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Preface

The object of this book is to present Hilbert space theory as a useful language
for applied mathematics and to present the basic facts and methods in a form
suitable for engineers and scientists who apply mathematics.

For this purpose the text also contains many applications of Hilbert space
theory, and we have emphasised the methods that are based on Hilbert space
theory rather than giving a lot of material. The bulk of the applications
revolve around reproducing kernel Hilbert spaces and causal operators. Sever-
al applications are treated here for the first time at an introductory level.

We have made an effort to make the book self-contained; however, an
important problem remains concerning integration theory. To avoid this
problem, the theorems are also formulated for non-complete spaces if it is
possible and natural to do so, and the non-complete Lg-spaces, consisting
of continuous functions with an L2norm, are introduced. In spite of this, the
concepts of measurable function and Lebesgue integral cannot be completely
avoided since the most fundamental theorems are valid only for complete
spaces. The reader can find a short and satisfactory integral theory in Gohberg
and Goldberg (1981), Appendix 2 (see also Naylor and Sell (1982), Appen-
dix D).

The content of the book can be summarised as follows. Chapter 1 gives the
fundamental concepts that are indispensable for understanding modern techni-
cal-mathematical literature dealing with normed spaces. The major part of
this chapter is the Contractive Mapping Principle, which shows, with a few
devices, the power of abstract space methods.

Chapter 2 gives a detailed and rather elementary account on Hilbert space
geometry centred around the Projection Principle.

Chapter 3 comprises a reproducing kernel Hilbert space (rkhs) theory. The
emphasis is not on the usual application in analytic function theory, but rather
on the various rkhs models in differential equations, interpolation and control
where the Hilbert space structure is enriched by the addition of some external
structure. However, the rich applications in stochastic processes have been
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almost completely omitted because of the complicated background required
to understand them.

Chapter 4 contains standard material on spectral theory, presented in as
simple a form as possible.

Chapter 5 gives a mathematical theory of causal operators. Causal operators
can be established in IAspaces by Hilbert space methods using truncation
operators; however, in some other cases this does not work. For example, in
most rkHs the truncations are not operators of the space. A unified Hilbert
space approach is developed in the monograph by Feintuch and Saeks (1982)
and, following the classical L2theory, the latter approach is also presented.
This section is supplemented by recent results not included in previous text-
books.

Among the exercises at the end of chapters, the easier ones are marked with
a circle (0) and the same mark is used to indicate the easier texts in the
further reading section at the end of the book. On the other hand, we have used
an asterisk (*) to indicate the sections that are more difficult, and the beginner
is advised to skip over them at first reading. However, 8 1.5,1.6 and 2.5 con-
tain material that is necessary for the subsequent chapters.

Many parts of this book have evolved during my one-semester courses in
functional analysis, held for engineering students since the early 1970s, and
the book is especially appropriate for similar one- or two-semester courses.
We would be very grateful to be kept informed of reactions to this proposal.

Our thanks are due to the editors for the careful technical preparation, to
C Kocéak and O Gulyas for useful remarks concerning Chapter 3, and to D Petz,
who read through the entire manuscript, for many helpful criticisms.

L Maté
Technical University of Budapest



Fundamentals

1.1 Linear spaces

The natural one-to-one correspondence between triplets (x,y, z) of real num-
bers and space vectors provides a geometrical model for many problems in
physics, economics and biology.

If the data of the objects are described by more than three numbers then
the geometrical model with space vectors is not applicable, and the visual-
isation of the problem in terms of a model of ‘geometric nature’ led to the
concept of n-dimensional linear space.

Hilbert space theory can be considered as a further development in this
direction. Ifinfinite-dimensional spaces are also invoked, ‘classical’mathematical
analysis and geometry can be connected and a more effective device for solv-
ing mathematical problems than the ‘pure classical analysis’ is obtained.

As a first step towards Hilbert space theory we begin with a concise review
of the fundamental concepts of linear algebra. A more detailed account can
be found in Gelfand (1961).

1.1.1. The set of “directed straight lines’ with the usual rules of linear operations
— addition and multiplication of scalars and the scalar product of two vec-
tors — will be called geometric vector space. The main properties of the linear
operations in the geometric vector space X are as follows. If x,y, zE X, then

(i) (x+y)+z=x+(y+z);
(i) x+y=y+x;
(iii) there exists a zero element B such that for every Xx£X,

X+6 =X

Remark 1. A directed straight line with the properties of B does not exist;
however, without the zero element 0 we could not answer the question: what
is x+(—I1)x? Hence for the main algebraic rules to be satisfied we add the
symbol B to the set of directed line segments as the ‘zero vector’.
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If A and p are scalars (i.e. real numbers) then
(iv) A(x+y)=Ax+ Ay;
(v) (A+ p)x=Xx +fix',

(vi) (Xp)x=).(px)\

(vii) lL.x=x.

The properties (i)-(vii) alone ensure that the usual algebraic rules can be applied
in the vector calculus.

A linear space is an abstraction of the geometric vector space. If ® is a
field, then a set X is called a linear space over @ if for any pair x,y6X there
is a unique element x+y£X called the sum of x and y and for any pair Af @,
x£X there is a unique XxfX, called the product of x with the scalar A such

that the properties (i)-(vii) are satisfied. The elements of a linear space are also
called vectors.

Remark 2. In the case of the geometric vector space the vectors are the direc-
ted straight lines and @ is the field of real numbers. For any linear space X it
is usual that @ consists of either the real or the complex numbers. In the
first case X is called real linear space. Unless otherwise stated, @ is taken as
the field of complex numbers in what follows.

A sum of the form
XX+py x,yeX, X,pE®

is called a linear combination of x and y, and a linear combination of any
finite number of vectors is defined in a similar way. A subset >X crA is called
a linear subspace or subspace for short if it follows from ht, h2, ..., BICX
that Xilh1+X2h2+ ...+ 2rkr™K, where Xk; k=1,2, ...,n are scalars. Ob-
viously, a linear subspace can be considered as a linear space in itself.

A set XX of vectors is called linearly independent if

A X1+X2x2+...+ X mxm= B
only in the case
A=d=.=A=0

for any finite numbers of vectors x~X, i=12, .., m
If a linear space X contains n linearly independent vectors ak\ k=1, 2, ..., n
such that for every x£X there exist {cfi®d. k=1,2,...,«} such that

X = Mal+i8a2+ ...+ "\,

(i.e. every x£X is a linear combination of the vectors ak; k=1,2, ..., n)
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then X is called n dimensional and {ak}, k=, 2, n is called afinite basis
or basis for short. One can show that n is independent of the choice of basis.

We can talk in similar terms about the dimension and the basis of any linear
subspace JfcX.

Remark 3. An n-dimensional space or subspace is also calledfinite dimensional
without mention of the dimension of the space or subspace.

If X or XK does not contain a finite basis, then X or XX is called infinite
dimensional.

The main subjects of functional analysis are infinite-dimensional linear
spaces. The absence of a finite basis creates major difficulties in the inves-
tigations of functional analysis and this has led to the concept of separability
and infinite basis (88 1.5, 2.2).

1.1.2. A mapping T: X—7, i.e. a mapping T from a linear space X into a
linear space Y, is called a linear operator if

T (XIxl+X2x2) = XITx1+ X2Tx2
XTI, X 2e X Xr, X 2P,

The set of X-_X for which Tx has a meaning is called the domain 3)(T)
of T and {Tx; x€2>{T)} is called the range of T.

If 7j: X-»Y and T2: X—Y have the same domain, then the linear combi-
nation X1T1+X2T2is defined as

XAT1A-X2T2x = XfiTM+XFiT-iX xdX; XLrXeEd
and the product of two operators Tj and T2as
r2Tjx := T2[Trx] XEX

if X, Y and Z are linear spaces, T+: X—Y, T2: Y-+Z and the range of 7\
is included in the domain of T2. Both the linear combination and the product
of linear operators are linear (see figure 1.1).

fig. 1.1
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Remark 4. The product and linear combination are also defined for non-linear
mappings in the same manner. If the mapping (operator) F is not linear then
the value is denoted by F(x) instead of Fx. With a few exceptions, we shall
deal with linear operators only.

If the operator T is everywhere defined and Y=X, then we shall say that T
is an operator on X, and if Y= & then the operator is called functional.

1.2 Normed spaces

The fundamental concepts in mathematical analysis are the various types of
convergence and the limit. Derivatives, integrals, series expansions etc are
based on these notions. It is therefore inevitable to define convergence in
a mathematical structure to be applied in the problems of mathematical
analysis. Introducing a norm in a linear space is one of the methods for
introducing convergence.

1.2.1. The absolute value (modulus) of a vector in the geometric vector space
has the following properties. Denoting the absolute value of the vectors X,y
in an unusual manner as |x||, |V[[ we have

@) IIxlls=0 and ||x||=0 if and only if x=0;
(1) [[x+y[Mx|[+]ly]l xX,ye*
(iii) 1A = W]Ix]| xex, A6D

where @ denotes scalars. The fact that a sequence {x,,} of vectors converges to
the vector x can be expressed as ||x—x J—0.

A norm of a vector in a linear space X is an abstraction of the absolute
value of a vector in the geometric vector space.

1.2.1.1 Definition. A linear space X is called a normed space if there exists a
mapping x—]|x|| from X into the set of non-negative numbers defined for
every X£X such that the properties (i)-(iii) are satisfied. The non-negative
number ||x|| is called the norm of x.

1.2.1.2 Definition. A sequence {x,} of vectors in X is called convergent if

there exists x£X such that the sequence |[x—xj of non-negative numbers

tends to zero. In this case, x is called the limit of the convergent sequence {x,.}.
Notation: lim x,, = x or X, —X
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Example 1. An immediate generalisation of the absolute value of geometrical
vectors for the linear space of «-tuples of real numbers is the following: if
x:={x1,x2, then

M. = (LW Ve

Notice that for n< 3 this is the absolute value of the corresponding vector in
the geometric vector space.

It is obvious that the properties (i) and (iii) of the norm are satisfied. How-
ever, to verify (ii) we need non-trivial considerations (see, for example,
Gelfand (1961), Lusternik and Sobolev (1961)).

Example 2. Other useful norms in the linear space of u-tuples of real numbers
are

(@) Nil := -2—1N1

(b) lIX|U == max|x].

For the connections between various norms in an «-dimensional linear space
we refer to § 1.7.

Remark. In the previous examples we can also take «-tuples of complex
numbers.

Example 3. The infinite sequences x:={xp, /=1, 2, ...} of complex (or real)
numbers satisfying

2 N12<°°
=1

form a normed space called 12space with the norm

NI*:=(ZN 1212

Indeed, properties (i) and (iii) of the norm are satisfied trivially and on the
basis of Example 1 we have

m m m
(2,N+Til212< (2, N1V2+ (2, W D

for any finite sum and hence, passing to the limit, if

2 NI2
i=1
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and

|2:1\yA2<o°
then

i2: . ki+J«l2<o0°

and hence property (ii) of the norm is also satisfied.

Example 4. Itis easy to see that the bounded infinite sequences with the norm

MU :=sup |x|

and the absolute summable sequences with the norm

M i = I2=1|v||
form normed spaces; they are called I”™-space and E-space, respectively (the
superscript 1 is sometimes omitted).

Example 5. The linear space of functions continuous on a closed interval
[a, b] is a normed space with the norm

11/11-:= sup {1/(01; tE[a,b\}.
It is called C[a, b]-space (or C-space for short if the domain [a, b] is clear from
the context).
That the sequence {/,,} of continuous functions tends to 1 C in this normed
space means exactly that fn-+f uniformly on [a, b] and hence this is the most
important normed space of continuous functions.

Remark. We can see clearly in this example, why it is necessary to adopt a
new name: norm, and a new notation: | . | for this generalisation of the ab-
solute value of geometrical vectors. We can speak about the absolute value
1/(01 of a continuous function/ and also about the norm off i.e. the maximum
value of |/(i)| in [a b].

Example 6. Other useful norms in the linear space of continuous functions on
a closed finite [a, b] are the following:

(a) WAr:= (/ 1/01*di)1* (L -space)
a

(b) I/l ;= / 1/(01 &t (L -space)
a
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(the superscript 1is sometimes omitted). The only non-trivial part in proving
that the properties (i), (ii) and (iii) of the norm are satisfied is that (ii) is satis-
fied for 0. Ik; this is postponed until §2.1.

1.2.2. The following important theorems on convergent sequences of real
numbers are valid for every normed space with the same proof (but substitut-
ing ‘norm’ for ‘absolute value’ of course).

1.2.2.1 Theorem. A sequence {X,} has at most one limit.
1.2.2.2 Theorem. If x,,—x then also x,t~+x for every subsequence {x,,}.
1.2.2.3 Theorem. If x,—x then [|xj —]|X||.

1.2.2.4 Definition. {x,} is bounded if there exists Ks*0 (common for every
n!) such that ||x,,||=sK

1.2.2.5 Theorem. If {x,,} is convergent, then {x,} is bounded.

1.2.2.6 Theorem. The linear operations are continuous in the following sense:
(@) If x,,-x and yn-*y then Xx,,+yn-*x+y;
(b) If A—A and x,,-*x then 2,X,-*-5x.

1.2.3. There are important theorems, however, which are not valid for every
normed space.

1.2.3.1 Definition. A sequence {x,} in a normed space X is called convergent
in itself or Cauchy-sequence if for every e>0 there exists N=N{e) such
that

I*,,-*mll < £ for n, m > N(e).

1.2.3.2 Theorem. Every convergent sequence {x,} is also convergent in itself.
Proof. Since

Ia*mll = I(*»-*)+ (*=-* )0 [xn-x ||+ [|x - X mj X, X,,, XTEX

it follows that x,,->-x implies that {x,} is a Cauchy sequence.

The Cauchy Convergence Theorem says that for a sequence {x,} of real
(or complex) numbers the converse of the above theorem is also valid: con-
vergent and Cauchy sequences are the same and this is also true in the geo-
metric vector space. However, the following example shows that the Cauchy
Convergence Theorem is not valid in every normed space.
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Example 1. Let us consider in LO[—1, +1] the functions

0 if t<0
xrft) = nt if O0*c 1/n
1 if t> 1.

(See figure 1.2.) The sequence X, is convergent in itself since

]t

+i
1 M t)-X m(t)\dt
-1

1/m 1in

= J (mt—nt)dt+ J (L—nt)dt
0 1/m
1/m 1In 1In

= J mtdt+ J dt—J ntdt

0 1/m 0

1 mnon 1
T i) S

fig. 1.2

We shall show that {x,,} is not convergent, i.e. there is no continuous function

;C=X(/) such that IP—xJ™—0.

For this purpose, let us consider a ‘larger’normed space containing both the
continuous functions and step functions. For a step function y=y(t),
interval [—1, +1] can be divided into a finite number of subintervals [tt,
ti+1] such that the value of y=y(t) is constant in every (th ti+l) and the

union of the intervals [, ti+i] is [—1, +1] (see figure 1.3).

fig. 1.3
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We now consider the linear space generated by the continuous functions
and step functions on [—1, +1] with norm

mi= J m \dt
-1

Then for
- [O if =0
*w =A{l if ,,0
we have
+1 m 1
[ |[+(0-~,(0ld/= | (Il—t)dt< —
-1 o n

and hence |[|/+—jg,|[x—0.
Since, by 1.2.2.1, there is at most one limit for {x,,} in a normed space and
/+L,,(—1, +1), we have proved that there is no limit in LO for {xr}.

1.2.3.3 Definition. A normed space X is called complete if every Cauchy se-
quence has alimit in X. A complete normed space is also called a Banach space.

The above example in LO[—L1, + 1] shows that LO[—1, + 1] is not complete
and it can be shown by a similar example that neither is L, [a, b].

The space CJa,b\ is complete. This follows from the following classical
result in mathematical analysis: ‘If a sequence {/,} of continuous functions con-
verges uniformly on [a, b] to a function /, then / is continuous on [a, b].’
Indeed, from Example 5 in § 1.2.1, this is the same as saying: “The normed
space CJa, b] is complete.’

The remaining examples in § 1.2.1 of normed spaces are also complete, i.e.
they are Banach spaces. (Although we shall not prove this, it is by no means
trivial.)

1.2.3.4 Definition. The normed space X (or a subset /fc T ) is called com-
pact if every sequence {x,,} belonging to XX contains a convergent subsequence
tending to a vector x”XK.

The Bolzano-Weierstrass Theorem says that every bounded closed subset
of the real (or complex) numbers is compact, and this is true also for the
bounded closed subsets of the geometrical vector space. However, the
following example shows that the Bolzano-Weierstrass Theorem is not valid
in every normed space.

Example 2. In P the sequence {ek}; k=\,2,..., where

ek= {0,0,...,0, 1,0, ..}

2 Maté



10 Hilbert Space Methods in Science and Engineering

belongs to the closed unit sphere {x: ||x||2<1}. However, there is no con-
vergent subsequence of {ek}; k=1,2, ... since for any pair en,em,

Ilk— =2

Examples for compact subsets XX and further theorems concerning complete
space and compact subsets will be found in § 1.6.

1.2.4. In a linear space, as we have seen, many different norms can be defined
and hence different normed spaces are obtained. For example, from the
linear space of continuous functions on the closed finite interval [a, b], the
Banach space C[a, b] is obtained if it is supplied with the norm | . IL; how-
ever, the linear space of continuous functions with the norm | . ||xis the(non-
complete) normed space LO[n, b] and with the norm | . ||2, the (non-complete)
normed space L\[a, b], It is therefore useful to compare the different norms
in the following sense.

1.2.4.1 Definition. If the linear space X is supplied with two different norms,
say 1.0 and | .|* then the norm | .| is termed stronger than | . |* (and
hence | . |[* is weaker than | . |) if

lha™* = idijdi Xex

for K>~0 (common for every x£ X).

1.2.4.2 Definition. The norms | . || and | . |[* are called equivalent if there exist
positive Kx and K2 for which

KiM*< M cKtM * Xtx.

Example 1. In the linear space of continuous functions on the finite interval
[a, b], the norm || . | is stronger than the norm | . ||xsince for every continuous
function /

/ 1/(0ldt<r (b-a)sup(|/(0l; te[a,b]}.

a

Example 2. In the linear space of u-tuples of complex numbers, the norms
I-H lell and 1.|L are equivalent. Indeed for x={4; k=1, ..., n},

max 141 < 2 k| < nmax |4|
k k=i k

and hence
[IX|L< ]|x]|< n]x|L XtX.

The equivalence of | . IL and | . ||2 is obtained in a similar manner.
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Example 3. Let us consider the linear space of functions on the real line which
are continuous on a finite interval 7f and are zero outside 7f, i.e. /(/)=0 if
i(E7f and 1{ depends onf. The norms | . |L and | . ||[x are also defined in this
linear space; however, they cannot be compared in the sense of definition
1.2.4.1. Indeed, considering

f(t »/(1+I'D if U
) iO( otherwise

we have ||/,IL=1 for every n but |/,|1— considering

in if < ln
n{) lo otherwise

we have °® but ||/i,|li=1 for every n.

1.2.4.3 Theorem. If the two norms || . | and | . ||* are equivalent in X then the
same sequences are convergent in both spaces {X; | .|} and {X\|.[*}
Consequently {X; || . ]I} is complete if and only if {X;|.|*} is complete
and I. I} is compact if and only if XX is compact as a subset of
{*; I.T}H

While this is a very important theorem, its proof is obvious.

1.3 Contractive mappings

1.3.1. If y=F(x) is a function with a continuous derivative on the real line,
then the solution of the equation

X = F(x)
is the limit of the recursive sequence
*0=a xmtl = F(xn n=20,1,2,..

if the following conditions are satisfied:

(a) Fx) < 1

where 2 is a closed domain of the real line;

(b) an3t and if x££2 then F(X)£3>.

2%
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A very important example is F (x)=—(x+J1/x); in this case the sequence

x0=A>0 Xl = j(x n+ A/xn) n=20,1, 2,..

tends to A|/2 i.e. to the solution of the equation

X=]j (X+A/x).

The process of solving an equation by a recursive sequence like this is visual-
ised in figures 1.4(a), (b).

fig. 1.4

1.3.2.  The subject of this section is the generalisation of the above process to
the case when F is a mapping of a Banach space.

L3.2.1 Definition. A mapping (operator) F of a Banach space B is contractive
in 2>7B if

(@) from x£2) it follow's that F(x)dSi;
(b) ||F(x)-F(y)N<7lIx—y]||, O<0<1, x,y€0.
13.2.2 Theorem. If Fis a contractive mapping in Q then the recursive sequence
X 0ES> xn+l= F(x,,) n=201,2, .. &)
is convergent. Moreover, if x:Iirrpx,,, then
x = F(x) (**)

and the solution of this equation (**) is unique in Si.
Proof. First, it will be shown that {x,} is a Cauchy sequence and hence the
limit x:Iier,, exists since B is a Banach space.

1] = Fx-F(x,,_i)|| @Ai[|xBx B_1] n= 12 ..
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and in full,
Ii=%ill = IN2)-iX*Qll < 4IP5~oll
117371 < (Ws—All < glXi-XoW
H*4-*3 = I|IF(x3-F (x| < ql*3—x2 < ~3lkl-~oll

and hence, by induction,

I%,+:.-*J3 < <hll*i-*oll n= 1.2, ..

which means that {||x,,+1—x,,||} is less than a geometric sequence with quotient
0-=c/< 1 Consider the Cauchy Convergence Theorem and, for example,
n>m\

Fn-*mll < Tkm+l-Amlletm+2-*m+ll4 = +K-"n-111
< ("Mmk AmEL+ L+ AN D) x|

«egm\+q+g2+..)\Wx1-x O\

= 2mj-A-[1*i-*oll

and hence {xr} is a Cauchy sequence. For the limit x of the sequence {x,.},
D*-FJC)0 N N*-*J+I1|xB-F (xn)||+||F(x®-F (x)]]
and hence if xEA> and ||x—x,,||<e/4 then
Ix —F(X)|| < e/4+8/2+ "eld < e

which means that x=F(x). If then F(x) is defined as Iiﬁn F(X,,),

and the same conclusion is reached.
If we suppose that z=F(z) and z”x, i.e. there are two solutions of (* *),

x and z, then
Ix z|| = HFX)—F(z)N< ?]|x-z]| o<qgq<1
which is impossible if x"z.

Example 1. The usual iterative method for solving first-order differential

equations,
*40 =f(t, *(0) x(t0 = x0

when a Lipschitz condition

I/(*i. 0-fix*, 01 < -WIxj-Xal if [i-i,,] < d
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is satisfied is a special case of (-*) if

t
F(x(t)) :=x0+ / /(t, x(r))dt
fo

in C[a, b]. Indeed, if a<min (d, /M) and a=t0—u, b=t0+a, then for
x,yECJ[a,b],

IF(x)-F(y)| = IJ; [/ (r, x(zj)-f{z, y(1))] dtl

< [ [ (r-x(T)-/(T, y(1)| dr
o
t

« M J |*(t)—y(t)\ dt
0

*m|i-1Q lx-y|l<~
Hence for |t—t(0<a,

IF(*)-FOOII~< Mcc\\x-yU
and M ad.

Remark. The iterative method for solving first-order differential equations
also works in more general conditions.

Example 2. The equation

t

x{t)—Xj K(t—t)x(z) dt = f(t)
0
where /, FTEC[O, T\ for any F>0 is called a convolution equation of the

second order. What is the condition for F being a contractive mapping in
C[o, T] if

F(x(t))::f(t)+X3K (t- T)X(r)dT?
To answer this question, consider
|IF (x) —FOO0IU = Sup(llg K(t-z)(x(z)-y(z))dz\; /€[0,F])
<IAI [ 1ATE- 9] dTSup(x(i)-y(Ol; *€[0, /1)

< IA-TH~Wsup(/ \K(t-2)\ dr; <€[0, F]).
0
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So, if |A is small enough, or more precisely if
|A|< [sup (é [*(i-T)ldr; §inT])]"1
then F is contractive in C[0, T] and hence the sequence
*0(0=/(0 xn+1(t):ﬂ0+ﬂé K (t-t)x,, (v)dz n=10,1,2,...

converges uniformly in [0, '] to the solution of the convolution equation.

This example has several generalisations. A more thorough investigation
will show that the recursive sequence {x,,(t)} tends to the solution of the con-
volution equation alsofor every L By a similar argument one can demonstrate
the convergence of the iterative method for the more general integral operator

Fx) - =I(N+HA k{t.)x{z)dz.

More about contractive mapping, including the problems just mentioned,
can be found in 8§ 1.8.22-1.8.28.

1.4 Continuous linear operators

A continuous operator T: X-+Y sends a convergent sequence {xn} into a
convergent sequence {7n;r}. A bounded operator T sends a bounded subset of
X into a bounded subset of Y. For a linear operator T these two properties
coincide.

1.4.1. In the following, unless otherwise stated, an operator T: X-+-Y is
assumed to be defined everywhere.

1.4.1.1 Definition. The operator T: X~-Y s called continuous in X0EX if
for every {x,} tending to xO0 it follows that Tx,,-*TxO0.
As in classical analysis the following theorem can be proved.

1.4.1.2 Theorem. The operator T: X—Y is continuous at x0£X if and only
if for every e>0 we have <&=<5()>0 such that |x—x0|[<<5 implies
[|7x—T7x0||-ce.

1.4.1.3 Theorem. If a linear operator T is continuous at 6£X, then T is
continuous at every Xx£X.
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Proof. Since T is linear,
Tx = T(x+6) = Tx+Ts XEX

and hence TO—s8. Now, if xn—x0 then xn-x o-+0 and hence T(X,,—x0-*0
since T is linear and continuous in 0. But T(xn—x0)=Tx,,—Tx0 and hence
from xn“wmn it follows that Txn-+Tx0 for any xfiX.

1.4.1.4 Definition. A linear operator T is bounded if there exists (M >0)
ir.vil MWAX\\ XEX.

In this case M is called an upper bound or a bound of T.
We now turn to the fundamental property of linear operators which tells us
that for a linear operator continuity is the same as boundedness.

1.4.1.5 Theorem. A linear operator T is continuous if and only if T is bounded.
Proof. If T is bounded with a bound M, then for every e>0, ||Tx||<e if
[X]|<s/M and hence T is continuous at 0. It follows from the foregoing
theorem that T is continuous at every x£X, i.e. I" is a continuous linear oper-
ator.

Conversely, if T is continuous at 0, then ||7x||< 1if ||x||<<5(I), and hence
for every non-zero Xx£X,

A 1= fIr(a(l)*/Im)]] < i

and so

IFXl<
i.e. I is a bounded operator with a bound M = U<&(1).

1.4.2, Examples of bounded linear operators in the various normed spaces
defined in § 1.2.1.

Example 1. Let us consider the linear space of u-tuples of real numbers with
the norm |[|x||,, = max || and let the operator T be the multiplication with

an nXn matrix A with elements {aik}, i.e. for x={x" i=1,2, ..., u},
n
Tx:- {2 aikkk\ i= 1,2, .., nh
K+

This is a bounded linear operator with a bound



1 Fundamentals 17

since
n

12
K=

n

n
ttik->Xd k2_ bl1**1 ~ 2 t »2,.., N

1 1 A

and hence
n t
1|F*||»:: Lax &2 aik*kl«e M«, max 2 \aik\-
' =1 'ok=1

Example 2. If {aik\i—1,2, ...,/c=1 2, ..} is a ‘double’ infinite sequence
called an infinite matrix, with the condition

sup i%:i K1 <co
then

Tx:= {*2_ aikxk; i= 1,2, ...}
=i
is a bounded linear operator in /* with bound

M = SUp 2 jaik-

Indeed, for every n and x={xp, i=1, 2, ...},
n n n n
Ik2:1 (2, laika e IVVI“*2:1 wiky 2 A Sli'pkzzI
and hence

{2 "kk>t~ 1)2,..}

is a bounded infinite sequence and
24 - ~< IWI- 2 k*I-
”ﬂ( 1 ﬂ}|| Sl'.l,pk:l

Example 3. If K=K(t, z) is a continuous function on the finite closed (two-
dimensional) interval [a,b]X[a,b] then

b
Tx J K(t,x)x(z)az *)
a

is a bounded linear operator in C[a, b\. Indeed, it is obvious that T is linear

and
b

I/ K(t, T)x(T)dtr f\K(t, Olico] dr < x|, fb|Ai(i,T)|dT



18 Hilbert Space Methods in Science and Engineering

and hence
b

lIr x|U< |I*|looSup{/ \K(t, 7| dr; tE[a, fc]}.
a

Remark. If K(t, T) is continuous on [a, b]X[a, fg], then

b
I \K(t,x)\dx

a

is continuous on [a, b] and hence it is bounded.

Example 4. The integration operator on C[a, b],

t
Tx:= j x(x)dx tE[a, b]
a

is a bounded operator with a bound M =b—a since

1/ x(r)dr] < |[x|U (ft-a).

a

Remark. The integration operator is in the form (-*) if

if x<
otherwise.

Example 5. The most important example of a linear operator which is not
continuous is the differentiation operator in C[a, b],

Tx:=x(x(t)).

To see that the differentiation operator is unbounded in C[O0, 2], let us con-
sider the bounded sequence {sinnt; n=1, 2, ...}:

T sinnt:= at (sin nt) = ncos nt

and hence
lIr sin nt\\m —n||sin nt\\,,
since
sup {cos nt; t£[0,2n]} = sup {sin nt; t£[0,2n]}.

We conclude that T sends the bounded sequence {sinnt; n=1, 2, ...} into
the unbounded {ncosnt; n=1,2, ...} and hence T is not a bounded oper-
ator.
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Remark. We can consider T=d/dt as an operator of C’[a, b], the subspace
of CJa, b] consisting of functions with a continuous derivative. In this case,
the differentiation operator is an everywhere-defined T: C1—C operator.

Example 6. In C1[a, b], the linear space of functions defined in [a, b\ with a
continuous derivative, we can define

W= 1100 4

M

It is easy to show that the properties (i)—€ii) of the norm in 8 1.2.1 are satis-
fied for this 0. Il If C”a, b] is the normed space supplied with this norm
(instead of || . |lo= as we had in the previous example), the differentiation
operator is a bounded (and hence continuous) operator from C1 into C.

Example 7. It is obvious that the operator (i.e. functional) which sends an
infinite sequence x —{xk}; k—1,2, ... from I°® or 11 into its nth element,
X, 1S bounded and linear. Similarly, the mapping

I-1(*0) Ll a, b], fEC[a, b]

called the evaluation functional is also bounded and linear.

Example 8. The evaluation functional is unbounded on L,,[—1, +1]. Indeed, if

n2t+ n if —l/n«s /<0
* (0 = —n2t+n if 0< t< I/n
0 elsewhere
(see figure 1.5) then [|xn|1=1, x,(0)=n and hence the evaluation functional

/-»-/(0) sends the bounded sequence {x,} into the unbounded {x,,(0)}.

fig. 1.5
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Similarly, the evaluation functional is unbounded also on L32[a, b\ for any
interval [a, b].

Example 9. Let us consider the Fourier series
%+ 5 akcoskt+bksin kt
-z-+ akcoskt+bksin
2K,
of a real-valued continuous function f=f(t), where
ak = — f f(t) cos kt at
70
|l
bk = — f f(t) sinkt &t.
nd

It is known that

4+ i«8+4=" f mat

which means that the operator F from the real L0, 2n] into the real /2 defined

by
Ff=W2, b, aj, 2 a2, ..}

is a bounded linear operator with bound 612

Remark. Modifying slightly the norm in the real L"[0,27r]-space,

1 2T

n o
we have the stronger property |[7/11=11/11 for every ff L2. This kind of
operator is called an isometry.

1.43. If 7\ and T2 are bounded linear operators with bounds Mk and M2,
then 2Tk+pT2is also a bounded operator with bound M =max (|]2| M1,
\p\M?2) for any scalars 2, p, and hence the bounded linear operators T: X-»Y
form a linear space.

Remark. \k\Mk+\p\M 2 is also a bound for 271+ pT2 since
[CN\+pT2x\ < UN|I34] + V|IMac] < |2| Mk+ \p\M2.

1.4.3.1 Definition. The least upper bound of a bounded linear operator T is
called the norm of T:

D1 =inf{M: il < M\ xix).
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Remark. Since x£X and TxE£Y, |M[ and [|7x|| should have very different
meanings if X~Y, as can be seen in Examples 6-9 in §1.4.2.

1.4.3.2 Theorem.
mi = sup{mii:y*i = i}.
Proof. If MO=sup {]|7x||; |IX|| = 1} then for every x: x~O,

T \Ti k h M°

WX\ < MO||n]|

and hence J1/0 is an upper bound of T.
Conversely, if M is any other bound of T, then ||7x||=eM||x|]] and, for
X: X"O,

Im =M |[M<wMm-
Hence
X
Ma=sup {I'Tx|; IIXI| = I} =sup Ty+lA < M
X"B T

which means precisely that MO0 is the least upper bound.
An immediate consequence of the foregoing theorem is the following.

1.4.3.3 Theorem. If T, 7\, T2 are bounded linear operators from X into Y
then

(i) EN>>0 and IIr||=0 if and only if Tx=8 for every X£X;

[ mRREARIRARAR AR ini

) [ (L 1
and hence the linear space of bounded linear operators T: X~ Y is a norm-
ed space.

In addition, the following connection holds between the norm and the prod-
uct of linear operators.

1.4.3.4 Theorem. If the product TLT2 is defined, then TfT2is also a bounded
linear operator and

Hag! < mumi.
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Proof. For every x€X,
lirjlir~HA lirjliriwi
and hence

NBA :=sup {NBAxL x| = 1} < LA

*1.5 The geometry of normed spaces; separability

In linear algebra, in an n-dimensional space, the computations are fulfilled
with the aid of a finite basis. Hence the lack of basis in an infinite-dimensional
space creates difficulties in applications. Fortunately, many infinite-dimension-
al normed spaces X contain an infinite sequence {ak; k= 1,2, ...} of vec-
tors called a fundamental sequence, such that every x£X can be approxi-
mated by linear combinations of vectors belonging to {ak; k=1,2,...}.
Such spaces will be called separable, and in a separable normed space a cer-
tain fundamental sequence plays the role of a basis in most cases.

1.5.1. We begin with some ideas of a geometrical nature. The set
{7 1Ix-x0f < r}

is called an open sphere with centre x0and radius r.

1.5.1.1 Definition. A subset XP of a normed space X is called open if from
X'fiXP it follows that there exists 0 such that {x: |[x—xO0||<r}c”f.
A subset XP of X is closed if {x: x$XP) is open.

There is also a more direct definition of a closed set via closure points using
the concept of closure.

1.5.1.2 Definition. xfiX belongs to the closure of the subset XPczX if any
open sphere with centre x,, contains a vector x~XP.

