latter approach is also presented. 
This section is supplemented by recent results not included in previous text­
books.

Among the exercises at the end of chapters, the easier ones are marked with 
a circle (o) and the same mark is used to indicate the easier texts in the 
further reading section at the end of the book. On the other hand, we have used 
an asterisk (* )  to indicate the sections that are more difficult, and the beginner 
is advised to skip over them at first reading. However, §§ 1.5,1.6 and 2.5 con­
tain material that is necessary for the subsequent chapters.

Many parts of this book have evolved during my one-semester courses in 
functional analysis, held for engineering students since the early 1970s, and 
the book is especially appropriate for similar one- or two-semester courses. 
We would be very grateful to be kept informed o f reactions to this proposal.

Our thanks are due to the editors for the careful technical preparation, to 
C Kocák and О Gulyás for useful remarks concerning Chapter 3, and to D Petz, 
who read through the entire manuscript, for many helpful criticisms.

L Máté
Technical University of Budapest
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1

Fundamentals

1.1 Linear spaces

The natural one-to-one correspondence between triplets (x , y, z) of real num­
bers and space vectors provides a geometrical model for many problems in 
physics, economics and biology.

If the data of the objects are described by more than three numbers then 
the geometrical model with space vectors is not applicable, and the visual­
isation of the problem in terms of a model o f ‘geometric nature’ led to the 
concept of n-dimensional linear space.

Hilbert space theory can be considered as a further development in this 
direction. If infinite-dimensional spaces are also invoked, ‘classical’ mathematical 
analysis and geometry can be connected and a more effective device for solv­
ing mathematical problems than the ‘pure classical analysis’ is obtained.

As a first step towards Hilbert space theory we begin with a concise review 
of the fundamental concepts of linear algebra. A more detailed account can 
be found in Gelfand (1961).

1.1.1. The set o f ‘directed straight lines’ with the usual rules of linear operations 
— addition and multiplication o f scalars and the scalar product of two vec­
tors — will be called geometric vector space. The main properties o f the linear 
operations in the geometric vector space X  are as follows. If x, y, z£ X, then

(i) (x + y )  +  z = x + ( y + z ) ;
(ii) x + y = y + x ;

(iii) there exists a zero element в such that for every x£X,

x +  6 =  X.

Remark 1. A directed straight line with the properties o f в does not exist; 
however, without the zero element 0 we could not answer the question: what 
is x + (  —l)x? Hence for the main algebraic rules to be satisfied we add the 
symbol в to the set o f directed line segments as the ‘zero vector’.
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If A and p  are scalars (i.e. real numbers) then

(iv) A (x+y)=A x +  Ay;

(v) (A +  p )x= X x  +  fix',

(vi) (Xp)x=).(px)\

(vii) l .x = x .

The properties (i)-(vii) alone ensure that the usual algebraic rules can be applied 
in the vector calculus.

A linear space is an abstraction of the geometric vector space. If Ф is a 
field, then a set X  is called a linear space over Ф if for any pair x, у  6 X  there 
is a unique element x + y £ X  called the sum of x  and у  and for any pair A£ Ф, 
x £ X  there is a unique XxfX, called the product of x  with the scalar A, such 
that the properties (i)-(vii) are satisfied. The elements of a linear space are also 
called vectors.

Remark 2. In the case of the geometric vector space the vectors are the direc­
ted straight lines and Ф is the field of real numbers. For any linear space X  it 
is usual that Ф consists of either the real or the complex numbers. In the 
first case X  is called real linear space. Unless otherwise stated, Ф is taken as 
the field o f  complex numbers in what follows.

A sum of the form

X x+py x ,y e X ,  Х,р£Ф

is called a linear combination o f x  and y, and a linear combination o f any 
finite number of vectors is defined in a similar way. A subset Ж  crA is called 
a linear subspace or subspace for short if it follows from ht , h2, ..., ЬГСЖ 
that X1h1+X2h2+ ... +  2гкг^Ж, where Xk; k = l , 2 ,  . . . ,n  are scalars. Ob­
viously, a linear subspace can be considered as a linear space in itself.

A set Ж  of vectors is called linearly independent if

Aj x1+X2x2+ . . .+ X m xm =  в
only in the case

Aj =  Яг = . . .  =  Am = 0

for any finite numbers of vectors х ^ Ж ,  i =  1, 2, ..., m.
If a linear space X  contains n linearly independent vectors ak\ k =  1, 2, ..., n 

such that for every x £ X  there exist {cfi Ф. k = l , 2 , ... ,« }  such that

x =  1̂a1 +  i 8a2 +  ... +  ̂ „a„

(i.e. every x £ X  is a linear combination of the vectors ak; k = 1,2, ..., n)
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then X  is called n dimensional and {ak}, k =  \, 2, n is called a finite basis 
or basis for short. One can show that n is independent of the choice of basis.

We can talk in similar terms about the dimension and the basis of any linear 
subspace J fc X .

Remark 3. An n-dimensional space or subspace is also called finite dimensional 
without mention of the dimension of the space or subspace.

If X  or Ж  does not contain a finite basis, then X  or Ж  is called infinite 
dimensional.

The main subjects o f functional analysis are infinite-dimensional linear 
spaces. The absence of a finite basis creates major difficulties in the inves­
tigations of functional analysis and this has led to the concept of separability 
and infinite basis (§§ 1.5, 2.2).

1.1.2. A mapping T : X —7, i.e. a mapping T  from a linear space X  into a 
linear space Y, is called a linear operator if

T (Xl xl +  X2x2) =  Xl Tx1 +  X2Tx2

хг , х 2е х  хг , х 2еФ.

The set o f x(-__X for which Tx has a meaning is called the domain 3)(T) 
of T  and {Tx; x € 2>{T)} is called the range of T.

If 7 j : X -»Y  and T2: X —Y have the same domain, then the linear combi­
nation X1T1+X2T2 is defined as

[X1T1-\-X2T2\ x  := XfiT^+XfiT-iX xdX; Х1гХ2£Ф

and the product of two operators Tj and T2 as

r 2Tjx := Т2[Тгх] x £ X

if X, Y and Z  are linear spaces, T±: X —Y, T2: Y-+Z  and the range of 7\ 
is included in the domain of T2. Both the linear combination and the product 
of linear operators are linear (see figure 1.1).

fig. 1.1
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Remark 4. The product and linear combination are also defined for non-linear 
mappings in the same manner. If the mapping (operator) F is not linear then 
the value is denoted by F(x) instead of Fx. With a few exceptions, we shall 
deal with linear operators only.

If the operator T  is everywhere defined and Y = X ,  then we shall say that T 
is an operator on X, and if Y  =  Ф then the operator is called functional.

1.2 Normed spaces

The fundamental concepts in mathematical analysis are the various types of 
convergence and the limit. Derivatives, integrals, series expansions etc are 
based on these notions. It is therefore inevitable to define convergence in 
a mathematical structure to be applied in the problems of mathematical 
analysis. Introducing a norm in a linear space is one of the methods for 
introducing convergence.

1.2.1. The absolute value (modulus) of a vector in the geometric vector space 
has the following properties. Denoting the absolute value o f the vectors x, у  
in an unusual manner as ||x||, ||y|[ we have

(i) ||x||s=0 and ||x ||= 0  if and only if x = 0 ;

(ii) | |x + y |M x ||+ ||y || x ,y e *

(iii) ||Ax|| =  W||x|| x e x , А6Ф

where Ф denotes scalars. The fact that a sequence {x„} of vectors converges to 
the vector x can be expressed as ||x—x J —0.

A norm of a vector in a linear space X  is an abstraction of the absolute 
value of a vector in the geometric vector space.

1.2.1.1 Definition. A linear space X  is called a normed space if there exists a 
mapping x —||x|| from X  into the set o f non-negative numbers defined for 
every x£X  such that the properties (i)-(iii) are satisfied. The non-negative 
number ||x|| is called the norm of x.

1.2.1.2 Definition. A sequence {x„} o f vectors in X  is called convergent if 
there exists x£X  such that the sequence ||x—x j  of non-negative numbers 
tends to zero. In this case, x  is called the limit of the convergent sequence {x„}.

Notation: lim x„ =  x  or x„ — x
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Example 1. An immediate generalisation o f the absolute value of geometrical 
vectors for the linear space of «-tuples o f real numbers is the following: if 
x := {x 1, x 2, then

M .  =  ( Í W 2)1/a-i=l

Notice that for n <  3 this is the absolute value o f the corresponding vector in 
the geometric vector space.

It is obvious that the properties (i) and (iii) of the norm are satisfied. How­
ever, to verify (ii) we need non-trivial considerations (see, for example, 
Gelfand (1961), Lusternik and Sobolev (1961)).

Example 2. Other useful norms in the linear space o f и-tuples o f real numbers 
are

(a) N il  := 2  N1
i = 1

(b) ||x|U := m ax|x;|.i

For the connections between various norms in an «-dimensional linear space 
we refer to § 1.7.

Remark. In the previous examples we can also take «-tuples of complex 
numbers.

Example 3. The infinite sequences х:={хр, /= 1 , 2, ...} of complex (or real) 
numbers satisfying

2  N12 <°°
1 =  1

form a normed space called l 2-space with the norm

NI*:=(ZNI2)1/2-i = 1
Indeed, properties (i) and (iii) of the norm are satisfied trivially and on the 
basis of Example 1 we have

m m m
( 2  N + T il2)1/2 <  ( 2  N l2)1/2+ ( 2  Ш 12i=1 i = l i=1

for any finite sum and hence, passing to the limit, if

2  N l2
i = 1
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and

2  \yÁ2 <o°i=1
then

2  ki+J«l2 <o°i = 1

and hence property (ii) of the norm is also satisfied.

Example 4. It is easy to see that the bounded infinite sequences with the norm

M U  := sup |x,|

and the absolute summable sequences with the norm

M i  : =  2  M li = 1

form normed spaces; they are called l^-space and E-space, respectively (the 
superscript 1 is sometimes omitted).

Example 5. The linear space of functions continuous on a closed interval 
[a, b] is a normed space with the norm

1 1 /1 1 - :=  s u p  { 1 / ( 0 1 ;  t£[a,b\}.
It is called C[a, b]-space (or C-space for short if the domain [a, b] is clear from 
the context).

That the sequence {/„} of continuous functions tends to Д  C in this normed 
space means exactly that f n-+f uniformly on [a, b] and hence this is the most 
important normed space of continuous functions.

Remark. We can see clearly in this example, why it is necessary to adopt a 
new name: norm, and a new notation: || . || for this generalisation of the ab­
solute value of geometrical vectors. We can speak about the absolute value 
1/(01 of a continuous function /  and also about the norm off  i.e. the maximum 
value of | / ( i ) |  in [a, b].

Example 6. Other useful norms in the linear space of continuous functions on 
a closed finite [a, b] are the following :

( a )  Il/И г:= ( /  1/(01* d i)1'* (Ц -space)
a

ll/lli := /  1/(01 át (Ц -space)
a

(b )
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(the superscript 1 is sometimes omitted). The only non-trivial part in proving 
that the properties (i), (ii) and (iii) of the norm are satisfied is that (ii) is satis­
fied for II . II2 ; this is postponed until §2.1.

1.2.2. The following important theorems on convergent sequences of real 
numbers are valid for every normed space with the same proof (but substitut­
ing ‘norm’ for ‘absolute value’ of course).

1.2.2.1 Theorem. A sequence {x„} has at most one limit.

1.2.2.2 Theorem. If x„—x then also x„t~+x for every subsequence {x„}.

1.2.2.3 Theorem. If x„ —x then ||x j  — ||x||.

1.2.2.4 Definition. {x„} is bounded if there exists Ks*0 (common for every 
n!) such that ||x„||=sK

1.2.2.5 Theorem. If {x„} is convergent, then {x„} is bounded.

1.2.2.6 Theorem. The linear operations are continuous in the following sense:

(a) If x „ -x  and y n-*y then x„+ yn-* x + y;

(b) If A„—Я and x„-*x then 2„х„-*-Ях.

1.2.3. There are important theorems, however, which are not valid for every 
normed space.

1.2.3.1 Definition. A sequence {x„} in a normed space X  is called convergent 
in itself or Cauchy-sequence if for every e> 0  there exists N =N {e)  such 
that

ll*„-*mll <  £ for n, m >  N(e).

1.2.3.2 Theorem. Every convergent sequence {x„} is also convergent in itself. 
Proof. Since

ll*«-*mll =  II(* » -* ) +  (*--*„,)II ||xn- x | |+ | |x - X m|| X, X„, Xm£X

it follows that x„->-x implies that {x„} is a Cauchy sequence.
The Cauchy Convergence Theorem says that for a sequence {x„} of real 

(or complex) numbers the converse of the above theorem is also valid: con­
vergent and Cauchy sequences are the same and this is also true in the geo­
metric vector space. However, the following example shows that the Cauchy 
Convergence Theorem is not valid in every normed space.
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Example 1. Let us consider in L0[ —1, +1] the functions

0 if t <  0
xn{t) =  nt if 0*c 1/n

1 if t >  l /и.

(See figure 1.2.) The sequence x„ is convergent in itself since
+il l * „ - * m l l l =  /  M t ) - X m( t ) \ d t  

- 1

1/m 1 In

= J  (mt—nt)dt +  J  (1 — nt)dt
0 1/m

1/m 1 In 1 In

= J  mt d t +  J  d t — J  ntdt
0 1/m 0

1 Г1 n  1
=  ~z— + --------- n < w .2m \n m)  2n

fig. 1.2

We shall show that {x„} is not convergent, i.e. there is no continuous function 
;с=х(/) such that II*—xJ^—0.

For this purpose, let us consider a ‘larger’ normed space containing both the 
continuous functions and step functions. For a step function y = y ( t ) ,  the 
interval [ — 1, +1] can be divided into a finite number of subintervals [tt, 
ti+1] such that the value of y = y ( t )  is constant in every (th t i+1) and the 
union o f the intervals [^, ti+i] is [ — 1, +1] (see figure 1.3).

fig. 1.3
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We now consider the linear space generated by the continuous functions 
and step functions on [ — 1, +1] with norm

and hence ||/+ —jc„||x—0.
Since, by 1.2.2.1, there is at most one limit for {x„} in a normed space and 

/+ ^L„( — 1, +1), we have proved that there is no limit in L0 for {xn}.

1.2.3.3 Definition. A normed space X  is called complete if  every Cauchy se­
quence has a limit in X. A complete normed space is also called a Banach space.

The above example in L0[ —1, +  1] shows that L0[ —1, +  1] is not complete 
and it can be shown by a similar example that neither is Ц  [a, b].

The space C [a,b\ is complete. This follows from the following classical 
result in mathematical analysis: ‘If a sequence {/,} of continuous functions con­
verges uniformly on [a, b] to a function / ,  then /  is continuous on [a, b].’ 
Indeed, from Example 5 in § 1.2.1, this is the same as saying: ‘The normed 
space C [a, b] is complete.’

The remaining examples in § 1.2.1 of normed spaces are also complete, i.e. 
they are Banach spaces. (Although we shall not prove this, it is by no means 
trivial.)

1.2.3.4 Definition. The normed space X  (or a subset / f c T )  is called com­
pact if every sequence {x„} belonging to Ж  contains a convergent subsequence 
tending to a vector х^Ж.

The Bolzano-Weierstrass Theorem says that every bounded closed subset 
of the real (or complex) numbers is compact, and this is true also for the 
bounded closed subsets of the geometrical vector space. However, the 
following example shows that the Bolzano-Weierstrass Theorem is not valid 
in every normed space.

Example 2. In P  the sequence {ek}; k = \ , 2 , ..., where

Then for

we have

ek =  {0, 0, ... ,0 , 1, 0, ...}

2 Máté

m i  =  J  m \  dt.
- i

, , .  [0 if -= О
' * «  =  {l if , , 0

+ 1 1//I 1
/  |/+ (0 - ^ „ ( 0 ld /=  /  (l  — n t ) d t <  —

- 1  о  n
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belongs to the closed unit sphere {x: ||x||2< l} .  However, there is no con­
vergent subsequence of {ek}; k = 1,2, ... since for any pair en, e m,

Ik— = У2.

Examples for compact subsets Ж  and further theorems concerning complete 
space and compact subsets will be found in § 1.6.

1.2.4. In a linear space, as we have seen, many different norms can be defined 
and hence different normed spaces are obtained. For example, from the 
linear space o f continuous functions on the closed finite interval [a, b], the 
Banach space C[a, b] is obtained if it is supplied with the norm || . IL; how­
ever, the linear space o f continuous functions with the norm || . ||х is the(non- 
complete) normed space L0[n, b] and with the norm || . ||2, the (non-complete) 
normed space L;\[a, b], It is therefore useful to compare the different norms 
in the following sense.

1.2.4.1 Definition. If the linear space X  is supplied with two different norms, 
say II . II and || . ||*, then the norm || . || is termed stronger than || . ||* (and 
hence || . ||* is weaker than || . ||) if

IIjcii* -= iciijcii xex
for K>~ 0 (common for every x£ X).

1.2.4.2 Definition. The norms || . || and || . ||* are called equivalent if there exist 
positive Kx and K2 for which

K i M * <  M  c K t M *  x t x .

Example 1. In the linear space o f continuous functions on the finite interval 
[a, b], the norm || . || is stronger than the norm || . ||x since for every continuous 
function /

/  1/(01 dt<r ( b - a ) su p (|/(0 I; te[a,b]}.
a

Example 2. In the linear space o f и-tuples of complex numbers, the norms 
II • Hi, II • II2  and II . |L  are equivalent. Indeed for x = { 4 ;  k =  1, ..., n},

max 141 <  2  k l  <  n max |4 |
k k=i k

and hence
||x |L <  ||x ||<  n||x|L Xtx .

The equivalence of || . IL and || . ||2 is obtained in a similar manner.
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Example 3. Let us consider the linear space of functions on the real line which 
are continuous on a finite interval 7f and are zero outside 7f, i.e. / ( / ) = 0 if 
i(£7f and 1{ depends on f .  The norms || . |L  and || . ||x are also defined in this 
linear space; however, they cannot be compared in the sense of definition
1.2.4.1. Indeed, considering

f ( t ) (»/(! + I'D if Иlo otherwise

we have ||/,IL =1 for every n but ||/„||1— considering

in if И <  l /и
n{) lo otherwise

we have °° but ||/i„||i=l for every n.

1.2.4.3 Theorem. If the two norms || . || and || . ||* are equivalent in X  then the 
same sequences are convergent in both spaces {X; || . ||} and {X\ || . ||*}. 
Consequently {X; || . ||} is complete if  and only if {X ; || . || *} is complete 
and II . II} is compact if and only if Ж  is compact as a subset of
{*; II. Г}.

While this is a very important theorem, its proof is obvious.

1.3 Contractive mappings

1.3.1. If y= F (x )  is a function with a continuous derivative on the real line, 
then the solution of the equation

X =  F(x)

is the limit of the recursive sequence

*o =  a xn+1 =  F(xn) n =  0, 1,2, ...

if  the following conditions are satisfied:

( a )

where 2  is a closed domain of the real line;

(b) a^3t and if x££2 then F(x)£3>.

2*

F(x) <  1
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A very important example is F (x )= — (х+Л /х); in this case the sequence

x0 =  A >  0 xn+1 =  j ( x n +  A/xn) n =  0 ,1 , 2,... 

tends to Al/2, i.e. to the solution of the equation

X =  j  (x+A/x).

The process of solving an equation by a recursive sequence like this is visual­
ised in figures 1.4(a), (b).

fig. 1.4

1.3.2. The subject of this section is the generalisation of the above process to 
the case when F is a mapping of a Banach space.

L3.2.1 Definition. A mapping (operator) F of a Banach space В is contractive 
in 2>^B if

(a) from x £ 2) it follow's that F(x)dSi;
(b) ||F (x )-F (y)N < 7llx—y||, O <0<1, x ,y € 0 .

13.2.2 Theorem. If F is a contractive mapping in Q) then the recursive sequence 

x0£S> xn + 1 =  F(x„) n =  0, 1,2, ... (*)

is convergent. Moreover, if x= lim x„ , then
n

X  =  F(x) ( * * )

and the solution o f this equation ( * * )  is unique in Si.
Proof. First, it will be shown that {x„} is a Cauchy sequence and hence the 
limit x= lim x„ exists since В is a Banach space.n

I l * n + 1- * J  =  l|F(xn)-F (x„_ i)|| «Й i | |x B- x B_1|| n =  1, 2, ...
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and in full,

ll*i-*ill = l№)-iX*0)ll < 4 ll*i~*oll
11^3-^11 =  <  (711̂ 3 —-̂ lll <  qlXi-XoW

ll*4-*3ll =  l|F(x3) - F ( x 2)|| <  q ll*3 —X2|| <  ^3|kl-^oll 

and hence, by induction,

II*„ + 1 - * J  <  <7nll*i-*oll n =  1,2, ...

which means that {||x„+1—x„||} is less than a geometric sequence with quotient 
0-=c/< 1. Consider the Cauchy Convergence Theorem and, for example, 
n > m \

l l * n - * m l l  <  l k m  +  l - ^ m l l + l l ^ m  +  2 - ^ m  +  l l l  +  — + K - ^ n - l l l
<  (^m +  ̂ m+1 +  ... +  ̂ "_1)||x1—xr0||

«= qm(\ + q+q2+...)\\x1- x 0\\

=  ?m-j-^ - |l* i-* o ll

and hence {xn} is a Cauchy sequence. For the limit x  of the sequence {x„}, 

D*-F(JC)0 ^  l l* -* J + l |x B- F ( x n)||+ ||F (x (I)-F (x ) || 

and hence if х£Я> and ||x—x„||<e/4 then

II x —F(x)|| <  e/4+8/2 +  ̂ e/4 <  e

which means that x = F (x ). If then F(x) is defined as lim F(x„),
П

and the same conclusion is reached.
If we suppose that z= F (z ) and z^ x , i.e. there are two solutions o f (*  *), 

x and z, then

IIx z|| =  IIF(x) — F(z)И <  ? | |x -z | |  o <  q <  1 

which is impossible if x ^ z .

Example 1. The usual iterative method for solving first-order differential 
equations,

* 4 0  = f ( t ,  * (0 ) x(t0) =  x0

when a Lipschitz condition

l/(* i. 0 - f ix * ,  01 <  -Wlxj-Xal if |i- i„ l <  d
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is satisfied is a special case of (-* ) if
t

F(x(t)) := x 0 +  /  / ( t, x(r)) dt 
f0

in C[a, b]. Indeed, if a<m in (d, l/M)  and a = t 0—u, b =  t0+ a ,  then for 
x ,y£C [a ,b] ,

|F (x )-F (y ) | =  IJ  [ / ( r, x ( z j ) - f { z ,  у(т))] dt I 
*0

<  /  | / ( т- х(т))-/(т, у(т))| dr 
f0

t

«s M  J  |*(t) — y(t)\ dt 
*0

** m |í - / 0| l|x-y|l<~

Hence for |t—t0|< a ,

||F(*)-FOOII~< Mcc\\x-yU
and M a d .

Remark. The iterative method for solving first-order differential equations 
also works in more general conditions.

Example 2. The equation
t

x {t)—X j  K ( t—t) x (z) dt =  f( t)  
о

where / ,  FT£C[0, T\ for any F > 0 is called a convolution equation o f the 
second order. What is the condition for F being a contractive mapping in 
C[0, T] if

F (x(t)) := f( t)+X  j K ( t - T)x(r)dT?
0

To answer this question, consider

||F(x) —FOOIU =  su p ( |l f  K ( t - z ) ( x ( z ) - y ( z ) )d z \ ;  /€ [0 ,F ])
0

<|A| /  |AT(í- t)| dTSup(|x(i)-y(OI; *€[0, Л )
0

<  ll^ -T ll~ W su p (/ \K ( t-z ) \  dr; <€[0, F ]) .
0
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So, if |A| is small enough, or more precisely if

|A |<  [sup ( /  |* ( í-T ) |d r ;  i i ^ T ] ) ] " 1
0

then F is contractive in C[0, T] and hence the sequence

* o ( 0 = / ( 0  xn+1(t) =  Л 0  +  Я /  K ( t - t )x „ (v )d z  n =  0 ,1 ,2 , . . .
о

converges uniformly in [0, Г] to the solution o f the convolution equation.
This example has several generalisations. A more thorough investigation 

will show that the recursive sequence {x„(t)} tends to the solution of the con­
volution equation also for every L  By a similar argument one can demonstrate 
the convergence of the iterative method for the more general integral operator

F(x(t)) :=/(/)+A j  K {t,z )x {z)dz .
a

More about contractive mapping, including the problems just mentioned, 
can be found in §§ 1.8.22-1.8.28.

1.4 Continuous linear operators

A continuous operator T: X-+Y  sends a convergent sequence {xn} into a 
convergent sequence {7л;п}. A bounded operator T  sends a bounded subset o f  
X  into a bounded subset of Y. For a linear operator T  these two properties 
coincide.

1.4.1. In the following, unless otherwise stated, an operator T: X-+-Y is 
assumed to be defined everywhere.

1.4.1.1 Definition. The operator T: X^-Y  is called continuous in x0£ X  if  
for every {x„} tending to x0 it follows that Tx„-*Tx0.

As in classical analysis the following theorem can be proved.

1.4.1.2 Theorem. The operator T: X —Y  is continuous at x0£ X  if  and only 
if for every e > 0  we have <5 =  <5(e)>0 such that | x —x0|[<<5 implies 
||7 x —7x0||-ce.

1.4.1.3 Theorem. If a linear operator T  is continuous at 6£X, then T  is 
continuous at every x£X.
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Proof. Since T  is linear,

Tx =  T (x + 6 )  =  Т х + Т в  x £ X

and hence TO —в. Now, if xn—x0 then xn- x o-+0 and hence T(x„—xo)-*0 
since T is linear and continuous in 0. But T(xn—x0)= T x„—Tx0 and hence 
from xn-*■xn it follows that Txn-+Tx0 for any xfiX .

1.4.1.4 Definition. A linear operator T  is bounded if there exists (M > 0)

ir.vll M\\x\\ x£X.

In this case M  is called an upper bound or a bound o f T.
We now turn to the fundamental property of linear operators which tells us 

that for a linear operator continuity is the same as boundedness.

1.4.1.5 Theorem. A linear operator T  is continuous if and only if T  is bounded. 
Proof. If T is bounded with a bound M, then for every e> 0 , ||Tx||<e if 
||x|| < s /M  and hence T  is continuous at 0. It follows from the foregoing 
theorem that T is continuous at every x£X, i.e. Г is a continuous linear oper­
ator.

Conversely, if T  is continuous at 0, then ||7x ||<  1 if ||x||<<5(l), and hence 
for every non-zero x£X,

Ä  117*11 =  ||г (а (1 )* / |м ) || <  i

and so

||ГХ||<

i.e. Г is a bounded operator with a bound M =  1/<5(1).

1.4.2, Examples of bounded linear operators in the various normed spaces 
defined in § 1.2.1.

Example 1. Let us consider the linear space of и-tuples of real numbers with 
the norm ||x||„ =  max |л',| and let the operator T  be the multiplication with 
an nXn  matrix A with elements {aik}, i.e. for х = { х ^  i =  1,2, ..., и},

n
T x : -  { 2  aikxk\ i =  1, 2, ..., и}.

к, —l

This is a bounded linear operator with a bound
П

M  =  max 2  \aik\
1 k = 1
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since
n n n

I 2  ttik-XfcI 2  Ы1**1 ^  2  t 1» 2, ..., П
k =1 k =1 fc=l

and hence
п tt

1|Г*||»:= шах [ 2  a i k * k I «= M «, max 2  \a ik\-
' k = l  ' k = 1

Example 2. If {aik\ i —1,2, ..., /с= 1, 2, ...} is a ‘double’ infinite sequence 
called an infinite matrix, with the condition

sup 2  K l  <co* it=i
then

Tx:= { 2  aikxk; i =  1,2, ...}
*=i

is a bounded linear operator in /“ with bound

M  =  sup 2  \a ik\-
‘ k =  1

Indeed, for every n and x={xp, i =  1, 2, ...},

n n n n

I 2  2  \a i k \ \ x k\ ^  IWI“ 2  \^ik\ ** ll-̂ ll“ Slip 2
k =  1 k =  l  * = 1 1 k =  l

and hence

{ 2  îk*k > t ~  1 )2 ,...}  
k =  1

is a bounded infinite sequence and

| | { 2 Ч - л } | |~ <  IWI-sup 2  k*l-
k=1 * k = 1

Example 3. If K = K (t ,  z) is a continuous function on the finite closed (two- 
dimensional) interval [a,b]X[a,b] then

ь
Tx J  K (t ,x )x (z)áz  (*)

a

is a bounded linear operator in C[a, b\. Indeed, it is obvious that T  is linear 
and

b b b

I /  K(t, T )x (T )d t|^  f \K(t, t) ||jc(t)| dr «; ||x ||„ f |Ai(i,T)|dT
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and hence
ь

||r .x |U <  ||*||ooSup{/ \K(t, т)| dr; t£[a, fc]}.
a

Remark. If K(t , т) is continuous on [a , b]X[a, fe], then
b

I  \K(t,x)\dx
a

is continuous on [a, b] and hence it is bounded. 

Example 4. The integration operator on C[a, b],
t

T x :=  j  x(x)dx t£[a, b]
a

is a bounded operator with a bound M = b —a since

I /  x(r)dr| <  ||x |U (ft-a ).
a

Remark. The integration operator is in the form (-*) if

if  X  <  /

otherwise.

Example 5. The most important example of a linear operator which is not 
continuous is the differentiation operator in C[a, b],

T x : = ± ( x ( t ) ) .

To see that the differentiation operator is unbounded in C[0, 2тг], let us con­
sider the bounded sequence {sin nt; n =  1, 2, ...}:

and hence 

since

T  sin nt := (sin nt) =  n cos nt at

IIГ sin nt\\m — n||sin nt\\„ 

sup {cos nt; t£[0,2n]} =  sup {sin nt; t£[0,2n]}.

We conclude that T  sends the bounded sequence {sinnt; n =  1, 2, ...} into 
the unbounded {n cos nt; n =  1,2, ...} and hence T is not a bounded oper­
ator.
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Remark. We can consider T = d /d t  as an operator o f C ’[a, b], the subspace 
of C[a, b] consisting o f functions with a continuous derivative. In this case, 
the differentiation operator is an everywhere-defined T: C 1 — C operator.

Example 6. In C1 [a, b], the linear space o f functions defined in [a, b\ with a 
continuous derivative, we can define

l l / l l  : =  I I / I I -  + м .

It is easy to show that the properties (i)—(iii) of the norm in § 1.2.1 are satis­
fied for this II . II. If C^a, b] is the normed space supplied with this norm 
(instead of || . ||o=, as we had in the previous example), the differentiation 
operator is a bounded (and hence continuous) operator from C1 into C.

Example 7. It is obvious that the operator (i.e. functional) which sends an 
infinite sequence x —{xk}; k —1,2, ... from l°° or l1 into its nth element, 
x„, is bounded and linear. Similarly, the mapping

/ - / ( ' о )  Ш а ,  b], f£ C [a ,  b]

called the evaluation functional is also bounded and linear.

Example 8. The evaluation functional is unbounded on L„[— 1, +1]. Indeed, if

*„(0 =
n2t +  n 

— n2t+ n  
0

if — l/n  «s / <  0 
if 0 <  t <  l/n  
elsewhere

(see figure 1.5) then ||xn||1 =  l, x„(0 )= n and hence the evaluation functional 
/-»-/(0) sends the bounded sequence {x„} into the unbounded {x„(0)}.

fig. 1.5
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Similarly, the evaluation functional is unbounded also on L2a[a, b\ for any 
interval [a, b].

Example 9. Let us consider the Fourier series

Cl 00

- 7 -+  2  akc o s k t+ b ksin kt
2 k= 1

of a real-valued continuous function f = f ( t ) ,  where
j  2 jc

ak =  — f  f( t)  cos kt át 
71 0
j  2 iz

bk =  — f  f ( t )  sin kt át.
71 сГ

It is known that

4 + i « 8 + 4 = ^  f  m á t

which means that the operator F from the real Lq[0, 2n] into the real / 2 defined 
by

F f  =  W 2 , b,, aj, fc2, a2, ...}
is a bounded linear operator with bound ti1/2.

Remark. Modifying slightly the norm in the real L^[0,27r]-space,
1 2  7C

71 0

we have the stronger property || 7/11=11/11 for every f f  L2. This kind of 
operator is called an isometry.

1.4.3. If 7\ and T2 are bounded linear operators with bounds M k and M 2, 
then 2Tk+ p T 2 is also a bounded operator with bound M = max (|2| M 1, 
\p\M2) for any scalars 2, p, and hence the bounded linear operators T : X-»Y  
form a linear space.

Remark. \k\Mk+ \p \M 2 is also a bound for 27"’1 + pT2 since

||(27\+ p T 2)x\\ <  И ||З Д | +  И||Г,дс|| <  |2| M k +  \p\M2.

1.4.3.1 Definition. The least upper bound of a bounded linear operator T  is 
called the norm of T :

m i  := inf {M: m i l  <  M\\x \\; x iX ) .
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Remark. Since x £ X  and Tx£Y, ||v][ and [|7x|| should have very different 
meanings if X ^ Y ,  as can be seen in Examples 6-9 in § 1.4.2.

1.4.3.2 Theorem.

m i  =  sup { m i i : y*ii =  i}.

Proof. If M0=sup {||7x ||; ||x|| =  1} then for every x: x^O,

i . e . \T i k h M °

\\Tx\\ <  М0||л||

and hence Л/0 is an upper bound of T.
Conversely, if M  is any other bound o f T, then ||7x||=eM||x|] and, for 

x: x^O,

1г м ! = м | М < м -
Hence

M a =  sup {||!T.x||; ||x|| =  1} =  sup
х^в

X
T y ~Й- <  MM l

which means precisely that M 0 is the least upper bound.
An immediate consequence of the foregoing theorem is the following.

1.4.3.3 Theorem. If T, 7 \, T2 are bounded linear operators from X  into Y 
then

(i) IIE II >>0 and IIГ ||= 0  if and only if Т х = в  for every x£X;

( i i )  Ц 7 \ + Г 1 0 < | | Г 1 |  +  | | 7 ' , | | ;
( Ш )  | | Л 7 1  =  | Л | | | 7 1 ;  А ё Ф

and hence the linear space of bounded linear operators T: X ^  Y is a norm- 
ed space.

In addition, the following connection holds between the norm and the prod­
uct of linear operators.

1.4.3.4 Theorem. If the product TLT2 is defined, then TfT2 is also a bounded 
linear operator and

н а д !  <  m u  m i .
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Proof. For every x€ X,

and hence

lirjlir^ll^ lirjlirjlWI

И В Д  := sup {И ВД хЦ : ||x|| =  1} <  1|7\|| ||Г,||.

* 1 .5  The geometry of normed spaces; separability

In linear algebra, in an n-dimensional space, the computations are fulfilled 
with the aid o f a finite basis. Hence the lack of basis in an infinite-dimensional 
space creates difficulties in applications. Fortunately, many infinite-dimension­
al normed spaces X  contain an infinite sequence {ak; k =  1,2, ...} of vec­
tors called a fundamental sequence, such that every x£X  can be approxi­
mated by linear combinations o f vectors belonging to {ak; k =  1 ,2 ,...} . 
Such spaces will be called separable, and in a separable normed space a cer­
tain fundamental sequence plays the role of a basis in most cases.

1.5.1. We begin with some ideas of a geometrical nature. The set

{*•’ | |x - x 0|| <  r}

is called an open sphere with centre x0 and radius r.

1.5.1.1 Definition. A subset XP of a normed space X  is called open if from 
X'fiXP it follows that there exists 0 such that {x: ||x—x0||< r } c ^ f .  
A subset XP o f X  is closed if  {x: x$XP) is open.

There is also a more direct definition of a closed set via closure points using 
the concept o f closure.

1.5.1.2 Definition. x f iX  belongs to the closure o f the subset XPczX if any 
open sphere with centre x„ contains a vector x^XP.

1.5.1.3 Theorem. x0£ X  belongs to the closure of XPczX if  and only if  
there exists a sequence {x„; xfiXP} such that x„—x0.
Proof. If x0 belongs to the closure of XP, then every open sphere {x : |]x—x0|| <  
< 1  /n}; n = l ,2 ,  ... contains x,fiXP and hence ||x„—x0||<  1/n; n =  l ,2 ,  ...,
i.e. x „ - x 0.

Conversely, if xfiXP  and x„-*-x0, then by definition, all but a finite 
number of {x„} are contained in every open sphere with centre x„.
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1.5.1.4 Definition. Let Ж  be the closure o f Ж ; then Ж  is closed if Ж  — Ж .
In other words, by Theorem 1.5.1.3, a subset Ж  is closed i f  (and only if) 

it follows from  х„£Ж and xn-*x that x£ Ж  also.

1.5.2. A subset Ж  is called dense in X  if Ж —X \ i.e., by Theorem 1.5.1.3, 
Ж  is dense in X  if for every x£X  there is a sequence {*„}; хпЧЖ such that 
x„^x.

1.5.2.1 Definition. The normed space X  is separable if there exists a countable 
dense subset in X.

1.5.2.2 Definition. The linear space X  (or subspace Ж ) is generated by the 
subset i f  if every x £ X  (or х£Ж ) is a linear combination o f elements of Ж.

1.5.23 Theorem (without proof). If the linear space generated by a countable 
subset {a„\ n = 1, 2, ...} is dense in X, then X  is separable.

The foregoing theorem says, practically, that if there is a sequence {an; 
n = l ,2 , . . . }  such that every x £ X  can be approximated to any required 
accuracy by sums

m

2  b * .,i=l

then X  is separable. So, the condition that a countable set [a„; n =  1, 2, ...} 
be dense in X  is only apparently stronger than the condition that the set of 
linear combinations from [an; n =  1, 2, ...} be dense in X. This is very im­
portant, since in most spaces only the latter can easily be verified, as will be 
seen in the following examples.

Example 1. Consider the countable set {tk; n —1,2, ...} in C[a,b]. By the 
well-known Weierstrass Theorem, every continuous function on the closed 
finite interval [a, b] can be approximated by polynomials with respect to the 
uniform convergence. Since uniform convergence on [a, b] is the same as 
convergence in the Banach space C[a, b], it follows that C[a, b] is separable.

Example 2. Consider the countable set {e„; n—1 ,2 ,. . .}  in the / 2-space, 
where e„ is the sequence whose 77th element is 1 and any other element is 0. 
It is obvious that every finite sequence (i.e. a sequence with all but a finite 
number o f elements equal to 0) is a linear combination o f elements from 
{e„; 7 i= l, 2, ...}. Moreover, the finite sequences form a dense subset in Z2. 
Indeed, if

*  =  {£*; k =  1,2, ...}€/*
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and
{Слк* к  =  1» 2» •••}

where
, _  if и
C'"k lo  otherwise

then obviously ||x—x„||2-*-0.
We conclude that the / 2-space is separable.

Example 3. The finite sequences do not form a dense subset in the space l°°. 
Indeed, if

v =  {\, 1,

then for any finite sequence хп =  {£г , <j;2, 0, ...}, \\v -x „ \\» l.
It can be proved (it is by no means trivial!) that there is no countable dense 

subset in i.e. l°° is not a separable space.

Example 4. Every real-valued continuous function in [0, 2л] has a Fourier 
expansion, convergent in Ц [0, In] by the well-known Riesz-Fischer Theorem, 
and hence the linear space generated by (1, sin nt, cos nf, n = l ,2 ,  ...} is 
dense in L„[0, 2n]. We conclude that is separable.

Remark 1. The approximation by polynomials in C[a, b] and the approxi­
mation by trigonometric polynomials in Ц (0, 2л) via the Fourier expansion 
are o f a very different nature. For every / 6 Ц  we can construct an infinite 
series, the Fourier series, and / is approximated by the partial sum o f  the series. 
However, in the form of a power series, called the Taylor expansion, only 
certain infinitely differentiable functions can be approximated in C[a, b]. 

So, we have to make a distinction between two different cases. If there is a 
countable subset {a„; n =  1,2, ...} such that the linear space generated by 
{an; n =  1, 2, ...} is dense in X, i.e. every x£X  can be approximated to any 
required accuracy by (finite) sums

m

i =  1

then {an; n = 1,2, ...} is called a fundamental sequence. This is the case of 
{?"; n =  1 ,2 ,. ..}  in C[a,b].

If every x £ X  can be given in the form of an infinite series

k = 1
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then an; n =  1, 2, ... is called an infinite basis (see §2.2). This is the case of 
{■eint; n =  0, ± 1 , ± 2 , ...} in Ц [0, 2л].

In both cases X  is a separable space.

Remark 2. We may also speak of a dense subset Ж  of JlczB . A subset 
of В is called separable if  there exists a countable dense subset in Ж’.

To summarise, in a separable subset o f a normed space there is a sequence 
{an; n = 1, 2, ...} such that every element is either the linear combination or 
the limit o f the linear combinations o f {an; n = 1 ,2 ,...} .

* 1 .6  More about complete spaces and compact sets

1.6.1. Some o f the important normed spaces of continuous functions are not 
complete, e.g. the L0- and Li;-spaces. However, the important contractive 
mapping theorem, as we have seen in § 1.3, is valid only for complete normed 
spaces — i.e. Banach spaces — and later on we will encounter more and more 
such theorems.

If a certain normed space is not complete, then we can restrict ourselves to 
an appropriate subspace which is a complete normed space, or we can complete 
the normed space into a Banach space by a completion process. In the latter 
case a new problem of identifying the new elements arises.

1.6.1.1 Definition. The linear subspace J Í  of a normed space X  is called com­
plete if every Cauchy sequence {л„}; x f iJ t  has a limit x<LJl.

Example 1. Every finite-dimensional subspace of a normed space is complete, 
as will be shown in § 1.7.

Example 2. The space C00 o f continuous functions with bounded support 
(see § 1.8.2) on the line with norm

IMU =  sup |xr(0l

is not complete. Indeed, if x = x ( t)  is a positive continuous function on the 
real line such that lim x ( i )= 0  and xn—xn(t)  is a continuous function witht~* ± oo
bounded support such that |x „ (/) |< x (i)  and x „ (t)= x (t)  for |? |<n  (see 
figure 1.6), then x f iC m and the sequence {*„(?)} tends to x (t)  uniformly 
on the real line. So, by reasoning similar to that in Example 1 of § 1.2.3, the 
Cauchy sequence {x„}; x„€C00 has no limit in C00.

3 M á té
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Example 3. In contrast to the previous example the closed subspace of C00 
consisting of functions with support in [—1, +1] is complete. Indeed, if the 
support of xn= x n(t) is contained in [—1, +1] for every n and xn(t)-*x(t)  
uniformly, then the support of x —x{t)  is also contained in [—1, +  1].

The next theorem tells us that every normed space has a complete extension.

1.6.1.2 Theorem. For every normed space X  there exists a complete normed 
space (i.e. a Banach space) В such that for a dense subspace B() of В there is 
a 1-1 linear mapping (operator) L from X  onto B0 with the property

\\Lx\\ =  Ml x€X.

В is called a completion of X.
Note: all completions of X  are isomorphic, i.e. they can be identified with 

each other by an isometric mapping.
Instead of a proof this theorem will be elucidated with the aid of some 

examples.

Example 4. As was shown in the previous example, C00 is not complete; 
however, C00 is a dense subspace of C0, the linear space of continuous func­
tions on the real line with lim x(t) =  0 and with the norm || . ||те.

t — ±  oo
Since the uniform limit of {x„; x„£C0} also belongs in C0, i.e. the limit x  

is also a continuous function with lim x ( t ) —0, C„ is a complete normed
t  -*• ±  OO

space. Moreover, C0 is the completion of C00 by the description in Theorem
1.6.1.2.

Example 5. If we consider the rational numbers as a normed space over the 
field Ф of rational numbers where the norm is the absolute value of the rational 
number, then the normed space thus obtained is not complete. For example, 
the sequence of rational numbers

1, 1.4, 1.41, 1.414, 1.4144,...
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(the digit-by-digit approximation o f |/2) is a Cauchy sequence and has 
no limit among the rational numbers.

The completion o f the normed space of rational numbers is the space of 
real numbers, also with absolute value as a norm. To show this it is enough to 
remember that every real number is the limit of a sequence of rational numbers 
and the Cauchy convergence theorem is valid for real numbers.

More particularly, consider the Cauchy sequences of rational numbers and 
identify two sequences if their difference tends to zero. Then every Cauchy 
sequence tending to a rational number is identified with the rational number 
and the remaining Cauchy sequences are the new elements, the non-rational 
numbers.

Example 6. Consider the Cauchy sequences in L20[a, b] and identify two se­
quences {x„} and {yn} if their difference tends to zero, i.e.

a

Then every Cauchy sequence tending to a continuous function xfL j[a, b] 
is identified with x. The remaining sequences (i.e. the remaining equivalent 
‘classes’ of sequences) are the new elements which, together with the continuous 
functions, form the completion of Lfja, b] called L2[a, b].

One of the achievements of the Riesz-Fischer Theorem is the representation 
of this completion, L2[a, b], by measurable functions / ,  the Lebesgue integral 
of which obeys

j  |/(/)|2d/<°°.
a

Remark. Fortunately, every bounded function occurring in applications is 
contained in the linear subspace of La generated by step functions and con­
tinuous functions. So, if a normed space consisting of such functions is not 
complete then the new elements obtained by completion are needed only for 
‘theoretical’ purposes, i.e. the results of Banach Space I  heory should be applied.

Now, it is worth describing the completion process of a normed space X  
which we have seen in particular cases in the previous examples.

The completion consists of the equivalence classes of Cauchy sequences 
{x„} (x„£X) in the following sense.

Two Cauchy sequences {xn} and {yn} are equivalent, or belong to the same 
class, if  xn—y„-*9.

If the sequence {x„} converges to an element x  of X, then the class of Cauchy 
sequences which are equivalent to {x„} is identified with x£X.

3*
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The classes of the remaining Cauchy sequences are the new elements 
which, together with the elements of X, form the completion В of X. If xZB, 
then

Ml := lim MilП

where {x„} is a Cauchy sequence o f the class of л\
Although obvious, the following theorem is important.

1.6.1.3 Theorem. The completion of a separable normed space X  is also sepa­
rable.

1.6.2. Remember that a normed space X  (or a subset Ж с:Х )  is called com­
pact if the Bolzano-Weierstrass Theorem is valid in X  (or in Ж'). (See Defini­
tion 1.2.3.4.)

Further examples for non-compact bounded closed sets in infinite-dimen­
sional normed spaces are the following.

Example 1. In Ц [ —л, +7г] the sequence {(1/я1/2) sin nt\ n =  1,2, ...} belongs 
to the closed unit sphere {x: ||x|[2<  1} since

— J  sin2n t d t =  —— j  (1 — cos 2nt) dt =  1.

However, there is no convergent subsequence of {(1/я1/2) sin nt\ n — 1, 2, ...} 
since

1 +K
— [  (sin k t—sin m tf  dt =  2
71 J— К

for any pair k, m.

Then ||xnt||„ =  l and for any two different functions x„:k and x„-x ,

sup{|x„jt(0-x„.,fc.(0l; i€[0, 1]} = 1

and hence there is no convergent subsequence of {xnk}.

Example 2. Consider the following ‘double’ sequence in C[0, 1]:

k )  . .  к  2к  + 1

Х п М = \ 2п + 1 ( ( _ к + П  i f  k  + l_
1. 2" ) 2n+1 2"

0 elsewhere.
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To find compact subsets in an infinite-dimensional normed space is not 
an easy task. Among the most important examples are the following.

A subset Ж  o f continuous functions is called equicontinuous if for every 
e > 0  there is a common <S=<5(e) for every х £ Ж  such that — 
implies that |x (/2) —x ^ l ^ e .

1.6.2.1 Theorem. A closed set / c C [ a ,  b] is compact if and only if Ж  is an 
equicontinuous subset o f functions.

If for /£ L 2[a, b] we define
. t  +  h

2Ä /  /W drA t - h

then we have the following theorem.

1.6.2.2 Theorem. A closed set Ж с Ь 2[а, b] is compact if and only if for every 
£ > 0  there exists <5=<5(e) such that |/i|<<5(£) implies for every х£Ж  that
| | x - x j 2<£.

Remark. Although we omit the proofs of Theorems 1.6.2.1 and 1.6.2.2, they 
are by no means trivial (see, for example, Lustemik and Sobolev, 1961). 

There are very fine properties for compact subsets:

1.6.2.3 Theorem. If Ж а Х  is compact then Ж  is complete, bounded and 
separable.

Proof. If хп6,Ж and {x„} is a Cauchy sequence, then there exists a subse­
quence {xn)  tending to an х£Ж  since Ж  is compact. It follows from the 
inequality

\\xn-x \\  «S ||xn- x nifl-Hlx„(- x l

that x„—X in this case and hence Ж  is complete.
If Ж  is unbounded then for every positive integer n one can find хп̂ Ж  

such that ||x„||>n, and hence there is no convergent subsequence {x„} 
of {x„}, he. Ж  is not compact.

1.6.2.4 Definition. A subset / c l  is called pre-compact if the closure o f Ж  
is compact.

It follows that for a closed subset Ж , compactness and pre-compactness are 
the same properties.
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1.7 Finite-dimensional normed spaces

Every и-dimensional normed space is equivalent, in the sense of 1.2.4.2, to 
the и-dimensional Euclidean space. An easy but important consequence of 
this equivalence is that every linear operator is continuous in a finite-dimen­
sional space.

1.7.1. First we shall show that the three basic norms || . ||1? || . ||2 and || . Ц«, 
are equivalent.

1.7.1.1 Theorem. In the linear space X  o f и-tuples {£k}; k = l ,  2 , . . . ,  n of 
complex numbers the norms

М г :=  2 \$ k \(i=i

М » : = ( Z I ^ I 2)1/2
k=1

1*11=0 =  sup 1̂ 1к
are equivalent.
Proof. If *={£*}; k = \ ,2 ,  ...,n then

sup |^ | *= 2  |&| и sup l&lк t=1 к

and hence || . ||x and || . |U are equivalent norms; moreover 

sup |£*|2 <  2  \Zk\2 c  n sup |£*|2.к fc=i к
Hence

M ~< Цж||*< «1/2IWI~
for every x£X, i.e. the norms || . ||„ and ]| . ||2 are equivalent.

1.7.1.2 Theorem. The linear space X  of и-tuples of complex numbers with the 
norm II . II«, is a complete normed space.
Proof. If

xt := t ö ° ;  к =  1,2, ..., и} 

and {a'J is a Cauchy sequence, then

s u p l ^ - ^ l  < £  if i , j> N ( e ) .к

In particular, {£(f }  is a Cauchy sequence o f complex numbers for k —1, 2, ..., и
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and hence there exists k =  l, 2, ..., n such that

t i l) -  Ь  к =  1,2, ..., n.
Moreover,

sup{|ÉÍ0 -É*|; k =  \ ,2 , ..., n} — 0

or, in other words,
l l * i - * l l ~  -  o .

1.7.1.3 Theorem. If X  is the linear space o f и-tuples o f complex numbers with 
the norm || . Ц«,, then every bounded closed subset of X  is compact.
Proof. For a bounded subset J t  there exists K > 0 such that ||x||„<.K for 
every x d J i  and hence

Itf’l i =  1 ,2 ,. . . ,  к  =  1 ,2 , . . . ,«

for any infinite sequence {x j; i=  1,2, ... belonging to J l.  In particular, 
\ff \-< K  and hence it follows from the Bolzano-Weierstrass Theorem that 
there is a convergent subsequence { c ^ ;  k =  1, 2, ...}; let

Éi =  lim ÍJV.
k-*oo

There is also a convergent subsequence of {{2k)}; k =  1, 2, ... since we also 
have |^(2'k)|<Äi. Using the same notation for the subsequence, let
{ 2 = Jim É<4k-*-oo

Repeating this procedure, after n steps a subsequence {х(J ; k = 1 ,2 ,. . .  
is obtained, each coordinate of which is convergent. If

*  =  {Éi, Éa, •••, Q

then we conclude, as in the proof of the previous theorem, that

l|xik-x IU  - 0 .

Remark 1. On the basis of 1.2.4.3 and 1.7.1.1, Theorems 1.7.1.2 and 1.7.1.3 
are also valid if the norm || . ||«= is replaced by || . ||x or || . ||2 or any norm 
equivalent to || . ||„.

Remark 2. It is easy to see that a sequence is convergent in || . || „  (and hence 
in any norm which is equivalent to | | . || „) if and only if it is convergent ‘coordi­
nate-wise’.

1.7.2. We shall show that any norm of a finite-dimensional normed space is 
equivalent to the Euclidean norm || . ||2.
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Let us consider the mapping

t : {^ ; к =  1, 2 , n} ■* x  =  2  Zkak
i

from the linear space of и-tuples of complex numbers supplied with the norm 
II  . II  x into an и-dimensional normed space X, where

ak; к  =  1, 2 , . . . ,  n

is a basis in X. It is obvious that т is a linear 1-1 map onto X  and hence there 
exists the linear inverse mapping r -1.

1.7.2.1 Theorem. The mappings т and t”1 are bounded linear operators. 
Proof. The operator т is bounded since

M l <  2 Ш < * Л < М  2\ZkV, x z x
к =  1 k =1

where M =sup { | |a j ; k =  l, 2 , и}.
For the inverse operator t_1 let us suppose that there exists a sequence {xn} 

tending to zero and | | t ~ 1 ( x „ ) | |  =  1 for n = l ,  2, i.e. it is supposed that r -1 
is not continuous at в. It follows from Theorem 1.7.1.3 (see also Remark 1) 
that there exists a convergent subsequence {т_1(х„ )} and it is obvious that 
lim r_1(х„() =  а ^ б ; moreover,

x n, =  t [ t _ 1 ( x :B|) ]  -  t ( a )

since T is continuous. Thus we have a contradiction, since aXO, z(a )= 6  and 
г is 1-1 and linear.

It now follows from 1.4.1.5 that t- 1 is a bounded operator.

1.7.2.2 Theorem. Any two norms in a finite-dimensional normed space X  are 
equivalent.
Proof. If {ak; k — l ,2 , . . . ,n }  is a basis in X  and

П
x  =  2  Zk°k

k =  1
then it is easy to show that

1МГ := 2 \ u
k =  l

is a norm (i.e. the axioms (i)-(iii) in § 1.2.1 are satisfied). It follows from the 
previous theorem that

M l  2  l € * l  * £ *
k =  1

32 Hilbert Space Methods in Science and Engineering
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and

k = 1
Hence

■ s i r  2  l i d  - =  11*11 <  M  2  l i dIIT 1|| k=l k=l

which means that any norm is equivalent to || . ||'. Finally it is obvious that if 
we have two norms in a linear space, both of which are equivalent to ||. ||', 
then the two norms are equivalent.

It also follows from the foregoing theorem that every finite-dimensional 
normed space is complete and every bounded closed subset in a finite-dimensional 
normed space is compact (see Remark 1 after Theorem 1.7.1.3).

1.7.3. As is well known, a linear operator in a finite-dimensional linear space 
X  with a given basis has the form of a matrix multiplication (see §4.1.1). 
Moreover, it was shown in Example 1.4.2.1 that the matrix multiplication is a 
bounded operator if X  is supplied with the norm || . || .

It is easy to show that if a linear operator T  is bounded in || . IL then it is 
bounded with respect to every norm that is equivalent to || . ||те. Indeed, if 
II . II and II . II „ are equivalent, i.e.

*iMI- < 11*11 < K,\\xIL *€*
for suitable Kx and K2, then

tfJTxIL < -= KATx|L xdX
and hence

«77x11 < КЛТх|U < K2\\TИ ||x||o„ < ИЛ1М

which means that Г is a bounded operator in the equivalent norm also with

bound —-  I! 7~||. Thus we have proved the following theorem.
Ki

1.7.3.1 Theorem. In a finite-dimensional normed space every linear operator 
is continuous.
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1.8 Problems and notes

1.8.1. Complete the proofs considered to be easy or obvious in the text.

1.8.2. The support of a function/ ,  defined in the и-dimensional Euclidean space 
E„ (particularly in the real line), is called the closure of the set

{ f . № *  0; /€£„}•

A function cp with bounded support on the real line is called a step function 
if its domain can be divided into a finite number of subintervals so that on the 
inside o f each subinterval, cp has a constant value (see figure 1.3). A function 
is piecewise continuous if it is the sum of a continuous function and a step 
function.

ol.8.3. For which a=»0 is the sequence
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(a) in /*, (b) in /, (c) in /~?

ol.8.4. The interval [—1, +1] is divided into 2000 parts and those step func­
tions that have a constant value in each of these subintervals are considered. 
Show that a finite-dimensional linear space o f step functions is thereby obtained, 
and give a basis and hence the dimension of this space.

1.8.5. The set of functions

{A sin (t+cp)\ А э» 0, 0 <  cp <  2n) 

is a two-dimensional linear subspace o f L2[0, 2л]. Indeed,

A sin (t+<p) — A cos (p sin t+ A  sin (p cos t.

Hence {sin t, sin ( t—n/2)} is a basis and

t: A sin (t+cp) — (A cos cp, A sin cp)

is a linear 1-1 mapping (operator) from this linear space onto the linear space 
of pairs of real numbers (see figure 1.7).

Representing each pair o f real numbers as a geometrical vector o f the plane 
in the usual way, the norm of y = A  sin (t+cp) is equal to the absolute value of 
the corresponding vector, since 1

1 2,1
— f  A2 sin2 (t+cp) dt =  A2.
Л n
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fig. 1.7

ol.8.6. Using axioms (i)—(iii) of the norm in § 1.2.1, prove that

\\x-y\\ >  \\x\\-\\y\\.

1.8.7. Show that for a continuous fu n ction /in  [0, 1],

ll/lli <  II/Ü2 <  ll/IU-

1.8.8. A sequence is called finite if all but a finite number o f elements are zero. 
Show that for a finite sequence x,

IMIi >  Mila >  Mil —

1.8.9. A generalisation o f the usual norms for continuous functions of several 
variables is as follows.

Let 3> be a bounded closed domain o f the «-dimensional Euclidean space; 
then

ll/IU =  sup {|/(0I; t£2>} 

ll/IU =  ( /  l / ( 0 l2 d/)1/2
3 )

ll/lli =  /1 /(0 1  át.

Here, á t = á t 1. ..átn and f  is the multiple integral.
3

1.8.10. The common generalisation of the norms || . Ih and || . ||2 is the fol­
lowing.

(a) For functions,

Mil„ : = ( /  M(0lpdi)1/p
a

1 p  < 0 0 .
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(b) For sequences,

MIP: = ( Í k l p)1/P 1
k = 1

Prove that for continuous functions in the finite closed interval [a, b] and for 
finite sequences,

IMU =  lJm \ M \ p -
p - * -  oo

1.8.11. Prove that the continuous functions in [0, 1] form a Banach space 
with the norm

ll/ll := II/II2+11/11-

ol.8.12. Which o f the following functionals p  are norms?

(a) On the space of functions with continuous derivatives in [0, 1],

P(x) := sup 1 x(t) ; t£[0, l ] j .

(,b) On the linear space o f nXn  (quadratic) matrices,

n
p{A):=  s u p j ^  Ы ;  i  =  1,2, и}.

k =  1

(c) On the linear space o f continuous functions o f two variables in [0, 1] X
[0, 1],

i
P(K) := sup I J  lAT(i, T ) [ d r ;  f€[0, 1]}. 

о

(d) On the space of complex functions, analytic in the open unit disc 
{z: |z |<  1} and continuous on the circle |z| =  l,

where is the /eth derivative.

1.8.13. If II  . I I X, II  . ||2, II  . ||„ are norms on a certain linear space X, then 

p(x) =  max (M *; k =  \ , 2 , . . . , n )
and

q(x) =  2  11*11*
k = l

are also norms on X.



1 Fundamentals 37

1.8.14. A geometrical meaning o f the boundedness (continuity) of a linear 
operator T: X -*Y  is the following. There is a sphere with centre 0 in Y  such 
that the image of the unit sphere in X  is contained in this sphere. The radius 
of the smallest such sphere in Y is just ||7j|.

1.8.15. It was proved in Theorem 1.4.3.3 that the linear operators (Г: X — 7 }  
form a normed space. What is the condition for {T: X— Y } to be a Banach 
space? Answer: if Y  is a Banach space then {T: X — Г} is also a Banach 
space.
Proof. If {Г„} is a Cauchy sequence, then {Tnx} is even more a Cauchy se­
quence in Y for every x£X; hence y = lim  T„x exists since Y  is supposed toП
be complete. Define

Tx := lim Tnx  x£X.П

It will be proved that T is bounded and ||ГЛ — ГЦч-О.
If IIjc||cl, then for every e> 0 ,

\\Tnx -T x \\  =  \\{Tnx - T mx )H T mx-T x )\\ e  \\Tnx - T mx\\

+  ||Гт х - 7 х | |  e  \\Tn- T m\\+\\Tmx -T x \\  <  e

if  n ,m > N (e /2) and m >A (e/2; x).
It follows that for n >  N(e/2)

sup {Ц ^х-ГхЦ ; ||x|| =  1} <  e

which means that Tn — T  is a bounded operator for n>iV(s/2) and Tn — T-+0. 
Since T = T n — (Tn — T), T  is also bounded.

1.8.16. Consider the linear space X  of finite sequences (see § 1.8.8) and the 
linear operator

Tx := { 2  aikxk; i =  1, 2, ...} x£X
к

X  being supplied with the norm || . ||i; what is the condition on the ‘double’ 
infinite sequence

{aik} i = 1,2,..., к = 1,2,...
called the infinite matrix, that T  be a bounded linear operator on X? What is 
the norm of the operator T1

i
T f  := /  K (t, t) / ( t) dt 

0

1.8.17. Is the operator
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continuous in L0[0, 1] if К  is a continuous function in [0, 1]X[0, 1]? What is 
the norm of this operator?

о 1.8.18. Is the operator
i

T f : =  I  K(t, t) / ( t) c1t 
0

bounded in Ц[0, 1] if К  is a continuous function in [0, 1]X[0, 1]?

1.8.19. What is the condition for the corresponding infinite matrix that the 
operator

T x:=  { 2  aik*k; i =  1 2 ,  ...}k = l
be bounded in the / 2-space? 

о 1.8.20. The operator of the form

T f : =  I  K {t--i)f{x )á x  
0

is called the convolution operator and K = K (t)  is called the kernel. Prove 
that the sum and the product o f convolution operators are also convolution 
operators.

1.8.21. Recall that if T : X —F is a mapping then T ~x: Y-*X  defined by

T~l : Tx -  X

is called an inverse mapping. A linear 1-1 operator T  is called invertible if the 
inverse mapping T ~x is a bounded linear operator defined for every y£Y .

By the same considerations as in the proof of Theorem 1.7.2.1 it can be 
shown that if  T  is a bounded 1-1 linear operator from the и-dimensional Euc­
lidean space onto a Banach space Y then T  is invertible, i.e. the inverse is a 
bounded operator.

The well-known Banach Inverse Mapping Theorem says that this remains true 
if the domain of T  is any Banach space X  and not only an «-dimensional Eucli­
dean space.

1.8.22. If F is  a contractive mapping and G is another mapping of the Banach 
space X  with the commutation property

GF =  FG

then x0 =  F(x0) implies x0= G (x0).
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The proof o f this important observation is easy. If x0 =  F(x0) then G(x0) 
=  GF(xu) =  FG(x0) and hence G (x0) is also the solution of the equation

X =  F(x).

But the solution of this equation is unique, since F is contractive; hence
x0= G (x 0).

1.8.23. Prove that if Fn, the nth iterate of F, is contractive in 3> for n > n 0 
and the condition 1.3.2.1 (a) is satisfied then the recursive sequence

x0£@ xn+1 =  F{x„)

converges to the solution o f x = F (x ) although the mapping F is not con­
tractive. (Is the solution unique?)

1.8.24. It was shown in Example 2 of § 1.3.2, that the operator

F(x(t)) := f ( t )+ X  I  K ( t - T)*(r)dT 
о

is a contractive mapping if \X\ is small enough.
Applying the considerations in 1.8.22 and 1.8.23, it turns out that the 

recursive sequence

*o(0 =  ДО  xa+1(t) =  f ( t)  +  X J  K ( t - z ) x n(z)dt / 1  =  0, 1 ,2 ,. . .
0

tends to the solution o f the corresponding convolution equation for any X.
By applying 1.8.22 and 1.8.23 to the iterative solution o f the differential 

equation in Example 1 o f § 1.3.2, a more general condition for the existence of 
the solution is obtained.

о 1.8.25. Consider the operator equation

X x —T x  =  /
where Г is a bounded linear operator o f a Banach space В and f£B.  Now

F{x) =  j  i f+ T x )

is a contractive operator if  |A| is large enough. More particularly, 

|F (* )-F (z ) || =  j T ( x - z )  «= j  WTWWx-zVi

and hence F is contractive if ||Г||-<|Я|.
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In this case the recursive sequence corresponding to F, given by Theorem
1.3.2.2, is the following:

=  j -  ( f + T f )  if x0 =  f

*« =  X ( f+ T x ú  =  j /+-JS- T f + ^ T * f

*3 -  \ ( f + T x 2) =  L f + l - T f + ^ P + ^ T ^ P

X" + 1 =  Жо Лк+1 Tkf + J ^ T T "+1f

and hence the solution o f the operator equation is given in the form of the 
infinite series

k=0 л

called the Neumann series.
Following the proof of 1.3.2.2, show that the Neumann series is convergent

for iAi>imi.

1.8.26. An easy application of the above is the following iterative solution of 
a system o f linear algebraic equations, called the Gauss-Seidel method. The 
method is applicable if the number of equations is equal to the number of 
unknowns. Consider the matrix form

Ax =  b. ( *)

It can be supposed that the diagonal elements акк^ 0 ; k =  1, 2, ..., n; divide 
the kth equation by akk; a system is then obtained which is equivalent to the 
original one and is in the form

(E + B)x =  b

where the diagonal elements o f В are zeros. Now the recursive sequence 

x0 =  b xn + i =  b -B x„

converges to the solution o f  the system o f  linear algebraic equations ( * )  i f

F(x): b —Bx

is a contractive mapping.
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Since on the space of и-tuples o f complex numbers, every norm is equivalent 
(from § 1.7.2) we choose the most convenient one and state that

||F (x )-F (z ) |L  =  ||B (x -z ) |U  <  q \ \x - 2 \U

where 0 < # < 1 .  In fact, we have seen in Example 1 of § 1.4.2 that

l|B(x—z)|L «s sup 2 \ bik\\\x-z\\^
1 k = 1

and hence if

2  \bik\ <  1 / = 1 , 2 ,  ..., n
k=1

then F is contractive and the Gauss-Seidel method is convergent.
For the matrix A of the original system of equations this condition can be 

formulated as follows:

Ы  >  2  aik / =  1, 2, ..., n (**)
k*i

since bik =  aik/au for iVk.

1.8.27. Based on the considerations in 1.8.26, the Gauss-Seidel method is as 
follows.

(i) Divide the kth equation by akk^ 0  and substitute the diagonal elements 
by zeros to obtain the matrix B.

(ii) Form the recursive sequence o f и-tuples of numbers

x„+i =  b -B x „  (x0 =  b)

Up to ||xn + 1- x j < £ .

Think about the following modifications.
(a) Using the norms || . ||j or || . ||2 do you obtain a more convenient or 

weaker condition than (* * ) ?
(b) Do you find cases when ( * * )  is not satisfied for A but it is satisfied 

for Аи, и>и0?

о 1.8.28. On the basis o f the Contractive Mapping Theorem and 1.8.25 prove 
that for any bounded linear operator T  the operator

X E -T

(E is the identity operator) is invertible if |л| is large enough.
Give the smallest number C such that XE—T  is invertible for |1 |>C .

4 M á té
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1.8.29. Show that in the Banach space C[—n, +  я], the bounded sequence

xn(t) =  sin nt

has no convergent subsequence.

о 1.8.30. Let C be the linear space of bounded continuous functions on the 
real line with the usual norm || . Ц .̂ Consider C00, the continuous functions 
with bounded support, as a subspace of Lq( — +  <=o) or C. Prove or disprove 
the following statements:

(i) C00 is dense in Lo(—°°, +«=);
(ii) C00 is dense in C.

1.8.31. If Sf, J t  and X  all have the same norm, and

Sf a  J (  ez X

then i f  is dense in Л  if i f  э  J t.  Here i f  is the closure of i f  in X. In particular, 
if J l  is a closed subset and i f  is dense in J l  then i f = J l .

1.8.32. I f / i s  a real-valued function on a normed space X  a n d /is  continuous 
on a compact subset Л , then /  takes its minimum and maximum on J l ,  i.e. 
there exists т0£ Л  such that

/O o )  =  sup m eJ l).

To prove this, we first suppose that /  is unbounded on Л ;  there then exists a 
sequence {x„}; хп£ Л  suchthat /(x„ )> n  and, since J l  is compact, a conver­
gent subsequence {x„} can be chosen and xn ^ x £ J l .  Thus we find that 
f(x „ )—f(x )  and /(x „ )> n „  which is a contradiction.

Now let M  be the least upper bound for {/(.v); x  J l }; there then exists 
{xk} such that

f (x k) > M - l / k  k =  1 ,2 , . . . .

Again there is a convergent subsequence {xkJ since J l  is compact and if 
xk -*x0, then x J J l  since a compact subset is closed and

M  >  / ( x 0) >  M —l/k  к =  1,2, ....

This means that

/ ( x 0) =  M  =  sup {/(«?); т е Л ) .

1.8.33. For a non-compact bounded, closed subset Л  we can find a continuous 
function /  on X  such that it does not take its minimum on Л .  For example,

Л  — {x: x(0) =  0; x ( l)  =  1; ||x|| <  1}
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is a closed subset of C[0, 1] and

/(* ) : =  /  W Old/
0

is a continuous function on C[0, 1 ] . /does not take its minimum on JÍ. Indeed,

r1 1f<iJ(  and f ( tn):=  [  tndt = ------r  n =  1, 2, ...
o' n+1

and hence
inf {f(x): x ^ J t)  =  0.

On the other hand, there is obviously no continuous function x —x ( t ) satis­
fying the following conditions:

i
x(0) =  0 д:(1) =  1 f  |x(i)| dt =  0.

0

1.8.34 There is a generalisation o f 1.8.32. If F: X —Y  is a continuous 
mapping, where X  and Y  are normed spaces and i / c f  is compact, then 
there exists x ^ J l  such that

||F(x0)|| = su p {||F (x )||;  x iM ) .

To prove this we consider /(x ):= ||F (x )|| and apply 1.8.32.

4*
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The Geometry of Hilbert Spaces

2.1 Scalar product

In the geometric vector space the norm is derived from the scalar product; 
however, until now the norm has been defined directly. Moreover, in the geo­
metric vector space geometric concepts o f a different character, such as orthog­
onality and projection, can be expressed by a scalar product.

Our next subject for discussion is the ‘geometry’ of linear spaces, in which a 
scalar product is defined in a certain axiomatic way and the norm is derived 
from this scalar product as in the geometric vector space. We shall see that the 
normed spaces thus obtained have richer structure and are ‘more similar’ to the 
geometric vector space that those not having this property.

2.1.1. The scalar product o f vectors a and b in the geometric vector space is 
defined by

(a\b) := МИ1Ы1 cosy

where || . || is the absolute value of the vector and у is the angle between a and b. 
It is easy to check that the following properties are satisfied for any vectors 
X, y ,  z  and scalar Я.

(i) Ш  =  Ш

(ii) (x + y \z )  =  (x \z)+ (y\z)

(iii) (hc\у) =  Ц х\у)

(iv) ( x r | x )  >  0  and (x|x) =  0  if  and only if x  =  в.

Notice that the properties (i)-(iv), called the axioms o f the scalar product, 
are more important than its geometrical meaning and this is the motivation 
for what follows.

2.1.1.1 Definition. A mapping

(х,У) ► (x\y)
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from the ordered pairs (x, y)  of elements o f a linear space X  into the field of 
scalars (complex numbers) satisfying axioms (ii)-(iv) and

(i)' ш = ш

where {y\x), the complex conjugate o f (y|x), is called a scalar product of x  
and y.

Remark. In the case o f geometric vector space and in any real linear space, 
axioms (i) and (i)' are the same, since in these cases the scalars are real numbers. 
However, in the case o f a complex linear space, i.e. when the scalars are com­
plex numbers, it is necessary to alter axiom (i) since there is a contradiction 
between axioms (i) and (iv) in this case.

Indeed, using axioms (i) and (iii),

(ix|ix) =  i(x|ix) — i(ix|x) =  i2(x|x) =  —(x|x)

for any x^O  and hence at least one o f the values (ix|ix) and (x|x) is not posi­
tive, in contradiction of axiom (iv). However, using axiom (i)' instead o f (i),

(ix|ix) =  i(x|ix) =  i(ix|x) =  i(—i)(x|x) =  (x|x) 

and hence axiom (iv) is not violated.

2.1.1.2 Definition. If a scalar product is defined in a linear space X  then X  is 
called a scalar product space or pre-Hilbert space.

In the geometric vector space the norm (i.e. the absolute value) of a vector x  
is expressed by the scalar product

||x|| =  (x| xy ! \

In the next section it will be shown that the axioms (i)—(iii) of the norm in 
§ 1.2.1 are satisfied by ||x|| :=(x|x)1/2 also in any scalar product space; thus 
scalar product spaces are (special cases of) normed spaces.

2.1.2, In the geometric vector space,

\ т \ < м м

for any pair of vectors x, y. We shall prove this inequality, which is known as 
the Cauchy-Schwarz inequality, purely from the axioms (i)'-(iv) o f the scalar 
product without reference to any geometry.

2.1.2.1 Theorem. In a pre-Hilbert space Ж ,

\(x\y)\ <  м ы
where ||x|| :=(x|x)1/2 and ||y|| :=(y|y)1/2.

x, y£3tf
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Proof. If х = в  or y = 9 ,  then obviously the equality holds. If x^Q  and 
у then for any scalar X we have

0 <  (x -X y \x -X y )  =  (x\x) +  \X\2(y \y )—(Xy\x)—(x\Xy)

=  (x\x) +  \X\2(y \y )-(X y \x )-(X y\x )  

=  W^) +  |A|2(y |y )-2 R e (l(y |x )) .

For X=(x\y)!(y\y) we have

0 <  (x\x) — l№ ) [ 2
Ш

and the Cauchy-Schwarz inequality is obtained by suitable rearrangement.

Remark. The motivation for the proof is the solution of the following optimi­
sation problem.

Choose X for fixed x, у  £ Ж  in the real scalar product space Ж  so that the 
‘distance’ ||x— Xy\\ is minimal (see figure 2.1). Solution:

||x -A y||2:= Cx -X y \x -X y )

=  (x\x)-2X(x\y)+V(y\y)

since Ж is a real scalar product space. Hence

-^ - (x -X y \x -X y )  =  2X (y\y)-2 (x \y)

and

4 T (x -X y \x -X y )  =  0 if X =  P f i - .  
dX (y|y)

It follows that the ‘distance’ ||x—Xy\\ is minimal if

; -

Ш  '

2.1.2.2 Theorem. ||x|| :=(x|x)1/2 is a norm.
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Proof. It is obvious that axioms (i) and (iii) o f the norm are satisfied. To check 
axiom (ii), known as the triangle inequality, we have

Ik+Tll2 •- ix+y\x+y) = (x|x)+(y|y)+(x|y)+(y|x)
<  1М2+1Ы12+2М 1Ы | =  (М 1+Ы 1)2

by the Cauchy-Schwarz inequality, and hence

\\x + y\\ < \\x\\+\\y\\.
As we have seen in 1.2.2.6, multiplication with a scalar and addition are 

continuous operations in a normed space. In pre-Hilbert spaces the scalar 
product is also continuous.

2.1.2.3 Theorem. If x„-*x and y n-*y, then

(хп\Уп) -  (x\y).
Proof.

|(*п1Л.)-(*1>0| <  Í(хп\Уп)-(Хп\у)\ +  j(x„|y)- (x|y)|
-= \\xn\\\\y„-y\\+\\xn-x\\\\y\\ = ^(||yn- y | |  + ||x„ -y ||)

where К  is the common upper bound for ||y|| and the convergent sequences 
{||*J} and {||Л ||}.

It follows that if \\yn—y|| — 0 and ||x„—x||-*-0 then

|(^л1тп)-(^1т)| -  o.

By Theorem 1.6.1.2, every normed space has a completion. Is the completion 
o f a scalar product space again a scalar product space? The answer is yes.

In fact, if  {x„} and {y„} are Cauchy sequences o f elements o f a pre-Hilbert 
space Ж , then

|(*»1Я,)-(**Ы| =  \(хп\Уп-Ук)+(х„-хк\ук)\

<  \ (хп\Уп—Ук)\ + \(х„—хк\ук)\ <  ||лг„Ц И л — x j  + ||х„—x j  I lT j t l l

<  ^(11тя-л11 +  1к,-**11)

where К  is a common upper bound o f the Cauchy sequences {||.v„[|} and 
{ ||y j} ;  hence {(xn\yn)} is a Cauchy sequence o f complex numbers. Now, we 
define

(x\y) := lim(x„|y„) (* )

for the elements x  and у  o f the completion o f Ж  defined by the Cauchy se­
quences {xn} and {>’„} according to § 1.6.1. The definition (* )  is consistent 
with the axioms of the scalar product and the completion process described in
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§ 1.6.1. For example, if {л'} and {>>'} are Cauchy sequences and 

x'„-xn -  в Уп-Уп -  0

(i.e. the same element is defined by {x'„} and {xn} (respectively {y'n} and {y„})) 
then lim (x '|y ')= lim  (x„|y„). We can summarise this as follows.

2.1.2.4 Theorem. The completion of a scalar product space is a scalar product 
space with the scalar product (* ).

A complete scalar product space is called a Hilbert space.

Example 1. If {efe; k =  1 ,2 ,3 }  is an orthonormed basis in the geometric vector 
space; i.e.

/ i \  f l  if  / =  j
(e^ } =  lo  if  i p ­

arid
X =  ?1ех+(?2е2+^зс3

У =  m ei+ri2ez+ri3e3
then

( * Ь)  =  <?1 »71 +  ^2  »7 2 + ^ 3  »73

which is sometimes called the ‘coordinate form’ o f the scalar product of the 
vectors. The next generalisation for и-tuples of complex numbers is motivated 
by this form.

If x = { x k; k —l, 2, ..., n} and y — {yk; k = l ,  2 , . . . ,  n) then

W t) :=  2 x kyk
k  =  l

(where yk is the complex conjugate o f yk) is a scalar product in the linear space 
of «-tuples o f complex numbers. We emphasise the Cauchy-Schwarz in­
equality in this case,

2 \ x kykl2<  2 \ x k\2 2 \ y k\2
k =  1 k =  l  k = 1

and the scalar product space thus obtained is complete, and hence a Hilbert 
space, since the linear space in question is finite-(n-) dimensional. If we restrict 
ourselves to real numbers, then the Hilbert space thus obtained will also be 
called n-dimensional Euclidean space.

(x\y) ■■= 2  xkyk
k  =  1

Example 2. In the / 2-space,
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is a scalar product and l2 is a scalar product space since

IWI. := 2  k l 2 =  № ) 1/2-k = 1

We have only to prove that the infinite numerical series defining the scalar 
product is convergent. It follows from the Cauchy-Schwarz inequality o f the 
previous example that

n m m

I2  xkh\* <  2 ” k l 2 2  \Ук\г
k = m  k —n k = n

and hence, if

2  K l2 <°°fc = 1
and

2  \Ук\2 <o°
k =  1

then the series
oo

2 * кУк
k = 1

must be convergent.
/ 2 is complete, i.e. a Hilbert space (the proof is not trivial and this is equiv­

alent to the Riesz-Fischer Theorem).

Example 3. In the space Ll(a, b),

(f\g)-.=  /  m m  át
a

is a scalar product and L* is a scalar product space since

11/11.:= /  l /(0 l2 d< =  ( / | / ) 1/2.
a

According to § 1.2.3 and, in particular, the considerations following Definition
1.2.3.3, Ц  is not complete. The completion is the L2-space introduced in 
Example 6 o f § 1.6.1.

Example 4. The linear space HjJ o f complex functions analytic in the disc 
{z: |z |<  1} and continuous on the boundary (z: |z |= l}  is a scalar product 
space with

(f \g)  — 2^Г ф № ) g ( z ) j t z .
Z 7 tl |z | =  l  Z
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There is a close connection between Hjj and Ljj(0, 2 л); substituting z —eu, 
we obtain

-J-s Ф f ( z )g ( z )^ -d z  =  /  / ( eií)^(ei()d í (*)
Z7C1 | z | = l  Z Z7Z 0

and hence it is not surprising that the completion of H a, called Ha 
(Hardy) space, consists of those analytic functions in {z: |z |<  1} for which 
Д е “)О Л 0, 2 л].

A very important property of the Hj;-space is the following.
If fn~*f *n the scalar product space Hj; then f n{z)-+f{z) uniformly in every 

closed disc {z: |z |< r <  1}. To prove this we use the estimate

1 2n i ]
"2л" J  |ei(- z 0|2 d í<  (T^TF lf |Z°|e S ''

(see figure 2.2). Now by the Cauchy integral formula and the Cauchy-Schwarz 
inequality, in Ц [0, 2л],

lf(z0)-fn(z0)l = 4 r  ф dz
2n W=i z ~ zo 

1 2ж eif
- Ü - / C

<  у]——г  ! / - / . ! .■

Hence the assertion on the uniform convergence is clear, considering the con­
nection (*) between Hj; and La[0, 2л].

Example 5. If
D y  := y" +b(t)y '  +  c(t)y

fig. 2.2
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where b = b ( t ) and c—c{t) are continuous functions on a closed finite interval 
[a, b] and y' and y" refer to the first and second derivatives, respectively, of 
y = y { t) ,  then Жв is the linear space o f functions y —y {t)  for which Dy is 
a continuous function on [а, Ь]. Ж0 is a pre-Hilbert space with the scalar 
product

(y\z) y(a )z(a ) +  y'(a)z'(a)+  f  (Dy)(r)(Dz)(r) dr
a

and the completion o f Жв is a special type o f Sobolev space.

Example 6. If (Í2, A, P ) is a probability space, then the random variables 
C= ^(oj) with finite variance form a Hilbert space L2(Q, A, P ) with scalar 
product

Z,r,eL4 0 , A , P )

where M  is the mean value of the random variable. The important closed 
linear subspace of L2(fi, A, P)  consists of random variables £ with zero mean, 
i.e. M (q)=(). In the language of Hilbert space geometry, this is the closed 
linear subspace, which is orthogonal to the constant random variables (see 
Definition 2.2.1.1).

For the applications of Hilbert space theory to probability problems see 
Lamperti (1977).

2.1.3. There are normed spaces whose norm cannot be generated as 
||jc|| :=(х|л')1/2 from a scalar product. An important example o f such a space is 
C[a, b]. To see this, let us consider the parallelogram law

\\х+у\\г+ \\х -уГ  = 2\\хГ+2\\уГ
which is valid for any scalar product space, as can easily be verified. The paral­
lelogram law is not satisfied for x ( t ) = t 2 and y ( t ) = l  in C[0, 1]. Indeed, 
1Ы1«=1 and ||*IL=sup { i2; t£[0, 1]}=1; moreover,

||*+ y |U  =  sup {/2 + 1; i€[0, 1]} =  2
and

II*—jIU  =  sup {1 — i2; i€[0, 1]} =  1.

2.2 Orthogonal systems (sequences)

In the geometric vector space, every vector is the linear combination of fixed 
sets of three orthogonal vectors and any finite-dimensional linear space pos­
sesses a finite basis, i.e. n fixed vectors such that every vector of the linear space 
is a linear combination o f these fixed vectors. In certain infinite-dimensional
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spaces a fixed infinite sequence of elements can be found with similar proper­
ties (see, for example, Remark 1 in § 1.5.2).

The main subject of this section is the construction of an infinite basis in a 
separable Hilbert space or even in a separable scalar product space, which is 
orthogonal in the sense of Definition 2.2.1.2.

2.2.1. The orthogonality is defined in a pre-Hilbert space in the following 
natural way.

2.2.1.1 Definition. The vectors x  and у  in the pre-Hilbert space Ж  are called 
orthogonal if (x |y )= 0 .

Remark. In a real pre-Hilbert space the angle a between x  and у  can be defined 
by the formula

Ш
MIMI

=  cos a

but we need only consider the case when cos a = 0, i.e. when x  and у  are 
orthogonal.

2.2.1.2 Definition. A sequence {et} in a scalar product space Ж  is called ortho­
gonal if

(eAej) =  0 if i V  j .

If I k f c l l  =  1 for i =  1 ,2 , . . .  is also satisfied, then {ek\ k —1 ,2 ,. . .}  is called 
orthonormal. An orthogonal or orthonormed sequence is also called an orthog­
onal or orthonormal system.

We begin with the following minimum problem. Let {ek} be an orthonormal 
system, n a fixed integer, and x  an element o f Ж ; determine the scalars yk, 
k = l ,  2 , . . . ,  и in such a way that the ‘distance’

nI I * -  2 Ук̂ кI I
k =  1

is minimal. First we give the solution for real scalar product space. In this 
case,

n n nI I * -  2  yne„\\2 = ( x -  Z  Укек I * -  2  Ук̂ к)
k =  1 k =  1 k =  1

=  (x \x ) -2  Z  Ук(х\ек) +  Z  yl-
k =1 k=1
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For the minimum of this quadratic form

- i -  И*- 2  УкЪII2 = 2yk-2(x\ek) = 0 k = 1 , 2 , n;
o y k k = l

it follows that the desired minimum is obtained if and only if 

Ук =  (*\ек) к = 1,2,....
In the case of a complex space Ж  the solution is the same but a more lengthy 

calculation is required, since in this case we have to seek the minimum of a 
quadratic form of 2n real variables.

We conclude that the minimum of the ‘distance’

I I * -  2 У кек\\
k =  l

is obtained if and only if yk=(x\ek); к — 1 , 2 , and then

I I * -  2  ( * k H | | 2  =  l l * l l 2 - 1  | ( * M 2 - ( * )Jc=l k = l

Remark. The consideration connected with the Cauchy-Schwarz inequality 
after Theorem 2.1.2.1 is the special case of this problem for n =  1.

Example 1. If ek is the infinite sequence whose kth element is 1 and all other 
elements are 0 , then ek^P  and {ek\ k —1 , 2 , ...} is an orthonormal system 
in P.

Notice that this {ek; k =  1,2, ...} is an immediate generalisation of the 
‘fundamental basis’

ek = {1,0, ...,0, ...,0}
e2 =  {0 , 1 , . . . , 0 , . . . , 0 }

ek =  {0 , 0 , ..., 1 , ..., 0 }

e„ =  ( 0 , 0 .......0 , . . . ,  1 }

in the linear space o f и-tuples of complex numbers.
П

For x = { x k\ k =  1 ,2 ,...} , (x\ek)= x k and hence 21 (* Ю е*=  {*u * 2 , •••
k = 1

..., x„, 0, 0, ...}. Moreover, if  n-~ 0 0  then

11*11 - l l ( * k ) l 2 - o  ( * * )
k =  1

in this case. This is therefore a trivial example o f the results in this section.
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Example 2. The sequence

is an orthonormal system in L̂ fO, 2л]. For aT L 2[0, 2n] and ek= e ikt,

(*lg*> := (2?|)1/2 /  x(t)e~ik‘dt,

and
П

2  (x\ek)ek
k= —n

is the nth partial sum o f the (complex) Fourier series of x£L 2[0, 2n\. So 
this is a well-known example but is by no means trivial.

It is also known that if  n-*■ <=<=> then (*  * ) also holds in this case.

Remark. On the basis of this example, the coefficients (x\ek); k =  1, 2 , . . .  can 
be considered as the generalisation of the Fourier coefficients. These coefficients 
are therefore called the Fourier coefficients o f  x with respect to the orthogonal 
system {ek; k = \ ,  2, . . .} .

Example 3. The sequence

{■̂ ТТг sin kt\ к =  1,2, . ..j

is an orthonormal system also in the real L2[—n, +  7t]-space. Now

1 i*
(x\ek) := —щ  J x(t) sin kt dr

— It

but if n-*-°° then ( * * )  is not fulfilled. More particularly, ( # * )  is fulfilled 
only if x = x ( t )  is an odd function and in any other case

{M l2-  2 4 * k ) ;  n =  1,2, ...}
fc= 1

is just a decreasing sequence of positive numbers.

Example 4. The sequence {z"; k =  0, 1,2, ...} is an orthonormal system in 
Hjj. Indeed,

(zn\zm) =  - i -г- Ф z" 2 m — dz =  ~  Ф zn- m~1dz  
2m z  2m

{1 if n =  m
0 if n ?£ m
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by the generalised Cauchy integral formula. It follows that ( f \z k) is the /cth 
coefficient of the Taylor expansion (at z„=0) of the analytic function / .

Notice that this Taylor expansion is connected to the (complex) Fourier 
series o f / ( e h) in the following way:

/ ( е ш )  =
k =  0

and hence if Д  H“ then the kth Fourier coefficient o f f{e 'kt) is zero if 0. 
It follows, that (*  * )  holds in this case too if n—

2 ( f \ z k)e'kt

2.2.2. We now modify the problem posed in the previous subsection as follows.
For a given orthonormal system {e j, find those elements x o f Ж  that can 

be written in the form o f an orthogonal series

oo

* =  Z ^ k -
k =  1

What are the coefficients £* in this case?
If we suppose that x  is in this form, then

(* h )  =  Z  Ъ(ек\ед / =  1 ,2 ,. ..
k =  1

by axioms (ii) and (iii) and the continuity of the scalar product; hence 

ík =  ( x k )  k =  1 ,2 , . . . .

If we now apply also equation (* )  from § 2.2.1 the following result is obtained.

2.2.2.1 Theorem, (a) If х £ Ж  can be given in the form o f an orthogonal series, 
then

*  =  Z(x\ek)ek. (*)
t=i

(b) An element x  of the pre-Hilbert space Ж  can be given in the form (* )  
if and only if

IWI2 = Z  l(̂ l̂ )l2-*=1

since z = l /z on the circle |z| =  l. In this case,

№ ) ' S ,  ,^ /(z>s‘7 dz = É ,  l ^ dz" Т Г  k “ °’u ’ -
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Remark 1. It follows also from equation (* )  in §2.2.1 that for every х£Ж  
and orthonormal system {ek},

2  l(* k )l2c  M l2
k =  1

since the norm is a non-negative number.

Remark 2. The orthogonal series (* )  is sometimes called the orthogonal 
expansion o f  х £ Ж  by the orthogonal system {ek; k =  1 ,2 ,...} .

2.2.3. What is the condition for an orthonormal system {ek} that § 2.2.1. (* )  
holds fo r every х(~Ж1 This is a natural question following on from Theorem 
2.2.2.1.

2.2.3.1 Definition. A sequence {ak; k =  1 ,2 ,. ..}  is called complete if (x|űk)= 0  
for k =  1 , 2 , . . .  implies x = 9 .

2.2.3.2 Theorem. For every х£Ж ,

oo

x  =  2  (x\ek)ek 
* =1

if and only if the orthonormal system {ek} is complete.
Proof. The sequence { „̂},

П
s „ =  2  (x \^k)ek

k =  l

is a Cauchy sequence since

l l^ -^ ll 2  =  ( 2  (x\ek)ek\ 2  (x\ek)ek) =  2  l(^k*)l2
k—m k —m k=m

and the series

2  l(^l^)l2*=i

is convergent by Remark 1 following Theorem 2.2.2.1. Hence {j„} has a limit 
in the completion o f  Ж  and

oo

( x -  2  (x\ek)ek\e,) =  Сф,)-(х|<?,) =  0  i =  1 , 2 .......
k=* 1

Now if we suppose that {ek} is complete then it follows from the foregoing
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equality that
oo

X - 2  W ek)ek =  оk=1

and hence § 2 .2 .2 . (* )  holds.
Conversely, if {ek} is not complete, then there exists x^O  suchthat (x\ek) = 0  

for k =  1 , 2 , ... and hence § 2 .2 .2 . ( * )  does not hold for this .
It is not easy to verify whether a given orthonormal system is complete or 

not. In §§ 2.14.11-14 we shall give theorems and examples related to this 
problem. Furthermore, we shall show in § 2.2.5 that any separable Hilbert 
space contains a complete orthonormal system.

2.2.4. A standard method for the construction of orthonormal systems, called 
the Gram-Schmidt process, proceeds as follows. Let {ak; k =  1 ,2 ,. ..}  be 
linearly independent (§1.1.1). The first member of the orthonormal system is

e
1 И И

and for the second member e2,

z2 — a2 X2kek

where the scalar 2 2 1  is determined by the condition

(z2|<T) =  (a2k i)—2-21 =  0

and hence A2 i= (ö 2 ki)- So, if e2 = z 2 /||z2|| then {e1, e 2} is an orthonormal 
system with two elements (see figure 2.3 (a)).

For the third member, e3,

z3 — «з 2 .3 1  2 .3 2  e2

fig. 2.3

5 Máté
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where the scalars A31 and A32 are determined by the conditions

(z3ki) =  («sk i)-^ 3i =  0 

(гзкз) =  (азка) — ̂ -32 =  0.

Hence A31= ( ű3k J  and Аз2= (а 3к2)- So if e3= z 3/||z3|| then {elf e2, c3} is an 
orthonormal system with three members (figure 2.3(h)).

Now if ex, Co, ..., en have already been obtained, then for e„+1,

П
z n \  1 =  a n + l ~  2  An + l , k e k 

k =  l

where the scalars An+1(t; k ~  1,2, n are determined by the condition

П
i z n  + l \ e j )  — ( a n +1— 2  ^ n  + l , k e k\e j )  =  ( a n + l \ e j ) ~ ^ n  + l , j  — 0 

k =  1

and hence Аи+1д = (я л+1к ) ;  k = \ , 2 , . . . , n .  So if en+1= z n+1l\\zn+1\\, then 
{ek; k =  1, 2, ..., n+  1} is an orthonormal system obtained from the linear 
space generated by the n + 1 vectors ak; k =  1, 2, n+  1.

Remark. In the Gram-Schmidt process, n linearly independent vectors ak; 
к = 1 ,2 , ..., n are converted into the n elements of an orthonormal system 
{ek; k =  1, 2, ...}. In this process <?, is the scalar multiple of ak, e2 is a linear 
combination of a2 and ek, e3 is a linear combination of a3, el and e2 and so on. 
Notice that the computation is organised in terms o f the minimal number of 
vectors and operations.

Example 1. Using the Gram-Schmidt process for

l i t 2 tn

in L2[— 1, +1], a sequence of orthogonal polynomials known as Legendre 
polynomials is obtained, the nth element o f which is of exactly (n— l)th degree; 
the first four members of this sequence are

1, t, j ( 3 t 2- l ) ,  j ( 5 t * - 3 t ) .

A general formula for the Legendre polynomials (the so-called Rodriguez 
formula) is

L M ~ T M 4 F ^ - ' r  " =
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and a recursive formula is

A)(0 =  1 L f t )  — t

(n + l)L n+1(t) =  (2n +  l)íZ,n( í ) - « í - n- i ( 0  n =  1,2, ... .

Example 2. If the Gram-Schmidt process in P  is applied to the vectors

@k {^1) ^  9 ***}
where af; i=  1, 2, к  are arbitrary numbers, the orthonormal system de­
scribed in Example 2.2.1.1 is obtained.

Example 3. Consider the analytic functions in a suitable open domain 2> 
for which

/ /  | / 0 ) |2dxdу  < °°.

Then
(/IЯ) := f f  f( z )g (z )  dx dу

9

is a scalar product and a sequence o f (complex) orthogonal polynomials can 
be obtained in this scalar product space if the Gram-Schmidt process is applied 
to the sequence 1, z ,  z2, ..., z", ....

Further examples for orthogonal systems can be found in the next section.

2.2.5. A complete orthonormal system is also called an orthonormal (orthogo­
nal) basis since it is a basis for the scalar product space Ж  in the sense of 
§ 1.1.1. or § 1.5.2 Remark 1. An important theoretical conclusion o f the above 
is as follows.

2.2.5.1 Theorem. Every separable scalar product space contains a (finite or 
infinite) basis.

Proof. If {an; n =  1, 2, ...} is a countable dense subset o f Ж , then, applying 
the Gram-Schmidt process to {an; n = l ,2 ,  ...}, a complete orthonormal 
system {ek}; k =  1,2, ... is obtained. In fact, if

(x\ek) =  0 к =  1 ,2 ,. . .

for х £ Ж ,  then we also have (x|a„)=0; n—1,2, ... (see §2.2.4 Remark) 
and hence х —в by §2.14.42.

Remark. It is not necessary for {an; n =  1,2, ...} to be linearly independent. 
(What happens if  {a„; n =  1 ,2 ,. . .}  is not linearly independent when the 
Gram-Schmidt process is applied?)

5*
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2.3 Some important orthonormal systems in the L2-spaces

As in the case of the geometric vector space, there are many complete ortho­
normal systems in a given separable scalar product space. In this section, com­
plete orthonormal systems in L2-spaces that have proved to be useful in 
practice will be discussed.

2.3.1. Our first example is closely connected with the (complex) Fourier series 
expansion. In many cases we have only a sample o f N  elements

*  =  o , ( * )

for /£ L o[0, 2л] and we shall show how we obtain an analogy of the Fourier 
series from this sample.

In this case we consider

C1Vn Q - i n j ( 2 n / N )

which is an approximating sum of the integral
27Г

c « =  f  f ( t) e M dt
о

i.e. the nth Fourier coefficient of / = / ( / ) .  Now the analogy of the Fourier 
series is the sum

TN(t) =  2  cNneM (**)n=0

and {Cjv„}; ” =  1, 2, ..., N — 1 is called the discrete Fourier transform of /
based on the sample (* ).

The important feature of the discrete Fourier transform is the following.

2.3.1.1 Theorem.

г"(*‘жЬ/ (*'7 г) k ~ ° ’ ' ... N ~ h

Proof. Consider the mapping

/ - { / ( k ^ f ) } ’ k  = 0’ N ~ l (*)

from Ц [0, 2л] into the A^-dimensional linear space of ЛГ-tuples of complex
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numbers with scalar product

Then

and

1 w-i
m - =  -j j Z  f™ k=о (*£)'(*£)■

eint -  (e*"'1«2’'/« } ; к =  О, 1.......N - 1

1 N - 1

т Д
Q in j{2 n /N )  Q Ímj(2 it jN)  __ С if n 9̂  т 

if n =  m

and hence i/ie mapping (* )  carries the orthonormal system {e1"'}; n = 0 , ± 1 , ... 
into a complete orthonormal system o f  the N-dimensional Hilbert space thus 
obtained.

If we expand the sample {f(k2n/N)}; к —0, 1, ..., N — 1 in this orthonormal 
system (the copy of (e1"'}; л = 0 , ± 1 , ± 2 , ... in the mapping (* ))  then

/ ( * т )
лг—i (
2  cNne‘» ^  =  r N(/c— J.

Remark 1. The copy o f {e1"'}; n = 0, ± 1 , ± 2 , ... is a complete system since 
the range of the mapping (* )  is N  dimensional.

Remark 2. Obviously, for most fg £ L \[0 ,2 n ] ,

/ Л 0 * < 0 * ^ д / ( у  £ ) ,( ;-* ■ ) .

2.3.2. If

e„(l) = "" * * ( ¥ - ■  i )
0 otherwise

then we obtain the simplest orthonormal system in L2[0, 1] consisting o f N  
elements. It is called a system o f  square impulses.

If we consider the double sequence

if ^ r );  N =  1 ,2 , . . .  n =  1 ,2 ,. . . ,  N

otherwise

we obtain a complete orthonormal sequence. In fact, if

1 n/JV
/  f ( i) enN(t)d t =  N ^  f  f ( i )  di =  0
0 (n-l)//V

e„N(t) = JVl/2

0



62 Hilbert Space Methods in Science and Engineering

for N =  1,2, ... and n—1,2, ..., N  then the value of the integral function

F(t) /  f{r )  dr 
0

is zero for every rational t and hence it is identically zero since F = F (t)  is a 
continuous function.

The oldest discrete orthonormal system is the Haar system in L2[0, 1] 
(figure 2.4):

where

If m —n and k?±l, then h%\t)h(p ( t ) = 0  in all but a finite number o f points

i if о *  4

А Г (0  =  1; m o =  i f ^ , e I

0 elsewhere

* _ ±
к — 1 K 2

2m/2 if

В д ) = <  . i
Т к

— 2m/2 if — — 4 -

О elsewhere.

Л0(0), й«>, А«>, й^2), ..., A ÍT, ... /и =  1, 2 ,...
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in [0, 1] and hence the orthogonality is clear. If m ^n, say w > n , then
1 Z/2m

/  h™ ( t) A<'> (i) dt =  f  h<*>( 0 A«>(0  dt
0 (/ —l)/2m

(/ —l/2)/2n //2"
=  (2n)1/2 /  h%)( t)d t—(2n)112 f  *»>(/) d/ =  0

(1-1J/2"  (I -1 /2 )/2 "

since each o f the last integrals is zero. Moreover, it can immediately be seen 
that

/  A «>(0*di= 1.
о

The Haar system is complete, i.e. if  the function /£ L 2[0, 1] is orthogonal to 
every Haar function then / ( / ) = 0 .  In fact, if

F (0  =  /  Д О  dx
0

then F is a continuous function and F(0)=0. Moreover,

0 =  / / ( O ^ o)(OdT =  F ( l ) - F ( 0 )
0

and hence F (1)=0 also. Taking the second Haar function,

о =  /  / ( O W ) d T  =  [ f ( Í ) - F ( 0 ) ] - [ f ( 1 ) - f ( 1 )]  =  2 f ( 1 ) .

For the next Haar function,

1 _  i / 4  _  1/2

0 =  /  /(OM ^COdt =  / 2  f  f ( r ) d r - / 2  f  f(x) dr
0 0 1/4

=  / 2  [ f  ( { )  -  F (°)+ F (l/u )—F ( i ) ] =  2 / 2 f ( | )  etc.

It turns out that F(k/2m)—0 for k —0 , l , . . . , 2 m and m =0, 1,2, ..., i.e. 
the value o f the continuous function F  is zero on a dense subset of [0, 1] and 
hence F ( i )= 0 for every /£[0, 1]. It follows that f ( t ) = 0  (almost everywhere).

2.3.3. The Rademacher system {r„} is another discrete orthonormal system in 
L2[0, 1]. Its formation is even simpler than that o f the Haar system: r0( t)=  1 
and for n = l ,  2, ... the nth element is obtained if the interval [0, 1] is divided 
into 2" parts; in the A;th interval the value o f rn(t) is + 1  or — 1 according to 
whether к is odd or even (see figure 2.5).
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It is easily verified that the following connection exists between Rademacher 
functions and Haar functions:

rn= (  2-")i/2 Лл®.jt=i
The disadvantage of the Rademacher system is that it is not complete. Indeed, 
any continuous function in [0, 1] with the properties

/ 0 - 0  = / ( 0  /  / ( 0  d/ =  0
0

is orthogonal to every Rademacher function. A simple example for a function 
of this type is f ( t )= c o s  2nt.

A completion of the Rademacher system is the Walsh system {w„}. 
w0= r 0 and the consecutive members are constructed according to the 

following rule:

P
if n = 2 ’2',‘‘ then Wn =  rVl+1rv, +1...rv+ 1 .

k = l

Applying this rule, it turns out that

ws* =  r,l+1 k =  0 , 1 , . . .

and some o f the first Walsh functions are

w3 =  rx r2

Wi =  гг 

W5 =  rx r3 

w6 =  r2 r3 

Wl =  П r2 r3 

W8 =  rt

since 3 =  2+2° =  112

4 =  22 =  1002

5 =  22 +  2°  =  1012

6 =  22+ 2  =  1102
7 =  22 +  2 +  2° =  1112

8 =  24 5 6 7 8 =  10002

(see figure 2.6).
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fig.

2.3.3.1 Theorem. The Walsh functions form an orthonormal system in L2[0 ,1]. 
Proof. It is obvious that

i
j  wn(t)2dt =  1 n =  0 ,1 ,2 , ....
0

If n?±m, then
w„(t)wm(t) =  гИ1(0 г п,О)...гПк(0

where 0 si nce r2( t )=  1 for every Rademacher function r„. 
Moreover, it follows from the definition or construction o f Rademacher func­
tions that

/  wn(t)wm(t)dt =  J  rin(t)rni(t)...rnk(t)d t =  ±  j  r„k(t)dt =  0
0 0 I

where /  is a subinterval of [0, 1] with length 21_”fc. Another construction of  
Walsh functions is the following. We define the quadratic matrices

*21V
HN
HN

HN
- H N)

H 1 =  l N =  1 ,2 , . . . ,  2»,...

n = 3

tv’ L. ,-.Г" ---------------0  1 1 1 1 1 1 1 1

HfU  -!~4—Í--- П —j 1 0  'ED 1 El 1 El

к j— *----- -------V—j——j i i E3 E3 ’ 1 ED 0

w,* j--------------*-------------j i ED El 1 1 El ED i
- i

mí L——*—*—j————*—i i i i i El 0  El El

tv*------------------------ .------------------------1 1 0  1 0  0  1 0  1

w*---*-------- ---------- ---i 1 1 0  0  0  0  1 1
I I I

<  — *--------------!— 3 —  1 0  0  i 0  i i 0
_______ ____—A ..ArA __________________________ ;
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which are called the Hadamard matrices of 2Mh degree. For example,

Now, dividing the interval [0, 1] into 2N parts, the function w*(t) for n < 2 N  
is defined as the (step) function whose value in the zth subinterval is /zn+1>i, 
the value o f the zth element o f the (n +  l)th row o f H 2JV.

It can be proved that the functions w*; n—0, 1, 2, ... thus obtained are 
Walsh functions; more precisely, {w£} is a certain rearrangement o f the Walsh 
system {vvt}. Furthermore, the matrices H , v; N ~  1, 2, ... are invertible 
(see §§2.14.16-17).

With the Hadamard matrices H 2JV the computation of the Fourier coefficients 
with respect to the Walsh system is easy :

1 2 N
( /K * ):=  /  / ( f K ( / ) d i  =  Z hk+i,i /

0 ‘- 1 (i-l)/2iV

for 2N>~k and hence, if the corresponding integral function is F—F{t) as 
in the case of the Haar system, then

( / К ) = | / . , . , , ( г ( ^ ) - г ( Ь 1 ) )  W

where hk+1J is the zth element of the (k +  l)th row o f the matrix H 2)V.
Using this construction of Walsh functions and Walsh-Fourier coefficients, 

we show that the following theorem is true.

23.3.2 Theorem. Let g £ L2[0, 1] be a function with the property (g|vt’*)=0  
for k = 0 , 1 , 2 , . . . ;  then g ( t ) = 0  (almost everywhere).

In fact, in this case

» • « ( ' Ш - ' У Ь  A =  0, 1,2,

by (* ) , where 2 N > k  and
t

G (t):=  J  g(t)  dr.
0

Since every H 2N is invertible, it follows that

cy v M i 5r) = 0 ' = ' - 2....2N
and G(0)=0; hence G (i/2N )=0  for z'= 1, 2, ..., 2N.

' 1 1 1 1 '  

H - Í 1 n  H -  1 - 1 1 - 1
Ha u  - l J  H * i i — l — i *

J - 1  - l  I
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Thus we have proved that the values o f the continuous functions G = G ( t ) 
are zero on a dense subset of [0, 1]. It follows that G (t )= 0  for every /£[0, 1] 
and g ( t ) = 0.

2.3.4. The orthonormal system obtained in L2[0, °°) from the Gram-Schmidt 
process from the sequence e~‘“t" (a> 0); n = 0, 1,2, ... is called the Laguerre 
system. It can be proved (e.g. by induction) that for the nth Laguerre function 
Ln (n = l ,  2, ...),

L„(t) = (2a)1'2
n!

d"
p X t  ( f i t  p - 2M \

e e ’

(the Rodriguez formula) and the Laguerre system is complete since the sequence 

ak(t) =  Q~Mtk к =  0, 1, 2, ...

is complete in L2[0, =»). (Although we do not give the proof here, this is not 
an easy theorem.)

The importance of the Laguerre system is that the Fourier and Laplace 
transforms of Ln,

1 iffl +  a V uo +  a )
and

™ - « £ = - Г

respectively, i.e. #"[L„] and S£\Ln] are rational functions of ico and s, respec­
tively, and this is the only orthonormal system with this property.

2.4 The projection principle for finite-dimensional subspace

In the previous section we obtained results concerning approximation in L2- 
spaces by the partial sums o f orthogonal series. However, in many cases it is 
more convenient to approximate instead by the sum of functions that have 
other advantageous properties than orthogonality.