1.5.1.3 Theorem. XO0EX belongs to the closure of XPczX if and only if
there exists a sequence {x,,; xfiXP} such that x,—x0.
Proof. Ifx0belongs to the closure of XP, then every open sphere {x: |Jx—x(<
<1l/n}; n=1,2, ... contains xfiXP and hence ||x,,—x0Q|< 1/n; n=1,2, ...,
ie. X, -x0.

Conversely, if xfiXP and x,-*-x0, then by definition, all but a finite
number of {x,} are contained in every open sphere with centre x,,.
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1.5.1.4 Definition. Let XX be the closure of XX ; then X is closed if XX —XK.
In other words, by Theorem 1.5.1.3, a subset XX is closed if (and only if)
it follows from x,,£)XX and xn*x that x£ > also.

1.5.2. A subset XX is called dense in X if X —X\ i.e., by Theorem 1.5.1.3,
X is dense in X if for every x£X there is a sequence {*,}; xm4>XX such that
X,, "\ X.

1.5.2.1 Definition. The normed space X is separable if there exists a countable
dense subset in X.

1.5.2.2 Definition. The linear space X (or subspace >XX) is generated by the
subset if if every xE£X (or x£)XX) is a linear combination of elements of >.

1.5.23 Theorem (without proof). If the linear space generated by a countable
subset {a,\ n=1,2, ...} is dense in X, then X is separable.

The foregoing theorem says, practically, that if there is a sequence {an;
n=1,2,...} such that every X£X can be approximated to any required
accuracy by sums

m
& b

then X is separable. So, the condition that a countable set [a,,; n=1, 2, ...}
be dense in X is only apparently stronger than the condition that the set of
linear combinations from [an; n=1, 2, ...} be dense in X. This is very im-
portant, since in most spaces only the latter can easily be verified, as will be
seen in the following examples.

Example 1. Consider the countable set {tk; n—1,2, ...} in C[a,b]. By the
well-known Weierstrass Theorem, every continuous function on the closed
finite interval [a, b] can be approximated by polynomials with respect to the
uniform convergence. Since uniform convergence on [a, b] is the same as
convergence in the Banach space CJa, b], it follows that C[a, b] is separable.

Example 2. Consider the countable set {e,; n—1,2,...} in the /2space,
where g, is the sequence whose »th element is 1 and any other element is 0.
It is obvious that every finite sequence (i.e. a sequence with all but a finite
number of elements equal to 0) is a linear combination of elements from
{e,,; 7i=1, 2, ...}. Moreover, the finite sequences form a dense subset in 22

Indeed, if
* = {£*; k= 1,2, ..}E/*
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and
{OK* K = 1»2» oo}
where
_— if n
Ck lo otherwise

then obviously [|x—x,,]|2-*-0.
We conclude that the /2space is separable.

Example 3. The finite sequences do not form a dense subset in the space I°°.
Indeed, if

v={\ 1
then for any finite sequence xn={fr, 42, 0, ...}, Ww-x,\\»l.
It can be proved (it is by no means trivial!) that there is no countable dense
subset in i.e. 1°° is not a separable space.

Example 4. Every real-valued continuous function in [0, 2n] has a Fourier
expansion, convergent in LL[0, In] by the well-known Riesz-Fischer Theorem,
and hence the linear space generated by (1, sinnt, cosnf, n=1,2, ...} is
dense in L,,[0, 2n]. We conclude that is separable.

Remark 1. The approximation by polynomials in C[a, b] and the approxi-
mation by trigonometric polynomials in L, (0, 2n) via the Fourier expansion
are of a very different nature. For every /6L, we can construct an infinite
series, the Fourier series, and/ is approximated by the partial sum of the series.
However, in the form of a power series, called the Taylor expansion, only
certain infinitely differentiable functions can be approximated in C[a, b].

So, we have to make a distinction between two different cases. If there is a
countable subset {a,,; n=1,2, ...} such that the linear space generated by
{an; n=1,2, ...} is dense in X, i.e. every X£EX can be approximated to any
required accuracy by (finite) sums

m

i=1

then {an; n=1,2, ...} is called a fundamental sequence. This is the case of
{7, n=1,2,...} in C[a,b].
If every XEX can be given in the form of an infinite series

k=1
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then an; n=1, 2, ... is called an infinite basis (see §2.2). This is the case of
&int; n=0, £1, +2, ...} in [0, 2n].
In both cases X is a separable space.

Remark 2. We may also speak of a dense subset )X of JlczB. A subset
of B is called separable if there exists a countable dense subset in X.

To summarise, in a separable subset of a normed space there is a sequence
{an; n=1, 2, ...} such that every element is either the linear combination or
the limit of the linear combinations of {an; n=1,2,...}.

*1.6 More about complete spaces and compact sets

1.6.1. Some of the important normed spaces of continuous functions are not
complete, e.g. the LO- and Li;-spaces. However, the important contractive
mapping theorem, as we have seen in § 1.3, is valid only for complete normed
spaces — i.e. Banach spaces — and later on we will encounter more and more
such theorems.

If a certain normed space is not complete, then we can restrict ourselves to
an appropriate subspace which is a complete normed space, or we can complete
the normed space into a Banach space by a completion process. In the latter
case a new problem of identifying the new elements arises.

1.6.1.1 Definition. The linear subspace Ji of a normed space X is called com-
plete if every Cauchy sequence {n,}; xfiJt has a limit x<LJI.

Example 1. Every finite-dimensional subspace of a normed space is complete,
as will be shown in 817

Example 2. The space CQ of continuous functions with bounded support
(see §1.8.2) on the line with norm

IMU = sup [xr(0l
is not complete. Indeed, if x=x(t) is a positive continuous function on the

real line such that tj;'_ggajx(i):o and xn—xn(t) is a continuous function with

bounded support such that |x,,(/)|<x(i) and Xx,,(t)=x(t) for |?|<n (see
figure 1.6), then xfiCm and the sequence {*,,(?)} tends to x(t) uniformly
on the real line. So, by reasoning similar to that in Example 1 of § 1.2.3, the
Cauchy sequence {x,,}; X,,€C®0 has no limit in CQO0.

3 Maté
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Example 3. In contrast to the previous example the closed subspace of CQ
consisting of functions with support in [—1, +1] is complete. Indeed, if the
support of xn=xn(t) is contained in [—1, +1] for every n and xn(t)-*x(t)
uniformly, then the support of x—x{t) is also contained in [—1, + 1].

The next theorem tells us that every normed space has a complete extension.

1.6.1.2 Theorem. For every normed space X there exists a complete normed
space (i.e. a Banach space) B such that for a dense subspace B() of B there is
a 1-1 linear mapping (operator) L from X onto BOwith the property

\Lx\ = MI x€X.

B is called a completion of X.
Note: all completions of X are isomorphic, i.e. they can be identified with
each other by an isometric mapping.
Instead of a proof this theorem will be elucidated with the aid of some
examples.

Example 4. As was shown in the previous example, C® is not complete;
however, CDis a dense subspace of CO, the linear space of continuous func-
tions on the real line with t1i[n00x(t) =0 and with the norm | . [|Te.

Since the uniform limit of {x,,; x,,ECC0} also belongs in CO, i.e. the limit x
is also a continuous function with (_Li[nwx(t)—o, C,, is a complete normed
space. Moreover, COis the completion of CQ by the description in Theorem
1.6.1.2.

Example 5. If we consider the rational numbers as a normed space over the
field ®of rational numbers where the norm is the absolute value of the rational
number, then the normed space thus obtained is not complete. For example,
the sequence of rational numbers

1 14, 141, 1414, 1.4144,...
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(the digit-by-digit approximation of |/2) is a Cauchy sequence and has
no limit among the rational numbers.

The completion of the normed space of rational numbers is the space of
real numbers, also with absolute value as a norm. To show this it is enough to
remember that every real number is the limit of a sequence of rational numbers
and the Cauchy convergence theorem is valid for real numbers.

More particularly, consider the Cauchy sequences of rational numbers and
identify two sequences if their difference tends to zero. Then every Cauchy
sequence tending to a rational number is identified with the rational number
and the remaining Cauchy sequences are the new elements, the non-rational
numbers.

Example 6. Consider the Cauchy sequences in L&a, b] and identify two se-
quences {x,,} and {yn} if their difference tends to zero, i.e.

a

Then every Cauchy sequence tending to a continuous function xfLj[a, b]
is identified with x. The remaining sequences (i.e. the remaining equivalent
‘classes’ of sequences) are the new elements which, together with the continuous
functions, form the completion of Lfja, b] called LZa, b].

One of the achievements of the Riesz-Fischer Theorem is the representation
of this completion, LZa, b], by measurable functions/, the Lebesgue integral
of which obeys

i 1 [2di<ee.
a

Remark. Fortunately, every bounded function occurring in applications is
contained in the linear subspace of Lagenerated by step functions and con-
tinuous functions. So, if a normed space consisting of such functions is not
complete then the new elements obtained by completion are needed only for
‘theoretical’ purposes, i.e. the results of Banach Space | heory should be applied.

Now, it is worth describing the completion process of a normed space X
which we have seen in particular cases in the previous examples.

The completion consists of the equivalence classes of Cauchy sequences
{X,.} (X,,£X) in the following sense.

Two Cauchy sequences {xn} and {yn} are equivalent, or belong to the same
class, if xn—y,,-*9.

If the sequence {x,,} converges to an element x of X, then the class of Cauchy
sequences which are equivalent to {x,,} is identified with x£X.

3
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The classes of the remaining Cauchy sequences are the new elements
which, together with the elements of X, form the completion B of X. If xZB,
then

MI := lipg Mil

where {x,,} is a Cauchy sequence of the class of n\
Although obvious, the following theorem is important.

1.6.1.3 Theorem. The completion of a separable normed space X is also sepa-
rable.

1.6.2. Remember that a normed space X (or a subset Xc:X) is called com-
pact if the Bolzano-Weierstrass Theorem is valid in X (or in )XX'). (See Defini-
tion 1.2.3.4)

Further examples for non-compact bounded closed sets in infinite-dimen-
sional normed spaces are the following.

Example 1. In L [—1, +7r] the sequence {(1/a12) sin nt\ n= 1,2, ...} belongs
to the closed unit sphere {x: ||X|][2< 1} since

— J sin2ntdt= — j (1—cos 2nt)dt = 1.

However, there is no convergent subsequence of {(1/a12) sin nt\ n—1, 2, ...}
since

— I
71 *(

(sin kt—sin mtf dt = 2
for any pair Kk, m.

Example 2. Consider the following ‘double’ sequence in CJ[O0, 1]:

k) K 2Kk +1
XnM=\2n+1((_k + N if k+1_
1 2" ) 2n+l 2"
0 elsewhere.
Then |xnt||,,=1 and for any two different functions x,,:k and x,,-Xx ,

sup{|x,,jt(0-x,,.,£(0l; i€[0, [} =1

and hence there is no convergent subsequence of {xri.
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To find compact subsets in an infinite-dimensional normed space is not
an easy task. Among the most important examples are the following.

A subset XX of continuous functions is called equicontinuous if for every
e>0 there is a common <S=5(e) for every X£XX such that —
implies that |x(/2—x"1"e.

1.6.2.1 Theorem. A closed set /cC [a, b] is compact if and only if XK is an
equicontinuous subset of functions.
If for /EL Za, b] we define

. t+h
2A. [ IWdr

then we have the following theorem.

1.6.2.2 Theorem. A closed set XX cb 2a, b] is compact if and only if for every
£>0 there exists <5=<5(e) such that |/i|<<5(£) implies for every Xx£X that
[|Xx-X]2<E.

Remark. Although we omit the proofs of Theorems 1.6.2.1 and 1.6.2.2, they
are by no means trivial (see, for example, Lustemik and Sobolev, 1961).
There are very fine properties for compact subsets:

1.6.2.3 Theorem. If XX aX is compact then XX is complete, bounded and
separable.

Proof. If xm6,)K and {x,} is a Cauchy sequence, then there exists a subse-
qguence {xn) tending to an x£>X since X is compact. It follows from the
inequality

\Wn-x\\ <8 ||xn- x nifl-HIx,,(- x |

that x,,—X in this case and hence X is complete.

If XX is unbounded then for every positive integer n one can find x>
such that ||x,,J|>n, and hence there is no convergent subsequence {x,,}
of {x,,}, he. XK is not compact.

1.6.2.4 Definition. A subset / ¢ | is called pre-compact if the closure of XX
is compact.

It follows that for a closed subset XX, compactness and pre-compactness are
the same properties.
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1.7 Finite-dimensional normed spaces

Every n-dimensional normed space is equivalent, in the sense of 1.2.4.2, to
the u-dimensional Euclidean space. An easy but important consequence of
this equivalence is that every linear operator is continuous in a finite-dimen-
sional space.

1.7.1. First we shall show that the three basic norms | . ||2? || . [|2and | . Lk
are equivalent.

1.7.1.1 Theorem. In the linear space X of wtuples {£K; k=1, 2,..., n of
complex numbers the norms

Mr:= (|2:\|$k\

M» := (kzzlf\ 1212

1= syp "
are equivalent.
Proof. If *={£*}; k=\,2, wuuy] then

N *=
s%p|| i1 2 |&|ml§up 1&I

and hence || . |x and || . |U are equivalent norms; moreover

sup |£*|2 “f= 2 \Zk\2(i<nsup [E*|2.
Hence

M~< LI L2

for every x£X, i.e. the norms | .|[,, and ].]|2 are equivalent.

1.7.1.2 Theorem. The linear space X of n-tuples of complex numbers with the
norm 1. llkk is a complete normed space.
Proof. If

xt:=t6°; k=12, ..., u}

and {dJ is a Cauchy sequence, then
sgplIn-nN1<E if i,j>N(e).

In particular, {£€} is a Cauchy sequence of complex numbers for k—1, 2, ..., n
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and hence there exists k=1, 2, ..., n such that
til) - b K= 12, ..., n

Moreover,
sup{|EI0-E*|; k

\,2, .., n}—0

or, in other words,
%10~ - o,

1.7.1.3 Theorem. If X is the linear space of u-tuples of complex numbers with
the norm || . L, then every bounded closed subset of X is compact.

Proof. For a bounded subset Jt there exists K>0 such that |[x|],,<.K for
every xdJi and hence

1tf’l i= 1,2,..., K=1,2,...,«

for any infinite sequence {xj; i= 1,2, ... belonging to JI. In particular,
\ff\-<K and hence it follows from the Bolzano-Weierstrass Theorem that
there is a convergent subsequence {c”; k=12, ..}; let

Ei= Jim V.

There is also a convergent subsequence of {{2K}; k=1, 2, ... since we also
have |*@K|<Ai. Using the same notation for the subsequence, let

{2 = khm E<4
Repeating this procedure, after n steps a subsequence {x@ ; k=1,2,...
is obtained, each coordinate of which is convergent. If
* = {Ei, Ea, =, Q

then we conclude, as in the proof of the previous theorem, that
Ilxik-x1U -0 .

Remark 1. On the basis of 1.2.4.3 and 1.7.1.1, Theorems 1.7.1.2 and 1.7.1.3
are also valid if the norm | . |«= is replaced by | .|x or || . |2 or any norm
equivalent to | . ||..

Remark 2. It is easy to see that a sequence is convergent in | . ||,, (and hence
in any norm which is equivalent to ||.|,,) if and only if it is convergent ‘coordi-
nate-wise’.

1.7.2.  We shall show that any norm of a finite-dimensional normed space is
equivalent to the Euclidean norm | . ||2.
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Let us consider the mapping

. {"; k=12 , nfwx = 2 Zak
i

from the linear space of n-tuples of complex numbers supplied with the norm
I I« into an u-dimensional normed space X, where

ak; kK= 12,...,n

is a basis in X. It is obvious that T is a linear 1-1 map onto X and hence there
exists the linear inverse mapping r-1.

1.7.2.1 Theorem. The mappings T and ¢ 1are bounded linear operators.
Proof. The operator T is bounded since

0 2w<*n<m 27kv,  xzx
K=1 k=

where M=sup {||laj; k=1,2 , uh.

For the inverse operator t_1let us suppose that there exists a sequence {xr}
tending to zero and |t -1(x,)1=1 for n=1, 2, i.e. it is supposed that r-1
is not continuous at B. It follows from Theorem 1.7.1.3 (see also Remark 1)
that there exists a convergent subsequence {T_1(x,,)} and it is obvious that
limr_1(x,,) =a”6; moreover,

XN, = t[t_1(xB)] - t(a)

since Tis continuous. Thus we have a contradiction, since aXO, z(a)=6 and
ris 1-1 and linear.
It now follows from 1.4.1.5 that t- 1is a bounded operator.

1.7.2.2 Theorem. Any two norms in a finite-dimensional normed space X are
equivalent.
Proof. If {ak; k—,2,...,n} is a basis in X and

n
X = k2: 1Zk k
then it is easy to show that
IMM:= 2 \u
k=1

is a norm (i.e. the axioms (i)-(iii) in 8 1.2.1 are satisfied). It follows from the
previous theorem that

\‘ }'P *[l
| kgll,l
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and
=1
Hence
. W, .
Mt i o1l = e M 2 1id
which means that any norm is equivalent to || . ||". Finally it is obvious that if

we have two norms in a linear space, both of which are equivalent to ||. ||,
then the two norms are equivalent.

It also follows from the foregoing theorem that every finite-dimensional
normed space is complete and every bounded closed subset in afinite-dimensional
normed space is compact (see Remark 1 after Theorem 1.7.1.3).

1.7.3. As is well known, a linear operator in a finite-dimensional linear space
X with a given basis has the form of a matrix multiplication (see 84.1.1).
Moreover, it was shown in Example 1.4.2.1 that the matrix multiplication is a
bounded operator if X is supplied with the norm | . |

It is easy to show that if a linear operator T is bounded in | . IL then itis
bounded with respect to every norm that is equivalent to | . ||Te. Indeed, if
I.0and 1.1, are equivalent, i.e.

*IMI- < < K\XIL *E*

for suitable Kx and K2, then

tRITXIL < =KATX|L xdX

and hence

KL< KMTXU < KA\TUNa, < WM

which means that I" is a bounded operator in the equivalent norm also with

bound — [B7+|. Thus we have proved the following theorem.
Ki

1.7.3.1 Theorem. In a finite-dimensional normed space every linear operator
is continuous.
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1.8 Problems and notes
1.8.1. Complete the proofs considered to be easy or obvious in the text.

1.8.2. The support of a function/, defined in the n-dimensional Euclidean space
E,, (particularly in the real line), is called the closure of the set

{f.No * 0; V/EE,}

A function gwith bounded support on the real line is called a step function
if its domain can be divided into a finite number of subintervals so that on the
inside of each subinterval, g has a constant value (see figure 1.3). A function
is piecewise continuous if it is the sum of a continuous function and a step
function.

0l.8.3. For which a=»0 is the sequence

(@) in /* (b)in /, (c) in /~?

0l.8.4. The interval [—1, +1] is divided into 2000 parts and those step func-
tions that have a constant value in each of these subintervals are considered.
Show that a finite-dimensional linear space of step functions is thereby obtained,
and give a basis and hence the dimension of this space.

1.8.,5. The set of functions
{A sin (t+cp)\ A » 0, 0< < 2n)
is a two-dimensional linear subspace of LZ0, 2n]. Indeed,
A sin (t+<p) —A cos (psin t+A sin (pcos t.
Hence {sint, sin (t—n/2)} is a basis and
t: A sin (t+cp) — (A cos o, A sin )

is a linear 1-1 mapping (operator) from this linear space onto the linear space
of pairs of real numbers (see figure 1.7).

Representing each pair of real numbers as a geometrical vector of the plane
in the usual way, the norm of y=A sin (t+cp) isequal to the absolute value of
the corresponding vector, sincel

1 21
— f A2sin2(t+cp) dt = A2
n
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fig. 1.7

0l.8.6. Using axioms (i)—{ii) of the norm in § 1.2.1, prove that
AAVEARRIVARIVAY

1.8.7. Show that for a continuous function/in [0, 1],
i < W< u-

1.8.8. A sequence is calledfinite if all but a finite number of elements are zero.
Show that for a finite sequence x,

IMIi > Mila > Mil—

1.8.9. A generalisation of the usual norms for continuous functions of several
variables is as follows.
Let 3> be a bounded closed domain of the «-dimensional Euclidean space;
then
H/1TU = sup {|/(01I; tE2>}

U= (/7 1/(012d/)12
3)

Hn/mi= /1/(01 at.

Here, at=4atl...atn and f is the multiple integral.
3

1.8.10. The common generalisation of the norms | . Ih and | . ||2 is the fol-
lowing.
(a) For functions,

Mil,, 1 = (/ M(0lpdi)Vp 1 p <oo.
a
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(b) For sequences,
MIP: = k(:llk I pyP 1

Prove that for continuous functions in the finite closed interval [a, b] and for
finite sequences,
IMU = pl»,]_’of(]\M\p-

1.8.11. Prove that the continuous functions in [0, 1] form a Banach space
with the norm
i = n2+11/11-

0l.8.12. Which of the following functionals p are norms?

(@ On the space of functions with continuous derivatives in [0, 1],
P(x) :=supl x(t) ; t£[O, I1j.
() On the linear space of nXn (quadratic) matrices,

n
p{A):=su p{'(:\l bl ; i=1,2, n}.

(c) On the linear space of continuous functions of two variables in [0, 1] X

[0 1, .
i

P(K) :=sup1J IAT(, vyrar; fE[O, 1]}
0

(d) On the space of complex functions, analytic in the open unit disc
{z: |z|< 1} and continuous on the circle |z|=1,

where is the /eth derivative.

1.8.13. 1fl . lIx I .2, | .. are norms on a certain linear space X, then

p(x) = max (M*; k =1\,2,...,n)
and

qx) = 2, 1w
are also norms on X.
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1.8.14. A geometrical meaning of the boundedness (continuity) of a linear
operator T: X-*Y is the following. There is a sphere with centre 0 in Y such
that the image of the unit sphere in X is contained in this sphere. The radius
of the smallest such sphere in Y is just ||7j].

1.8.15. It was proved in Theorem 1.4.3.3 that the linear operators (I': X—7}
form a normed space. What is the condition for {T: X—Y} to be a Banach
space? Answer: if Y is a Banach space then {T: X—I'} is also a Banach
space.

Proof. If {I',}} is a Cauchy sequence, then {Tnx} is even more a Cauchy se-
qguence in Y for every X£X; hence y:IirH T,,x exists since Y is supposed to

be complete. Define

TX := IiH Tnx xXEX.

It will be proved that T is bounded and |[/+T"LUy-O.
If Iljc||cl, then for every e>0,

WTnx-Tx\W\ = WTnx -T mx)H Tmx-Tx)\\ e WTnx - T mx\
+|FTx-7x]] € WIn-T mM\+W\Tmx-Tx\\ < e

if n,m>N(e/2) and m>A(e/2; Xx).
It follows that for n> N(e/2)

sup {LIAX-TxLL; Ix|| = 1} < e

which means that Tn—T is a bounded operator for n>iV(s/2) and Tn—T-+0.
Since T=Tn—HTn—T), T is also bounded.

1.8.16. Consider the linear space X of finite sequences (see § 1.8.8) and the
linear operator

Tx := {2 aikxk; i= 1,2, ...} XEX
K

X being supplied with the norm | . ||i; what is the condition on the ‘double’
infinite sequence

@ i=12.,k=12..

called the infinite matrix, that T be a bounded linear operator on X? What is
the norm of the operator T1

1.8.17. Is the operator )
i

Tf:=/ K(t, v/(vdt
0
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continuous in LO[O, 1] if K is a continuous function in [0, 1]X[0, 1]? What is
the norm of this operator?

01.8.18. Is the operator ]
i

Tf:= 1 K@ 9/(yde
0

bounded in LL[0, 1 if K is a continuous function in [0, 1]X][0, 1]?

1.8.19. What is the condition for the corresponding infinite matrix that the
operator

Tx:= aik*k; i =12, ...}

b

be bounded in the /2space?

01.8.20. The operator of the form
Tf:= | K{t--i)f{x)ax
0

is called the convolution operator and K=K (t) is called the kernel. Prove
that the sum and the product of convolution operators are also convolution
operators.

1.8.21. Recall that if T: X—F is a mapping then T~x: Y-*X defined by
T~1:Tx - X

is called an inverse mapping. A linear 1-1 operator T is called invertible if the
inverse mapping T~xis a bounded linear operator defined for every y£Y.

By the same considerations as in the proof of Theorem 1.7.2.1 it can be
shown that if T is a bounded 1-1 linear operator from the n-dimensional Euc-
lidean space onto a Banach space Y then T is invertible, i.e. the inverse is a
bounded operator.

The well-known Banach Inverse Mapping Theorem says that this remains true
if the domain of T is any Banach space X and not only an «-dimensional Eucli-
dean space.

1.8.22. If Fis a contractive mapping and G is another mapping of the Banach
space X with the commutation property

GF = FG
then x0=F(x0) implies x0= G (x0).
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The proof of this important observation is easy. If x0= F(x0 then G(x0
= GF(xy=FG(x0 and hence G(x0 is also the solution of the equation

X = F(x).
But the solution of this equation is unique, since F is contractive; hence
x0=G (x0.
1.8.23. Prove that if Fn the nth iterate of F, is contractive in 3> for n>n0
and the condition 1.3.2.1 (a) is satisfied then the recursive sequence
XCE@ xn+l = F{x,,)

converges to the solution of x=F(x) although the mapping F is not con-
tractive. (Is the solution unique?)

1.8.24. It was shown in Example 2 of § 1.3.2, that the operator
F(x(t) :=f(t)+X | K (t-T)*(r)dT
0

is a contractive mapping if W is small enough.
Applying the considerations in 1.8.22 and 1.8.23, it turns out that the
recursive sequence

*0(0 = 4O xa+1(t) = f(t) + XJ K(t-z)xn(z)dt n=0,1,2,..
0
tends to the solution of the corresponding convolution equation for any X
By applying 1.8.22 and 1.8.23 to the iterative solution of the differential
equation in Example 10f § 1.3.2, a more general condition for the existence of

the solution is obtained.

01.8.25. Consider the operator equation

Xx—Tx * |
where I is a bounded linear operator of a Banach space B and f£EB. Now
F{x) = if+Tx)
is a contractive operator if |A is large enough. More particularly,

[F(*)-F(2)Il = j T(x-z) «j WTWWx-zVi

and hence F is contractive if ||I'[|-<|A|.
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In this case the recursive sequence corresponding to F, given by Theorem
1.3.2.2, is the following:

j- (F+T1) if x0=f

X
A
|

= X (f+Txd

joI-IS-TERAT *f

- \(f+Tx)=LFf+1-Tf+AP+ATAP

X'+1= Xo Jk+L Tkf+ I~ T T "+1f

and hence the solution of the operator equation is given in the form of the
infinite series

k=0 n

called the Neumann series.
Following the proof of 1.3.2.2, show that the Neumann series is convergent
for iAi>imi.

1.8.26. An easy application of the above is the following iterative solution of
a system of linear algebraic equations, called the Gauss-Seidel method. The
method is applicable if the number of equations is equal to the number of
unknowns. Consider the matrix form

Ax = b. (%)

It can be supposed that the diagonal elements akk™0; k= 1, 2, ..., n; divide
the kth equation by akk; a system is then obtained which is equivalent to the
original one and is in the form

(E+B)x =b
where the diagonal elements of B are zeros. Now the recursive sequence
x0="Db xn+i = b-Bx,,
converges to the solution of the system of linear algebraic equations (*) if
F(x): b—Bx

is a contractive mapping.
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Since on the space of u-tuples of complex numbers, every norm is equivalent
(from 8§ 1.7.2) we choose the most convenient one and state that

IIF(x)-F(z)IL = [|B(x-z)|U < g\\x-2\U

where 0<#<1. In fact, we have seen in Example 1 of 8§ 1.4.2 that

I|B(x—z)|L«s sup 2 \ bik\\x-z\\"*
1 k=1

and hence if

2 \bik< 1 /=1,2, ...,n
k=1

then F is contractive and the Gauss-Seidel method is convergent.
For the matrix A of the original system of equations this condition can be
formulated as follows:

bl > k /=12, .., *x
k2"<i ail n (**)
since bik=aikau for iVKk.

1.8.27. Based on the considerations in 1.8.26, the Gauss-Seidel method is as
follows.

(i) Divide the kth equation by akk™0 and substitute the diagonal elements
by zeros to obtain the matrix B.

(ii) Form the recursive sequence of mu-tuples of numbers

X,,+i = b-Bx,, (x0= h)
Upto |xmtl-xj<£.

Think about the following modifications.

(a) Using the norms || . |lj or | .||2 do you obtain a more convenient or
weaker condition than (**)?

(b) Do you find cases when (**) is not satisfied for A but it is satisfied
for Aun n>n0?

0 1.8.28. On the basis of the Contractive Mapping Theorem and 1.8.25 prove
that for any bounded linear operator T the operator

XE-T

(E is the identity operator) is invertible if |n| is large enough.
Give the smallest number C such that XE—T is invertible for |1|>C.

4 Maté
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1.8.29. Show that in the Banach space C[-n, + f], the bounded sequence
xn(t) = sin nt

has no convergent subsequence.

01.8.30. Let C be the linear space of bounded continuous functions on the
real line with the usual norm | . L Consider C00, the continuous functions
with bounded support, as a subspace of Lo(— + <=0) or C. Prove or disprove
the following statements:

(i) COis dense in Lo(—"°°, +«=);
(ii) COis dense in C.

1.8.31. If Sf, Jt and X all have the same norm, and
SfaJ(eX

then if isdensein 1 if if 3 Jt. Here if is the closure of if in X. In particular,
if J1 is a closed subset and if is dense in JI then if=JlI.

1.8.32. If/is a real-valued function on a normed space X and/is continuous
on a compact subset /1 , then/ takes its minimum and maximum on JlI, i.e.
there exists TO£/1 such that

/O0) = sup meldl).

To prove this, we first suppose that/ is unbounded on J1 ; there then exists a
sequence {x,,}; xnf£ /1 suchthat /(x,,)>n and, since JI is compact, a conver-
gent subsequence {x,,} can be chosen and xn~x£Jl. Thus we find that
f(x,,)—f(x) and /(x,)>n,, which is a contradiction.

Now let M be the least upper bound for {/(.v); x JI}; there then exists
{xk} such that

f(xK>M -1/k k=1,2,..

Again there is a convergent subsequence {xkJ since JI is compact and if
xk-*x0, then xJJI since a compact subset is closed and

M > [(x0Q > M —l/k K=1.2, ...
This means that
/(X0 = M = sup {/(«?); Tel).
1.8.33. For a non-compact bounded, closed subset JT we can find a continuous
function/ on X such that it does not take its minimum on J1. For example,
N —{x: x(0) = 0; x(1) = 1; |IX|l < 1}
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is a closed subset of C[0, 1] and

/(*):= [ wold/

is a continuous function on C[0, 1]./does not take its minimum on Ji. Indeed,

f<id( and  f(tn:= [ttndt = —tr n=12 ..
]

n+1
and hence
inf{f(x): x~Jt) = 0.
On the other hand, there is obviously no continuous function x —x(t) satis-
fying the following conditions: )
i
x(0)=0 o =1 f |x(i)|dt = 0.
0

1.8.34 There is a generalisation of 1.8.32. If F: X—Y is a continuous
mapping, where X and Y are normed spaces and i/c f is compact, then
there exists x”J | such that

IF(OIl =sup{l[FC)Il; xiM).
To prove this we consider /(x):=]||F(x)|] and apply 1.8.32.



The Geometry of Hilbert Spaces

2.1 Scalar product

In the geometric vector space the norm is derived from the scalar product;
however, until now the norm has been defined directly. Moreover, in the geo-
metric vector space geometric concepts of a different character, such as orthog-
onality and projection, can be expressed by a scalar product.

Our next subject for discussion is the ‘geometry’ of linear spaces, in which a
scalar product is defined in a certain axiomatic way and the norm is derived
from this scalar product as in the geometric vector space. We shall see that the
normed spaces thus obtained have richer structure and are ‘more similar’to the
geometric vector space that those not having this property.

2.1.1. The scalar product of vectors a and b in the geometric vector space is

defined by
(a\b) := MA1bI1 cosy

where | . | is the absolute value of the vector and y is the angle between a and b.
It is easy to check that the following properties are satisfied for any vectors
X,y, z and scalar A

(Hw =1

(i) (x+y\z) = (x\z2)+(y\z)

(iii) (hcly) = Lix\y)

(iv) xrix) > o and (x|x) = o if and only if x = B.

Notice that the properties (i)-(iv), called the axioms of the scalar product,
are more important than its geometrical meaning and this is the motivation
for what follows.

2.1.1.1 Definition. A mapping
(xY) »x\y)
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from the ordered pairs (x,y) of elements of a linear space X into the field of
scalars (complex numbers) satisfying axioms (ii)-(iv) and
(i) w = w

where {y\x), the complex conjugate of (y|x), is called a scalar product of x
and vy.

Remark. In the case of geometric vector space and in any real linear space,
axioms (i) and (i)' are the same, since in these cases the scalars are real numbers.
However, in the case of a complex linear space, i.e. when the scalars are com-
plex numbers, it is necessary to alter axiom (i) since there is a contradiction
between axioms (i) and (iv) in this case.
Indeed, using axioms (i) and (iii),
(ix]ix) = i(x]ix) —i(ix|x) = i2(x|x) = —(X|x)
for any x~O and hence at least one of the values (ix|ix) and (x|x) is not posi-
tive, in contradiction of axiom (iv). However, using axiom (i)' instead of (i),
(ix]ix) = i(x[ix) = i(ix|x) = i(—=)(x|x) = (x|x)

and hence axiom (iv) is not violated.

2.1.1.2 Definition. If a scalar product is defined in a linear space X then X is
called a scalar product space or pre-Hilbert space.
In the geometric vector space the norm (i.e. the absolute value) of a vector x
is expressed by the scalar product
Xl = (x[xy !\

In the next section it will be shown that the axioms (i)—ii) of the norm in
8 1.2.1 are satisfied by |x|| :=(x|x)¥2 also in any scalar product space; thus
scalar product spaces are (special cases of) normed spaces.

2.1.2, In the geometric vector space,

\T \< M ™

for any pair of vectors x, y. We shall prove this inequality, which is known as
the Cauchy-Schwarz inequality, purely from the axioms (i)'-(iv) of the scalar
product without reference to any geometry.

2.1.2.1 Theorem. In a pre-Hilbert space X,

\(X\W\ < M bl X, yE3tf
where ||| :=(xX[x)¥2 and |ly|| :=(yly)V2
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Proof. If x=8 or y=9, then obviously the equality holds. If x*Q and
y then for any scalar X we have

0< (X-Xy\x-Xy) = (xX\x) + X2(y\y)—(Xy\x)—(x\Xy)

(xX\x) + WX2(y\y)-(Xy\x)-(Xy\x)
W)+ |[A(yly)-2Re(I(y[x)).