2.4.1. Let {ak\ к — 1, 2, ..., n} be linearly independent elements o f a scalar 
product space Ж  and х^Ж .  Find {yk-, k =  1, 2, ..., n) such that

n
II*- 2  Ук“к IIk = 1

is minimal. This problem is the immediate generalisation of the problem posed 
in §2.2.1 for an orthogonal system of n elements.
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Again, as in § 2.2, we turn to a geometrical analogy o f this problem. If ax, a2 
are linearly independent vectors of the geometrical vector space, then the linear 
subspace

{Vi fli+Va ß2}

can be visualised as a plane passing through the origin 0, and the problem is to 
find the point on this plane that is at a minimal distance from x.

It is well known that the solution of this geometrical problem is unique, and 
that it is the orthogonal projection o f x  onto the plane (see figure 2.7). This 
geometrical picture will be followed in the subsequent analysis.

2.4.1.1 Definition. Let i f  be a linear subspace o f the pre-Hilbert space Ж  \ 
then x M£ J i  is called the nearest vector or the best approximation of х ^ Ж  if

fl*-**H <  \ \x -n 4  m £J(.

2.4.1.2 Definition. Let J t  be a linear subspace of the pre-Hilbert space Ж  \ 
then xp £ J t  is called the (orthogonal) projection of х4_Ж if, for every m d J t,

( x - x p\m) =  0.

Through these abstract formulations we have a connection between projec­
tion and best approximation similar to that in the geometric vector space.

2.4.13 Theorem. xp^J l  is the best approximation of х ^ Ж  if and only if 
xp is the orthogonal projection o f x  in 31.
Proof. If xp is the projection of x, i.e. for every mt_Jt,

(x —Xp| m) =  0 (*)
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and mk€ J i,  different from xp, then

H x -m J 2 =  II (x —xp) + (*p—тг) II2 =  ||x—Хр||2+ ||л р—/Mill2 

and hence I I * - » » i l l  >  | | x - x j .
This means that xp is the best approximation of x.

If т0£ Л  and there exists mx 6 J i  suchthat

(x —Wolwj) ^  0

i.e. m0 is not the (orthogonal) projection of x, then there exists m'0 £ J l  nearer 
to x  than m0. In fact, if

m'o =  m0 +  ( x -  m0|mj)mj 

where m j=m 1/||m1||, then m'u £ J i  and

||x—ЛМ0Н2 =  | |x -m 0||2- | ( x - m 0|m1)|2.
Hence I I * - » » i l l  <  | | x - m 0 | | .
Remark. The first part of the proof is visualised in figure 2.7 and the second 
part in figure 2.8.

Now, let J i  be a finite-dimensional subspace of Ж  generated by {ak; 
k —1,2, ...,« }, i.e. the set of linear combinations

П
2 У к в к у *€Ф.

k = 1
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2.4.1.4 Theorem. If Л  is the linear subspace generated by {ak, a2, an} 
then the orthogonal projection of х £ Ж  onto J l  is

n

Xp =  2Укак 
k =1

where {yfe; k =  1, 2 , n) is the solution of the following system of linear 
equations:

Л

2  (ак\адУк =  M a,) 1 =  1,2,...,/!. ( * )
k =1

Proof. From 2.4.1.2 we have

n
( x -  2  yk“k\ai) = 0 1 =  1, 2 , . . . , / !  (* * )

it = l

since {a }̂; &=1, 2, n is a basis o f and (*) is obtained from (**) 
by obvious computations using the properties (i)-(iv) o f the scalar product 
in § 2.1.1.

For the existence of the projection xp in the case of finite-dimensional J l  
we have the following. The matrix with elements aik—{ak\al) is called the 
Gram matrix o f ak; k =  1,2, ..., n and the latter are linearly independent 
vectors if and only if the determinant of their Gram matrix is not zero. We 
shall prove this in the following more general formulation.

2.4.1.5 Theorem.

2  У к ak — 0k = 1

if  and only if {лд ;  k =  1, 2, ..., n} is the solution of the system of linear equa­
tions

2  (ak\ai)"/k =  0 / =  1, 2 , . . . ,  !J.
fc = 1

Proof If

2  у k k̂ =  о
»1=1

then the system of linear equations is obtained by multiplying both sides by 
af; /= 1 , 2, ..., n.

Conversely, if {yk; k = l ,  2, ... ,n )  satisfy the system of linear equations, 
then it follows from

(2 Ук“к12 Ук“к) =  2 2 ytb(ai\°j) =  2 уj(2 уАФ^)
k =1 »1=1 i=l j = l  j =1 i=l
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that

\ \2 У к в к\\2 =  o.
k =  l

Example 1. If Jif=L„[0, 1] and ak= t k~1; k =  l, 2, n then for the Gram 
matrix,

i j
ö;* =  (XIűí) =  f  tk~1ti- 1át =  - к  =  1 , 2 , n; i =  l , 2 , . . . , n

о k + i - l

and by applying Theorem 2.4.1.4 we can obtain the best approximation of a 
function /Ч  Ц[0, 1] by polynomials of nth degree in IAnorm.

Example 2. Let the interval [0, 1] be divided into N  parts by the points 

0 =  t0 <  h < . . . <  /jv-i <  í j =  1 

and considering the continuous functions

a. =  a f t)  =

1 if f =  ti
0 if t$0i-i>  h+i)
polynomial o f 1st degree in the intervals

and

it is easy to show that {ap, i= 0 ,  1, ..., N }  form a basis for the linear sub­
space J t  of functions which may be plotted as a broken line with nodes only 
at tp /= 0 , 1, ..., N. By applying 2.4.1.4 for — 1] and this subspace
JÍ,  the best approximation of function /  in L [̂0, 1] by a ‘broken line with 
nodes only at / = 0 ,1 , ..., N ’ will be obtained. A remarkable property of 
the Gram matrix in this case is that

akj =  0 if  \k—j \  >  2. 

This is called a three-banded matrix.

Example 3. Let J ln be the (TV +1 {-dimensional subspace of L2[—n, +я] 
generated by {cos kt; k = 0 ,  1, N }  and /£ L 2[—л, +я]; then

/ n(0 =  2  Ук cos kt
k =  0

is the best approximation o f / in  J /N if yk; k = 0, 1, N  are the Fourier coef­
ficients

I +n
yk =  — f  f ( t)  cos kt át

71 J  —n



72 Hilbert Space Methods in Science and Engineering

and hence f N is the projection o f/  onto Л .  In fact, for any orthonormal sys­
tem {a*; k = l ,  2, ...,«},

and hence the Gram matrix is the unit matrix.

*2 .5  The projection principle (general case)

In this section we shall drop the restriction of J l  being finite dimensional and 
the existence of the projection onto an infinite-dimensional subspace Л  will 
be investigated. Two other forms of the projection principle, which will be­
come important later on, will also be given.

2.5.1. In studying the proof of Theorem 2.4.1.3 we notice that it is valid for any 
linear subspace J l  and hence the best approximation and projection are also the 
same thing for an infinite-dimensional subspace J i .  This is not the case for the 
existence of xp.

Recall that a linear subspace J l  o f Ж  is called complete if the Cauchy Conver­
gence Theorem is valid in Л .  If Ж  is a Hilbert space and not only a scalar 
product space, then every closed subspace Л  is complete; moreover, every 
finite-dimensional Л  is complete.

2.5.1.1 Theorem. If Л  is a complete subspace of a scalar product space Ж, 
then there exists a projection хр$.Л  for every x 6 Ж.

Proof. If d = in f {||jc—m\\; т £ Л ) ,  then there exists a sequence {mk} such 
that \\x—mk\\ -*d. What we have to show is that {mk} is a Cauchy sequence. 
In this case xp= \ im m k.

To estimate ||mf— mfi, we apply the parallelogram law for x —mt and 
x —mf.

(A K ) =  í j
if к *  i 
if  к — i

2 \ \x -m i\\2+ 2 \ \x - m J\\2 =  ||wi- » j J.||2 +  4 | |x - (w i +  mj)/2||2 

and hence for every e> 0 ,

\\nii-mj\\2 =  2 \ \x -m i\\2+ 2 \\x -m j\\2- 4 \ \ x - ( m i +  mj)/2\\2 

<  2 \ \x -m i\\2+ 2 \ \x -m j\ \2- 4 d 2 <  s

if j, j  are large enough since {miJmj)l2 £ Л  and \\x~mk\\-+d.
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The projection is unique. In fact, if xp and x'p are projections of х ^ Ж  
onto J t ,  then

(x —xp\m) =  0 and (x —x'p\m) =  0 m £ J i .

Subtracting these two equalities, we obtain

(x'p—xp\m) =  0 m £ J l
and hence

\W p-xpV =  {xp- x p\xp- x p) =  0

since x'p, x f J l .

Example 1. Consider now the infinite-dimensional linear subspace J Í  of 
L 2[ — 7Г, + 7c] consisting of the linear combinations of the functions

cos kt к =  0, 1, 2 , . . .

(i.e. there is no restriction on the frequency k). In this linear subspace there is 
no nearest element to

f ( t ) =  sin t +  У, у - cos kt.

In fact, if

Л ( 0 =  2 t cos ktk = l К
then by 2.2.1 (* ) ,

I I / - / J I  =  ll/llí- я  i ik = 1 K
and hence

I I / - / m II8 < I I / - / J .  i f
Thus we have shown that there is no projection of /6 L 2[— n, +n] onto

Example 2. Let us consider the closed linear subspace Л  of L2 [—гг, +л] 
generated by {cos&i; k —0, 1, 2, ...}. Then the nearest element to / i s

/м (  0 =  Z -jreosfcí

and hence the projection exists in this closed linear subspace J t .  In fact,
+ 1C

f ( t ) —f M(t) =  sin t and J sin t cos k td t  =  0 k  =  0 ,1 ,2 , . . . .
— Я

2.5.2. In the geometric vector space, the set of vectors

{*: ( x - x 0\m) =  0}

6 M áté
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can be visualised as a plane passing through the point xfl and orthogonal to the 
vector m (see figure 2.9).

2.5.2.1 Definition. If J l  is a linear subspace of a Hilber: space Ж  and х0£Ж , 
then

4 =  (x: (x —x0\m) =  0; т £ Л )

is called the hyperplane о passing through the point x0 and orthogonal 
to Л .
J i 1 — {z: (z|m) =  0; m 6 J l } is called the orthogonal complement of Л  in Ж . 

It is obvious that
Л х =  {x —x0; x£<j)

and J Í 1- is a closed linear subspace of Ж ; hence the projection x„v^ J tL 
of x0 exists. If J i  is closed then Л ХХ= Л .  This will follow from Theorem 
2.5A2.

Notice that x0p= x 0—xd, where x fio  and, by Theorem 2.4.1.3,

\\xd\\ =  ||х0- х 0р[| <  IIx0 (x0 x)I] x€o

which means that xc is the element of the hyperplane <s of minimum norm. 
Thus we have the following theorem.

2.5.2.2 Theorem. If J i  is a linear subspace of a Hilbert space Ж  and a is the 
hyperplane passing through х0£Ж  and orthogonal to J i,  then

Л 1 =  {x„—x;

is a closed linear subspace of Ж  and, if x0p is the projection of x0 onto J i,  
then

x„ =  X0-X 0p

is the element of a of minimum norm.
The theorem is illustrated in figure 2.9 for the case where Ж  is the geometric 

vector space and Л  is the one-dimensional subspace generated by m.
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2.5.3. We now apply the results of § 2.5.2 to the solution of the following 
problem.

‘For ak, k —1, 2, ..., n and given numbers t]k; k —1, 2, ..., n, find x  such 
that

(x\ak) =  tjk к =  1 ,2 , . . . ,  n (*)

and the norm is minimal.’

If J i  is a finite-dimensional subspace of Ж  with basis {ak)\ k =  1,2, ..., n 
then the points x  of the hyperplane a passing through x0€ Ж  and orthogonal 
to J i  are characterised by

{x: (x —x0|ak) =  0; к  =  1 ,2 ,. . . ,  n}

and hence, introducing the notation qk= (x 0\ak), the ‘geometrical formulation’ 
of the posed problem is to find x £a  with minimum norm.

Moreover, it follows from the considerations that led to Theorem 2.5.2.2. 
that x f ia  with minimum norm belongs to Л Х±= Л  and hence in our case 
it is in the form

n
x* =  2  ^ a k.

k=1

Substituting this form into (^ ) we obtain

n

k=1

i.e. this problem leads to a system of linear equations similar to 2.4.1.4 (*).

2.5.4. A third formulation of the projection principle says that a Hilbert space 
can be decomposed into the orthogonal direct sum of closed subspaces.

2.5.4.1 Definition. Let Nt; i =  1 ,2, . . . ,m  be closed subspaces of the Hilbert 
space Ж  such that

(Zí\zj) =  0 for zfiNf, Zj-eNj i И j .  (*)
П

Then the orthogonal direct sum ®  N( is the set of the sums
i = l

2  zi z£ Ni-i=1
It is obvious that ®  Nt is a linear space and we can show that it is closed.

i = l
In fact, if

x „ = 2 zkn and x ’n =  2  zkn Z k n , z'kneN k
k=1 k=1

6*
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then
m

o * .-* ; !2 =  2  \\Zkn-z'k„v
k =  1

by the orthogonality (* )  and hence x„-*x if and only if {zkn} is convergent 
for every k. Moreover, if zkn-+zk then

m
X  =  2  z k Z k £ N k .

k =  1
Now, let J i  be a closed linear subspace of the Hilbert space Ж  and x  £ Ж . 

Then by Theorem 2.5.1.1 there exists the projection xp onto J i  and

X =  хр +  (х:-л:р) xp£ J i \  x -X p^ Ji*- (*)

by 2.4.1.2. Hence we obtain the following theorem.

2.5.4 2 Theorem. For every closed subspace J i  there is the direct sum decom­
position

Ж  — Jit&Ji^-.

Remark 1. It is easy to show that the decomposition 

x — xp+Z Xpd J t, Z tiJ t1-
is unique.

Remark 2. It is also easy to show that 2.5.1.1 follows from 2.5.4.2.

Remark 3. It is not necessary for i f  to be a Hilbert space. As in Theorem
2.5.1.1, for the orthogonal decomposition of Ж  it is sufficient that J i  is a 
complete linear subspace of a scalar product space Ж .

The direct sum decomposition of Ж  into more than two subspaces also 
follows from 2.5.4.2. In fact, if / c l  is a closed subspace, then, by Theorem 
5.4.2,

J i  =  Ж Ф Ж

where Ж  — {х: x £ J i \  (x |z )= 0  for z £ jV}, i.e. the orthogonal complement 
of Ж  in J i ,  and hence

Ж  =  Л ^ Ф Ж Ф Ж

is an orthogonal direct sum decomposition of Ж  of three members.
Following this approach, for example, a direct sum decomposition of Ж  

of any finite number of members is obtained.
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2.6 Some typical examples of the projection principle

First we shall show that the solution of the minimum problem posed in § 2.2.1 
is a special case of the projection principle. After this we give examples for the 
important cases when M  or J i~  is finite dimensional, and the section concludes 
with a well-known optimum property of the solution of the pure boundary 
problem of the Laplace equation as an example of the projection theorem in 
the case of infinite-dimensional J l .  Several applications of the projection 
theorem will also be found later in Chapter 2 and in Chapter 3.

2.6.1. The minimum problem of § 2.2.1 is a special case of the projection theo­
rem when J i  is the «-dimensional subspace of a Hilbert space Ж  spanned by 
an orthonormal sequence ek; k = l ,  2, n. In this case the orthogonal pro­
jection in JÍ  of хЧЖ  has the form

П
xp =  2  у л

k =  l

where y„; k = l ,  2, ..., n is the solution of the system of equations

2  Ук(ек\ед =  O h )  ‘ = 1 »  2, ..., n
k =  1

by Theorem 2.4.1.4. In this case yf= O lei) since

. . .  JO i к
f e W  =  t l  /  =  4

and so the result of § 2.2.1 is obtained in a simpler way.

2.6.2. Frequently we have to solve a system of linear algebraic equations with 
more equations than the number of unknowns and having no solution. This 
contradictory situation occurs, for example, when the linearity is only approxi­
mate and the measurements concerning the matrix of the system of equations 
are inaccurate. In this case the solution is defined as {xk; k —\,  2, ..., m) for 
which the sum

n m

2 \ b i - 2 Ч к* к \2 (* )i=l fc=l
is minimal. (In the case of an exact solution this sum is of course 0.)

The solution of a system of linear equations
au x1+ a 12x.Á+ . . .  +  almxm =  bx
а,л х1 +  а22х2+ . . .  +  а2тхт =  b2

X1 +  T .. • T ttnm xm — bn
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in this generalised sense can be found by the following / ä-space model. Let

a l l  ű12 a lm  b l

a 21 a 42 a 2m b 2
. 5 .  * • • * » .  5

ß n l .  ß n 2 .  ß n m .  Ьп.

be considered as vectors of the linear space of и-tuples with the / 2-norm and let 
J t  be the linear space generated by the m column vectors of the matrix of the 
system of linear equations to be solved. Now we have only to apply 2.4.1.4 when 
J f = / 2 and

b l  a lk

x =  Ъ* ak =  a*k k =  1,2, n.

P n .  ß n k .

2.6.3. We shall now consider a problem from analytic function theory. Deter­
mine /£H o  such that

/(-Zjfc) =  wk к =  1, 2, ..., n 

where zk, wk are given values, and
2tz

I  |/(ei()l2 dt
о

is minimal.
By the Cauchy integral formula and straightforward calculation,

f(zk) = ^ -  Ф dz = ~  f" f(eu) —i7—-— dt 2m |г|̂  z - 2 t 2я j eu -z *

and hence the evaluation functionals in Нд are represented by scalar products

/ ( a ) =  ( f \ g k)
where

С“ **
e zk

It is obvious that gk£ Нд, i.e. g(e“), is a continuous function and

gk(z) =
_ J ___
1 ~ z z k

is analytic for |z |< l .
It follows that our problem is the special case of the problem of § 2.5.3 

for з4? =  Н1 and ak= g k.
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2.6.4. One of the fundamental problems of system theory is to find a u—u(t) 
control that transfers the state y = y ( t )  of the system from the initial or zero 
state into a given state y i= y (h )  such that the energy of the control is minimal.

The following example is closely connected to this problem. Consider the 
differential equation

y”(t)+y(t) =  и(0 (*)

with the boundary conditions

j(0) = 0 у  (2к) =  1
/ ( 0 )  =  0 У' (2k) =  0

where y' means the derivative of y. The existence of the solution y = y ( t )  is 
not guaranteed for every continuous u=u(t).  More precisely, it is known from 
the elementary theory of differential equations that the solution of the above 
differential equation is uniquely determined by u = u(t)  and the initial con­
ditions y (0 ) = / (0 )—0. However, it is not guaranteed that the ‘end conditions’ 
y (2 n )= l ,  y'(2n)=0  are also satisfied for this unique solution.

If a solution of the boundary problem (* )  exists then u = u(t)  is called a 
control of the system governed by the differential equation (* )  that transfers

the state from [о] '",0
As a further exercise, 

integral

и -
let us find the control m= « ( í) for which the energy

2 tt

/  n2(i) di 
0

is minimal. It is known (and easy to verify) that
t

y(t) =  J  sin(t — r)n(T)dr 
о

is the solution of the differential equation (* )  satisfying the initial conditions 
only and hence for the ‘end conditions’ to be satisfied also it is necessary and 
sufficient that

2*
y(2n) = J  sin(2n — r)u(r)ár = 1 

о
(**)

2  It

y'(2n) =  J  cos (2k —r)u(z) dr = 0.
0

Considering u(t), sin(27t— /), cos(27z — t) as elements of the real Hilbert 
space L2[0, 2k], we can write the system of equations (**) in the form
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of scalar products

(sin (2л—т)|н(т)) =  1 

(cos (2л—т)|н(т)) =  0.

We have thus obtained the problem of §2.5.3 for u—x Ж  =  L2(0, 2k) 
and űj^sin (2n—r); a2=cos (2n—z). Consequently

u(t) =  a sin t+ ß  cos t

and the corresponding system of linear equations with Gram matrix
2tc 2 n

—a J  sin2td t  — ß J  s in /c o s id i  =  l
о 0

2  7E 2n

a J  c o s /s in /d / +  ;3 J  cos2/d / =  0; 
о о

hence

a =  —— ß — 0.
л

Remark. It follows from this example that if a linear system is governed by the 
differential equation (* ) , then any minimal-energy control и that transfers the 
statey from [0; 0] into [y (2n); y'(27r)] has the sinusoidal form u =  A sin  (t +  ip), 
and the amplitude A and phase q> are determined by the vector of the end 
state with components y(27i); у'(2я).

2.6.5. Let Q) be a convex domain in the (three-dimensional) space with smooth 
boundary ÍA and u=u(r) be a function of the space variable r with a contin­
uous gradient in S>.

2.6.5.1 Definition. The volume integral

J  Igrad n|2 dx dy dz 
а

is called the energy integral of и in 3).
An important problem in potential theory is to find the function u = u (r) 

with given boundary values on У  and with a minimal energy integral. The 
answer to this problem lies in the following theorem.

2.Ó.5.2 Theorem. If

u(r) =  ^oCf) f° r
and

Au:= u"x +  u"y+ u 'z
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has a meaning, then the energy integral of и is a minimum if и is the solution of 
the boundary problem

Au — 0 u{r) =  x0(r) if r i i f .

Conversely, if и is the solution of this boundary problem, then the energy in­
tegral of и is the minimum among functions with the same values on i f .  
Proof. Let X  be the linear space of real-valued functions with continuous gra­
dient in £2>. Then by the formula

(u\v) := ф u(r)v(r)d£f +  J  grad и grad v dx áy dz
у  а

a scalar product is defined in X. Note that among u£X with the same boundary 
values, the energy integral is a minimum if  and only i f  the scalar product (u\u) 
is a minimum.

Now, let x0£ X  and н (г )= х 0(У) if r i f f .  Also,

J f  =  {v: v(r) =  0 if r£Sf) .

It is obvious that (x0— u) £Jf  and hence

U =  Xq — (Xq — u) =  x0— V V^Jf .

It follows that (u\u) has the minimum value if  and only i f  v £ J f  is the nearest 
element to x0£X  in the pre-Hilbert space thus obtained.

Applying Theorem 2.4.1.3, we know that v{f j f  is the nearest element to x0 
if and only if

(x0—t'ob) =  0 v £Jf .

More particularly, for u0—x0—v0,

J  grad u0 grad v dx dy  d z — 0 vi Jf .  (*)
a

Our last step in the proof is an application of the Green formula. Applying 
the Divergence Theorem to v grad u0, the Green formula

У grad u0gradv dx dy  d z +  J v A u d x d y d z =  J  v grad щп0 d if
a a y

is obtained. It follows from (*) that

J  vA u0 dx dy dz  =  0
a

for every v i f f  and hence Au0=0.
Conversely, if u ,x£X , u0(r )= x (r )  for r i f f  and Ащ= 0 then, by 

the Green formula, (*) holds for every v i J f .  Again, x —u ^ i f f  and
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u0—x —(x—u0)-, hence, applying Theorem 2.4.1.3, we obtain

Ool «о) < (-̂1-̂ )
and the energy integral of м0 is smaller than the energy integral of x.

Remark. J f  contains a complete sequence in the sense of Definition 2.2.3.1 
in L2(S>) by the results of classical analysis.

* 2 .7  Controllability and optimal control of linear systems

One of the fundamental problems of linear system theory is the controllability 
and optimal control of a system. In this section a close connection between the 
projection theorem and the mathematical solution of these problems will be 
demonstrated.

2.7.1. The usual mathematical description of a linear continuous time system is 
the state, or dynamical, equation

x(i) =  A (0 x (0 + B (/)u (r )

y ( 0  =  c ( / ) x ( 0 (*)

where A(?) is an nXn  matrix, В(7) is an nXp  matrix, C(r) is an nX q  matrix, 
p, q*s n and their entries are bounded piecewise continuous functions.

u =  u(/) is called the control and x(t )  the state of the system at time t. The 
basic problem concerning (*) is to find, for a given state x x, a control u(t) 
and ?x> 0  such that a solution x (/) of (*) exists satisfying the boundary con­
ditions x ( /1) = x 1 and x(O) =  0. If such a pair (q , u) exists, then it is said 
that there exists a control u =  u(i) that transfers the system from the initial or 
zero state into the given state x x during the period tx.

The dynamical (or state) equation (*) of a system is called controllable if 
for every state x x there exists a control u and tx > 0  such that u transfers the 
system from the state в into xx during the period tx. The optimal energy control 
u is the one for which

H u l l 2  =  2  Z 1  | « * ( 0 l " d r
‘= i0

is minimal (where uk is the &th component of u). The problem of finding an 
optimal energy control for the dynamical equation (*) is the generalisation of 
the example in § 2.6.4.
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It is obvious that controllability depends only on the first equation of (*). 
The matrix Ф(/, 0) is called the transfer matrix of (*) if the &th column of 
Ф(7, 0) is the solution of the equation

x(/) =  A (t)x(t)  x(0) =  ek

where e,t is the column vector with 1 in the kth row and zero in all other rows. 
It follows from the theory of matrix differential equations that

t

x ( t)=  J  Ф(т, 0)B(t) u(t) dr 
0

in the solution of the first equation of (* )  with x  (0) =  в. Hence the problem of 
controllability can be formulated as follows.

For a given x x find u and tx such that

Ji
Xj =  J  Ф(т, 0)B(t) u(t) dr.

о

Following these considerations we can state the fundamental controllability 
condition for the state equation (* ).

2.7.1.1 Theorem. Let
t

W (i, 0) =  /  Ф(т, 0)В(т)В*(т)Ф*(т, 0) dr.
0

Then the system (or, more precisely, the state of dynamical equation (1) of a 
system) is controllable iff for every xx there exists b > 0  such that the system 
of linear algebraic equations

Xl =  W ir,, 0)c

(written in matrix form) has a solution c. In this case, the optimal energy con­
trol is

u (/) =  В*(Г)Ф*(/, 0)c.

The proof of this theorem is based on the following lemma. Let G =  G (r) 
be a matrix with n rows and entries from L2(s, t). Then for any n-dimensional 
column vector u -- u (t) there exists c such that

t

f  G ( t) [ u (t) —G*(t)c] dr =  в. ( * * )
S

For the proof of this lemma, consider the finite-dimensional subspace Л  
generated by the rows of G (r). Let up be the nearest element (orthogonal pro-
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jection) of u in J i.  Then up has the form

uP(0 =  G*(t)c
and ( * * )  holds, by Theorems 2.4.1.3 and 2.4.1.4. Now, if

and
G(í) =  Ф(?, O)B(í)

í
W ( t , s ) =  J  G(T)G*(T)dr

S

then Theorem 2.7.1.1. is obtained from this lemma.
A more detailed presentation and the physical background of the controlla­

bility problem can be found in Brockett (1970).

Remark. Some of the examples in this section are rather more concerned with 
linear algebra than with Hilbert space theory; however, in a Hilbert space 
setting they have a more general perspective.

2.8 Scalar product and bounded linear functionals

Recall that a linear functional is a special type of linear operator: if the values 
of an operator are complex numbers then it is called a linear functional. It 
follows from the results of § 1.4 that continuity and boundedness are the same 
for a linear functional, and for a continuous linear functional /  of a Hilbert 
space Ж \

l/W I^II/IIIW I х £ Ж

where ||/|| is the least upper bound of

{ \ № \ / М ; х * в }

and is called the norm of the functional / .

2.8.1. For any fixed у 0£Ж,  the mapping /(x )= (x [y (1); х £ Ж  is a bounded 
linear functional of Ж , as can be seen from axioms (ii) and (iii) of the scalar 
product and from the Cauchy-Schwarz inequality. A surprising result discov­
ered by F Riesz and M Fréchet in the early years of the twentieth century is 
that these are the only continuous linear functionals of a Hilbert space.

2.8.1.1 Theorem. For every continuous linear functional/ of a Hilbert space Ж  
there exists a unique у Ж  such that

f { x )  =  (x\yf ). (*)
Also, ll/И И ^ Ц .
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Remark. We recall that

ll/ll =  sup { |/(x )|: | | x | |  =  1}
by 1.4.3.2.
Proof, (a) For separable Ж. In this case we have the expansion in an orthonor­
mal sequence

* =  2  Z k e k
k =  1

for every and hence

/W = / ( 2 U ) =  2  U ( e k).
k = 1 k = 1

On the other hand, if

УI = 2  f ( ek)ek
k = 1

formally then

2  U ( e k) =  (x\yf ).
k = 1

We have ‘only’ to prove that the series defining }y  is convergent. Considering 
2.14.10, what we have to prove is that

2  IA e k ) \2 <o°-
k = 1 

N
Estimating 2  I/(a )I2> we have

k=  1
f { 2 W k ) e k) =  2  \f(ek)\2

k = 1 k = 1
and

/  ( i  Tfete) < ll/ll II i  Ж к || = ll/ll ( i  l/fe)l2)1/2
k =  l  k=1 /c = l

since

II i  TfeĴ II2 := ( 2  Ж ) е к I i  /& *)•&=1 k = 1 k — 1
Hence

Í l/fe )l2-= l l / l l  ( il /fe ) l2)1/2fc = l /c = l
and it follows that

( 2 l / f e ) l 2)1/2c | l / l l -
k = l

(b) For any Ж . The existence of an orthonormal expansion for every х £ Ж  
is the characteristic property of a separable Hilbert space. Hence for non­
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separable Hilbert spaces the foregoing proof does not work. The usual proof 
of the Riesz Theorem in the absence of orthogonal expansions is based on 
Theorem 2.5.4.2.

Let /  be a continuous linear functional of Ж  and Ж  = {x :  f (x )= 0 };  then 
J f  is a closed linear subspace of Ж  and hence Ж  =  Ж @ Ж '± by Theorem
2.5.4.2. What does the decomposition

X =  z + y  z^ J f ,  у ^ Ж 1

look like for any х£Ж 1
Observe that if Уо^Ж1 then x —f(x ) / f ( y 0) у 0£ Ж  for any х £ Ж  since

/ ( ^ ж г л ) “ / м - / м = 0
and we conclude that

Z  =  X  —
f(x)

/ ( T o ) T o T  = f ix )
/ ( T o ) T o -

Hence Ж х is one dimensional.
It follows from this orthogonal decomposition that

M to) =  (z+ t Ito) =  (t Ito) =  W l2JKso)
and hence

/ М  =

i.e. for T /= /(T o)To/IITo1I2 the representation (* )  is valid.
If /(* )  =  (*! Ту) then

1Л*)1< N O T /l.

By the Cauchy-Schwarz inequality and hence by definition (see the beginning 
of this section),

l l / l l  <  I I  Т у  I I -
On the other hand, for x=yy/[|yy||,

The uniqueness of y f  is routine and is left to the reader.

2.8.2. Obviously the Riesz-Fréchet Theorem is not valid for a non-complete 
scalar product space. For example, Lp(a, b) consists of continuous functions;
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however, any step function induces a bounded linear functional on LЦа, b) 
via the scalar product. The Hilbert space L2 (a, b), the completion of Ц (д, b), 
can be considered as the space of continuous linear functionals of L\{a, b).

2.9 Bilinear functionals

A bilinear functional is a generalisation of the scalar product, and certain 
types of bilinear functional inherit several useful properties of the scalar prod­
uct.

2.9.1. The mapping (p—tp(x,y) from the ordered pairs of elements of a linear 
space X  into the field of scalars (complex numbers) is called bilinear if

(p(Xx + [iz, у )  =  ).<p (x, y)+p<p(z, y) 
(p(y, Ix + pz) = lcp{y, x)+ficp(y, z)

X, y, zeX, к, р£Ф.

cp is called symmetric or Hermitian if cp(x, y) — cp(y,x) and positive if 
tp(x, х)з*0.

Example 1. Let x  and у  be infinite sequences of complex numbers and A 
a square nXn  matrix with elements {aik} ; /= 1 , 2, ..., n, j =  1, 2, ..., n. Then

П П
ф , у ) : =  2  Z  aikZi*hk=l i=l

is a bilinear functional on the linear space of infinite sequences of complex 
numbers, where

x  =  {£k; k  =  1 ,2 ,. . .}  and у  =  {?/*; к =  1 ,2 ,...} .

The bilinear functional thus obtained is symmetric iff A is a symmetric matrix, 
i.e. if aik= a ki, and positive iff A is a positive definite matrix.

Example 2. If {aik; i =  1, 2, ..., k = 1, 2, ...} is a ‘double sequence’, called an 
infinite matrix, with the condition

then
oo oo

Ф ,  у) ■= 2  2  a la r i ii=l k =  1

is a bilinear functional on the / 2-space.

oo oo

2  2  K l 2fc=li=1
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Example 3. If k = k ( s ,  t) is a continuous function on the closed finite two- 
dimensional interval a-^s, t*sb then

ь ь
cp(x,y):= I  j  k (s , t )x ( t )y ( s )d td s

a a

is a bilinear functional on the linear space of continuous functions in [a, b]. 
The bilinear functional thus obtained is symmetric iff k(s, t ) = k ( t , s )  and 
positive iff

ь b
J  J  k(s, t)x ( t)x (s)d tds  s= 0

a a

for every continuous function x. It can be proved that this inequality is valid 
iff for every finite sequence {sp i =  1, 2, n) of points in [a, b] the matrix 
with elements

aik := k(st, sk)
is positive definite.

Example 4. If b = b ( t ) is a piecewise continuous function in [a, b] (i.e. the 
sum of a step function and a continuous function) then

ß (x ,y ) :=  f  b(t)x(t)y(7)dt
a

is also a bilinear functional in the linear space of continuous functions in [a, b\. 
ß  is symmetric in the case of real-valued b —b{t) and positive iff b has only 
non-negative values.

Example 5. If Г is a linear operator of a Hilbert space then 

V t ( x > У) ■= {x\Ty) х,у£Ж 
is a bilinear functional on Ж.

For a symmetric real-valued <p,

(p(x+y, x + y )  =  <p(x, x)+(p(y, y)+2(p(x, y)

(p (x -y ,  x - y )  =  (p(x, x)+<p(y, y)-2cp(x, y)
and hence

<P(x, У) =  -^(<р(х+У, x + y ) - ( p ( x - y ,  x - y ) ) .

This means that the symmetric bilinear functional cp is determined by the (quadrat­
ic) functional of  a single variable

ip =  <p(z, z) z  £ Ж*.
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This is also valid for any bilinear functional since

<p(x,y) =  j { ( p ( x + y , x + y ) - ( p ( x - y , x - y ) + i ( p ( x + i y , x  +  iy) 

- ic p ( x - i y ,  x - i y ) )  х , у е ж . (*)
This can be verified by a somewhat longer but straightforward calculation. 
From the connection (* )  we may state the following theorem.

2.9.1.1 Theorem. <p is symmetric iff <p(z, z) is real for every г£Ж .  In particu­
lar, every positive bilinear functional cp is symmetric.
Proof. If (p is symmetric then, in particular,

Hence if tp ( y + x ,y + x ) ,  (p(y—x , y —x), cp (y+ ix ,y + ix )  and q>(y—i x ,y —ix) 
are real then <p(y, x)=cp(x, y).

Note that if cp(x, x )= 0  implies x = 0  for a positive (and hence also sym­
metric) bilinear functional then axioms (i)-(iv) of the scalar product are satis­
fied, i.e. a scalar product is defined by (p.

2.9.2. For a positive bilinear functional cp the Cauchy-Schwarz inequality is 
valid:

Indeed, this inequality is obvious when cp (x, y ) =0. In the case when <p (x, y )^ 0

=  q>(y, x)
\<P(x,y) I

is a real or complex number of modulus 1. Hence

0 -s <р(9х+Лу, Bx+/.y) =  <p(x, x)+21\(p(x, y)\+X2(p(y, y)

for any real X, i.e. the real-valued polynomial thus obtained has at most one 
zero. Hence, for the discriminant,

4 |9 (x, y)\2-4<p(x, x)(p(y, y) <  0

which is equivalent to (* ).

<p(x, x) =  (p(x, x) х ^ Ж

and hence cp(x, x) is real for every х £ Ж .
For the converse statement, interchanging x  and у  in (* ) ,

<Piy,x) +  j (<p(y+x,  у + х ) - с р ( у - х , у - х )  

+i(p(y+ix, y+ ix ) -up(y- ix ,  y-ix)).

\cp(x, y )P <  <p(x, x)q>(y, у) х , у £ Ж . (*)

7 M áié
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2.9.3. If the bilinear functional cp is defined in a scalar product space Ж, 
as in the case of Example 2 or Example 5, then it is natural to look for the 
connection between cp and the scalar product in Ж.

2.9.3.1 Definition. If there exists M > 0  such that

\cp(x, у) I <  M\\x\\ ||y|| X ,  у  еж

then cp is ca'led bounded.
If Г is a bounded operator in Example 5, then

\cpT( x , y ) \ ^  im i iw iw

and hence q>T is a bounded bilinear functional.
We shall show that these are the only bounded bilinear functionals.

2.9.3.2 Theorem. Let cp be a bounded bilinear functional in a scalar product 
space Ж. Then there is a unique bounded linear operator T  such that

<P(x, У) =  (x\Ty) х , у е Ж .

Proof. The mapping
X -  cp{x,y)

is a bounded linear functional for any fixed y. Hence, by the Riesz-Fréchet 
Theorem, there exists г £ Ж  such that

We define
<p(x, У) =  (x|z). 

Ту z.

Then T  is unique and cp(x, y)=(pc\Ty) for any pair x ,уеЖ. T  is a bounded 
linear operator. In fact, for every х е Ж ,

(x|r(;.yi+/<y2)) := cp(x, 2уг+ р у 2) =  lcp(x, y j+ ßcp(x ,  y 2)

:=1(х \Т у1)+ р(х \Т у2) =  (х\2Ту1+ р Т у2) y lt Уг еЖ ,  А, р£Ф

and hence T  is linear. From 2.8.1.1 and 2.9.3.1,

II Гу II = sup |(x|7»| у  еж
llx||=l

and
IIГII :=sup{||7>||; 1Ы1 = 1}<M.

2.9.3.3 Definition. The norm of a bounded bilinear functional cp is defined by 

M l =  sup {]<p(x,y)|; llxll =  1, IMI =  1}.
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It follows from this definition that if T  is the bounded linear operator asso­
ciated with cp by 2.9.3.2, then

M l  =\\T\\.

2.10 First steps in the theory of linear operators on Hilbert 
spaces

The notion of the dual or adjoint operator T* of a linear operator Г in a Hil­
bert space is of crucial importance in Hilbert space theory. The main classifi­
cation of Hilbert space operators is based on the connection between T  and 
its dual T*. In this section we shall investigate those parts of the theory that 
are related to Hilbert space geometry and will be needed in §§2.11 and 2.12.

2.10.1. Formally, the adjoint of a linear operator T  that maps a Hilbert space 
Жх into a Hilbert space Жг is the operator T* satisfying the condition

(Tx\y) =  (x\T*y) х£Ж х, уеЖ,i. (*)

We now ask: does there exist such an operator T* for every bounded linear 
operator?

2.10.1.1 Theorem. For every bounded linear operator T from Жх into Жг 
there exists a unique bounded linear operator T* from Ж  into Жх satisfying 
(* );  moreover,

in  = mi.
Proof. The mapping x-+(Tx\y) is a bounded linear functional since T  is 
linear and

\(Tx\y)\ ^  \\Tx\\\\y\\ ^  \\T\\\\x\\\\y\\.

Hence, by the Riesz-Fréchet Theorem, for every pair (у, T) there is a unique 
z£ Жх such that

(Tx\y) =  (x\z).

Define T * y:= z ; the operator T* is obviously linear and, by 2.8.1.1,

\\T*y\\ =  sup {\(x\T*y)\- 0*|| =  1} =  sup {|(7x|y)|: ||x|| =  1} 

< su p {||r*0IM |; 0x0 =  1} =  УГИ ||y||.

Hence T* is bounded, ||Г * ||с ||Г || and

{Tx\y) =  (x\T*y) x € X i ,  y t* - . i- 

Now, if T**-.— (T*)* then ||7'**||<||Г*|| from the above considerations.

7*
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We shall show that
у » * *  ___ rp

Indeed, by definition,

(T*x\y) =  (x\T**y)
and hence

(Tx\y) =  (x\T*y) =  ( 7 > W  =  (y\T**x) =  (T**x\y) x € * i ,  у 6Ж -

2.10.1.2 Definition. If Г is a bounded linear operator from Жг into Ж  then 
the bounded linear operator T* from Ж  into Жх satisfying (* )  is called the 
adjoint or dual operator of T.

Remark. The adjoint is defined for a Banach space operator and also for 
certain unbounded Hilbert space operators.

Example 1. If T is the linear operator of the «-dimensional Euclidean space 
represented by the matrix A with elements {aik} (see Example 1 in §1.4.2) 
then the adjoint T* is the linear operator represented by the adjoint (trans­
posed) matrix A* with elements {aki}.

Example 2. If T is an integral operator of L2[a, b] with kernel K = K (t ,  t), i.e.

Tf := j  K(t, t)/(t) dt f a 2[a,b]
a

where К  is a continuous function in the square [a, b] X [a, b\, then the adjoint T* 
is the integral operator of the form

T * f j KfaöffddT fdU[a, b],
a

Indeed,

(T f \g )=  /  /  K ( t , x ) f ( T ) m d T d t =  / Д т ) ( /  K(t, T )i(öd/)dT
a a a a

=  f  f i t )  ( /  K Ö T )g i0 dz) dr =  if\T*g).
a a

Example 3. If F is the operator sending a function /£ L 2[0, 2л] into the se­
quence of (complex) Fourier coefficients

2я
ck= f  f(t)e~ik,dt

0
к =  0, ± 1 , ± 2 , ...
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then for any d = { d k}Z P,

+ 00 2tt +tc 2it ___
( F № =  2  A !  f(t)e~ik,dt= J f(t){ 2  3ke~ik,)dt = /  /(OáKOdf

* = - ~  o '  0  k =  -  0 0  0

where

s(0 = +i  <4eiW.
k  =  - o o

Hence

F * K } =  2  dkeik,£L2[0,2n]
k = - c o

for every d f j 2. Hence, in this case, F* — F~1.

Remark. The interchange of the summation and the integration is justified 
since we have scalar products in / 2 and L2[0, 2n], respectively, and for finite 
sums the equality holds.

Passing to the adjoint operator we have the following (algebraic) properties:

(i) (ATt + p T 2f  =  XT*+ßT*;

(ii) (TJ'i)* =  T£T* (if TfT., exists); in particular,

(Г -1)* =  (Г *)-1 (if Г“1 exists);

(iii) T** := (T*)* =  T.

The proofs are easy and are therefore omitted.

2.10.2. If Г is a bounded linear operator of a Hilbert space (i.e. the range is 
also contained in ) then it may happen that T =  T*. In this case T  is called 
self-adjoint or Hermitian.

If T  is the operator in § 2.10.1, represented by a matrix A, then T  is self- 
adjoint iff the matrix is self-adjoint, i.e. aik =  aki. If T  is the integral operator 
of this subsection, then T  is self-adjoint iff К  is symmetric or Hermitian, i.e.
K(t, t) =  K & 7 ).

It is natural to ask whether the sum and product of self-adjoint operators 
are self-adjoint. Applying 2.10.1 (i)—(ii), the answer is easy.

(i) If S, T  are self-adjoint operators, then k S + p T  is a self-adjoint opera­
tor if and only if A, p  are real numbers.

(ii) If S, T  are self-adjoint operators, then S T  is self-adjoint if and only if 
S T = T S .

Moreover, the operators TT* and T + T *  are self-adjoint for any linear 
operator T.
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In § 2.9.3. a 1-1 correspondence was established between bounded bilinear 
functionals and bounded operators. Based on this correspondence, if T  is 
self-adjoint, then

<Рт(х. У) := (x\Ty) =  CTy\x) =  (;y\Tx) =  cpT(y, x) 

and hence <pT is symmetric or Hermitian. Conversely, if cpT is symmetric, then 

(x\Ty) := <pT(x, y) =  (pT(y, x) =  (y\Tx) =  (Tx\y) 

and hence T  is self-adjoint. This can be summarised as follows.

2.10.2.1 Theorem. The bounded bilinear functional <pT corresponding to the 
operator T  by 2.9.3.2 is symmetric if and only if T  is self-adjoint.

By the considerations in § 2.9.3,

m i  =  sup {(Г*|у): ||*|| =  1, ||y|| =  1}

for a bounded linear operator T. If T  is self-adjoint, then the norm is determin­
ed by the corresponding quadratic form.

2.10.2.2 Theorem. The operator T is self-adjoint if and only if (7*|*) is real 
for every * £ j f ; moreover, in this case,

Ц7Ц =  sup{|(7*|*)l; ||*|| =  1 }.

Proof. The first part of the theorem follows from 2.10.2.1 and 2.9.1.1. For the 
second part we have only to prove that

I l l ’ ll <  sup {1(7*1*)!; ||*|| =  1}.
If

m =  sup {|(7*|*)|; ||*|| =  1}
then

and

Hence

since

(Г (* + у )|* + у ) <  m ||*+ y ||2 

( T ( x - y ) \ x - y )  т\\х—у\\г.

4R e(Tx\y) <  w(||* +  y||2- |- ||* -y ||2) 

(T (x + y ) \x + y )  =  (T*|*) +  2Re (Tx\y)+(Ty\y)

(*)

and
( T ( x - y ) \ x - y )  =  (7* |*)—2Re (Тх\у)-У(Ту\у).

Applying the parallelogram law (see §2.14.5) to the right-hand side of (* ) ,  
we obtain

(**)4 R e(7 * |y )< 2 m (||* ||2 +  ||y||2).
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Now, i f  Ж  is a real Hilbert space, then Rc (Tx\y) =  (Tx\y) and hence

Ill’ll =  sup {(7x|y); IM =  1, MU =  1 } <  m.

In the case where {(7x|y); х , у £ Ж }  are complex numbers the end of the 
proof is more sophisticated. Then

(Тх\у) =  \(Тх\у)№* х , Уеж
and so

|(7x|y)| =  e~i,/’(Tx\y) =  (Te~ivxly) x, у € Ж

where cp is the argument of the complex number (Tx\y). Hence, substituting 
e~i<px  for X in ( * * ) ,  we have

|(Г х |у ) |< -^ -( ||х ||2+ ||у ||2) х , у а ж

since ||e_i,,x|| =||x|| and (Te~i,px\y)s*0.
In particular, for

у = Т Щ Тхv * * 1»
we obtain

||7x||||x|| <  w ||x||2 х £ Ж .

2.10.2.3 Definition. The linear operator T  is called positive if (7 x |x )> 0  for 
every х^Ж .  It is called strictly positive if (T x|x)=0 only if x = 0 .

It is obvious that the positive linear operators form a subclass of self-adjoint 
operators and (pT(x , y ):= (7 x |y ) defines a scalar product (in the sense of the 
considerations at the end of § 2.9.1) if and only if T  is strictly positive.

As for the real numbers, a natural order can be defined for self-adjoint linear 
operators by means of positivity.

2.10.2.4 Definition. For the self-adjoint operators A and В we write

A«s В

if B —A is a positive operator.

2.10.2.5 Definition. M  is an upper bound and m is a lower bound of a self- 
adjoint operator T  if

mE <  T  <  ME

where E  is the identity operator.
It is easy to verify that a bounded self-adjoint operator T  always has (finite) 

upper and lower bounds; moreover, T  is a positive operator if there exists a 
non-negative lower bound m.
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2.10.3. It was shown in Theorem 2.5.4.2 that for any closed subspace J t  of 
a Hilbert space Ж  there is the direct sum decomposition

Ж  =  J t ® J t ±

and if x = y + z ;  y ^ J t ,  z ^ J t 1- is the direct sum decomposition of х £ Ж  
then у  is the projection x p of x  onto J t.

The operator Pm which sends x  into the projection xp, i.e.

P M X =  X  p х £ Ж ,  Xp ^ J l

is called the projection operator. It is obvious that

ll-P**ll < Ml хеж
for any J t ,  and Pm is a self-adjoint operator with P^ — Рм- In fact, if

then

*i =  y 1 +  z1 y ^ J t ,  z ^ J l 1-

x2 =  У г +  z2 У-Л -M, z ^ J t 1-

(Pm Xi \x2) =  (yL\y2 +  z2) =  O ily,)

Moreover, 

for every х£Ж.

(xi\Pj(X2) =  (yi + Zi|y2) =  (уг|у2).

РмХ =  PMXP =  Xp

2.10.3.1 Theorem. If P  is a self-adjoint operator with P 2= P ,  then there 
exists a closed linear subspace J t  of the Hilbert space Ж  such that P —PM. 
Proof. Let us consider

J t  =  {Px; х в Ж }.

J t  is a linear subspace since P is a linear operator; J t  is also closed since if 
Уп=Рхn and y a- y ,  then

у  =  lim Px„ =  lim Р(Рхп) =  Ру
n-+oo n-+oo

and hence y £ J t .
If y £ J t ,  then

Py =  P(Px) =  P~x =  Px =  y.

If z ^ J t 1-, then

||Pz||2 =  (Pz|Pz) =  (P2z\z) =  (Pz|z) =  0.

The one-to-one correspondence between projection operators and closed 
linear subspaces has the following properties.
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2.10.3.2 Theorem. PMPX  is a projection operator if and only if Pm Pjt=  
=PX P л  '■> in this case

PM.Pж — Pлс\ж

where is the intersection of the sets J l  and Jf.

Pj{ +  Рж~РмРж — Рлиж
where . Л 0 Ж  is the closed linear space generated by the elements m £J{,

Recall that the closed subspace generated by a set i f  is the closure in Ж  
of the elements in the form

m
2  akak 

k =  1
Proof. Since {PJtPx )* =  P* P ¥M =  Px PM, it is necessary that PMPX =  
= P v PJ(. If this commutation relation is satisfied then we also have

(PЖ Pж)2 —  PлРжРмРж  =  PлРж

and hence PM Px  is a projection operator.
If z £ J t t \ J f ,  then PMPx z —z. Conversely, if PMPx z —z, then

Pл  2 =  Р л (Р л  Pж7)  =  РлРж 2 — 2
and

Pж z = Pж{РлРжz )  =  Рж(РжРл2) =  Pж Рл2 — z

and hence z £ J tC \J f .
Рл+Рж -РлРж  is a projection operator. In fact,

С Рл+ Рж -РлРж Г  =  Р*л + Р*ж-Р*жР*л = Р л  + Рж-РлРж
and

(Рл + Рж-РлРжУ  =  Р л + Рж-РлРж-

If z £ J Í ,  then

(Рл +  Рж-РлРж) z =  z + P x z - P x z  =  z

and this is also the case when z £ J f .
For { P 4l +  Px —PMPx )x  — x  it is necessary that x  be the sum of xM£ J t  

and z £ J f .  In fact, for any х £ Ж ,

X  =  x M +  z  xM£ J i \  z £  J t x

by 2.5.4.2 and

(Р л  +  Рж~РлРж)Х =  [ Р л + Р ж ( 1 ~ Р л ) ] Х  =  * Л  +  Рж2-
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2.10.4. A linear operator T  from one Hilbert space Ж  onto another Hilbert 
space Ж  is called an isomorphic or unitary operator if

(x\y) =  (Tx\Ty) х ,уС Ж у

so that a unitary operator ‘preserves’ the scalar product. This property can also 
be expressed by the connection between T and T*. We begin with the following.

2.10.4.1 Theorem. The following conditions for an operator T  mapping a 
Hilbert space Ж  onto another Hilbert space Ж  are equivalent:

(i) T  is isometric, i.e. || 7jc|| =  |[лг|| for every
(ii) T *T =E X (identity operator in Жх);

(iü) (Tx\Ty)=(x\y)\ х , у € Ж г.

Proof. It is easy to show that (iii)=>(ii) and (ii)=>-(i); for the remaining part of 
the proof, apply 2.9.1 (*).

We can now characterise the isomorphic operators as follows.

2.10.4.2 Theorem. The bounded linear operator U is an isomorphic or unitary 
operator if

U*Ux =  X  for every х£Ж х
and

UU*y  =  у  for every убЖ ,.

In other words, an isomorphic operator is an isometric operator mapping 
the Hilbert space Ж  onto Ж2.
Proof. It follows from the previous theorem that U is an isometry if the first 
equality is satisfied. If U is also onto, then there exists the inverse operator U ~ 1 
from Ж2 onto Ж  and

u* =  C/*([/t/-1) =  (U *U )U ~' =  U - 1

and this is exactly what the two equalities say.
Conversely, if

U* =  u - 1

then U is an isometric operator (isometry) mapping Ж. onto Ж2.

An important example of an isometric operator which is not an isomorphic 
operator is the forward shift Up, t> 0 in L2[0, °°] defined by

rrr . (0 if  t <  t

if

In fact, II Uzf\\ =  ||/|| for every /£ L 2[0, 2л] but Uz is not onto.
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2.11 Isomorphic Hilbert spaces and isomorphic operators

If there is a unitary operator from Жх onto Ж2ь then the Hilbert spaces Жх 
and are considered to be identical in a certain sense.

2.11.1. The Hilbert spaces Жх and Жг are called isomorphic or congruent if 
there exists a unitary operator U mapping Жх onto Жг.

Example 1. L2[0, 2n\ is isomorphic to l 2 via the Fourier series expansion. In 
fact,

is an isomorphic operator from La[0, 2n] onto l2 by Example 3 in §2.10.1.

Remark. If we take another complete orthonormal system in L2[0, 2л] (e.g. 
a suitably modified Walsh system) then, by 2.2.2.1, the operator sending 
/£ L 2[0, 2л] into the sequence of the new Fourier coefficients is also a congru­
ence operator from L2[0, 2л] onto l 2. Hence there may be many isomorphic 
operators between isomorphic Hilbert spaces (see also the proof of 2.11.1.1).

Example 2. It follows from Example 4 in § 2.1.2 that by the mapping

L f(z)  =  / ( e if)

Нд is congruent to the closed subspace of Ц  [0, 2k] consisting of elements in 
the form

of Жв (Example 5 in § 2.1.2). J i  is isomorphic to L2 [a, b] and D is an isomor­
phic operator. Let us define

in Жв \ Ж  is isomorphic to the two-dimensional geometric vector space via the 
isomorphic operator

' У - У т / л О е - ' “ * } к — 0, ±  1, ± 2 , ...

f  =  2  Ук<*Ш
k =  0

i.e. whose Fourier coefficients are zero for k< 0 .

Example 3. Consider the closed subspace

M  =  {у : y(a) =  y'(a ) =  0}

Ж  =  {у : D y =  0)

Ly  =  (k(«), / ( а ) ) .
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Example 4. The Fourier transform

F f =  f  eia,f ( t ) d t  (*)

is defined for every /£ L ( — +  °°) and Ff£C0 (where C0 is the class of
continuous functions tending to zero at infinity). Moreover, if / £ L2(— +  °°)
also, i.e. if / 6 L (—°°, +°°)П Ь 2(—°°, +°°), then

-f- oo 4* 00
/  f ( t )g ( t )d t  =  J  f(co)g(a>) dco

by classical but non-trivial theorems of harmonic analysis. Hence the Fourier 
transform F is an isometry from L(TL2 into C0(TL2, both with norm Ц . Ц2. 

Since L flL 2 is a dense subspace of L2, F can be defined for every /£ L 2
by

F f  := Hm Ffn
H-*-oo

where f n£ L flL 2 and lim/ „ = /  (obviously here the limit is understood in 
L2-norm). Thus the operator F is extended to the whole of L2(— °=, +°°) 
as an isometry; however, the formula (*) is not valid for every/ £ L2 (it is cer­
tainly valid for /„gL flL 2).

It can be proved that the extended operator F is not only an isometry but is 
also a unitary operator.

Remark 1. From a physical viewpoint, the domain and the range of the Fou­
rier transform are not considered as the subspace of the same Hilbert space 
L2(— <=°, +  °°). In most cases the independent variable of the functions in the 
domain space is a ‘time variable’ and that in the range space is ‘frequency’; 
however, from a pure-mathematical viewpoint we do not make this distinc­
tion.

Remark 2. It is very important in these examples that congruent Hilbert spaces, 
however, they may be considered equal from the Hilbert space point of view, 
could be very different. We can see this later also in § 3.3.

The most important theorem concerning isomorphic Hilbert spaces is the 
following.

2.11.1.1 Theorem. Every separable Hilbert space Ж  is congruent to the / 2- 
space.



2 The Geometry o f Hilbert Spaces 101

Proof. If {et} is a complete orthonormal sequence and x£ Ж  then, by 2.2.3.2.

oo

X  =  2  M e k ) e k -
k=1

The operator
Tx =  {(x\ek)}; к  =  1, 2, ... 

is an isometry and maps Ж  onto l 2. In fact,

M l2 =  2  l(* k )l2fc=i

by 2.2.2.1 (b) and, if k —l, 2, . ..}€ /2, then

k = 1

since

( 2  ^ | 2  W =  2
k =m  k — m k = m

i.e.

» =  1 .2 ,. . .jt=i

is a Cauchy sequence.

2.11.2. If ^  and Ж2 are isomorphic Hilbert spaces with isomorphic operator 
U then a natural problem is to find for a bounded linear operator T of Жх, 
an operator S  of Ж2 with the following property: S  sends Ux into UTx for 
every х а Ж х. Formally,

SUx =  UTx х ^ Ж .
Hence

U~XS U  =  T  and S  =  U T U -1 
or

U *SU  =  T  and S =  UTU* 

since U~1 =  U* by 2.10.4.2.
The bounded linear operator S  is called unitarily equivalent to T.
The mapping Г — UTU-1  preserves the main properties of T:

(i) S * = (U T U -1)*=(U TU *)*=U T*U * =  U T*U~1 (see § 2.10.1(ii));

(ii) S1S2=(U T1U~1)(UT2 и ~ 1)= Ц Т 1Тяи ~ 1;

(iii) aSt + ßS2 =  U(aT2+ ßT2) U - 1;

(iv) if Г -1 exists then S - 1= [U T U -1] - 1= U T - 1U~1.

Remark. The structure of the operator S  is shown in figure 2.10.
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------------г  У \
и ) Н

'Г /

fig. 2.10

Example 1. Let
Thf  h f  /£ L 2[0, 2n]

be the operator of multiplication by h£C[0, 2n] and consider the isomorphic 
operator

Ff = У г / л о « - “ 4 k =  0, ± 1 , ± 2 , . . .

from L2[0, 2n] onto l 2. Then Th is a bounded linear operator of L2[0, 2n\ and 
the operator in l2, unitary equivalent to Th, is

Sh{ck} =  { Z  dk„ncn} k =  0, ± 1 , ± 2 , . . .
П =  — oo

where ck is the sequence of the Fourier coefficients of/ and dk is the sequence of 
the Fourier coefficients of h. (Prove this!)

Example 2■ Let Th be the convolution operator

IT*/K 0  := f  h ( t -T )A T)dr / £ L 2(—  , + c o )

by И £ и (— +  °°). It can be proved that Th is a bounded linear operator of
L2(— oo, +oo).

If we consider the Fourier transform as an isomorphic operator (see Example 
4 in §2.11.1), then the multiplication operator

lSj](co) = fe L 2 ( - o o ,  + o o )

is unitary equivalent to the convolution operator Th since, by the Convolution 
Theorem of the Fourier transform,

F{h*f) =  FhFf
where

[h*f](t):= j  h(t—z)f{x) dr.

Example 3. Consider the multiplication operator

[T J ]{z )  =  zf(z)
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in H0 and consider the congruence operator L (see Example 2 in §2.11.1). 
Then the unitary equivalent operator is

where

s j =  i c t+1ei(“
k  =  О

/ =  i  сксш
k  =  О

i.e. Sz is a right-hand shift in the Fourier coefficients o f / .  (Prove this!)

*2 .12  The conjugate gradient method

Let Ж  be a real Hilbert space. In the following, we introduce a method for the 
solution of the equation

T x  =  b

where b € Ж  is a given vector and Г is a bounded strictly positive operator of 
Ж . It will be shown that x0 is the solution of the above equation if and only if

Q(x, x) := (Tx\x)-2(b\x)

takes its minimum at x0. Hence to seek the minimum of the functional Q(x, x) 
called a quadratic from, is the same as to solve the equation Tx=b.

2.12.1. If the operator T  has a positive lower bound m, i.e.

(Tx|x) >  m(x\x) m >  0

then T is 1-1 and hence the solution of the above equation is unique; moreover, 
Г is a strictly positive operator in this case and hence

(x\y)T := (Tx\y)

is a scalar product. Comparing the norm

IWir := Ш Т  =  № ) 1/2

with the original norm in Ж  we have

"j|W|2 <  (Tx\x) ■< ||21|W |2

and hence || . ||r is equivalent to || . ||. We conclude that if Жт is the scalar 
product space obtained from the scalar product ( .  | . )r then Жт is a Hilbert 
space consisting of the same elements as Ж  and a sequence {x„} is convergent 
in Ж  if and only if it is convergent in Жт with the same limit.
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Following these considerations we seek the solution of the equation in the 
form

*0 =  * i+  2  aj ej 
]=i

where {e,} is a suitable orthogonal system in Жт and hence

_ (*o-*ikj)r _ (Т(х0-хг)\е  ̂ _ (b-Tx^ej)
Ik,-Гг <Tej\ej) (Tejlej) ‘

This orthogonal series method is called the conjugate gradient method if ej\ 
j =  0 ,1 , 2, ... is constructed in a particular way, to be described in the next 
sections.

(*)

(**)

2.12.2. We begin with the formal description of the conjugate gradient method. 
If xk is the kth partial sum of a series in the form 2.12.1 (*) and

rk =  b —T xk к =  1,2, ...

i.e. rk is the error when the exact solution x0 is replaced by xk, then

since

and hence

rk+i =  rk-c tkTek k =  1 ,2 ,. . .

xk+i =  xk +  akek 

b ~ T x k+1 =  b - T x k-a.kTek.

(*)

Now {ek}; k =  1,2, ... and the sequence {xk}; k = 1 ,2 ,. . .  of the approxi­
mate solutions are constructed in the following way. If xk is considered as 
the first approximation of the solution, then the error is

/•, =  b —Txx

and e1= r 1. The next approximation is

x2 =  x1+oc1e1
where

(>iki)
1 (eilTeJ

and if the &th approximation xk is obtained, then the kth error is

rk =  b - T x k

and the next approximation is
(rk\ek)
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where

Remark. Observe that we do not assume in the description of the method that 
{ek}; k =  1,2, ... is an orthogonal system in Жт. We shall prove later that 
{ek}; к =  1,2, ... can also be obtained from {rk}; k =  1 ,2 , . . .  by the Gram- 
Schmidt process.

We shall show that xk tends to the solution x0 of the equation b —T x = 9  or, 
equivalently, rk-+0.

2.12.3. For the proof of the convergence we need some preliminary results. 
For n = l ,  2,

(*„+i k ) r  = (en+i\Te„) = (r.+1-  e\Te)  = 0- (*)

Moreover, from 2.12.2 (*),

(rn+i\e„) = (гяЮ -ая(Тея\ея) = 0 (**)
since

_ _ k k ) _
" (e.\Ten)

and Г is a positive operator.
If T  has a positive lower bound m and an upper bound M, then Г-1 has 

the lower bound 1/M and the upper bound l/m  (see §4.13.24-25); hence

M r- := {x\T~'x)

is also a norm in Ж , equivalent to the original norm. It follows that if

E(xn):=  ( r j r - V J

then E(xn) >  0 and if and only if E(xn)-+ 0.

2.12.4. It follows from straightforward calculations (see, for example, 2.14.53) 
that

E(x„)-E(xn+1) = ccn(rn\e„)
and, comparing the recursive formula for ek in 2.12.2 with 2.12.3 (**), we 
obtain

(rn\en) =  (rn\rn) (*)
and hence

E(xn)-E(xn+1) =  a„ ^ p r-'?rj  E(xn)

8 M áté

p — r (rk\Tek- i )  к — 2 3
k k f e - i l Тек. д  к ' г
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2.12.5. The conjugate gradient method is partly motivated by the endeavour 
to find the solution in the form of an orthogonal series in Жг  such that the 
successive errors {/•*; k —1 ,2 ,. . .}  are built into the partial sums {xk; 
k = l ,  2, ...}. Now we shall show some peculiar features of the conjugate 
gradient method in relation to this endeavour.

If rn =  6 for any n then xn is the exact solution and so is obtained in the 
form of a finite sum. We suppose in what follows that гп^ в  (и= 1 ,2 , ...).

or

It follows that E(x„)—0 if we prove

t .. (r„\r„)
' - “■ - V x F — -" '

since E(x„) >  0 by definition. In fact, from the recursive formula for ek in 
§ 2.12.2 and from 2.12.3 (*),

/  IT ч _ L  , (rn+1\Ten) _ , (rn+x\Ten) ^  'I(r„+i\Trn+1) \en+1+ e„Ten + 1+ (ej T e^  TenJ

=  f e +i l ^ n+i)+ y 2( e j r O  >  (<?„+1|7V„ + 1)

and hence, using (*), we obtain

(gnk) = Onk)
"  (rn\Trn) (r„\Trn) ■

On the other hand,
(r„k„) 1

(rn\Trn) "  M

since M  is an upper bound for T ; moreover, from the considerations in § 2.12.3,

— ( r ^  ii .  m
(rn\T 1rn)

Summing up,
Q„k„)

" W T - \ )  "  M
and hence

r .. ( л . к )  , m  ,
" w £ -V „ )  M
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2.12.5.1 Theorem. If г„т±6 for n—1 ,2 , . . . ,  then {rk\ k = \ , 2 ,  ...} are lin­
early independent and also

(r„\ej) =  0 for j  <  /7.

Proof. By immediate calculation, the theorem is valid for the pair t \ ,  r2. 
Let us suppose that it holds for rk; k —1,2, . . . , 7 7 ; then from 2.12.2 (*),

(rn+i\ej) =  (rn\e j ) -a n{T e \̂Cj) =  0

if j< n  and (/'„+i|e„) =  0 by 2.12.3 (**).
If rx, 7*2 , are linearly independent but this is not valid for i \ ,  r2, ... 

rn, Li+1 5 then
П

^ + 1  =  2  « л -k = 1

Multiplying both sides by ey, j = l ,  2, ..., 77 successively, we obtain a*=0; 
к = 1 ,2 , . . . ,  77 and hence rn+1=9.

If the Gram-Schmidt process is applied to {rk; k = \ ,  2, ...} (without 
normed!), then

We shall prove that by choosing {rki k =  1, 2, ...} as an infinite basis for the 
Gram-Schmidt process, ek is obtained in the simplest form:

(rk\Tej) =  Q> if j < k - 1

in (*) and hence ek is the same as in the algorithm in § 2.12.2.

Remark 1. There is another advantage of choosing {/ ,,}: in this case the error 
is measured during the evaluation of {ek}.

Remark 2. We conclude from the structure of the Gram-Schmidt process 
that (r„\ej) =  0 for j  <  n implying that (rn\r f  =  0 for j  <  77 

(prove this!).

2.12.5.2 Theorem. For j < k —\,

(rk\Tej) =  0.

Proof. It follows from 2.12.2 (*) that

(rJ+i\rk)  =  ( r j \ rk) - c t j ( T e j \ r k)

8*
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and hence if j < k —l then it follows from Remark 2 that

« i(Tej\rk) =  0.

If ccj =  0 then it also follows from 2.12.2 (*) that rj+1= r j  and, by induc­
tion, rn =  rj for « > /. But this implies rj =  в since rk-*0 by 2.12.4. Hence 
If r j7±0 ; j =  1 ,2 , . . . ,  then

(rk\Tej) =  (Tej\rk) =  0.

2.12.6. We shall show that x0 is the solution of the equation b —T x = 0  if 
and only if Q =  Q (x ,x)  takes its minimum at x0. In fact, for every fixed 
с£ Ж ,

(T (x —c)|x —с) =  (T x\x)—2(Tc\x) +  (Tc\c)

since is real and T =T *.  Comparing with Q(x, x), if we substitute b=Tc,  
we obtain

Q(x, x) =  (Т х - Ц Т - ^ Т х - Ь ^ - Щ Т - 'Ь ) .

It follows that the minimum value of Q is —(b\T~lb) since Г-1 is also a 
positive operator (see §4.13.24).

*2 .13  Construction of a separating hyperplane

The simplest case of classification of a finite set of data consisting of numbers, 
strings of numbers, functions etc is when the set is divided into only two classes: 

M :=the  set of ‘good’ elements;
^ := th e set of ‘wrong’ elements.
In this case the classification should be done by means of a function /  in 

such a way that / ( x ) > 0 if x£sd  and / ( x ) < 0 if In the next section
a Hilbert space model will be given for this type of classification.

2.13.1. Referring to § 2.5.2 a hyperplane 9* of a pre-Hilbert space Ж  passing 
through the origin в has the form

9  =  {y: (y\m) =  0} mdJZ.

In this section J l  is a one-dimensional subspace and Ж  is a real (pre-) Hilbert 
space.

The distance between a set 9  and x $ 9  in a pre-Hilbert space is defined as

d = l f y \\x ~y\\-

2.13.1.1 Theorem. If JZ is generated by a single vector z  with ||z|| =  1 then the
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distance of the hyperplane ST and x^ST is

d =  |(x|z)|.

Proof. In this case, ST is also a closed linear subspace of the pre-Hilbert space 
Ж  and hence, by 2.5.1.1, there exists y<fST, where ST is the completion of ST, 
such that

inf \\x-y\\ =  \ \ x - y 0\\yiST

and hence, by 2.4.1.3,

I I * - . V o l l 2  =  ( * - У о 1 * )
from which we have

-(т£лМ-
On the other hand, x —y<fSTL= J l LL—M  and Ж  is one dimensional; 
hence

r = ..
11*-л1

Remark. It turns out from the proof and especially from 2.14.20 that y {fS T  
if f t  is finite dimensional, i.e. there exists a projection in ST for every х £ Ж .

The pre-Hilbert space Ж  is divided into three parts by the hyperplane ST: 
{y: (y |z)>0}, called the positive halfspace of ST, {x: (x |z)<0), called the 
negative halfspace of ST and {y: (y |z)=0}, the hyperplane ST itself.

2.13.2. Let s f  and 3d be two finite subsets of Ж \  our task is to find г0£ Ж  
such that

(x|z0) > 0  if  x£.st  and (x|z0) < 0  if x£.38. (*)

The hyperplane ST0= { y :  (y|z0)= 0 }  is called a hyperplane separating s f  
and 3d. In what follows we suppose that there exists a separating hyperplane 
for s f  and 3d, and an algorithm will be given for the construction of this sepa­
rating hyperplane.

For each element x fs f \J S T  we construct in such a way that gk =  +1  
if xkSsT and £k=  — 1 if x fS S ,  and hence ST is a separating hyperplane for 
a sequence {xk; k = 1 ,2 , . . . }  belonging to f \ J 3 d  if and only if

Now let
£ k ( x k \ z )  >  0 .

STn =  { x :  (x|z0) =  0};
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if  there exists n such that c„(x„|z0)«:0 then is not separating and a correc­
tion is needed. In this case let

Zi =  z0 +  C„x„

and we consider the hyperplane (j’|z1)= 0}. Again, if f̂c(xfe|z1)> 0
for k —1,2, ... then <5̂  is a separating hyperplane; if not — i.e. there exists m 
such that <̂m(xm|z1)< 0  — then a correction is needed once more:

^2 =  +  4 W X m

and the trial will be continued by the hyperplane {y : (y|za)= 0}. The 
process is continued until s i and J 1 are separated by a hyperplane .У.

Thus the following algorithm is obtained: z„=6 and, after the /th correc­
tion,

z = { Zj if i «£ к (**)
k+l I Zj +  zkxk if Zk(xk\zj)*sO

Our main subject in this section is an estimation of the numbers of hyper­
planes Sfk (or the number of corrections, which is the same) needed for a 
separating hyperplane to be obtained in the algorithm.

2.13.2.1 Theorem. Let /  be a pre-Hilbert space and (xt ; k = \ ,  2, ..., N }  
a finite sequence of elements of Ж  divided into classes s i  and S3. If there 
exists a hyperplane Sf with separating s i  and 5% in the stronger sense

|(Xjt|z)| г» d  >  0 к — 1, 2, ..., N

then the algorithm (**) leads to a hyperplane separating s i  and S3 after a 
finite number o f  corrections. More particularly, if n is the number of correc­
tions then

n <  M 2/d 2
where

M  >  IIxj к — \ ,2 ,  ..., N.

Remark 1. On the basis of 2.13.1.1. the condition \{xk\z ) \> d > 0  means 
exactly that the subsets s i  and S3 have a positive distance.

Remark 2. The number of corrections is in an inverse ratio to d 2 and propor­
tional to M 2, but it does not depend on the number of elements s i  and S3.

Remark 3. In the most favourable case, when the separating hyperplane is 
given by the very first vector z0, we need N  scalar product tests to be assured 
that is separating. Hence in this theorem we have no information about the 
number of scalar product tests.
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Proof. After the nth correction,

=  2  &x\[
k = 1

where x'k is the &th element for which the scalar product test is negative, i.e.

Z'k(x'k \ z k- 0  <  0.
Hence

Nil2 = \\zn_1 + M 2 = Ъгя-Л' + ЫГ+Щ <\г.-д*'\*.-1\'+М'
since f'(x'|z„-i)«;0; more particularly,

II zk\\2 ^ M 2

N J a <  ||z1||, + M 2 < 2 M 2 (1)

N J 2 <  l|z„_1||, + M i «s пМ г.

On the other hand, if £P={y:  (y |z)=0} is a separating hyperplane with 
N1 =  1, then

IIzj >  0 Ф )  =  2  &(xi\z) =  2  \{x'k\z)\ >  nd. (2)
k=l k =1

Comparing (1) and (2), we have

nd*s II z„|| «s n1,2M
and hence

n =  M 2/d 2.

2.14 Problems and notes

o2.14.1. Find the condition for the Pythagorean law 

\\x+y\\2 =  \\x\\2+\\y\\2 х , у е ж
to be valid.

o2.14.2. Prove that if

ДО =  A  sin (t+CPi)
then

2l- j  f(t)g(t)dt =  RsA1A ^ i - ^ .

g(t) =  Az sin (t+(pz)

2.14.3. Prove, e.g. from the Cauchy inequality 2.1.2.1, that for every 

Nil =  sup {(x\z); NH =  1}.
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o2.14.4. Prove that for any scalar product space Ж,

(x]y) =  l ^  /  Hx + ei‘T ill 'd /.

о 2.14.5. Show that in any pre-Hilbert space Ж,

llx+yP+IU-yll2 = 2||*||2+2||y|l2 х,уеж.
Give a geometrical meaning to this equation, which is called the parallelo­
gram law.

2.14.6. Prove that if the parallelogram law holds in a normed space 33, then 
33 is a scalar product space, i.e. there is a scalar product in 33 such that

M  =  № ) 1/2.

2.14.7. If {x„} is a sequence in Ж  and lim x„ =  x  then it follows from 2.1.2.3 
that

(* .b O -(* b O  y e *

but the converse does not hold. For example, for any orthonormal sequence 
{iek} we have (e*|y) —0 for every у £ Ж ;  however, ||e j  =  1 and {et} is not 
a convergent sequence since

l k * + i - * J *  =  2
for any orthonormal {ek}.

2.14.8. The function f  shown in figure 2.11, is an example of /£ L 2(0, °°) 
that does not converge to zero at infinity.

fig. 2.11
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2.14.9. Show that if ek^0; k =  1,2, and

t e k )  =  0 * ^  k

for {ek; k = l ,  2, n) then these are linearly independent vectors.

02.14.10. Let {ek} be an orthonormal system in a Hilbert space Ж. Prove that 

2  ykek is convergent if and only if 2  lyd2< °°-
k = l  k = l

Is this true if Ж  is only a scalar product space?

02.14.11. Prove that if { a j  is a complete sequence and {ek} is the orthonormal 
system obtained from {ak} by the Gram-Schmidt process, then {ek} is also 
complete.

2.14.12. Let {efc(0 ; k —1 ,2 , . . . }  be an orthonormal system in the real 
L\[a, b]. Show that {ek} is complete if and only if

2  [ I  ek( t ) d t f  =  x - a  x£{a,b).
к— 1  a

2.14.13. Apply the Gram-Schmidt process to the sequence 1, z, z2, z", ... if

(/I  g) := f f  f ( z )g (z )  dx dy

in the linear space of functions analytic in the unit disc and continuous on 
{ z :  |z| =  l}.

2.14.14. Show that {(2/7r)1/2 sin Л:/; k =  1,2, ...} is a complete orthonormal 
system in L2[0, я].

2.14.15. If the Fourier coefficients {cfc} and {dk} of the continuous functions /  
and g, respectively, are very close to each other in the sense

2  k - 4 1 2 <  e
k =-oo

then
< 2n

I  \ A t ) - g ( t ) \ * d t ^ e .

However, from the Fourier coefficients we cannot say anything about the mag­
nitude of | / ( 0 - g ( 0 l ;  te[o, 2n].
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2.14.16. Show that the matrices H^, defined for N = 2 k; k =  1 ,2 , . . .  in 
§2.3.3 have an inverse. What is H ^1?

2.14.17. Show that the step functions wj* defined in § 2.3.3 are Walsh func­
tions.

2.14.18. In §2.4.1.4 we found a formula for the projection of х ^ Ж  onto 
JÍ  in the case of finite-dimensional JÍ. Give a formula for the projection if 
J t  is a separable subspace of a Hilbert space Ж .

2.14.19. If J t  is a complete linear subspace, then J t ± ± : = (J t1)x = J ( .  In 
fact, it is obvious that JCEzJt1-1-. Now let у  be an element of J l LL such that 
y$_Jt and let y p be the projection of у  onto J t \  then у —у р£ЖМ by the 
projection theorem and hence y —y ^ J t 1- С\Ж±А-. But J t 1- ClJt11  — {0}.

Find J Í 1-1- in the case where J t  is neither complete nor linear.

2.14.20. Let J t  be a complete subspace of a scalar product space Ж  and 
x0$Jt.  Prove the following generalisation of 2.13.1.1:

min {||.v0—ш||; m ^ J t)  =  max {(x0|y); y ^ J t 1 , ||y|| =  1}.

2.14.21. Find the orthogonal complement in L2[0, 1] of the following sets:
(a) the polynomials in x;
(b) the polynomials in x2;
(c) the polynomials with the sum of coefficients equal to zero. 

o2.14.22. Let
i

J t  =  [z:  f  z(t) dt =  0; z<EL?[0, 1]}
S

where sd (0,1) is a fixed value depending on z. Show that J t 1- =  {0}.

2.14.23. Prove that the orthogonal complement of {e2’11"'; и=0,  ±1 ,  ± 2 ,  ...} 
in L2[n, b] is

(a) {0} if \b — a|*c 1;

(b) Not {6} if  \b — a | > l .

o2.14.24. Prove that (ЛВ)“1— B~1A ~ 1, where A, B, A_1, are bounded
linear operators of Ж.

2.14.25. If Ж  is a Hilbert space and J t  is a closed linear subspace of Ж  then
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there exists JfczM 1 such that Is this true for any scalar product
space?

o2.14.26. Find the polynomial P„ of nth degree such that, for a given 
x € L 2[0, 1],

/  \x ( t ) - P n(0\2dt 
0

is minimal. (First solve the problem for n = 2 and x ( / )=s in  2л/.)

2.14.27. For a fixed integer n,

[1 if k/n *sz t <  (k + l) /n
Ck 1 lo  elsewhere.

Show that {ek} is a non-complete orthogonal system in L2[0 ,1] and find the 
best approximation of x£L 2[0, 1] in the form

2  &**(«•k = 0

2.14.28. Find the polynomial of the form

P„(t) =  /'4-a„_1/n_1 +  ... +  a1/ + a 0

in [—1, +1] with minimal square integral.

2.14.29. As we saw in § 2.8, the proof of the Riesz-Fréchet Theorem for non- 
separable Ж  is based on 2.5.4.2. We shall now show that we can deduce
2.5.4.2 from the Riesz-Fréchet Theorem.

In fact, for any х()£Ж , f(m )=(m \x0); m £ J t  is a continuous linear func­
tional of a closed linear subspace J l.  Consider J l  as a Hilbert space by itself 
and supposing the Riesz-Fréchet Theorem to be valid; then there is a unique 
m ^ J l  such that

(m|m0) -  (m|x0) m £ J t  

and hence x0— and

(x„ — m0) +  m0

is the orthogonal direct sum J41 ® JÍ  decomposition of x0.

2.14.30. Find x = x ( t )  among the functions

К /  x(t)át= 1—f}
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such that the integral
i t

j  j  ( t—r)2x(x)x(t) dr d/ 
о о

is minimal.

2.14.31. Let {x„} be an infinite sequence of real numbers such that

Í  *!!=<-■
11=1

Show that there exists an infinite sequence {a,,} of real numbers with

2  Я* = 1
such that

2  akx k 
k =  l

does not converge.

2.14.32. We have the following generalisation of the previous observation. 
For every infinite sequence {x„} of a Hilbert space Ж  with

i  I K I I 2 = -n=1
there exists {a„} with

Z K ! ! 2 « -П = 1
such that

2  Ы х к)*=1
does not converge.

o2.14.33. Prove that if а„,Ъп£Ж  for и =  1, 2, ... and

k = l  n = l
then

2  (<*«Юn = 1
is a convergent series, 

о 2.14.34. Prove that

W j ) =  j { l k + ^ l l 2- | k - y | | 2+ i||x + iy ||2- i | | x - i y | | 2}
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and in particular, in a real Hilbert space,

(x\y) = j  {||^+7ll2- |k - j l l 2}-

2.14.35. Prove that a bounded bilinear functional is continuous in the follow­
ing sense. If and y n-~y then cp(x„, y n)-»(p(x, y).

02.14.36. Let Жх, Ж2 be separable Hilbert spaces and let U be a linear opera­
tor from Жх onto Ж . Prove that the operator U is an isomorphic operator if 
and only if for any orthonormal system {ek} in Жх, {Uek} is an orthonormal 
system in Ж2.

02.14.37. Prove that for every bounded linear operator Г, self-adjoint opera­
tors A and В can be found such that

T =  A+iB .

2.14.38. Let Г be a positive operator. Is it true that

\(Tx\y)\* <  (Tx\x)(Ty\y)2

What about the projection principle, if the scalar product is replaced by 
(х|у)г :=(71х|у)?

2.14.39. If the equation
T x  =  b (*)

has no solution in a pre-Hilbert space Ж, then x0€ Ж  satisfying 

||h—7*0|| =  inf{||fe—7Ж[|; х£ Ж )

is called a generalised solution of the equation. Notice that x0 is a generalised 
solution if and only if the quadratic form

(T*Tx\x)-(x \T*b)-(T*b\x)+(b\b)

has a (relative) minimum in x0, since this expression is equal to \\b—Tx\\2. 
(Compare with 2.12.6.) Moreover, by 2.4.1.3, x0 is a generalised solution if 
and only if

( b - T x 0\Tz) =  0

for every г £ Ж  and hence, if the inverse operator (T*T)~X exists,

Xq =  {T*T)~1T*b.

If the generalised solution is unique, then the operator T~ defined by T~ b —x0,
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i.e. the operator that maps Ьа_Ж into the generalised solution of (*), is 
called the generalised inverse of T.

It follows from the above considerations that if (Т*Т)~г exists then 
Г " = (Г * Г )-1Г*. (Compare with 2.6.2.)

2.14.40. Considering a bilinear functional as a generalisation of the scalar 
product, as was established at the beginning of § 2.9, formulate the analogue 
of 2.4.1.3 for any bilinear functional cp.

What are the conditions for cp for 2.4.1.3 to be valid if the scalar product is 
replaced by cpl

o2.14.41. Let T  be a positive operator and let y t; z '= l,2 , ..., n be linearly 
independent vectors of a pre-Hilbert space Ж. Find х0£Ж‘ that satisfies the 
following conditions:

(i) (х0\уд =  т / =  1 , 2 , . . . , «

where t]t; / = 1 , 2 ,  . . . ,«  are given;
(ii) the quadratic functional x^(Tx\x)  is minimal if x = x 0.

Show that if the inverse T~x exists then a solution of this problem is

n

*<> =  2  £ к У к
k = 1

where {cfe; k = \ ,  2, n] is the solution of the following system of linear 
equations:

2  £ к ( У к \ Т у д  =  4 i  1 =  1,2, . . . ,«.i = l

2.14.42. If the linear space generated by £Е^Ж  is dense in Ж,  then from

(x0|z) =  0 for every (*)

it follows that х0= в .  In fact, in this case there is a sequence {z„}; « = 1 , 2 ,  .... 
of linear combinations of elements of 6? such that z„-+x0; moreover,

(x0\zn) =  0 и =  1 ,2 , . . . .
Hence

(*ol*o) = 0.
Prove (e.g. from 2.5.4.2) the following converse statement: If from (*) it 

follows that xo—0, then the linear space generated by f f  is dense in Ж .

o2.14.43. Prove that A ^ B  implies ЦЛЦ«: [jß]i for the self-adjoint operators 
A and B.
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о 2.14.44. Prove that projection operators are positive.

2.14.45. Let Pk\ k = l , 2 , . . . , n  be projection operators such that 

PiPj =  0 if i j  and 2  Pk — E
k = l

where E  is the identity operator. What can be said about the subspaces 

J lk =  РкЖ  := {Pkx; x(L3P}l

о 2.14.46. Let PM and Pr  be the projection operators onto J l  and Jf, respec­
tively, and J n / = { 9 ) .  Show that РМЛ-РЖ is also a projection. If

P  — P j i + P jt

then find the closed linear subspace C/f such that P=P>r-

2.14.47. Let {<?„}; n = 1 ,2 , . . .  and {il/„); n = 1 ,2 , . . .  be complete orthonor- 
med systems in L2[a, b\. Then

ekn(U P) ■= <PkO)Ф«(*) k ,n  =  1, 2, ...

form a complete orthonormal system in the La-space of functions of two vari­
ables with scalar product

(f\g)'= I  J f(t,x)g{t,x)dtdz.
a  a

2.14.48. (a) Prove that

TT*  s. 0 and T*T  >  0 

for any bounded linear T.
(b) Prove that if TT* and T*T  have a lower bound 0, then T has a 

bounded inverse Г-1 . (Compare with 2.14.39.)

2.14.49. If T * T has no positive lower bound then there exists {x„}: n = 1 ,2 , . . .  
such that

\\xn\\ -  1 and (T*Txn\x„) -  0.

In this case there is no bounded inverse T~l since if we suppose that bounded 
T~1 exists, then

Ш  =  WT-'TxJ  <  l|7T_1|| ||Tx„||.
Moreover,

\\Тх„Г =  (Txn\Txn) =  (T*Txn\xn). 

Hence our supposition led to a contradiction.
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2.14.50. Prove (e.g. by applying 2.11.1.1) that every two separable Hilbert 
spaces Жх and Ж2 are isomorphic.

2.14.51. Show that the orthogonal direct sum decomposition

Ж  3  J t  =  0  JTti=l
is unique. (See 2.5.4.1.)

2.14.52. Show that the functions at(t); i = 0, 1,2, ...,1V of Example 2 in 
§ 2.4.1 form a basis in the linear space L of functions which plot as a broken 
line with nodes only at {tt; i = l ,  2, ..., N).

More precisely, f£  L if and only i f / i s  continuous and, in each of the inter­
vals, (ii+i, q); /=0 ,  1, ..., IV—1 is a polynomial of first degree.

2.14.53. The calculation that led to the formula

E(x„)-E(xn+1) = ctn(rn\en)

in §2.12.4 is as follows.

(rn+1\T ^ rn+1) =  (rn-otnTenlT-Hrn- « nTen))
=  (G IT - 1 r„) +  al (Ten I en) -  a„ (Ten \T~1rn) - a n (rn | en)

and hence

E ( x „ ) - E ( x n + 1) =  (/■и|Г -1гл) - ( г в+1|Г_1гв+1)

=  <x„(ra\e^ +  txa(Te„\T-1r„)-c^(TeK\ea)

=  (en\r„) +  [{en\rn) -  a„ (Ten\en)]

since 0 and Ж  is a real Hilbert space. Moreover,

<*п(Тея\еа) =  (г„Ю-

2.14.54. Prove that every Gram matrix is positive definite in the sense that if 
aik; i, к —1, 2, ..., n are the elements of the matrix then

n n
2  2  aikx i*k  >  оi=1 k = 1

for every «-tuple {x,}; i = l , 2 ,  . . . ,«  of complex numbers.
Is the converse statement also true? Is it true that every positive definite 

matrix is a Gram matrix?

2.14.55. The Gram-Schmidt process can also be considered as a particular
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case of the projection principle. If we choose yk; k = \ ,  2, n such that

П — 1
o . -  2  Ук*иfc=l

is orthogonal to the vectors ek; k = l ,  2, n— 1, then

n—1 

k= 1
is the projection of a„ onto the subspace generated by {ek; к — 1, 2, n— 1}.

2.14.56. Can it be proved that

sup {|<pO,y)|; \\x \\ ^  1, \\y\\ s l }  =  sup [cp (z ,z);  ||z|| ^  1} 

for a symmetric q>2 (For example, another proof for 2.10.2.2 using 2.9.1.1.)

9 M áté
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Reproducing Kernel Hilbert Spaces

We have shown in § 2.11 that every separable Hilbert space is isomorphic to 
the l 2 space, so that they may be considered as the same from a Hilbert space 
point of view; however, they could be very different. In this chapter we shall 
study Hilbert spaces of certain functions that also have interesting function 
theoretic properties.

3.1 Hilbert space and kernel

3.1.1. In a linear space В of complex or real-valued functions on a set 3t, for 
every t£3i we have the linear functional

called the evaluation functional.
In many important Hilbert spaces of functions the evaluation functionals 

are continuous, but there are also important ones with non-continuous evalu­
ation functionals. For example, the elements {xt ; k = 1,2 , . . . }  of the 
/ 2-space are usually considered as functions on the positive integers and it is 
obvious that

w < ( i w r .
1 =  1

/  -  №  №

Hence the evaluation functionals in / 2 are continuous. 
Consider the functions /„= /„(/):

n (t — f0) +  и1/2 
/» (0  =  - n ( t - t 0) +  n1/2 

0

if te(t0- i / n ,  t0] 
if t£(t0, t 0+ l/n )  
if t i ( t 0- l / n ,  t0+l/ri).

It turns out that

fnOo) =  n and J  | /„(0|2d i < 3
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and hence the evaluation functionals are unbounded (i.e. they are not con­
tinuous) in Ц ( — + ” ).

Consider the functions in L2( -  °°, +  °°) with a ‘band-limited spectrum’, i.e. 
the functions / £ L2(— +°°) in the form

/ ( 0 = 2 ^  /  ei<0'F(cü)do» (*)
— A

where F £ U ( —A, +A).  By the Cauchy-Schwarz inequality,

Г н 1/2( / V ( « ) p dco)i/2
- A  - A

and hence, by Example 4 of §2.11.1,

1/(01 «= o / i . .

This means that in the subspace of L2( — +°°) consisting of functions, of 
the form (#) ,  the evaluation functionals are bounded by 1 and hence are con­
tinuous.

A Hilbert space Ж  of functions with continuous evaluation functionals 
will be called a reproducing kernel Hilbert space.

3.1.2. In a Hilbert space (and also in any normed space) of functions the 
pointwise convergence can be expressed by the continuity of the evaluation 
functionals. More precisely, the following are equivalent for a normed space 
В of functions.

(i) If /„ , fZB  and II/,—/II-*-0 then

/„ (0  - / ( 0  for every t£®.

(ii) The evaluation functionals are continuous.
(iii) For every t^Si there exists Kt> 0 such that

1/(01 «= W I I  Я В .

Considering 1.4.1.5, the proof of (i)ч=>-(ii)-<=► (iii) is easy.

3.1.2.1 Definition. A Hilbert space Ж  is called a reproducing kernel Hilbert 
space ( rk h s) if the following conditions are satisfied:

(a) the elements of Ж  are (complex or real-valued) functions defined on 
any set

(b) for every t(A2 there exists / / > 0  such that

|/(0| c  K,\\f\\ f t* .
9*
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The elements o f  an r k h s  are also denoted by / (  . ) , £ ( • ) ,  •••, indicating that 
the elements are functions, whereas f ( t ) is the value of / ( . ) at t£S>.

In an r k h s  Ж , for every t^S) there is a function R ( . ,  1)аЖ  such that

m  =  ( л . m  •, о) к *  (*)

by the Riesz Representation Theorem (2.8.1.1) and hence the evaluation func­
tionals are determined by the function R =  R{s, t) on Q)X3>, called the 
kernel of  the r k h s  Ж \  (*) is sometimes called the reproducing property o f  R.

3.1.2.2 Definition. The (complex or real-valued) function R = R (s ,  t ) on 
S>X2> is called symmetric if

R(t, s) =  R(s, t)

and positive definite if for any finite set { s f tS ;  i —1,2, ...} and complex 
numbers A{ ( / = 1 , 2 , . . . ,  n),

2  >  0 .
U  = 1

3.1.2.3 Theorem. The kernel R =  R(s, t) of an rkhs is a symmetric and 
positive definite function.
Proof. If f ( . )  =  R ( . , s) in the formula (*), then we obtain

R (t,s )  =  (R ( . , s ) \R ( . , t ) )
and hence

R&T) = (R( . , t ) \R( . ,s))  =  (R(., s)\R( ., 0) = R(t, s). 

Considering

2  h R ( - ,  sk)fc=i
we have

0 <  II2  W ;  ^ )||2 =  ( 1 W J,)| 2  *jR(  ■, Sj))
k = l  i=X j= l

=  2 2  W j R ^ S j )  
i=lj=l

and hence the kernel R is positive definite. We recall that a normed space is 
generated by a subset J Í  i f  the linear combinations o f  elements o f  M  are dense 
in the normed space.

3.1.2.4 Theorem. The r k h s  Ж  with kernel R is generated by {R( . ,  t ); t£3>}.
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Proof. If for every ( / (  . ) 17?(. ,  /)) =  0, then it follows from the repro­
ducing property (*) that f = 6 .  Hence the theorem follows from 2.14.42.

We have now arrived at the first serious problem of the r k h s  theory. Is 
every symmetric positive definite R —R(s, t) the kernel of an r k h s ?

3.1.2.5 Theorem. For every symmetric positive definite R =  R(s, t) there is a 
unique RKHS with kernel R.
Proof. First we consider the linear space generated by { /?( . ,  t);
If we define

( Я ( . , 5 ) | Д ( . , 0 ) : =  R(t,s)  
and

m n m n
{ Z  VjR(-’ t j ) \ Z* i R ( ;  h))■= Z  Z  iUjZiROt, tj)

j = l  i =  1 У = 1  i  =  1

then the axioms of the scalar product and the reproducing property (* )  are 
satisfied. The only non-trivial part of this assertion is that

( i w , o | i w , o ) )  = o
;=i j =i

implies

Z  A-kRO’ h) = &t=i

for every t£3). Indeed,

Z W , t k) = { Z W ; t k) \R(- , t ) )
k = 1 f c = l

and, applying the Cauchy-Schwarz inequality (by 2.9.2),

КZ  W •, h)\R ( ■, 0)|2 c  ( Z  W 0 |Z  W •. - 01*0,0)
k = 1 / = 1  j = 1

the non-trivial part of the first assertion is also obtained.
Secondly we consider the completion Ж с of this pre-Hilbert space Ж . 

What we have to prove is that Ж 'c is an r k h s .

Let {x„} be a Cauchy sequence in Ж ;  then {x„(0}, for every is also
a Cauchy sequence since

x„(t) =  (x„\R(., t)).

If х £ Ж с, lim x„= x  and lim x„(t)=x(t) ,  then

(x|Ä(.,  /)) =  lim (x„\R(., 0) =  x(t)

and the correspondence x-*x(t)  is 1-1. We conclude that the linear space of
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fu n c t io n s  {x(t ) ;  t^Qj) th u s  o b ta in e d  is  a n  r k h s  w ith  th e  sc a la r  p r o d u c t

(*( • M  •)) =  lim (*„( ■ )1У„( •))
and kernel R = R (s ,  t).

To summarise: for every r k h s  the evaluation functionals are determined 
by the kernel R, which is a symmetric, positive definite function, and for every 
symmetric and positive definite R there is a unique r k h s  with evaluation 
functionals represented by { R ( . , t ) ‘, t£3}- The r k h s  belonging to the kernel 
R is denoted by Ж (R).

3.1.3. Some consequences of the foregoing theorems are as follows.

3.1.3.1 Proposition.

цд(.,0112 =  ( я ( . , 0 1 Я ( . , 0 )  =  R(t, t) 

l*(OI< 11Я(->№11 =  {R(t, 0)1/2M .

In particular, for any pair x „ ( .),  xm( . )£Ж(Я),

|x „ (i)-x m(OI <  (R(t, t ) r \ \ x n- x m\\.

Based on Proposition 3.1.3.1, we have the following connections between 
the kernel R and the elements of Ж  (R).

3.1.3.2 Corollary. If R(t, t) is a bounded function, then every x ( . )£Ж (К)  
is also bounded.

3.1.3.3 Corollary. If R(t, t ) is bounded on a subset ’З'Чк О  and {x„} is con­
vergent in Ж  (R), then {x„(. )}  is uniformly convergent on Я)', i.e. in this 
case the uniform convergence is implied by the norm convergence.

3.1.3.4 Theorem. If Qí=R" and R(t, s) is continuous then every x ( . )£Ж (Р )  
is a continuous function.
Proof. If x ( . )  is a linear combination of functions R {. , t ) \  HQ) then there 
is nothing to prove. Otherwise x  is the limit of such functions. R(t, t ) is bound­
ed on every bounded subset of R"; hence the uniform convergence on every 
bounded subset of R” is implied by the convergence in Ж  (R) by Corollary
3.1.3.3. Hence x = x (  ■) is the uniform limit of continuous functions on every 
bounded subset and so it is also continuous.

It is also important that, in most cases, an r k h s  is a separable Hilbert space.

3.1.3.5 Theorem. If @c r " an(] p  is a continuous function, then Ж(К)  is 
separable.
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Proof. In this case Ж{К)  is generated by the countable subset {R ( . ,  t); 
with rational coordinates.

Example 1. The elements of the Hilbert space P  are sequences, i.e. functions 
defined on the natural numbers, and

W*)l2 := Ix*l2 < 2  l**l2 = M l к = 1,2......
k = l

Hence it is obvious that P  is an rkhs. The kernel is

Í1 if m =  nR(m, n) =  \ ,c10 if  m n.

We shall see that P  is uninteresting as an rkhs.

Remark. L2 [a, b] is not an rkhs, as we have seen in 3.1.1. The rkhs property 
is not invariant for Hilbert space isomorphisms.

Example 2. Let STn be the linear space of trigonometric polynomials of degree n 
considered as а (2и + 1/dimensional (and hence closed) subspace of 
L2[—n, +7t]. In this case,

II 2  У *е Ш | |2 =  -X— J  Z  Ук̂ Ш Z  Vme _ i m t d i  =  Z  Ы 2
к = —п ^  _ n k — —n m = —n k = —n

and, applying the Cauchy-Schwarz inequality

I z  У * е ‘* | 2 « ;  2  Ы 2 Z  | e iW| 2 =  ( 2 n + 1)  2  Ы 2
k ——n k = —n k ——n k =  —n

we obtain

I 2  V*e i l “ | ( 2 n + l ) 1 / 2 | |  2  У * е ш ||
k = —n k — —n

i.e. each of the evaluation functionals is bounded by (2n +  l)1/2.

Remark. Although L2[—n, +7t] is not an rkhs, the closed linear subspace 
£T„ of L2[—я, +7t] is.

Example 3. The linear space of functions represented in the form of a finite 
Fourier transform

/ (0=2 J  I  e“*F(co)da>
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is also considered as a closed subspace LA of an L2-space. It is, in fact, a closed 
subspace of L2(— °°, +°°). If A is a fixed number, F£L2[—A, +A],  then it 
is known from Fourier transform theory that

/  | / (0 l2d i =  f A |F(co)|2dco. (*)
- ■ »  - A

It is easy to prove that the elements of LA are continuous functions (this will 
also be done by an r k h s  method in § 3.3), and

1/(01 = i  I /  е,"*вдН
— А

(
л + А  \ 1 / 2  /  i  + А  \ ! / 2

—  /  |eim‘|2dcoJ /  |F(a>)|2d<öJ = |1Л1-

Hence, bearing in mind expression (*), the evaluation functionals in LA are 
bounded.

Example 4. Let us consider the linear space {/: / '£ L 2[0, 1]}, i.e. the linear 
space Жв of (completely continuous) functions on [0, 1] with derivatives in 
L2[0, 1]. It is easy to show that

(f\g)--= f ( o ) W ) + f  П О Т Т О В  (*)
0

is a scalar product for these functions and clearly

/ M = / ( 0 ) +  I  f \ t )  át.
0

It follows that if

d . .  Í1 for t c  s .
g‘ : d7 gs(0 “  lO elsewhere gs°  ~  1

then for j^[0, 1],
(f \g .)  = f ( s ) .

It is known that Жв with the scalar product (*) is complete (as will be shown 
by an RKHS method in § 3.3), and hence Ж 0 is an rkhs. It is easy to verify that 
the kernel is given by

R(s, t) =  gs(t) =  1 +m in(j, i)
where

. . .  fi if  s  >  t
mm (s, 0  =  1Ly if  t.
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Remark. A Hilbert space ddD can also be constructed in a similar way for 
more general linear differential operators D. (See e.g. Example 5 in §2.1.2.) 
All of these Hilbert spaces, called Sobolev spaces, are r k h s .

Example 5. The important property of H2-spaces shown in Example 4 of 
§2.1.2 implies that the H2-space is an r k h s . It follows from 2.6.3 that th e  

kernel is

R(s, t) =
1

1 — is

where t, s are complex variables; this is called the Szegő kernel.

Example 6. If 2> is the open unit disc in the complex plane, i.e. 3)=  {z: \z\ <  1}, 
and A { ß )  is the linear space of functions analytic in Q> and satisfying the 
condition

2it 1
/  /  \ /( /ъ1Г)\* r ár dt  <0° о  о

where the integral is to be understood as

2 n  R

lim J  j  \f(re{t)\2r dr dt R ~ 1 _ 0 o  о
then A{3>) is a Hilbert space with the scalar product

2 к 1 _____
( f \g ) :=  j  j  f {rcu)g(r&lt) r d r d t  f ,  g£ A(2>).

0 0 
If

/  =  2  akz* and g =  2  bkzkk = 0 k=*0

then by a straightforward calculation,

(f \g )  =  n 2 ~ r ank-  (* )„ = о  n + 1
Moreover, f £ A ( ß )  if and only if an =  (и +1 )1/2c„ with c„£l2.

(We shall not go into the detailed proof of these assertions.)
It will be shown that A { 2 )  is an r k h s  by constructing the kernel. If the 

kernel R(z, £) exists, then the function R( . ,  z0) depending on the parameter z0 
has the form

R(z, Zq) =  Z  bk(z0)zk
k =  0
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and by (*),

( /( • ) |Я( . ,  z0)) =  я 2  —j -г- anb„(z0). (** )

On the other hand,

(/(•)|Д(-> *0)) =  / ( z 0) =  2  апА- (***)ii = 0

Comparing (**) and (***), we have

71 n + l ' b" ^  Z"° « =  0 , 1 , 2 , . . . .

We conclude that

b„(z0) =  — (n+l)zg n =  0, 1,2, ...
71

and so

R{z, z0) =  — 2  (k +  \ ) zn0znя k=0

which can easily be verified.
It follows from the identity

2 ( k  +  l )qk =  1 for \ q \ < \
k=0 \L~4)

that R ( . ,  z„)€ A(3>) and

R(z, Zq) =  — —— !— г 
л (1 - Z 0 z ) 2

which is called the Bergman kernel.

3.2 Kernels in the form of an infinite series

3.2.1. The construction of a kernel for a Hilbert space is a direct demonstra­
tion that the Hilbert space is an rkhs; moreover, the kernel gives the major 
information about the Hilbert space. In the previous section ad hoc methods 
were used for the construction of kernels or we did not find a kernel at all, 
as was the case in Examples 2 and 3.

In this section a general method will be given for the construction of ker­
nels in the form of an infinite series. This is the oldest method; a modern 
approach for constructing the rkhs, the kernel and the scalar product si­
multaneously, will be the subject of the next section.
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3.2.1.1 Theorem. If {ek( . );  k = 1, 2, ...} is a complete orthonormal sequence 
in the separable space then the kernel has the form

R(s, t ) =  2  ek(s)ek(t). (*)
fc =1

Proof. The series expansion of R ( . ,  /) is

R ( . , t ) =  Z ( R ( . , t ) \ e k(.))ek( .)
k =  1

and (*) follows from

(.R ( O k t ( O )  =  Ы - ) | Л ( . , 0 )  =  Ш -

Remark. Setting s = t  in (*) we obtain

2  kfc(0la <o°
k =  1

for any orthonormal sequence {ek; к = 1,2, . . . }  in an r k h s .

Example 1. It is easy to verify that

ek(z) =  - ^ ( k + i y l ^

is a complete orthonormal sequence in A (£2). Hence the kernel is

=  ^  2 ( k + l ) ( z &
n 4  =  0

in accordance with Example 6 in §3.1.3.

Example 2. By Example 4 in § 2.2.1 the sequence [zk; k =  1 ,2 , . . . }  is a com­
plete orthonormal system in H .̂ Hence the kernel is

R ( ^ ,z )=  %
4 =  0 Cz

in accordance with Example 5 in § 3.1.3.

Example 3. In the linear space STn of trigonometric polynomials of nth degree, 
considered as a closed subspace of L2[—n, +7t], the sequence {elkt; k = 0, 
± 1 , ..., ±n }  is complete and orthonormal. Hence

R(s, t) =  2  eikse~ikt =  2  eit(s_,)
k =  —n k*=—n
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is the kernel of 2Tn. The sum of the right-sided geometrical series

+„ sin ( « + - ) ( , —г)
у  ,,!*(*-0 _  v zy______

S i n  ± ( s - t )

is called the Fejér kernel.

3.2.2. If {ak(t); к  =  1, 2, ..., КПЗ) is a sequence of functions such that

2  k (0 1 2
k =  1

f o r  e v e r y  t£3>,  t h e n  a n  r k h s  c a n  b e  c o n s t r u c t e d  f r o m  t h i s  s e q u e n c e .

3.2.2.1 Theorem. If

2  k ( 0 l 2fc=i

then the linear space Ж  generated by the set

{ Z c kak(.); Z \ c k\2 <=°}
fc=l k = 1

is an rkhs with the kernel

t) =  2  ak(s)aJJ)
k =  1

and with the scalar product

( f \ g ) - =  Z akh
k = 1

where

f ( - )  =  Z  ckak( .)  and g( . )  =  Z  bkak(.).
k = 1 fc=l

Moreover, {а*(. );  k —1 ,2 , . . . }  is a complete orthonormal sequence in 3f(R).  
Proof. If

Z  k*l2
k =  l

Z
k=1

then the series
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is convergent for every t£3) since

| i w o | 2 <  2  Ы 2 2  k (O I2
k=m k=m k=m

via the Cauchy-Schwarz inequality.
Let us now consider the linear space Ж  of the functions in the form of 

(pointwise convergent) infinite series

2 c kak(.) 2 \ ck\2^°°-
k = 1 k = 1

If the scalar product of

/ ( • )  =  2  ckak( .)  and g ( . )  =  2  M * (0
fc=i it=i

is defined as

( / I g) ■= 2 ckbkk = 1

then a Hilbert space is obtained since the mapping

CO

{C*} "*■ 2  Ckak(-) k=1

is a Hilbert space isomorphism from / 2 onto Ж  in this case. Moreover, 
R ( . ,  1)£Ж  and

(Д .) |Д ( .,  0) =  2  W k(t)  = / ( 0  л=1
for every / £ Ж .

3.3 A modern approach to the rkhs model

3.3.1. Let Ж  be a Hilbert space, 3: a set and h=h {t)  a mapping from 3  
into Ж.  A method will be shown for the construction of an r k h s  isomorphic 
with the closed subspace Жх of Ж  generated by {h(t); t£ 3 } .

3.3.1.1 Definition. For х^Жх, the function

m - =  (x\h(t))

is called the Loéve transform of x.
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3.3.1.2 Theorem. The Loéve transforms form an r k h s  w i t h  kernel

R(s, t) =  (h(t)\h(s)) s, t£Q).

Moreover, Ж(К)  is isomorphic with Жх.
Proof. R(s, t) is symmetric since

R(s, t) := (h(t)\h(s)) =  ( Щ )  =  W ü s ) .

R(s, t) is positive definite since

2  W j R ( t i , t j ) : =  2  ЯДj(h(tj)\h(td)
U=1 i,j = i

= { 2 W d \ 2 W t j ) ) > o
i =  l  J = 1

for any finite i = \ , 2 ,  . . . ,n }  and complex numbers {Я;; i = l ,2 ,  ...}.
If x = h ( t0), then x (t)= (h ( t0)\h(t))=R(t, t0) and for x = h ( s 1), y = h ( s a),

Ш  =  ( A ( j i ) | A ( j J )  =  sd  : =  ( Ä ( . , * ) | Ä ( . ,  j O )

by the reproducing property 3.1.2 ( * )  of the kernel.
Жх is generated by {/i(t); t£3>} and Ж (R) by { R ( . , t); id®}. Thus by 

the above considerations we have proved that Жх and Ж  (R) are isomorphic 
Hilbert spaces.