For X=(x\y)!(yly) we have
0< (x\x)—INQ )[2
L

and the Cauchy-Schwarz inequality is obtained by suitable rearrangement.

Remark. The motivation for the proofis the solution of the following optimi-
sation problem.

Choose X for fixed x,y £X in the real scalar product space >X so that the
‘distance’ ||x—X\ is minimal (see figure 2.1). Solution:

[[X-Ayl|2:= &X-Xy\x-XY)

- (X\X)-2X(x\y)+V(y\y)

since XX is a real scalar product space. Hence
A= (X-Xy\x-Xy) = 2X(yly)-2(x\y)

and
%I(x-Xy\x-Xy) =0 if X= Pﬁl-.

vly)
It follows that the ‘distance’ [|[x—X\ is minimal if

w

2.1.2.2 Theorem. |[x||:=(x|x)22 is a norm.
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Proof. It is obvious that axioms (i) and (iii) of the norm are satisfied. To check
axiom (ii), known as the triangle inequality, we have

Ikt Tll2e- ix+y\x-+y) = (X)+H{yly)+HXy)HyIX)
< 1IM2+1bl12+2M1bl| = (M1+bl1)2
by the Cauchy-Schwarz inequality, and hence
WAL < WDAHWAL,

As we have seen in 1.2.2.6, multiplication with a scalar and addition are
continuous operations in a normed space. In pre-Hilbert spaces the scalar
product is also continuous.

2.1.2.3 Theorem. If Xx,,-*x and yn*y, then

(xrivn) - (X\y).
Proof.
|(*n11)-(*1>0] < I(xrYn)-(Xn\y)\ + j(X,,ly)- (x|y)|
=y, -y WX = A (Jlyn-y || F][x.,-y1])

where K is the common upper bound for |ly|]| and the convergent sequences
{I*3} and {|I/1 ][}
It follows that if \\yn—y||—0 and ||x,,—X||-*-0 then

|(~LTn)-(MT)| - o,

By Theorem 1.6.1.2, every normed space has a completion. Is the completion
of a scalar product space again a scalar product space? The answer is yes.

In fact, if {x,,} and {y,,} are Cauchy sequences of elements of a pre-Hilbert
space XX, then

|(*»14,)-(**bl| = \(XMYnN-YK)+(X,,-XKyK\
< AXIYI—YiN+ \X,—XRYR\ < LY 71— x | +|)X—] IITjl
< M1lta-nll + 1k,-**11)

where K is a common upper bound of the Cauchy sequences {||.v,,[} and
{llyj}; hence {(xn\yn)} is a Cauchy sequence of complex numbers. Now, we

define
(x\y) := lim(x,.|y.,) (*)

for the elements x and y of the completion of XX defined by the Cauchy se-
quences {xn} and {>)} according to § 1.6.1. The definition (*) is consistent
with the axioms of the scalar product and the completion process described in
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8 1.6.1. For example, if {n'} and {>} are Cauchy sequences and
X',,-Xn- B yn-¥n- 0

(i.e. the same element is defined by {X,} and {xr} (respectively {y't and {y,.}))
then lim (X'|ly")=lim (x,ly,,). We can summarise this as follows.

2.1.2.4 Theorem. The completion of a scalar product space is a scalar product
space with the scalar product (*).
A complete scalar product space is called a Hilbert space.

Example 1. If {efe k= 1,2,3} is an orthonormed basis in the geometric vector
space; i.e.

i\ fl if /=]
€e™ }=1lo if ip -
arid
X = ?lex+(?2e2+”"3c3
Y = mel+riZer+rides
then

(* b) = DAx»7l+ "N2572+73 »73

which is sometimes called the ‘coordinate form’ of the scalar product of the
vectors. The next generalisation for n-tuples of complex numbers is motivated
by this form.

If x={xk; k—I, 2, ..., n} and y—{yk; k=1, 2,..., n) then

Wt):= 2 x kyk
k=1

(where ykis the complex conjugate ofykK) is a scalar product in the linear space
of «-tuples of complex numbers. We emphasise the Cauchy-Schwarz in-
equality in this case,

k2:}x kykl2<k:2|\x k\2k:21\yk\2

and the scalar product space thus obtained is complete, and hence a Hilbert
space, since the linear space in question is finite-(n-) dimensional. If we restrict
ourselves to real numbers, then the Hilbert space thus obtained will also be
called n-dimensional Euclidean space.

Example 2. In the /2space,

(x\y) -:k2: . xkyk
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is a scalar product and 12 is a scalar product space since
IWI. := k2:1k 12= Ne )12

We have only to prove that the infinite numerical series defining the scalar
product is convergent. It follows from the Cauchy-Schwarz inequality of the
previous example that

n m

12 xkh\* < 27k 122 \Wr
k=m k—n k=n

and hence, if

L221 Kl2<
and
2 . \WK2<0°
k=1
then the series
kg * KYK

must be convergent.

/2 is complete, i.e. a Hilbert space (the proof is not trivial and this is equiv-
alent to the Riesz-Fischer Theorem).

Example 3. In the space Ll(a, b),

(f\g)-=/ m m &t
a

is a scalar product and L*is a scalar product space since

1/11.:= | 1/(012c = (/|/) V2
a

According to § 1.2.3 and, in particular, the considerations following Definition
1.23.3, L is not complete. The completion is the L2space introduced in
Example 6 of § 1.6.1.

Example 4. The linear space HJ of complex functions analytic in the disc
{z: |z|< 1} and continuous on the boundary (z: |z|=1} is a scalar product
space with

(f\g) —2°T ¢ Ne)g(z)jtz.

z7tl Jz|=1 z
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There is a close connection between Hjj and Ljj(0, 2n); substituting z—eu,
we obtain

s @ f(z2)g(z)~-dz = /1 (ein(eiQdi *)
Z7Z 0

Zicl |z|=1 z

and hence it is not surprising that the completion of Ha, called Ha
(Hardy) space, consists of those analytic functions in {z: |z|< 1} for which
O e“)Ono, 2n).

A very important property of the Hj;-space is the following.

If fn~*f *n the scalar product space Hj; then fn{z)-+f{z) uniformly in every
closed disc {z: |z|<r< 1}. To prove this we use the estimate

1 i ]
213 Jei(-z 02di< (TATF If |Z°]leS™
(see figure 2.2). Now by the Cauchy integral formula and the Cauchy-Schwarz
inequality, in L0, 2n],

If29-fredl =41 o dz

W=i Z~ 70

1 2K eif
-U-/C

< yl——r l/-/.l.m

fig. 2.2

Hence the assertion on the uniform convergence is clear, considering the con-
nection (*) between Hj; and La[0, 2n].

Example 5. If
Dy :=y"+b(t)y" + c(t)y
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where b=b(t) and c—c{t) are continuous functions on a closed finite interval
[a, b] and y* and y™ refer to the first and second derivatives, respectively, of
y=y{t), then XX is the linear space of functions y—y{t) for which Dy is
a continuous function on [a, b]. X0 is a pre-Hilbert space with the scalar
product

W\z)  y(a)z(a) +y'(a)z'(a)+ £ (Dy)(r)(Dz)(r) dr

a

and the completion of XXB is a special type of Sobolev space.

Example 6. If (2, A, P) is a probability space, then the random variables
C= "ai) with finite variance form a Hilbert space L2(Q, A, P) with scalar
product

Z,relL40,A,P)

where M is the mean value of the random variable. The important closed
linear subspace of L2(fi, A, P) consists of random variables £ with zero mean,
i.e. M(g)=(). In the language of Hilbert space geometry, this is the closed
linear subspace, which is orthogonal to the constant random variables (see
Definition 2.2.1.1).

For the applications of Hilbert space theory to probability problems see
Lamperti (1977).

2.1.3. There are normed spaces whose norm cannot be generated as
[lidl :=(x|n")22 from a scalar product. An important example of such a space is
Cla, b]. To see this, let us consider the parallelogram law

\WXHYWr+\\x-y I = 2\\xIM+2\\yl

which is valid for any scalar product space, as can easily be verified. The paral-
lelogram law is not satisfied for x(t)=t2 and y(t)=1 in C[0, 1]. Indeed,
1bll«=1 and ||*IL=sup {i2; t£[0, 1]}=1; moreover,

I*+ylU = sup {/2+ 1; i€[0, 1]} = 2

and
n—lu

sup {L—i2; i€[0, 1} = 1

2.2 Orthogonal systems (sequences)

In the geometric vector space, every vector is the linear combination of fixed
sets of three orthogonal vectors and any finite-dimensional linear space pos-
sesses a finite basis, i.e. n fixed vectors such that every vector ofthe linear space
is a linear combination of these fixed vectors. In certain infinite-dimensional
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spaces a fixed infinite sequence of elements can be found with similar proper-
ties (see, for example, Remark 1in §1.5.2).

The main subject of this section is the construction of an infinite basis in a
separable Hilbert space or even in a separable scalar product space, which is
orthogonal in the sense of Definition 2.2.1.2.

2.2.1. The orthogonality is defined in a pre-Hilbert space in the following
natural way.

2.2.1.1 Definition. The vectors x and y in the pre-Hilbert space XX are called
orthogonal if (x|y)=0.

Remark. In a real pre-Hilbert space the angle a between x andy can be defined
by the formula

L = Cosa

MIMI

but we need only consider the case when cosa=0, i.e. when x andy are
orthogonal.

2.2.1.2 Definition. A sequence {et} in a scalar product space X is called ortho-
gonal if

(eAej) = 0 if iV j.

If kftl=1 for i=1,2,... is also satisfied, then {ek\ k—1,2,...} is called
orthonormal. An orthogonal or orthonormed sequence is also called an orthog-
onal or orthonormal system.

We begin with the following minimum problem. Let {ek} be an orthonormal
system, n a fixed integer, and x an element of XX ; determine the scalars yk,
k=1, 2,..., n in such a way that the ‘distance’

n
2 wiew
k=1

is minimal. First we give the solution for real scalar product space. In this
case,

i‘ n _ n 'I n
| 2 yre 2= (x- Z Viek| 2 %Y

= (x\x)-2 Z Yk(X\e+ Z yl-
k=1 k=1
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For the minimum of this quadratic form

-Oiy; I/I“"-k2:I YKbIR= 2yk-2(x\ek =0 k=1,2,n;

it follows that the desired minimum is obtained if and only if
W= e k= 12....

In the case of a complex space X the solution is the same but a more lengthy
calculation is required, since in this case we have to seek the minimum of a
quadratic form of 2n real variables.

We conclude that the minimum of the ‘distance’

17+ 2 1e\

is obtained if and only if yk=(x\eK); kK—i,2, and then

1 20k 0= Il L (e [*)

Remark. The consideration connected with the Cauchy-Schwarz inequality
after Theorem 2.1.2.1 is the special case of this problem for n= 1

Example 1. If ekis the infinite sequence whose kth element is 1 and all other
elements are o, then ekP and {ek\ k—:,., ...} is an orthonormal system
in P.

Notice that this {ek; k= 1,2, ...} is an immediate generalisation of the
‘fundamental basis’

ek= {10, ....0, ....0}
e2 = {o, 1y veey0, ...,0}

ek = {o,o,..., 1,...,0}

e, = (o‘o ....... o,...,l}
in the linear space of u-tuples of complex numbers.
For x={xk\ k=1,2,...}, (xX\ek=xk and hence k2_]1(*+O ex= {*u *,, eee
coiy X5y 0, 0, ...}, Moreover, if n-~o0 then
LT k)L i
1] )

in this case. This is therefore a trivial example of the results in this section.
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Example 2. The sequence

is an orthonormal system in O, 2n]. For arL2[0, 2n] and ek=eik,

Glg>:= @)V2 1 x(t)e~ikdt,

and

n
2 x\ek) ek
Ir—n( ¥

is the nth partial sum of the (complex) Fourier series of x£L2[0, 2n\. So
this is a well-known example but is by no means trivial.
It is also known that if n-m<=then (* *) also holds in this case.

Remark. On the basis of this example, the coefficients (x\eK; k= 1,2,... can
be considered as the generalisation of the Fourier coefficients. These coefficients
are therefore called the Fourier coefficients of x with respect to the orthogonal
system {ek; k=\, 2,...}.

Example 3. The sequence
@ TIrsinkt\ Kk = 1,2, ...j

is an orthonormal system also in the real L2[—n, + 7t]-space. Now

1 ix .
(x\eK) := — J  x(t) sinktdr

—It

but if n-*-°° then (**) is not fulfilled. More particularly, (#*) is fulfilled
only if x=x(t) is an odd function and in any other case

{MI2- 24*Kk); n= 1.2, ..}
L
is just a decreasing sequence of positive numbers.

Example 4. The sequence {z'"; k=0, 1,2, ...} is an orthonormal system in
Hjj. Indeed,

(znzm = -Zirhr- P z"zmz—dz = >m ® zn- m~1dz

if n=m
if nEm
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since z=1/z on the circle |z|]=1. In this case,

Ne )'S , AM@sTd=E, I~ d"T T k“°u’-

by the generalised Cauchy integral formula. It follows that (f\zK is the /cth
coefficient of the Taylor expansion (at z,,=0) of the analytic function /.

Notice that this Taylor expansion is connected to the (complex) Fourier
series o f/(eh) in the following way:

L) = 2(f\zRe'k
k=0

and hence if 4, H* then the kth Fourier coefficient of f{e'k) is zero if 0.
It follows, that (* *) holds in this case too if n—

2.2.2.  We now modify the problem posed in the previous subsection as follows.
For a given orthonormal system {ej, find those elements x of )X that can
be written in the form of an orthogonal series

What are the coefficients £* in this case?
If we suppose that x is in this form, then

(*h) = Z B(eren /=1.2,.
k=

by axioms (ii) and (iii) and the continuity of the scalar product; hence
ik = (xk) k=1,2,..

Ifwe now apply also equation (*) from §2.2.1 the following result is obtained.

2.2.2.1 Theorem, (a) If x£XX can be given in the form of an orthogonal series,
then

* = tégx\ek)ek. (@)

(b) An element x of the pre-Hilbert space XX can be given in the form (*)
if and only if

MR= z (W12



56 Hilbert Space Methods in Science and Engineering

Remark 1. It follows also from equation (*) in §2.2.1 that for every x£X
and orthonormal system {ek},
*
kzzll( k)I2c M1,

since the norm is a non-negative number.

Remark 2. The orthogonal series (*) is sometimes called the orthogonal
expansion of Xx£XX by the orthogonal system {ek; k= 1,2,...}.

2.2.3. What is the condition for an orthonormal system {ek} that §2.2.1. (*)
holdsfor every x(~>1 This is a natural question following on from Theorem
2.2.2.1.

2.2.3.1 Definition. A sequence {ak; k= 1,2,...} iscalled complete if (x|(ik=0
for k=1,2,... implies x=9.

2.2.3.2 Theorem. For every x£X,

oo

X = *2_1 (x\eKek

if and only if the orthonormal system {ek} is complete.
Proof. The sequence {"\.},

rn
$»= 2, (x\*Kk)ek

is a Cauchy sequence since

HA-NME = (2 (x\eKek\ 2 (x\eKek) = 2 1("k*)l.
k—m k—m k=m

and the series
*Z:i (MM

is convergent by Remark 1 following Theorem 2.2.2.1. Hence {j,,} has a limit
in the completion of X)X and

(x - éjl(x\eloek\e,) = Cp,)-(x[<?)) = .

Now if we suppose that {ek} is complete then it follows from the foregoing
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equality that

00

X -k2:1Wek)ek: 0

and hence §:..... (*) holds.

Conversely, if {ek} is not complete, then there exists x~O suchthat (x\ek=0
for k=1,2,.. and hence 8:..... (*) does not hold for this

It is not easy to verify whether a given orthonormal system is complete or
not. In §2.14.11-14 we shall give theorems and examples related to this
problem. Furthermore, we shall show in §2.2.5 that any separable Hilbert
space contains a complete orthonormal system.

2.2.4. A standard method for the construction of orthonormal systems, called
the Gram-Schmidt process, proceeds as follows. Let {ak; k=1,2,...} be
linearly independent (§1.1.1). The first member of the orthonormal system is

€
1 nn

and for the second member e2,
z. —a2 Xkek
where the scalar :.: is determined by the condition
(z2<T) = (a2ki)—22L= 0

and hence Ai=(0:ki)- So, if e.=z:/||z2| then {el,eZ} is an orthonormal
system with two elements (see figure 2.3 (a)).
For the third member, e3,

713 —«3 231 232 €2

fig. 2.3

5 Maté



58 Hilbert Space Methods in Science and Engineering
where the scalars A3l and A are determined by the conditions
(z3ki) = («ski)-"3i =0
(r3k3) = (aska)—*2 = 0.

Hence A31=(a3kJ and A2=(a3k2- So if e3=z3||z3| then {elf e2,c3} is an
orthonormal system with three members (figure 2.3(h)).
Now if ex, Co, ..., en have already been obtained, then for e, +1,

n
zn\1= an+l~ 2 An+1,kek
where the scalars An+1(t; k~ 1,2, n are determined by the condition
M
izn+l\ej) — (an+tl—2 _~n +1,keklej) = (an+Nej)~~n+1,j — 0

k=1

and hence A+lp=(an+lk); k=\,2,...,n. So if entl=zn+ll\\zn+l\\, then
{ek; k=1, 2, ..., n+ 1} is an orthonormal system obtained from the linear
space generated by the n+1 vectors ak; k=1, 2, n+ 1

Remark. In the Gram-Schmidt process, n linearly independent vectors ak;
k=1,2, ..., n are converted into the n elements of an orthonormal system
{ek; k=1, 2, ...}. In this process < is the scalar multiple of ak, e2is a linear
combination of a2and ek, e3 is a linear combination of a3, el and e2and so on.
Notice that the computation is organised in terms of the minimal number of
vectors and operations.

Example 1. Using the Gram-Schmidt process for
lit2 tn
in LZ—1, +1], a sequence of orthogonal polynomials known as Legendre

polynomials is obtained, the nth element of which is of exactly (n—I)th degree;
the first four members of this sequence are

1t j(3t2-1), j(5t*-31).

A general formula for the Legendre polynomials (the so-called Rodriguez
formula) is

LM~TMA4F ™-"'r "=
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and a recursive formula is
A)0 =1 L ft) —t
(n+hHLn+l(t) = @2n+ DiZ,n(i)-«i-n-i(0 n= 1.2, ..

Example 2. If the Gram-Schmidt process in P is applied to the vectors

@( {Al) N 9 ***}
where af; i= 1, 2, K are arbitrary numbers, the orthonormal system de-
scribed in Example 2.2.1.1 is obtained.

Example 3. Consider the analytic functions in a suitable open domain 2>
for which
/1 ]/0)|2dxdy <°°.

Then
(14 := fgf f(z)g(z) dx dy

is a scalar product and a sequence of (complex) orthogonal polynomials can
be obtained in this scalar product space if the Gram-Schmidt process is applied
to the sequence 1,., z2 ..., 72", ....

Further examples for orthogonal systems can be found in the next section.

2.2.5. A complete orthonormal system is also called an orthonormal (orthogo-
nal) basis since it is a basis for the scalar product space XX in the sense of
8 1.1.1. or § 1.5.2 Remark 1. An important theoretical conclusion of the above
is as follows.

2.25.1 Theorem. Every separable scalar product space contains a (finite or
infinite) basis.

Proof. If {an;n=1,2, ...} is a countable dense subset of >, then, applying
the Gram-Schmidt process to {an; n=1,2, ...}, a complete orthonormal
system {ek}; k= 1,2, ... is obtained. In fact, if

(x\ek) = 0 K=1,2,..

for x£)XX, then we also have (x|a,,)=0; n—1,2, ... (see 82.2.4 Remark)
and hence x—8 by §2.14.42.

Remark. It is not necessary for {an; n= 1,2, ...} to be linearly independent.
(What happens if {a,; n=1,2,...} is not linearly independent when the
Gram-Schmidt process is applied?)

5%
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2.3 Some important orthonormal systems in the L2spaces

As in the case of the geometric vector space, there are many complete ortho-
normal systems in a given separable scalar product space. In this section, com-
plete orthonormal systems in L2spaces that have proved to be useful in
practice will be discussed.

2.3.1. Our first example is closely connected with the (complex) Fourier series
expansion. In many cases we have only a sample of N elements

*:0 ’ (*)

for /EL 0[O, 2n] and we shall show how we obtain an analogy of the Fourier
series from this sample.
In this case we consider

Q-inj(2n/N)

CMh

which is an approximating sum of the integral

a
c«= f f(t)eMdt
0

i.e. the nth Fourier coefficient of /=/(/). Now the analogy of the Fourier
series is the sum

- * %
TN = 2, cNneM (**)
and {Gv,}; = 1, 2,.., N—1 is called the discrete Fourier transform of/
based on the sample (*).

The important feature of the discrete Fourier transform is the following.

2.3.1.1 Theorem.

Feb/ 1) «-con-n

Proof. Consider the mapping

[-{/(k"H)}' k=0 N~1I *)

from L[0, 2n] into the A”-dimensional linear space of JT-tuples of complex
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numbers with scalar product

1 w-i
m-= bl T (¥E£)'(*E£)m
Then
eint- (€"2/«}; k=0 L..N-1
and
LN G nigzniny Qimj2itiny C if nnT
T .ﬂl if n=m

and hence i/ie mapping (*) carries the orthonormal system {eI"}; n=0, £1, ...
into a complete orthonormal system of the N-dimensional Hilbert space thus
obtained.

If we expand the sample {f(k2n/N)}; k—0, 1, ..., N—1 in this orthonormal

system (the copy of (eI"}; n=0, £1, £2, ... in the mapping (*)) then
— (/
2 cNe» ~ =rN({c— J.
/ (* 1) (
Remark 1. The copy of {el"}; n=0, £1, £2, ... is a complete system since

the range of the mapping (*) is N dimensional.

Remark 2. Obviously, for most fg£L\[0,2n],
INO0*<0*~pn/(y £),(;-*m).

232, If

e)= " > *(x-mi)

0 otherwise

then we obtain the simplest orthonormal system in L2[0, 1] consisting of N
elements. It is called a system of square impulses.
If we consider the double sequence

- M2 if Ar); N=1,2,... n=1,2,..,N
aN®

0 otherwise

we obtain a complete orthonormal sequence. In fact, if

1 Ny
I f(iyerN()dt = N~ f(i)di=0
0 (YN
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for N=1,2, ... and n—1,2, ..., N then the value of the integral function
F@t)y [/ f{r)dr
0

is zero for every rational t and hence it is identically zero since F=F(t) isa
continuous function.

The oldest discrete orthonormal system is the Haar system in L2[0, 1]
(figure 2.4):

J0(0), V<>, A, i), ..., AT, ... m=12,..
where
i if o * 4
Ar(0=1, m o= if~ el
0 elsewhere
* o+
K—1 K™2
2m2 if
Bp)=< Lo
_ T K
—2m2 if —— 4 -
(@] elsewhere.

If m—n and k?£l, then h%\t)hp(t)=0 in all but a finite number of points
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in [0, 1] and hence the orthogonality is clear. If m”~n, say w>n, then

1 Zm
I MA@ dt = f he(0A(0 dt
0 (—bi2m
(—¥2)2n "
= @12 | hwe(t)dt—@2n12  f *»>()d/ = 0
(1-13/2" (1-1/2)/2*

since each of the last integrals is zero. Moreover, it can immediately be seen
that

[ A«>(0*di= 1
0

The Haar system is complete, i.e. if the function /£L 2[0, 1] is orthogonal to
every Haar function then /(/)=0. In fact, if

F(O =/ A0 dx
0
then F is a continuous function and F(0)=0. Moreover,
0= //(O ~o)(OdT = F(I)-F(0)
0
and hence F(1)=0 also. Taking the second Haar function,
o=/ I(OW)IT =[f(I)-F(o)]-[F()-F(G )] =:F(1).

For the next Haar function,

1 _il4 )
0= / /(OM~ACOdt = /2 f f(r)dr-/2 f f(x)dr
0 0 1/4

= /2 [f({)- FO)+F(/u)—F (i)]=2/2F(]) et

It turns out that F(k/2m—0 for k—0,I,...,2m and m=0, 1,2, ..., ie.
the value of the continuous function F is zero on a dense subset of [0, 1] and
hence F (i)=0 forevery /£][0, 1]. It followsthat f(t)=0 (almosteverywhere).

2.3.3. The Rademacher system {r,,} is another discrete orthonormal system in
L2[0, 1]. Its formation is even simpler than that of the Haar system: r0(t)= 1
and for n=1, 2, ... the nth element is obtained if the interval [0, 1] is divided

into 2" parts; in the Atth interval the value of rn(t) is +1 or —1 according to

whether k is odd or even (see figure 2.5).
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It is easily verified that the following connection exists between Rademacher
functions and Haar functions:

= (2-")i/2j{:'!n®.

The disadvantage of the Rademacher system is that it is not complete. Indeed,
any continuous function in [0, 1] with the properties

10 -0 =/(0 é/(Od/:O

is orthogonal to every Rademacher function. A simple example for a function
of this type is f(t)=cos 2nt.

A completion of the Rademacher system is the Walsh system {w,}.
w0=r0 and the consecutive members are constructed according to the

following rule:
P
if n :k2_|’2',“ then Wh= rVi+lry,+1...rv+1.

Applying this rule, it turns out that
ws* = r,l+1 k=0,1,...

and some of the first Walsh functions are

w3 = rxr2 since 3 = 2+2° = 112
=Ir 4 = 22= 1002
= rxr3 5= 22+ 2- = 1012
w6 = r2r3 6= 22+2 = 1102
= Mr2r3 7 =22+2+2° = 1112
= rt 8 - 24- 10002

(see figure 2.6).
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2.3.3.1 Theorem. The Walsh functions form an orthonormal system in L2[0,1].
Proof. It is obvious that

= =012

If n?tm, then

w,,()wm(t) = rlA(0rnO)...rro

where 0 since r2(t)= 1 for every Rademacher function r,,.
Moreover, it follows from the definition or construction of Rademacher func-
tions that

O/ wn(tjwm(t)at = OJ rin(t)rmi(t)..mt)dt = £ .j r(t)dt=0

where / is a subinterval of [0, 1] with length 21_"ft Another construction of
Walsh functions is the following. We define the quadratic matrices
HN HN

H1l=1 N HN -H N) N=1,2,..., 2»,...
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which are called the Hadamard matrices of 2Mh degree. For example,

111 1°"
H-T1 n H - 1-11 -1
Ha u -1J H* i i — —~*
J -1 -1 |

Now, dividing the interval [0, 1] into 2N parts, the function w*(t) for n<2N
is defined as the (step) function whose value in the zth subinterval is /z+1>i,
the value of the zth element of the (n+ 1)th row of H2V

It can be proved that the functions w*; n—0, 1, 2, ... thus obtained are
Walsh functions; more precisely, {w£} is a certain rearrangement of the Walsh
system {wt}. Furthermore, the matrices H,v; N~ 1, 2, ... are invertible
(see §82.14.16-17).

With the Hadamard matrices H2Wthe computation of the Fourier coefficients
with respect to the Walsh system is easy :

1 2N
(IK*):= [ [(FK (Ndi = Z hk#ii |/
0 “1 (Riv

for 2N>~k and hence, if the corresponding integral function is F—F{t) as
in the case of the Haar system, then

(/K)=1/.,.,.,(r(™)-r(b 1)) W

where hk+1J is the zth element of the (k+ I)th row of the matrix H2V
Using this construction of Walsh functions and Walsh-Fourier coefficients,
we show that the following theorem is true.

23.3.2 Theorem. Let g£L2[0, 1] be a function with the property (glvt*)=0
for k=0,1,2,...; then g(t)=0 (almost everywhere).
In fact, in this case

»e« ("W -'Y b A= 0,12,

by (*), where 2N>k and
t

G(t):= J g(t)dr.
0

Since every H2N is invertible, it follows that

cva i5l’)=o '='-2..4.2N

and G(0)=0; hence G(i/2N)=0 for z'=1,2, ..., 2N.
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Thus we have proved that the values of the continuous functions G =G (t)
are zero on a dense subset of [0, 1]. It follows that G (t)=0 for every /£[0, 1]

and g(t)=0.

2.3.4. The orthonormal system obtained in L2[0, °°) from the Gram-Schmidt
process from the sequence e~*t" (a>0); n=0, 1,2, ... is called the Laguerre
system. It can be proved (e.g. by induction) that for the nth Laguerre function

Ln(n=I, 2, ..),
(t (Za)l' pXt d" (fitp - 2M\
e’
(the Rodriguez formula) and the Laguerre system is complete since the sequence
ak(t) = Q~Mtk K=20,12 ..

is complete in L2[0, =). (Although we do not give the proof here, this is not

an easy theorem.)
The importance of the Laguerre system is that the Fourier and Laplace

transforms of Ln,

1 iffl+a Vuo+a)
and

™ -« £ = - T

respectively, i.e. #"[L,,] and SE\Ln are rational functions of ico and s, respec-
tively, and this is the only orthonormal system with this property.

2.4 The projection principle for finite-dimensional subspace

In the previous section we obtained results concerning approximation in L2
spaces by the partial sums of orthogonal series. However, in many cases it is
more convenient to approximate instead by the sum of functions that have
other advantageous properties than orthogonality.

24.1. Let {ak\ k—1, 2, ..., n} be linearly independent elements of a scalar
product space XX and x/™)K. Find {yk; k=1, 2, ..., n) such that

n

> Irlyk‘ Kl

is minimal. This problem is the immediate generalisation of the problem posed
in §2.2.1 for an orthogonal system of n elements.
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Again, as in §2.2, we turn to a geometrical analogy of this problem. Ifax, a2
are linearly independent vectors of the geometrical vector space, then the linear
subspace

{Vifli+Vva R

can be visualised as a plane passing through the origin 0, and the problem is to
find the point on this plane that is at a minimal distance from x.

It is well known that the solution of this geometrical problem is unique, and
that it is the orthogonal projection of x onto the plane (see figure 2.7). This
geometrical picture will be followed in the subsequent analysis.

2.4.1.1 Definition. Let if be a linear subspace of the pre-Hilbert space X \
then xMEJi is called the nearest vector or the best approximation of x> if

fI***H < \\x-n4 mEJ(.

2.4.1.2 Definition. Let Jt be a linear subspace of the pre-Hilbert space X \

then xp£Jt iscalled the (orthogonal) projection of x4 K if, for every mdJt,
(x-xp\m) = 0.

Through these abstract formulations we have a connection between projec-

tion and best approximation similar to that in the geometric vector space.

2.4.13 Theorem. xp”~Jl is the best approximation of x> if and only if
xp is the orthogonal projection of x in 31.
Proof. If xpis the projection of x, i.e. for every mt_Jt,

(x—Xplm) = 0 (*)
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and mk€Ji, different from xp, then
Hx-mJ2= I(x—xp+ (*p—Tn)IR = ||x—Xp||2+]||n p—/MilI2

and hence

I

This means that xp is the best approximation of x.
If TOE/T and there exists mx6Ji suchthat

(x—Wolwj) ~ 0

i.e. mOis not the (orthogonal) projection of x, then there exists mMO£J| nearer
to x than mO. In fact, if

mo = mO0+ (x - mgmj)mj
where mj=mY|ml||, then muf£Ji and
IIXx—/MF2 = [[x-m Q2-[(x -m OmD[2
il ]l

Remark. The first part of the proof is visualised in figure 2.7 and the second
part in figure 2.8.

Hence

Now, let Ji be a finite-dimensional subspace of >X generated by {ak;
k—1,2, ...,«}, i.e. the set of linear combinations

M
k2)/KBK y*€ED.
=1
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2.4.1.4 Theorem. If /1 is the linear subspace generated by {ak, a2 ar}
then the orthogonal projection of x£X onto JI is

Y= 2Yiex

where {yfg k= 1,2 , n) is the solution of the following system of linear
equations:

2 (akap¥k = Ma) 1= 1,2,/ (*)
=1

Proof. From 2.4.1.2 we have

n
(x- 2 yk“kiai) = 0 1= 12,0 (**)

since {a"}; &=1, 2, n is a basis of and (*) is obtained from (**)
by obvious computations using the properties (i)-(iv) of the scalar product
in§2.1.1.

For the existence of the projection xp in the case of finite-dimensional JI
we have the following. The matrix with elements aik—{aKkal) is called the
Gram matrix of ak; k= 1,2, ..., n and the latter are linearly independent
vectors if and only if the determinant of their Gram matrix is not zero. We
shall prove this in the following more general formulation.

2.4.1.5 Theorem.

k2:1>4<ak—o
ifand only if {pn; k=1, 2, ..., n} is the solution of the system of linear equa-
tions

él(ak\ai)"/k: 0 /=12,.,0
Proof If
2 ykk=o

»1=1

then the system of linear equations is obtained by multiplying both sides by
af; /=1, 2, ..., n

Conversely, if {yk; k=1, 2, ...,n) satisfy the system of linear equations,
then it follows from

(2,RK2 XB= 2 2 yib@D- 2 vi(2 yA?™)

»1=1
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that

W2¥Y KBK\2 = o.
k=1

Example 1. If Jif=L,[0, 1] and ak=tk-1;, k=1, 2, n then for the Gram
matrix,

i i
O* = Gi) = ~1ti- 1at = - = =
o = (Xldai) 0f tk~1ti- 14t K+ Kk=1,2,n i=12,..,n
and by applying Theorem 2.4.1.4 we can obtain the best approximation of a
function /Y L4[0, 1] by polynomials of nth degree in IAnorm.

Example 2. Let the interval [0, 1] be divided into N parts by the points
0=t0< h<..< fjvii<ij= 1

and considering the continuous functions

1 if f=ti
a = aft) = 0 if t$0i-i> h+i)
' polynomial of 1st degree in the intervals
and

it is easy to show that {ap, i=0, 1, ..., N} form a basis for the linear sub-
space Jt of functions which may be plotted as a broken line with nodes only
at tp /=0, 1, ..., N. By applying 2.4.1.4 for — 1] and this subspace
JI, the best approximation of function/ in L0, 1] by a ‘broken line with
nodes only at /=0,1, ..., N’ will be obtained. A remarkable property of
the Gram matrix in this case is that

akj = 0 if \k—\ > 2.
This is called a three-banded matrix.

Example 3. Let JIn be the (Tv+1{-dimensional subspace of L2[—n, +4]
generated by {cos kt; k=0, 1, N} and /ELZ—n, +4]; then

/n(0= 2 Mcos kt
k=0

is the best approximation of/in J/Nif yk; k=0, 1, N are the Fourier coef-
ficients
I +n
yk= — f f(t) cos kt at
71 _h
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and hence f Nis the projection of/ onto /1. In fact, for any orthonormal sys-
tem {a*; k=1, 2, ...,«},
.. if kK*i
(AK) =1 if K —i

and hence the Gram matrix is the unit matrix.