Example 1. For any finite interval [—A, +A]  let us consider the subspace of 
L2[—A, +A]  generated by

h ( t )  =  е ~ ш  — o o < i < + o o .

In this case,

(*0)IM»Я- d j  / V c - - d ш -

and the Loéve transform of F€L2[— A, +A]  is the finite Fourier transform 

/ ( 0 = 2 J  I  ^ F  (со) dco.
— A

Hence we have shown that the finite Fourier transforms (with fixed band limit 
A) form an rkhs, called the Hilbert space LA of band-limited signals, with the 
scalar product

+ A

( f \ g ) =  J F(co)G(co)dco
- A
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where

/ ( 0 = 2 7  /  eiatF^ dco
— A

g(t) =  2 7  /  eio»G(<ö)dco

and with the kernel

R(s, t) =
sin Л(Г — j)

Every function represented by a finite Fourier transform is continuous since 
the kernel is a continuous function. Thus by constructing the kernel in LA 
the assertions of Example 3 in §3.1.3 are also completed.

The kernel R(s, t) has the following important property: { R ( . , t k); 
tk=kn/A}  form a complete orthonormal sequence. Indeed,

R(s, tk)
sin (kn—As) 

k n —As
1

2Ä

+ Л
J

eUknlA)ae-iios d(y;

on the other hand . & — о, ± 1 , ± 2 , ...} form a complete orthonor­
mal sequence in L2[—A, +A]  and the Loéve transform is a Hilbert space 
isomorphism. It follows also that LA is isomorphic with L2[—A, +А].

Example 2. The finite and discrete analogue of the above example is the 
R K H S  -T„ of trigonometric polynomials introduced in Examples 3.1.3(2) and 
3.2.1(3). In this case со takes the discrete values k = 0 ,  ± 1 ,  ± 2 , ± n  only. 
Hence

h(t) =  {е“ ш ; к =  0, ±1 ,  ±2 ,  ..., ± n }

are linearly independent elements of the (2л +  /-dimensional Euclidean 
space, Pn (instead of L2[—A, +A]). In this case the kernel is

(h(t)\h(s)) =  2  еше-1Ь =  2  eifl(r- s) =
k = —n k = —n

sin [n - t - - ij ( i - j )

sin—( t - s )

corresponding to Example 3 in §3.2.1.

Example 3. The space Ц[0, 1] is also generated by the functions

h(t) =  ( i—t)+ 0 <  t <  1

shown in figure 3.4(a) on p. 158. In fact, every piecewise linear function l(t) 
in [0,1] with /(1)—0 is a linear combination of these functions and these
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piecewise linear functions form a dense subspace of Ц [0, 1]. In this case,

(h(t)\h(s)) =  j  (í - t) +(j - t)+ dr (*)
0

and the Loéve transform of F 6Lq[0, 1] is
i t

/( f )  =  f  ( í —t)+F(r)dt =  J  (f—T)F(r)dT. (**)
о о

The kernel of the r k h s  thereby obtained,
i

f l ( / ,  j )  =  /  ( / - т ) +  Су - т ) +  d t
О

is piecewise polynomial for fixed s. More particularly,

a n d  h e n c e  R ( . ,  s) is  a  p o ly n o m ia l  o f  th ir d  d eg ree  o n  [0 , s) a n d  a  f ir st-d eg ree  

p o ly n o m ia l  o n  (s, 1] s o  th a t  th e  s e c o n d  d e r iv a tiv e  R"{ - , s) is  a  c o n t in u o u s  

fu n c t io n . Such a kernel will be denoted by S ( - ,s )  and the corresponding r k h s  by MXS).
Let (a, b) be a finite interval and

a =  s0 <  <  s„ =  b.

If s= s(t)  is a function in (a, b) with a continuous second derivative and there 
exist polynomials {pk; k = l ,  2,..., n} of at most third degree such that

s ( t ) = p k(t) for

then s is called a cubic spline with nodes k =  l, 2, n— 1}. The kernel 
S(t, s) of Jtd(S) is a cubic spline for every fixed s with only the node t —s. 

Considering (**), the r k h s  with kernel (*) consists of the functions

{/: f "  =  Fe L2[0, 1]; /(0 )  = / ' ( 0 )  =  0}

with scalar product

(f \g )  := j  / " ( 0 7 4 0  át f  g i # ( s )
о

since the Loéve transform is an isomorphic operator.

Example 4. Let {T(i); 0 = s =»} be a stochastic process with random varia­
bles in L2(fl, A, P) defined in Example 6 of § 2.1.2. Then the Loéve transform
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of a random variable ££L2(Q, A, P) is M {fX{t)) ,  a deterministic time func­
tion, and the kernel of the rkhs of Loéve transforms,

M(X(s)X(0)
is the covariance function of the process. The r k h s  with kernel

R(s, t) =  M(X(t)X(s))

has an important role in the investigations of Gaussian stochastic processes, 
as will be seen in § 3.8.

To summarise, in the method demonstrated in the above examples, the 
essential point is to choose the appropriate t^SZ) for the Loéve trans­
form. The kernel, the elements and the values of scalar products are then 
determined in the r k h s  thereby obtained. Thus,

R(s, t) =  (h(t)\h(s))

x(t) = (*|A(0)
and

(*( • M  • )) =  (x\y)
since the Loéve transform is an isomorphic operator.

In the light of the general approach to forming r k h s  introduced in this 
section it is clear that we can find many r k h s  that are isomorphic to a given 
Hilbert space. Among them are r k h s  with an ‘interesting’ kernel, some of 
which were introduced in the above examples. Referring to the beginning of 
§ 3.2, the major information about the r k h s  is given by its kernel. One can 
say that the theory o f  reproducing kernel Hilbert spaces is the theory o f  Hilbert 
spaces with 'interesting’ kernels.

In spite of this, in this chapter we shall also deal with the applications of 
certain Hilbert spaces with continuous evaluation functionals but with useless 
kernels. For example, in § 3.9 it is important that the Hilbert space conver­
gence implies the pointwise convergence in Sobolev spaces; however, the 
kernel is uninteresting in this case.

3.4 The projection principle in rkhs

The most important theorem in Hilbert space geometry is the projection 
principle. There is a special constructive method for giving the projection 
onto an r k h s  subspace J t  of a Hilbert space Ж .

3.4.1. It is obvious that every closed subspace J Í  of an r k h s  is also an r k h s .

10 M áté
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We begin by showing the connection between the kernel R of the r k h s  Ж { К )  
and the kernel RM of Ji.

3.4.1.1 Theorem. If J i  is a closed linear subspace of an r k h s  Ж(К)  and 

R(.,  0  =  R i(.,  +  t) R ^ J i ,  R z ^ J t1-

is the decomposition of the kernel R into the corresponding direct sum, then 
i?, is the kernel of J i  and Rt is the kernel of Ji-1.
Proof. In this case,

y(t) =  (R(.,  * M .))  =  (R1( . ,  t) \y ( .) )+ {R 2(. ,  0I.K-))

(*2(.> í)LK.)) =  0 if y Z J Í

(r x( . ,  0LK-)) =  о if  Уа м ± .
Hence

y(0 = {Ri(-,t)\y(-)) for y t J t
and

y(t) =  ( M - ,  OIK-)) for ytJt*-.

The projection operator PM is represented by the kernel of J i  as follows.

3.4.1.2 Theorem. If Ж  is a Hilbert space and J i  is an r k h s  subspace of Ж , 
then for every х £ Ж ,

Pm x  =  (R j < ( Ok)

where P.41 is the projection operator and RM is the kernel of JI.
Proof. If

X =  y + z  y £ J i ,  z £ J i L

is the decomposition of х ^ Ж  into the corresponding direct sum, then 

(**(•»  Ok) =  (R.4<(-, Oly)+(Rjt(-> Ok) =  y(t) 

since (RM( .  , t ) \ z ) = 0  by Theorem 3.4.1.1.

Example 1. The projection of L2[—n, +n] onto the subspace 2Tn has the form 

+ít s in ín + i - ] ( > - 0
Sn(t) = I  f i t ) ----------------------dt f iV[ -7 t ,+n]

sin — ( s - t )

which is called the representation of the nth partial sum of the Fourier series 
by the Fejér kernel.
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Example 2. The projection of L2(— °°, +°°) onto LA has the form

P a № =  /  / ( 0
— oo

— 7 7 ——7 — di
A ( s - t )

and this is also a frequently used formula in Fourier transform theory. (The 
usual treatment is as follows. If the Fourier transform of /  is F = F (oj) then, 
by the convolution theorem, the Fourier transform of PAf  is

since
^ рл Г = { о (а)

if |co| <  A 
elsewhere

&
sin At 

At ß if |ct»| <  A 
elsewhere.

One can then verify that the truncated F=F(u>) is the projection of F.)

3.4.2. A more general example is the projection of an arbitrary fc# d {R )  onto 
the и-dimensional subspace generated by

{ R ( . , s k); к  =  1,2, . . . ,n }  sk£3).

In this case the usual method for constructing a projection is as follows. 
The projection has the form

Ci R (- , J i)+c2T?(., s2) + . . .+c„ R ( . , sn) 
and

( / ( • ) -  2  ck(R(-,Sk)\R(-,Sj))) =  0 j =  1 ,2 ,. . . ,  nk—1

by the projection principle in the case of a finite-dimensional subspace. Hence 
{ck, k =  1 ,2 , . . . ,« }  is the solution of the following system of linear equations:

П
2  ск Щ ; sk) =  f ( s j ) 7 = 1 , 2 , . . . , «  (*)

k=l

and so we can compute {ск; к = 1 , 2 , . . . , « }  merely by the evaluation o f  the 
functions / ( .) ,  R { .,  sk) (k =  l, 2, . . . ,  rí) at the points sk, s2, ..., s„ (instead of 
using product integrals, which are the usual form of scalar product in Hilbert 
spaces).

The formula (*) for computing {ck; k = 1, 2, ..., «} tells us that the pro­
jection of f £ r?f(R) onto the «-dimensional subspace generated by

{#(•>•5*); к =  1 ,2 ,. . . ,  «} sk£2>

is the interpolation of f —f ( t )  with nodes {jt ; k = 1,2 , ... ,« }  by the func-

10*
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tions in the form

c1 R( . , j j )+ c 2 R( ., jj) + . . . +cnR ( . , xn).

Remark. For computational purposes it is more convenient to adopt the 
following R K H S  method. Applying Theorem 3.4.1.1, we compute the kernel 
Rjr of the л-dimensional subspace generated by

R ( . , s k) к =  1, 2.......n, sk£3>

and the projection is constructed by this kernel according to Theorem 3.4.1.2. 
Hence

R A - , t ) =  Z c k( t )R ( . , s k)
k = 1

such that

( R A - , 0 -  2  ck( t )R ( . , s k)\R(.,Sj))  =  0 7 = 1 , 2 , . . . , « .
k =  l

It follows that

R A Sj, i ) =  2  ck(t)R(sj, sk)
k =  1

where {c*(0; A =  l, 2, n} is the solution of the system of linear equations

2  ck(t)R(sj, sk) =  Rjr(sj, t)
k =  1

j  — 1 ,2 , . . . ,«

and hence each ck(t) is a linear combination of the functions 

R (s j , t )  =  R(t,Sj); 7 = 1 , 2 , . . . , « .

We now apply Theorem 3.4.1.2:

P M  =  { R A ;  0 1 / ( 0 )  =  2  ck( t ) (R ( . ,sk) \ f ( .) )
k=1

=  2 m ) m )  f a ^ ( R ) .
k=1

3.5 Quadrature formulae and splines

3.5.1. Certain formulae for the approximate evaluation of definite integrals 
are called quadrature formulae. In the simplest case they have the form 2

2  c k f U k )
k=1 (*)
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where / i s  a continuous function and {tk; k = \ ,  2, n) are given points in 
the interval [0, 1] and we require {ck; k =  \, 2, ..., n) such that

0 k — 1

is small. r = r ( f )  is called the remainder functional and the quadrature formula 
is called exact for a class Л  o f  continuous functions if

f f ( t ) d t =  z c km  for f < i j t .
0 * = 1

The simplest examples of quadrature formulae are the trapezium formula 
and Simpson’s rule. In both cases tk=k/n  and

f l /и for 1 < & < и  +  1
Ck 11/2n for к — 1 and k =  n + 1

for the trapezium formula and

ck
1/3 n 
2/3 n 
1/6/1

for odd к; 1 <  к  <  2 и + 1 
for even к
for к =  1 and к =  2n +  1

for Simpson’s rule.
The trapezium formula is exact for every spline of first degree and Simp­

son’s rule is still exact for the quadratic splines.

3.5.2. Now let /  be a twice-differentiable function such that /" £L 2[0 ,1] and 
/ ( 0 ) = / / (0)=0; then

/ ( / ) =  /  ( t - z ) +f" (r )d r  
0

and hence

/•(/):=|/ f ( t ) d t - 2  ckf(tk)\
0

=  I / ( / ( / -  t )+/ ' W  dr) dt - 2  ck J (tk- r)+/"(T) dr|.
0 0 0

By changing the order of integration we obtain

r(f) = /  ( /  (t-r)+ dt -  2  ck(tk-z)+)f"(r)dr.
о 0 fc=1

This means that r is a bounded linear functional of the r k h s  Ж  (S)  introduced
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in Example 3 of § 3.3. The norm of this functional is

IM I= ||/V t)+ dr- 2 ck(tk-T)+||20 k — 1

by the Riesz-Fréchet Theorem and the definition of Ж  {S) (|| . ||2 means L2- 
norm). Our purpose in the next section is to determine {ck; к =  1,2, . . . ,«}  
in such a way that ||r|| is minimal.

3.5.3. Applying the Projection Theorem for
i

/  ( í - T ) + dí€L2[0, 1]
0

and the «-dimensional subspace J i  of L2[0, 1] generated by

{('*-*)+ ; к =  1,2, ..., n} 

we find that ||r|| is minimal if and only if
i „

( /  (í - t)+ d í -  Z  ck(tk--i:)+\(tj-■:)+) =  0 7 = 1 , 2 , . . . , «
о *=*

where ( .  | . ) is the scalar product in L2[0, 1]. That is,
1 i

/  /  ( t - d ) +( t j - d ) + d/dr  
0 0

" r= 2  ck J O+dr 7 = 1,2,...,«.
k = 1 о

Interchanging the order of integration and considering Example 3 in § 3.3 
once more, we obtain the following system of linear equations for {ck; 
k = 1, 2, ..., и}:

-1  "

J S(t, t j ) d t =  2 ckS(tk, t j )  7 =  1,2, . . . ,«.  (*)
о *-i

What we have obtained is the following result.

3.5.3.1 Theorem. Let us consider the class of functions 

{ / : /" €  L2[0, 1]; /(0 )  = / ' ( 0 )  =  0}.

Then the remainder functional r = r ( f )  of the quadrature formula 3.5.1 (*) 
has the minimal norm in Ж  (S) if and only if the quadrature formula is exact 
for the cubic splines S( . ,  tj)\ j = \ ,  2, ..., n.
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In this case, {ck; k — 1, 2, n} is the unique solution of the system (*)
of linear equations.

Remark 1. For more general applications of the r k h s  theory to quadrature 
formulae see §3.11.31.

Remark 2. The functions

{(í* - t)+ ; к =  1,2, ..., n}

are linearly independent and hence the solution of (*) is unique.

Remark 3. Every cubic spline has a continuous second derivative and hence it 
is considered to be an element of Jüf (S); it is particularly interesting to find 
quadrature formulae that are exact for the Б-splines (see § 3.10.1).

3.6 Sampling

3.6.1. A fundamental problem in communication theory relates to how a 
‘signal’ f —f ( t ) can be reconstructed from the sampled values f ( t k) with good 
accuracy. The basic theorem relating to this problem is as follows. If the func­
tion f£  L2[— +  °°] is represented in the form

1 +yl
/ ( 0 = 2 j  i  e im,F(co)dco 

where F£L2[—A, +A]  then

/ ( 0  =
y r  f [ k n \  s in A (t—(kTi/Aj) 
± lJ \ A )  A (t-(kn /A ))

for all t. This is the Sampling Theorem.
The popular formulation of this theorem is that a band-limited signal /  

can be completely characterised from the samples f  (kn/A); k =  1,2,  .... More­
over, in every finite time interval only a finite sample is needed and the necessary 
number of samples is in an inverse ratio to the bandwidth.

The usual proof of the Sampling Theorem is based on the Fourier transform 
technique; however, the simplest proof is based on an r k h s  method. It was 
shown in Example 1 of § 3.3 that the finite Fourier transforms form an r k h s  

with kernel

R(s, t) = sin A (s— t) 
A ( s - t )
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fig. 3.1

(see figure 3.1) and {R( . , tk); tk=kn/A)  is a complete orthonormal se­
quence. In this context we have only to prove for the Sampling Theorem that 
the Fourier coefficient with respect to R ( . , t k) is f ( t k) for any f^.Ad{R). 
Indeed,

№ ( . ,  tk)) = ш

3.6.2. The following generalisation is indicated by this simple proof (Gulyás, 
1967).

3.6.2.1 Theorem. Let R(s, t) be a symmetric, positive definite function and let 
tk; к = 1 ,2 ,. . .  be a sequence of points such that

(a) 3f(R)  is generated by { R ( . ,  tk); k —1,2, ...};

(*) = {J
Then for every /£ Ж {К ) ,

if  /  =  j  
if i ^  j .

Л 0 =  2 f ( h ) R ( t , t k)
4 =  1

for every t£3>.
If StQ R" and R(s, i ) is a continuous function then the series is uniformly 

convergent on every bounded subset of The proof is left to the reader.
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It is interesting to study sampling pairs {tk, R(t, tk); k =  1, 2, ...} besides 
the traditional

f кл sin A ( t—(кл/Aj) I
П Р  A (t-(kn /A ))  V

* 3 .7  Conformal mappings and kernels

If 3  is a simple connected bounded region with a smooth boundary in the 
complex plane then, by Riemann’s Conformal Mapping Theorem, there is a 
unique holomorphic function f = f ( z ) that maps S3 one-one onto the unit disc 
{z: |z j< l}  suchthat f ( z 0) = 0 and /'(z 0) > 0 (for a certain interior point 
z0e©).

We now give a generalisation of A (3 ) ,  introduced in Example 6 of § 3.1.3 
for any simply connected bounded region 3 ,  and it will be shown that the 
mapping /(z ) in Riemann’s Conformal Mapping Theorem has the form

/ \l/2 г

* 2> = Ы Ы  /* « ■ * > «zo
where R is the kernel of A {3).

3.7.1. Our considerations are based on the complex form of the Divergence 
Theorem on the plane, which may be stated as follows. Let 3  be a simple 
connected bounded region with a smooth boundary, let A (3 )  be the linear 
space of functions analytic on 3) and

f f  |/(z ) |2d * d y < ~ .

If g, /iGA(^), and C is the boundary of then

-Íj- /  g(z)h (z)dz  =  f f  g ( z )h \ z )d x d y .
Z1 c a

Proof. For the pair P = P (x ,y ) ,  Q = Q (x ,  y), the Divergence Theorem is 
as follows:

/  P d y - Q d x  = / /  (P '+ Q ;)d x d y .  (1)
c a’

On the other hand, for any f —f(z),

f  / ( z ) d z =  f  u d x —v d y + i [ f v d x + u d y ]  (2)
c c c

where u=u(x,  y) =  R e/(z) and v= v(x ,  y) =  Im f(z).  Comparing (1) and (2),
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we obtain

f  f ( z ) dz =  f f  ( -  vx -  uy) dx d y + i f f  (ux- v y) dx dу  (3)
C 3 '  3 ’

and, applying (3) for f(z)=g(z)h(z) ,  the complex form of the Divergence 
Theorem is obtained.

3.7.2. It is easy to show that

( / I  £ ) := / /  f ( z )g (z )  dx dy f  g£A(8>) 
а

is also a scalar product in this case, and it turns out that A ( 3 )  is a Hilbert 
space.

A(ß)  is an r k h s . In fact, for h(z)=z—z0, 3 '={z :  |z—z0|</-}, the Diver­
gence Theorem is as follows:

J g ( z ) ( z - z 0) d z  =  f f  g (z )d x d y .  (4)
1 Íz —z0| =  r  9 '

Moreover,

f  g ( z ) ( z - z 0) d z  =  ~  f  d z  =  nr2g(z0) (5)
| z - z 0| = r  | z - z 0| = r  u

by applying the Cauchy integral formula for this case. Comparing (4) and (5), 
we obtain

ls (zo)l g(z)dxdy\

and from the Cauchy-Schwarz inequality in A{ß),

I / /  g(z)dxdy\* r2n j j  |g(z)|2 d* dy.
9 '  9 '

We conclude that the evaluation functionals are bounded by l/nr1/2.

3.7.3. We now turn to the construction of /= / ( z ) ,  the conformal mapping 
from 3  onto the unit disc.

If З ' с З  with boundary C  and f = f { z )  is the conformal mapping func­
tion from 3) onto the unit disc, then for any g£A(3>),

1 Г A_ _  D_  g(z) g (z0)
2m /  f ( z )  dz f ( z) f ' ( z 0) (6)

by a well-known theorem of analytic function theory, since /(z„ )= 0  and
f ( z 0) >  0.
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Let S2)'—S2)r be a subdomain of SU such that /  maps Cr, the boundary of 
S%r, onto {z: |z| =  r < l} . Then for any g£A(3i),

U)

since f ( z ) f ( z )  =  r- in this case, and applying the Divergence Theorem from
3.7.1,

~2nrH /  S ( Z) W ) d z  =  / /  S ( z ) f l z )  dx  dy. (8)
C

Comparing (6), (7) and (8), we obtain, for any z0£@,

g(z0) =  o) /  g(z )f (z )  dz =  / ' ( z 0) / /  g ( z ) f ( z )  dx dy
Z 7T/ 1 ^  7b' ^

for any 0 < /-< l and hence also

g(z0) =  r r f f  f ( za )f '( z )g {z )d x d y  

which means that the kernel is given by

R(z, 0  =  ~ f ' ( Q f ' { z ) .  я (9)

3.7.4. It follows that

K(z0, z 0) =  i | / ' ( z „ ) |2 
я

and hence
/ ' ( z 0) =  (лЯОо, z0))i/2

since it is assumed that /'(<?,.) >0. Now, from (9) and the above consider­
ations it is clear that

z0

Remark 1. Since {zk; fc=0, 1,2, ...} is a complete system of functions, a 
complete orthonormal sequence can be obtained if the Gram-Schmidt process 
(§ 2.2.4) is applied to {zk\ k = 0 ,1 ,2 , . . .} .  The kernel R = R (z ,£ )  can then 
be constructed e.g. in the manner described in § 3.2.

Remark 2. It is easy to show that Example 6 in § 3.1.3 can be considered as 
a special case of this result. In fact, if

R(z, z0) 1 1
я ( l - z 0z)2 kol <  1
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then

which gives a conformal mapping of the unit disc onto itself.

ж 3 .8  G aussian  processes

The (joint) probability law is completely determined by the mean and cova­
riance function for a Gaussian process. On the other hand, there is a 1-1 
correspondence between kernel and r k h s . Hence it is natural to attempt to 
formulate the connections between Gaussian processes as the connections 
between J^iR^) and Ж (R2), where R1 =  Rl (s, t) and R2 =  R2(s, t) are the 
covariance functions of the corresponding Gaussian process.

More particularly, let two probability measures P  and Q be considered 
on a measure space and let {T(?}; 0 -s /<  «=} be a Gaussian stochastic pro­
cess with respect to both measures. Furthermore, let RP and BQ be the covari­
ance functions and m and 0 the means of the processes.

P  and Q are called equivalent if the same subsets have measure zero with 
respect to P  and Q ; in other words, if the same events have a zero probability. 
What are the conditions, in terms of m(t), RP(s, t ) and RQ(s, t), for the equiv­
alence of P  and <2?

The answer is as follows. For the equivalence of P  and Q it is necessary and 
sufficient that

id) m i . ) ^ j ^ i R Q)i
if) RP has a representation of the form

Rpis, 0 =  2  akekis)ekit)
with

J £ ( l — a*)2<°° and cq 5» c >  0 к =  1 ,2 , . . .
k = 1

where ( e j  is a complete orthonormal sequence in Ж  iRf).
A more detailed discussion of the equivalence and singularity of the Gaus­

sian measures is beyond the scope of this book.

f ( z )  =  (l-|z0|2) /  7i- d|  - =(l-Zoir l-z 0z*0
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Ж 3.9 Sobolev spaces and generalised derivative

Here we present a short review of the generalisation of the derivative given by 
S L Sobolev and L Schwartz. This general notion of derivative also led to the 
weak solution of differential equations and Hilbert spaces with continuous 
evaluation functionals.

3.9.1. First we shall consider functions on the real line. We shall use the 
notation Сад for the linear space of infinitely differentiable functions with 
compact (i.e. bounded) support. Recall that the support of a function /  is the 
closure of

where 3> is the domain of the function / .  The elements of are often called 
very good functions.

A function /  is called locally integrable if

/  M d t
a

exists for every finite interval [a, b].
The locally integrable functions {h3} are called an approximate identity if

(a) {5} is a set of non-negative numbers and 0 is contained in the closure 
of {&}.

(b) supp hd {t: |t| <  ő} and hd(t) >  0.

(c) j  ha(t)dt =  1.

It is easy to construct an approximate identity. In fact, if h = h (t)  is any 
locally integrable function, then the functions

f(TO |A (O I if M<<5
^  ' lO otherwise

(where Ks — f  |/i(?)| d /^ 0) form an approximate identity, as is easily
\ t \ ^ S

verified.
To construct an approximate identity belonging to is more difficult. 

If
(exp«> ä>)-‘ if  M < i  W,)“io otherwise M

{t: f { t)  *  0; tZ 2 )
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then

lim -^ -e x p ( í2- á 2)-1 =  0 n =  0, 1, 2 , . . .|»|->á dtn

and hence h0—hs{t) are infinitely differentiable functions with compact 
support.

It can also be proved that
+~

g * f  ■= f  g ( d ) R t - r )dr
— oo

which is called the convolution of the functions g  and / ,  is an infinitely dif­
ferentiable function for any locally integrable /  if gdC^.

3.9.1.1 Theorem. If {hd} is the approximate identity defined by (*) then

uniformly on compact subsets for any continuous function /  and hs* f  tends 
to /  in the L2-norm if /£  L2 as <5--0.

For the proof see, for example, Showalter (1977), § IX.3.1.
The linear functionals on C ĵ are called distributions.

Remark. Here we have given an oversimplified notion of distribution. Later 
we shall give a more rigorous definition for those classes of distributions that 
are connected with Hilbert space structures.

Example 1. For every locally integrable function g  we have the linear functional
+ CO

G((p) := /  g{t)<p(t) dt Ф6 С5 5 .

G is well defined since for every there is a finite interval /  such that
9 ( 0 —0 if 0 /  (i.e. cp has compact support). Moreover, it can be proved on 
the basis of the previous theorem that if

/  g(t)<p(t) dt =  0
— 0 0

for every <p£C^, then g ( t )—0. In the sense described in this example, there­
fore, each locally integrable function is a distribution.

Example 2. The evaluation functionals

Sc((p) := <p(c)

are linear functionals on called Dirac delta distributions.
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Example 3. For every locally integrable function g,
+ 00

D g ( c p ) : = -  I  g ( t ) ( p ' ( t ) d t  C m

— oo

where cp', the derivative of (p, is a distribution called the generalised deriva­
tive of g. Similarly,

4-00

Dng{(p) := ( -  1)” f  g(t)(pM (t) di

is called the nth generalised derivative of g.
If the function g  has a continuous derivative, then

-f OO 4-00

/  g i(t)v (t)d t =  -  f  g(t)cp'(i)dt <p€Q5

by integration by parts, since cp has compact support. Hence we also have 
D g=dg/d t  in terms of distributions if g' exists. Let

/ ( t  - Л - í 1 i f  í < í o
+ (o  j to  otherwise.

Then
+ ~ fo
/  l+Oo~t)(p'(t)dt =  J  (p'(t)dt = <p(t0)

— oo — oo

by integration by parts and hence Sc is the generalised derivative of 
/+ — /+ (c—t ). Moreover,

Döc(cp) = -cp '(c )

i.e. the second derivative of l+ {c—t) is the functional whose value is — cp'{c) 
for every <p€Ĉ 0 since

j  /+ (t0—t)(p"(t)dt = — f  (p"(t)dt =  -q>'(to).

3.9.2. It is easy to extend the considerations that led to the concepts of distri­
bution and generalised derivative to the case of functions of several variables.

is the linear space of functions with compact (i.e. bounded) support. 
A function /  is called locally integrable if the volume integral

J  f it)  dt
a

exists for any compact 3) (there and in the sequel t:=(xx, x2, ..., x,,) and 
d/:=dx, dv2... dv„). The definition of approximate identity {hd) is the same
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with
Ul := (x l+ x l+ . . .+ 4 )112

and t 2 replaced by | i | 2 in 3.9.1 (*).
The convolution of the functions /  and g  is defined by the volume integral

g * f - =  f  át
R n

where Rn is the /2-dimensional Euclidean Space and Theorem 3.9.1.1 is also 
+°°

valid. In general, J  is replaced by J  in the case of several variables.
- 0 0  R n

DJ(<p) := -  f  f ( t ) ~  (pit) dt
R" OXi

is defined as the generalised partial derivative. In particular, if

p  гл = { 1 if xi>°> i = l , 2 , . . . , n
+ IO otherwise

then

D ,E+ i < p ) = -  f  E A t ) 4 > i t ) d t
R "  O X ‘

00 OO OO OO OO OO

=  - /  /  ••• /  7 5 — <K0 di = - /  / • " /  <P(0 , xt , ..., x„)d.v2 ...dxn 
0 0 0 ° x i 0 0  0

and
D1Di ...D nE +i(p) =  cpi0, 0, ...,0 ).

3.9.3. An idea intermediate between the derivative and the generalised deriv­
ative of a function is the weak derivative. If D g = /€  L2, i.e. there exists 
/ 6  L2  such that

+  00 4-00

-  /  g ( t ) v '0 ) d t  =  f  f i t)(p it)d t  <KCm

then / í  L2  is called the weak derivative o f g. A  weak derivative is a function and 
also a generalised derivative. However, there are generalised derivatives that 
are not IAfunctions and hence are not weak derivatives, (e.g. D l+ or Dt E + , 
as we have seen).

Now, let L  be a linear differential form, i.e.

n (Jk
L f : =  ZcK -TpT fk=o at

where ck= c k(t) are appropriate functions. Then the formal adjoint L* is



defined as
+ °° +00
/  L f< pát=  I  fL*cp át /€LS,<K C0~0.

— cs© — 00

The definition is similar in the case of functions of several variables. 

Example 1. If
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then

f  f'cpát =  -  j  ftp' dt.

Hence

L * = ~ .di
Example 2. If 

then
+ 00 +00 
J  L fc p d t= — J  cf'cp' di.

Moreover,

j  cf'cp' df =  -  f  f(c(p'Y dt 

by integration by parts. Hence L —L* in this case.

Example 3. If и is a function of two variables and Lu — Au, where A is the 
Laplace operator, then

f  д d {■ д d= -  / -к— u~z— (pat- I -гг—u-^—epdtftti OXi OX1 ox.J 0 X2

=  —  J  grad и grad (p dt.
Rn

Moreover (again by integration by parts),

J  grad и grad cp dt =  — J  uAcpdt
Rn Rn

and hence L —L * in this case, too.

1 M áté



1
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Let us consider the differential equation

Lu = f  f O J .  

Then и is a weak solution if

f  uL*tp d / =  J  ftp d t.

Remark. Note the connection between the weak solution and the weak deriv­
ative. On the basis of the foregoing examples, if

+  00 -foo

-  /  c(t)/(t)q>'(t)di =  J  f(t)cp(t)dt <p(=C?0
— CO — oo

for y = y ( t ) .  then it is a weak solution of the differential equation

4 i ( c 4 r y) = f

however, in the integral formula it is assumed only that the first derivative 
of у  exists. If

-  J  grad и grad q> di =  j  fcpdt
R "  R n

for the function u =  u{t) of several variables, then it is a weak solution of the 
Laplace equation

" d2
, ? i ~ W U = f

however, in the integral formula it is assumed only that the gradient of  и 
exists.

3.9.4. Let
Wm =  {/: DmfCL2(Q)}

where Q Q R n, i.e. Wm is the linear space of functions with mth weak deri­
vatives. Wm is a Hilbert space with the scalar product

m
(f\g )*=  2  f  DkfD kg dt

* = Ofl

where m means the indices (kx, k.t , ..., k„) whose sum is m.
It is easy to verify that ( .  | .) ,  defined above, is indeed a scalar product. 

For the completeness, let {/„} be a Cauchy sequence in Wm. Then {Dkf„} is 
a Cauchy sequence in L2(i2) for every |&|< \m\ and hence there exist / w £L2 
such that

Dkf n -  f (k) \k\ <  И



V

in L2-norm. We assert that f m = D kf  Indeed,

f D kf ncpdt =  ( - \ ) W  //„<?<*> At
R n R n

and
/  | / , - / | 9 » > d U  ||/и- / | | 2| | Л .

R n

Moreover,
/  i t f / , - / w ií> d í<  n ^ y ; , - /w ii2ii<Pii2.

R n

It follows that
J  fcp(k) dí =  J  f (k)tpát.

R n R "

The Hilbert spaces Wm; m =  1,2, ... are the Sobolev spaces in the strict 
sense.

Let W™ be the closure of in Wm. Then it can be shown that, in general, 
W” ?iWm. Let и be a continuous function, Wm, and let dQ be the bound­
ary of the domain Q. Moreover,

B u u\äa

i.e. the restriction operator. It can then be shown that В is bounded in the 
norm of Wm. Hence there is a unique extension of В to a bounded linear 
operator from Wm(fi) into L2(dQ). For a noncontinuous u£Wm(i2), Bu^L2(dQ) 
is called the generalised boundary value. (For more about this concept see 
Showalter 1977 § II.3.)
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3 .10  T lie fin ite-elem ent m ethod

The finite-element method can be considered as a particular application of the 
projection principle for a finite-dimensional subspace to the approximate 
solution of functional differential, integral, etc equations. Again, certain repro­
ducing kernel Hilbert spaces will be applied without using the kernel.

3.10.1. The simplest cubic splines with nodes {sk; &=1, 2 , . . . ,  n) are

(sk-t)+ A: = 1,2.......n (*)
(see figure 3.2). They are linearly independent functions (see, for example, 
§3.11.23). Now let si+1—Si=h, i.e. constant for / = 3 , 4, ..., n—2, and

B,(t) = -jp (t—si-̂ )3+—4(t—Si-iy++6(t—si)3+

—4 ( t - s l+1)% + ( / - J i+2)+ i =  3, 4, n - 2 .

1*
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fig. 3.2

It can be proved that

B,(i) =  0 if t j í  [st—2h, s, +  2h]

i.e. the support of each function Bt= B t(t) is of length 4h. Moreover, {Bp, 
i = 3, 4, n—2} are the splines of minimal support since it can also be proved 
that every spline with possible nodes {sk; k = \ ,  2, n) and support smaller 
than 4/j is identically zero. Bt{t)\ /= 3 , 4, n—2 are called B-splines.

Remark. We can also give B;(/) as a linear combination of functions in the 
form (* )  instead of ( t—sk)3+ .

3.10.2. Let us now consider the differential equation 

y"—cy —f  c =  c(t) >  0

where fC L2 [0, 1] and c is a continuous function, with the boundary condi­
tions y (0 )= y ( l)= 0 . We seek an approximate solution of the form

У, ( 0  =  2  <*kBk(t)k = 1

where {Bk; k =  1, 2, ..., n) are the B-splines (figure 3.3). In what follows the 
notation D y:=y"—cy will be used and ys= y s(0  will be called the best 
approximation of the solution of the differential equation if

II f ~ D y sh  (*)
is minimal.

Applying 2.4.1.4, (*) is minimal if and only if
i

/  ( f ( t ) - D y s(t))Bk(t) át =  0 к  =  1, 2, ..., n 
0
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fig. 3.3

and we can compute the coefficients {afc; k = \ ,  2, n) from the system of 
linear equations

2  oii(Bi\Bk)D =  (y\Bk)D k =  1,2, ..., n (**)
i= 1

where

(h\g)D := -  / D h ( t ) W d t
о

and it is easy to verify that ( . | . )D is a scalar product for functions with square 
integrable second derivatives satisfying the boundary conditions.

Notice that in each row of the nXn matrix o f  this system o f  linear equations 
there are at most four non-zero elements, i.e.

( W d =  0 if \ I - j \  >  3

since {B(; i = l ,  2, n} are B-splines.

Remark. The boundary value problem investigated in this subsection is the 
simplest that does not have an exact solution.

3.10.3. We shall now give a more useful form of the scalar product ( .  | . )D :

(f \g )D: = ~  j \ f " ( t ) - c ( t ) f ( t ) ) M d t  =  f  f ' ( t ) 7 ( i ) d t +  J  c( t) f ( t jg ( i jd t  
0 0 0
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using integration by parts. But the form

:= /  f V ) W ) d t +  I  c ( t ) f ( t ) W ) é t  (*)
0 0

of the scalar product can also be applied to the functions { /:  / ( 0 ) —0;
/ '€ Ц [  0, 1]}.

The completion of {/: /С0)= 0; /'€Lj;[0, 1]} in the norm generated by 
the scalar product ( * )  is an r k h s .  In fact, using the Cauchy inequality in 
L?[0, 1],

1/(01 = I / V (0 d/| < (/1/(01* d/)1/2 < II fh
о 0

if /0€[0, 1] and / (0 )= 0  and hence the evaluation functionals are continuous 
in Жд.

We now have a modified finite-element method for the approximate solution 
of the differential equation

y " - c y  =  /  c =  c(t) >  0
T(0) =  y (i)  =  о

in which we apply (instead of Жв) and have more simple calculations 
but less accuracy than in § 3.10.2.

Let us consider the functions

fig. 3.4

{(r-jJ+; к = 1 , 2 , n}
with sk+1—sk=h  as in § 3.10.1 (figure 3.4). Then

Lt(t) = - i [ ( r - j i_1)+ - 2 ( / - j i)+ + ( / - i i+1)+] / =  1,2, ..., n -1

form a basis for piecewise linear functions with nodes {.?,•; /=  1, 2, ..., n— 1}
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satisfying the boundary conditions y (0 )—y ( l )= 0  (see §3.11.17). Moreover,

Li(t) =  0 if t$[Si-h, Si +  h] (** )

and Lt= L i(t)  is the only piecewise linear function with

T f ч _  /1  if /  =  к
LiC%) 10 if  i ^ k .

Hence, using {Lk, k —l, 2, ..., n— 1} as basis functions and the scalar prod­
uct ( . I . )t (instead of the B-splines and ( .  | . )D), a simpler system of linear 
equations will be obtained with less computation. In fact, in computing the 
coefficients we have to deal with piecewise linear functions instead of cubic 
splines and

(LilLj), =  0 if \ i - j \  >  1
by (**).

The formula 3.10.2 (*), the measure of the approximation, is meaningless 
for

П — 1
y s =  2  akLk-fc=l

However, it is the best approximation in the sense that

\ \ y - y s\\s

is minimal, where y= y(t)  is the exact solution. In fact, by 2.4.1.4, this is the 
case if

( y - y s\LDs =  0 / =  1, 2 , . . . ,  л - 1

which means that

5  ctk(Lk\L,)f =  (y|L;)á ‘ =  1. 2, ..., n - l
k=1

where

(y\L,),= I  y'(t)L't ( l)dt+  I  c(t)y(t)Lt( t )d t=  I
0 0 0

The best approximation in || . ||a is called a weak approximate solution.

Remark. ys is an approximation of the weak solution in the sense of § 3.9.3. In 
fact,

I/ y s(t)D<p(l)dt- f  f(t)(p(t)dt\
0 0

can be as small as we like if si+1 — Si=h— 0.
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3.10.4. The two-dimensional analogue of the boundary value problem in 
§ 3.10.2 is

Au—cu =  f  (*)

u(ST) =  0

where Sf is the boundary of a ‘nice’ domain 3) of the two-dimensional Eucli­
dean space, c =  c(x, y )> 0 , / 6 L2(3 )  and

d2 d2 
dx2 + dy2 '

If {Bk =  Bk(x, у); к =  1,2, ..., n) are linearly independent functions and
n

=  2  ak B k
k =  1

then us is called the best approximation of the solution of the differential 
equation (*) if

\\Aus—cus—f\\2

is minimal. Again, by 2.4.1.4, this is the case if and only if

f f  {Aus- c u s)B ,d x d y  =  f f  fB iá x d y  i =  1,2, ..., n. (*)
9  9

Applying the Green formula (see §2.6.5) or the considerations in §3.9.3, 
based on integration by parts for functions satisfying the boundary condition 
u(Sf)=0, we have

f  j  grad и grad v d x d y  =  —f J  vAudx dy.
9  9

Hence using the scalar product

(,u\v)t := J f  grad и grad v d x d y + f J  cuv dx  dy
а  а

we obtain that (*) has the form

2  a k(Bk\Bi)n =  (a \B ;)d i  =  1 ,  2 ,  . . . ,  n
k= 1

where

(u|ß,)Ä ■= f f  grad и grad B-t d x d y + f f  cuBt dx dy
3) 3)

=  — f f  B^Au—cu) dx dy  —f f  fB iá x d y .
а  а

It follows that we have the same method for the approximate solution us in
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the form

2  ak^k 
k =1

as we had in §3.10.3 for the one-dimensional case.
For the base functions {Bk} we can choose the series of equidistance points 

stJ; i = l ,  2, ..., n, j — 1, 2, ..., n and piecewise linear functions Lmk such that

i 1 if i  =  m and к =  j
mAsij) — | q for the remaining nodes.

Remark. The Hilbert space with scalar product (.. | . )á is the analogue of 
Жд for functions with two variables, and it is also an r k h s  (see Shapiro 1971, 
§ H.4).

3.11 Problems and notes

3.11.1. Let R = R (s ,  t) be a symmetric positive definite function and A 
be the matrix with

aik =  R(ti, tk) i, к =  1,2, ..., n

where tk£3i. Show that R(s, tk); k = l , 2 , . . . , n  are linearly independent 
functions if and only if the inverse matrix A-1 exists.

3.11.2. Is it true that if the kernel R( . , t) is an analytic function on the simply 
connected region Q) of the complex plane for every fixed t£S>, then every 
f (  .)^J^(R) is analytic on

3.11.3. Prove that { /: /" 6 L 2[0, 1]} is an r k h s  if

( / |£ ) : = / ( 0 Ш + / ( 1 ) 1 Ш +  /  Г О ) Ш  dt.
о

What is the kernel?

3.11.4. A set J l  of continuous functions is called equicontinuous if for every
e> 0  there exists <5 =  <5(e) suchthat |/(? )—/(.v)| is implied by |s — /|<<5(е)
for every i.e. the pair e, ö(s) is common for Jl.

One of the important features of equicontinuity is that a closed subset 
Л с С [ 0 ,  1] is compact if and only if Л  is an equicontinuous set of functions 
(1.6.2.1).
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Show that if R is a continuous kernel in [0, 1] X [0, 1], then the elements of 
Ж{К)  form an equicontinuous subset of С [0, 1]. What is the connection 
between the uniform norm || • ||„ and the r k h s  norm in this case?

оЗ.И.5. Find the Loéve transform that maps L2 [0, 1] onto the subspace 
{ / ; / ( 0 ) = 0 } of ЛЬ.

0 З.П .6 . Prove Theorem 3.2.2.1 by applying the considerations in §3.3.1.

3.11.7. Using the complex form of the Divergence Theorem in § 3.7.1, compute 
the kernel of H 2 from the kernel of A(S)) in the case of ££={z: |z |<  1} and 
vice versa.

0 З.И .8 . Consider the following subset J t  of an r k h s  Ж  (К) :

What is the element in J t  of minimum norm?

o3.11.9. Consider the functions /  analytic on the open unit disc and with

is minimal.

o3 .ll.10 . Let / = / ( z ) be analytic in the open unit disc with the only possible 
singular point at z= 0 . Moreover, let f ( e u) be a continuous function. What 
is the connection between the Fourier series of / ( e w) and the Laurent series 
of /(z )  at z = 0 ?

3.11.11. If X* is a continuous linear functional of a Hilbert space Ж,  then there 
exists called the representative o f  x*, such that

by the Riesz Theorem. How can the representative h of a given continuous 
linear functional x *  be found in an r k h s ?  (For example, for the case where 3> 
is a bounded closed domain of the real line, the integration is a continuous 
linear functional if the kernel is continuous. What is the representative of the 
integration?)

J Í  =  { /: /(to) =  И Л Ж (Ю }.

f ( z k) =  hk к  =  1 , 2 , ..., n

where |zfc|< l  and rjk are prescribed values. Choose /  such that

4 г  / V (e“)l’d(
— к

x*(f) =  (f\h) f t  Ж
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3.11.12. (a) Q(s, t )= f ( s ) f ( l )  is a kernel for any function / = / ( . ) .  Describe
*(ß).

(h) Prove that for any kernel R - R ( s ,  t), f£3tf{R) if and only if

R(s, t) - f ( s )W )
is positive definite.

3.11.13. Let the bounded linear operator T in Ж  (R) be defined by

Tf(t) := <p(t)f(t)
i.e. T is defined as multiplication with a function cp.

(a) Is the function <p necessarily bounded?
(b) Does the function (p necessarily belong to Ж  (/?)?

3.11.14. Show that in Жв , ср/£Жв for every /£ Ж В if and only if (р£Жв .

о 3.11.15. Compute the first and second generalised derivatives of the func­
tions

. ч „.ч fcos t if t >  0
(a) / ( 0  -  | 0 otherwise.

... fsint if t >  0
áf(0 | q otherwise.

. . . . .  (at if t s= 0
(C) m  =  to  otherwise.

(d) What are the first and second generalised derivatives of a continuous 
piecewise linear function in [0,1] with nodes 0 = i 0< j 1< ...-= jn_1<5’B= l?

3.11.16. Prove that every continuous function /  on [0, 1] with an initial value 
/(0 ) = 0  satisfying the condition ‘/ i s  a polynomial of first degree in (tk, tk+1); 
k = l ,  2, ..., n where

0 <  tk 12 tn — \ tn «S 1
has the form

f(t) =  2 ck ( t - t k)+-
k =  1

o3.ll.17. We now give another basis for piecewise linear functions. Let I 
be the identity operator and Uhf : = f ( t —h); then

Li(t):= (I—Uh)( t—si- 1)+ = ( t - s i- 1)+ - 2 ( t - s i)+ + ( t - s i+1) +

i  =  1 ,2 ,. . . ,  n - 1
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(figure 3.4 (b)) are a basis for the piecewise linear functions with nodes 
{ 5*; k = 0 ,  1, 2, n) and zero at the endpoints so=0; s„= 1. (Prove this!)

Moreover, adding two extra points 5_x= — h and jn+1 =  l+ h  to 
{.s*; k = 0 ,  1, 2, n), we see that

(I-Uh)(t~Si-i)+ i =  0, 1, n, í€[0, 1]

form a basis for every piecewise linear function in [0, 1] with nodes 
{ ifc; k =  0, 1, 2, n).

o3.11.18. Prove that
ь

(f \g)D -= J (f " ~ c f ) g á t  c =  c(t) >  0
a

is a scalar product if /" ,  g"£L2[a, b] with f(a) =f(b) —g(Jb) =g(a) =  0.

3.11.19. It is easy to show that the evaluation functionals are continuous in 
W1 (and consequently also in Wm; m >  1). In fact,

t ____ t
/  g 'M g M d t =  |g(x)|2- /  g(x)g'(x)dx g e w i a ,  b)

a a

by integration by parts and hence

l£(0l2 <  2 j  \g'(x)W)\ dt <  2Ц/11 J * L .
a

On the other hand,

2 II/ I I 2 I I / l a  <  l l / l i  +  l l / H i
since

l l / l i  +  l l / l l | - 2 | | g | | a l | / | l a  =  ( I lg | |a - I l / I l 2) 2 >  0 .

o3.ll.20. Do the cubic splines S ( . ,  tk); k =  1, 2, ..., n, where S(s, t ) is the 
kernel of the r k h s  J f (S )  in Example 3 of § 3.3.1, form a basis for the cubic 
splines with nodes tk; k = l ,  2, ..., и? (Compare with §3.11.16.)

3.11.21. It was shown in §3.4.2 that the interpolation of with a
linear combination of

R (t,sk); к =  1, 2, ..., n

is the projection o f/ onto the subspace generated by { R { . ,  sk); к —1, 2, ..., n). 
Hence the r k h s  with spline kernel, i.e. with kernel S(t, s) which is a 
cubic spline for any fixed s,  is a natural Hilbert space model for spline 
interpolation.
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o3.11.22. Show on the basis of § 3.11.17 that

B-Xt) =  ( / -  i)s+ / =  3, 4 , . . . ,  n—2

where Bt(t) are the Б-splines defined in §3.10.1.

3.11.23. Prove that if the support of /= / ( t ) ;  t£R  is bounded below, i.e. 
/ ( i ) = 0  if t0, then the right translations

/« (0  : = / ( ! - “)
are linearly independent.

3.11.24. Prove that

supp B; =  [0-2. O+2] i  -  3, 4, ..., n—2 

and hence the Б-splines are linearly independent.

3.11.25. The cubic splines with nodes sk; k =  1, 2, . . . ,  n form a finite-dimen­
sional linear space. Find the dimension of this space. Do the Б-splines of 
3.11.22 form a basis for this linear space?

3.11.26. Give the two-dimensional version of § 3.11.19.

3.11.27. If F=F(X) is a non-decreasing function on the real line R and the 
Stieltjes integral

+ °°
K(t) =  f  e iU d F(A) (*)

— CO

exists, then
R(t, s) := K ( t - s )

i s  a symmetric, positive definite function and hence it is the kernel of an r k h s . 

In fact,

2  2  tjtkK ( t j - t k) = 2 2  t j tk f  e « j - ' ^ d F ( l )  =  f  UkeifM2dF(A) >  0
k=l y=l k=lj=l -lo

for any и-tuples {tk; k —1, 2, ..., и} of real numbers.
The Bochner-Khinchin Theorem states that for every continuous positive 

definite function in the form

K(t, s) =  K ( t—s)

K = K { t )  is the Stieltjes integral (*) with a non-decreasing F =  F(A); A£R 
called the Fourier-Stieltjes transform of F.
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3.11.28. It is obvious that every spline s —s(t)  with nodes in [0, 1] and with 
j (0 )= s'(0 )= 0  can be considered as an element of Ж  (S) defined in Example 3 
of §3.3.1.

Complete { 5 ( . ,  tj); j —l,  2, ..., и} to a basis for every spline with nodes 
{tj\ /= 1 ,  2, ..., n} and contained in Jif(S). (See §3.11.17.)

3.11.29. For / £ Ж ( Б )  we can find an interpolation and hence a best approxi­
mation in terms of ß-splines with given nodes к — 1, 2, ..., n} by solving 
the system of linear equations

f(sj)  =  2  ckBk{j)  j  =  3, 4, ..., n - 2 .
fc =  3

Compute the matrix of this system of linear equations and find the connec­
tions with the best approximation (in L2-norm) of /" £ L2[0, 1] by piecewise 
polynomials of first degree with nodes {sfc; k —1,2, ..., n).

3.11.30. By adding two extra nodes sn+1= l + h ,  sn+2= l + 2 h  to {.s*; 
k = l ,  2, . . . ,  n}, with sk+1—sk=h, construct Bn_1 and Bn.

Prove that the B-splines defined in § 3.10.1 together with Bn_k and Bn form 
a basis for the splines with nodes к — 1, 2, ..., n) and contained in Ж (S).

3.11.31. Prove that if R = R(s, t) is a continuous kernel on the finite two- 
dimensional interval [a, h]X[n, b], then a quadrature formula can be obtained 
for

i
/  f{ t)  át f f ^ ( R )  
о

such that
- 1  л

/  R(t, Si)dt = 2  ckR{sk, St).
о *=i

On the basis of the results in § 3.5, find a method for computing [ck; k = 1,2, ... 
...,n}. Find examples of such quadrature formulae.
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Operator Theory

4.1 Background from linear algebra

In the same way that the Hilbert space geometry is connected with properties 
of geometric vector space, as we have seen in Chapter 2, the operator theory 
of Hilbert spaces is connected with the properties of matrices.

4.1.1. If Г is a linear operator of a finite-dimensional Hilbert space, then T 
can be represented by matrix multiplication by means of an orthonormal 
basis {ek} of Ж .

4.1.1.1 Theorem. Let T be the matrix with entries tik=(Tek|ef) and let x, у 
be column matrices with entries xk=(x\ek), yk =  (Tx\ek). where х 4 Ж ; 
then

у =  Tx.

Proof. We have
n n

x  =  2  ( x \ e k) e k =  2  x k e k
k = 1 k =1

and

T e k =  2  ( T e k f i ) e i  =  2  Uk^t 
1=1 1=1

(see 2.2.3.2). Moreover,

T x  =  2  x k T e k
k =  1

since Г is a linear operator. It follows that

Tx =  2  xk{ 2  tike,) =  2 ( 2  UkXk) e t
k = 1 i — 1 i = l fc = l

У  i =  ( Т х \ е , )  =  2  Ukx k-
k =  1

and hence
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With this theorem, many problems of finite-dimensional Hilbert spaces con­
nected with linear mappings may lead to matrix problems.

Similarly we can prove that the mapping T -T  from the linear operators of 
the и-dimensional Hilbert space Ж  onto the set (algebra) of nXn  matrices 
has the following properties. If T i—Tj and Г2—T2 then

(i) TX= T 3 if and only if T != T 2;

(ii) y.T1+ ßT.z-*■aTt T /ЛГ2, where a. and ß  are scalars;
(iii) T’1J’2-*-T1T2;

(iv) I 7 - T Í .

(v) The inverse operator T ~ x exists if and only if the inverse matrix T 1 
exists, and then

Г" 1 — T _1.

Every linear operator of a finite-dimensional Hilbert space is continuous (see 
Theorem 1.7.3.1).

4.1.1.2 Definition. X is called a regular value of the operator T  if the inverse 
operator (XI—T)~X exists. Here /  is the identity operator (corresponding to 
the unit matrix I).

If X is not a regular value then it belongs to the spectrum a(T)  of T.

The most important problems of operator theory lead to the investigation of 
the spectrum. Obviously, if X is a regular value of Г, then x=(XI— T)~lf  
is the unique solution of the equation

Xx—T x  =  f  fZ.M’.

However, for the case X£o(T) the situation is more complicated.