*2.5 The projection principle (general case)

In this section we shall drop the restriction of J1 being finite dimensional and
the existence of the projection onto an infinite-dimensional subspace /1 will
be investigated. Two other forms of the projection principle, which will be-
come important later on, will also be given.

2.5.1. In studying the proofof Theorem 2.4.1.3 we notice that it is valid for any
linear subspace JI and hence the best approximation andprojection are also the
same thing for an infinite-dimensional subspace Ji. This is not the case for the
existence of xp.

Recall that a linear subspace J1 of XX is called complete if the Cauchy Conver-
gence Theorem is valid in J1. If )X is a Hilbert space and not only a scalar
product space, then every closed subspace J1 is complete; moreover, every
finite-dimensional J1 is complete.

2.5.1.1 Theorem. If J1 is a complete subspace of a scalar product space XX,
then there exists a projection xp$./1 for every x 6XK.

Proof. If d=inf {|lic—m\\; T£/1), then there exists a sequence {mk} such
that \\x—mk\-*d. What we have to show is that {mk} is a Cauchy sequence.
In this case xp=\immk.

To estimate ||mf—mfi, we apply the parallelogram law for x—mt and
X —mf.

2\ -m N2+ 2\\x-m M2 = [|wi-» jJ||2+ 4 ||x - (w i+ mj)/2]|2
and hence for every e>0,
\nii-mj\2 = 2\\x-m i\2+2\\x-m j\\2- 4\\x - (m i+ mj)/2\2
< 2\\x-miW2+2\\x-mj\\2-4d 2< s

if j,j are large enough since {miJmj)I2 £/ and \\x~mKk\-+d.
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The projection is unique. In fact, if xp and Xp are projections of x”X
onto Jt, then
(Xx—xp\m) = 0 and (x—p\m) = 0 m£Ji.
Subtracting these two equalities, we obtain
Xp—xp\m) = 0 me£JI
and hence
\Wp-xpV = {xp-x p\xp-xp) =0
since Xp, xfJI.
Example 1. Consider now the infinite-dimensional linear subspace JI of
L2[—7r, +7¢] consisting of the linear combinations of the functions
cos kt K=012,.

(i.e. there is no restriction on the frequency k). In this linear subspace there is
no nearest element to

f(t) = sint+ Y, y-cos kt.

In fact, if

(0= Ig:lkcmkt
then by 2.2.1 (*),

/-131 = li-4 kizliK

I ImlB<TH- 1T if

Thus we have shown that there is no projection of /6L 2[—n, +n] onto

and hence

Example 2. Let us consider the closed linear subspace J1 of L2[—T, +5]
generated by {cos&i; k—0, 1, 2, ...}. Then the nearest element to/is
Im(0= Z-jreosfci

and hence the projection exists in this closed linear subspace Jt. In fact,

+C

f(t)—fEM(t) = sint  and J sintcosktdt =10 k=0,1,2,..
e

2.5.2. In the geometric vector space, the set of vectors
{*: (x-x0m) = 0}

6 Maté
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can be visualised as a plane passing through the point xfland orthogonal to the
vector m (see figure 2.9).

2.5.2.1 Definition. 1fJI is a linear subspace of a Hilber: space XX and x0£)X,
then

4= (x: (x—x0m) =0; TEN)

is called the hyperplane o passing through the point x0 and orthogonal
to J1.

Jil—{z: (zim)=0; m6JI1}is called the orthogonal complement of JT in X.
It is obvious that
N x = {x—x0; x£<j)
and Ji% is a closed linear subspace of XX ; hence the projection x,v*JtL
of x0exists. If Ji is closed then /1 XX=7. This will follow from Theorem
2.5A2.
Notice that xOp=x0—xd, where xfio and, by Theorem 2.4.1.3,

WA\ = ||x0-x Opf < IO (xO x)] x€0

which means that xc is the element of the hyperplane < of minimum norm.
Thus we have the following theorem.

2.5.2.2 Theorem. If Ji is a linear subspace of a Hilbert space >X and a is the
hyperplane passing through x0£>X and orthogonal to Ji, then

N 1= {x,—x;

is a closed linear subspace of XX and, if xQpis the projection of x0 onto Ji,
then

X, = XO-X

is the element of a of minimum norm.
The theorem is illustrated in figure 2.9 for the case where X is the geometric
vector space and J1 is the one-dimensional subspace generated by m.
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2.5.3. We now apply the results of §2.5.2 to the solution of the following
problem.

‘For ak, k—1, 2, ..., n and given numbers tlk; k—1, 2, ..., n, find x such
that
(x\ak) = tjk K=1,2,...,n *)
and the norm is minimal.’
If Ji is a finite-dimensional subspace of XX with basis {ak\ k= 1,2, ..., n

then the points x of the hyperplane a passing through x0€>XX and orthogonal
to Ji are characterised by

{x: (x—x0ak = 0; k = 1,2,..., n}

and hence, introducing the notation gk=(x0\aK), the ‘geometrical formulation’
of the posed problem is to find x£a with minimum norm.

Moreover, it follows from the considerations that led to Theorem 2.5.2.2.
that xfia with minimum norm belongs to J1 X£=/1 and hence in our case

it is in the form
n

&1
Substituting this form into () we obtain

xX* = ~Nak.

n
k=1

i.e. this problem leads to a system of linear equations similar to 2.4.1.4 (*).

2.5.4. A third formulation of the projection principle says that a Hilbert space
can be decomposed into the orthogonal direct sum of closed subspaces.

2.5.4.1 Definition. Let Nt; i=1,2, ....m be closed subspaces of the Hilbert
space XX such that

@Zi\zi) = 0 for  zfiNf, Zj-eNj i Uj. *)

r
Then the orthogonal direct sum _®I N( is the set of the sums
1=

i2=1 zi z£ Ni-
It is obvious that _®I Nt is a linear space and we can show that it is closed.
|:

In fact, if

X, = 2 zkn and xh= 2 zkn zkn, ZkneN k
k=1 k=1
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then

m
2
k=1

by the orthogonality (*) and hence x,,-*x if and only if {zk3} is convergent
for every k. Moreover, if zkn+zk then

o*.-*;12= \Zkn-z'k,, v

m
2 zk
k=1
Now, let Ji be a closed linear subspace of the Hilbert space XX and x £)X.
Then by Theorem 2.5.1.1 there exists the projection xp onto Ji and

X = ZKENK.

X= xp+ (x:-n:p XpEJI\  X-Xp~rJi*- (@)

by 2.4.1.2. Hence we obtain the following theorem.

2.5.4 2 Theorem. For every closed subspace Ji there is the direct sum decom-
position
K —Jit&Jin-.

Remark 1. It is easy to show that the decomposition

X —Xp+Z XpdJt, ZtiJtl:
is unique.

Remark 2. It is also easy to show that 2.5.1.1 follows from 2.5.4.2.

Remark 3. It is not necessary for if to be a Hilbert space. As in Theorem
2.5.1.1, for the orthogonal decomposition of XX it is sufficient that Ji is a
complete linear subspace of a scalar product space XX.

The direct sum decomposition of XX into more than two subspaces also
follows from 2.5.4.2. Infact, if / ¢ | is aclosed subspace, then, by Theorem
5.4.2,

Ji = XdX
where X —{x: x£Ji\ (x|z)=0 for z£jV}, i.e. the orthogonal complement
of X in Ji, and hence

K=NTr0 XX

is an orthogonal direct sum decomposition of XX of three members.
Following this approach, for example, a direct sum decomposition of >X
of any finite number of members is obtained.
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2.6 Some typical examples of the projection principle

First we shall show that the solution of the minimum problem posed in §2.2.1
is a special case of the projection principle. After this we give examples for the
important cases when M or Ji~ is finite dimensional, and the section concludes
with a well-known optimum property of the solution of the pure boundary
problem of the Laplace equation as an example of the projection theorem in
the case of infinite-dimensional JI. Several applications of the projection
theorem will also be found later in Chapter 2 and in Chapter 3.

2.6.1. The minimum problem of §2.2.1 is a special case of the projection theo-
rem when Ji is the «-dimensional subspace of a Hilbert space X spanned by
an orthonormal sequence ek; k=1, 2, n. In this case the orthogonal pro-
jection in JI of x4YXX has the form
n
xp = k2= |y

where v, k=1, 2, ..., n is the solution of the system of equations

2 Ydexen 01h) ‘=D2 ..,n
by Theorem 2.4.1.4. In this case yf=0lei) since
. JO i K
few = tl /=4

and so the result of §2.2.1 is obtained in a simpler way.

2.6.2. Frequently we have to solve a system of linear algebraic equations with
more equations than the number of unknowns and having no solution. This
contradictory situation occurs, for example, when the linearity is only approxi-
mate and the measurements concerning the matrix of the system of equations
are inaccurate. In this case the solution is defined as {xk; k—\, 2, ..., m) for
which the sum

n m
HE * *
I2:|\b|f02:|'~4|< K\2 (*)

is minimal. (In the case of an exact solution this sum is of course 0.)
The solution of a system of linear equations

au x1+a12xA+... + almxm= bx
an X1+ a22x2+... + a21xT= b2

X1+ T .. T ttrmxm—bn
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in this generalised sense can be found by the following /&space model. Let

all (12 alm bl
a2l ad2 a2m b2
. 5 L K e ey 5

Bnl Bn2. Bnm bn

be considered as vectors of the linear space of n-tuples with the /2-norm and let
Jt be the linear space generated by the m column vectors of the matrix of the
system of linear equations to be solved. Now we have only to apply 2.4.1.4 when
Jf=/2 and

bl alk
x= T ak= a*k k= 1,2, n.
Pn. Bnk.

2.6.3. We shall now consider a problem from analytic function theory. Deter-
mine /EHo0 such that

IZife) = wk K=12 ..,n

where zk, wk are given values, and

2wz

I |/(eigl2dt
0

is minimal.
By the Cauchy integral formula and straightforward calculation,

dt

— N _ - — " .
f(zk = 2m |r|’q) z -t dz 29 }c f(eu)?l]?-z*

and hence the evaluation functionals in Hg are represented by scalar products

I(a) = (f\gk
where
C‘*k
e zk

It is obvious that gkEHg, i.e. g(e“), is a continuous function and

J_
gk(z) = 1~zzk
is analytic for |z|<I.
It follows that our problem is the special case of the problem of §2.5.3
for 34?=H1 and ak=gk.
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2.6.4. One of the fundamental problems of system theory is to find a u—u(t)
control that transfers the state y=y(t) of the system from the initial or zero
state into a given state yi=y(h) such that the energy of the control is minimal.

The following example is closely connected to this problem. Consider the
differential equation

y (t)+y(t) = n(0 (*)

with the boundary conditions
j0)=0 yq =1
1(0) =0 Y'(2k) = 0

where y' means the derivative of y. The existence of the solution y=y(t) is
not guaranteed for every continuous u=u(t). More precisely, it is known from
the elementary theory of differential equations that the solution of the above
differential equation is uniquely determined by u=u(t) and the initial con-
ditions y (0)=/(0)—0. However, it is not guaranteed that the ‘end conditions’
y(2n)=I, y'(2n)=0 are also satisfied for this unique solution.

If a solution of the boundary problem (*) exists then u=u(t) is called a
control of the system governed by the differential equation (*) that transfers

the state from
[o] ™0 , -

As a further exercise, let us find the control m=« (i) for which the energy
integral

2t

[ n2(i) di
0
is minimal. It is known (and easy to verify) that
t
y(t) = J sin(t—r)n(T)dr
0

is the solution of the differential equation (*) satisfying the initial conditions
only and hence for the ‘end conditions’ to be satisfied also it is necessary and

sufficient that
2*

y(2n) = J sin(2n—)u(r)ar = 1
0
(**)

y'(2n) = J cos (2k—r)u(z) dr = 0.
0

Considering u(t), sin(27t—/), cos(27z—t) as elements of the real Hilbert
space L2[0, 2k], we can write the system of equations (**) in the form
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of scalar products
(sin 2n—T)|H(T)) = 1
(cos (2n—T)|H(T)) = O.
We have thus obtained the problem of §2.5.3 for u—x > = L2(0, 2k)
and @j~sin (2n—r); a2=cos (2n—z). Consequently
u(t) = asin t+R cos t
and the corresponding system of linear equations with Gram matrix

e an

—a J sin2tdt—RB J sin/cosidi = |
0 0

2T 2n

aJ cos/sin/d/+33J cos2/d/ = 0;

hence

Remark. It follows from this example that if a linear system is governed by the
differential equation (*), then any minimal-energy control u that transfers the
statey from [0; 0] into [y (2n); y'(27r)] has the sinusoidal form u= Asin (t+ ip),
and the amplitude A and phase o> are determined by the vector of the end
state with components y(27i); y'(25).

2.6.5. Let Q be a convex domain in the (three-dimensional) space with smooth
boundary A and u=u(r) be a function of the space variable r with a contin-
uous gradient in S

2.6.5.1 Definition. The volume integral

J Igrad n|2dx dy dz
a

is called the energy integral of nin 3).

An important problem in potential theory is to find the function u=u(r)
with given boundary values on ¥ and with a minimal energy integral. The
answer to this problem lies in the following theorem.

2.0.5.2 Theorem. If

U(r) - "oCf) fer

Au:= u'x+ uy+u'z

and
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has a meaning, then the energy integral of nis a minimum if uis the solution of
the boundary problem

Au —0 ufr) = x0(r) if riif.

Conversely, if u is the solution of this boundary problem, then the energy in-
tegral of u is the minimum among functions with the same values on if.
Proof. Let X be the linear space of real-valued functions with continuous gra-
dient in £> Then by the formula

(uw) ;= ¢ u(r)v(r)def+ J grad ngradv dxay dz
y a

a scalar product is defined in X. Note that among u£X with the same boundary
values, the energy integral is a minimum if and only if the scalar product (u\u)
is a minimum.

Now, let x0EX and H(r)=x0Y) if riff. Also,

Jf = {v: v(r) = 0 if r£Sf).
It is obvious that (x0—u)£Jf and hence
U= Xg—Xg—u) = x0—V VAJf.

It follows that (u\u) has the minimum value if and only if VvEJf is the nearest
element to X0EX in the pre-Hilbert space thus obtained.
Applying Theorem 2.4.1.3, we know that vf j f is the nearest element to x0
if and only if
(x0—t'ob) = 0 VEJF.

More particularly, for u0—x0—v0,
J grad uOgradvdxdy dz —0 viJf. (*)
a

Our last step in the proof is an application of the Green formula. Applying
the Divergence Theorem to v grad u0, the Green formula

Y grad u0gradvdxdy dz+ JvAudxdydz= J vgrad wnodif
a a y

is obtained. It follows from (*) that

J vVAuOdxdydz = 0
a
for every viff and hence Au0=0.
Conversely, if u,x£X, u0(r)=x(r) for riff and Aw=0 then, by
the Green formula, (*) holds for every viJf. Again, x—u”iff and
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u0—x —(x—u0-, hence, applying Theorem 2.4.1.3, we obtain
Q) < (‘)

and the energy integral of M0 is smaller than the energy integral of x.

Remark. Jf contains a complete sequence in the sense of Definition 2.2.3.1
in L2(S>) by the results of classical analysis.

*2.7 Controllability and optimal control of linear systems

One of the fundamental problems of linear system theory is the controllability
and optimal control of a system. In this section a close connection between the
projection theorem and the mathematical solution of these problems will be
demonstrated.

2.7.1. The usual mathematical description of a linear continuous time system is
the state, or dynamical, equation

x(i) = A(0x(0+B (/)u(r)
I ©

where A(?) is an nXn matrix, B(7) is an nXp matrix, C(r) is an nXq matrix,
p, g*sn and their entries are bounded piecewise continuous functions.

u=u(/) is called the control and x(t) the state of the system at time t. The
basic problem concerning (*) is to find, for a given state xx, a control u(t)
and >0 such that a solution x(/) of (*) exists satisfying the boundary con-
ditions x(/)=x1 and x(O)=0. If such a pair (g, u) exists, then it is said
that there exists a control u= u(i) that transfers the system from the initial or
zero state into the given state xx during the period tx.

The dynamical (or state) equation (*) of a system is called controllable if
for every state xx there exists a control u and tx>0 such that u transfers the
system from the state B into xx during the period tx. The optimal energy control
u is the one for which

I

b2 THe
=i

0

is minimal (where uk is the &h component of u). The problem of finding an
optimal energy control for the dynamical equation (*) is the generalisation of
the example in §2.6.4.
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It is obvious that controllability depends only on the first equation of (*).
The matrix ®(/, 0) is called the transfer matrix of (*) if the &th column of
d(7, 0) is the solution of the equation

x(/) = A(D)X(1) x(0) = ek

where e,tis the column vector with 1 in the kth row and zero in all other rows.
It follows from the theory of matrix differential equations that

x(t)= \]tQD(T, 0)B(¥) u(v) dr
0

in the solution of the first equation of (*) with x (0) = 8. Hence the problem of
controllability can be formulated as follows.
For a given xxfind u and tx such that

Xj = P ®(1, 0)B(1)u(t) dr.
0

Following these considerations we can state the fundamental controllability
condition for the state equation (*).

2.7.1.1 Theorem. Let
t

W(i, 0) = / @(t, 0)B(T)B*(T)®P*(T, 0) dr.
0

Then the system (or, more precisely, the state of dynamical equation (1) of a
system) is controllable iff for every xxthere exists b>0 such that the system
of linear algebraic equations

Xl = Wir,, 0)c

(written in matrix form) has a solution c. In this case, the optimal energy con-
trol is
u(/) = B*(Md*(/, 0)c.

The proof of this theorem is based on the following lemma. Let G= G(r)
be a matrix with n rows and entriesfrom L2(s, t). Thenfor any n-dimensional
column vector u--u(t) there exists ¢ such that

t
f G(t)[u(t)—G*(t)c]dr = B. (**)
S

For the proof of this lemma, consider the finite-dimensional subspace J1

generated by the rows of G (r). Let upbe the nearest element (orthogonal pro-
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jection) of u in Ji. Then up has the form
uP(0 = G*(t)c
and (**) holds, by Theorems 2.4.1.3 and 2.4.1.4. Now, if

G(i) = @2 O)B(i)
and .
|
W (t,s)= J G(T)G*(T)dr

then Theorem 2.7.1.1. is obtained from this lemma.
A more detailed presentation and the physical background of the controlla-
bility problem can be found in Brockett (1970).

Remark. Some of the examples in this section are rather more concerned with
linear algebra than with Hilbert space theory; however, in a Hilbert space
setting they have a more general perspective.

2.8 Scalar product and bounded linear functionals

Recall that a linear functional is a special type of linear operator: if the values
of an operator are complex numbers then it is called a linear functional. It
follows from the results of § 1.4 that continuity and boundedness are the same
for a linear functional, and for a continuous linear functional/ of a Hilbert
space XX\

UWINHTTTWI XE£X

where ||/|| is the least upper bound of
{\Ne\/M ;x*B}

and is called the norm of the functional /.

2.8.1. For any fixed y0£)XX, the mapping /(x)=(x[y@; x£>X is a bounded
linear functional of >, as can be seen from axioms (ii) and (iii) of the scalar
product and from the Cauchy-Schwarz inequality. A surprising result discov-
ered by F Riesz and M Fréchet in the early years of the twentieth century is
that these are the only continuous linear functionals of a Hilbert space.

2.8.1.1 Theorem. For every continuous linear functional/ of a Hilbert space XX
there exists a unique y XX such that

f{x) = (x\yf). (*)
Also, WM mM~L4,.
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Remark. We recall that

I = sup {{/(x)|: mxny = 1}
by 1.4.3.2.
Proof, (a) For separable ). In this case we have the expansion in an orthonor-

mal sequence

= 2 Zkek
k=1

for every and hence

IW :/(k2:1U )= 2,U(ek.
On the other hand, if
M= k2: f (ek)ek

formally then

2. U (eR = (x\yf).
k=1

We have ‘only’ to prove that the series defining }y is convergent. Considering
2.14.10, what we have to prove is that

2 . bk ex)2 <0°-
R R

N
Estimating kg 1|/(a)|2> we have

f{2Wk)eR= 2 \f(ek\2
k=1 k=1

and
/ (i Tfete) < Wl Ji, XK k|| = Wlgi, 1/fe)ld12
since
L TeMI2= (2 X )ek|i, /&*)e
Hence

dy/te)12=llll (il/fe) 1312
and it follows that
(kZZII/fe)I31/2c|I/II-

(b) For any XX . The existence of an orthonormal expansion for every x£>X
is the characteristic property of a separable Hilbert space. Hence for non-
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separable Hilbert spaces the foregoing proof does not work. The usual proof
of the Riesz Theorem in the absence of orthogonal expansions is based on
Theorem 2.5.4.2.

Let/ be a continuous linear functional of XK and >X ={x: f(x)=0}; then
Jf is a closed linear subspace of XX and hence X =)XX@ X'+t by Theorem
2.5.4.2. What does the decomposition

X=1z+y N If, yn XK1

look like for any x£X1
Observe that if Yo”)XK1 then x—f(x)/f(yQ yOEXX for any x£XX since

[ (" x tn)“/m-/Im=0

and we conclude that

f(x) fix)
Z = X—, -
™ T
Hence XX x is one dimensional.
It follows from this orthogonal decomposition that

NE

Mto) = (z+ tho) = (tho) = \]@) W 12

and hence
IM =

i.e. for T/=/(T 9TdlITa the representation (*) is valid.
If /(*)=(*ITy) then

171%)1< NOT/I.

By the Cauchy-Schwarz inequality and hence by definition (see the beginning
of this section),
e

On the other hand, for x=yy/[|yyl],

The uniqueness of yf is routine and is left to the reader.

2.8.2. Obviously the Riesz-Fréchet Theorem is not valid for a non-complete
scalar product space. For example, Lp(a, b) consists of continuous functions;
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however, any step function induces a bounded linear functional on LLla, b)
via the scalar product. The Hilbert space L2(a, b), the completion of L, (g, b),
can be considered as the space of continuous linear functionals of L\{a, b).

2.9 Bilinear functionals

A bilinear functional is a generalisation of the scalar product, and certain
types of bilinear functional inherit several useful properties of the scalar prod-
uct.

2.9.1. The mapping (p—tp(x,y) from the ordered pairs of elements of a linear
space X into the field of scalars (complex numbers) is called bilinear if

(POX+ iz, y) = )p(x, Y)+p<p(z, y)

. X, Y, zeX, K, pEd.
(p(y, Ix+pz) = lcply, x)+ficp(y, z)

@ is called symmetric or Hermitian if cp(x,y)—cp(y,x) and positive if
tp(x, x)3*0.

Example 1. Let x and y be infinite sequences of complex numbers and A
a square nXn matrix with elements {aik}; /=1, 2, ..., n, j= 1,2, ..., n. Then

nn
h,y):= k2=| iZ=| aikzi*h

is a bilinear functional on the linear space of infinite sequences of complex
numbers, where

x = {€k;k = 1,2,...} and y = {2 k= 1.2,.}

The bilinear functional thus obtained is symmetric iff A is a symmetric matrix,
i.e. if aik=aki, and positive iff A is a positive definite matrix.

Example 2. If {aik; i=1, 2, ..., k=12, ..} is a ‘double sequence’, called an
infinite matrix, with the condition

oo 0o

=1z 12
then

oo oo

P, y) = |2=I k2: 1alaru

is a bilinear functional on the /2space.
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Example 3. If k=k(s, t) is a continuous function on the closed finite two-
dimensional interval a-~s, t*sb then

b b
cp(x,y):= 1 j k(s,t)x(t)y(s)dtds

a a

is a bilinear functional on the linear space of continuous functions in [a, b].

The bilinear functional thus obtained is symmetric iff k(s, t)=k(t,s) and

ositive iff
P b b

J J K(s, )x(t)x(s)dtds s= 0

a a

for every continuous function x. It can be proved that this inequality is valid
iff for every finite sequence {sp i=1, 2, n) of points in [a, b] the matrix
with elements

aik := k(st, sk
is positive definite.

Example 4. If b=b(t) is a piecewise continuous function in [a, b] (i.e. the
sum of a step function and a continuous function) then

B(x,y):= f b(t)x(t)y(7)dt

is also a bilinear functional in the linear space of continuous functions in [a, b\.
R is symmetric in the case of real-valued b—bh{t) and positive iff b has only
non-negative values.

Example 5. If I" is a linear operator of a Hilbert space then

Vot (x >>’ .:{X\Ty) X,yE)K

is a bilinear functional on X.

For a symmetric real-valued <

(P(x+y, x+y) = <px, X)+(p(y, y)+2(p(X, )
(P(x-y, x-y) = (p(x, X)*+<p(y, y)-2¢cp(X, y)
and hence

Px Y) = A(<p(x+Y, x+y)-(p(Xx-y, X-y)).

This means that the symmetric bilinearfunctional qis determined by the (quadrat-
ic) functional of a single variable

ip = <p(z, 2) Z £XK*
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This is also validfor any bilinear functional since

<p(x,y) = J{(p(X+y,x+y)-(p(X-y,x-y)+i(p(x+iy,x +iy)

-icp(x-iy, x-iy)) X,yex. *)

This can be verified by a somewhat longer but straightforward calculation.
From the connection (*) we may state the following theorem.

2.9.1.1 Theorem. is symmetric iff <p(z, z) is real for every r£XX. In particu-
lar, every positive bilinear functional @ is symmetric.
Proof. If (p is symmetric then, in particular,

<plx x) = (p(x, x) XK

and hence cp(x, x) is real for every Xx£XX.
For the converse statement, interchanging x and y in (*),

<Piy,x) + j(<p(y+x, y+x)-cp(y-x,y-x)

H(p(y+ix, y+ix)-up(y-ix, y-ix)).
Hence if tp(y+x,y+x), (p(y—X,y—X), cp(y+ix,y+ix) and g>(y—ix,y—iXx)
are real then <p(y, X)=cp(x, y).
Note that if cp(x, x)=0 implies x=0 for a positive (and hence also sym-
metric) bilinear functional then axioms (i)-(iv) of the scalar product are satis-
fied, i.e. a scalar product is defined by (p

2.9.2. For a positive bilinear functional @ the Cauchy-Schwarz inequality is
valid:

\cp(x, y)P < <p(x, X)a>(y, Y) X, yEX. *

Indeed, this inequality is obvious when @(x, y)=0. In the case when (x, y)"0
= o>y, x)
\<P(x,y) |

is a real or complex number of modulus 1. Hence
0 -s <p(x+/ly, Bx+/.y) = <p(x, x)+21\(p(x, y)\+X2(p(y, y)

for any real X i.e. the real-valued polynomial thus obtained has at most one
zero. Hence, for the discriminant,

419 (x, y)\2-4<p(x, x)(p(y, y) < 0

which is equivalent to (*).

7 Maié
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2.9.3. If the bilinear functional @ is defined in a scalar product space XX,
as in the case of Example 2 or Example 5, then it is natural to look for the
connection between @ and the scalar product in >XX.

2.9.3.1 Definition. If there exists M >0 such that

\ep(x, y) 1< MWX\ |yl X, Y e>K

then @ is ca'led bounded.
If " is a bounded operator in Example 5, then

\pT(X,y)\N imiiwiw
and hence T is a bounded bilinear functional.

We shall show that these are the only bounded bilinear functionals.

2.9.3.2 Theorem. Let @ be a bounded bilinear functional in a scalar product
space X. Then there is a unique bounded linear operator T such that

<P Y) = (X\Ty) x,yeX.

Proof. The mapping
X - cpixy)

is a bounded linear functional for any fixed y. Hence, by the Riesz-Fréchet
Theorem, there exists r£>X such that

<P Y) = (X[2).
We define
Ty z.

Then T is unique and cp(x, y)=(pc\Ty) for any pair x,ye>X. T is a bounded
linear operator. In fact, for every xeX,

(X|r(;.yi+/<y2) := cp(x, 2yr+py2 = lep(x, yj+Bcp(x, y2
=1I\TYyD)+p(x\Ty2 = (X\2Tyl+pTy2) ylt YreXX, A pEd
and hence T is linear. From 2.8.1.1 and 2.9.3.1,
hyl= X|7» exx
V= ap D]y

and

1 :=sup{||7>||; 1B1= 1}<M.
2.9.3.3 Definition. The norm of a bounded bilinear functional @ is defined by

MI = sup {I<p(x,y)l; Il = 1, IM = 1}
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It follows from this definition that if T is the bounded linear operator asso-
ciated with @ by 2.9.3.2, then

Ll =wT,

2.10 First steps in the theory of linear operators on Hilbert
spaces

The notion of the dual or adjoint operator T* of a linear operator I in a Hil-
bert space is of crucial importance in Hilbert space theory. The main classifi-
cation of Hilbert space operators is based on the connection between T and
its dual T*. In this section we shall investigate those parts of the theory that
are related to Hilbert space geometry and will be needed in §82.11 and 2.12.

2.10.1. Formally, the adjoint of a linear operator T that maps a Hilbert space
Xxinto a Hilbert space XXr is the operator T* satisfying the condition

(Tx\y) = (X\T*y) XEXX, yeX,i. *)
We now ask: does there exist such an operator T* for every bounded linear

operator?

2.10.1.1 Theorem. For every bounded linear operator T from >XXx into >Xr
there exists a unique bounded linear operator T* from >X into »Xx satisfying

(*); moreover, . .
In =m.

Proof. The mapping x-+(Tx\y) is a bounded linear functional since T is
linear and
(T A WAL A WAL

Hence, by the Riesz-Fréchet Theorem, for every pair (y, T) there is a unique
z£ )Kx such that
(Tx\y) = (x\2).

Define T*y:=z; the operator T* is obviously linear and, by 2.8.1.1,
W\ = sup \OAT*y)\- 0% = 1} = sup {|(7x|y)l: IIXI| = 1}
<sup{||[r*0IM|; Ox0 = 1} = MW|ly||.
Hence T* is bounded, |[|[*|[c||[|| and
{Tx\y) = (x\T*y) X€Xi, yt*-.i-
Now, if T**—T*)* then |[|7"**||<||[F*|| from the above considerations.

7%
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We shall show that

Indeed, by definition,

(T*x\y) = (X\T**y)
and hence

(Tx\y) = (X\T*y) = (7>W = (y\T**x) = (T**x\y) X€*i, y6X-

2.10.1.2 Definition. If I is a bounded linear operator from >Xr into >X then
the bounded linear operator T* from >X into Xx satisfying (*) is called the
adjoint or dual operator of T.

Remark. The adjoint is defined for a Banach space operator and also for
certain unbounded Hilbert space operators.

Example 1. If T is the linear operator of the «-dimensional Euclidean space
represented by the matrix A with elements {aik} (see Example 1 in §1.4.2)
then the adjoint T* is the linear operator represented by the adjoint (trans-
posed) matrix A* with elements {aki}.

Example 2. If T is an integral operator of L2[a, b] with kernel K=K(t, ), i.e.

Tf:=j Kt 9/(9dt  fa Jab]

where K is a continuous function in the square [a, b] X[a, b\, then the adjoint T*
is the integral operator of the form

T * f jKfaoffddT  fdU[a, 4,
Indeed, :

(TA\g)= / / K(t,x)F(T)mdTdt= /4 T)(/ K(t, T)i(6d/)dT

= f fit) (/ KOT)gi0 dz)dr = if\T*g).
a a

Example 3. If F is the operator sending a function /EL 2[0, 2n] into the se-
quence of (complex) Fourier coefficients

A
d(=g f(t)e~ikat k=0, 21, £2, ..
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then for any d={dKZP,

+00 e +© at -
(FNe= 2 Al f(te-ikdt= J f(t){ 2 3ke~ik)dt = /  (CAKCOdf

where

0=+ AW

Hence

Fr*K}= 2 dkeikel20,2n]
o]

=-c

for every dfj2 Hence, in this case, F*—F~1

Remark. The interchange of the summation and the integration is justified
since we have scalar products in /2 and L2[0, 2n], respectively, and for finite
sums the equality holds.

Passing to the adjoint operator we have the following (algebraic) properties:
(i) (ATt+pTXF = XT*+BT*;
(i) (TJ'i)* = TET* (if TfT., exists); in particular,
(r-9* = (r*)-1 (if r«1 exists);
(i) T** ;= (T*)*=T.

The proofs are easy and are therefore omitted.

2.10.2. If I' is a bounded linear operator of a Hilbert space (i.e. the range is
also contained in ) then it may happen that T= T*. In this case T is called
self-adjoint or Hermitian.

If T is the operator in §2.10.1, represented by a matrix A, then T is self-
adjoint iff the matrix is self-adjoint, i.e. aik=aki. If T is the integral operator
of this subsection, then T is self-adjoint iff K is symmetric or Hermitian, i.e.
K(t, t)=K&7).

It is natural to ask whether the sum and product of self-adjoint operators
are self-adjoint. Applying 2.10.1 (i)—{i), the answer is easy.

(i) If S, T are self-adjoint operators, then kS+pT is a self-adjoint opera-
tor if and only if A p are real numbers.

(i) If S, T are self-adjoint operators, then ST is self-adjoint if and only if
ST=TS.

Moreover, the operators TT* and T+T* are self-adjoint for any linear
operator T.
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In §2.9.3. a 1-1 correspondence was established between bounded bilinear
functionals and bounded operators. Based on this correspondence, if T is
self-adjoint, then

<PTX Y) = (X\Ty) = Ay\x) = (Y\TX) = gT(y, X)

and hence T is symmetric or Hermitian. Conversely, if cpT is symmetric, then
(X\Ty) := PT(x, y) = @ET(y, x) = G\Tx) = (Tx\y)

and hence T is self-adjoint. This can be summarised as follows.

2.10.2.1 Theorem. The bounded bilinear functional <T corresponding to the

operator T by 2.9.3.2 is symmetric if and only if T is self-adjoint.
By the considerations in §2.9.3,

mi = sup {(T*ly): II*Il = 1 Ivll = 1}

for a bounded linear operator T. If T is self-adjoint, then the norm is determin-
ed by the corresponding quadratic form.

2.10.2.2 Theorem. The operator T is self-adjoint if and only if (7*|*) is real
for every *£jf; moreover, in this case,

Ll = sup{|(7**)5 1Ml = « 3

Proof. The first part of the theorem follows from 2.10.2.1 and 2.9.1.1. For the
second part we have only to prove that

' < sup {2(7*1%)5 |14 = 13

If

m = sup {|(7**); "l = 1}
then

(F(+y)[*+y) < ml*+y||2
and

(T(x-y)\x-y) T\\X—\\r.
Hence
. 4Re(Tx\y) < w(|[* +yl|2-|-[[*-ylI9 (*)
since

(T(x+y)\x+y) = (T**) + 2Re (Tx\y)+(Ty\y)

and

(T(x-y)\x-y) = (7*[*)—2Re (Tx\y)-Y(Ty\y).

Applying the parallelogram law (see §2.14.5) to the right-hand side of (*),
we obtain
4Re(7*ly)<zm (|[*[[2+ [lyl12. (**)
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Now, if X is a real Hilbert space, then Rc (Tx\y) = (Tx\y) and hence
Hrl = sup {(7x]y); IM = 1, MU= 1}< m.