4.1.1.3 Theorem. If X belongs to the spectrum of T, then there exists a solu­
tion of the equation

Xx—T x  =  0 (*)

that is different from в.
Proof. In this case there is no inverse matrix (Я1 —T)_1 and hence

det (AI—T) =  0.

This means that there are solutions x Ф в to the system of homogenous linear 
equations corresponding to

(AI—T )x =  0.
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It follows from the considerations in the proof of 4.1.1.1 that in this case

П
X — Z  xkek

k = l

is a solution of (*), where xk is the nth element of the column vector x.
If there are solutions хт^в for (*), A is called an eigenvalue of T  and the 

solutions are the corresponding eigenvectors.
It follows from the considerations in the proof of 4.1.1.3 that in a finite­

dimensional Hilbert space every linear operator has an eigenvalue.
Let us introduce the following notation for an operator A:

N(A) := [x: Ax =  0} R(A) := { /:  /  =  Ax}.

N(A) is called the null-space of A and R(A) is called the range. For a linear A, 
N(A) and R(A) are linear subspaces and for a continuous A, N(A) is closed. 

In this notation, if A is an eigenvalue of T, then

N (X I-T )  *  {0}

and it is a closed linear space, sometimes called the eigenspace o f  A.

4.1.1.4 Theorem. If A is an eigenvalue of T, then the equation

Xx—T x  =  f

has solutions if and only if f d N { I l — T*)M, i.e. i f / i s  orthogonal to every ele­
ment of N { l l —T*).
Proof. If the equation is solvable for f£3tf,  i.e. f£R (X I—T), then for every 
z£ N (X l-T * ) ,

( f \ z) =  (Ал:—Tx\z) =  (x \ l z —T *z ) =  0

and hence f £ N ( H -  T*)L.
For the converse statement we need to prove

R (X I-T )x  =  Щ Х1-Т*). (** )

But this we can see from the identity

(z|Ax—T x) = (Az—T *z\x) z,x Ĵ .̂
Remark. For the proof it is enough to verify (**). In fact, it follows from 
(** ) that

R {X I-T )x x  =  N (X l-T *)x

and, by 2.14.19,
R ( X I - T y ±  =  R (X I-T )

12 M áté
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since R is a finite-dimensional linear subspace and hence is closed. But

R (X I-T )  =  N (I I—T*)L 

is precisely the first part of the theorem.

4.1.2. The operator T  can be represented in an orthonormal basis by a diag­
onal matrix with only real elements if and only if T is self-adjoint.

The operator T can be represented in an orthonormal basis by a diagonal 
matrix if and only if

T*T  =  TT*

T  is then called a normal operator.
We shall now prove the statement for self-adjoint operators. From Theorem

4.1.1.1 it is clear that the statement is equivalent to the following characteri­
sation of self-adjoint operators by eigenvalues and eigenvectors.

4.1.2.1 Theorem. In a finite-dimensional space Г is a self-adjoint operator if 
and only if every eigenvalue X of T  is real and there is an orthonormal basis 
of Ж  formed o f eigenvectors of T.

Remark. We have to choose the eigenvectors as a basis of Ж  and T is repre­
sented, by Theorem 4.1.1.1 as a diagonal matrix with real elements.
Proof. If X is an eigenvalue with eigenvector x, then

and
(T x\x) =  X(x\x)

(x\T x) =  (x\Xx) =  X(x\x).

Since T =T *,  it follows that X=X. It is obvious that if y£N(XI—T) then 
Ty£N(XI—T) also. Furthermore, we shall show that

y e N ( x i - T )-L =► Ty e N( Xi - T y .

In fact, if x£N(XI—T) and (y |x )= 0 , then

— {Ty\x) =  (Xy—Ty\x) =  (y\Xx — Tx) =  0.

We conclude that Г is a self-adjoint operator on the subspace

N ( X l - T y  := ы хе ж .

(Here and later on we use the abbreviation Nx'=N(XI— T) and also the more 
precise notation for the orthogonal complement introduced in §4.13.41.)

Now let be an eigenvalue with eigenspace Np, then 7 \, the operator T 
restricted to Ж1:=И1О Ж ,  is a self-adjoint operator of Жх and hence there is 
a real eigenvalue X2 with eigenspace Ar2c,i#j.
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Again, Г2, the operator T  restricted to Ж2:=И2Э  Ж1: is a self-adjoint 
operator of Ж  and hence there is a real eigenvalue with eigenspace JV3c / j .  
We continue this procedure until Жт:=МтЭ Ж т̂ 1 is one dimensional. 

It follows from this procedure that

m+1
/  =  ф  m + 1 »e n

k =1
where n is the dimension of Ж . Now we can choose an orthonormal basis in 
each Nk and the proof is complete. In fact, we have to choose the eigen­
vectors as a basis of Ж and T  is represented by Theorem 4.1.1.1 as a diagonal 
matrix with real elements.

Remark. If the self-adjoint operator T  is positive and л: is an eigenvector of T, 
then

0 (T x\x) — l(x\x)

and hence every eigenvalue A is non-negative.
Some further properties connected with eigenvalues are as follows.

4.1.2.2 Theorem. If Г is a normal operator, i.e. T*T=TT*,  then 

Tx =  l x  iff T*x =  lx .

Proof. It is easy to check that I I — T  is also normal; moreover, for a normal 
operator A,

\\Ax II2 =  (A*Ax\x) =  (AA*x\x) =  \\A*x\\2

and hence
( I l - T ) x  =  9 iff { l I —T *)x—9.

4.1.23 Theorem. If Г -1 exists and (A/— T )x = 9  for x^O, then 
(1 / I I— T~1)x = 9 .
Proof. In this case, for A^O,

(1Т-г - 1 ) х  =  T~1( l l —T )x  =  9.

4.1.3. If the operator T  is not normal, then it may happen that there is only a 
single eigenvalue of T.

Example. The operator of a three-dimensional Hilbert space with the matrix 
representation

0 0 0'
1 0 0
0 1 0,

12*
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in a basis ег , e2, e3 is called a translation operator. It is easy to check that the 
only eigenvalue is A=0 and the eigenvectors are the scalar multiples of e3.

Thus T  cannot be represented by a diagonal matrix. However, we shall show 
that every linear operator T  can be represented by a lower triangular matrix 
in a certain orthonormal basis. Bearing in mind Theorem 4.1.1.1, this state­
ment is equivalent to the next theorem on the invariant subspaces o f a linear 
operator of a finite-dimensional Hilbert space.

4.13.1 Definition. The closed linear subspace Л  of Ж  is called an invariant 
subspace of the operator T  if

x t iJ l  => Tx^.3i

or, in an abbreviated notation, T Ji J i .

Example 1. The eigenspaces N {T — A/); ?E<j(T) are invariant subspaces. 
In particular, if x  is an eigenvector then the scalar multiples of x  form a one­
dimensional invariant subspace of T.

Example 2. Consider the translation operator represented by the matrix

0 О 0 . . . 0 1
1 0 0 . . . 0  
0 1 0 . . . 0  
0 0 1. ..0

О О О  о

in a basis ex, e2, ..., e„; i.e., for the elements of U,

uik = К
if  i =  k + 1 
elsewhere.

Then each of the linear subspaces

&i +1) • ■ ■ 5 &n} I =  3, ..., П

i.e. the set of linear combinations of the elements in the bracket, form an 
(n +  1— i')-dimensional invariant subspace for U.

4.1.3.2 Theorem. There is a chain

cz 1c =  1,2, ..., n—2

of invariant subspaces for every linear operator of an и-dimensional Hilbert 
space.
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Proof. Every matrix T has at least one eigenvalue since

d et(T —Л1)

is a polynomial of degree n. Moreover, NX:—N(?J— T) is an invariant sub­
space, as we saw in Example 1. If IVAis one-dimensional, then Л х= Nx. If the 
dimension of Nx is higher than one, say m, then Nx contains rn linearly inde­
pendent eigenvectors ek; k =  l, 2, ..., m and J i x, the scalar multiple of ex, 
J t2, the linear span of {ex, e2}, J(3, the linear span o f {ex, e2, e3} etc are the 
first m members of the chain.

If J tm 0  Ж  is one-dimensional then the proof is complete. If J i m 0 J f  is 
higher than one-dimensional, then we can find an invariant subspace JI' 
such that

J tm c  Ж  с  Ж .

In fact, if (y |x )= 0  for every х £ Л т, then

~(T*y\x) =  (X y-T *y \x )  =  {y\Xx-Tx)  =  0

and hence J i m © Ж  is an invariant subspace for T*. There is an eigenvalue 
p of T* restricted to J (m © УС and obviously c: J iM 0  Ж  since J lm 0  Ж  
is a finite-dimensional Hilbert space in itself and every linear operator of a 
finite-dimensional space has at least one eigenvalue, as was established at the 
beginning of the proof.

By the same reasoning as above, the orthogonal complement of IVß is an 
invariant subspace of (T*)* — T. On the other hand,

:= NßQ.yP =) M m

(see, for example, §2.14.19). We conclude that Л ' = N£.
If J t mQ J l '  is one-dimensional, then Л ’ = Л т+х, i.e. they are consecutive 

members of the chain.
If Л т © Л ’ is higher than one-dimensional then we can find an invariant 

subspace Л "  such that

J im с  Л "  с  Ж

by the same process, with Ж = Ж , as we found an invariant subspace between 
M m and Ж.

Remark 1. The triangular matrix representation is obtained from the chain 
of invariant subspaces Л к as follows. Starting from Л х, composed of the scalar 
multiples of an eigenvector, an orthonormal basis can be formed in every Л к. 
It is easy to verify that the subspace Л к is к dimensional and the matrix 
representation of the operator in this basis is lower triangular.
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Remark 2. Reversing the order of the basis, we obtain an upper triangular 
matrix respresentation.

Remark 3. The triangular matrix representation consists of blocks with partic­
ular structure, called Jordan forms, but in the next section we shall not need 
this particular structure and hence its investigation is omitted.

4.2 Uniform operator norm and the Neumann series expansion 
for inverse operators

In this section we turn to the case of an infinite-dimensional Ж.  The usual 
norm — sometimes called the uniform norm — for operators and its basic 
properties were introduced in § 1.4. We now continue these investigations. 
(Recall that the domain of a bounded linear operator is supposed to be 
all of Ж.)

4.2.1. The set of bounded linear operators from one Hilbert space Жх into 
another Жг form a Banach space with the norm

FII := sup (И7 x ||: ||x|| =  1}

by 1.4.3.2 and 1.8.15. However, this usual norm is not a Hilbert space norm. 
We shall show that the parallelogram law fails to be valid and hence, by 2.1.3, 
our statement will be proved. Let Px, P2 be projection operators with Px P?= 0; 
then Px +  P2 is also a projection operator and hence

II Pi+PA  =  F i l l  =  F i l l  =  1

by 2.10.3. In this case,

11Л+Л112+ 1 1 Л -Р 2|12 <  1+2
and

2 F i l l 2 +  2 F a l l 2  =  4.

4.2.2. The bounded linear operators of a Hilbert space Ж  form an algebra 
В(Ж). That is, if Tx, Т2{В (Ж )  then a T1 \-ßT2̂ B{yU) for any pair a, ß 
of scalars and also ТХТ2£В(Ж). The operator multiplication has the following 
properties:

(i) 7\(Г 2+ Г 3) =  E E + E E
(ii) Тх(ТгТ3) =  (T.T.JT,

ТХ,Т „ Т ^ В { Ж )
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and we showed in 1.4.3.4 that

i r a i i c  т а и .

A Banach space with these properties is called a Banach algebra.
It is important for the solution of various types of functional equation to find 

the inverse operator in the form of a particular infinite series called the Neu­
mann series, as we saw in Example 2 of § 1.3.2 and in § 1.8.25. We now ap­
proach this problem from a different direction.

4.2.2.1 Theorem. If the power series

i«oi+i*iimr+i«.i ii2T+...+ial,iimi',+... 
is convergent for ТаВ(Ж), then the series of bounded operators 

(Xgl+^T + а гТ 2+ . . . + а пТ п +  ... 

is also convergent in the Banach space В{Ж).
Proof. It follows from the properties of the operator norm that for every e> 0,

II2  2  l«*limi*<e
k — m k — m

if n, m >N (e)  since

k = 0
Hence by the Cauchy Convergence Theorem there exists А£В(Ж )  such that 

A =  2  <*kTk T° := I.
k = 0

Example.
oo * k

eB':= 2  i f *k =0 K'-

is a bounded linear operator for every real (or complex) t and ВаВ(Ж).

4.2.3. The most important application of the foregoing theorem is the follow­
ing.

4.2.3.1 Theorem. If |Я|>||Г||, then

m ;  T ) :=  2 4 т г Т к
k=0

is a bounded operator of Ж  and

Л(Л; T) =  ( U - T ) - \
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Proof. Considering 4.2.2.1, we have only to prove the second part of the 
theorem.

and
W - T )  i i t * =  2 f k r T ka i - T )

k =  0 л T k =  о A

( U ~ T ) É 0i h Tk = - L

Example 1. Let K = K ( t , z )  be a continuous function on [a,b\X[a,b\  and
b b

/  f \K ( t ,x ) \* d td x  <oo;
a a

find the solution of the integral equation
b

X y ( t ) -  J  K ( t ,z ) y ( t )d z  =  f ( t )  (*)
a

in L2[a, b\. 
Let

о

Ту := f  K(t, т)у(т) dz.
a

Then

||7>||2 =  /  I /  K (t ,z )y (x )d x fd t
a a

and

I /  K(t, z)y(z)  dt|2<  /  \K(t, t)|2 dz I  \y(t)|*dt
a a a

by the Cauchy inequality; hence

IITy\\*<  /  f  |^(f, r)|2drdi /  It (t)12dr
a a a

which means that

||712 <  /  /  i m t ) | 2d id t.
a a

It follows from Theorem 4.2.3.1 that for

|A| >  /  /  \K(t, T)|2drdi
a a

the Neumann series R(A; T) is convergent. In this case,

у {t) =  R(X\ T )f ( t)  =  j f ( t ) +  Z - ^ + T  I  К П ,  t) / ( t) dr (** )
IJ 1 a
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where
ь

Ki(t, т) =  K(t, т) Kn+1(t, т) =  J  K (t ,s )K n(s, t ) d s  n =  1 ,2 ,. .. .
a

Remark 1. In Example 2 of § 1.3.2 we solved a similar problem for the Banach 
space C[0, Т].

Remark 2. Based on 1.8.25 and 1.8.24 we can also find the solution y = y ( t )  
as the limit of the recursive sequence

1 1 bУо(0 = / ( 0  Уп+1 ( 0  =  j / ( 0 + j  /  т)л(т) d t

in L2[a, h].

Example 2. The integral equation (*) is called the Volterra equation if it 
has a lower triangular kernel, which means that

K(t, t )  =  0 i f  t <  T .

In the case of a Volterra kernel, (*) will become

A y(0~  /  ^(A tM T )di = / ( 0 -a

It turns out that for a Volterra equation the Neumann series R(?.\ T) is con­
vergent for every A^O.

Here we restrict ourselves to a finite interval [a, b] and continuous 
K = K (t ,  t ) ;  however, our statement is valid for any [a, b] and any square 
integrable K. That is,

ь ь
К : J  f  | £ ( i , T ) | 2 d t d T < = ° .

a a
In our case, \K (t ,T )\<M  and, by induction,

\Kn(t, t ) |  <  M n+1 (f~ T,)-  <  M"+1 (b ~ }a)" t, т€[а, b].(n)\ n\

\Kn̂ { t ,  t)| <  M n (и—1)!

Indeed, suppose that
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where K0(t, r):=K(t,  t); then

\Kn(t,x)\ = \ f  K(t,s)Kn_1(s,z)ds\*z I  MM" (̂ ^ , - - d5

It follows that

, м . . .  (>-<■)• 
«! и!

2 ^ + t Kn(t,z)
n=  1 A

is uniformly convergent on [a, b] X [я, b] for every A^O since

N 1 N (h — aY
2-1TTiKn(t> T ) c  2 Mn+1 -  jV /gM Cb-o)п = 1 л л = 1

and SO

by (**).

y(0 = \ f ( t ) +  i  У т г  /  Kn(U t) / ( t) dr

Example 3. If
(U ,f) ( t)  =  f ( t - г) r > 0

then the Neumann series is convergent for |A|>1 since ||C/t|| —1 in L2[a, b]. 
It follows that the solution x = x ( t ) of the equation

Ax(/) —x ( t —t) =  /
in L2 [a, h] is

x(t) = 2  -tin- f i t - k x )
fc=* О Л

and in recursive form,

*o(0 = /(0 *„+i(0 = j / ( 0 + у  *„(*—0

i.e. {x„(0} tends to the solution in L2[a, b].

4.3 The spectrum of an operator

4.3.1. The main result of the previous section was that for |А|>||Г|| there is 
a bounded inverse (А/— Г)-1 , everywhere defined in Ж, and hence a unique 
solution

7 =  (А /-Г )“ 1/
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for the equation
У ~ T y  =  f  f i t *

in the form of an infinite series or a recursive sequence.
As in the finite-dimensional case, we have the following definition.

4.3.1.1 Definition. X is called a regular value of the linear operator T  if there 
is an everywhere-defined bounded inverse (XI— T)-1 .

Remark 1. In a finite-dimensional normed space, if T x = 0  only for x = 0 ,  
then Г is onto and every linear operator is bounded. Hence in the finite-dimen­
sional case, 4.3.1.1 is the same as 4.1.1.2.

Remark 2. Here we do not assume that T is bounded.

4.3.1.2 Definition. If X is not a regular value then it belongs to the spectrum 
<j (T) o f  the operator T.

Contrary to the finite-dimensional case, the spectrum a(T) does not con­
sist only o f  eigenvalues.

Example 1. For the multiplication operator

Т у  =  ty

in L2[0, 1] each Яс[0, 1] belongs to the spectrum. In fact, multiplication by 
the function X— t is a 1-1 operator, but the inverse, multiplication by (A— i) -1 , 
is a bounded operator only if A$[0, 1].

Example 2. The spectrum of the integration operator
t

Ty = f  y(i)  dr
0

in L2[0, 1] contains the single point /= 0 ,  which is not an eigenvalue. In fact, 
for every X?±0,

t

(X I -T )y  =  X y ( t ) -  f  y ( i)  dr 
0

is a Volterra equation with kernel

and hence, by Example 2 in §4.2.3, each X^O is a regular value.

if t >  r 
if (< T
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If A=0, the inverse is the operator of differentiation, an unbounded oper­
ator in L2[0, 1].

Remark. We also have a direct calculation for the spectrum. If X^O, then for 
every /£ L 2[0, 1] the unique solution of

Aj>(0- /  y (r )d r  =  f ( t)  (*)
0

via the substitution
t

z ( 0 =  /  7 (t)(1t 
0 

is

y(t)  =  - | - f  еЛ(' - г)/(т ) dr 
я 0

and obviously the operator

W ;  T)f:=4  / е Л(,_1)/ ( т ) d t^  о
is a bounded one.

If 1 = 0 , then the solution of (*) is defined only for differentiable f = f ( t )  
since / ( 0) =  0 and

Example 3. Let k = k ( t )  be a continuous function and
i 2jt

Kf:= 2^ f  k(t-x)f(x)dx

for /6  L2[0, 2л]. It is easy to check that if the coefficients of the (complex) 
Fourier series of /  are {/(n); n = 0 , ±  1, + 2 , ...} then

[Kf]'(n) =  k (n)/(n) n =  0 , +1,  ± 2 , . . .

where k(n) is the nth Fourier coefficient of k —k{t).
The mapping

/  -*• { /(« ); n =  0, ± 1 , ±2 , . . . }

is an isomorphic operator (§2.11.1, Example 1) and hence К  is unitarily equiv­
alent to the multiplication operator

RJ(n) =  ic(n)f(n).

Hence the operator XI— К  has a bounded inverse if and only if the multiplica­
tion operator Xl—ft  has a bounded inverse (see §§2.11.2 and 4.13.3).
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We conclude, as in Example 1, that the spectrum is 

Я =  {*(и); и =  0, ± 1 , ± 2 ,.. .} .

However, contrary to the previous examples, the spectrum consists only of 
eigenvalues in this case. In fact, if Я=£(и0), then

Яе~
i 2n

oif—-— f  k ( t —x)c~n»1T dr =  0 
2n J

since for the Fourier coefficients,

( Де~П°‘, - 25 г /  A:(, - T)e ~n°itdT) = ( o  к{П)
if n =  n0 
if n ^ n 0.

Example 4. Let k = k ( t ) be a continuous function again and also let

4-00

J  \k(t)\dt<°o
— oo

be satisfied. Then the convolution of к and any / £ L2(— + « ) ,

4-00

K * f : =  j  K ( t -x ) f (x )  dr
— oo

belongs to L2(— +  °°) by a well-known theorem of Fourier transform theory
and

[K f ] ' (со) =  к (co)f(co) (*)

where ~ denotes the Fourier transform. The mapping / —f  is an isomorphic 
operator (§2.11.1, Example 4) and hence the operator К  is unitarily equivalent 
to the multiplication operator defined by (*). By the same reasoning as in 
Examples 1 and 3, the spectrum is

A =  { <  со <  + “ }

but none o f  the values Я is an eigenvalue. In fact, if

(Я -£(ю ))/(ш ) =  0

then for any со, either Я—fc(a>)=0 or /(co )= 0. If / ^ 0  then /(co)= 0 only 
at a finite number of points {со*} for every finite interval. But it is impossible 
that

к (со) =  Я (constant)

except at most countable {cot}, by Fourier transform theory.
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Example 5. Let us consider the (right) shift operator Ur in / 2[0, =»]. If 
x = { x k; k =  1 ,2 ,. ..}  then

Urx := (0, xlt x2, xk_ls ...}.

If |A|>1, then A is a regular value since ||£/r|| =  l. It follows that there is a 
unique solution of the equation

( U - U r)x  = /  (*)

for every f f j 2 in the form of a Neumann series if |A|>1.
More particularly, by direct computation we can check that (*) is equiv­

alent to

Ax(n) —x (n — 1) = / ( « )  n =  1 ,2 , . . . .
That is,

A x (l)-x (0 ) = / (  1)

A x (2 )-x (l)  =  / (  2)

2x{k)—x(k — 1) =  f(k)

and if the initial condition is x(0) =  0, then

* ( ! ) =  y / 0 )

x(2) =  j ( f ( 2 ) + x ( l ) )  =  j f ( 2 ) + ~ f ( \ )

x(3) =  { ( / ( 3)+x(2)) =  1 / ( 3 ) + - ^ / ( 2 ) + - 1 / ( 1 )

x(k) =  j f ( k ) + - L f ( k - \ ) + . . .  +  - ^ Tf(2)+-^f( l ) .

Thus we have obtained the solution of ( * )  in an explicit form for |A|>1. 
However, from this form of (A/—E/,)-1/  we cannot see immediately that 
(A/— E7r)_1 is a bounded operator for |A| >1.

The result of the direct computation is also valid for |A|<1. In this case,

kk+1x(k) =  )}f(k)  +  Ak~ ' f { k - \ )  +  . . . + A/( 1)

and the right-hand side tends to the scalar product of {A4} and {/(&)}, while 
the left-hand side tends to zero for every {x(k)}£l2.
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We conclude that the range of XI— Ur is orthogonal to {A*; k =  1, 2, . . . }£/2 
for |A|< 1. In other words, (* )  has a solution if and only if {/(A')} is orthogo­
nal to {A11}; moreover, {Xk} is the solution of

If A=0, then there is a solution if and only if /(1 )= 0 . Hence the range of 
Ur is not dense, either.

For A =  ±  1 the situation is quite different. It can be shown that the range 
of I ± U r is dense in / 2 and I ± U r is 1-1; however, ( /± t / , ) _1 is unbounded. 
(For more details see 4.13.43.)

To summarise, there exists an inverse (XI—Ur)~1£B (yf)  if and only if 
|A|>1 and hence every A: |A|< 1 belongs to the spectrum of Ur.

Example 6. For the spectrum of an unbounded operator let us consider the 
operator

from {у : y"eL2[0, 1]; y (0 )= y ( l)= 0 } c L 2[0, 1] into L2[0, 1]. It is easy to 
verify that

for у ^ в  if and only if X——k2n2 (k —0 , 1 , 2 , . . . )  and for Х ^ к2л2 the 
equation

X y - D y  = /  / 6  L2[0, 1]

has the unique solution

Thus we conclude that the spectrum of D consists of eigenvalues {k2n; 
/c=0, 1,2,  ...} and every X y k 2n2 is a regular value, since the operator that 
sends /  into у  is an integral operator with kernel

where
(XI—U*) X =  б 

U *x:=  [х2, х 3, . . . ,х к+1, ...}.

d2
D r :=  и  у

Xy—D y =  в

У(0  =  -  s';” ;Т/Г /  sinA1/2( l - r ) / ( t ) d T +  j  sinA1/2( i-T )/(r )d t .

for t <  t

for t >  t

and this is a bounded operator by Example 2 in § 4.2.3.

sinА1̂ 21 . ч • , 1т/ ч

'• ’ ’ "  sin Л  . „ „ „  ,
----- • "fl/2~ Sin ^  ( I -Т)sin Я1'2
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4.3.2. The possible situations in which the linear operator XI— T  might not 
have an inverse {XI— Т)~1̂ В{Ж) are as follows:

(a) XI— T  is not 1-1;
(b) XI—T  is 1-1 but its range is not dense;
(c) XI—T  is 1-1 with dense range but the inverse operator is not continu­

ous.

Parts (a), (b) and (c) of the spectrum are pairwise disjoint subsets.

4.3.2.1 Definition, (a) The point spectrum of a linear operator T  is the subset 
of all X for which the operator I —T  is not 1-1, i.e. the elements of the point 
spectrum are exactly the eigenvalues.

(fo) The residual spectrum of a linear operator T is the subset of all X for 
which the operator XI—T is 1-1 but the range is not dense in Ж,  i.e.

{X I-T )  Ж  yé Ж.

(c) The continuous spectrum of a linear operator T  is the subset of all X for 
which the operator XI— T is 1-1 and has its range dense in Ж,  i.e.

{X I-T )  Ж  =  Ж

but the inverse {XI—T)-1 is not continuous.
We gave examples of each kind of spectrum in §4.3.1.

4.3.2.2 Theorem. The spectrum o{T) of a bounded linear operator Г is a bound­
ed closed subset of the complex plane and for Xdo{T),

\X\ «s lim sup ||T,”||1/'’ «г IIT I.
I t

Proof. We shall show that the set of regular values, the complement of the 
spectrum, is open. If X<{o{T) then

{ X + p ) I - T  =  {X I-T ) [ I+ p {X I -T )~ ']  (*)

and it follows from 4.2.3.1 that I+p{X I—T)~1 has a bounded inverse if

\p\ <  ||(A/—7’)-1 ||-1.

In this case there is also a bounded inverse for {X +p)I—T  by (*).
A more precise estimate of the radius of convergence of

R{X; T ):=  Z ^ T k
k=0 A



4  O pera to r T heory 185

is

н а д  л и  ^  2 u r i  =  i  a + 1 * * + i
к = 0 \А\ к=О

with х=1/|Л| and як =  ||7',[_1||; к - 1 ,2 , . . . .  It follows from the elementary 
theory of power series that this is convergent for

|A| >  lim sup ||7’ЛЦ1/".

4.4 Operators with finite-dimensional range

As we saw in §4.1, the linear operators of a finite-dimensional space have a 
standard form of matrix multiplication. Similarly, the bounded linear opera­
tors Г in a Hilbert space Ж  with the property that the range

{Tx; х£Ж }

is finite dimensional have a common standard form.

4.4.1. We begin with some important examples.

Example 1. Let hk, gk; k = 1,2, . . . ,N  be piecewise continuous functions in 
the closed finite interval [a, b] and

k(t, t) = 2  V O & C O -
k=1

Then the integral operator
b

K f :=  J  k(t,  t ) / ( t )  dz
a

has an IV-dimensional range. In this case K —K{t, t) is called a degenerate 
kernel.

Example 2. Let {ek; к — 1, 2, ...} be an orthonormal system in a scalar prod­
uct space Ж. Then the operator

FNf:= 2{f\ek)ek
k = 1

has an A-dimensional range.

Example 3. In a reproducing kernel Hilbert space Ж , if we order the sample 
{ / ( A ) ;  k =  ], 2, ..., n} to every /£ Ж ,  then a bounded linear operator is 
obtained with «-dimensional range.

13 M áté
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The common structure of the operators in these examples is as follows. Let 
Жх. Жг be Hilbert spaces and let

{акеЖ,\ k  =  1, 2 , N} {Ъ&ЖЛ\ £  =  1 ,2 ....... N}

be linearly independent elements. Define

( 2 ß t ®  K ) f  := Z  ( / I ak)bk / 6 Ж .
k =1 k=1

Then
N

2  «к®ьк
k = l

is a bounded linear operator from Ж, into Ж2 with finite-dimensional range.
We shall show that this is a common representation for every operator 

with finite-dimensional range.

4.4.1.1 Theorem. If Г is a bounded linear operator from Ж  into Жг with 
finite-dimensional range, then T has the form

2  ак®Ьк ак£Ж„ Ьк£Ж3.
k =  1

Remark. This representation is not unique, as can be seen from the following 
proof.

Proof. If T has a finite-dimensional range and {bk\ k = 1,2,  ..., N )  is an 
orthonormal basis in the range of T, then

T f = 2 « kbk /еж ,
*=i

where ak=(Tf\bk) are continuous linear functionals of Ж, since Г is a continu­
ous linear operator. Hence by the Riesz-Fréchet Theorem (2.8.1.1) there is a 
unique акеЖ | such that

«* =  (Tf\bk) =  (f \ak).

Remark. In §§ 4.7 and 4.8 we shall define operators in the form of infinite sum

2  a k ® Ьк
k =  1

with 11̂ 11 =  11̂ 11 =  1 and as important classes of operators.
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4.4.2. Let us assume that A^O and f £ H  are given; our next task object is 
then to solve the equation

Л у - Т у  = f  (*)

in the case of T  with finite-dimensional range. If

T =  2  a k ® b k
k  =  l

where {ak, k —l , 2 , . . . , N }  and {bk\ k = l ,  2, ..., N )  are linearly independent 
vectors of the Hilbert space Ж , then equation (*) has the form

* y - 2  (у\ак)ьк =  f  ( * * )k = 1
and hence

у  =  y / +  2  *ikbk

and we have to find {qk; k = l , 2 , N )  such that (* )  is satisfied. 
Substituting this form (of y)  into (**), we obtain

f+A 2  ПкК- 2  iy /+  2  htb\ak) bk= f
f c = i  k = l V A  , =  i  I /

and hence

h k ~  2 ( bi\ak)>li =  y ( / | e j  к =  1 ,2 ,. . . .  N ,  (* * * )
i=l Л

since {bk; k = l , 2 , . . . , N }  are linearly independent vectors.
It follows from these considerations that (* * * ) and (*) are equivalent 

equations in the sense that у £ Ж  is a solution of (*) if and only if

У = y /+  2  4kbk A^ 0
A k  = i

where {rjk; k —l , 2 , . . . , N )  is a solution of ( * * * ) .
We have also obtained the counterparts of 4.1.1.3 and 4.1.1.4:

4.4.2.1 Theorem. If A^O belongs to the spectrum o(T)  of T, then A is an 
eigenvalue. T  has at most N  different eigenvalues.

A—0 always belongs to the spectrum, since the finite-dimensional range of T 
cannot be dense in the infinite-dimensional Ж.

If A is an eigenvalue, then (*) has a solution if and only if f  {Al — T*)x .

Remark. For the proof we have to take into consideration also 1.8.21 and 
that 4.1.1.4 is valid for every linear operator with finite-dimensional range.

13*
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4.4.3. It is natural to ask how we can generalise the matrix representation of the 
finite-dimensional operators to the case of an infinite-dimensional Hilbert 
space.

Let T  be a linear operator of the infinite-dimensional separable Hilbert 
space Ж,  let {ek} be an orthonormal basis in Ж  and

alk =  (Te\ek) xk =  (x\ek).

Then the matrix representation of T  is the matrix multiplication

a l l  a 12 a lk X 1

&zi o22 • •• ••• x-i

ßn  ai2 ... aik ...) xk

and this means that Ax is equal to the unique у £ Ж  satisfying

(*)

O kt) =  2  akjxj-
j =i

Example 1. If Ur is the shift operator given in Example 5 of § 4.3.1 and {ek} 
is the standard orthonormal basis then

{Uret\ek) =  {J
if к =  / + 1 
if к i + 1.

Hence the matrix representation of U, is the matrix multiplication

'0 0 0 . . Л Г*,'
1 0 0 ... x2
0 1 0 . . .  л:3
к: :,

Example 2. Let К  be an integral operator on L2(a, b) with kernel 
k Q J ([a, b\ X [a, b]). Then

ь ь
aik =  (Ket\ek) =  /  /  k(t, t)<?,(tK ( í) dr át

a a

and aik are the Fourier coefficients of k = k ( t ,  z) with respect to the orthonor­
mal basis in L2([a, b]X[a,  b]),

'I'íÁU r) =  et(z)ek(t)

(see 2.14.47). It follows that the matrix representation has the property

2  2  \ Ы 2 =  /  /  \K(t, T)|2drdi <oo.
k = l i=l ' n
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Several operator-theoretic properties remain valid if we turn to the uniform 
limit of operators with finite-dimensional range. These operators will be called 
compact operators.

4.5.1. The compact operators of a Hilbert space Ж  form a closed subalgebra 
of В(Ж). In more detail, this statement has the following meaning.

4.5.1.1 Theorem, (a) If Tx, T2 are compact operators then TXT2 and ctTx+ ß T 2 
(а,/?£Ф) are also compact operators.

(b) If {Tn} is a sequence of compact linear operators and ||ГИ—Г ||—0 
then T is also compact.
Proof, (a) If A is an operator with finite-dimensional range then AL  and LA 
also have finite-dimensional range for every bounded operator L. In fact, 
by 4.4.1.1,

N
A =  2  ak®bk

k = 1

and hence, for every

L A f =  L 2  ( f \ ak)K =  2  ( f \ ak)Lbk := ( 2  ak®Lbk)f.
k=1 k=1 k = l

If T is compact, then there is a sequence {Г„} of operators with finite-dimen­
sional range tending to T  and

\\LTn-L T \\^ \ \L \ \ \ \T n-T \ \ .

Hence L T  is compact. A similar argument shows that TL is compact. It is 
obvious that if Tx, T2 are compact, so also is ocTx+ ß T 2.

Part (b) of the theorem follows from the fact that the ‘double’ closure of a 
subspace is identical to the closure. More precisely, for every e> 0  there 
exists N —N(eI2) such that || Tn— ГЦ < e/2  if u>7V(e/2). But for every T„ 
there is an operator Anm with finite-dimensional range such that \\Anm— T„\\ -=e/2 
if m=-M(e/2, n); hence \\Anm— T ||-=£. It follows that T is the (uniform) 
limit of operators A„m with finite-dimensional range and hence T  is compact.

Remark. A subalgebra A of В(Ж) with the property

TdA , Ь£В(Ж) => TL^A  and L T £A

is called a (two-sided) ideal of B(,?f). Thus we have also proved that the com­
pact operators form not only a subalgebra but a two-sided ideal of В (Ж).

4.5 Compact operators
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If Г is a bounded linear operator with finite-dimensional range, then T 
sends a bounded set into a pre-compact set. Indeed, {Tx\ х £ Ж }  is finite­
dimensional and in a finite-dimensional subspace every bounded set is pre­
compact, by 1.6.2.4, 1.7.1.3 and 1.7.2. We shall show that this is a characteristic 
property of compact operators.

4.5.1.2 Theorem. If Г is a compact operator, i.e. the uniform limit of opera­
tors with finite-dimensional range, and В а  Ж  is a bounded set, then 
{Tx; x£B}  is pre-compact.
Proof. We have to prove that if | |x j« ; l  then there is a convergent subse­
quence of {Txn}.

Let {Tk} be a sequence of operators with finite-dimensional range and 
Tk-*T. Then there is a subsequence {x^} such that {Tjx^} is convergent. 
Similarly, there is a subsequence {x(„2)} of {x^} such that {T2x(f )} is convergent. 
Continuing recursively, we have a subsequence {x®} of {x**-1)} such that 
{Tmx ^ }  is convergent for ти =  1,2,  . . . ,k .

The {x(nk); n ,k  —1,2, . . . }  may be arranged in a rectangular array. Consider 
the ‘diagonal sequence’

yd) y(2) xw
• * 1  5 •Л 2  9 * * *9 ■/Vfc 9 • • • •

For each k, the sequence {х£°; n =  k, к + \ ,  ...} is a subsequence of the kth 
row {x̂ k); и =1 , 2 ,  ...} and hence {Ткх ^ }  is convergent; let us say 
lim Tkx ^ = x m . We shall show that Tx\f is a Cauchy sequence and thus the 
proof is complete.

For all m and n,

||7х<Г>-Гх<">|| <  II(T—Tk) *£•>II +  IITk*£■>-Tkx<">II +  ИTk-  T ) x<">||.

Since Tk-+T and {Tkx ^ }  is convergent for every k, it follows from a stan­
dard estimation that the right-hand side of the above inequality is less then 
any e > 0  if  n,m >N (e).

Remark. The usual definition of compact operators is as follows.
The linear operator T  is called compact i f  the range {Tx; x£B}  of any 

bounded set В is pre-compact.

Later, in § 4.7.2, we shall show that the operators in a Hilbert space that 
send bounded sets into pre-compact sets are exactly the uniform limit of op­
erators with finite-dimensional range.

4.5.2. Several linear operators, connected with the solution of important dif­
ferential and integral equations, are the uniform limit of operators with finite­
dimensional range, i.e. compact operators of a Hilbert space.
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Example 1. The integral operator
ь

K x  := J  K(t, t ) x ( t )  d r

a

in L2[a,b] is compact if
ь b

I  f  \K{t, T)|2d r d i  <oo.
a a

In fact, if {ek(t)} is a complete orthonormal system in L2[a, b], then ek(/)е,(т); 
k = 1, 2, / =1 ,  2, ... is a complete orthonormal system in L2([a,fc]X[a, h])
(2.14.47). Hence if

r) = 2  Z  c*eiO)ek(t)k=1 i = 1
then

/  /  \Sn( t , z ) - K ( t ,  T)|2d/dr - 0
a a

if cik are the Fourier coefficients with respect to the orthonormal system 
{е*(0<?((т); * = 1 , 2 ,  ..., / =1 , 2 ,  ...}. That is,

Moreover,

and so

ъ b
ci k =  I  J  K( t ,  t ) e k{x)ei{t) drd/.

a a

M I  :=  / I /  K (t> T ) x ( T ) d i | 2 d i
a a

/  ( /  | A T ( i ,  T ) | 2 d x  J  | x ( t ) | 2 d r ]  d i  

a a a

=  /  /  | А Г ( / ,  т ) | 2 d r  d /  j *  | х ( т ) | 2 d r

a a a

| |S „ -7 q 2 <  /  /  |S„(/,t) - .£ ( / ,  T)|2d/dt.
a a

On the other hand, the integral operators with kernel Sn(t, t) are operators 
with finite-dimensional range, by Example 1 in §4.4.1.

Example 2. Let us consider the functions on [0, 1],

Ж  =  {y .  y"£L*[0,1]; y(0) =  y ( l )  =  0} 

and the differential operator Dy:=y"  from Ж  to L2[0, 1]. The inverse op-
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erator D 1 is compact. In fact, if

4 f ( í -  1)г 
G{t, т) — | ( T_ i )f

О <  т <  / 
( <  к  1

then it is easily verified that the integral operator
i

Gf:=  / G ( i , T ) / ( t ) d T  
0

is the inverse D~l and
i i

J  J  G(t, t)2 d/ dr <°°.
о 0

Hence G is compact, by Example 1.

Example 3. Let us consider a Sturm-Liouville differential operator

D y =  -^ - (a ( i) /)+ c ( /)y

with ‘smooth’ a(t), c( t) and let G(t, t) be the Green function of D. A slight 
generalisation of Example 2 gives us a continuous Green function G(t, t)  of 
D, i.e. the kernel of D~1. Then, by Example 1, the operator

ь
G f  := /  G(t, t) / ( t) dr

a
is a compact operator since

ь ь
j  J  G(t, t)2df dr <°°
a a

in this case.

Remark. The Green function G(t, t) of D is a continuous function satisfying 
the equation DG{t, t) = 0 if z ^ t  for any fixed t with certain boundary 
conditions. It can be proved that the integral operator with kernel G(t, t) 
is the inverse operator of D (Gohberg and Goldberg 1981, § IV.5).

Example 4. Let us consider the Green function G of the Dirichlet problem 

d2u d2u
w r + f t T - o  "(S) =  *

where S  is the boundary of an appropriate bounded domain of the (/, x)
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plane. Then the integral operator with kernel G is compact (Riesz and Sz Nagy 
1955, Nr 81).

Example 5. Let h = h (t)  be a real-valued continuous function on [0, 1]. Then 
the multiplication operator

T „ f:=  h(t) -f(t)

is a bounded but non-compact operator in L2[0, 1]. In fact, there then exists 
a subinterval /  such that |/i(r ) |> a > 0  for /£ /. For any orthonormal system 
Ы  in L2(f),

/  \h(t)ek( t ) -h ( t ) e m(t)\2dt >  ct2 f  \ek( t ) - e m(t)\2 dt >  2a2 
0 1

k, m =  1, 2 , __

It follows that the range {Thek; k —1 ,2 ,. . .}  of the bounded set {ek; 
k = 1,2, ...} is not pre-compact.

Example 6. It follows from the previous example that the convolution oper­
ator

K f:=  I  K ( t - T ) f ( r)dr 
0

is not compact in L2[0, for any
oo

к : j  |fc(f)| dt <°°.
0

Indeed, by the convolution theorem,

[ j  &(i—t) / ( t) dr) (со) =  fc(oj)f(co) 
о

where " denotes the Fourier transform, which is an isomorphic operator 
(§2.11.1, Example 4).

Example 7. The translation operator

= / ( í - t) r > 0

is not compact in L2[0, °°). In fact,

(UTf \ U t g) =  (f \g )  / ;g € L 2[0 ,~ )

and hence {Uzek; k = 1 ,2 ,. . .}  is an orthonormal system for any orthonormal 
system {ek; k —1,2, ...}. But any orthonormal system is a bounded non-
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compact set since

Ikll =  1 I k - e j  =  2 к, m =  1,2, —

Example 8. The identity operator /  is a non-compact operator in an infinite­
dimensional Hilbert space (consider the range of a bounded non-compact 
subset).

It follows from Example 8 that an operator T and its inverse T ~l cannot be 
compact at the same time in an infinite-dimensional Hilbert space. In fact, 
if both T  and Г-1 are compact operators, then T~1T = T T ~ 1= 1  is also 
compact, by 4.5.1.1 (a) which is impossible according to Example 8. Thus we 
have also obtained the following.

4.5.2.1 Theorem. 2 = 0  belongs to the continuous spectrum of every compact 
operator T.

4.5.2.2 Theorem. If T  is an operator in a Hilbert space with compact inverse 
T ~ \  then T  is necessarily an unbounded operator.

We have seen these phenomena in Examples 2-4; later, in §4.13.11, we 
shall use them for the investigation of spectral properties of unbounded opera­
tors.

4.5.3. We now consider the operator equation

X y - T y  =  /  A *  0 (*)

in a Hilbert space Ж  for compact linear T.
Let A be an operator with finite-dimensional range such that \\T— A\\<\/.\ 

and B = T —A ; then there exists (2 /— ß ) -1  and

by 4.2.3.1; moreover, 2I—T = ( U —B )—A and hence 

( U - T ) W - B ) - 1 =  I - A W - B )-*

where A(XI— B )-1 is an operator with finite-dimensional range (see the proof 
of 4.4.1.1(a)).

We can therefore solve the operator equation

х + А Щ - В ^ х  = / 2.9*0 (**)



4 Operator Theory 195

as in § 4.4.2 and there is a 1-1 correspondence between (**) and the original 
operator equation (*). If x  is a solution of (**), then

у  =  (X I-B )~ l x

is a solution of (*) and vice versa.
Thus we have obtained a method for solving equation (*) and, together 

with 4.4.2.1 and 4.5.2.1, a constructive proof of the following theorem.

4.5.3.1 Theorem. If A^O belongs to the spectrum of the compact operator T, 
then A is an eigenvalue. In this case a solution of the equation (*) exists if 
and only if

feN(Xl-T*)±.
A=0 is contained in the continuous spectrum.

4,5.4. A more precise description of the spectrum can be obtained from the 
following considerations. Let A0 be fixed and let us construct (**) for 
||Г— Л|| =  ||В||<|А0|; then (*) and (**) are also equivalent for |A|=-|A0| in 
the sense described in § 4.5.3. But, by 4.4.2.1, (**) has only a finite number of 
eigenvalues. Hence we obtain the following.

4.5.4.1 Theorem. Let 0 < r < ||7 j |;  then

{A: |A| Xdo(T)}

consists of a finite number of eigenvalues.
There is one more common property with the finite-dimensional case.

4.5.4.2 Theorem. If T  is compact then

N x:= {у: (XI—T )у  =  0}

is a finite-dimensional subspace of У/f for every A^O.
Proof. If Nx={0},  then the theorem is obvious. Now let N ^ { 0 } ' ,  then the 
restriction of T to Nx is XI since Ty=Xy  for y £ N x. Since the restriction of a 
compact operator remains compact, XI is compact on Nx and, by Example 8, 
this is impossible if N x is infinite dimensional.

4 .6  S e lf-ad jo in t com pact o p e ra to rs

The simplest operators are the projection operators since a projection opera­
tor P is equal to the identity on a closed subspace J t  and zero on the orthogo­
nal complement J t 1-. In this section we shall show that the building blocks of
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a self-adjoint operator T  are projection operators and thus even more informa­
tion is obtained on the spectrum of T, and hence on the solution of ).y— Ty—f, 
than in the general case of compact operators.

4.6.1. We shall show that the spectrum of a self-adjoint compact T  contains 
‘enough’ eigenvalues in the sense that the linearly independent eigenvectors 
form a basis for the range of T  as in the finite-dimensional case.

If A is a symmetric matrix, i.e. A* =  A, then

Я =  sup (x*Ax; x*x =  1}

(X is column matrix) is an eigenvalue. The same is essentially true for a com­
pact self-adjoint T.

4.6.1.1 Theorem. For a compact self-adjoint operator T, there exists an eigen­
value Я with |Я| =  ||Г||.
Proof. For any bounded self-adjoint T,

\\T\\ = Sup{\(Tx\x)\: Ml =  1}

as we saw in 2.10.2.2. Hence there exists

{*,}: |(7 X K )| -  И Г II

(and M„|| =  l); moreover, ||7 x J < ||7 j |.
Since T  is compact, there exists a convergent subsequence {Tx„}.
Let y —\\mTx„ and Я^О. If

Txnt-X x ni -  0,

then x„-*(l/X)y and hence T(l/X )y=y,  which means that Я is an eigenvalue 
with eigenvector y.

We shall show that Txn—Xxn-+0 if

Я =  lim (Txn\x„).
И-*- oo

In fact,

0*s ||7Х -Я х„||2 =  \\Tx„r +  U xnV -2 X {T x n\xn)

<  ( ||7 Т  +  |Я|2)М „Р—2Я(Гхп|хп) =  2|Я|2-2Я(7Х|х„)

and

since (Tx„|х„)-Я.
2|Я|2—2Я(7’хп|хи) -*■ 0

Remark 1. Я is real since (Txn\x„) is real for a self-adjoint T.
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Remark 2. It can be supposed that {(7x„|x„)} is convergent since if this is not 
the case then we replace {(7x„|x„)} by a convergent subsequence at the very 
beginning of the proof.

Now, the counterparts of Theorem 4.1.2.1 are the following.

4.6.1.2 Theorem. If T  is a compact self-adjoint operator on a separable Hilbert 
space Ж  then there exists a sequence {A*} of real eigenvalues

Ill'll l l̂l >  W  **•••** Ш  •••

with the only possible accumulation point 1= 0 .
Proof. By the previous theorem, there is a real eigenvalue /л with |А1| =  ||Г||. 
By the same procedure as we adopted in the proof of Theorem 4.1.2.1, we can 
find a sequence of eigenvalues {?.k} with

i îl 3» |A2| s» . . .s» |A|fc > . . .

since for the norm of the restricted operators,

m i  >\\тк\\ = 4 in +1ii *  =  1 , 2 , . . . .

There are two possible cases. If Tk—0 for a certain k, then Thas only a 
finite number of eigenvalues. If 7 ^ 0  for all k, then {|A*|} is a convergent 
infinite sequence and

\\Tym- T y nV =  l|Anym-A„yJ* =  A„+A^

if y k£Nk; * = 1 ,2 ,  ..., where Nk is the eigenspace corresponding to the eigen­
value ).k.

{>’fe} is orthogonal, by Theorem 4.1.2.1, T  is compact and we can suppose 
that II y j  =  1. Hence there is a convergent subsequence {Tyk}, which implies 
that the limit of {|Afc|} cannot be different from 0.

4.6.13 Theorem. Every compact self-adjoint T  can be represented in the form 

Tx =  2  *к(х\Ук)Ук х £ Ж  (*)4 = 1

where {At , y*; * =  1,2, ...} are related pairs of eigenvalues and eigenvectors 
with ||y»|| =  l.
Proof. By the procedure adopted in the proof of 4.1.2.1,

m m

X -  2(х\Ук)Ук^т  and T x -  2  k (x \y k)yk€J^m.*=1 k =1



I

Moreover,

m m m
T x -  Z  К(х\Ук)Ук =  T ( x -  Z  (х\Ук)Ук) = Tm{ x -  Z  (x\yk)yk)-

k = 1 k =  1 k=1
Hence

m

T x =  Z  Л к ( х \У к ) У к
k =  1

if Tm= 0. For the case where Tm̂ 0 for all m,

m m

IIT x - t 2  Ш У к ) У к \ \  <  lir j  ||x-д  (*1л)л|| <  \\TJ Ml =  |AJ lull

by 4.6.1.1 and 2.2.1 (* ) . Moreover, by Theorem 4.6.1.2, Am—0.

4.6.2. Theorem 4.6.1.3 can be formuled as the decomposition of a self-adjoint 
compact operator into projection operators. First we shall show that there is 
an orthogonal decomposition of Ж  into the eigenspaces of Г if Г is self- 
adjoint.

4.6.2.1 Definition. Let J tk, k = 1,2, ... be pairwise orthogonal subspaces of 
Ж,  i.e. Л ка Ж  and if z ^ J i z ^ J l j ,  i ^ j  then (z(|z^)=0. Then
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©*=1

is defined as the linear space of the sums

2  zk- J h U J 2 < °° zk£ J (k.*=i *=i

4.6.2.2 Theorem. If
=  {x: T  X =  0}

and JTk is the eigenspace corresponding to the Ath eigenvalue ?.k, then

/ = © 4k = 0

Remark. A similar decomposition to a finite number of eigenspaces can be 
seen in the proof of 4.1.2.1. Moreover, a more detailed form of 4.6.1 (* )  is

“ WO
Tx =  2  2  W y ki)yki

k = l  i=1
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where {yki; /= 1 ,2 ,  ..., k(i)}  is an orthonormal basis for Jfk (see also the 
proof of 4.1.2.1).
Proof. For the decomposition

oo k(i) o° k(i)

X  =  ( * -  2  2  (x \У ы ) У к д +  2  2  ( x \УкдУн
k = 1 i = l  k = 1 i = 1

where we have, by 4.6.1.3,
oo fc(0 OO k(i)

T { x -  2  2  Ш и д У ы )  =  T x - 2  2  Ш У ь д У и  =  о.
k =  1 i = l  * = 1  i = l

(*)

Moreover,

/ =  1, 2,
<X> )t(t) °° k(i)

( 2  2  (х\УкдУн ( * -  2  2  (x\yki)ykl\yj,)) =  0
fc=l i = l  * =  1 (=1

Hence (* )  is the unique decomposition

УР = Л © Л л
oo

where =  ®  since, by definition,
k = l

oo k(i) oo

2  2  (х\Уи)Ук£ ®  Л -k=l i — 1 k = l

4.6.2.3 Theorem. Let Pk be the projection onto jVk; k = 1,2, ... and let PQ 
be the projection onto the null space JP0 of T. Then

Proof. We can write

T =
*=1

«0
P k  =  2  P k ii = l

where Pki is the projection onto the one-dimensional subspace generated by 
y ki, and hence

PkiX =  (x\yki) y ki х£УР.

Now it is obvious from 4.6.1.3 that

со

Tx =  2  K pkx х£УР
fc = l

and we have only to show that

2 K P kk = 1

is a convergent series in В(Ж) (i.e. that it is convergent in the operator norm).
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Remark. The decomposition Pk into projections onto one-dimensional sub­
spaces is not necessary. In fact, it follows from 4.6.2.2 that

oo

X =  P0X +  2  P kx
k = l

where Pk is the projection onto Nk and hence 0 for i^ j .  It follows
that

T x =  2  K P kx  and ||x||2 =  i  \\Pkx\\*
k = 1 k = 0

and we can continue the proof as above.

The form

Z h P k
k = 1

of a self-adjoint operator T  is called the spectral decomposition of T.

Remark. The result of the previous theorem is essentially the same as 4.6.1.3 
but in a more elaborate form. However, the representation of T  given in 4.6.2.3 
will be the starting point for the spectral representation of the non-compact 
case.

4.6.3. We now pose the converse question: when will

2 h P k
k * l

be a  c o m p a c t  se lf -a d jo in t  o p era to r?

In fact, by 4.6.2.2,

iwiHli^*||2= i n «
* = 0  fc= 0

and so

II t x -  " i 1  KP,  i 2  =  I I 5  kPkX II2  =  i  \ m r k*\\2
k = 1 k = n k = n

<  |A„I2 Í  ||P**|*«s
k=n

Applying 4.6.1.2, we obtain

r - ”i V * | | - o .
fc=1 1
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4.63.1 Theorem. If

(i) Pk; k = 1,2, ... are projection operators with finite-dimensional range;
(ii) PiPj= 0 for iVy;

(iii) {Xk-, k = l ,  2, ...} is a sequence of real numbers and A*—0; 

then

T  =
*=i

is a compact self-adjoint operator of .
Proof. In this case,

II z h p kx II2  =  2  m p kx\\*< | я . | » м *
k= m  k=m

since

i w M l i ^ l H  i n «t=i *=i
and hence

2
k = 1

is convergent in the operator norm.

t = z x kpk
k = \

is a compact self-adjoint operator since the partial sums

Tn =  Z K P k
k = l

are self-adjoint operators with finite-dimensional range.

Remark. Later on we shall see that for complex {Xk; k = 1, 2, ...} the above 
series defines a compact normal operator.

4.6.4. By applying the results of § 4.6.2 to the solution of the equation

{XI—T )  у  =  f  X ^ O  (*)

a simpler method can be obtained for a self-adjoint T  than for the general case 
in § 4.5.3. When T  is self-adjoint, equation (* )  can be given in the form

ХРоУ+ Z  (Л~Хк)Рку  =  Z  P k f
* =  1 * = о

14 Máté
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since

X =  2  p kX.
k =0

Multiplying both sides by the projection Pn9 we have

a - k n) p ny  =  p j  n =  1, 2 , . . . .

If Я is a regular value, then there is a unique solution у  of (* )  for every ) \ Ж . 
In this case,

Pny  =  j z r j - p n f  и = 1 , 2 , . . .

and hence

У =  2  Pk У =  2  у Ц -  рЛ-
k = 0 k = 0 A— Ak

If X is an eigenvalue, i.e. А =  Яг, then there exists a solution у  of ( y )  if and 
only if /€Л л  by 4.5.3.1. In this case Р;/ = 0  and, on the same grounds
as in the case of a regular value,

is a solution of (* ).

4.7 Compact normal operators and the first step towards the 
representation of non-normal operators

In this section we shall extend the representation 4.6.1 (*) to compact nor­
mal operators, and we shall also derive a useful representation for any compact 
operator.

4.7.1. Every bounded linear operator has the following decomposition into 
self-adjoint operators:

rn I rr* nr _'T»*
T  =  ■■ Z - + i - ~ ■2 2

If T is also a normal operator, then this decomposition has the following prop­
erties in common with complex numbers.

4.7.1.1 Theorem. The bounded linear operator is normal, i.e.
J ’ J 1 *    J-'* rp

if and only if T = A + iB ,  where A and В are self-adjoint operators with

y =  Z - y K - P k f
k * i  A ~~A k
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AB=BA.  Then 

Pi oof.
TT* =  A 4  В2.

TT* =  (A + iB )(A —iB) =  A2+ B 2+ i(B A -A B )  

T * T =  (A - iB ) (A  +  iB) =  А2+ В 2 +  \ (А В -В А )  

and hence the following are equivalent:

(a) TT*=T*T;

(b) A B =B A \

(c) TT*=A 2+ B 2.

4.7.1.2 Theorem. If X is an eigenvalue of T, with a =  Re X, ß =  Im X, then a 
is an eigenvalue of A and ß is an eigenvalue of B.
Proof. If х^Ж  is an eigenvector of T belonging to X, then (applying also 
4.1.2.2)

Ax =  -^ (T +T *)x  =  -^(X+X)x =  (XX

and,

Bx =  -jr- ( T -  T*)x =  - L  (X-X)x  =  ßx.

Based on the connections between A, В and T  the following can be proved.

4.7.1.3 Theorem. Let T be a compact normal operator of a Hilbert space Ж . 
Then

T — 2 h P k
k =1

where {Xk\ k =  1, 2, ...} is the sequence of all eigenvalues of T and Pk is the 
projection onto Ж;к. (See, for example, Naylor and Sell 1982, §§6.10-11.)

4.7.2. T*T  is a positive operator for every linear operator T  since

(T*Tx\x) =  (Tx\Tx) >  0

and hence, by 4.6.1 (*) and the Remark following 4.1.2.1, we have, for every 
compact operator T,

T*Tx =  2  Bk(x\xk)xk
k = 1

where xk} are the related pairs of eigenvalues and eigenvectors of T*T.

14*
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4.7.2.1 Theorem. For every compact operator T,

T x =  2  Ик(х\Ук)хк х £ Ж  (*)
к=i

where xk is the eigenvector of T*Tandy* is the eigenvector of TT*, both belong­
ing to the eigenvalue p\.
Proof. Let y k be the eigenvector of TT* and

xk — Т *Ук И к *  0
Ик

then

{xk\ x j  =  — (T* уk\T* y m) =  - l — (yk\TT*ym)
И к Ит Ик Ит

=  ^ ( y k\ y j  =  0 if k ^ m .
Ик

Hence {л:,,} is also an orthogonal system.
If {.VjJ is not complete, then we add {zk} by the Gram-Schmidt process so 

that {v*} and {zk} together form an orthonormal basis for Ж . Obviously, 
{гк} с (Т * Ж )± and hence Tzk =  0 since

R(T*)X =  N(T**) and T** =  T

can be proved as ( * * )  in 4.1.1.4.
It follows that

Tx =  T ( 2  (x\xk)xk +  2  (x\zk)zk) =  2  (x\xk)Txk
к к к

=  2  ~ { х \ х к)ТТ*ук =  2  Ик(х\хк) у к. 
к Ик к

Remark. It follows from the representation (*) that every compact operator T 
in a Hilbert space Ж  (or mapping a Hilbert space Жл into another Hilbert 
space Жг) is the uniform limit of operators with finite-dimensional range.

4.8 Hilbert Schmidt operators

In this section we shall define operators in an arbitrary separable Hilbert space 
that are the counterparts of integral operators in L2[a. b] with square integrable 
kernel.
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4.8.1. Besides the (uniform) operator norm there is the natural norm 

m i , : = ( /  /  |*(f,T)|*dTdt)m
a a

for integral operators with square integrable kernel k. We learned in Example 
1 of §4.2.3 that ||Л1а>11 Л|.

Let us denote the set of such integral operators with norm || . ||2 by HS(L2).

4.8.1.1 Theorem, (a) HS(L2) forms a subalgebra of B(L2); i.e. if 7 \, 7’2€HS(L2) 
and a, ß are scalars, then a 7 i+ /? ra£HS(L2) and ЛЛС HS(L2).

( b )  в г 1 г , ц , < и г 1 | 1 1 И 7 ’, | | 2 .
(c) If T€H S(L2), then r*GHS(L2) and ||Г||2=||Г*||2.

(d) HS(L2) is a Banach space.

Proof For any /£ L 2[a, b],
ь b

TiT2f : =  j  k f t , s ) [ f  k f s ,x ) f { i ) d x ] d s
a a

b b

=  J  ( /  k1(t ,s )k2(s,x)ds] f(r)dz .
a a

Hence ТхТг is also an integral operator with kernel
b

k(t, t) =  J  k1(t,s)k.i (s,T)ds.
a

Moreover, by the Cauchy inequality,
ь ь ь

\ f  k f t ,  s)k2(s, t) d.s|2«; f  \k f t ,  r)|2 dr J  \k fs ,  r)|2dr
a a a

and hence k = k ( t ,  x) is also a square integrable kernel and (b) is also satis­
fied. (c) follows from Example 2 of §2.10.1 since

b b b b _____
J  J  |k(i, x)|2dxdi =  J  J  \к(т, i)|2dtdx.

a a a a

Finally, L2([a, b]X[a, b]) is a Banach space (see, for example, Example 6 
of § 1.6.1) and hence, from the definition of || . ||2, HS(L2) is also a Banach 
space, since || . ||2 is equal to the norm of the kernel in L2([a, b] X [a, b]).

An algebra that is also a Banach space with a norm satisfying inequality (b) 
of the previous theorem is called a Banach algebra. The Banach algebra HS(L2) 
can be described completely in Hilbert space terms.
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4.8.1.2 Theorem. The operator К  of L2[a, b] has the form

ь
K f = J  k(t, t) / ( t) dt

a

with square integrable kernel k = k ( t ,  т) if and only if

2 I M 2 (*)k = 1

for every orthonormal basis {ek).
The sum (*) is independent of the choice of the orthonormal basis and

p:fl, =  ( Í № k||2)1/*.*=1
Proof. For any orthonormal basis {<ek},

\\КекГ  =  2  \(Kek\ej)\*
j =i

since {Kek\ej) is the /th Fourier coefficient of Kek with respect to the orthonor­
mal system {ek} and hence

2  \\KekV =  2  2  \(Kek\ej)\*. (**)
k =  1 fc = l j =1

Now let К  be an integral operator. Then
b b

(Kek\ej) =  J  I  K(t,x)ek(x)ej(i)dxdt
a a

so that (Kek\ej) are the Fourier coefficients of k =  k (t, t) with respect to the 
complete orthonormal system е*(т)еД/); k = l ,  2, . . . , / =  1,2, ... and hence

2  2  \{Kek\ej)|2 =  /  /  |AT(/,T)|2dTdi < - .
* = 1> =1 a a

Conversely, if ( *  * ) is finite, i.e.

2  \\KekVfc = l
then by the Riesz-Fischer Theorem (see, for example, 1.6.1, Example 6) there 
exists &£L2([tf, b\X[a, h]) suchthat

ь b

(Kek\ej ) =  f  J  K(t, x)ek(x)ej(t) dt dt
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and hence

[Kek] ( t ) =  J K(t, r)et (r) dz
a

for the orthonormal basis {ek}. It follows that

[K f](0  =  /  K(t, T ) / ( t ) d t
a

for every /6 L 2[a, b] since

/  =  2  (f \ e k)ek
k =  1

and the operator К  is continuous.

4.8.2. We now define the subalgebra HS(^f) of В(Ж) for any separable Hil­
bert space Ж.

4.8.2.1 Definition. The linear operator T  of Ж  is called a Hilbert-Schmidt 
operator if

2  WTekVt=i

for an orthonormal basis {ek}.
If Г is a Hilbert-Schmidt operator, then

im i2 : = ( i l M 2)1/2
(c = l

is called the Hilbert-Schmidt norm. The set of Hilbert-Schmidt operators of Ж  
is denoted by H S (^ ).

4.8.2.2 Theorem. The Hilbert-Schmidt norm is independent of the choice of 
the orthonormal basis {ek} and

11ГЦ. =  ( 2  2\CTek\ej) \ y > m .
j*= 1 f c= l

Proof. Let {ek} and {rpk} be two different orthonormal bases in Ж. Then

II74II2 = 2  \(Tek\cpj) \2
7=1

since (T e t \q>j) is the /th Fourier coefficient of Tek with respect to the ortho-
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normal basis {cpj}. Hence

2  \\ТекГ  = 2 2  KTek\<pj)\>
fc=i fc=i j =i

= 2 2 1 № > ,) |2 = ^  ||r > j||
k = X j  = X j  =  1

and for ek =  (pk; k —1 ,2 ,. . . ,

2 \ \T (p k II2 =  2\\т*срк\\2.
k = l  fc= l

We conclude that

2  \\TekV =  2  WTcPkV.
f c = l  k=X

It follows from the definition of the operator norm that for every e > 0  there 
exists е0£ Ж  with ||<?0|| =  1 such that

m i  <  m e 0|| +e.

If we choose an orthonormal basis {ek} containing еаСЖ, then

l l ^ o P + г  <  2  \\TekV =  1|Г|Ц.
k = l

The important property of || . ||2 is that it is a Hilbert space norm.

4.8.2.3 Theorem. If Tu  T2£ H S(Jf), then

(Tx\T2):=  2  (T2*Tiek\ek)
*=i

is a scalar product. In particular,

\\T ||2 = ( 2  (T*Tek\ek)yi* = ( 2  \\Tek\\J’\
k = 1 * = 1

Proof.

{Tx\T2) := 2  (T iT iek\ek) =  2  (ek\T?T2ek)
k = 1 k = l

=  2  (TxT2ek\ek) =  Щ \ ) .
k = 1

(T \T )^ 0  and (Г |Г )= 0  if and only if T = 0 since

( T IT) := 2  (T*Tek\ek) =  2  M 2 =  Ш 1
k = l  1
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and it is obvious that the remaining axioms of the scalar product in § 2.1.1 are 
also satisfied.

4.8.3. We now consider the representation of a Hilbert-Schmidt operator T 
by an infinite matrix, as defined in § 4.4.3. It follows from the second part of 
Theorem 4.8.2.2 that 7’€HS(^f’) if and only if

2
1 i =  1

In fact, it can be proved that these are the Hilbert-Schmidt operators in / 2 
and every T£HS{34?) is unitarily equivalent to such an operator.

Every Те HS(^f) is compact and hence it also has a representation in the 
form

T x =  2  Ль(.х\ек)<рк х е Ж  (*)
*=i

where {ek} and {<p„} are orthonormal bases and л*—0 as was shown in § 4.7.2. 
In fact, if T„ is the operator

Г  -  [ Tek if к  «s n
nk  10 if k > n

then Tn is an operator with finite-dimensional range and

ЦТ- T j e  ||Г -Г Л||2 =  ( 2  И 2)1/2-
к = п -f l

We conclude that ||Г— 7J-*-0 and hence T  is compact. It follows from the 
representation (*) that

2  \\ТепII2 =  2  Un<PnV =  2  |Я„12/1 =  1 n =  1 n = 1

and hence a compact operator Г is a Hilbert-Schmidt operator if and only if

2  l-**l2 <o°k =  1

in the representation (*).
Based on these representations, the following can be proved.

4.8.3.1 Theorem, (a) HS(^f) forms a subalgebra of В{Ж).
(ib) H S p f)  with the Hilbert-Schmidt norm |[ . ||2 is a Banach algebra,
(c) If Т е H S(^f) then T*eH S(Jf) and ||Г||а=||Г*||2.

Remark. If Т еШ (Ж )  then L T eH S (jf )  also for LеВ(Ж )  and \\ЬТ\\г<  
сЦЕНЦГЦз, i.e. is not only a subalgebra but a (two sided) ideal in В(Ж).
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4.9 Positive operators

We defined positive operators in § 2.10.2. and also a natural ordering of self- 
adjoint operators similar to the real numbers. We now continue to demonstrate 
the similarities between real numbers and self-adjoint operators, as we did in 
§§4.1.2 and 4.7.2.

4.9.1. Referring to 2.10.2.3, a self-adjoint operator A is said to be positive if

(Ax\x) > 0  x£H.

In this case we also write A > 0, and for the self-adjoint operators A, В we 
define

В з» A if B —A >  0.

Throughout this section an operator means a self-adjoint operator. It is obvious 
that B > A  and 0«A  imply

Aß >  XA and B + C  >  A + C

for every operator C. Moreover, if A<0 and B ^ A  then /.B</.A  since in 
this case,

X((B—A)x\x) <  0.

The most important positive operators are the projectors (projection opera­
tors). For further examples see 4.13.7-8.

First we shall give the analogue of the well-known theorem that a mono- 
tonically decreasing sequence {a„} of real numbers bounded from below is 
convergent.

4.9.1.1 Theorem. If {T„} is a sequence of self-adjoint operators such that 

7"j s* T2 г»...>  Tn a»...;;» В 

then there exists Т£В(Ж) such that

\ imTnx =  T x  х£Ж .

Proof. By subtracting В and dividing by ||7j—B||, we may assume that 

0 7j, «s I n =  1 ,2 , . . .

which means that

0 <  (Tnx\x) <  (x\x) xZ.yP (*)
and so

||7J =  sup {(7 > |x ); ||*|| =  1} <  1.
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Moreover, also for n<m ,

0 <  {Tnx \x ) - {T mx\x) <  (x|x) (**)
and so

\\Tn- T J  c l .  (* * * )

We assert that {T„x) is a Cauchy sequence for every х £ Ж .  Applying 
2.14.38 to T —Tn—Tm and y  =  (Tn—Tm)x, we have

((Tn- T m)x\(Tn- T m) x f  <  ((Tn- Tm)x\x){(Tn- T mfx \(T n- Tm)x).

Moreover, by (**) and (***),

((Тп- Т тУх\(Тп- Т т)х)  c  ((Tn—Tm)x\(Tn—Tm)x)  c  (x|x).

Thus we have
\\Тпх - Т тх Г  с  ((Г„x |x )—(Tmx|x))||x||2 

and so {Tnx } is a Cauchy sequence for every х £ Ж  (see also 4.13.18). Let

T x =  \ \m Tnx  х£Ж .
Then

(Tx\y) =  lim (Tnx\y) =  lim (x\T„y) =  (x\Tу ) x, у^ Ж

and hence T  is self-adjoint. Moreover, it follows from (*) that

О с  ( T x \ x ) c  (x|x)

and so (I I ’ll c l .  It is obvious that Г is a linear operator.

Remark 1. There is a similar theorem for an increasing sequence {7),} of 
operators, with the same proof.

Remark 2. If T„x-*Tx for every х £ Ж  then we say that Tn — T strongly 
(or pointwise). If ||ГЯ —Г| |—0 then T„~*T strongly also, but the converse 
is not true.

4.9.2. Our main result in this section is the following.

4.9.2.1 Theorem. Let Г be a positive operator and

T0 = l  Tn+1 =  T„ +  ± ( T - T n*) n =  0,1,....
Then the sequence {T„} is strongly convergent.

If lim T„x:=Sx; х£Ж ,  then S > 0  and

S2 =  T.

S  is called the square root of T.



Proof. If T„—S, then

S =  S  +  y ( 7 - S 2)

and hence S 2= T  (see also 4.13.19). Moreover, Tm; m =  1,2, ... are poly­
nomials of T and hence

T„Tk — ТкТл п, к =  1, 2, . .. .

We may also suppose that Г <  J since for any self-adjoint T, Г < ||Г ||/. 
We shall prove that

Tn Tn+1 з» 0 n =  1, 2, ...

and the convergence will follow from 4.9.1.1.
First we shall prove that I —T„ is a polynomial of I —T >  0 with positive 

coefficients. In fact,

I - Tl = j ( I - T )  ( * )

and

I - T n+1 =  I - T n- ~ ( T - T 2)

= I - T „ ~ [ ( I - T * ) - ( I - T ) ]

=  ( / - r j [ / - i - ( / + r „ ) ] + I ( / - r )

=  i - ( / - r „ ) 2+ - i ( / - r ) .  (**)

Now, if we suppose that I — T„ is a polynomial of I — T  with positive coeffi­
cients, then obviously (I —T„)2 also has this property and hence I —T„+1 is 
also a polynomial of I—T  with positive coefficients, by induction.

It also follows from (*) and (**), by induction, that

I - T n+1 /  n — 0, 1, ...

and hence Tn+1 >0 . Finally, also from (**),

Tn- T n+1 =  (I - T n+1) - ( I - T „) -  ± [ ( I - T ny - ( I - T n̂ y ]

=  ^ [ ( i - T n) + ( i - T „ - 1m - T n) - ( i - T n_1)].

In view of (*), it follows that Tn—Tn+1 is also a polynomial of I —T  with
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positive coefficients and so

Tn- T n+1 >  0
(see 4.13.20).

Remark. It can also be proved that the square root S  is unique if it is required 
to be positive.

The operator S  is called a commutant of T  if

ST  =  TS.

4.9.2.2 Definition. An operator S  is called a bicommutant of T  if

T L  =  LT  implies SL =  LS ЬеВ(Ж).

We note that if S' is a bicommutant, then it is also a commutant of T.

Remark. The usual definition of the commutant is a little different. The corn- 
mutant of T is called the set У  of all operators such that

ST =  T S  s e y

and there is a similar difference between the usual definition of the bicommu­
tant and that given above.

It follows from the recurrence formula for the construction of the square 
root that if S 2= T  then

ST  =  T S

and we also have the following theorem.

4.9.2.3 Theorem. The square root S  of a positive operator Г is a bicommutant 
of T.
Proof. If L fB ( je )  and L T —TL then

LTn+1 =  LTn+ ± ( L T + L T * )

and hence LTn+1=T „+1L  if LTn—T„L. But it is obvious that LT0—L I=  
=  IL = T 0L. We conclude that each Tn; n = 1,2, ... is a bicommutant of T  
and hence we also have

S\ Sx  =  lim T„ X.

4.9.3. As an application of the results of the previous subsection, we give the 
analogue of the multiplication law of inequalities for positive operators.
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4.9.3.1 Theorem. If AB—BA then

A >  О, В з» 0 => ylB S’ 0.

Proof. Let S  be the square root of B\ then

(ABx\x) =  L4SSx[;t) =  (5Л5х|х) =  (st5x|5x) >  0.

4.10 In v arian t subspaces and p ro jec tion  o p e ra to rs

To every invariant subspace J Í  of an operator T  we can construct a projector 
PM, as we saw in § 2.10.3. There is an intimate connection between T  and 
the family of projection operators of all invariant subspaces of T.

4.10.1. There is a certain commutation relation between T and the projector 
Pjc of an invariant subspace J t of T.

4.10.1.1 Theorem. Pm is the projector of an invariant subspace J l  of T  if 
and only if

TPM =  PMTPM. ( * )

Proof. It follows by definition (see §2.10.3) that

Л  =  {Рм х', х£Ж ).

If Л  is an invariant subspace of T  then TPм х ^ Л  and hence PMTPMx =  
=  TPM X for every х£Ж .  If Л  is not an invariant subspace, then there exists 
х^Ж  such that ТРм х $ Л  and hence TPMx APM TPMx.

4.10.1.2 Theorem. If Л  is an invariant subspace of T, then the orthogonal 
complement Л x is an invariant subspace of T*.
Proof. By the previous theorem, Л  is an invariant subspace of T if and only if 
TPm =Pm TPM and, passing to the adjoint operators, we obtain

Pm T* =  PMT* PM.

From § 2.10.3, we see that

Ъ  =  I - Р м  X

and substituting into ( * * )  we obtain

V - P m ^ t * = ( I - P ^ ) T * ( I - P M±)
and hence

°  =  Рм ^ * Р ^ ~ Т * Р ж±.

(*  * )
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Now let Г be a self-adjoint operator and let J Í  be an invariant subspace of T. 
Then it follows from the previous theorem that the orthogonal complement 

is also an invariant subspace of T  and hence we have

TPm =  P «T
instead of (*).

4.10.2. There is a natural partial ordering of projection operators:

Pm  ^  Pjt if f  Р м Ж  c  P jf Ж

i.e. the range of Pm is a subset of the range of Pjr- 
In 2.10.2.4 we defined an ordering for arbitrary self-adjoint operators T, S :

T * s S  iff S —T  >  0.

We shall show that these two kinds of ordering are the same for projection 
operators.

4.10.2.1 Theorem. For the projection operators Pm , Pm the following are 
equivalent:

(i) РЛ Ж  3  РМЖ

(ii) РЛ РМ =  Рм 

(ifi) Pjf—Рм >  0.

Proof. It is obvious that (i)-o-(ii). If РЛ РМ=РМ then

(Ру~Рм)2 =  Pjt~Pm

and hence PX —PM> 0. Conversely, if PX —PM^ 0, then

1 - Р л ^ 1 - Р м
and hence

\\{1-Рл )Рм х Г  =  {{1 -Р л )Рмх\Рм х) <  { {1 -Р м)Рм х\Рм х) =  0.

Hence we conclude that
(1—РЛ)Рм — 0

4.10.3. The most important and frequently used properties of projections, 
connected with their ordering, are as follows.

4.10.3.1. Suppose that {PM} form an ordered set. Then

{I~P m)Pm =  { P'  Pm
if  Рл  >  Pjt 
otherwise.

i-e- Рм~РлРм-



216 Hilbert Space Methods in Science and Engineering

4.10.3.2. If Pa*sPb*sPc<Pd then

( P  - P \ ( P  - P \ = { P » ~ P “ i f  P ° = P C a n d  p b  =  p i
{ld lc){Fb Fa) to otherwise.

The proofs of these theorems are obvious. A more serious property is the 
following.

4.10.3.3. If Pv 5» Pu then Рж—Рм is a projector onto

рл ж ® рм ж

i.e. onto the orthogonal complement of Рм Ж  in Pv Ж.
Proof. By 4.10.2.1 (see also 4.13.42),

and P ,~ P m is self-adjoint. Hence Pr Pm is a projector. Let SP be the 
subspace corresponding to PX—PM by 2.10.3.1; then

P/r — (Рг~Рм) +  Рл and (Pjr~Pjt)Pjt — 0.

*4.11 Non-compact self-adjoint operators

The spectral representation of a compact self-adjoint operator T  is based on 
the existence of an orthonormal basis in Ж  consisting of eigenvectors of T. 
However, in the case of a non-compact self-adjoint operator T  it may occur 
that there is no eigenvalue at all, as we have seen in Example 1 of § 4.3.1 and 
Example 5 of § 4.5.2.

In this section we shall introduce an operator-valued Riemann integral and 
show how the spectral representation of compact self-adjoint operators can 
be extended to the non-compact case.

4.11.1. The spectrum of a compact self-adjoint operator T  consists of {0} 
and eigenvalues in the interval ( —||Г||, +  ||7j|) of the real line. Moreover, 
the spectral radius is ||7j| since there is an eigenvalue A with |A| =  ||7j| for a 
compact self-adjoint T. The spectrum of a non-compact self-adjoint T  is 
also a non-void subset of (— ||T||, + ||7j|); however, it may happen that there 
are no eigenvalues.

An introductory result is the following.

(Рг~РмУ — Рлг+Рм~2РгРм — Pjr — Рм

РЛ Ж =  РМЖ®£Р
since
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4.11.1.1 Theorem. If T is a self-adjoint operator of Ж, then Я is a regular value 
of T  if and only if there exists (£ > 0 )

Ц ( Г — A / ) j c | |  >  хаж .

The proof can be found as exercises in 4.13.22 and 4.13.23.

4.11.1.2 Theorem. Let m and M  be the lower and upper bounds of T  (see 
2.10.2.5); then o(T) is a non-empty subset of the interval [m, M ]. Moreover, 
m ,M £o(T).*
Proof. If X—a+iß ,  then

\\(T-M )x\\2 =  (Tx—!xx—ißx\Tx—a x —ißx) =  ||7x—ax||2+/?2||x||2 >  )32|]x||2

and hence Я is a regular value of T  if ß ^0. If Я> M, then

|КГ-Я/)х||||х|| >  \(Tx-Xx\x)\ =  |Я (х|х)-(1*|х)| >  (Я -М )||х ||2

and hence Я is a regular value of T. Similarly, if X<m  then Я is also a regular 
value. m ,M £ o (T )  can be proved as in Theorem 4.6.1.1.

4.11.2. In the case of a compact T, the spectral representation has the form

T =  2  Я*Л 4 € [ - im i ;  +ЦГЦ]. (*)
fc=1

In the non-compact case the spectrum may fill the whole of [m, M] as, for 
example, in the case of multiplication operators, and the analogue of (*) 
should be

M

T =  I  kdP(X).
m

What is the meaning of this integral when Р(Я) is a projection operator, also 
including О and I, for every Я and how should we choose {P{/)\ Xd[rn, M}} 
for Г?

Let us consider a partition
Я0 =  m <  Ях <  Я2 < . . . <  Я„_! < ¥  =  Я, 

of the interval [m, М]. For every such partition we have the ‘Riemann sum’

Z 4 P ( h ) - P ( h - i ) )k = 1
which is a well-defined self-adjoint operator.

The usual definition for a finer partition is as follows:

Я0 =  m X[ <  X'2 < . . . c  Х'т_х <  M  — Я„

* Obviously, M  is the supremum and m  is the infimum of the corresponding bounds.

15 Máté
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is finer than the original one if {лк} is a subset of {/.k}. Now we can give the 
following definition.

4.11.2.1 Definition. The Riemann sum

к —I

converges to the operator T  if for every s > 0  there is a partition of an interval 
[m, M] such that for any finer partition к = 0 ,1 ,  ..., m],

\ \ T - 2 K { P ( K ) - P ( K - J ) \ \ ^ e -
k = l

In this case we define
M

Т:= I  IdP(A).
m

Remark. There is also a strong version of this operator-valued integral:

b

Tx =  f  ).dP(k)x
a

if for every e > 0  and х^Ж  there is a division of [m, M]  such that for any 
finer division {l'k},

m

IIT x -  ZK (P (K )x -P (K _ i ) * ) | |  <  e .
k =  1

In the case of compact T,

P(X) =  2  Pkk*X

where Pk is the projection onto the eigenspace NXk, and it follows from the 
definition 4.11.2.1 of the operator-valued Riemann integral that

2 K P k = f  A d P ( i )

i.e. in this case,
M

T =  I  XdP(X).
m

Thus, the problem of spectral representation for a non-compact self-adjoint 
operator T  reads as follows.
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Find {Р(Я); — °o <  Я -= +°°} such that

(i) if Я •< ß  then P(á) <  P(ß), and P(m) =  0, P(M) =  /;

(ii) Р(Я)Г =  7Т(Я);
+ oo

(iii) Г =  /  Я 0Р(Я).

4.11.3. In the case of a compact self-adjoint P,

(Г -Я /)Р (Я )с  0 Ае[/я,М].

In fact, in this case.

(T —XI)P(X) =  ^ (Я ,-Я )Р , Z  Pk =  2  (Я ,-А )Р ,<  0
i = l  i j S i  A ,S A

where {Я,} are the eigenvalues of Г (with eigenspaces TV̂ ) and hence PtPk= 0 
for zV/r. Similarly,

(Г -Я /) ( /-Р (Я ))  =  2  (А,-Я)Р, >  о

since every projection operator is positive.

4.11.3.1 Theorem. If 4.11.2 (i) is satisfied and

(T —XI)P(X) < 0  ( T -Я /) ( /-Р (Я ) )  >  0 

for every Я, p£[m, M], then
M

P(X)T =  TP(X) and T =  J  XdP(X).
m

Proof. The commutation relation is an immediate consequence of

(T —XI)P(X) «г 0.

In fact, the product (T-XI)P(X)  is then self-adjoint and the product of the 
self-adjoint operators T—XI and Р(Я) is self-adjoint if and only if

(T -X I)P (X )  =  P(X )(T-X I)

(see 2.10.2 (ii)); hence P(X) and T  are also commutable.
For every partition of the interval [m, M],

( T - X ^ l X P i X ^ - P i X ^ ) )  =  (Т -Я ,„1/ ) ( / - Р ( Я ;_1))(Р(Я1.)-Р (Я 1._1)) >  0

and

& / - r ) № - P ( A , - l ) )  =  (X l I - T ) P (Я;)(P (Я,) — P (Я;_i)) >  0

15*
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since Р(Д() —PCAf-j) is a projection operator, by 4.10.3.3, and the product 
of two commuting positive operators is also positive (see 4.9.3.1).

It follows that

m  m
т -2  Ъ-1(Р(Хд-Р(Ь--д) = 2  cr-^niPiid-Pfo-ó) >  оi=l í=i

m  m
2  A,(J,(A 0 - p (Ai_1) ) - J ’ =  2  (Ai / - T ) ( P ( A i) - P ( A í_i)) >  о
1=1 i=1

and hence

m m
2 2 WWl - P i b - d ) -i=1 i = l

m
Subtracting 2  ••• from each side, we obtaini = 1

m
o < r - 2 V . № - W )i=1

<  1 ( Я !-Я 1._1)(Р(Яг) -^ (А ,-1)).Í = 1
Finally we shall shov/ that

m
I I 2 1 ( Я | - Я , _ 1) ( Р ( Я 4) - Р ( Я , - _ 1) ) | |  <  m a x f t - V O
t = l 1

and thus the theorem will be proved (see 2.14.43). In fact,

m m
( 2  ( Я , - — Я , _ i ) ( Р ( Я , ) — P ( Я ; _ j ) ) л г | x )  =  2  ( Я , - Я , _ 1 ) ( ( Р ( Я | ) - Р ( Я , _ 1 ) ) д г | д с )

i = l  1 =  1

m
<  тах(Я (-А ,_ 1) ( 2 ’ (Я>(Я,')-Р(Я1- 1))х|х) =  max (Я1-А ,_ 1)||х||2 

1 * = 1 1

since each member of the sum is positive and

5 ( а д - р ( я , _ 1)) =  /. ( * )
i=l

Finally, we apply 2.14.43 once more.

Remark. It also turns out in the proof that the ‘upper sum’ and the ‘lower 
sum’ have the same limit if the Riemann sums converge to an operator.

4.11.4. It follows from the results of the previous subsection, for the spectral 
representation of a self-adjoint T we have to find a set of projectors (Р(Я);
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Agi?} with the property 4.11.2 (i), that the operator T—XI is negative on the 
subspace Р{Х)Ж and positive on the orthogonal complement (I— Р(Х))Ж.

For this purpose we shall define the positive and negative parts of a self- 
adjoint operator. If |7j is the square root of T 2, then

T + : = ^ ( T + \ T \ )  T - : = ^ ( T - \ T \ )

are the positive and negative parts of T.
Now let us introduce the notation

Tx := T - X l

and let Px be the projection onto the null space Nx of Tx , i.e. onto 
Nx — {x\ Tx x = 0 } \  then 4.11.2 (i) is satisfied (see 4.13.26). We also have the 
following theorem.

4.11.4.1 Theorem. If Px is the projection onto

N i  =  {x: T l x  =  0}
then

Txp x <. o TX(I—PX) »  0

and hence we have the spectral representation
+ 00

T  =  /  X dP(X).
■— CO

Proof. It follows from 4.9.2.1 that |ЗГА| is the strong limit of polynomials of T 2 
and hence

TX\TX\ =  \TX\TX.

First we shall show that

TXPX = Tx and TX(I-PX) = Tt 
and secondly that Tf-^0 and Tx >0.

TfTx = 1(T + \T\)(T-\T\) = \ { T 2-\T\2) = 0

and hence Т^х£РхЖ  for every х £ Ж ,  i.e.

PxTx x  =  Tx x х £Ж .  (*)

It follows that PxTf is self-adjoint since Tf is self-adjoint and, from 2.10.2 (ii), 
that

PXTX =  T~XPX.
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We conclude that

T ,P k =  {T i  + T k )P k =  Tk Pk =  РкТк =  Т-к 
and

Тк{ 1 - Р к) =  П  + Т к —ТкРк =  п .

For the second part of the statement to be proved

P,\Tk\ =  Pk{ T i - T j ) = - P kT j  —- T l  
and

\Tk\Pk =  (T i-T~k )P k =  - T k Pk =  - P kTk =  —Tk .

Hence T i* s0 since from 4.9.3.1 it follows that Px\Tk\>0 .  Similarly, 
T i  » 0  since

0 ^  \Tk\ { I - P k) =  {T i  —Tk ){I—Pj) =  T i - T - k + T k Pk =  T i .

*  4.12 Functional calculus

The spectral representation discussed in the previous section can be extended 
to real-valued polynomials of a self-adjoint T  and more generally to all bicom- 
mutants of T, and thus a useful isomorphism is established between the real­
valued continuous functions on the spectrum a(T)  and certain subalgebras 
of B{Sf).

4.12.1. Let Г be a bounded self-adjoint operator of B(yf)  and if

q{X) =  2  clkXk
k =  0

then

q{T) := 2  *kT k
k =  0

where T°:=I. Then we have the following.

4.12.1.1 Theorem.
M

T k =  J  XkdP{X) k =  0 ,1 ,2 , . . . .
m

More generally,
M

q{T) — J  q{X)dP{i) (*)
m

where {P(A)} is the set of projection operators defined in 4.11.4.1. Moreover, 

II9 СОII <  sup {|#(2)|; bí[m, M]}. (**)
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Proof. Since / ’(Aj)—P ^ i- i ) ;  i —1, 2, . . . ,m  are projection operators,

m m

( 2  Ai(iJ(Ai)-P(Ai-1)))k = 2  ;.?№■)-/4V ,))
i — 1  k  =  1

and hence this is also valid for the limit. Expression (*) then follows from the 
linearity of the integral.

m m

{ 2 q W ( ^ - P ^ i - x ) ) x \ x )  =  2  ч Ш Р {1 д - -Р (М -х ) )А х )
i = l  i = 1

< s u p { |? (A)|; Я6<7(Г)} 2 ( ( A W -P (A j_ 1))x |x )H W I2sup|<7(A)|
i= 1

(see also 4.11.3 (*)). It follows that

m
| | Д ^ | ) № - т - 1)) ||^  sup{lí(A)|; Xía(T)}

by 2.14.43, and hence this is also valid for the limit of Riemann sums.
Now let /= / ( 2 )  be a continuous real-valued function on [m, M\. Then 

there exists a sequence of polynomials q„(A) such that qn->-f uniformly on 
[m, M ], i.e.

Ü Í.-/1 I- - o

and hence, by the inequality (**), there is a self-adjoint operator f (T )  such 
that

\\qn(T )-f(T )\\  -*■ 0.

4.12.1.2 Theorem.

f ( T ) =  f  /(Я) dP(Á).
m

Remark. For any function /  on [m, M] this integral is defined as the limit of 
Riemann sums

5  / ( ; , ) № ) - a a ^ ) )
i = 1

described in 4.11.2.1.
Proof. As in the previous theorem, we can show that

m
IД  (?W -/(A ,))((P (A .)- R(Ai_j))x|x)| ^
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and hence
м

Яп(Т) -  I  fß )d P (Ä )
m

in the operator norm.
By methods very similar to what has been used in the previous theorems, 

it is easy to prove the following.

4.12.1.3 Theorem. If Т£В{УГ) is a self-adjoint operator with upper bound M  
and lower bound m, /  and g are real-valued continuous functions on [m, M] 
and a is a real number, then

(i) If /(A )> 0 on [m, M], then Д Г )s>0;

(ii) W ](T )  =  af(T);

(Hi) ( f + g ) ( T ) = f ( T ) + g ( T y ,

(iv) ( fg ) (T )= f (T )g (T ) ;

(v) f ( T )  is a bicommutant of T .

The functional calculus above can be extended to certain measurable func­
tions and to complex-valued functions on [m, M\ (Riesz and Sz Nagy 1955, 
Nr 129). One of the important features of this extension is that every bicom­
mutant of T  can be given in the form f {T )  with such functions / .

4.12.2. The spectral representation of a self-adjoint operator can be applied 
to the solution of the equation

also in the case of non-compact T.
If p n—p n{t) is a sequence of polynomials uniformly convergent to y = l / t  

in [m, M ], then by the result of the previous subsection, p„(A)f tends to the 
solution of the equation (*) when A =X I—T  and Я is a regular value.

Example. Since

7 “  м Ъ т )  = г7 ч Ъ ?  r * °  (**>
we have

1  =  r if |1—ri| <  1t k = 0

1.x—T x  =  f (*)
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and hence the sequence of polynomials

Pn(t)'-= r 2  ( l - r t )k n =  0, 1, 2, . . .

tends to 1 /i uniformly in every closed subinterval of (0, 2/r).
By the result of the previous subsection, if m > 0  and M~=2/r (i.e. r< 2 /M )  

then {pn(A)f} tends to A~^f, the solution of (*) if A =X I— T  and X is a regu­
lar value.

Remark. It is easy to verify that there is also a recursive form of the sequence 
{A„} of operators tending to (XI— T)~1:

A  =  rl A + i =  (I-r(XI-T)]An+rI.

4.13 Problems and notes

04.13.1. Prove properties (i)-(v) of §4.1.1.

04.13.2. Prove that if Ж is finite dimensional, Т£В(Ж) and Tx=0 only if 
x —0, then

(a) T is onto
(b) Г -1 is bounded.

4.13.3. It follows from the considerations in §2.11.2 that if U is a unitary 
operator from one Hilbert space Жх onto another Жг, then

(i) {x„} is convergent in Жх if and only if {Ux„} is convergent in Ж,\
(ii) Л<^ЖХ is compact if and only if U Jl  is compact;

(iii) Т^В(ЖХ) has an inverse Т~1£В(Ж1) if and only if

UTU~l =  ити*£В(Жг)
has an inverse

(UTU*)-1 = ит~1и*ев(ж2).

o4.13.4. Show that a linear operator of l 2 is a Hilbert-Schmidt operator if 
and only if there exists an infinite matrix A with elements aik obeying the 
condition

2  2  laJ 2 <o°
i —1 k =1

such that Tx—Ax in the sense of §4.4.3.
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o4.13.5. Find an infinite matrix which represents a bounded linear operator of 
/ 2 that is not a Hilbert-Schmidt operator.

о 4.13.6. Does there exist a compact unitary operator other than Г=0?

о 4.13.7. Show that a linear operator Г of a finite-dimensional space Ж  is 
positive if and only if its matrix representation is positive definite, i.e.

n n
2  2  aikxi*k >  о*=1 fc=1

where {x,}; /= 1 ,2 ,  ..., и is an и-tuple of complex numbers.
Give the condition for the kernel of an integral operator in L2 [a, b\ to be a 

positive operator.

04.13.8. Show that the multiplication operator

[T f ] ( t ) := h ( t) f ( t )  /£ L 2[a, b]

where h = h (t ) is a continuous function, is positive if and only if h(t)s*0 
for every t£[a, b],

04.13.9. Show that Theorem 4.7.2.1 is also valid if Г is a compact operator 
from Жк into another Hilbert space Жг.

04.13.10. Show that every operator T  in the form

Tx := 2 ” **СФг*)Лi

where ||x j  =  | |y j  =  l ( k = 1 ,2 ,. . .)  and xk, yk are given vectors and a*—0 
is a compact operator.

4.13.11. Let D be an (unbounded) linear operator and let л0^ 0  such that 
(207—D)_1 exists as a compact operator of Ж. This is the case for many 
‘symmetric’ differential operators. Prove that

D y =  2  акКУ У£®(Е>)
k = l

where Pk; k = 1, 2, ... are the projectors onto the eigenspaces of D. How do 
you find {ak; k —1,2, ...}?

o4.13.12. Prove that every compact projector P  has a finite-dimensional 
range.
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4.13.13. Prove that the range of a compact operator is a separable subspace 
of Ж  (in the case where Ж  is non-separable).

4.13.14. Let M  be a subset of a Hilbert space Ж . Then M t <zM is called the 
e-net o f  M  if

(a) J f  consists of a finite number of elements;
(b) for every x d J i  there is an element zd.Mt such that ||jc—z||<e. 
Prove that if M  is compact, then we can find an e-net M c<zM for every

e>0.

4.13.15. Prove that the range of a compact operator T  is ‘almost finite di­
mensional’ in the sense:

‘For every e> 0  there is a finite-dimensional subspace M ez Ж  such that 
for every х £ Ж ,

inf {IIm—Tx \\; m £M )  <  s ||jc||.’

o4.13.16. Prove that if (AB)-1 and В -1 exist then A-1 also exists. Give A-1 
in terms of В and (AB)-1.

4.13.17. (a) Give the square root of a multiplication operator 

[Г х](0 :=  h(t)x(t) x£L2( - ° ° ,  + = )

where h(t) is a continuous function with h ( t ) > 0 for every t.
(b) Give the square root of a positive definite matrix A (i.e. find the matrix 

В such that B2 =  A).
(c) Give the square root of a Hilbert-Schmidt operator in L2[a, b]. 

o4.13.18. Show that if

Tl T2 > . . . »  Tn В

for the self-adjoint operators В, T„; n = 1, 2, ... then the (numerical) sequence 

{(Г„х|х)}; х £ Ж  n — 1,2, ...

is convergent.

4.13.19. If T, Tn, S, S„\ л = 1 , 2, ... are bounded linear operators of a Hilbert 
space Ж  and

Tnx - + T x  S„x -* Sx х £ Ж
then

S„ X  -*■ T  Sx х£Ж .
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This theorem follows from the inequality

И Г А х - Г З Д  <  ||r„S „x-r„S x || +  ||rnS x -r S x ||

^  \\Tn\\\\Snx -S x \ \  +  \\TnS x -T S x \\

since II T„\\ is bounded by the uniform boundedness principle (see the Appendix 
§ A.2.2.1).

How can we prove the theorem without referring to the uniform bounded­
ness?

4.13.20. If T^O, then T">0; n —2 ,3 , . . .  also. In fact, for n=2k,

(T2**!*) =  (Tkx\Tkx) >  0

and for n = 2 k + l ,

(T2k+1x\x) =  (T T kx\Tkx) >  0

since T >  0. It is easy to show that the sum of positive operators is positive. 
Hence if 7 V 0  then p(T)s*0  for every polynomial p with positive coeffi­
cients.

4.13.21. Prove that Г < /  implies T 2*sl. Is it also true that in this case,

T n^ \  n =  3 ,4 ,. . .?

o4.13.22. Show that if there exists an inverse for S£B(Ji?) then
there exists M > 0  such that

Find such an M.
I|S*H >  M\\x\\. (*)

4.13.23. Show that if 4.13.22 (*) holds for a self-adjoint S, then the range of S  
is Ж  (i.e. 5  is onto).

4.13.24. If
m l  <  A <  M I m >  0 

for the operator A, then Л~1£В(Ж)  and vá-1 > 0.
Proof. By 4.11.1.1, А~1£В(Ж)  exists since A » m l  (m>0). Moreover, 
for a >M ,

(o d -A )n s*0 n =  1 ,2 ,. . .

by 4.13.20 (or 4.9.3.1) and, applying the Neumann series expansion,

A - 1 =  [ocI-(od-A )]-1 =  2  ~T+i W - A ) k >  0.
fc=o
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o4.13.25. A more precise statement about the operator A in 4.13.24 is the 
following:

M  m
Prove this!

4.13.26. Prove that if P (l)  is the projection onto

Лл+ := {x: T i x  =  0}

then P(X)<,P(p) for (See 4.11.4.1.)

4.13.27. Prove that if A is an nXn  matrix and Id o  (A) then

\ ^ ~  a kk\ <  2  \ a ik\ к  =  1, 2, ...
iVfe

(see 1.8.26).

o4.13.28. Find the eigenvalues and the corresponding eigenvectors of a pro­
jector. Find the spectrum of a projector.

4.13.29. Let T  be an operator with finite-dimensional range, i.e. T  has the 
form

Tx := 2  (x\ak)bk
k = l

where {ak, bk\ k = 1, 2, ..., n} are given vectors of Ж. Find ak, bk\ k = 1, 2, ... 
such that the spectrum a (T )=  {0}.

04.13.30. Does the Volterra operator

[771(0:=  /  ( 2  ак(1)Ьк(т))/(т) dr
о 1

have a finite-dimensional range?

04.13.31. Let A be an «Хи matrix with elements aik (/, k = 1, 2, ..., n). Let 
us consider the Hilbert space Жп of и-tuples of complex numbers with scalar 
product

n

( x l y )  : =  2  xkh
k =  1

and the operator defined by

у =  Ax. (*)
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Write the operator (* )  in the form

п
2  ak®K 

к = 1
where ак, Ьк£Ж„.

о4.13.32. Prove that the operators in В (Ж) with finite-dimensional range 
form a subalgebra of В{Ж')- Moreover, show that they form a (two-sided) 
ideal of В(Ж).

о 4.13.33. Prove that for any operator with finite-dimensional range,

И a*®b*||«= 2  II ak\\ II bkII-*=i *=i
Moreover,

\\a®b\\ =  ||a|| ||h||

where the norm on the left-hand side is the operator norm.

4.13.34. Let T  be defined as

T {x k) =  {5*Л*} {xk} e l 2

where {.?A} is a (finite or infinite) sequence of real or complex numbers.
(ű) What is the condition for @(Г) =  / 2?
(b) When is T  bounded?
(c) When is T  compact?
(d) Give the spectrum of T.

o4.13.35. Let Г be a bounded self-adjoint operator. Prove that

(a) T —XI <  0 if X >  И Г II;

(b) T - X I ^ O  if X —||Г||;

(c) lim sup ||T’”||1/" =  ЦЩ.П

о 4.13.36. Give a sufficient condition for C  such that

Л >  В => AC s*BC.

o4.13.37. If ß „ » 0 and | |ß „ - ß ||- 0 ,  then B > 0. Prove this!
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4.13.38. Find g~g(X) such that

M
T + =  J g(X)dP(X)

m

where P(/.), T ' , m, M  are as defined in § 4.11.

4.13.39. The operator T is called closed if xn-~x and Tx„—y  imply x<i3s{T) 
and Tx—y.

Examples.
(i) Every Т£В(Ж) is closed.

(ii) The differentiation operator in L2[0, 1] is closed. This follows from 
the following sequence of inequalities:

1 t t

J  \xn( t ) - x n( 0 ) -  f  y(r)dr|2di<; max {|x„( /) -* „ (() ) -  J  y(T)dr|2; f£[0, 1]}
0 0 0

=  max jj J  ^ - - ix „ (T )-y (r ) jd r j  ; i€[0, 1]|

<  /  dr

o4.13.40. Let L  be an unbounded linear operator with domain in the Hilbert 
space Ж. Also, let Т€ В(Ж) be a right inverse of L, i.e.

LT X =  X х4_Ж.

Prove that L  is a closed operator if the operator TL  is bounded.
This is the case for many differential operators.

4.13.41. If JÍ  =  SP ® J i  for the linear subspaces J l ,  У  and J f  of Ж, then 
we write

Se =  J Í Q J Í  and J f  =  Pf Q JÍ.

This means that

x^Hf iff x$.Jt and (x|n)=0 for every n £ J i \  
х £ Ж  iff x£JS  and (x |s )= 0  for every

о4.13.42. Prove that if РЛЖ^)РМЖ,  then Р^РМ=РМРХ , where Pv , 
PM are projection operators.
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4.13.43. Let Ur be the right shift in l2:

Ur{Hk} =  {0, b ,  &+i,

We shall show that Я=1 is in the spectrum of Ur. For every x :=  {ck} f j 2, 

( I -  Ur)x  =  {{x, •••}

and hence, if y .=  {t]k} is in the range of I —Ur, then

(*)

and so the range is a proper subspace o f  l 2. Moreover, if ( /— Ur) x = 0  then 
x = 9  and hence the inverse ( / — Ur)~' exists as a possibly unbounded, not 
everywhere defined operator. If

then

fl for к <  N
~ lo for к >  N

1 for к =  1
rjk =  ■ — 1 for к =  N + 1

О elsewhere

for y = ( I —Ur)x. It follows that ( /—C/r)_1 is unbounded since ( /— Ur)~1y = x ,  
II j|| =  /2" and ||jc|| =  iV1/2, i.e. ( /— С/,)-1 sends a bounded set into an unbound­
ed one.

Finally, we shall show that the range of I — Ur is dense in l2. Let y £ /2 satis­
fying (*) and y N<íl2 satisfying ( * * )  for vV= 1, 2, .... Then, by easy calcu­
lation,

\\у+ 2*1кУк\\* =  12  ik\2+  2  M *
k =  2 * =  1 k  =  N + 1

and the right-hand side can be as small as we please if N  is large enough since 
(* )  holds and y £ l 2.

Thus we have proved that the range of I— Ur is dense in the subspace satis­
fying (* ).

Now let z £ /2 be arbitrary, and let e > 0  and M > 0  be sufficiently 
large that

where z:={£k). Then y :=  {rjk}, where

for к N
tik— — a/M  for N  <  к  «s M

0 for M  =c к

2 ч к =  о
к =  1

(**)
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has the property (* )  if

Moreover,

\ \ ^ - y V  =  ^ T ^ - W +  Z  \c k \2№1 k>M
and the right-hand side can be as small as we please if M  is large enough.

It can be shown by similar calculations that X— — 1 is also in the spectrum 
of Ur.

о 4.13.44. Let P ‘, Pr, P s be projection operators. Prove that

What happens when Prs»/>'> P V?

4.13.45. A linear operator Г of a finite-dimensional Hilbert space always 
has an eigenvalue and hence it has a (one-dimensional) invariant subspace 
(see §4.1.1). The existence of a closed invariant subspace for every linear oper­
ator of an infinite-dimensional Hilbert space Ж  has not yet been proved.

Now, let us suppose that a linear operator T  of the infinite-dimensional Hil­
bert space Ж  has a property which implies the existence of a (closed) invariant 
non-trivial subspace Л с ^ Ж  for T. Moreover, suppose that this property is 
inherited by the restriction of T  onto Л .  (Such a property might be, for 
example, that T  is compact or that T  is self-adjoint.) Let PM be the projector 
onto the (closed) invariant subspace J t ,  Then the set of invariant subspaces 
has the following properties.

(i) For every Л  there exists an invariant subspace Ж  such that

(ii) If (I— PM)z = 0  for every Л ,  then z= 0 .
(Property (ii) is equivalent to saying that the common part of the invariant 
subspaces is {0}.)

( p r _ p s
Р ' ( Р ' - Р ' )  =  I if P ‘ > P r >  P s 

if P' <  P'  <  P \

1 - Р м <  1 - P „ .

16 M íté

N

* =  Z  Zk-
k =  l
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Causal Operators

A fundamental principle of input-output systems is that the output depends 
only on the ‘past’ of the input. This is called the causality principle. The tran­
sition operators of systems satisfying the causality principle are called causal 
operators. The object of this chapter is to present a mathematical theory for 
causal operators. We shall investigate the fundamental properties of causal 
operators and the connections with other possible properties such as time 
invariance, passivity and stability.

5.1 Causal operators in L2-spaces

The values of a ‘time function’ x = x ( t )  could be real or complex numbers, 
matrices, functions etc, but in this section the values are supposed to be real 
or complex numbers only, since the formalism is simplified but all the main 
problems remain the same in this case.

5.1.1. The mathematical expression of the causality principle is as follows. 
Let Q be one of the following ‘time structures’:

(a) the real line;
(b) the 0 half of the real line;
(c) the natural numbers;
(d) 0, ± 1 , ± 2 , . . . .

5.1.1.1 Definition. Let X  be a linear space of functions defined on Q and let T 
be an operator of X. Then T  is causal if from

/ ( t) =  # (t) for t <  t
it follows that

[77] (t) =  [Tg] (t) for t <  t

where t is any fixed point in Q.
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Notice that causality is defined also for unbounded or even non-linear 
operators.

Let us define
for T <= t
for t »  t (*)

and Et= I —E'. [E‘; t£ Q} are called truncation operators.

Remark. E' is also represented by multiplication with

ф )  - { '
for t  <  t 
for t >  t.

It is easy to show that {Eu, t£Q}  and {E,\ tf_ Í3} are projection operators. 
Moreover, T  is causal if and only if from

E ' f  =  E'g
it follows that

E 'T f  =  E'Tg.

5.1.1.2 Theorem. Each of the following properties for a linear operator T of 
Ж = L 2(ß) is equivalent to the causality of T:

(i) E ,T = E ,TEt;
(ii) TE,=E,TEt-

(iii) Е ,Ж \— {E,x; х £ Ж }  is an invariant subspace of T  for every t j  Q.

Proof. Let T  be causal. It follows from the definition of E‘ that Е'(1—Е {) —0, 
which means that

E ' i l - E ^ x ^  0 х е ж
and hence

E ,T ( I - E ,)x  =  0 х £ Ж

since T  is causal. But the latter equality is exactly the same as (i). 
Conversely, if (i) is satisfied and E 'x —Е гу , then

E 'T x  =  E 'T E 'x  =  E 'T E 'y  =  E 'T y

which means exactly that T  is causal.
Thus we have proved that (i) is satisfied if and only if Г is a causal operator. 
For the equivalence of (i) and (ii), substitute E t = I —Et in (i) and 

Et= I —E* in (ii). For the equivalence of (ii) and (iii) we refer to 4.10.1.1. 
The most important examples of causal operators are the following.

i6*
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Example 1. In the case where Q is {t: t > 0} or the real line, every Volterra 
operator in L2(fl) is causal. Indeed, if / ( t) = 0 for т < /  then

t

f  K(t, x)f(z) dr =  0. 
о

Example 2. The Volterra operators in the discrete case, i.e. when Q is a set of 
integers, are those operators that are represented by a lower triangular matrix

аи =  0 for i  <  j.