In the case where {(7x]y); x,y£X} are complex numbers the end of the
proof is more sophisticated. Then

(Tx\y) = \(Tx\y)Ne* X, Yex
and so

[(7Tx]y)] = e~i/(Tx\y) = (Te~ivxly) X, YEX

where @ is the argument of the complex number (Tx\y). Hence, substituting
e~igx for Xin (**), we have

I(Cx]y)<-"-(lIx[12+ly12 X,yax

since |le_i,,x|| =||x]| and (Te~ipx\y)s*0.
In particular, for

y=TLW ¥**5>
we obtain
7] < wi|x]|2 XEX.

2.10.2.3 Definition. The linear operator T is called positive if (7x|x)>0 for
every XK. It is called strictly positive if (Tx|x)=0 only if x=0.

It is obvious that the positive linear operators form a subclass of self-adjoint
operators and (pT(x,y):=(7x|y) defines a scalar product (in the sense of the
considerations at the end of §2.9.1) if and only if T is strictly positive.

As for the real numbers, a natural order can be defined for self-adjoint linear
operators by means of positivity.

2.10.2.4 Definition. For the self-adjoint operators A and B we write
A«s B

if B—A is a positive operator.

2.10.2.5 Definition. M is an upper bound and m is a lower bound of a self-

adjoint operator T if
mE< T < ME

where E is the identity operator.

It is easy to verify that a bounded self-adjoint operator T always has (finite)
upper and lower bounds; moreover, T is a positive operator if there exists a
non-negative lower bound m.
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2.10.3. It was shown in Theorem 2.5.4.2 that for any closed subspace Jt of
a Hilbert space X there is the direct sum decomposition

X = Jt®Jt+
and if x=y+z; y~Jt, z~Jtl is the direct sum decomposition of X£XX
then y is the projection xp of x onto Jt.
The operator Pm which sends x into the projection xp, i.e.
PMX = Xp XEX, Xp~Jl
is called the projection operator. It is obvious that

Pl < MI XerK

for any Jt, and Pm is a self-adjoint operator with P~ —Pm- In fact, if
* = yl+z1 ynJt, z~JI1L

X2= Yr+z2 Y-N-M, z~NJtl-
then

(PmXix2 = (yLy2+z2 = Oily,)

(Xi\Pj(X2) = (yi+ Zilyd = (yrlyd.
Moreover,

PMX = PMXP= Xp
for every x£XX.

2.10.3.1 Theorem. If P is a self-adjoint operator with P2=P, then there
exists a closed linear subspace Jt of the Hilbert space XX such that P—PM.
Proof. Let us consider

Jt = {Px; xBX}.

Jt is a linear subspace since P is a linear operator; Jt is also closed since if
Yn=Pxn and ya-y, then

y = lim Px,, = nlm) P(Pxn) = Py

I
n-+00

and hence y£Jt.
If y£Jt, then

Py = P(Px) = P~x = Px

I
=

If z~Jtl, then
[IPz]|2= (Pz|Pz) = (P2\z) = (Pz|z) = O.

The one-to-one correspondence between projection operators and closed
linear subspaces has the following properties.
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2.10.3.2 Theorem. PMPX is a projection operator if and only if PmPjt=
=PXPn ®min this case
PM.P>k — Pcbk

where is the intersection of the sets JI and Jf.

Pj{+ P>kx~PMP>x —Pnum>k
where .J10>K is the closed linear space generated by the elements m£J{,

Recall that the closed subspace generated by a set if is the closure in XX
of the elements in the form

m
k2: 1akak
Proof. Since {PJtPx)*=P* P¥I=PxPM, it is necessary that PMPX=
= PvPJ(. If this commutation relation is satisfied then we also have
(PXKP>KQ2- PnP>XPMP> * PnP>
and hence PMPXx is a projection operator.
If zEJtt\Jf, then PMPxz—z. Conversely, if PMPxz—z, then

Pn2: Pa(PnPxj) @ PaP>x2—2
and

Pz = P)K{PﬂP)KE) © P>(P>Pn2) ' PxPn2 —z

and hence z£JtC\Jf.
Pn+P>k-PnP>< is a projection operator. In fact,

[ PA+P>-PAPXT & P+ PokPoxPn = P +PyK-PiP

and
(Pn+P>x-PnP>kY + Pn+P>-PnP>k-

If z£J1, then

(Pn+P>-PnP>x)z = z+Pxz-Pxz =z

and this is also the case when z£Jf.
For {P4+Px —PMPx)x—x itis necessary that x be the sum of xM£Jt
and z£Jf. In fact, for any x£X,

x = XM+12z XMEJI\ z:JtX
by 2.5.4.2 and

(Pn+P>X~PaP>)X = [pa+pPx (1-Pn)Ix = *n + P>X2-
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2.10.4. A linear operator T from one Hilbert space XX onto another Hilbert
space XX is called an isomorphic or unitary operator if

(x\y) = (Tx\Ty) X,yCXy

so that a unitary operator ‘preserves’ the scalar product. This property can also
be expressed by the connection between T and T*. We begin with the following.

2.10.4.1 Theorem. The following conditions for an operator T mapping a
Hilbert space XX onto another Hilbert space X are equivalent:

(i) T is isometric, i.e. ||7jd = |p7]| for every
(i) T*T=EX (identity operator in >XX;
@(i0) (TxX\Ty)=(x\y)\ x,y€Xr.

Proof. It is easy to show that (iii)=>(ii) and (ii)=>-(i); for the remaining part of
the proof, apply 2.9.1 (*).

We can now characterise the isomorphic operators as follows.

2.10.4.2 Theorem. The bounded linear operator U is an isomorphic or unitary
operator if

U*Ux = x for every X£XXx
and

UU*y =y for every y6>K,.

In other words, an isomorphic operator is an isometric operator mapping

the Hilbert space XX onto >K2.
Proof. It follows from the previous theorem that U is an isometry if the first
equality is satisfied. If U is also onto, then there exists the inverse operator U~1
from >K2 onto XX and

u* = C/*([/t-1) = (U*U)U~' = U-1

and this is exactly what the two equalities say.

Conversely, if
U* = u-1

then U is an isometric operator (isometry) mapping >X. onto >K2.

An important example of an isometric operator which is not an isomorphic
operator is the forward shift Up, >0 in L2[0, °°] defined by

rer . (0 if t<t
if

In fact, BUzf\\ =||/|| for every /EL 2[0, 2n] but Uz is not onto.
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2.11 Isomorphic Hilbert spaces and isomorphic operators

If there is a unitary operator from >Xx onto X2 then the Hilbert spaces »Xx
and are considered to be identical in a certain sense.

2.11.1. The Hilbert spaces »Xx and >Xr are called isomorphic or congruent if
there exists a unitary operator U mapping >Xx onto >Kr.

Example 1. L2[0, 2n\ is isomorphic to 12via the Fourier series expansion. In
fact,

'Y -Y1/n0Oe-""*} K—0, £ 1 %2, ...

is an isomorphic operator from La[0, 2n] onto 12 by Example 3 in 82.10.1.

Remark. If we take another complete orthonormal system in L2[0, 2n] (e.g.
a suitably modified Walsh system) then, by 2.2.2.1, the operator sending
/EL 2[0, 2n] into the sequence of the new Fourier coefficients is also a congru-
ence operator from L2[0, 2n] onto 12 Hence there may be many isomorphic
operators between isomorphic Hilbert spaces (see also the proof of 2.11.1.1).

Example 2. It follows from Example 4 in §2.1.2 that by the mapping

Lf(z) = /(eif)

Hp is congruent to the closed subspace of L [0, 2k] consisting of elements in
the form

f:k2:)k<’1.l.l

0

i.e. whose Fourier coefficients are zero for k<O0.

Example 3. Consider the closed subspace

M= {y:y(a) = y'(a) = 0}

of XXB (Example 5in §2.1.2). Ji is isomorphic to L2[a, b] and D is an isomor-
phic operator. Let us define

XK ={y:Dy =0

in XKB\ XX is isomorphic to the two-dimensional geometric vector space via the
isomorphic operator

Ly = (k(«), /(a)).
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Example 4. The Fourier transform
Ff= f eiaf(t)dt *)

is defined for every /EL(— + °°) and FfECO (where COis the class of
continuous functions tending to zero at infinity). Moreover, if /£ L2(— + °°)
also, i.e. if /6 L(—°°, +°°)MMb2(—"°°, +°°), then

fo 40
/[ f(t)g(t)dt = J f(co)g(a>) dco

by classical but non-trivial theorems of harmonic analysis. Hence the Fourier
transform F is an isometry from L(TL2into CO(TL2 both with norm Ll L2.
Since LfIL2 is a dense subspace of L2 F can be defined for every /EL 2

by
Ff:= Fld(glo Ffn

where frELfIL2 and lim/,,=/ (obviously here the limit is understood in
L2norm). Thus the operator F is extended to the whole of L2(—°= +°°
as an isometry; however, the formula (*) is not valid for every/£ L2 (it is cer-
tainly valid for /,,gLfIL2.

It can be proved that the extended operator F is not only an isometry but is
also a unitary operator.

Remark 1. From a physical viewpoint, the domain and the range of the Fou-
rier transform are not considered as the subspace of the same Hilbert space
LA—<= + °°). In most cases the independent variable of the functions in the
domain space is a ‘time variable’ and that in the range space is ‘frequency’;
however, from a pure-mathematical viewpoint we do not make this distinc-
tion.

Remark 2. Itisvery importantin these examples that congruent Hilbert spaces,
however, they may be considered equal from the Hilbert space point of view,
could be very different. We can see this later also in §3.3.

The most important theorem concerning isomorphic Hilbert spaces is the
following.

2.11.1.1 Theorem. Every separable Hilbert space XX is congruent to the /2
space.
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Proof. If {et}is a complete orthonormal sequence and x£ )X then, by 2.2.3.2.

00

X = M ek)ek-

2
k=1
The operator

Tx = {(x\eK}; k = 1,2, ...

is an isometry and maps XX onto 12 In fact,

MI2= 2. 1(*k)12

by 2.22.1 (b) and, if k—, 2, ...}€/2 then
k=1
since
(k%m/\ |k2—m w = k%m
ie.
L. » = 1.2,
jt=i

is a Cauchy sequence.

2.11.2. If~ and )X2are isomorphic Hilbert spaces with isomorphic operator
U then a natural problem is to find for a bounded linear operator T of Xx,
an operator S of >X2 with the following property: S sends Ux into UTx for
every xaXXx. Formally,

SUx = UTx XK.
Hence
u~->xu =T and S=UTU-1
or
u*su =T and S = UTU*

since U~1=U* by 2.10.4.2.
The bounded linear operator S is called unitarily equivalent to T.
The mapping T—UTU-1 preserves the main properties of T:

(i) S*=(UTU-D)*=(UTU*)*=UT*U*=UT*U~1 (see § 2.10.1(ii));
(ii) S1S2=(UT1U~)(UT2u~D)=UT1Tm~1;

(iii) aSt+ RS2= U(aT2+ RTAU -1,

(iv) if -1 exists then S-1=[UTU-J-1=UT-1U~1

Remark. The structure of the operator S is shown in figure 2.10.
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fig. 2.10

Example 1. Let
Thf hf /EL 2[0, 2n]

be the operator of multiplication by h£C[0, 2n] and consider the isomorphic
operator

= k=0 %1, £2,...

Y rino«-*4

from L2[0, 2n] onto 12 Then This a bounded linear operator of L2[0, 2n\ and
the operator in |2 unitary equivalent to Th is

Shick = { z  dk,ncr} k=0, £1, £2,...

n= —oo

where ckis the sequence of the Fourier coefficients of/ and dkis the sequence of
the Fourier coefficients of h. (Prove this!)

Example 2a Let Th be the convolution operator
Im™Ko:= f ht-T)AT)dr JEL2(— .+co)

by MEu(— + °°). Itcan be proved that This a bounded linear operator of
L2(—o0, +00).

If we consider the Fourier transform as an isomorphic operator (see Example
4 in 82.11.1), then the multiplication operator

ISJ](CO): feLZ(»oo. +00)

is unitary equivalent to the convolution operator Thsince, by the Convolution
Theorem of the Fourier transform,

F{h*f) = FhFf
where

[h*f(t):= | h(t—2)f{x) dr.

Example 3. Consider the multiplication operator

[TII{z) = zf(2)
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in HO and consider the congruence operator L (see Example 2 in §2.11.1).
Then the unitary equivalent operator is

sj= ictHe*
where )

/= i ckcw
=0

i.e. Sz is a right-hand shift in the Fourier coefficients of/. (Prove this!)

*2.12 The conjugate gradient method

Let XK be a real Hilbert space. In the following, we introduce a method for the
solution of the equation
Tx = b

where b€XX is a given vector and I is a bounded strictly positive operator of
X It will be shown that x0is the solution of the above equation if and only if

Q(X, x) := (Tx\x)-2(b\x)
takes its minimum at x0. Hence to seek the minimum of the functional Q(x, x)
called a quadratic from, is the same as to solve the equation Tx=b.
2.12.1. If the operator T has a positive lower bound m, i.e.
(Tx|x) > m(x\x) m>0

then Tis 1-1 and hence the solution of the above equation is unique; moreover,
" is a strictly positive operator in this case and hence

(xX\y)T := (Tx\y)
is a scalar product. Comparing the norm
Wir:= T = Ne )12
with the original norm in >X we have
"jIW2< (Tx\X) & [[21]W]2

and hence | . ||r is equivalent to || . |. We conclude that if X)XTis the scalar
product space obtained from the scalar product (. |.)r then XXTis a Hilbert
space consisting of the same elements as XX and a sequence {x,,} is convergent
in XX if and only if it is convergent in >XTwith the same limit.
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Following these considerations we seek the solution of the equation in the
form

*0= *i+]2_iajej (@)
where {e,} is a suitable orthogonal system in )XTand hence

_ (*o-rikpr _ (Txoxr)\e™ _ (b-Tx"e))

* %

KT T <Tge) (Tele) « 7

This orthogonal series method is called the conjugate gradient method if ej\
j=0,1, 2, ... is constructed in a particular way, to be described in the next

sections.

2.12.2. We begin with the formal description of the conjugate gradient method.
If xkis the kth partial sum of a series in the form 2.12.1 (*) and

rk = b—Txk K= 1,2, ..
i.e. rkis the error when the exact solution x0 is replaced by xk, then

) rk+i = rk-ctkTek k=1,2,. *)
since
xk+i = xk+ akek
and hence
b~Txk+l = b-Txk-a.kTek.

Now {ek}; k=1,2, ... and the sequence {xK}; k=1,2,... of the approxi-
mate solutions are constructed in the following way. If xk is considered as
the first approximation of the solution, then the error is

fo, = b—Txx
and el=rl. The next approximation is

X2 = x1+oclel
where

(>iki)
1 (eilTed

and if the &th approximation xk is obtained, then the kth error is
rk=b-Txk

and the next approximation is
(rkiek)
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where

p —r (rk\Tek-1) K—2 3
k k fE'iITeK.A K' T

Remark. Observe that we do not assume in the description of the method that
{ek}; k= 1,2, ... is an orthogonal system in >XT. We shall prove later that
{ek}; k=1,2, ... can also be obtained from {rk}; k=1,2,... by the Gram-
Schmidt process.

We shall show that xktends to the solution x0of the equation b—Tx=9 or,
equivalently, rk-+0.

2.12.3. For the proof of the convergence we need some preliminary results.
For n=1, 2,

(. +ik)r = (en+i\Tg) = (r.+1- e\Te) =0 *)
Moreover, from 2.12.2 (*),

(rn+le,,) = (O -adTesde) = 0 (**)

since

__kk)_
" (e\Ten
and I is a positive operator.

If T has a positive lower bound m and an upper bound M, then I'-1 has
the lower bound 1/M and the upper bound I/m (see 84.13.24-25); hence

Mr- = {x\T~'x)

is also a norm in )X, equivalent to the original norm. It follows that if
E(xn:= (rjr-vJ

then E(x>0 and if and only if E(xn-+0.

2.12.4. It follows from straightforward calculations (see, for example, 2.14.53)

that
E(X")_E(Xn'h) = @(M)

and, comparing the recursive formula for ek in 2.12.2 with 2.12.3 (**), we
obtain
(mMe) = (rnm) *)

EN-E(xnt) = 2, p ¥} EMX)

and hence

8 Maté
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or

It follows that E(x,,)—0 if we prove

| (r,\r,,)
Y- t'm-VXF— -

since E(x,,)>0 by definition. In fact, from the recursive formula for ek in
§ 2.12.2 and from 2.12.3 (*),

{r,+iFrnet) - ten+1+ (M+\Ten o Ten+a+ (@Txf'légn) Ten]
= fe+ilMn+)+y2(ejrO > (LF17V,,+)

and hence, using (*), we obtain

(gnk) = Onk)
H (rm\Trn) (r,\Trn) =
On the other hand,
(r.k.) 1
(rm\Trp " M

since M is an upper bound for T; moreover, from the considerations in §2.12.3,

— (r" i. m
(rn\T 1rn
Summing up,
Q..k.)
"WT-\) " M
and hence
ro. (n.k) , m
" w£E-V,,) M

2.12.5. The conjugate gradient method is partly motivated by the endeavour
to find the solution in the form of an orthogonal series in XXr such that the
successive errors {*; k—1,2,...} are built into the partial sums {xk;
k=1, 2, ..}. Now we shall show some peculiar features of the conjugate
gradient method in relation to this endeavour.

If rn=6 for any n then xnis the exact solution and so is obtained in the
form of a finite sum. We suppose in what follows that rn~s (n=1,2, ..).
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2.125.1 Theorem. If r, 146 for n—1,2,..., then {rk\ k=\,2, ...} are lin-
early independent and also

(r,\ej) = 0 for j < /7

Proof. By immediate calculation, the theorem is valid for the pair t\, r2.
Let us suppose that it holds for rk; k—1,2, ...,77; then from 2.12.2 (*),

(rn+i\ej) = (rnej)-an{TeNC) = 0

if j<n and (/.+ile,)=0 by 2.12.3 (**).
If rx, %, are linearly independent but this is not valid for i\, r2, ...

rn, Li+: 5then
M

P k2:1«_r|-

Multiplying both sides by ey, j=1, 2, ..., » successively, we obtain a*=0;
k=1,2,..., 7 and hence rn+1=9.

If the Gram-Schmidt process is applied to {rk; k=\, 2, ...} (without
normed!), then

We shall prove that by choosing {rki k=1, 2, ...} as an infinite basis for the
Gram-Schmidt process, ek is obtained in the simplest form:

(rk\Tej) = @ if j<k-1

in (*) and hence ek is the same as in the algorithm in §2.12.2.

Remark 1. There is another advantage of choosing {/,,}: in this case the error
is measured during the evaluation of {ek}.

Remark 2. We conclude from the structure of the Gram-Schmidt process
that (r,\ej) = 0 for j < n implying that (ri\rf = 0 for j < »
(prove this!).

2.12.5.2 Theorem. For j< k —\,
(RTej) = 0.
Proof. It follows from 2.12.2 (*) that
(rd+iv\rk) * (rj\rk)-ctj(Tej\rk)

8*
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and hence if j< k —I then it follows from Remark 2 that
«i(Tej\rk = 0.
If ajy=0 then it also follows from 2.12.2 (*) that rj+1=rj and, by induc-

tion, rn=rj for «>/. But this implies rj=8 since rk-*0 by 2.12.4. Hence
If rj740; j= 1,2,..., then

(rkTej) = (Tej\rk) = 0.

2.12.6. We shall show that x0 is the solution of the equation b—Tx=0 if
and only if Q= Q(x,x) takes its minimum at x0. In fact, for every fixed
cEX,

(T(x—=C)|x—=C) = (Tx\x)—2(Tc\x) + (Tc\c)
since isreal and T=T*. Comparing with Q(x, x), if we substitute b=Tc,
we obtain

Q(X, X) = (TX-UT-ATx-bA-ULT-'b).

It follows that the minimum value of Q is —(b\T~Ib) since I'-1 is also a
positive operator (see §4.13.24).

*2.13 Construction of a separating hyperplane

The simplest case of classification of a finite set of data consisting of numbers,
strings of numbers, functions etc is when the set is divided into only two classes:

M:=the set of ‘good’ elements;

N:=the set of ‘wrong’ elements.

In this case the classification should be done by means of a function/ in
such a way that /(x)>0 if x£sd and /(x)<0 if In the next section
a Hilbert space model will be given for this type of classification.

2.13.1. Referring to §2.5.2 a hyperplane 9* of a pre-Hilbert space XX passing
through the origin B has the form

9 = {y: (y\m) = 0} mdJZ.

In this section J1 is a one-dimensional subspace and X is a real (pre-) Hilbert
space.
The distance between aset 9 and x$9 in a pre-Hilbert space is defined as

d = 1fy W~y\-

2.13.1.1 Theorem. If JZ is generated by a single vector z with ||z| = 1 then the
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distance of the hyperplane ST and x/ST is
d = |(x|2)].

Proof. In this case, ST is also a closed linear subspace of the pre-Hilbert space
X and hence, by 2.5.1.1, there exists y<fST, where ST is the completion of ST,
such that

};i%{.\\x-y\\ = \\x-yO\

and hence, by 2.4.1.3,

s

from which we have

-(TENM-

On the other hand, x—y<fSTL=JILL—M and XX is one dimensional;
hence

r=.
11*-n1

Remark. It turns out from the proof and especially from 2.14.20 that y{fST
if ft is finite dimensional, i.e. there exists a projection in ST for every x£XX.

The pre-Hilbert space X is divided into three parts by the hyperplane ST:
{y: (y|z)>0}, called the positive halfspace of ST, {x: (x|z)<0), called the
negative halfspace of ST and {y: (y|z)=0}, the hyperplane ST itself.

2.13.2. Let sf and 3d be two finite subsets of XX\ our task is to find rO£>X
such that

(x]z0) > 0 if XxE£.st and (x]z0) <0 if X£.38. (*)

The hyperplane SO={y: (y[z0=0} s called a hyperplane separating sf
and 3d. In what follows we suppose that there exists a separating hyperplane
for sf and 3d, and an algorithm will be given for the construction of this sepa-
rating hyperplane.

For each element xfsf\JST we construct in such a way that gk= +1
if xkSsT and £k= —1 if xfSS, and hence ST is a separating hyperplane for
a sequence {xk; k=1,2,...} belonging to f\J3d if and only if

gk(xk\z) > 0.
Now let

stn= {x: (x|z0 = 0};
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if there exists nsuch that c,,(x,,|z0«:0 then is not separating and a correc-
tion is needed. In this case let

Zi = z0+ Cx,

and we consider the hyperplane (J’]zD=0}. Again, if ™Myx#Hz)>0
for k—1,2, ... then &\is a separating hyperplane; if not — i.e. there exists m
such that €m(xmz)<0 — then a correction is needed once more:

A2 =+ AWXm

and the trial will be continued by the hyperplane {y: (y|z9=0}. The
process is continued until si and Jlare separated by a hyperplane .Y.

Thus the following algorithm is obtained: z,,=6 and, after the /th correc-
tion,

= 1 H H <£ * %
2kl = 1B+ 2kxk W axiaziy*so ek )
Our main subject in this section is an estimation of the numbers of hyper-
planes Stk (or the number of corrections, which is the same) needed for a
separating hyperplane to be obtained in the algorithm.

2.13.2.1 Theorem. Let / be a pre-Hilbert space and (xt; k=\, 2, ..., N}
a finite sequence of elements of XX divided into classes si and S3. If there
exists a hyperplane Sf with separating si and 3%in the stronger sense

|(Xjtlz)) m»d > 0 K—12 .., N

then the algorithm (**) leads to a hyperplane separating si and S3 after a
finite number of corrections. More particularly, if n is the number of correc-
tions then

n< M2d2
where

M > lIxj K —\,2, ..., N.

Remark 1. On the basis of 2.13.1.1. the condition \{xK\z)\>d>0 means
exactly that the subsets si and S3 have a positive distance.

Remark 2. The number of corrections is in an inverse ratio to d2and propor-
tional to M 2 but it does not depend on the number of elements si and S3.

Remark 3. In the most favourable case, when the separating hyperplane is
given by the very first vector z0, we need N scalar product tests to be assured
that  is separating. Hence in this theorem we have no information about the
number of scalar product tests.
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Proof. After the nth correction,

= k2:1&x\[
where Xk is the &th element for which the scalar product test is negative, i.e.

zkixkizk-0 < 0.
Hence

Nil2=\n 1+M 2= BT + bl T+ <\r.-g*"\* .- \"+M"
since f'(x'|z,,-i)«;0; more particularly,
Izke~ M 2
NJa< |z, +M 2<2M 2 (1)

NJ2< ljz,, 1, +Mi «s nMr.

On the other hand, if £P={y: (y|z)=0} is a separating hyperplane with
N1=1, then

lzj > 0®) = k2—| &(xi\z) = k_21 \XK\z2)\ > nd. 2)

Comparing (1) and (2), we have

nd*s Iz «s n1,2M
and hence
n= M2d2

2.14 Problems and notes

02.14.1. Find the condition for the Pythagorean law
Wx+yW\2 = \bA\2+\\y\\2 X,yex

to be valid.

02.14.2. Prove that if

0O = A sin (t+CPi) g(t) = Azsin (t+(pz)
then

2 j f(t)g(t)dt = RSAIA A j-~ .

2.14.3. Prove, e.g. from the Cauchy inequality 2.1.2.1, that for every
Nil = sup {(x\z); NH = 1}.
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02.14.4. Prove that for any scalar product space XX,
XQy) = I~ [ bBc+ei‘Till'd/.

0 2.14.5. Show that in any pre-Hilbert space XX,
lIx+yP+1U-ylI2= 2||*||2+2||y[I2 X,yerK.

Give a geometrical meaning to this equation, which is called the parallelo-
gram law.

2.14.6. Prove that if the parallelogram law holds in a normed space 33, then
33 is a scalar product space, i.e. there is a scalar product in 33 such that

M = Ne )12

2.14.7. If {x,} is a sequence in XX and lim x,,=x then it follows from 2.1.2.3
that

(*.bO-(*bO ye*
but the converse does not hold. For example, for any orthonormal sequence
{iekt we have (e*|y)—0 for every y£)XX; however, ||lej =1 and {et} is not
a convergent sequence since

RIS

for any orthonormal {ek}.

2.14.8. The function f shown in figure 2.11, is an example of /EL 2(0, °°)
that does not converge to zero at infinity.

fig. 211
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2.149. Show that if ek”0; k= 1,2, and
tek) =0 *N K
for {ek; k=1, 2, n) then these are linearly independent vectors.

02.14.10. Let {ek} be an orthonormal system in a Hilbert space XX. Prove that
k2_I ykek is convergent if and only if k2_I lyd2< °°-
Is this true if )X is only a scalar product space?

02.14.11. Prove that if {a] is a complete sequence and {ek} is the orthonormal
system obtained from {ak} by the Gram-Schmidt process, then {ek} is also
complete.

2.14.12. Let {ef(0; k—1,2,...} be an orthonormal system in the real
L\[a, b]. Show that {ek} is complete if and only if

2 [I ek(t)dtf = x-a x£{a,b).
k1 a

2.14.13. Apply the Gram-Schmidt process to the sequence 1, z, z2, AR | §

(/1g):= ff f(z)g(z)dxdy

in the linear space of functions analytic in the unit disc and continuous on
{z: |Z| = |}.

2.14.14. Show that {(2/7r)12sin Jt/; k= 1,2, ...} is a complete orthonormal
system in L2[0, A].

2.14.15. If the Fourier coefficients {c¢ and {dk} of the continuous functions/
and g, respectively, are very close to each other in the sense

2 k-412<e
k=-00

< |
I \AD)-g(t)\*dt7e.

then

However, from the Fourier coefficients we cannot say anything about the mag-
nitude of |/(0-g(0I; te[o, 2n].
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2.14.16. Show that the matrices H”, defined for N=2k; k=1,2,... in
§2.3.3 have an inverse. What is H"1?

2.14.17. Show that the step functions w* defined in §2.3.3 are Walsh func-
tions.

2.14.18. In 82.4.1.4 we found a formula for the projection of x~XX onto
JI in the case of finite-dimensional JI. Give a formula for the projection if
Jt is a separable subspace of a Hilbert space X.

2.14.19. If Jt is a complete linear subspace, then Jt+x+:=(Jtl)x=J(. In

fact, it is obvious that JCEzJt1-:. Now lety be an element of JILL such that

y$_Jt and let yp be the projection of y onto Jt\ then y—ypEXXM by the

projection theorem and hence y—y ™ JtI-COK+A. But Jt1-ClJt11l —{0}.
Find J1%1 in the case where Jt is neither complete nor linear.

2.14.20. Let Jt be a complete subspace of a scalar product space XX and
x0$Jt. Prove the following generalisation of 2.13.1.1:

min {|V0—wl[; m~Jt) = max {(x0y); y~JItl, [iyll = 1}

2.14.21. Find the orthogonal complement in L2[0, 1] of the following sets:
(a) the polynomials in x;
(b) the polynomials in x2;
(c) the polynomials with the sum of coefficients equal to zero.

02.14.22. Let )
i
Jt = [z: f z(t)dt = 0; z<EL?[0, 1]}

where sd(0,1) is a fixed value depending on z. Show that Jtl= {0}.

2.14.23. Prove that the orthogonal complement of {e2’t"; n=0, =1, +2, ...}
in L2[n, b] is

(a) {0} if \b—al*c 1;
(b) Not {6} if \b—al>I.

02.14.24. Prove that (JIB)“1—B~1A~1 where A, B, A_1, are bounded
linear operators of X.

2.14.25. 1f )X is a Hilbert space and Jt is a closed linear subspace of XX then
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there exists JfczM1 such that Is this true for any scalar product
space?

02.14.26. Find the polynomial P,, of nth degree such that, for a given
x€L 2[0, 1],

[ \x(t)-Pn(0\2dt
0
is minimal. (First solve the problem for n=2 and x(/)=sin 2n/.)

2.14.27. For a fixed integer n,

[1 if kin®mt< (k+1)/n
&1 lo elsewhere.

Show that {ek} is a non-complete orthogonal system in L2[0,1] and find the
best approximation of x£L2[0, 1] in the form

Zo& e

2.14.28. Find the polynomial of the form
P,(t) = I'4-a,,_Un 1+ ..+al/+a0

in [—1, +1] with minimal square integral.
2.14.29. As we saw in §2.8, the proof of the Riesz-Fréchet Theorem for non-
separable >X is based on 2.5.4.2. We shall now show that we can deduce
2.5.4.2 from the Riesz-Fréchet Theorem.

In fact, for any x(E>XX, f(m)=(m\x0; m£Jt is a continuous linear func-
tional of a closed linear subspace JI. Consider JI as a Hilbert space by itself
and supposing the Riesz-Fréchet Theorem to be valid; then there is a unique

m~Jl such that
(mmQ - (m|x0) mEJt

and hence x0— and
(X,,—m0) + mO

is the orthogonal direct sum J41®JIi decomposition of x0.

2.14.30. Find x=x(t) among the functions

K/ xtya=T-F
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such that the integral )
i
iob (t=2x()x(t) drd/
00
is minimal.

2.14.31. Let {x,} be an infinite sequence of real numbers such that

[ *ll=<-m
1=

Show that there exists an infinite sequence {a,} of real numbers with

2,9

such that

Iakxk

AN

does not converge.

2.14.32. We have the following generalisation of the previous observation.
For every infinite sequence {x,} of a Hilbert space X with

I’il_llKHZ = -
there exists {a,} with
lélK M2« -
such that
*2:1 bl XK

does not converge.

02.14.33. Prove that if a,,,brnEXX for u=1 2, ... and

then

is a convergent series,

02.14.34. Prove that

Wij) = j{lk+ 7~ H2- [k -y [|2+i]|x+iy|[2-i]|x-iy [|Z
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and in particular, in a real Hilbert space,
x\y) =j {|I~+7H2- 1k -5 1

2.14.35. Prove that a bounded bilinear functional is continuous in the follow-
ing sense. If and yn-~y then cp(X,, yn-»(p(X,Yy).

02.14.36. Let XKx, X2 be separable Hilbert spaces and let U be a linear opera-
tor from XXxonto XX . Prove that the operator U is an isomorphic operator if
and only if for any orthonormal system {ek} in XXx, {Uek} is an orthonormal
system in 2.

02.14.37. Prove that for every bounded linear operator I, self-adjoint opera-
tors A and B can be found such that

T = A+iB.

2.14.38. Let I' be a positive operator. Is it true that

\(Tx\W)\* < (Tx\x)(Ty\y)2
What about the projection principle, if the scalar product is replaced by
(Xly)r:=(71xly)?
2.14.39. If the equation

Tx = b *)
has no solution in a pre-Hilbert space X, then x0€)X satisfying
|Ih—7*0] = inf{||[fe—7XK]|; XEX)

is called a generalised solution of the equation. Notice that x0is a generalised
solution if and only if the quadratic form

(T*TX\X)-(x\T*b)-(T*b\x)+(b\b)

has a (relative) minimum in x0, since this expression is equal to \Wo—Tx\\2
(Compare with 2.12.6.) Moreover, by 2.4.1.3, x0 is a generalised solution if

and only if
(b-TxQTz) = 0

for every r£>XX and hence, if the inverse operator (T*T)~Xexists,
Xg= {T*T)~1T*b.

If the generalised solution is unique, then the operator T~ defined by T~b—x0,
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i.e. the operator that maps ba X into the generalised solution of (*), is
called the generalised inverse of T.

It follows from the above considerations that if (T*T)~r exists then
F'=(r*r)-1* (Compare with 2.6.2.)

2.14.40. Considering a bilinear functional as a generalisation of the scalar
product, as was established at the beginning of §2.9, formulate the analogue
of 2.4.1.3 for any bilinear functional q

What are the conditions for qfor 2.4.1.3 to be valid if the scalar product is
replaced by cpl

02.14.41. Let T be a positive operator and let yt; z'=1,2, ..., n be linearly
independent vectors of a pre-Hilbert space XX. Find x0£XX* that satisfies the
following conditions:

(i) x0ya=T /1=1,2,...,«

where ftJt; /=1,2, ...,« are given;
(ii) the quadratic functional x~(Tx\x) is minimal if x=x0.

Show that if the inverse T~xexists then a solution of this problem is

n
®>= 2 kv
k=1

where {cfg k=\, 2, n] is the solution of the following system of linear
equations:

i2_|£K(YK\Ty,q = 4i 1=1,2,...,«.

2.14.42. If the linear space generated by £E~)X is dense in X, then from
(x0z) = 0 for every @)

it follows that x0=8. In fact, in this case there is a sequence {z,.}; «=1,2, ....
of linear combinations of elements of 6? such that z,-+x0; moreover,

(x0zn) = 0 n=1,2,....

(o) = 0

Prove (e.g. from 2.5.4.2) the following converse statement: If from (*) it
follows that xo0—0, then the linear space generated by ff is dense in X.

Hence

02.14.43. Prove that A”B implies Lk [jf]i for the self-adjoint operators
A and B.
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02.14.44. Prove that projection operators are positive.

2.14.45, Let Pk\ k=1,2,...,n be projection operators such that
PiPj=0 if i j and 2:|Pk—E

where E is the identity operator. What can be said about the subspaces

Jlk= PrK := {Pkx; x(L3P}

02.14.46. Let PM and Pr be the projection operators onto J1 and Jf, respec-
tively, and Jn /= {9). Show that PMJFPX is also a projection. If

P — Pji+Pjt

then find the closed linear subspace Cf such that P=P>r-

2.14.47. Let {<}; n=1,2,... and {l/,,); n=1,2,... be complete orthonor-
med systems in L2[@ b\ Then

ekn(U P) m= <PkO)P«(*) k,n =12, ..

form a complete orthonormal system in the Laspace of functions of two vari-
ables with scalar product

(f\g)'= 1 J f(t,x)g{t,x)dtdz.

2.14.48. (a) Prove that
TT*s. 0 and T*T > 0

for any bounded linear T.
(b) Prove that if TT* and T*T have a lower bound 0, then T has a
bounded inverse I'-1. (Compare with 2.14.39.)

2.14.49. If T*Thas no positive lower bound then there exists {x,,}: n=1,2,...
such that
W\ - 1 and (T*Txnx,,) - 0.

In this case there is no bounded inverse T~I since if we suppose that bounded
T~1 exists, then

W = WT-"TxJ < l|7T Y [|TX,,||.
Moreover,
WTx,,Im = (TXn\Txn) = (T*Txn\xn.

Hence our supposition led to a contradiction.
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2.14.50. Prove (e.g. by applying 2.11.1.1) that every two separable Hilbert
spaces >Xx and >X2 are isomorphic.

2.14.51. Show that the orthogonal direct sum decomposition

K3 Jt=20

|:|“Trt

is unique. (See 2.5.4.1)

2.14.52. Show that the functions at(t); i=0, 1,2, ...,1V of Example 2 in
82.4.1 form a basis in the linear space L of functions which plot as a broken
line with nodes only at {tt; i=I, 2, ..., N).

More precisely, fE L if and only if/is continuous and, in each of the inter-
vals, (ii+i, q); /=0, 1, ..., IV—1 is a polynomial of first degree.

2.14.53. The calculation that led to the formula
E(X,,)-E(xn+l) = dn(rren
in 82.12.4 is as follows.

(r+ATArn+l) = (rn-otnTenlT-Hrn- « nTen)
= (GIT- 1Ir,) + al (Tenlen) - a, (Ten\T~1rn) - a n(rnen

and hence
E(x.)-E(xn+1) = (M -1r)-(re+ll _1rs+l)
= < fra\e™ + va(Te, \T-1r,,)-c(TeKea)
= (enr,)+ [{en\rn- a,(Terlen)]
since 0 and X is a real Hilbert space. Moreover,

<(Tesked) = (r,,HO-

2.14.54. Prove that every Gram matrix is positive definite in the sense that if
aik; i, k—1, 2, ..., n are the elements of the matrix then

n n
iélkzzlalkm*k >0
for every «-tuple {x,}; i=1,2, ...,« of complex numbers.

Is the converse statement also true? Is it true that every positive definite
matrix is a Gram matrix?

2.1455. The Gram-Schmidt process can also be considered as a particular
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case of the projection principle. If we choose yk; k=\, 2, n such that
(B
0.- fg:I Wen
is orthogonal to the vectors ek; k=1, 2, n—1, then
n—1
k=1
is the projection of a,, onto the subspace generated by {ek; k—1, 2, n—1}.

2.14.56. Can it be proved that

sup {I<pO.y)l; WW ™ LW s 1} = sup [op(z,2); izl ~ 1}
for a symmetric ¢2 (For example, another proof for 2.10.2.2 using 2.9.1.1.)

9 Maté



Reproducing Kernel Hilbert Spaces

We have shown in §2.11 that every separable Hilbert space is isomorphic to
the 12space, so that they may be considered as the same from a Hilbert space
point of view; however, they could be very different. In this chapter we shall

study Hilbert spaces of certain functions that also have interesting function
theoretic properties.

3.1 Hilbert space and kernel

3.1.1. In a linear space B of complex or real-valued functions on a set 3t, for
every t£3i we have the linear functional

/[ - Ne Ne

called the evaluation functional.

In many important Hilbert spaces of functions the evaluation functionals
are continuous, but there are also important ones with non-continuous evalu-
ation functionals. For example, the elements {xt; k=1,2,...} of the

/2space are usually considered as functions on the positive integers and it is
obvious that

w < (1_i1w r.

Hence the evaluation functionals in /2 are continuous.
Consider the functions /,,=/,,(/):

n (t—f0) + nl2 if te(t0-i/n, t0
[»0 = -n(t-tQ+nl2 if t£(t0,t0+1/n)
0 if ti(t0-1/n, tO+I/ri).
It turns out that

fnOo) = n and J |/,(0]2di<3
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and hence the evaluation functionals are unbounded (i.e. they are not con-

tinuous) in U (— +7).
Consider the functions in L2(- °°, + °°) with a ‘band-limited spectrum’, i.e.
the functions /£L2(— +°°) in the form
[(o =2 | eiOF(cu)do» ™)
—A

where FE£U(—A, +A). By the Cauchy-Schwarz inequality,

F W 2 IV («)p dco)il2
<A

-A

and hence, by Example 4 of §2.11.1,

1/(01 « oli..

This means that in the subspace of L2(— +°°) consisting of functions, of
the form (#), the evaluation functionals are bounded by 1 and hence are con-
tinuous.

A Hilbert space XX of functions with continuous evaluation functionals
will be called a reproducing kernel Hilbert space.

3.1.2. In a Hilbert space (and also in any normed space) of functions the
pointwise convergence can be expressed by the continuity of the evaluation
functionals. More precisely, the following are equivalent for a normed space
B of functions.

@iy If /,,, fzB and I11/,—11-*0 then
/,,(0 -/(0 for every tE£®.

(i) The evaluation functionals are continuous.
(iii) For every t~Si there exists Kt>0 such that

1/(01 «W 11 AB.
Considering 1.4.1.5, the proof of (i)u=(ii)<¥iii) is easy.
3.1.2.1 Definition. A Hilbert space X is called a reproducing kernel Hilbert
space (rkhs) if the following conditions are satisfied:

(a) the elements of XX are (complex or real-valued) functions defined on
any set
(b) for every t(A2 there exists //>0 such that

/O] ¢ KW\ ft*.

g
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The elements of an rkhs are also denoted by /( .),£(+), «-, indicating that
the elements are functions, whereasf(t) is the value of/ (.) at tES>.
In an rkns XX, for every t~S) there is a function R (., 1)aXX such that

m =(n.m - 0) K * (*)

by the Riesz Representation Theorem (2.8.1.1) and hence the evaluation func-
tionals are determined by the function R=R{s, t) on Q)X3>, called the
kernel of the rkns XX\ (*) is sometimes called the reproducing property of R.

3.1.2.2 Definition. The (complex or real-valued) function R=R(s, t) on
S>X2> is called symmetric if

R(t, s) = R(s, t)

and positive definite if for any finite set {sftS; i—1,2, ...} and complex
numbers A (/=1,2,..., n),

> 0.
u=1

3.1.2.3 Theorem. The kernel R=R(s, t) of an rkhs is a symmetric and
positive definite function.

Proof. If f(.) =R (.,s) in the formula (*), then we obtain
R(t:s) = (R(.,$)\R(.,1))
and hence
R&T) = (R(.,1)\R(.,8)) = (R(.,3s)\R(., 0) = R(t, s).
Considering

2 hR(- sk

we have

0< MW 5 Mll2= (LW 3)I2 “TR(mS)

= 2,2 WiR"S))

Ij=1

and hence the kernel R is positive definite. We recall that a normed space is
generated by a subset JI if the linear combinations of elements of M are dense
in the normed space.

3.1.2.4 Theorem. The rkns X with kernel R is generated by {R( ., t); tE3>}.
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Proof. If for every (/. )T?(., )=0, then it follows from the repro-
ducing property (*) that f=6. Hence the theorem follows from 2.14.42.

We have now arrived at the first serious problem of the r«ns theory. Is
every symmetric positive definite R—R(s, t) the kernel of an rkns?

3.1.25 Theorem. For every symmetric positive definite R= R(s, t) there is a
unique RKHS with kernel R.

Proof. First we consider the linear space generated by {/?(., t);

If we define

(A(.5)IA.0):= R(ts)

m n m n
{Z, VIR(-"t)\Z*iR(; h))==Z Z WZiROL 1)

and

then the axioms of the scalar product and the reproducing property (*) are
satisfied. The only non-trivial part of this assertion is that

(iw ,0liw ,0)) =0
implies " 1=
téiA-kRO’ h)= &

for every t£3). Indeed,

ZW tR={ZW ;tRR(-1)

and, applying the Cauchy-Schwarz inequality (by 2.9.2),

KZ W« hR(mOJC (ZW 0|z W - -01*0,0)

the non-trivial part of the first assertion is also obtained.

Secondly we consider the completion >Xc¢ of this pre-Hilbert space X.
What we have to prove is that XX tis an rkns.

Let {x,,} be a Cauchy sequence in X; then {x,,(0}, for every is also
a Cauchy sequence since

X,(1) = (X,,\R(., 1)).
If xXEXc¢ limx,,=x and limx,,(t)=x(t), then
(x|A(., ) = lim(x,,\R(., 0) = x(t)

and the correspondence x-*x(t) is 1-1. We conclude that the linear space of
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functions {X('[); t’\Q) thus obtained is an rkhs with the scalar product
(*(+M #)) = lim (*,( W1Y,(+))
and kernel R=R(s, t).

To summarise: for every rknhs the evaluation functionals are determined
by the kernel R, which is a symmetric, positive definite function, and for every
symmetric and positive defjnjte R, th is a unique rkhs witl} evalyatio
functionats seprecgnted by (R (L)) (b} The »ne DBOTGING 10 1he kemel
= 15 0enoted By K ey

3.1.3. Some consequences of the foregoing theorems are as follows.

3.1.3.1 Proposition.
ua(.,0112= (a(.,014(.,0) = R(t, t)
[*(Ol< 119(->Ne1l = {R(t, 0)12M .
In particular, for any pair x,,(.), xm(.)£X(A),

%, (i)-xmOI < (R(t, t)r\\xn-x m\.

Based on Proposition 3.1.3.1, we have the following connections between
the kernel R and the elements of XX (R).

3.1.3.2 Corollary. If R(t, t) is a bounded function, then every x( .)E£X(K)
is also bounded.

3.1.3.3 Corollary. If R(t, t) is bounded on a subset 3'UkO and {x,,} is con-
vergent in XX (R), then {x,(.)} is uniformly convergent on #)', i.e. in this
case the uniform convergence is implied by the norm convergence.

3.1.3.4 Theorem. If Qi=R" and R(t, s) is continuous then every x (.)E£X(P)
is a continuous function.
Proof. If x(.) is a linear combination of functions R{ ,)\ HQ) then there
is nothing to prove. Otherwise x is the limit of such functions. R(t, t) is bound-
ed on every bounded subset of R"; hence the uniform convergence on every
bounded subset of R” is implied by the convergence in XX (R) by Corollary
3.1.3.3. Hence x=x( ®) is the uniform limit of continuous functions on every
bounded subset and so it is also continuous.

It is also important that, in most cases, an rkns is aseparable Hilbert space.

3.1.3.5 Theorem. If @c r ™ an(] p is a continuous function, then X(K) is
separable.
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Proof. In this case XX{K) is generated by the countable subset {R( ., t);
with rational coordinates.

Example 1. The elements of the Hilbert space P are sequences, i.e. functions
defined on the natural numbers, and

WHI2i= ef2< 2 =M1 K=12....

Hence it is obvious that P is an rkhs. The kernel is

R(M, n) =\ ;:I B

m=n
10 m n

We shall see that P is uninteresting as an rkhs.

Remark. L2[a, b] is not an rkhs, as we have seen in 3.1.1. The rkhs property
is not invariant for Hilbert space isomorphisms.

Example 2. Let Snbe the linear space of trigonometric polynomials of degree n
considered as a (2u+ lYdimensional (and hence closed) subspace of
L2[—n, +7t]. In this case,

2 yrewp= X—J Z YWNYU Z vme imtdi= Z bl 2
A =—n

K=—n _n k——n m k=-—n

and, applying the Cauchy-Schwarz inequality

12 vy*e*|2«; 2 bl 2 Z Jeiw2= 2n+1 2 bl 2
n k——n k

—n =— =—n
we obtain

12 vreil*|  (2n+1)1/2)] 2 Y*ew ||
k=-—n k——n

i.e. each of the evaluation functionals is bounded by (2n+ 1)1/2

Remark. Although L2[—n, +7t] is not an rkhs, the closed linear subspace
£, of L2[—A, +71] is.

Example 3. The linear space of functions represented in the form of a finite
Fourier transform

/(0=2J | e*Hoo)d>
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is also considered as a closed subspace LAof an L2space. Itis, in fact, a closed
subspace of L2(—=°°, +°°). If A is a fixed number, FEL2[—A, +A], then it
is known from Fourier transform theory that

I |/(012di= f AJF(co)2dco. *)
-A

-m >

It is easy to prove that the elements of LA are continuous functions (this will
also be done by an rkhs method in §3.3), and

vor=i 1/ &"*BaH
+A I i +A

7 o) I Fe)d = U

Hence, bearing in mind expression (*), the evaluation functionals in LA are
bounded.

Example 4. Let us consider the linear space {/: /"£L 2[0, 1]}, i.e. the linear
space XX of (completely continuous) functions on [0, 1] with derivatives in
L2[0, 1]. It is easy to show that

(f\g)--=f(0)W )+ fMOTTOB *)

0

is a scalar product for these functions and clearly

IM=/(0)+ 1 f\t) &t
0

It follows that if

d .. 01 for tc s .
g‘: d7gs(0 “ IO elsewhere gs® ~ 1
then for j~[O, 1],
(f\g.) =f(s).

It is known that >KB with the scalar product (*) is complete (as will be shown
by an RKHS method in §3.3), and hence >0 is an rkhs. It is easy to verify that
the kernel is given by

R(s, t) = gs(t) = 1+min(j, i)

i if s>t
mm(s,O—L/ if t

where
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Remark. A Hilbert space ddD can also be constructed in a similar way for
more general linear differential operators D. (See e.g. Example 5 in 82.1.2.)
All of these Hilbert spaces, called Sobolev spaces, are rkhs.

Example 5. The important property of H2spaces shown in Example 4 of
82.1.2 implies that the H2space is an rkns. It follows from 2.6.3 that the
kernel is

RGs, 0 = 1—is

where t, s are complex variables; this is called the Szeg6 kernel.

Example 6. If 2>is the open unit disc in the complex plane, i.e. 3)={z: \2\< 1},
and A{R) is the linear space of functions analytic in Q and satisfying the

condition
at 1

[/ E/ \/(/sI\*r &r dt <0°

where the integral is to be understood as

2n R
3J Ej \f(ref)\2r dr dt

1T
then A{3>) is a Hilbert space with the scalar product

x 1
(f\g):= j j f{rcug(r&lt)rdrdt f, gE A(2>).
0 0

lim

= * =
/ kZ:O akz and g k§0 bkzk

then by a straightforward calculation,

(\g) = n 2 3 1 ank- *)

Moreover, fEA(R) if and only if an= n+1)V2, with c,£I2
(We shall not go into the detailed proof of these assertions.)
It will be shown that A{2) is an rknhs by constructing the kernel. If the

kernel R(z, £) exists, then the function R( ., z0 depending on the parameter z0
has the form

R(z, 29 = kzo bk(z0)zk
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and by (*),

(/()IA(, z0) = 2 2 —j -r- anb,,(z0. (**)
On the other hand,

(/(')lﬂ('> *@) = /(Z 0) = iIZZOaHA- (***)

Comparing (**) and (***), we have

aAn+1'b" A z° «=20,1,2,....

We conclude that

b,,(z0) = —(n+1)zg n=0 1,2, ..
71
and so

R{z, z0) = ;léo(k+ \)z6zn

which can easily be verified.
It follows from the identity

2(k +gk= 1 for \g\<\
ok +ha \L=4) a

that R(., z,)€A(3>) and

R(z, 29 = ————r

n (1-Zoz)2

which is called the Bergman kernel.

3.2 Kernels in the form of an infinite series

3.2.1. The construction of a kernel for a Hilbert space is a direct demonstra-
tion that the Hilbert space is an rkhs; moreover, the kernel gives the major

information about the Hilbert space. In the previous section ad hoc methods

were used for the construction of kernels or we did not find a kernel at all,

as was the case in Examples 2 and 3.

In this section a general method will be given for the construction of ker-
nels in the form of an infinite series. This is the oldest method; a modern
approach for constructing the rkhs, the kernel and the scalar product si-
multaneously, will be the subject of the next section.
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3.2.1.1 Theorem. If {ek(.); k=1,2, ..} is acomplete orthonormal sequence
in the separable space then the kernel has the form

R(s, t)= t}2':1ek(s)ek(t). *)

Proof. The series expansion of R (., /) is

R(.1)= Z(R( 1)\ek())ek()

and (*) follows from

(R(OKt(O) = bl-)|/1(.,0) = LU -

Remark. Setting s=t in (*) we obtain

k2: 1kfc(OIa <o
for any orthonormal sequence {ek; K=1,2, ..} in an rkns.
Example 1. It is easy to verify that

ek(z) = -~ (k+iyIn
is a complete orthonormal sequence in A (£2). Hence the kernel is

=N 2 (k+D)(z&
Na-o

in accordance with Example 6 in 83.1.3.

Example 2. By Example 4 in §2.2.1 the sequence [zk; k=1,2,...} isacom-
plete orthonormal system in H~ Hence the kernel is

R(™z)= %

4=0
in accordance with Example 5 in § 3.1.3.
Example 3. In the linear space Shof trigonometric polynomials of nth degree,
considered as a closed subspace of L2[—n, +7t], the sequence {elkt; k=0,

+1, ..., £n} is complete and orthonormal. Hence

R(s, t) = k:2_neikse~il<t = k*Zz_neit(s_,)
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is the kernel of ZIn. The sum of the right-sided geometrical series

+,, sin («+-)(,—r)
y  ,*(*0 _ Y zy

sint(s-t)
is called the Fejér kernel.
3.2.2. If {ak(t); k=1, 2, ..., KM3) is a sequence of functions such that

2 k(012
k=1

for every t£3>,

3.2.2.1 Theorem.

then an rkhs can be constructed from this sequence.

If

2, k(012

then the linear space X generated by the set

_chak. o Z\cK2<=°
{ | ( ) 1 }
is an rkhs with the kernel

t) = k2: . ak(s)aJJ)
and with the scalar product

(f\g)-= kZ_lakh
where

f(-) = Z ckak() ~and  g() = Z, bkak().

Moreover, {a*(.); k—1,2,...} isacomplete orthonormal sequence in 3f(R)
Proof. If

kZI k*12
then the series

kél
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is convergent for every t£3) since

[iw o |2< 2 bl22 k(OI2
k=m k=m k=m

via the Cauchy-Schwarz inequality.
Let us now consider the linear space XX of the functions in the form of
(pointwise convergent) infinite series

k%fl@k() k:21\ cR2A"e-

If the scalar product of

I(+) = 2 ckak() and  g() =2 M*(0

is defined as

(/1g) = k2:1ckbk

then a Hilbert space is obtained since the mapping

@

{C} "m2, &kak(-)

is a Hilbert space isomorphism from /2 onto > in this case. Moreover,
R (., 1)EXX and

(AIIAC, 0) = 2, Wk(t) =/(0
for every /£XX.

3.3 A modern approach to the rkhs model

3.3.1. Let XX be a Hilbert space, 3: a set and h=h{t) a mapping from 3
into XK. A method will be shown for the construction of an «ns isomorphic
with the closed subspace >Xx of XX generated by {h(t); t£3}.

3.3.1.1 Definition. For x”)Xx, the function
m -= (x\h(t))

is called the Loéve transform of x.
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3.3.1.2 Theorem. The Loéve transforms form an r«ns witn Kernel
R(s, t) = (h(t)\h(s)) s, t£Q).
Moreover, XX(K) is isomorphic with XXx.
Proof. R(s, t) is symmetric since
R(s, t) := (h(h)\h(s)) = (W, ) = Wis).
R(s, t) is positive definite since

2 WjR(ti,tj):=_ .2 A0j(h(tj)\h(td)
u=1 =i

={2Wd\2W1j))>0

for any finite i=\,2, ...,n} and complex numbers {&; i=1,2, ..}
If x=h(t0, then x(t)=(h(tQ\h(t))=R(t, t§ and for x=h(s), y=h(sa),

W =@;anag = Sd := (A (.,*)IA (.. jO)

by the reproducing property 3.1.2 (*) of the kernel.

XKxis generated by {/i(t); t£E3>} and XX (R) by {R (., t); id®}. Thus by
the above considerations we have proved that XXx and > (R) are isomorphic
Hilbert spaces.

Example 1. For any finite interval [—A, +A] let us consider the subspace of
LZ—A, +A] generated by

h(t) = e~w —00<i<+o00.

In this case,

*OIM»A-dj /V c--d w-
and the Loéve transform of F€L2[—A, +A] is the finite Fourier transform

/(=23 | ~F (co)dco.
—A
Hence we have shown that the finite Fourier transforms (with fixed band limit
A) form an rkhs, called the Hilbert space LA of band-limited signals, with the
scalar product

+A

(f\g)= J F(co)G(co)dco
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where

/(0=27 [/ eiatFA dco g(t) = 2+ | ei»G(<d)dco
—A

and with the kernel

R(s, 1) = sin JI(Fr—j)

Every function represented by a finite Fourier transform is continuous since
the kernel is a continuous function. Thus by constructing the kernel in LA
the assertions of Example 3 in §3.1.3 are also completed.

The kernel R(s, t) has the following important property: {R (.,tk);
tk=kn/A} form a complete orthonormal sequence. Indeed,

. +1
sin (kn—As) 1 eUknlA)ae -iios d(y:
R(s 1 kn—As 2A J K v

on the other hand . &—o0, 1, £2, ...} form a complete orthonor-
mal sequence in LI—A, +A] and the Loéve transform is a Hilbert space
isomorphism. It follows also that LA is isomorphic with L2[—A, +A].

Example 2. The finite and discrete analogue of the above example is the
rkHs -T,, of trigonometric polynomials introduced in Examples 3.1.3(2) and
3.2.1(3). In this case co takes the discrete values k=0, +1, £ 2 , £n only.
Hence

h(t) = {e“w; k=0, £1, £2, ..., £n}

are linearly independent elements of the (2n+ /-dimensional Euclidean
space, B (instead of L2[—A, +A]). In this case the kernel is

sin [n-t--ij(i-]j)
(h(t)\h(s)) = kg ewe-1b = k_2 eifl(r- s) =
- - sin—(t-s)

corresponding to Example 3 in 83.2.1.

Example 3. The space Li[0, 1] is also generated by the functions
h(t) = (i—9+ 0<t< 1

shown in figure 3.4(a) on p. 158. In fact, every piecewise linear function I(t)
in [0,1] with /(1)—0 is a linear combination of these functions and these
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piecewise linear functions form a dense subspace of L,[0, 1]. In this case,

(0O = 5 - 0+6- o *)

and the Loéve transform of F6L([0, 1] is

i t
[(f) = f (i—)+F(r)dt = J (f—T)F(r)dT. (**)
0 0
The kernel of the rkns thereby obtained,
i
fI(/,j)= | (/-T)+Cy- 1)+ dt

(0]

is piecewise polynomial for fixed S, More particularly,

and hence R(.§S) is a polynomial of third degree OFRI% )jnd a first-degree

byMaéucﬁ et T e dee By "S5 and th corsponig v

Let a),b) be a finite interval and
a= SO< < S,, = b

If S:S( ) is a functi ckn mlfi t? with a continuous second derivative and there
exist polynomials [p proey } of at most third degree such that

s(t)=pk() for

then S is thf a CUb|C Sp||ﬂ€ with nodes k | 2, n—l} The k?rnel
S(t, ) of is a cubic spline for every fixed § with only the node .
Considering (**), the rkns with kernel (*) consists of the functions

{/: " = Fe L2[0, 1]; /(0) =/"(0) = 0}
with scalar product

(fg)= | roreodt 1 gik(s)
since the Loéve transform is an isomorphic operator.

Example 4. Let {T(i); 0 = s =} be a stochastic process with random varia-
bles in L2(fl, A, P) defined in Example 6 of §2.1.2. Then the Loéve transform
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of a random variable ££L2(Q, A, P) is M{fX{t)), a deterministic time func-
tion, and the kernel of the rkhs of Loéve transforms,

M(X(s)X(0)
is the covariance function of the process. The rkns with kernel
R(s, ) = M(X(t)X(s))

has an important role in the investigations of Gaussian stochastic processes,
as will be seen in §3.8.

To summarise, in the method demonstrated in the above examples, the
essential point is to choose the appropriate t"SZ) for the Loéve trans-
form. The kernel, the elements and the values of scalar products are then
determined in the rkns thereby obtained. Thus,

R(s, 1) = (h(t)\h(s))
x(t) = (1AQ)

(*(*M #)) = (Xyy)
since the Loéve transform is an isomorphic operator.

In the light of the general approach to forming rkns introduced in this
section it is clear that we can find many rkns that are isomorphic to a given
Hilbert space. Among them are rkns with an ‘interesting’ kernel, some of
which were introduced in the above examples. Referring to the beginning of
83.2, the major information about the rkns is given by its kernel. One can
say that the theory of reproducing kernel Hilbert spaces is the theory of Hilbert
spaces with ‘interesting’ kernels.

In spite of this, in this chapter we shall also deal with the applications of
certain Hilbert spaces with continuous evaluation functionals but with useless
kernels. For example, in §3.9 it is important that the Hilbert space conver-
gence implies the pointwise convergence in Sobolev spaces; however, the
kernel is uninteresting in this case.

and

3.4 The projection principle in rkhs

The most important theorem in Hilbert space geometry is the projection
principle. There is a special constructive method for giving the projection
onto an rkhs subspace Jt of a Hilbert space X.

3.4.1. Itis obvious that every closed subspace JI of an rkns is also an rkns.

10 Maté
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We begin by showing the connection between the kernel R of the rkns X {K)
and the kernel RM of Ji.

3.4.1.1 Theorem. If Ji is a closed linear subspace of an r«ns XX(K) and
R(., 0 = Ri(.,, + t) RAJi, Rz™NJItL:

is the decomposition of the kernel R into the corresponding direct sum, then
i?, is the kernel of Ji and Rt is the kernel of Ji-1.
Proof. In this case,

y(t) = (R(., *M.)) = (RI(., )ly())+{RZ(., 01.K-))

(*2(>NLK)) =0 if yzJi
(rx(., OLK-)) = 0 if Yamz.
Hence
y(0 = {Ri(-,t)\y(-)) for ytJt
and

y(t) = (M-, OIK-))  for ytJt*-.

The projection operator PM is represented by the kernel of Ji as follows.

3.4.1.2 Theorem. If XX is a Hilbert space and Ji is an r«ns subspace of XX,
then for every x£X,

Pmx = (R j< (OK)

where pa1 is the projection operator and RM is the kernel of JI.

Proof. If
X=y+z y£Ji, z£JiL

is the decomposition of x”X into the corresponding direct sum, then
(**(e» Ok) = (RA<(, Oly)+(Rjt(-> Ok) = y(t)

since (RM(. ,t)\z)=0 by Theorem 3.4.1.1.

Example 1. The projection of L2[—n, +n] onto the subspace ZIhhas the form

+t sinin+i-](>-0

() = 1) R dt  fiv[-7t,+n]

which is called the representation of the nth partial sum of the Fourier series
by the Fejér kernel.
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Example 2. The projection of LZA—"°°, +°°) onto LA has the form

pane = | [l _A7(s-t)7_di

and this is also a frequently used formula in Fourier transform theory. (The
usual treatment is as follows. If the Fourier transform of/ is F=F(qj) then,
by the convolution theorem, the Fourier transform of PAf is

if Jcof < A
~pnl={o(a) elsewhere
since
& sin At B if <A
At elsewhere.

One can then verify that the truncated F=F(u3 is the projection of F.)

3.4.2. A more general example is the projection of an arbitrary fc#d{R) onto
the un-dimensional subspace generated by

{R(.,sK; k= 1,2,...,n} SkE3).

In this case the usual method for constructing a projection is as follows.
The projection has the form

GR(-,Ji)+c2T?(,s2 + ...+c,, R(.,sn
and

(/(*)- 24 SK(R(-SKIR(-,S)) = 0 i= 1,2,..,n

by the projection principle in the case of a finite-dimensional subspace. Hence
{ck, k=1,2,...,«} is the solution of the following system of linear equations:

r

k2—l ek W sk = f(sj)  7=1,2,...,« (*)

and so we can compute {ck; k=1,2,...,«} merely by the evaluation of the
functions / (.), R{., sk (k=1, 2, ..., ri) at the points sk, s2, ..., s,, (instead of
using product integrals, which are the usual form of scalar product in Hilbert
spaces).

The formula (*) for computing {ck; k=1, 2, ..., «} tells us that the pro-
jection of f£ Pf(R) onto the «-dimensional subspace generated by

{#(o>05*); K = 1,2,,,,, ((} Sk£2>
is the interpolation of f —(t) with nodes {jt; k=1,2, ...,«} by the func-

10*
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tions in the form
cIR(.,jj)+Cc2R(., jj)) +...+cnR(., xn.

Remark. For computational purposes it is more convenient to adopt the
following rkns method. Applying Theorem 3.4.1.1, we compute the kernel
Rjr of the n-dimensional subspace generated by

R(.,sK K=12... n, skE3>

and the projection is constructed by this kernel according to Theorem 3.4.1.2.
Hence

RA-,t)= kZ_lc k(t)R(.,sK
such that
(RA-,O-kgIck(t)R(.,sk)\R(.,Sj)) =0 7=1,2,...,«.

It follows that
RASj, i)= 2 1ck(t)R(sj, sk)
k=
where {c*(0; A=1, 2, n} is the solution of the system of linear equations

Zlck(t)R(sj, sk = Rjr(sj, t) j —1,2,...,«
k=

and hence each ck(t) is a linear combination of the functions
R(sj,t) = R(t,S)); 7=1,2,...,«.

We now apply Theorem 3.4.1.2:

PM = {RA; 01/(0) = 2, ck(t)(R(..SK\(.))

:k2=in )ym ) fa™(R).

3.5 Quadrature formulae and splines

3.5.1. Certain formulae for the approximate evaluation of definite integrals
are called quadrature formulae. In the simplest case they have the form2

2 . ckfuk) *)

k=1
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where/is a continuous function and {tk; k=\, 2, n) are given points in
the interval [0, 1] and we require {ck; k=1\, 2, ..., n) such that

0 k—1

issmall. r=r(f) is called the remainderfunctional and the quadrature formula
is called exactfor a class /1 of continuousfunctions if

ff(t)dt= zc km for f<ijt.
0 *=1

The simplest examples of quadrature formulae are the trapezium formula
and Simpson’s rule. In both cases tk=k/n and

flin for 1<&<n+1
& 11/2n for k —1 and k=n+1
for the trapezium formula and
1/3n forodd k; 1< kK< 2n+1
ck  2/3n for even K
161 for k=1 and k=2n+1

for Simpson’s rule.
The trapezium formula is exact for every spline of first degree and Simp-
son’s rule is still exact for the quadratic splines.

3.5.2. Now let/ be a twice-differentiable function such that /"£L2[0,1] and
/(0)=17/(0)=0; then

(=1 (t-z)+f"(r)dr
and hence °
/-(/):=(L/ f(t)dt-2 ckf(tk\
=1/ (/ (/- t)+/'W dr)dt - 2 ckJ (tk- r)+/"(T)dr|.
0 O 0
By changing the order of integration we obtain

r(f) =/ (/ (n)+ dt- 2 otkez)+)f (e,

This means that r is a bounded linear functional of the rkns X (S) introduced
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in Example 3 of §3.3. The norm of this functional is
= +qar- a
IM 1=[[/V 9+dr- 2, d(teT)+]2

by the Riesz-Fréchet Theorem and the definition of X {S) (|| . ||2 means L2-
norm). Our purpose in the next section is to determine {ck; k= 1,2, ...,«}
in such a way that ||r]| is minimal.

3.5.3. Applying the Projection Theorem for
i

[ (i-T)+di€L2[0, 1]
0
and the «-dimensional subspace Ji of L2[0, 1] generated by
{("*-*)+; k = 1,2, ..., n}

we find that ||r|| is minimal if and only if

(1 (i- 9+ di- Z ck(tk—-i:)+\(tj-m:)+) = 0 T
o F—k

where (. |.) is the scalar product in L2[0, 1]. That is,

11
[ [ (t-d)+(tj-d)+d/dr
00

= 2" ok J O+dr 7=1,2,...,«
k=1 o

Interchanging the order of integration and considering Example 3 in 8§ 3.3
once more, we obtain the following system of linear equations for {ck;
k=12, .., u:

3 s, tj)dt= 2 cks(tht) 7= 12 ..« *)
0 -1

What we have obtained is the following result.

3.5.3.1 Theorem. Let us consider the class of functions
{/:1"€ L2[0, 1]; /(0) =/"(0) = O}

Then the remainder functional r=r(f) of the quadrature formula 3.5.1 (*)
has the minimal norm in XX (S) if and only if the quadrature formula is exact
for the cubic splines S(., tj)\ j=\, 2, ..., n
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In this case, {ck; k—1,2, n} is the unique solution of the system (*)
of linear equations.

Remark 1. For more general applications of the rkns theory to quadrature
formulae see §3.11.31.

Remark 2. The functions
{(-9+; k= 1,2, ..., n}
are linearly independent and hence the solution of (*) is unique.

Remark 3. Every cubic spline has a continuous second derivative and hence it
is considered to be an element of Juf(S); it is particularly interesting to find
quadrature formulae that are exact for the B-splines (see §3.10.1).

3.6 Sampling

3.6.1. A fundamental problem in communication theory relates to how a
‘signal’ f —£(t) can be reconstructed from the sampled values f(tk) with good
accuracy. The basic theorem relating to this problem is as follows. If the func-
tion fEL2[— + °°] is represented in the form

1
/(0=2] i+yleimF(co)dco

where FELZA—A, +A] then

yr f[kn\ sinA (t—(KTi/Aj)
10 = £13\A ) A(t-(kn/A))

for all t. This is the Sampling Theorem.