Indeed, in this case,

i
y t =  ^  <*ikxk =  0 if xk =  0, for к  «s г.

k=  — со

Example 3. The (right) translation operators

U , J : = f ( * - t o )  io > 0  

and hence the operators in the form

Z « k U ,k
k =  1

are also causal. In fact, if / ( r )= 0  for t then

/ ( i  0—t )  =  0 for t  ~ t 0 ^ t ,  i.e.

/(^o- t) =  0 for t <  t + t 0.

Example 4. For any bounded function a —a(t), the multiplication operator

[Taf ] ( t ) :=  a(t)f(t)

is obviously causal.

Most of the above examples are characteristic in the sense that an operator 
represented by a finite or infinite matrix is causal if and only if the matrix is 
lower triangular and an integral operator is causal if and only if it is a Volterra 
operator. (As an easy exercise, prove these!)

5.1.2. Some of the important classes of operators are ‘automatically’ causal.

5.1.2.1 Definition. The operator T  is called time invariant if

Í6Í2U,T =  TUt
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where Ut is the translation operator

[U,x] (t) :=  x ( z - t ) .

U, is an isometry, i.e. ||t/f jc|| =  ||jc|| for every x£L 2(ß) and, in the cases 
5.1.1(a) and (a), U, is a unitary operator. A fundamental connection between 
the truncation operators {Et \ Q} and {Ut\ t£ Q] is

Et+TU, =  UtEx t, t€ í2 (*)

which is easy to verify.

5.1.2.2 Theorem. If T  is time invariant and

{Etox\  x£L 2(ß)}

is an invariant subspace of T, then {Etx; x £L 2(Q)} is also an invariant 
subspace for / < i 0.

If {Ut; t(i Q) consists of unitary operators and hence U~l exists (in this 
case [/(-1 =  (/_,), then {Etx; x£L 2(.Q)} is an invariant subspace for every 

Q and hence T  is causal.
Proof. It follows from the (ii)o(iii) part of Theorem 5.1.1.2 that

TEt0 =  El0TEl0.

Multiplying both sides from the right by Us and applying (*) for E,o and Us, 
we obtain

UsTEt0_s =  UaEtB-sTEt0- s

if we are careful enough to ensure that t0—sdQ. Since Us has a left inverse 
in any case, the proof is complete.

5.1.2.3 Definition. The operator T  in Ж  =  L2(Í2) is passive if

(E‘x\Tx)+(Tx\E ,x) >  0.

Remark. For the case where Q is the real line, this means that
1

Re ( J  х(т)[Tx ] (t) drj s* 0

and, in any case, the above definition has the following meaning: ‘the energy 
supplied by the transition x —Tx is positive’.

5.1.2.4 Theorem. If the linear operator Г of =  L2(i2) is passive then it is 
also causal.
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Proof. In this case the bilinear functional

BT( f ,g ) : = ( E tf \T g )+ (T f \E tg)

is positive and hence, by 2.9.2, the Cauchy inequality

\BT{ f  g)|* <  BT(f ,  f ) B T(g, g) (*)

is valid. Thus if £ ' /= 0 ,  then BT( f , f ) = 0 and hence BT( f ,g ) —0 for every 
g£L 2(Q). This means that

(E‘Tf\g) =  (Tf\E'g) =  (E'flT g) +  (T f\E ’g) =  0

for every g£L 2(i2) and hence E‘ Tf=  0, i.e. T  is causal.

5.1.3. The set of causal operators in L2(0) form a closed subalgebra of В (yd). 
In fact, if К  and L are causal operators then

E’(KL) =  (E 'K)L  =  (E'KE')L  =  £ '£ (£ '£ £ ' )  =  (E'KE1) LE' =  E'KLE'

and hence KL  is also causal. Similarly, a K + ß L  is causal for any scalars a, ß 
and, if {£„; и= 1 ,2 , . . . }  is a sequence of scalar operators and Kn-*K in 
operator norm (or even strongly!), then

£ ' £  =  £ '£ £ '  t e a
since in this case

E'Knx  -  E'Kx  and E'KnE'x  -  E'KE'x  

for every x£L 2(ß).
However, the adjoint T* of a causal operator is not causal in general and the 

same holds, if it exists, for the inverse operator T ~ x. Some of the important 
problems of causal operators originate from these ‘instabilities’.

Let us begin with the adjoint operator T*. The adjoint of a lower triangular 
matrix is an upper triangular one. Moreover, we proved in 4.10.1.2 that if JÍ  
is an invariant subspace of T  then the orthogonal complement of J l  is an 
invariant subspace of T*. Motivated by these considerations, we have the 
following definition.

5.1.3.1 Definition. Let X  be a linear space of functions defined on Q and let T 
be an operator of X. Then T  is called anticausal if from

/ M  =  g(r) for X >  t
it follows that

[T/](т) =  [Tg](x) for X >  t

where t is any fixed point in Q.
The counterpart of Theorem 5.1.1.2 is the following.
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5.1.3.2 Theorem. Each of the following properties for a linear operator T  of 
Ж  =  L2(Í2) is equivalent to the anticausality of T :

(i) E,T=EtTEt-
(ii) TE,=E‘TEt;

(iii) E*Ж {E'x; х £ Ж )  is an invariant subspace of T  for every t£ Q.

If we interchange Et and E ‘ in the proof of 5.1.1.2 then we obtain the proof 
of the above theorem.

If T is causal, then T* is anticausal and vice versa. The diagonal matrices 
represent those operators for a ‘discrete’ Q (i.e. if £2= {0, ±  1, ± 2 , ...} or a 
subset of it) that are both causal and anticausal. These operators are called 
memoriless. The multiplication operator of Example 4 is also memoriless.

It follows front these definitions that the causal self-adjoint operators are 
memoriless operators.

5.1.4. It is easy to verify by an algorithm giving the inverse matrix that the 
inverse of a lower triangular matrix is also lower triangular. The situation is 
quite different in the general L2-case. The most simple example of this is the 
translation operator U, in L2(— +°°), when (/(_1= t /_ ,=  Ut* is an anti­
causal operator.

The block diagram of the simplest feedback system is shown in figure 5.1; 
it is characterised by the following system of equations:

у  =  Kh 

h -- F y+ u

fig. 5.1

where y, h, u£L2(ß) and K, F are bounded linear operators of L2(fi). It 
follows that

( I - F K ) h  =  и 

( I - K F ) y  =  Ku

and hence, h and у  are uniquely determined by the input и if and only if I — FK 
and I —KF, respectively, have a left inverse. By the causality principle we claim 
that the transition operators u~*y and u—h should be also causal, and this 
is satisfied when I—FK and I—KF, respectively, have a causal inverse.



240 Hilbert Space Methods in Science and Engineering

Now we shall show that there is a class S(,/d) of causal operators such 
that F,K£S(3tf) guarantees that ( / — FK)~l and ( / — K F f i1 are causal 
operators. These operators will be called strictly causal.

5.1.4.1 Definition. A causal operator T  is called strictly causal if for every 
e> 0  there exists a partition of Q such that for any finer partition,

t\ -= U < . . . <  t,„

where
\\А{ТА1\\ <  e

A‘:= Eh-E^-i i =  1, 2 , m.

Roughly speaking, if the transition operator of a system is strictly causal, 
then the value y{t)  of the output depends only on the ‘strict’ past of the input.

Example 1. Every Hilbert-Schmidt Volterra operator is strictly causal. In 
fact, let Í2 be the real line and let Г be a Hilbert-Schmidt Volterra operator of 
L2(ß); then

with

In this case,

T y : =  I  k(t, r)y(r)dr

+ 00 + 00
/  /  \k(t, r)|2drdr

W m  =  - 0 / ( 0  - ß ™  L w t o ' " ' ' '

0 for t <  ?,_!
f

, [  k (t ,x ) / ( t )  dr for Гг_х <  Г <  ij
[ г ^ / к о  {

J  k(t, t) / ( t) dt for ?,• <s t
.'»-i
0 for t <  ?,_!

t

[А‘ТА‘/ ] ( 0  =  f  k(t, t) / ( t) dr for t{ <  i,_x
»(-i
0 for if <  i.

Hence

Ш А Ч  < Ш А %  = I  J Ш  *)l2 dt dr

(*)

(for the meaning of || . ||2 in this case, see § 4.8.1).
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Now, considering (* ) , the right-hand side of this inequality can be as small 
as we please if the partition is fine enough.

Example 2. If Q =  {0, 1, 2, n) and T  is an operator represented by an 
nXn  matrix, then T  is strictly causal if and only if

aik =  0 for i  к

i.e. the nXn  matrix is lower triangular with zero diagonal elements.
In fact, in this case there is no finer partition than t ~ i  ( i= l ,  2, ..., ri) and

A‘x  =  [ E ' - E 1- 1 ]x  =  Xi&i

where x t is the zth member of the infinite sequence x f l 2 and e f iP  with 1 
in the 2 th position and 0 in all other positions. Moreover,

TA‘x = X;t;
where i; is the 2th column of the matrix T and, finally,

A'T A'x =  лг,-^е;.
Hence

\\А!ТА‘х\\ =  N i y .

It follows that T is strictly causal if and only if tkk=Q ( k = \ ,  2, ..., n), i.e. 
the diagonal elements of the matrix T are 0.

Example 3. The multiplication operator on L2(— °°, +°°), which is both 
causal and anticausal, is not strictly causal. To show this, let

[Tf](t)  =  /2 ( 0 / ( 0  /€  L2(— +co)

where h is a bounded continuous function:

A ‘T A ‘ f  =  / ^ ( 0 / ( 0  i f  t £ [ t t - i ,  t,]
J lO elsewhere

by a computation similar to that in the previous example. Hence for every
e>0,

U ' T A ' f h  =  ( /  |A (0 /(0 l2 di]1/2 <  £
U-i

if the partition is fine enough. However, this does not hold for the norm o f  the 
operator A'T A1. In fact, let

U =  i/n h(td *  0
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and
if /£ [( /— l)/n, i/n] 
elsewhere.

Then | |g j a= l  and

U ' T A g J l  =  n / " \h(t)\2 dt >  in f|h (0 l2 >  4  l*(OI2
(l-l)/n 2

if и is large enough, since h = h ( t ) is a continuous function. On the other hand, 
for every partition of the interval [0, 1] we can find a finer partition with t— ijn.

The main theories concerning strictly causal operators, including causal 
invertibility, will be discussed in § 5.3.

5.2 Causality in a Hilbert space

The material in the previous section has perhaps been presented in a more 
abstract form than is strictly necessary; however, in this abstract form there 
is an immediate extension of the theorems for causal operators to more gen­
eral Hilbert spaces.

5.2.1. Let us consider a general Hilbert space Ж  instead of L2(fl) and a one- 
parameter set (P ‘; /6/1} of projection operators of Ж  totally ordered in the 
sense that for every pair P s, P‘,

either P s <  P‘ or P* <  P5

instead of the truncation operators defined in 5.1.1 (* ).

5.2.1.1 Definition. The linear operator T  of Ж' is causal with respect to {P'\ 
/6Л} if from

P ‘x  =  P 'y  t£A, х , у £ Ж

it follows that
P ’T x  =  P 'Ty.

It is easy to check that with the exception of 5.1.2.1 and 5.1.2.2, everything 
that we have said about causal operators in § 5.1 remains valid in this more 
general case.

5.2.2. Let us consider an r k h s  Ж  (R) with 3)=Q.  Then the causality, 
defined by 5.1.1.1, can be expressed by the kernel R = R (s ,  t) as follows.
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The operator T  of Ж  (К) is causal if from

( Я . ) | Я ( . , 0 )  =  ( * ( - ) | Л ( . , 0 )  for t * s

it follows that

(РУК . ) |R( ., 0) =  ([Г*]( . ) |R ( ., 0) for t *= j

where s is any fixed point in Q.

5.2.2.1 Theorem. A linear operator T  is causal if and only if

{ Д ( 0;  t j}1

i.e. the orthogonal complement of each linear space generated by { R ( . , t); 
is an invariant subspace of T.

Proof. Let the linear operator T  be causal and let f ( t ) = 0  for every t*zs; 
then f £ { R ( . , t ) ;  /«si}-1 and T f( t)= 0  for every hence we also have
T M R ( . , t ) ,  t < s } \

Conversely, if { /?( . ,  t); /cr}-1 for every s is an invariant subspace of the 
linear operator T and f ( t ) = g { t )  for t c s ,  then f —gd {R( ■, t); í< í }x 
and hence T ( f - g )  =  T f -T g d  { /?( . ,  t); Ls j }-1, i.e.

0 =  (T f ( . )—T g(.)\R (.,  0) =  {Tf( .) \R (.,  t))—(Tg(.)\R(.,  0)

=  (T f)( t) -[T g]( t)  / < i .

Now, let Ps be the projection operator onto

{R (. ,  0; t <  4

i.e. onto the closed subspace generated by {R ( . ,  t)\ /«.?}. Then it follows 
from 5.2.1.1 and 5.1.1.2, that the linear operator T of an r k h s  Ж (Р) is causal 
(in the sense of 5.1.1.1) i f  and only i f  it is causal with respect to Ps; s£Q.

Remark. 5.2.2.1 can also be derived from 5.1.1.2.

5.2.2.2 Theorem. {Ps; has the following properties:

(i) P V K 0  = / ( 0  for í < í ;
(ii) If g d ^ ( R )  and g ( t ) = f ( t ) for t* z s ,  then ||g|| s* ||PS/ | | ;

(iii) f { t)  =  g(t) for t <  s if and only if Psf  =  Psg.

Proof.

P J : = f - P ° f  and ( / ( . ) - P s/ ( . ) | K ( . , 0 )  =  O if * > <  

by the definition of P s; hence (i) is satisfied. By applying the projection prin-
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ciple (2.4.1.3 or 2.5.4.2), we obtain (ii). The proof of (iii) is left to the reader as 
a simple exercise.

Remark. If /£ L 2(0), then the truncated /  also belongs to L2(fl), but this is 
not so in an RKHS. If the kernel is continuous, then for every ^ Ж ( К )  ( f ^ O ) ,  
many t can be found such that Е,/^Ж (Р). Hence we cannot define the causal­ity by the truncation operators in an rkhs with continuous kernel. However,
5.2.2.2 (i)-(iii) are common properties for L2(fl) and Ж(К) with 2 = Q .

Now we can say something about the form of a causal operator in an rkhs. 
If Г is a linear operator of Ж  (К), then

[Tf](t) =  (T f(.)\R (., 0) =  (f(.)\T*R (., 0)

and hence T is represented by the scalar product with

^ ( . , t ) : =  T * R (.,t)
called the kernel of the operator T. It follows that T is causal if and only if 

/ € { * ( . , / ) ;  t < s } ^ = > T M ^ ( . , t ) ;  t*ss}± .
Hence

{ K (.,0 ;  £  { У ( . ,  0; t ^ s } ^

and, from the definition of the orthogonal complement,

{dT(., /); s} £  {R (., 0 ; t <  J}

for every s£Q.
Example 1. Let us consider the rkhs Ж (5)  in Example 3 of §3.3.1, with 
kernel

iR(s, 0 =  /  (í - t)+(j - t)+ dt.
0

We compute Psf  for ^ Ж {Б )  and the condition for the kernel of a linear 
operator of Ж (Б) to be causal.

Recall that Ж {Б)  consists of functions /  on [0, 1] with

/ W [ 0 ,  1] /(0 )  =  /'(0 ) =  0
and

ll/ll = ( / l/"(0l2dt)1/a.
0

Hence

~ P sf m o ,  1]
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and

[wFi\{') = \wf\{,) for ,<s
since

[i”/ l ( 0 = / ( 0  for
and

for <*>

by the minimum property (ii) of P sf  in Theorem 5.2.2.2. Now, applying the 
identity

j \ t - x ) +f"(x)dx =  /  ( t -x ) f" (x )d x  =  f  f ' ( z )  dt =  / ( / )
0 0 0

and

di J  l/ '( j )  if

since [Psf ] '  is continuous and [/>J/ ] " ( 0 —0 for we have

[i”/](0=  /V w dr+ //'(* ) dt =/(*) + (*-*)/'(*)
0 s

if s e t  and [Psf](t)=f(t)  if s>t  on the basis of property (i) in Theorem
5.2.Z2.

Remark. It is easy to see that the above result also derives from the fact that 
the operators {P*\ s£[0, 1]} are unitarily equivalent to the truncation opera­
tors {£ s; s€[0, 1]} of L2[0, 1].

If $~(s, t) is the kernel of a linear operator T  of J f(S ) ,  then from the defi­
nition of scalar product in

( л . ) \ r ( . , t ) ) =  f & r b m o b -
о o z

We shall show that

d2-7Г—г - (t, i) =  0 for t >  t. (**)
ox*

In fact, it follows from (*) and 5.1.1.2 that if T  is causal then

g(t) =  0  for t e  S^r j  i)jg(r)dT =  0 for t e s ,  g€La[0, 1]



246 Hilbert Space Methods in Science and Engineering

i.e. for

/ ( í ^ (T ,o ) f W dT =  0 S ^ P U ] ,  i€ [0 ,l]
s

and hence (**) holds.

Remark. It follows from the definition of Jif(S) and the kernel .T(x, t ) of T 
that for every fixed  /€[0, 1].

- ^ - ^ ( t, í)€L2[0, 1] and 3 T { z , t ) ^ { S ) .

Hence if

/  =  0
5

for every g€L2[0 ,1], then this is true in particular for g ( . . ,  t ) and
hence dT" {. ,  i )= 0  on [s, 1].

If (**) holds then

t) =  2T\t, t) for t =- t от

since SF( . ,  0  is a continuous function at z —t; moreover,

3T(s,i) =  /  -^ -3T(z,t)dz

t  c\ S

=  /  f - ^ ( z , t ) d z  +  I  2T'{t, t) dt
0 t

=  У  (t, t ) + ( s —t) y ' ( t ,  t) for

where (as before)

dT’(t, t) := -jL <r(x ,t)

at z =  t.

Example 2. The r k h s  with kernel

R(s, t) =  sup (j, t) s, t£[0, 1]

plays an important role in the study of Wiener stochastic processes. By сотри-
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tations similar to those in the previous example we obtain

and for the kernel of a causal T,

for T <  Í 
for T >  /

in the case of Ж{К) with kernel R(s, /)= su p (s , t) (s, /£[0, 1]).

Example 3. If we define strictly causal operators in Jtif(S) and in the r k h s  

of the Wiener processes as in 5.1.4.1 (with obvious modifications) then it turns 
out that a linear operator T  of an r k h s  is strictly causal if

and

respectively.

* 5 .3  Strictly causal operators

Certain Volterra integral operators and their ‘discrete analogues’ are the most 
important examples of strictly causal operators in L2-spaces. Strictly causal 
operators in a general Hilbert space Ж  have a representation similar to the 
Volterra integral operator. Moreover, XI— T  has a causal inverse for every 
2 * 0  if Г is strictly causal.

5.3.1. Let {P ‘; t£ A} be a one-parameter set of projection operators, as 
defined in §5.2.1. Then a finite sequence

0 <  P2< :...<  Pm<  I (*)

is called a partition, where for i *  /  (0 and I  are, respectively, the zero
and identity operators and the abbreviation Р ‘:= Р ‘< has been used).

0 <  P r i<  P '2< . . . <  P' k I

is called a finer partition than (* )  if

{Pf; /  =  1, 2, ..., m} с  {P"; i  =  1, 2, ..., k).

p s f \ f (  0  f o r

J l  f(s)  for t >  5

0 0

1 1 Д 2
/  /  -д- ^"0, 0  d jd i< °o ,  
о о <«
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Remark 1. 0 and I  are not necessarily contained in {P'; t £ / 1}; however, 
a partition always contains 0 and /  as minimal and maximal elements.

Remark 2. The totally ordered {Pf; t^A )  defines an ordering in A in the 
obvious manner

s -c t o  P s P' and P s ^  P'.

Hence we shall sometimes write instead of P s*eP‘.
We are now ready to define strict causality.

53.1.1 Definition. Let Г be a causal operator with respect to {P1; tdA).  
Then T is called strictly causal if for every e > 0  there exists a partition such 
that for any finer partition,

\\AlTAl\\ <  e
where

A1 = P \ An+1 =  1—P" and A1 := P 1—P ‘-1 ; 

i =  2, 3 , . . . ,  n.
An important norm estimate for the representations of strictly causal 

operators is the following.

5.3.1.2 Theorem.

II"z AkTAk\\ =  max \\AkTAk\\.
k—1 k

Proof. Applying 4.10.3.3 and 4.10.3.2, we have

M * =  \\nZ A kx\\*= "z\\Akx r  (*)4=i k=i
and so

и +  1 и 4-1
\ \ Z  AkTAkx\\2 =  Z  \\AkTAkx\\2. (**)
4 = i t=i

Moreover,
ft -f-1 n4-l
Z  \\AkTAkx\\2 =  Z  \\AkTAk(Akx)\\2

i=i i= i
Л +  1 Л +  1

<  z  \\AkT  Ак\\2\\Акх\\2 mzx\\AkT Ak\\2 Z  \\Akx\\2. (* * * )
i=i k i=i

Comparing (*), (**) and (***), we have

II "z AkTAkx II2 <  max|M*7\d*||2IWI2
i=i *
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and hence

\\"£AkTAk\\*z max{\\AkTAk\\; к = 1,2, ..., n+1}.
k=1

On the other hand, if the /‘th member on the left-hand side has the largest 
norm, i.e.

\\А‘ТА‘\\ =  max {\AkTd*||; fc =  l ,2 ,...,n + l}  

then from 4.10.3.3

AkTAk(A‘y) = А‘ТA1 у
k=1

and hence, considering also (**),

\\А‘ТA‘\\ =  su p {\AlTA‘\\ W ; M  = 1}<= \\"Z AkTA%
4=i

5.3.2. For the ‘integral representation’ of strictly causal operators we generalise 
the operator-valued Riemann integral introduced in §4.11.2.

Let L = L ( t )  ( t£A)  be an operator-valued function and let us consider the 
‘Riemann sum’

2 1L(tk)Ak (*)
»:=i

corresponding to the partition

P 2 =£...<  1

where Ak { k = 1,2, ..., и + l )  are defined in 5.3.1.1.

5.3.2.1 Definition. The Riemann sums (* )  converge to the operator T  if for 
every e > 0  there exists a partition such that for any finer partition, we have

m
I Т - 2 Ш ) А ' к\\~=е.

i=i

(* )  is called the upper sum. If we substitute L(tk^1) in place of L(tk), then we 
obtain the corresponding lower sum. If the upper and lower sums converge 
to the same limit T, then we call this the integral o f  L = L ( t ) and denote it by

T =  j  L (t)d P l.
A

Remark. There is also a strong version of this integral, similar to 4.11.2.1.

17 M áté
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5.3.2.2 Theorem. The causal linear operator T  is strictly causal if and only if

T — f  P,T  dP \
л

Proof. It is easy to check that every linear operator T  can be partitioned as 
follows:

T  =  " £  (Pi~1TAi+ A iTAi+ P iTAi).
i = l

If T  is causal then

since

and hence

P i~1TAi =  Р 1~'Т  p i~1( p i- p 1- 1) =  0 

Pi~1(Pi- P i- !) =  p i-1 —p i - i  =  о

| | r -  "z P iT Á II =  \ \ Z  ÄTA'W =  шах \\А1ТА%
i = l  1 = 1  "  i

(**)

It follows from 5.3.1.1 and 5.3.2.1 that T  is strictly causal if and only if the 
Riemann sums

Л +  12  (P.TU 1 гi = 1
converge to the operator T.

We still have to show that the upper and lower integrals are the same. 
It follows from (**) that for a causal operator T,

T  =  ”Z  A 'T A ^ P iT A 1 =  "z (Pi- P i~1)TA i+ ( I - P i)T A i =  *2 P t-fT A 1i = l i = l i = l
since P k:= I —Pk\ k =  1 ,2 ,. .. .

We conclude that every causal operator T is equal to the lower integral of P, T 
and T is strictly causal if and only if it is also equal to the upper integral of Pt T, 
that is, if the theorem holds.

Remark. We have also shown in the proof that for a causal operator T,

T = " z  P i - iT Á  (* * * )
i = l

for every partition

0«c P1*: P 2=c...<  P n «с I.

It is easy to show that for an arbitrary linear operator T, P^fTA1 is always 
causal and hence the right-hand side of (* **) is causal for every partition.
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5.3.3. We now turn to the causal inverse problem. First let us consider a very 
simple case. Since the Neumann series is convergent for

|A| >  lint sup ||Г Т /ИП

(see 4.2.3.1 and 4.3.2.2) and the limit of causal operators is again a causal 
operator, we have the following.

5.3.3.1 Theorem. For every causal operator T  there exists a causal inverse 
( А / - Г ) - 1 if

|A| >  limsup Ц П 1'".
И

For the case of a strictly causal operator we begin with a partition of a linear 
operator T  by the projection operators A‘; i = l ,  2, ..., и +  l. By straightfor­
ward calculations we can show that, for every linear T,

n +  1 n +  1
T =  2  2  a1taj.

7 = 1  i = i

In fact, for every x£Jif,

n + 1  n + 1  n +  1
2  A'TAJx  =  TAj x  and 2  TAj x  =  T 2  AJx  =  Tx.
i = i  7 = 1  7 = 1

5.3.3.2 Theorem. If the linear operator T  is causal, then

n + 1  n + 1  n + 1
t = 2  Д‘тд‘+ 2  2  a‘taj

; = i  7 = i  £ = 7 + i

and for the second term,

n + 1  n + 1
( 2  2  a‘t dj')n+1 = o. (*)
7 =  1 1= 7 + 1

Proof. If i < /  and T  is causal, then

A‘TAJ =  (P i—P ‘~1)T A J =  P iT P iAJ- P i~1T P i- 1AJ

and
p k A j  =  p k ( p j _ p i - 1) =  p k _ p k  _ 0

if k c j —l, by 4.10.2.1. For the second part of the theorem, observe that 

1 Д ’ \A ‘T 2Am if j  =  k.
Hence

n +  1 n +  1 n +  1 n +  1
( 2  2  A‘TAJf  = 2 2  A'T2AJ
7 = 1  1= 7 + 1  7 = 2  i = 7 + i

17*
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i.e. the terms containing A1 disappear in the square. Moreover, the terms 
containing A2 disappear in the cube, and so on.

Remark. If Г is a linear operator represented by an nXn  matrix A, then for 
the finest partition, A'TAj is represented by the nXn  matrix A,y with

_  iatJ for n =  i, к =  j  
a"k 10 elsewhere

i.e. the /th element in the ith row is atJ and all other elements are 0.
In this case the content of our theorem is the obvious partition of a trian­

gular matrix into diagonal and ‘strict’ triangular matrices and the fact that 
a ‘strict’ triangular matrix U with n rowns and n columns has the propertyun+1=o.

From the foregoing it is clear that if T  is causal and for the finest partition 
we have

A‘TA‘ =  0 i =  1 ,2 ,. . . ,  я+1

then ( А / —  Т)~1£В(Ж)  and (А/— Г )-1 is a causal operator for every A^O 
since

«Ч- l  л +  1
u - т  =  a/ -  2  2  (a ‘t a j)

J =  1 i = j  + 1

and the Neumann series is finite in this case because of (* ) . We shall show 
that this is also valid for every strictly causal T.

5.3.33 Theorem. If T  is strictly causal, then (М—Т)~1€В(Ж)  and (А/—Г )-1 
is a causal operator for every XxO.
Proof. If T  is strictly causal then for every A^O there exists a partition such 
that

\\AlTA‘\\ <  |A|

and hence, by 5.3.1.2, 5.3.3.1 and 4.2.3.1, if

В =  1 1 -  2"1 A‘TA‘
i — X

then В ~1£В(Ж)  and causal.
is in the form of a Neumann series with members in the form 

уA‘TkA‘ and

А1(А‘Т кА‘) =  {A‘T kA})A] i , j  =  1, 2, ... 

by simple calculations; hence

Aj B~' =  B~'AJ.
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Now, if we apply the identity

n+ 1 n +  1 n + 1  n +  1

B - 2  2  A‘TAJ = B ( I -  2  2  Ä B - 'T A 3)
)=1 i=j+1 ]=1 i=j+1

the theorem is clear since, by the considerations preceding 5.3.3.3, the second 
term on the right-hand side is also invertible with causal inverse.

* 5 .4  A u to m atic  con tinu ity  o f  cau sa l o p e ra to rs

We showed in 5.1.2.4 that every passive operator is causal. In this section we 
shall show that a passive operator is also continuous and that the same holds 
for time-invariant causal operators.

5.4.1. The following continuity principle is fundamental to the investigations 
of this section.

5.4.1.1 Theorem. If T is an everywhere-defined linear operator in a Banach 
space В and {La\ a £ A} is a set of bounded linear operators of В satisfying the 
conditions

(a) if  Lxz = 0 for every a £Л, then z= 9 ;
(b) LXT  is a bounded linear operator of В for every a£ Л; 

then T is also bounded.
Proof. We shall show that Г is a closed operator and, by applying the closed- 
graph theorem, which says that an everywhere-defined closed operator of a 
Banach space is bounded, the proof is complete.

It follows from the definition of a closed operator (see 4.13.39) that if the 
linear operator T  is closed, then

xn —■ 9 and T x n — y = > y  =  9 (*)

since T 9 = 9  in this case. First we shall show that if T  is everywhere defined 
then the converse is also true. Let (*) be satisfied for the linear operator T  and 
zn-*z, Tzn—w. Then z„—z —0 and 7 \zn—z) — w— Tz and hence, by (* ) ,

w —T z  =  9.

Now, if xn -- 0 and Txn -+y, then

and also
LxT xn =  Lx(Tx„) -  Lxy  

LfT xn -  9
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since LfT  is a bounded operator for every а£Л. It follows that

Lxy  =  9 а£Л 

and hence y —9, i.e. (*) is satisfied.

In a finite-dimensional Ж  every linear operator is continuous, as we saw in 
§ 1.7.3. We shall therefore assume in the remainder of this section that Ж  is 
infinite dimensional and [P 1; id A} is ‘large enough’ in the following sense:

(i) if P ‘z = e  for every t£A, then z — 9;
(ii) for every t £ Л there exists Л with P ‘< P s (P‘^ P S).

5.4.2. The proof that a passive operator is always causal was built on the 
simple observation that passivity, in Hilbert space language, means that the 
bilinear functional BT defined in 5.1.2.4 is positive. A deeper investigation 
concerning BT will prove that a passive operator is also continuous.

It follows from 5.1.2.4 (ж) and from

BT(f,g)>\(Tf\P,g)\-\(Ptf\Tg)\
that

\(P'Tf\g)\ ^  BT( f  f ) ll2BT(g, g y *  +  |(/|P 'T ^ )|

<  B A f  f ) ll2B A g , g)ll2+ ( f \ f y /2(Tg\Tgy f  

Hence, introducing

R (f ) :=  |(Р 'Г / |/ ) |1/2+ ( / | / ) 1/2 

S(g) := 2 \{P*Tg|g')|1/2+(7’g\Tg)1,z 
we obtain, by straightforward calculations,

\(P‘Tf\g)\ <  R(f)S(g).
We now define

З Д  :=  - щ у ( Р ‘тЛ 8 )  f * 6 .

It follows that {Fs (g); f s60} is bounded for every g<lMJ with bound inde­
pendent of f.  Hence, by the uniform boundedness principle (see the Appendix, 
A.2.2.1), { ||f / ||; f ^ 9 )  is bounded, i.e. there exists 0 such that

\\Ff \ \ ^ M  f * 9
and hence 

which means that

WP'TfW =  sup {|(Pfr / |g ) |;  M  =  1} <  M R (f) .  (*)
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Remark. Although it is not indicated, M  depends on t.
We assert that for every operator P 'T  there exists C =C , such that

J ^ Z L  < c  f *e.
ll/ll J

For the proof of this inequality, note that

0 < Л ( / ) ^  IIP 'T fV '* ll/и ^ +11/11
and hence

R (f)  II P'TfW112 
ll/ll ^  ll/ll1/2 '

From (* )  it follows that

WP'TfW . IIPfr / l l 1/2 , „  
ll/ll ll/ll1/2

whence

H ^ /H  s  ш  I iy
ll/ll (

We have now proved that P 'T  is a bounded operator for every t£A.  If we 
apply 5.4.1.1, the theorem is also proved.

5.4.3. Every causal operator is continuous on at least one invariant subspace 
Р ,Ж . More precisely, the following theorem holds.

5.4.3.1 Theorem. If

(a) T  is a linear operator of Ж  (i.e. everywhere defined);
(b) Г is causal with respect to [Ps; s£ Л} satisfying conditions 5.4.1 (i), (ii);

then there exists an invariant subspace Р ,Ж  such that T restricted to Р ,Ж  
is bounded.
Proof. We shall prove that if for every t £ A there exists s £ A  such that Ps T 
is unbounded on Р,Ж ,  then we can construct х0£ Ж  so that ха^в)(Т) 
and hence T  is not an everywhere-defined operator. By this contradiction it 
will be proved that there exists an invariant subspace РгЖ  of T  such that 
every operator PST  (s£  Л) is bounded on Р,Ж.

Applying 5.4.1.1, we conclude that T  is also bounded on Р,Ж.
The construction of х0£Ж ,  which constitutes the basis of the proof is the 

following. For /jE Л there exists s±̂  Л such that PSí T is unbounded on Р^Ж  
and hence there exists Ptixx such that

11ЗД1 =  1 and IIРЪТР^ХЛ >  1.
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and for the third term

PN+1T  2  - lk Pkxk =  P N+1T  Z  4 r P N+1Pkxk =  0
k = N + 1 Z  k = N + l  Z

since T is causal,

P N+1Pk =  P N+1( I - P k) =  0 for k > N + 1.

For t2 =  si there exists s2£A  such that P'2 T is unbounded on P^B and hence 
there exists Р,гх2 such that

\ \P ,M  -  1 and \\Р*--ТР,гх2\\ >  2 * (2 + ± \ \T P tlXl\\).

Moreover, it can be supposed that í2< í 2 since

||PSz|| =  ||PSP S2 Z|| -с И P î z|| for s  <  s2.

The following abbreviations will be used hereafter:

P ^ : = P k PSk: = P k.

For any integer k > 0  and tk+i = s k there exists jfc+1 such that p k+1T  is un­
bounded on РкУР and hence there exists Pkxk such that

11-Р*х*11 =  1 -r*+i >  sk
and

IIP k+1T P kxk\\ >  2k [ k + k2  j r  Р З Д )  •

Now, it is obvious that
CO ]

*o =  2 - ^ k P k X ^ ^jt=i ^
i.e. the infinite series on the right-hand side is convergent. We shall show that 
for any integer N >  0,

ИГдсьИ >  N

and hence x0$3)(T). In fact,

ЦГхоЦ >  ||PN+17’x0||

=  *2 ^ J * +1TPkXk+ - L p ”+1TPMxK+ i* + 1T Z  ^ P k * k •

Consider the right-hand side of the equation; for the first term,

* 2  4 r  P N + 1  T P k * k  <  * 2  4 r  WTPkXkW
k=1  ̂ *=1 ^
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Remark. It is obvious that if Ж  =  1Р(й) or Ж = Ж (К )  with 9)=Q ,  then
5.4.1 (i) and (ii) are satisfied. Moreover, Р,Ж is infinite dimensional for 
every t£A  in these cases.

5.4.4. Now let Г be a causal time-invariant operator of L2(ß); we then have a 
much more powerful result.

5.4.4.1 Theorem. A causal time-invariant linear operator T  of L2(fl) is con­
tinuous.
Proof. Let t0£Q; then for every x£L2(i2) and i < / 0,

\\TP,x\\ =  W b-tT P tX l =  \\TU,a- tPtx\\ =  | | 7 В Д 0_,х||. (*)

Here we have applied 5.1.2.1 (* )  and the fact that Ut is an isometry (i.e.
||£/,x|| =  ||x|| for every t£Q, х£Ж).

It follows from 5.4.3.1 that T  is bounded on an invariant subspace Р,оЖ;  
hence

\\тр,ви,0.,х\\ <  ||г||о11зд„-,*и = m ű i ut0. ,p tXii = im io M  (**)

where ||Г||0 is the norm of T  restricted to PlaЖ . By comparing (*) and (**) 
we obtain the continuity of T  on Р ,Ж  for every tQ.

If i > / 0, then Р ,Ж с.Р ^ Ж  and hence

\\t p ,x \\ <  im uiAoAxii -  m u iA x ii.

We therefore conclude that 74s bounded by ||Г||0 on U  Р,Ж. Moreover,
tea

1J Р ,Ж  is dense in Ж  if Ж = L2(ß).
tea

Remark. To extend our theorem from L2(fl) to other Hilbert spaces we have 
the problem of defining {Up, t £A}  in such a way that 5.1.2.1 (* )  is satisfied 
if the truncation operators [E'\ t £ ß} are replaced by { Рг; t£A}.

We conclude that

lirxol! >  ± P n+1TP nxn +  "z  - ^ P N+1T P kxk 

>  ^  И Р ^ Г Р ^ И  - Д  ф  \\TPkxk\\

>  (n + Д  \\TPkxk\ \ ) - Ng F A * J  =  N.
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5.4.5. One of the important features of the ‘automatic’ continuity theorems is 
the following. The simplest stability concept is that a system is stable if a 
bounded input implies a bounded output. If the bound is measured in L2- 
norm, i.e. a signal x = x ( t )  is bounded if

4 - CO

j  |x(t)|2 dt -coo

(for simplicity, Q is the real line), then this means that the transition operator 
T  of the system is an (everywhere-defined) operator of L2(fi). However, we 
can only apply Hilbert space theory in the case where Г is a bounded operator.

Our theorem about time-invariant causal operators therefore says that the 
Hilbert space theory can be applied for every time-invariant input-output 
system that is stable in this simple sense.

A more sophisticated stability concept is connected with the time structure. 
E‘Tx, the part of the output before a certain time t, is always bounded; how­
ever, it ‘blows up’ after a time if the system is not stable. The mathematical 
expression of this property is that the L2-norm of E ‘Tx is finite for every t 
and x6L2(fí) and T  is stable if \\Е*Тх\\<М, i.e. there is a common bound 
for every t. Investigations of this stability can be found, for example, in Desoer 
and Vidysagar 1975, pp 169-86 and Feintuch and Saeks 1982, pp 173-9.
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АЛ The adjoint T*  of an unbounded operator T

A.1.1. If Г is a bounded operator but is not everywhere defined in the Hilbert 
space then we have two cases.

(a) The domain 2){T) of T is dense in Ж . There is then a unique extension T 
onto Ж  via continuity as follows. For every х £ Ж  there exists {x„}; xn£3i(T)  
such that x„—x and hence Тхп-»у£Ж  since T  is continuous. We define 
T x=y.  (It is obvious that у =  lim Tx„ is the same for every {x„} tending toП
X  and hence there is only one extended T.)

(b) The domain S>(T) is not dense in Ж . There is then a unique extension
onto the closure of S {T ) ,  and S>(T) as a closed subspace of a Hilbert
space Ж  is also a Hilbert space in itself.

We conclude that a bounded linear operator can always be considered as 
an operator on a Hilbert space.

A.1.2. Let Г be a linear operator with dense domain 2 {T ) .  Then the adjoint 
T* is defined by

(T*y\x) =  (y\Tx) y t® (T *);  X e® (T )  

as in the case of bounded T. More precisely, 2 {T * )  is the subspace 

(у: X (y\Tx) is a continuous functional on & { T )}

and T*y is the functional that associates the number (y| Tx) to x£S)(T);

Remark 1. Т * у£ Ж  exists by the Riesz-Fréchet Theorem.

Remark 2. The condition that 2>{T) is dense in Ж  is not a serious restriction 
since it is always satisfied in the Hilbert space (T ) £  Ж .
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Example 1. Let
rr, d

with domain

®( T)  =  {y:  /€ L * [0 ,1 ], j40) =  0}.

(Here and in what follows we use dy/dt and y' interchangeably for the derivative 
of y.) Then, integrating by parts, we obtain

/  y '( t)z ( t)d t  = ~  f  y(t)z'(t) dt 
0 0

if z'£L2[0, 1] and z (l) =  0. Moreover,

it follows that

and
{z: / € L2[0, 1], z( 1) =  0} c  ®(T*)

(*)

on this subset. We shall show that (*) is the form of the adjoint operator T* 
for every z£Q)(T*) and

S>(T*) =  {z: / 6 L2[0, 1], z (l) =  0}.

In fact, by the Riesz-Fréchet theorem, z£3)(T*) if and only if there exists 
Z*£L2[0, 1] such that

i ___  i ____
/  y ' ( t ) z ( t ) d t=  f  y(t)z+(t)d t ye@ (T).  (**)
0 0

We can write

* * (0 = — f  z j r ) d x

and, integrating by parts,

/  F (0(-^r /  z*(r)dr)di =  f  y'(t) f  z*(t) dr dt 

for y£S)(T). Comparing (**) and (***), we have
i

z(t) =  f  z*(r) dr

(** * )

i /  / ( 0 Z ( 0  d?| aS A z ||j,||2.

dT Z  = ------ T - Zd t
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since T  maps 3 ( Т )  onto L2[0, 1]. It follows that

— ~  z  -  z  ̂ and z ( l)  =  0
di *

if z i3 (T * ) .

Remark 1. Here and in what follows, derivative means weak derivative in 
the sense of § 3.9.3. If we restrict ourselves to

®(T) =  {y: /€ L S [0, 1],J(0) =  0}

then weak derivatives can be avoided; however, the meaning of

2 * 0 ) = “ ^ -  /  z j r )  d r

remains problematic for certain z*£L2[0, 1].

Remark 2. We can also write

d /
z*(0 = - T 7  J z*(x) d r

Ш  0

but this form does not yield the derived result.
To give 3 (T*) precisely is the main difficulty in determining T* for an 

unbounded T.

Example 2. If 

with domain

® ( T )  =  {y: / € L2[0, 1], y(0) =  0} 

and i =У — 1, then we compute, as in the previous example, that

J  \y’{t)z(t) át =  J  y(t)(iz'(t))dt 
0 0

if z ' í L 2[0 , 1] and z ( l ) = 0  and

T*z =  i - j - z  ® (T*) =  {z: z' € L 2[0 , 1], z ( l )  =  0}.

However, 7V T * in this case since 3s(T*) A 22{T). (In other words, T  is 
only identical to its formal adjoint (see § 3.9.3).)

^  • d
Ty =  1 d i y
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Example 3. Let

Ту =  — y  y  d f  y
with domain

ЩТ) = {у: у"еL2[0, 1], j(0) = 7 (1) = 0}.

Again, integrating by parts we obtain

It follows that

and
{z: z " a 2[0, 1], z(0) =  z ( l)  =  0} c  Q(T*)

T * d2T Z  =  - j r Z  dt2 (*)

on this subset. We shall show that (*-) is the form of the adjoint operator T* 
for every z£2)(T*) and

Щ Т*) =  {z: L2[0, 1], z(0) =  z ( l)  =  0}.

In fact, by the Riesz-Fréchet theorem, zd!3(T*) if and only if there exists 
z*£L2[0, 1] such that

i ___  i ____
/  y"(t)z(t)d t =  j  y( t)z* (t)d t  y£@(T).  (**)
0 0 

Let

’ b ( f - l )  0 < T

Then, by immediate calculation, we see that

dg 1
z* ^  =  ~dF /  к (*’ T) z*(T) dT 

and, integrating by parts,

f  У ( o ( - ^ r  J  k(t, T ) z + ( T ) d x j d t  =  f  y"(t) f  k(i, t ) z * ( t ) d r d f  ( * * * )

/  y"(t)z(t)d t  =  j  y(t)z"(t) dt 
о 0

if z"€L2[0, 1] and z ( l)= z (0 )= 0 . Moreover,

I / y ”{ t)z ( t )d t \s .  - ^ - z  JIj'II*.
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for y£S)(T). Comparing (**) and (***), we have
i

z(t) =  /  &(i, T)z*(r)dT 
0

since T maps @(T) onto L2[0, 1]. It follows that

-^T z =  z+ and z(0) =  z ( l)  =  0

if z£9{T *).

A.l.2.1 Theorem. T* is a linear closed operator.
Proof. For X,y£Q>(T*), z£3>(T), А, р£Ф, we have

(T*(Xx+py)\z) =  (2x+py\T  z) =  A(x|rz) +  /r(y|7z)

=  2(T* x \z)+p(T * y\z) =  (ЛТ* x + p T *  y\z)

and hence
T*(Xx+py) =  АГ*х+/*:Г*у

since 9)(T) is dense. For the second part of the theorem, let x„—x and 
T*x„-~h; then

(h\z) =  lim (r*xn|z) =  lim (x„\Tz) - (х |Г z)П

and hence х£^ (Г *) and T*x—h.

Remark. Observe that in the proof we did not assume that T  is either linear 
or closed.

A.1.3. The set of pairs [x, у ] ; x, у  £ Ж  of a Hilbert space Ж  forms a linear 
space when we define addition by

[*i. Ji] + [v2, y2] := [xj+x2, Уг+y.J

and product by A as

A[x, y] =  [Ax, Ay] x l5 x2, y l5 y2, x, y € ^ , А<ЕФ 

and a Hilbert space when we define the scalar product

([*1 , Ti]|[*2 > yj) ■= (Vi|x2)+(yi|y2).
The linear subspace of elements

[x, 0] and [0, y] x, ye  Ж

forms a closed subspace isomorphic with Ж  and the Hilbert space of pairs



i
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{[x,y]; X, у£Ж)  is therefore called the orthogonal direct sum Ж  © Ж . 
Some properties of operators in Ж  can be expressed in a simple way by Ж  @ Ж .

Recall that the graph of an operator is the set of pairs [x, Tx] and so the 
graph of a linear operator T, with domain and range in Ж , is a linear subspace 
of Ж  © Ж. It is easy to show that the following theorem is true.

A.1.3.1 Theorem. The linear operator T  is closed if and only if its graph

:= [x, T x ] ; xe@ (T )

is a closed linear subspace of Ж ® Ж .
The following connection exists between the graph of T and its adjoint T*. 

Let us define
V[x, y] := [y, - x ]  x, увЖ .

Then V  is an isometry of Ж  © Ж  and V 2 =  — I. It is easy to verify that

^ г= [Р > т*]х (*)
if Г is a closed operator.

A.1.3.2 Theorem. If T is closed, then !3(T*) is dense in Ж .
Proof. It is obvious that the statement ‘@(Т*) is dense’ is the same as 
‘^ (T * )1 =  {9}'. So let h^Q>{T*)x , and we shall prove that h =  9. In fact,

([0, h]\[T*g, - g ] )  =  0 g£®(T*), h£@(T*).

But this means that
[9, h M V ^

and so, from the identity (* ) ,

i.e. h = T 9 = 9 .
[0, h]dyT

Remark. Observe that in the proof we did not assume that T  is linear, only 
that T9=9.

A.2 The uniform boundedness principle

A.2.1. A Banach space has the following property.

A.2.1.1 Theorem. Let В be a Banach space and let '2£k; k = 1 ,2 ,. . .  bean  in­
finite sequence of closed subsets, such that

B =  Ö&K-
k — l
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Then there exists к such that 2£k contains an open sphere. This is the Baire 
principle.
Proof. Recall that an open sphere with centre x„ and radius r is the subset

Sf(x0, r) := {x: | |x - x 0|| <  /•}
of В.

For the proof we shall suppose that none of the closed sets 3?k, k =  1, 2, ... 
contains an open sphere and we shall reach a contradiction.

If Jfj does not contain an open sphere then

£P(x0, 1) ф

and hence for x^fif{xü, 1), x& & k, we have

P ( x lt /-j) with ту -= 1/2 such that i f {xx, ту) c

where is the complement of the closed set and is therefore open (see
1.5.1.1 and 1.5.1.4). Moreover, we may suppose that

У ( х к, ту) с  Sf(x0, 1).

Since also does not contain an open sphere,

SP (x i, ту) ф 2£2

and hence for x 2(f? (x i ,  ту), x2$ S 2, we have

i f  (x2, ту) with ту <  1/22 such that i f  (x2, ту) c  2£f

where Sf2 is the complement of the closed set and is therefore open. More­
over, we may suppose that

5 4 * .,  r2) c  £f(xl , ту).

Continuing this process, we obtain a sequence

Sf{xо, 1) =3 i f { x x, гО З . . . Э  Sf{xn, r„) =>...

and for m >n,

Hence the sequence (x„) of the centres is convergent. Let lim x„=x x£B. 
Since В is a Banach (i.e. complete) space and

xeSf(xn,r„) n — 1 ,2, . . .

but У (х п, г„)П2Гк= 0  if n > k  and hence x$£fk', k —1, 2 , . . . .
Thus we have the contradiction

x£B  and x$ U  £fk.
k = 1

18 M áté

l l * n - * m l !  <  rn <  1 / 2 " .
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A.2.2. The uniform boundedness principle says that if we have a set {Ta; a. £ Л} 
of linear operators and {Txx; a d /1} is bounded for every xd£f(6, 1) then 
it is uniformly bounded on the unit sphere У  (9, 1), i.e. there is a common 
bound for

{T,x\ a £Л ,х £ У (в ,  1)}.

In other words, we have the following theorem.

A.2.2.1 Theorem. If {Tx\ ad Л} is a (one-parameter) set of bounded linear 
operators and {|| 7^jc]| ; а£Л} is bounded for each x€B,  then there is a 
common bound M  and

Proof. Let
II r j < M.

&k =  {x: \\Txx\\ ^  к}; к =  1 ,2 , . . . .

Then each 2£k is closed and

B = \ J  z k
*=l

since, by our condition, {|| 7̂ x11; а£Л} is bounded by a certain к for every 
x£B.

It follows from the foregoing theorem that there exists 2£k containing an 
open sphere £f(xk, rk). This means that for a certain к

IF .xJ  <  к and | | x - x j  <  rk implies ||Гах|| <  к  (*)

for every а £Л. It follows that 
‘if ||x—x j< r *  then IIГг(х —xk)|| <2k'  or, equivalently,

F all
2k_

Remark 1. Observe that the bound к of {ЦТ̂ хЦ; ad Л} depends on x£B, 
i.e. k=k{x) .

Remark 2. The theorem remains valid if Г is a linear operator from one 
Banach space Bx into another Banach space B2, with the same proof.

The uniform boundedness principle has important consequences. Some of 
them are as follows.
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A.2.2.2 Theorem. If Г is a linear operator defined by

lim7’„ x := 7 ’x  x£Bn
where Tn; n =  \, 2, ... are bounded linear operators, then T is also bounded. 
This is the Banach-Steinhaus Theorem.
Proof. Now {||Г„х||; n =  1,2, ...} is bounded for every x£B  since a con­
vergent sequence is bounded. Hence, by the previous theorem, || 7 J  <  M and so

I M  <  M||x|| n =  1, 2, ....
It follows that

||Tx|| =  lim ||rnx ||^ M ||x ||.П
Again, let {Tp, ос£Л} be a set of bounded linear operators, but let the index 

set Л be totally ordered. Then {T^x} is called convergent and

lim Tax  ■ у
a

i f  for every £ > 0  there exists a0£ Л suchthat

\ \y -T ax\\ < e  if a >  a0.

(Compare with 4.11.2.1 and 5.3.2.1.)
An immediate generalisation of Theorem A.2.2.2 is the following.

A.2.2.3 Theorem. Let

(a) {Tax} (a 6 Л) be convergent for each x£3>, where 2> is a dense subset 
of the Banach space B :

(b) {НТ̂ хЦ} (a ̂ A) be bounded for every x£B.

Then the linear operator T  defined by

7x  =  lim7^x xe2t  (**)a

is bounded and (extending all over B) 7x= lim  Tax  for every x£B.
a

Proof. By A.2.2.1, {IIГа||} is bounded, i.e. \\TX\\< M  and hence, as in A.2.2.2, 

||Гх|| = l im ||r ,x | |<  M||x|| xeSt
я

and so there is a unique extension of T onto В by A. 1.1. It is easy to show that 
(**) also holds for every x£B.

*A.2.2.4 Theorem. If

(a) Txx-+0 forevery x£S>, where 3t is a dense subset of the Banach space В ;
(b) {117̂ x11} (а€Л) is bounded for every x£B  

then Txx-*9 uniformly, i.e. sup || Тах\\ -»0.
Я

18*
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Proof. Applying the previous theorem for T =  0, we conclude that Tax -*() 
for every xfB.  As in the proof of A.2.2.1, we conclude that

iir^xj <  к and \\x—xk\\ <  rk implies ||Т̂ лг|| <  к 

and hence, if \\x—xk\\<rk, then \\Tx{x—х*)||<2&. Thus for every e > 0 ,

1 | Т а ( х - х * ) | |  <  e  
if

l ix -x t || <  <5 =  srk/2k

(independent of a).

A.3 The closed graph theorem

In our approach, the closed graph theorem will be derived from the uniform 
boundedness principle and the connections between T  and T*.

Another approach can be found in Gohberg and Goldberg (1981), where the 
closed graph theorem is derived immediately from the Baire principle and the 
uniform boundedness principle is proved afterwards, using the closed graph 
theorem.

Theorem. If Г is a closed operator and 9){Т) — Ж,  i.e. everywhere defined in 
the Hilbert space Ж,  then T  is bounded.
Proof. First we shall show that if 0){Т) =  Ж  then T* is a bounded operator 
on 2>(T*). In fact, if IIjcJ - c I, xxe ® {T * \  then

|( у |Г х ) |  =  |(7 > k )| <  \\Ty\\ у  еж

i.e. the functionals {T*x7}  are bounded by \\Ty\\ for every у е Ж.  Applying 
the uniform boundedness principle, it follows that

\\T*xa\\ <  M.

T* is also a closed operator, by A.l.2.1, and&(T*) is also closed for a bounded 
and closed operator T*. In fact, if xne&>(T*) and x, then {T*x„} is 
also convergent since T* is bounded and xe2>(T*) since T* is closed.

It follows from A.1.3.2 that Q)(T*) is also dense in Ж,  and so Ж —2{Т*).  
To summarise, Т*еВ(Ж)  and consequently Т**=(Т*)*еВ(Ж ); more­

over, T**=T.

Remark. Using the usual definition of the adjoint T* of linear operators T in 
Banach spaces, the proof also works when Г is a Banach space operator.
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ing kernel Hilbert spaces, operator theory including causal operators. 
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