The popular formulation of this theorem is that a band-limited signal /
can be completely characterised from the samples f (kn/A); k= 1,2, .... More-
over, in every finite time interval only a finite sample is needed and the necessary
number of samples is in an inverse ratio to the bandwidth.

The usual proof of the Sampling Theorem is based on the Fourier transform
technique; however, the simplest proof is based on an rkhs method. It was
shown in Example 1 of § 3.3 that the finite Fourier transforms form an rkns
with kernel
sin A(s—t)

RD= A (5ot
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fig. 3.1

(see figure 3.1) and {R( ., tK; tk=kn/A) is a complete orthonormal se-
guence. In this context we have only to prove for the Sampling Theorem that
the Fourier coefficient with respect to R (.,tK is f(tk for any f*.Ad{R).
Indeed,

Ne (., tk)) =

3.6.2. The following generalisation is indicated by this simple proof (Gulyas,
1967).

3.6.2.1 Theorem. Let R(s, t) be a symmetric, positive definite function and let
tk; K= 1,2,... be a sequence of points such that

(@ 3f(R) is generated by {R (., t; k—1,2, ...};
if /=]
) ={J if QN
Then for every /£X{K),
no= gf(h)R(t,tk)

for every t£3>.
If StQ R" and R(s, i) is a continuous function then the series is uniformly
convergent on every bounded subset of The proof is left to the reader.
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It is interesting to study sampling pairs {tk, R(t, tk; k= 1,2, ...} besides
the traditional
fkn  sin A(t—(kn/Aj) |
n e A(t-(kn/A)) V

*3.7 Conformal mappings and kernels

If 3 is a simple connected bounded region with a smooth boundary in the
complex plane then, by Riemann’s Conformal Mapping Theorem, there is a
unique holomorphic function f=f(z) that maps S3 one-one onto the unit disc
{z: |zj<I} suchthat f(zQ=0 and /'(z0Q>0 (for a certain interior point
20e®©).

We now give a generalisation of A(3), introduced in Example 6 of §3.1.3
for any simply connected bounded region 3, and it will be shown that the
mapping /(z) in Riemann’s Conformal Mapping Theorem has the form

/ 2 r
*2=bl bl [*«m*>«

where R is the kernel of A{3).

3.7.1. Our considerations are based on the complex form of the Divergence
Theorem on the plane, which may be stated as follows. Let 3 be a simple
connected bounded region with a smooth boundary, let A(3) be the linear
space of functions analytic on 3) and

ffl/(z)]2d*dy<~.
If g, iGA("), and C is the boundary of then
-Ij- 1 g(2)h(z)dz = f f g(z)h\z)dxdy.
2l c a

Proof. For the pair P=P(x,y), Q=Q(x,y), the Divergence Theorem is
as follows:

/ Pdy-Qdx = // (P'+Q;)dxdy. Q)
c a’
On the other hand, for any f—(z),

fl(z)dz= f udx—vdy+i[fvdx+udy] 2)
c c c

where u=u(x,y)=Re/(z) and v=v(x,y)=Imf(z). Comparing (1) and (2),
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we obtain

f f(z)dz="Ff (-vx- uy)dxdy+iff (ux-vy)dxdy 3)

C 3 3

and, applying (3) for f(z)=g(z)h(z), the complex form of the Divergence
Theorem is obtained.

3.7.2. It is easy to show that
(IWE)Y= 11 f(z)g(z) dx dy f gEA(8>)
a
is also a scalar product in this case, and it turns out that A(3) is a Hilbert
space.

A(R) is an rkns. In fact, for h(z)=z—z0, 3'={z: |z—z0</-}, the Diver-
gence Theorem is as follows:

J 9(z)(z-zQdz =f f g(z)dxdy. 4)
1 iz—z0/=r 9
Moreover,
f g(z)(z-z0dz = ~ f dz = nr2g(z0 (5)
|z-z0|=Tr |z-z0]=r u

by applying the Cauchy integral formula for this case. Comparing (4) and (5),
we obtain

Is(zo)l g(z)dxdy\

and from the Cauchy-Schwarz inequality in A{R),

1// g(z)dxdy\* r2njj |g(z)|2d* dy.
9" 9"
We conclude that the evaluation functionals are bounded by I/nrl/2

3.7.3.  We now turn to the construction of /=/(z), the conformal mapping
from 3 onto the unit disc.

If 3'c3 with boundary C and f=f{z) is the conformal mapping func-
tion from 3) onto the unit disc, then for any g£A(3>),

1 T A D g(2) g(z0
2m /| f(z) dz f(2) f'(z0 (6)

by a well-known theorem of analytic function theory, since /(z,,)=0 and
f(z0>o0.
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Let )'—3r be a subdomain of Jsuch that / maps Cr, the boundary of
96, onto {z: |z|=r<I}. Then for any g£A(3i),

U)
since f(z)f(z) =r-in this case, and applying the Divergence Theorem from

3.7.1,

~2nrHé S(W )az = /1S (z)flz) dxdy. 8

Comparing (6), (7) and (8), we obtain, for any zCE@,
g(z0 = s o)A/ g(2)f(z) dz = N /'(zO)/A/ g(z)f(z) dxdy
for any 0</-<I| and hence also
g(z0) = rrff f(za)f'(z)g{z)dxdy
which means that the kernel is given by

R 0 = =f(Qf'{2). @)

3.7.4. It follows that

K(z0,z0 = iA/‘(z,,)|2
and hence

['(z0) = (nA0o, z0)i/2
since it is assumed that /'(<?,)>0. Now, from (9) and the above consider-
ations it is clear that

D0

Remark 1. Since {zk; fc=0, 1,2, ...} is a complete system of functions, a
complete orthonormal sequence can be obtained if the Gram-Schmidt process
(82.2.4) is applied to {zk\ k=0,1,2,...}. The kernel R=R(z,£) can then
be constructed e.g. in the manner described in §3.2.

Remark 2. It is easy to show that Example 6 in §3.1.3 can be considered as
a special case of this result. In fact, if

1 1

R( 20 a (1-z0z)2

kol < 1
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then
f(z) = (|-|202)9é 9oir = 12

which gives a conformal mapping of the unit disc onto itself.

% 3.8 Gaussian processes

The (joint) probability law is completely determined by the mean and cova-
riance function for a Gaussian process. On the other hand, there is a 1-1
correspondence between kernel and -« ns. Hence it is natural to attempt to
formulate the connections between Gaussian processes as the connections
between JNRAN) and XK (R2, where R1=RI(s, t) and R2= R2(s, t) are the
covariance functions of the corresponding Gaussian process.

More particularly, let two probability measures P and Q be considered
on a measure space and let {T(?}; 0-s/< «} be a Gaussian stochastic pro-
cess with respect to both measures. Furthermore, let RPand BQ be the covari-
ance functions and m and 0 the means of the processes.

P and Q are called equivalent if the same subsets have measure zero with
respect to P and Q; in other words, if the same events have a zero probability.
What are the conditions, in terms of m(t), RP(s, t) and RQs, t), for the equiv-
alence of P and <?

The answer is as follows. For the equivalence of P and Q it is necessary and
sufficient that

id) mi )NjNIRQI

if) RP has a representation of the form

Rpis, 0 = 2 akekis)ekit)
with
JE£ (l—a*)2<°° and 5c>0 K=1,2,..
k:1( ) o
where (ej is a complete orthonormal sequence in XX iRf).

A more detailed discussion of the equivalence and singularity of the Gaus-
sian measures is beyond the scope of this book.
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3.9 Sobolev spaces and generalised derivative

Here we present a short review of the generalisation of the derivative given by
S L Sobolev and L Schwartz. This general notion of derivative also led to the
weak solution of differential equations and Hilbert spaces with continuous
evaluation functionals.

3.9.1. First we shall consider functions on the real line. We shall use the
notation Cag for the linear space of infinitely differentiable functions with
compact (i.e. bounded) support. Recall that the support of a function/ is the

closure of
{t: f{t) * 0; tZ2)

where 3> is the domain of the function/. The elements of are often called
very good functions.
A function / is called locally integrable if

/ M dt
a

exists for every finite interval [a, b].
The locally integrable functions {h3} are called an approximate identity if

(a) {5} is a set of non-negative numbers and 0 is contained in the closure
of {&.
(b) supphd {t: |t| < 6} and hd(t) > 0.

(€ j hatydt= 1

It is easy to construct an approximate identity. In fact, if h=h(t) is any
locally integrable function, then the functions

f(TOJA(OI if M<<5
AN (O] otherwise

(where Ks— f |/i(?)] d/~0) form an approximate identity, as is easily
\t\ns
verified.

To construct an approximate identity belonging to is more difficult.
If

(o kexpe> a>)-f if M <i
V\D |O otherwise M
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then

AL oAy = _
|!>|@a dtnexp(lz a2-1=0 n=2012,..

and hence h0—hs{t) are infinitely differentiable functions with compact
support.

It can also be proved that
+~

g*fm= T g(d)Rt-r)dr

which is called the convolution of the functions g and/, is an infinitely dif-
ferentiable function for any locally integrable / if gdC~.

3.9.1.1 Theorem. If {hd} is the approximate identity defined by (*) then

uniformly on compact subsets for any continuous function/ and hs*f tends
to/ in the L2norm if /E L2 as <5--0.

For the proof see, for example, Showalter (1977), § IX.3.1.
The linear functionals on C?j are called distributions.

Remark. Here we have given an oversimplified notion of distribution. Later
we shall give a more rigorous definition for those classes of distributions that

are connected with Hilbert space structures.

Example 1. For every locally integrable function g we have the linear functional

+©
G((p) := 1 gft)<p(t) dt s Css.
G is well defined since for every there is a finite interval / such that

9(0—0 if 0/ (i.e. @has compact support). Moreover, it can be proved on
the basis of the previous theorem that if

[ gt)<p)dt=0

—00

for every <p£C”, then g(t)—0. In the sense described in this example, there-
fore, each locally integrable function is a distribution.

Example 2. The evaluation functionals

Se((p) 1= <p(c)
are linear functionals on called Dirac delta distributions.
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Example 3. For every locally integrable function g,
+
Dg(cp):=- | g(t)y(p'(t)dt Cm
—00

where op, the derivative of (p, is a distribution called the generalised deriva-
tive of g. Similarly,

4-00

Dro{(p) := (- 1)” f g(t)(pM(t) di

is called the nth generalised derivative of g.
If the function g has a continuous derivative, then

-f@ 4-00

[ gi(t)v(t)dt =- f g(t)cp'(i)dt <p€Q5

by integration by parts, since @ has compact support. Hence we also have
Dg=dg/dt in terms of distributions if g" exists. Let

[ (-1 -11 if i<io
+%o j to otherwise.

Then
+-..,

fo
[ 1+00~t)(p'(hdt = I (p'(t)dt = <(t0)

—o0

by integration by parts and hence Sc is the generalised derivative of
/+—+(c—t). Moreover,

Doc(ep) =-cp’(c)

i.e. the second derivative of 1+{c—t) is the functional whose value is —cp*{c)
for every <p€CN0 since

i AEODEOd=—F (pdt = -g>'(to).

3.9.2. Itis easy to extend the considerations that led to the concepts of distri-
bution and generalised derivative to the case of functions of several variables.

is the linear space of functions with compact (i.e. bounded) support.
A function/ is called locally integrable if the volume integral

J fit) dt
a

exists for any compact 3) (there and in the sequel t:=(xx, X2, ..., %,) and
d/:=dx, dv2...dv,). The definition of approximate identity {hd) is the same
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with
U= (xl+x1+...+4) 12

and t2 replaced by [ij> in 3.9.1 (¥).
The convolution of the functions/ and g is defined by the volume integral

g*f-= f at
Rn
where Rnis the /.-dimensional Euclidean Space and Theorem 3.9.1.1 is also
+00
valid. In general, J is replaced by J in the case of several variables.

DJ(<p) :=- f f(t)o;q (pit) dt
o

is defined as the generalised partial derivative. In particular, if

p rn={1 if xi>°> i=1,2,...,n
+ 10 otherwise
then
D,E+i<p)=- f EAt)4>it)dt
R™ OX*
= -/ ] e s—<Kodi= -/ [e" [ <P(,xt, .., X,)dV:...dXxn
0 0 0 °xi 00 0
and

D1Di...DnE+i(p) = cpi0, O, ...,0).

3.9.3. An idea intermediate between the derivative and the generalised deriv-
ative of a function is the weak derivative. If Dg=/€ L2 i.e. there exists
/s L2 such that

+@ 4-00
-/ g(t)vro)dt = f fit)(pit)dt <KCm

then /i L. is called the weak derivative of g. A weak derivative is a function and
also a generalised derivative. However, there are generalised derivatives that
are not IAfunctions and hence are not weak derivatives, (e.g. DI+ or DtE+,
as we have seen).

Now, let L be a linear differential form, i.e.

n (K
Lf:= k7=8K'£PTf

where ck=ck(t) are appropriate functions. Then the formal adjoint L* is
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defined as
+® +@®
[/ Lf<pat= | fL*cpat [ELS,<KC®.
— © — a

The definition is similar in the case of functions of several variables.

Example 1. If
then

f f'cpat=- | ftp'dt
Hence

* = -
L di

Example 2. If
then

+0 +00

J Lfcpdt=—J cf'cp'di.
Moreover,

j cfepdf=- f f(c(p'Ydt
by integration by parts. Hence L —L* in this case.

Example 3. If nis a function of two variables and Lu—Au, where A is the
Laplace operator, then

= et T g

= — J grad ngrad (pdt.
Rn

Moreover (again by integration by parts),

J grad ngrad @dt= —J uAcpdt
Rn Rn

and hence L—L* in this case, too.

1 Maté
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Let us consider the differential equation
Lu=f fOJ.
Then n is a weak solution if

ful*tpd/ = J ftpdt.

Remark. Note the connection between the weak solution and the weak deriv-
ative. On the basis of the foregoing examples, if

(R I e

for y=y(t). then it is a weak solution of the differential equation

4i(cdry) =1

however, in the integral formula it is assumed only that the first derivative
of y exists. If
- Jgradugrad pdi = j fcpdt
R" Rn
for the function u= u{t) of several variables, then it is a weak solution of the
Laplace equation
"od2

V2i~WU =f

however, in the integral formula it is assumed only that the gradient of u
exists.

3.9.4. Let
Wm= {/: DnfCL2(Q)}

where QQRnN i.e. Wmis the linear space of functions with mth weak deri-
vatives. Wmis a Hilbert space with the scalar product

m
(Rg)*= 2 f DKDIgdt

where m means the indices (kx, kt, ..., k,,) whose sum is m.

It is easy to verify that (. |.), defined above, is indeed a scalar product.
For the completeness, let {/,,} be a Cauchy sequence in Wm Then {DK,} is
a Cauchy sequence in L2(i2) for every |&|<\m\ and hence there exist / w£L?2
such that

DKn- f® K< U
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in L2norm. We assert thatf m=DK Indeed,

fD Kncpdt = (-\)W //,,<?<*> At
Rn Rn

and
[ L,-119»>dU |[/n-/]]2]| N
Rn

Moreover,
[itf/, -/wii>di< n”y;,-/wii2ii<fFi2.
Rn
It follows that
J fep®di = J f (K)tpat.

Rn R
The Hilbert spaces Wny m= 1,2, ... are the Sobolev spaces in the strict
sense.
Let W™ be the closure of in Wm Then it can be shown that, in general,

W”?iWm Let n be a continuous function, Wm and let dQ be the bound-
ary of the domain Q. Moreover,
B u uda

i.e. the restriction operator. It can then be shown that B is bounded in the
norm of Wm Hence there is a unique extension of B to a bounded linear
operator from Wn{fi) into L2(dQ). For a noncontinuous uEWnti2), Bu~L2(dQ)
is called the generalised boundary value. (For more about this concept see
Showalter 1977 §11.3.)

3.10 Tlie finite-element method

The finite-element method can be considered as a particular application of the
projection principle for a finite-dimensional subspace to the approximate
solution of functional differential, integral, etc equations. Again, certain repro-
ducing kernel Hilbert spaces will be applied without using the kernel.

3.10.1. The simplest cubic splines with nodes {S(; &=1,2,...,n) are
t)+  A=12..n *)

(see figure 3.2). They are linearly independent functions (see, for example,
83.11.23). Now let si+1—Si=h, i.e. constant for /=3,4, .., n—2, and

B(t) = -jp (t—si-NF—4(t—Si-iy++6(t—si)3

—A(t-s+1)%+ (/-Ji+2)+ i= 34, n-2.



156 Hilbert Space Methods in Science and Engineering

fig. 3.2

It can be proved that
B,(i)=0 if tji [st—=2h, s, + 2h]

i.e. the support of each function Bt=Bt(t) is of length 4h. Moreover, {Bp,
i=3,4, n—2} are the splines of minimal support since it can also be proved
that every spline with possible nodes {sk; k=\, 2, n) and support smaller
than 4/j is identically zero. Bt{t)\ /=3, 4, n—2 are called B-splines.

Remark. We can also give B;(/) as a linear combination of functions in the
form (*) instead of (t—sK3.

3.10.2. Let us now consider the differential equation
y"—cy —f c=c(t)>0

where fCL2[0, 1] and c is a continuous function, with the boundary condi-
tions y(0)=y(1)=0. We seek an approximate solution of the form

Yo = 2, ()

where {Bk; k=1, 2, ..., n) are the B-splines (figure 3.3). In what follows the
notation Dy:=y"—cy will be used and ys=ys(0 will be called the best
approximation of the solution of the differential equation if

if~Dysh *)
is minimal.
Applying 2.4.1.4, (*) is minimal if and only if
i
[ (f(t)-Dys(t))Bk(t)at = 0 K=12 ..,n
0
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fig. 3.3

and we can compute the coefficients {afg k=\, 2, n) from the system of
linear equations

2, oii(BIBYD = (y\BKD k= 1,2, .., n (**)

where

(h\g)D:=- / Dh(t)W dt
0

and it is easy to verify that (. | . )Dis a scalar product for functions with square
integrable second derivatives satisfying the boundary conditions.

Notice that in each row of the nXn matrix of this system of linear equations
there are at most four non-zero elements, i.e.

(W d=0 if \I-j\ >3
since {B(; i=1, 2, n} are B-splines.

Remark. The boundary value problem investigated in this subsection is the
simplest that does not have an exact solution.

3.10.3. We shall now give a more useful form of the scalar product (. |.)D:

(f\g)D:=~ j\f" (t)-c()F())Mdt = f F(t)7(¢i)dt+ I c(t)f(tjig(ijdt

0 0
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using integration by parts. But the form
::é fv)w )dt+ol c(t)f(t)w)ét *)

of the scalar product can also be applied to the functions {/: /(0)—O0;
/"€L [0, 17}

The completion of {/: /C0)=0; /'€Lj;[0, 1]} in the norm generated by
the scalar product (+) is an r«ns. In fact, using the Cauchy inequality in
L?[0, 1],

(0L =1V (0d|< (/1/(01* d)I2< Kh
(6] 0

if /OE[0, 1] and /(0)=0 and hence the evaluation functionals are continuous
in >Xa.

We now have a modified finite-element method for the approximate solution
of the differential equation

y"-cy =/ c=c()>0
TO)=y() =0

in which we apply (instead of XXB) and have more simple calculations
but less accuracy than in § 3.10.2.
Let us consider the functions

{(r-jJd+;k=1,2 ,n}

with sk+l—sk=h as in § 3.10.1 (figure 3.4). Then

Lt(t) = -i[(r-ji_D+-2 (/-ji)++ (/-ii+1)4] /= 1,2, .., n-1

form a basis for piecewise linear functions with nodes {?¢ /=1, 2, ..., n—1}

fig. 3.4
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satisfying the boundary conditions y(0)—y (1)=0 (see 83.11.17). Moreover,
Li(t) = 0 if t$[Si-h, S+ h] (**)
and Lt=Li(t) is the only piecewise linear function with
Tfu /1 if /=K
LiC% 10 if ink.

Hence, using {Lk k—I, 2, ..., n—1} as basis functions and the scalar prod-
uct (. 1.)t (instead of the B-splines and (. |.)D), a simpler system of linear
equations will be obtained with less computation. In fact, in computing the
coefficients we have to deal with piecewise linear functions instead of cubic
splines and
(LilLj), = 0 if \i-j\ > 1

by (**).

The formula 3.10.2 (*), the measure of the approximation, is meaningless

for
[E=

ys= f%:| akLk-
However, it is the best approximation in the sense that

\\y-ys\s

is minimal, where y=y(t) is the exact solution. In fact, by 2.4.1.4, this is the
case if
(y-ys\LDs = 0 /= 1,2,...,n-1

which means that

k5-1 ak(LK\L)f = (y|L)a ‘=12 ...,n-1
where

(y\L)),= | y'@L't(Hdt+ I c()y(t)Lt(t)dt= 1|
0 0
The best approximation in | . |lais called a weak approximate solution.

Remark. ysis an approximation of the weak solution in the sense of §3.9.3. In
fact,

I/ yscyp<pydt- f f(t)(p(t)dts
0 0

can be as small as we like if si+1—Si=h—0.
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3.10.4. The two-dimensional analogue of the boundary value problem in
8§ 3.10.2 is
Au—cu = f (*)
uiST) = 0
where Sf is the boundary of a ‘nice’ domain 3) of the two-dimensional Eucli-
dean space, c=c(x,y)>0, /6L2(3) and

d2 d2
dx2+ dy2*

If {Bk=Bk(x,y); k=1,2, ..., n) are linearly independent functions and

N

= 2 ,akBk
k=1

then us is called the best approximation of the solution of the differential
equation (*) if
\Aus—cus—F\\2

is minimal. Again, by 2.4.1.4, this is the case if and only if

ff {Aus-cu9)B,dxdy = f f fBiaxdy i=12,..,n ™)
9 9

Applying the Green formula (see 82.6.5) or the considerations in 83.9.3,
based on integration by parts for functions satisfying the boundary condition
u(Sf)=0, we have

fj grad ngradvdxdy = —fJ vAudx dy.
9 9

Hence using the scalar product

(uwit := Jf grad ugradvdxdy+fJ cuvdxdy

a a
we obtain that (*) has the form
k2 ak(Bk\Bi)n = (a\B;)d i= 1,2, ....n
=1
where

(u|R,)Am=f f grad ngrad Btd x d y + ff cuBtdx dy
3) 3

= —f f BMAu—cu) dxdy —f f fBiaxdy.
a a

It follows that we have the same method for the approximate solution us in
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the form

2., ak™k
k pu

1

as we had in §3.10.3 for the one-dimensional case.
For the base functions {BK} we can choose the series of equidistance points

std; i=1, 2, ..., n, j—1, 2, ..., n and piecewise linear functions Lnk such that
il if i=m and K=j
mAsij) —| g for the remaining nodes.

Remark. The Hilbert space with scalar product (.. |.)ais the analogue of
Ko for functions with two variables, and it is also an rkns (see Shapiro 1971,
§H.4).

3.11 Problems and notes

3.11.1. Let R=R(s, t) be a symmetric positive definite function and A
be the matrix with

aik = R(ti, tK k= 1,2, ..,n

where tk£3i. Show that R(s, tk); k=1,2,...,n are linearly independent
functions if and only if the inverse matrix A-1 exists.

3.11.2. Isittrue thatif the kernel R( ., t) is an analytic function on the simply
connected region Q of the complex plane for every fixed t£S>, then every
f( )NINR) s analytic on

3.11.3. Prove that {/: /"6L2[0, 1]} is an rkns if

(/|€):=/(0W +/(1)1Ww + | TO)L dt.
0
What is the kernel?

3.11.4. A set JI of continuous functions is called equicontinuous if for every
e>0 there exists &= <G suchthat |/(?)—(.v)| is implied by |s—/|<<5(e)
for every i.e. the pair e, 6(s) is common for Jl.

One of the important features of equicontinuity is that a closed subset
NcCJ[0, 1] iscompact if and only if 1 is an equicontinuous set of functions
(1.6.2.1).
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Show that if R is a continuous kernel in [0, 1] X[0, 1], then the elements of
X{K) form an equicontinuous subset of C[0, 1. What is the connection
between the uniform norm | ¢||,, and the r«ns norm in this case?

03.1.5. Find the Loéve transform that maps L.[0, 1] onto the subspace
{/;1(c)=0} of Nb.

03.M.s. Prove Theorem 3.2.2.1 by applying the considerations in 83.3.1.

3.11.7. Using the complex form of the Divergence Theorem in § 3.7.1, compute
the kernel of H. from the kernel of A(S)) in the case of ££={z: |z|< 1} and
vice versa.
0 3.W.s. Consider the following subset Jt of an r«ns X (K):

Ji = {/: /(to) = N X (1O}

What is the element in Jt of minimum norm?

03.11.9. Consider the functions/ analytic on the open unit disc and with

f(zK = hk K= 1,2,..,0N

where |zf§<| and rjk are prescribed values. Choose / such that

ar IV @0d

is minimal.

03.11.10. Let /=/(z) be analytic in the open unit disc with the only possible
singular point at z=0. Moreover, let f(eu) be a continuous function. What
is the connection between the Fourier series of /(ew and the Laurent series
of/(z) at z=,7

3.11.11. If X* is a continuous linear functional of a Hilbert space >X, then there
exists called the representative of x*, such that
x*(f) = (f\h) ftX

by the Riesz Theorem. How can the representative h of a given continuous
linear functional x= be found in an -« n s> (For example, for the case where 3>
is a bounded closed domain of the real line, the integration is a continuous
linear functional if the kernel is continuous. What is the representative of the
integration?)
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3.11.12. (a) Q(s, t)=f(s)f(l) is a kernel for any function /=/(.). Describe
*(B).
(h) Prove that for any kernel R-R (s, t), fE3tf{R) if and only if

R(s, t)-f(s)W)
is positive definite.

3.11.13. Let the bounded linear operator T in X (R) be defined by

TH(t) = <pO)fi)
i.e. T is defined as multiplication with a function q

(a) Is the function <9 necessarily bounded?
(b) Does the function (p necessarily belong to X (/?)?

3.11.14. Show that in XXB, cp/EXKs for every /£XXB if and only if (p£Xs.

o 3.11.15. Compute the first and second generalised derivatives of the func-
tions

. 4,4 fcost if t>0
(@ /(0 -]0 otherwise.
fsint if t> 0

af0  |q otherwise.
..... (at if ts=0
© m =to otherwise.

(d) What are the first and second generalised derivatives of a continuous
piecewise linear function in [0,1] with nodes 0=i0<jl<...-=jn 1<5B=1?

3.11.16. Prove that every continuous function/ on [0, 1] with an initial value
/(0) =0 satisfying the condition 7is a polynomial of first degree in (tk, tk+l);
k=1, 2, ..., n where

0< tk 12 = thS 1
has the form

f() = 2 ck(t-tR+-

03.11.17. We now give another basis for piecewise linear functions. Let |
be the identity operator and Uhf:=f(t—h); then

Li(t):= (1—UR (t—si- D+ = (t-si-D+-2 (t-si)++ (t-si+l)+
i=12,..,n 1
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(figure 3.4 (b)) are a basis for the piecewise linear functions with nodes
{s*; k=0, 1, 2, n) and zero at the endpoints so=0; s,,=1. (Prove this!)

Moreover, adding two extra points 5 x= —h and jmtl=1I+h to
{s*, k=0, 1, 2, n), we see that

I-Uh) (t-Si-1)* 1-0,1 n o 1
)
form a basis for every piecewise linear function in [0, 1] with nodes

{itk=0 12 n).

03.11.18. Prove that
b

(f\g)D-= J (" ~cf)gat c=cit)>0
is a scalar product if /™, g"£L2[a b] with f(a) =f(b) —g(b)=g(a) =0.

3.11.19. It is easy to show that the evaluation functionals are continuous in
W1 (and consequently also in Wm; m>1). In fact,

t t
[ g'MgMdt = |g(X)|2- / g(x)g'(x)dx gewia, b)
a a

by integration by parts and hence

I£(012< 2{3'1 \g'(xX)W)\ dt < 2L/11J*L .
On the other hand,
W10l < 11+ K
Wti+ -2 lg fal|i ]l = (Hgla-117112)2> 0.

03.11.20. Do the cubic splines S(., tQ; k=1,2, ..., n, where S(s, t) is the
kernel of the rkns Jf(S) in Example 3 of §3.3.1, form a basis for the cubic
splines with nodes tk; k=1, 2, ..., n? (Compare with 83.11.16.)

since

3.11.21. It was shown in 83.4.2 that the interpolation of with a
linear combination of

R(t,sK; k= 12, ..., n

is the projection of/ onto the subspace generated by {R{., sR; k—1, 2, ..., n).
Hence the rknhs with spline kernel, i.e. with kernel S(t, s) which is a
cubic spline for any fixed s, is a natural Hilbert space model for spline
interpolation.
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03.11.22. Show on the basis of §3.11.17 that
B-Xt) = (/- i)s /=3,4,.,n=2
where Bt(t) are the B-splines defined in §3.10.1.

3.11.23. Prove that if the support of /=/(t); tER is bounded below, i.e.
[(1)=0 if t0, then the right translations

l«(0 = 1(1-%)
are linearly independent.

3.11.24. Prove that
supp B; = [0-2. O+] i- 3,4, ...,n=2

and hence the b-splines are linearly independent.

3.11.25. The cubic splines with nodes sk; k=1, 2, ..., n form a finite-dimen-
sional linear space. Find the dimension of this space. Do the B-splines of
3.11.22 form a basis for this linear space?

3.11.26. Give the two-dimensional version of § 3.11.19.

3.11.27. If F=F(X) is a non-decreasing function on the real line R and the

Stieltjes integral
+00
K(t) = f eiUdF(A) *)
exists, then
R(t, s) := K(t-s)

is @ symmetric, positive definite function and hence it is the kernel of an r «ns.
In fact,

2 2 titkK (tj-th = 2 2 tjitk f e«j-'AdF(l) = f UkeifVRdF(A) > 0
k=l y=I k=1j=I -lo

for any u-tuples {tk; k—1, 2, ..., u} of real numbers.
The Bochner-Khinchin Theorem states that for every continuous positive
definite function in the form

K(t, s) = K(t—s)

K=K{t) is the Stieltjes integral (*) with a non-decreasing F= F(A); AER
called the Fourier-Stieltjes transform of F.
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3.11.28. It is obvious that every spline s—s(t) with nodes in [0, 1] and with
j(0)=s'(0)=0 can be considered as an element of XX (S) defined in Example 3
of §33.1.

Complete {5(., tj); j—, 2, ..., u} to a basis for every spline with nodes
{ti\ /=1, 2, .., n} and contained in Jif(S). (See 8§3.11.17.)

3.11.29. For /£XK (B) we can find an interpolation and hence a best approxi-
mation in terms of R-splines with given nodes K—1, 2, ..., n} by solving
the system of linear equations

f(sj) = 2 ckBk{j) j =34 .., n-2.
fc= 3

Compute the matrix of this system of linear equations and find the connec-
tions with the best approximation (in L2norm) of /" £L2[0, 1] by piecewise
polynomials of first degree with nodes {sf; k—1,2, ..., n).

3.11.30. By adding two extra nodes sn+l=l+h, sn+2=1+2h to  {s*
k=1, 2,..., n}, with sk+l—sk=h, construct Bn_1 and Bn.

Prove that the B-splines defined in § 310.1 together with Bn_kand Bnform
a basis for the splines with nodes K—1, 2, ..., n) and contained in X (S).

3.11.31. Prove that if R: R(S, t) is a continuous kernel on the finite two-
dimensional interval [a, h]X[n, b], then a quadrature formula can be obtained
for )
i
[ f{t) at ffr(R)
0

Rt St 2 defsk 9

On the basis of the results in § 3.5, find a method for computing [ck; k=1,2, ...
...,n}. Find examples of such quadrature formulae.

such that



Operator Theory

4.1 Background from linear algebra

In the same way that the Hilbert space geometry is connected with properties
of geometric vector space, as we have seen in Chapter 2, the operator theory
of Hilbert spaces is connected with the properties of matrices.

4.1.1. If I is a linear operator of a finite-dimensional Hilbert space, then T
can be represented by matrix multiplication by means of an orthonormal
basis {ek} of X.

4.1.1.1 Theorem. Let T be the matrix with entries tik=(Teklef)y and let x,y
be column matrices with entries xk=(x\eK, yk=(Tx\eK. where x4X;
then

y = Tx.
Proof. We have
n n
X = 2 (x\ek)ek = 2 xkek
=1 =1
and
Tek = 2 (Tekfi)ei = 2 UKt
1= 1=
(see 2.2.3.2). Moreover,
Tx = 2 xkTek

since I is a linear operator. It follows that

TX = k2:1Xk{i£]: tike,) = iél (f,2‘=I UkXK et
and hence

Yi = (Tx\e,) = 2 , Ukxk-
k=1
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With this theorem, many problems of finite-dimensional Hilbert spaces con-
nected with linear mappings may lead to matrix problems.

Similarly we can prove that the mapping T -T from the linear operators of
the n-dimensional Hilbert space >X onto the set (algebra) of nXn matrices
has the following properties. If Ti—Tj and [2—T2 then

(i) TX=T3if and only if TI=T2;

(ii) y.T1+ RT.z-wTtT /T2, where a and B are scalars;
(i) TLI2-*TIT?2;

(iv) 17-TT.

(v) The inverse operator T~xexists if and only if the inverse matrix T
exists, and then
ri—m_1
Every linear operator of a finite-dimensional Hilbert space is continuous (see
Theorem 1.7.3.1).

4.1.1.2 Definition. Xis called a regular value of the operator T if the inverse
operator (XI—T)~Xexists. Here / is the identity operator (corresponding to
the unit matrix I).

If Xis not a regular value then it belongs to the spectrum a(T) of T.

The most important problems of operator theory lead to the investigation of
the spectrum. Obviously, if X is a regular value of I, then x=(XI—T)~F
is the unique solution of the equation

XX—Tx =f fZ.\M°.

However, for the case X£o(T) the situation is more complicated.

4.1.1.3 Theorem. If X belongs to the spectrum of T, then there exists a solu-
tion of the equation
Xx—Tx =0 &)

that is different from .
Proof. In this case there is no inverse matrix (AL—T) 1 and hence

det (AI—T) = 0.

This means that there are solutions x ®B to the system of homogenous linear
equations corresponding to

(AI—=T)x = 0.
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It follows from the considerations in the proof of 4.1.1.1 that in this case
r
X — z xkek
k=1

is a solution of (*), where xk is the nth element of the column vector x.
If there are solutions xT1”8 for (*), Ais called an eigenvalue of T and the
solutions are the corresponding eigenvectors.
It follows from the considerations in the proof of 4.1.1.3 that in a finite-
dimensional Hilbert space every linear operator has an eigenvalue.
Let us introduce the following notation for an operator A:
N(A) := [x: Ax = 0} R(A) :={/: 1 = Ax}.

N(A) is called the null-space of A and R(A) is called the range. For a linear A,
N(A) and R(A) are linear subspaces and for a continuous A, N(A) is closed.
In this notation, if Ais an eigenvalue of T, then

N(XI-T) * {0}

and it is a closed linear space, sometimes called the eigenspace of A

4.1.1.4 Theorem. If Ais an eigenvalue of T, then the equation
Xx—Tx =f

has solutions if and only if fdN{II—T*)M i.e. if/is orthogonal to every ele-
ment of N {I1—T%).
Proof. If the equation is solvable for f£3tf, i.e. fER(XI—T), then for every
ZEN(XI-T*),

(f\z) = (An—Tx\z) = x\Iz—T*z2) = 0
and hence fEN (H - T*)L.

For the converse statement we need to prove
R(XI-T)x = WX1-T*). (**)

But this we can see from the identity

@ATX) = (AT *2X) Z,X N,

Remark. For the proof it is enough to verify (**). In fact, it follows from
(**) that
R{XI-T)xx = N(XI-T*)x

and, by 2.14.19,
R(XI-Tyt = R(XI-T)

12 Maté
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since R is a finite-dimensional linear subspace and hence is closed. But
R(XI-T) = N(I1—T*)L

is precisely the first part of the theorem.

4.1.2. The operator T can be represented in an orthonormal basis by a diag-
onal matrix with only real elements if and only if T is self-adjoint.

The operator T can be represented in an orthonormal basis by a diagonal
matrix if and only if

T*T = TT*
T is then called a normal operator.
We shall now prove the statement for self-adjoint operators. From Theorem

4.1.1.1 it is clear that the statement is equivalent to the following characteri-
sation of self-adjoint operators by eigenvalues and eigenvectors.

4.1.2.1 Theorem. In a finite-dimensional space I is a self-adjoint operator if
and only if every eigenvalue X of T is real and there is an orthonormal basis
of XX formed of eigenvectors of T.

Remark. We have to choose the eigenvectors as a basis of )X and T is repre-
sented, by Theorem 4.1.1.1 as a diagonal matrix with real elements.
Proof. If Xis an eigenvalue with eigenvector x, then

(Tx\x) = X(x\x)
and
(X\Tx) = (xX\Xx) = X(x\x).

Since T=T%*, it follows that X=X. It is obvious that if yEN(XI—T) then
TYyEN(XI—T) also. Furthermore, we shall show that

yeN(Xi-TyL= TyeN(Xi-Ty.
In fact, if XEN(XI—T) and (y|x)=0, then
—Ty\x) = (Xy—Ty\x) = (y\Xx—Tx) = 0.
We conclude that I is a self-adjoint operator on the subspace
N(XI-Ty = bIxe> .

(Here and later on we use the abbreviation Nx'=N(XI1—T) and also the more
precise notation for the orthogonal complement introduced in 84.13.41.)

Now let  be an eigenvalue with eigenspace Np, then 7\, the operator T
restricted to XK1:=M10 X, is a self-adjoint operator of XXxand hence there is
a real eigenvalue X2 with eigenspace ARc,i#]j.
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Again, 2, the operator T restricted to >X2:=1123 X1: is a self-adjoint
operator of XX and hence there is a real eigenvalue with eigenspace Mc /] .
We continue this procedure until XT:=MTO)XXT*L is one dimensional.

It follows from this procedure that

mt+1
/I = o m+ 1»e n
k=1
where n is the dimension of XK. Now we can choose an orthonormal basis in
each Nk and the proof is complete. In fact, we have to choose the eigen-
vectors as a basis of XX and T is represented by Theorem 4.1.1.1 as a diagonal
matrix with real elements.

Remark. If the self-adjoint operator T is positive and st is an eigenvector of T,
then
0 (Tx\x) —I(x\x)

and hence every eigenvalue A is non-negative.
Some further properties connected with eigenvalues are as follows.

4.1.2.2 Theorem. If I is a normal operator, i.e. T*T=TT*, then
Tx = IX iff T*x = IX.

Proof. It is easy to check that I1—T is also normal; moreover, for a normal
operator A,

WAXIR = (A*AX\X) = (AA*Xx\x) = \\A*x\2
and hence
(r-T)x =9 iff {I—T*)x—9.

4.1.23 Theorem. If TI-1 exists and (A/—T)x=9 for x70O, then
@/1n—T~nx=9.
Proof. In this case, for A”O,

(AT-r-1)x = T~L(I1—T)x = 9.

4.1.3. If the operator T is not normal, then it may happen that there is only a
single eigenvalue of T.

Example. The operator of a three-dimensional Hilbert space with the matrix
representation

Q

0
1
0

o ©
© o

12*
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in a basis er, e2, e3is called a translation operator. It is easy to check that the
only eigenvalue is A=0 and the eigenvectors are the scalar multiples of e3.

Thus T cannot be represented by a diagonal matrix. However, we shall show
that every linear operator T can be represented by a lower triangular matrix
in a certain orthonormal basis. Bearing in mind Theorem 4.1.1.1, this state-
ment is equivalent to the next theorem on the invariant subspaces of a linear
operator of a finite-dimensional Hilbert space.

4.13.1 Definition. The closed linear subspace /1 of X is called an invariant
subspace of the operator T if

xtiJl = TxN.3i

or, in an abbreviated notation, TJi Ji.

Example 1. The eigenspaces N{T—A/); ?E<j(T) are invariant subspaces.
In particular, if x is an eigenvector then the scalar multiples of x form a one-
dimensional invariant subspace of T.

Example 2. Consider the translation operator represented by the matrix

0 ©00...01
100...0
0 10...0
00 1...0
000 o

in a basis ex, €2, ..., e,; i.e., for the elements of U,

o if i=k+1
uik = K elsewhere.

Then each of the linear subspaces

&i+1) *mb&r} = 3 ..,0M

i.e. the set of linear combinations of the elements in the bracket, form an
(n+ 1—i")-dimensional invariant subspace for U.

4.1.3.2 Theorem. There is a chain
cz =12, .., n—=2

of invariant subspaces for every linear operator of an n-dimensional Hilbert
space.
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Proof. Every matrix T has at least one eigenvalue since
det(T—M)

is a polynomial of degree n. Moreover, NX—N(?J—T) is an invariant sub-
space, as we saw in Example 1. If IVAis one-dimensional, then J1 x= Nx. If the
dimension of Nxis higher than one, say m, then Nx contains mn linearly inde-
pendent eigenvectors ek; k=1, 2, ..., m and Jix, the scalar multiple of ex,
Jt2, the linear span of {ex, eZ}, J(3, the linear span of {ex, e2, e3} etc are the
first m members of the chain.

If Jtm0 XX is one-dimensional then the proof is complete. If Jim0Jf is
higher than one-dimensional, then we can find an invariant subspace JI'

such that
Jtmc X ¢ XK.

In fact, if (y|x)=0 for every x£/1T, then
~(T*y\x) = (Xy-T*y\x) = {y\Xx-Tx) =0

and hence Jim© X is an invariant subspace for T*. There is an eigenvalue
p of T* restricted to J(m© YC and obviously c:JiMD XK since JIm0 XX
is a finite-dimensional Hilbert space in itself and every linear operator of a
finite-dimensional space has at least one eigenvalue, as was established at the
beginning of the proof.

By the same reasoning as above, the orthogonal complement of I3 is an
invariant subspace of (T*)*—T. On the other hand,

= NBRQ.yP =) Mm

(see, for example, §2.14.19). We conclude that J1'= NE.

If JtmQJI" is one-dimensional, then J1 ’=J1 T+x, i.e. they are consecutive
members of the chain.

If J1 T© ’ is higher than one-dimensional then we can find an invariant
subspace /1" such that

Jimc N" c X

by the same process, with XX =>K , as we found an invariant subspace between
Mm and X.

Remark 1. The triangular matrix representation is obtained from the chain
of invariant subspaces J1 kas follows. Starting from J1 x, composed of the scalar
multiples of an eigenvector, an orthonormal basis can be formed in every /1 k.
It is easy to verify that the subspace /1 kis k dimensional and the matrix
representation of the operator in this basis is lower triangular.
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Remark 2. Reversing the order of the basis, we obtain an upper triangular
matrix respresentation.

Remark 3. The triangular matrix representation consists of blocks with partic-
ular structure, called Jordan forms, but in the next section we shall not need
this particular structure and hence its investigation is omitted.

4.2 Uniform operator norm and the Neumann series expansion
for inverse operators

In this section we turn to the case of an infinite-dimensional >X. The usual
norm — sometimes called the uniform norm — for operators and its basic
properties were introduced in § 1.4. We now continue these investigations.
(Recall that the domain of a bounded linear operator is supposed to be
all of X.)

4.2.1. The set of bounded linear operators from one Hilbert space »x into
another XXr form a Banach space with the norm

FII ;= sup U7 x||: |IX]| = 1}

by 1.4.3.2 and 1.8.15. However, this usual norm is not a Hilbert space norm.
We shall show that the parallelogram law fails to be valid and hence, by 2.1.3,
our statement will be proved. Let Px, P2be projection operators with PxP?=0;
then Px+ P2 is also a projection operator and hence

IPi+PA = Fill = Fill = 1
by 2.10.3. In this case,

1I0+1112+11N1-P2R2< 142
and

2F 12+ 2F 1112 = 4.

4.2.2. The bounded linear operators of a Hilbert space XX form an algebra
B(K). That is, if Tx, T{B(K) then aT1\-BT2"B{yU) for any pair a, R
of scalars and also TXT2£B(>K). The operator multiplication has the following
properties:

() 7\(Fr2+r3 = EE+EE

(i) TX(TrT3 = (T.T.JT, TXT. TRBEK)
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and we showed in 1.4.3.4 that
iraiic Tawn .

A Banach space with these properties is called a Banach algebra.

It is important for the solution of various types of functional equation to find
the inverse operator in the form of a particular infinite series called the Neu-
mann series, as we saw in Example 2 of § 1.3.2 and in § 1.8.25. We now ap-
proach this problem from a different direction.

4.2.2.1 Theorem. If the power series
IO H M+« 12T+, HaliinT' +...
is convergent for TaB(K), then the series of bounded operators
(Xgl+/~T +arT2+...+anl n+ ...

is also convergent in the Banach space B{X).
Proof. It follows from the properties of the operator norm that for every e>0,

Ib 2 lHimi*<e

k—m k—m
if n,m>N(e) since

k=0
Hence by the Cauchy Convergence Theorem there exists AEB()K) such that

A= k§0<"kﬂ( =

oo *k

eB:= 2gif *

Example.

is a bounded linear operator for every real (or complex) t and BaB(>K).

4.2.3.  The most important application of the foregoing theorem is the follow-
ing.

4.2.3.1 Theorem. If |A]>||]|, then
m; T):= 24TTr1TK
k=0

is a bounded operator of XX and

ngn;, T) = (U-T)-\
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Proof. Considering 4.2.2.1, we have only to prove the second part of the
theorem.

W-T) ki:OI'IiT t*=k:201;k rTkai-T)
and

(U~T)EOi h Tk = - L

Example 1. Let K=K(t,z) be a continuous function on [a,b\X[a,b\ and

b b
I f\K(t,x)\*dtdx <o0;

a a

find the solution of the integral equation
b

Xy(t)- J K(t,2)y(t)dz = f(t) *)
a
in L2[a, b\.
Let
0
Ty := f K(t, 1)y(T) dz.
a
Then
l7>l2= 1 1/ K(t,z)y(x)dxfdt
a a
and

L/ K(t, 2)y(z) dtj2< / \K(t, ©]2dz 1 \y(t)[*dt

a a a

by the Cauchy inequality; hence

my\\*< / f |~(f, r)|]2drdi / k(¥ 2dr
a a a
which means that

I712< / / im t)|2didt.
a

a

It follows from Theorem 4.2.3.1 that for

A > /1 \K(t, T2drdi

a a

the Neumann series R(A; T) is convergent. In this case,

y{) = ROA TYF(D) = jf(t)+ 2:A+T 1 KM, 9/(gdr (**)

1
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where
b

Ki(t, 1) = K(t, 1) Kn+l(t, ) = J K(t,s)Kn(s, t)ds n=1,2,....
a

Remark 1. In Example 2 of § 1.3.2 we solved a similar problem for the Banach
space C[O0, T].

Remark 2. Based on 1.8.25 and 1.8.24 we can also find the solution y=y(t)
as the limit of the recursive sequence

1 1 b
Yo0- /o Mo =irco+ g TIN(T) at

in L2[a, h].

Example 2. The integral equation (*) is called the Volterra equation if it
has a lower triangular kernel, which means that

K, =0 it t<T

In the case of a Volterra kernel, (*) will become
Ay(0~é1 NAEMT)di =/(0-

It turns out that for a Volterra equation the Neumann series R(?.\ T) is con-
vergent for every A”™O.

Here we restrict ourselves to a finite interval [a, b] and continuous
K=K(t, v); however, our statement is valid for any [a b] and any square
integrable K. That is,

b b

K:J f jg¢i,T)yl2dtdT<="
aa

In our case, \K(t,T)\<sM and, by induction,
\Kn(t, ©j) < M n+l (f(~n)'{)- < M"#l (bﬁ\}a) t, T€[a, b].

Indeed, suppose that

Wt o< M
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where KO(t, r):=K(t, ©v); then

WAL\ =\ K(LS)KN s,2)ds\%z | MM (A A - B

, M ... (>-<m)e
«! n!

It follows that

7AN
n2: ; A+ t Kn(t,z)

is uniformly convergent on [a, b] X [a, b] for every A”O since

ﬁl—l-i-m'(Pr) c n:%‘ M’tﬂ.(h_aY - jV/gMCb-0)

r=1n
and O
y(O =\f(t)+ i YTr /[ KnU®/(t)dr
by (**).
Example 3. If

(U,F)(t) = F(t-1) r>0

then the Neumann series is convergent for |A[>1 since ||Cit|—1 in L2[a, b].
It follows that the solution x=x(t) of the equation

Ax() —x(t—r) =/
in L2[a, h] is

x(t) = ﬁg*o-}ln—flt—kx)
and in recursive form,

*00=/(0  *+0=j/(0+y *,(~0

i.e. {x,,(0} tends to the solution in L2[a, b].

4.3 The spectrum of an operator

4.3.1. The main result of the previous section was that for |A|>||l"|| there is
a bounded inverse (A/—I)-1, everywhere defined in XX, and hence a unique

solution
7= (A/-T)“1
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for the equation
Y~Ty = f fit*

in the form of an infinite series or a recursive sequence.
As in the finite-dimensional case, we have the following definition.

4.3.1.1 Definition. Xis called a regular value of the linear operator T if there
is an everywhere-defined bounded inverse (XI—T)-1.

Remark 1. In a finite-dimensional normed space, if Tx=0 only for x=0,
then I"is onto and every linear operator is bounded. Hence in the finite-dimen-
sional case, 4.3.1.1 is the same as 4.1.1.2.

Remark 2. Here we do not assume that T is bounded.

4.3.1.2 Definition. If Xis not a regular value then it belongs to the spectrum
§(T) of the operator T.

Contrary to the finite-dimensional case, the spectrum a(T) does not con-
sist only of eigenvalues.

Example 1. For the multiplication operator
Ty =ty

in L2[0, 1] each Ac[0, 1] belongs to the spectrum. In fact, multiplication by
the function X—t is a 1-1 operator, but the inverse, multiplication by (A—i)-1,
is a bounded operator only if AS3[0, 1].

Example 2. The spectrum of the integration operator
t
Ty =g y(i) dr

in L2[0, 1] contains the single point /=0, which is not an eigenvalue. In fact,
for every X710,

t
(XI1-T)y = Xy(t)- f y(i)dr
0
is a Volterra equation with kernel

if t>r
if (<T

and hence, by Example 2 in 84.2.3, each X”O is a regular value.
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If A=0, the inverse is the operator of differentiation, an unbounded oper-
ator in LZ0, 1].

Remark. We also have a direct calculation for the spectrum. If X0, then for
every /EL 2[0, 1] the unique solution of

Aj>(0-é y(rydr = f(1) *)

via the substitution
t

z(0= /| 7(v(lt
0

y(t) = -|-f eJT-ny(7) dr

and obviously the operator

W ; T)f::4‘\ r/ eN(_1)/(T)dt

is a bounded one.
If 1=0, then the solution of (*) is defined only for differentiable f=f(t)
since /(0)=0 and

Example 3. Let k=k(t) be a continuous function and
i 3t
Kf:= 2~ f k(t-x)f(x)dx
for /6 L2[0, 2n]. It is easy to check that if the coefficients of the (complex)
Fourier series of / are {/(n); n=0, £ 1, +2, ...} then
[Kf]"(n) = k(n)/(n) n=0,+1, +2,...
where k(n) is the nth Fourier coefficient of k—k{t).
The mapping

[ *{/(«); n=0, £1, £2,...}
is an isomorphic operator (82.11.1, Example 1) and hence K is unitarily equiv-
alent to the multiplication operator

RJ(n) = ic(n)f(n).

Hence the operator XI—K has a bounded inverse if and only if the multiplica-
tion operator XI—ft has a bounded inverse (see §82.11.2 and 4.13.3).
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We conclude, as in Example 1, that the spectrum is
A= {*(n); n=20, £1, £2,...}.
However, contrary to the previous examples, the spectrum consists only of
eigenvalues in this case. In fact, if A=£(n0, then
i
Of——f k(t—x)c~mITdr = 0
e~ o j (t—x)c~n

since for the Fourier coefficients,

if n=n0
(fe~T¥, - 51/ A(- De~rfitdT) =(o «k{MN) if nAno.

Example 4. Let k=k(t) be a continuous function again and also let

4-00

J \k(t)\dt<°o

—00

be satisfied. Then the convolution of k and any /£ L2(— +«),

4-00

K*f:= j  K(t-x)f(x) dr

—o0

belongsto L2(—  + °°) by a well-known theorem of Fourier transform theory
and
[Kf]" (co) = K (co)f(co) ™)

where ~ denotes the Fourier transform. The mapping / — is an isomorphic
operator (§2.11.1, Example 4) and hence the operator K is unitarily equivalent
to the multiplication operator defined by (*). By the same reasoning as in
Examples 1 and 3, the spectrum is

A= { << +“}
but none of the values Ais an eigenvalue. In fact, if
(A-£(0))/(w) = 0

then for any co, either A—fc(a>)=0 or /(co)=0. If /20 then /(co)=0 only
at a finite number of points {co*} for every finite interval. But it is impossible
that

K (co) = H(constant)

except at most countable {cot}, by Fourier transform theory.
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Example 5. Let us consider the (right) shift operator Ur in /2[0, =] If
x={xk; k=1,2,...} then

Urx := (0, xIt x2, xk_Is ...}.

If |A|>1, then Ais a regular value since ||E/f=1. It follows that there is a
unique solution of the equation

(U-unx =1/ *)

for every ffj2 in the form of a Neumann series if |A|>1.
More particularly, by direct computation we can check that (*) is equiv-
alent to

Ax(n)—x(n—1) =/(«) n= 1,2,....
That is,
Ax(1)-x(0) =/(1

Ax(2)-x(1) =1(2)

2x{k)—x(k —1) = f(k)

and if the initial condition is x(0)=0, then

*(N)=y/0)

x(2) = i(f(2)+x(1)) = if(2)+~f(\)

x(3) = { (/1 (3)+x(2)) = 1/(3)+-"/(2)+-1/(1)

x(K) = jE(K)+-LT(Kk-\)+... +-~ TF(2)+-~f(1).

Thus we have obtained the solution of (*) in an explicit form for |A|>1.
However, from this form of (A/—FE/)-1/ we cannot see immediately that
(A/—EmM)_1 is a bounded operator for |A>1.

The result of the direct computation is also valid for |A|<1. In this case,

Kk+1x(K) = )H(K) + Ak="F{k-\) + ...+ A/(1)

and the right-hand side tends to the scalar product of {A4} and {/(&)}, while
the left-hand side tends to zero for every {x(k)}£I2
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We conclude that the range of XI—Ur is orthogonal to {A* k= 1,2, ...}£/2
for |Al|< 1 In other words, (*) has a solution if and only if {/(A")} is orthogo-
nal to {Al}; moreover, {Xi} is the solution of

XI—U*)X =6
where
U*x:= [x2,X3, ...,.XK+1, ..}

If A=0, then there is a solution if and only if /(1)=0. Hence the range of
Ur is not dense, either.

For A= t 1 the situation is quite different. It can be shown that the range
of I+Ur is dense in /2and 1£Ur is 1-1; however, (/xt/,)_1 is unbounded.
(For more details see 4.13.43.)

To summarise, there exists an inverse (XI—Un~1£B(yf) if and only if
|A|>1 and hence every A |A|<1 belongs to the spectrum of Ur.

Example 6. For the spectrum of an unbounded operator let us consider the
operator
d2
Dr=wun vy

from {y:y"eL2[0, 1]; y(0)=y(1)=0}cL 2[0, 1] into L2[0, 1]. It is easy to
verify that
Xy—Dy = B

for y~B if and only if X—k2n2 (k—0,1,2,...) and for X~k212 the
equation
Xy-Dy =1/ /6 LZ0, 1

has the unique solution

YO =- s ;T [ sinAV2(l-r)/(t)d T+ j sinAL2(i-T)/(r)dt.

Thus we conclude that the spectrum of D consists of eigenvalues {k2n;
/c=0, 1,2, ...} and every Xyk2n2 is a regular value, since the operator that
sends/ into y is an integral operator with kernel

SinAr21 . y e 17/
for <t
o7 M sin /1 C s ,
-z " SinA (1-T) for t>t

and this is a bounded operator by Example 2 in §4.2.3.
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4.3.2. The possible situations in which the linear operator XI—T might not
have an inverse {XI—T)~1"B{>XKX) are as follows:

(@ XI—T is not 1-1;

(b) XI—T is 1-1 but its range is not dense;

(c) XI—T is 1-1 with dense range but the inverse operator is not continu-
ous.

Parts (a), (b) and (c) of the spectrum are pairwise disjoint subsets.

4.3.2.1 Definition, (a) The point spectrum of a linear operator T is the subset
of all Xfor which the operator 1—T is not 1-1, i.e. the elements of the point
spectrum are exactly the eigenvalues.

(fo) The residual spectrum of a linear operator T is the subset of all X for
which the operator XI—T is 1-1 but the range is not dense in X, i.e.

{X1-T) X & X.

(c) The continuous spectrum of a linear operator T is the subset of all X for
which the operator XI—T is 1-1 and has its range dense in XX, i.e.

{(XI-T)X = X

but the inverse {XI—T)-1 is not continuous.
We gave examples of each kind of spectrum in 84.3.1.

4.3.2.2 Theorem. The spectrum o{T) of a bounded linear operator I" is a bound-
ed closed subset of the complex plane and for Xdo{T),

W «s lim sup ||T,”||V” «r IT 1.

Proof. We shall show that the set of regular values, the complement of the
spectrum, is open. If X<{o{T) then

{X+p)I-T = {XI-T)[1+p{XI-T)~"] ™)
and it follows from 4.2.3.1 that I+p{XI—T)~1 has a bounded inverse if
\»\ < ||(A/—7°)-1]|-1.

In this case there is also a bounded inverse for {X+p)I—T by (*).
A more precise estimate of the radius of convergence of

R{X; T):= N T Kk

€0A
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is
A [ = LRI
g Mt 2 Ui ot
k=0 \A k=0
with x=1/|1| and sk=||7°,[_1; k -1,2,.... It follows from the elementary
theory of power series that this is convergent for

|A > limsup ||77/4/"

4.4 Operators with finite-dimensional range

As we saw in §4.1, the linear operators of a finite-dimensional space have a
standard form of matrix multiplication. Similarly, the bounded linear opera-
tors I" in a Hilbert space >X with the property that the range

{Tx; x£X}

is finite dimensional have a common standard form.
4.4.1. We begin with some important examples.

Example 1. Let hk, gk; k=1,2, ...,N be piecewise continuous functions in
the closed finite interval [a, b] and

k(t, ) = 2 V0&CO-

Then the integral operator

&1

b
Kf:= J k(t, t)/(t) dz
a

has an IV-dimensional range. In this case K—K{t, t) is called a degenerate
kernel.

Example 2. Let {ek; k—1, 2, ...} be an orthonormal system in a scalar prod-
uct space XX. Then the operator

AN:= 2{f\eKek
k=
has an A-dimensional range.

Example 3. In a reproducing kernel Hilbert space X, if we order the sample
H[A ]; k=1, 2, ..,n} to every /EXX, then a bounded linear operator is
obtained with «-dimensional range.

13 Maté
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The common structure of the operators in these examples is as follows. Let
Xx. XKr be Hilbert spaces and let

{akeXX\ k=12 , N} {b&XKM £ = 1,2......N}

be linearly independent elements. Define

(k2=fit® K)f::kzzl(llak)bk /16 XK .

Then

N
2  «K®bK
k=1

is a bounded linear operator from >, into X2 with finite-dimensional range.
We shall show that this is a common representation for every operator
with finite-dimensional range.

4.41.1 Theorem. If I" is a bounded linear operator from >X into >Xr with
finite-dimensional range, then T has the form

2 1aK®bK akEXX,, bKEXK3.
k=

Remark. This representation is not unique, as can be seen from the following
proof.

Proof. If T has a finite-dimensional range and {bk\ k=1,2, ..., N) is an
orthonormal basis in the range of T, then

T f =2 « kbk /e,
*:I

where ak=(Tf\bK) are continuous linear functionals of )X, since I' is a continu-
ous linear operator. Hence by the Riesz-Fréchet Theorem (2.8.1.1) there is a
unique akeXX| such that

& = (TAbK = (f\ak).

Remark. In 884.7 and 4.8 we shall define operators in the form of infinite sum

ak ® bk
k=1

with 1= 1111=1 and as important classes of operators.
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4.4.2. Let us assume that A~O and fEH are given; our next task object is
then to solve the equation
Ny-Ty =f (*)

in the case of T with finite-dimensional range. If

T :kzlak®bk

where {ak, k—I,2,...,N} and {bk\ k=1, 2, ..., N) are linearly independent
vectors of the Hilbert space )X, then equation (*) has the form

*y -k2:1(y\aK)bK: f (**)
and hence
= y/+ 2 *ikok
and we have to find {gk; k=1, 2, N ) such that (*) is satisfied.

Substituting this form (of y) into (**), we obtain

f+A 2 TIK- 2 iy/+ 2 httha) bk= T
and hence
hk~ |2:|(b|\ak)>||:¥1(/|ej K=1,2,.... N, (***)

since {bk; k=1,2,...,N} are linearly independent vectors.
It follows from these considerations that (***) and (*) are equivalent
equations in the sense that y£>X is a solution of (*) if and only if

Y=y/+ 2 &k  AMNO

where {ik; k—!,2,...,N) is a solution of (***).
We have also obtained the counterparts of 4.1.1.3 and 4.1.1.4:

4.42.1 Theorem. If A™O belongs to the spectrum o(T) of T, then A is an
eigenvalue. T has at most N different eigenvalues.

A—0 always belongs to the spectrum, since the finite-dimensional range of T
cannot be dense in the infinite-dimensional X.

If Ais an eigenvalue, then (*) has a solution if and only if f {Al—T*)x.

Remark. For the proof we have to take into consideration also 1.8.21 and
that 4.1.1.4 is valid for every linear operator with finite-dimensional range.

3
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4.4.3. 1tis natural to ask how we can generalise the matrix representation of the
finite-dimensional operators to the case of an infinite-dimensional Hilbert
space.

Let T be a linear operator of the infinite-dimensional separable Hilbert
space XX, let {ek} be an orthonormal basis in XX and

alk = (Te\ek xk = (x\eK).
Then the matrix representation of T is the matrix multiplication

all al2 alk X1
&Zi 0w e X

(*)
Bn ai2...aik...) xk

and this means that Ax is equal to the unique y£XX satisfying
Okt) = 2 akjxj-
J=1

Example 1. If Uris the shift operator given in Example 5 of §4.3.1 and {ek}
is the standard orthonormal basis then
if k=/+1
{Uret\ek) = {J P

Hence the matrix representation of U, is the matrix multiplication

‘00 0.1
1 00.. x2
0 10 n3
K o

Example 2. Let K be an integral operator on L2a,b) with kernel

kQJ([a b\ X[a, b]). Then
b b

aik= (Ketek) = / / Kk(t, 92K (i) dr at

a

and aik are the Fourier coefficients of k=k(t, z) with respect to the orthonor-
mal basis in L2([a, b]X[a, b]),

TAU r) = et(z)ek(t)

(see 2.14.47). It follows that the matrix representation has the property

k2:I 2, \bl 2=/ n/ \K(t, T)[2drdi <oo0.
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4.5 Compact operators

Several operator-theoretic properties remain valid if we turn to the uniform
limit of operators with finite-dimensional range. These operators will be called
compact operators.

4.5.1. The compact operators of a Hilbert space )K form a closed subalgebra
of B(>K). In more detail, this statement has the following meaning.

4.5.1.1 Theorem, (a) If Tx, T2are compact operators then TXT2 and ctTx+RT?2
(a,/?£®) are also compact operators.

(b) If {Tn} is a sequence of compact linear operators and |[FA-T||—0
then T is also compact.
Proof, (a) If A is an operator with finite-dimensional range then AL and LA
also have finite-dimensional range for every bounded operator L. In fact,
by 4.4.1.1,

N
A= k2:1ak®bk

and hence, for every
LAf= L 2 (flak)K = 2 (flak)Lbk:= (2, ak®LbKf.
k:1( ) k=1 ( ) (k:I ¥

If T is compact, then there is a sequence {I',,} of operators with finite-dimen-
sional range tending to T and

WLTn-L TWANWLWWT n-TA\.

Hence LT is compact. A similar argument shows that TL is compact. It is
obvious that if Tx, T2 are compact, so also is ocTx+RT 2.

Part (b) of the theorem follows from the fact that the ‘double’ closure of a
subspace is identical to the closure. More precisely, for every e>0 there
exists N—N(el2) such that ||Tn—Il<e/2 if u>7V(e/2). But for every T,
there is an operator Armwith finite-dimensional range such that \Arm—T,\\ -=e/2
if m=-M(e/2, n); hence \AM—T||-=£. It follows that T is the (uniform)
limit of operators A,,mwith finite-dimensional range and hence T is compact.

Remark. A subalgebra A of B(>K) with the property
TdA, bEB(OK) ==TL~A and LTE£A

is called a (two-sided) ideal of B(,?f). Thus we have also proved that the com-
pact operators form not only a subalgebra but a two-sided ideal of B (K).



190 Hilbert Space Methods in Science and Engineering

If T is a bounded linear operator with finite-dimensional range, then T
sends a bounded set into a pre-compact set. Indeed, {Tx\ x£XX} is finite-
dimensional and in a finite-dimensional subspace every bounded set is pre-
compact, by 1.6.2.4, 1.7.1.3 and 1.7.2. We shall show that this is a characteristic
property of compact operators.

4.5.1.2 Theorem. If I" is a compact operator, i.e. the uniform limit of opera-
tors with finite-dimensional range, and Ba >X is a bounded set, then
{Tx; xEB} is pre-compact.

Proof. We have to prove that if ||xj«;l then there is a convergent subse-
quence of {Txn}

Let {TK} be a sequence of operators with finite-dimensional range and
Tk-*T. Then there is a subsequence {x~} such that {Tjx~} is convergent.
Similarly, there is a subsequence {x(2} of {x"} such that {T2x¢)} is convergent.
Continuing recursively, we have a subsequence {x®} of {X}**1)} such that
{Tmx~} is convergent for m=1,2, ...,k.

The {x(); n,k —1,2,...} may be arranged in a rectangular array. Consider
the ‘diagonal sequence’

Y, Y2, .., X

**%Q MVfc 9 eee e

For each k, the sequence {x£°; n=k, K +\, ...} is a subsequence of the kth
row {X¥%X); n=1,2, ..} and hence {Tkx”™} is convergent; let us say
lim Tkx *»=xm. We shall show that Tx\f is a Cauchy sequence and thus the
proof is complete.

For all m and n,

[|[TX<I>-Ix<">|| < (T—TK *Ee>0+ IITKk*Em>-To<Sl + ITk- T)x<™S|.

Since Tk-+T and {Tkx”} is convergent for every k, it follows from a stan-
dard estimation that the right-hand side of the above inequality is less then
any e>0 if n,m>N(e).

Remark. The usual definition of compact operators is as follows.
The linear operator T is called compact if the range {Tx; xEB} of any
bounded set B is pre-compact.

Later, in §4.7.2, we shall show that the operators in a Hilbert space that
send bounded sets into pre-compact sets are exactly the uniform limit of op-
erators with finite-dimensional range.

4.5.2. Several linear operators, connected with the solution of important dif-
ferential and integral equations, are the uniform limit of operators with finite-
dimensional range, i.e. compact operators of a Hilbert space.
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Example 1. The integral operator

b
Kx = J K(t, ©)yx () dr
a
in L2[a,b] is compact if

b b
I f \K{t, T)|2drdi <oo.

a a
In fact, if {ek(t)} is a complete orthonormal system in L2[a, b], then ek(/)e,(T);
k=1 2, /=1, 2, ... is a complete orthonormal system in L2([a,fc]X[a, h])
(2.14.47). Hence if

N =124 &4 Ce0ekD)

then

[ 1 \sn(t,z)-K(t, T)2d/dr -0
a a
if cik are the Fourier coefficients with respect to the orthonormal system
{e*(0<?((T); *=1,2, ..., /=1,2, ..}. That is,
b b
cik= 1 J K(t, t)ek{x)ei{t) drd/.
a

a

Moreover,
M o= 110 K@A>T)x(T)dil2di
a a
/(1 JAT(, T)l2dx 3 |x (t)]2dr] di
a a a
= /1 |AT(/, T)|2dr d/ j* |x(T)|2dr
a a a
and so

IS.-7q2< | 1 |S,.(/,0-.£(/, Td/dt.

a a

On the other hand, the integral operators with kernel Sn(t, t) are operators
with finite-dimensional range, by Example 1 in 84.4.1.

Example 2. Let us consider the functions on [0, 1],

XK= {y. y"£L*[0,1]; y(0) = y(I) = 0}
and the differential operator Dy:=y" from > to L2[0, 1]. The inverse op-
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erator D 1is compact. In fact, if

ot —1(@ 1 ?: <

then it is easily verified that the integral operator
i

Gf:= /G (i,T)/(D)dT
0

is the inverse D~I and
i
J J G(t, ©2d/dr <°°.
o0

Hence G is compact, by Example 1

Example 3. Let us consider a Sturm-Liouville differential operator

Dy = -~-(a(i)/)+c(/)y

with ‘smooth’ a(t), c(t) and let G(t, t) be the Green function of D. A slight
generalisation of Example 2 gives us a continuous Green function G(t, t) of
D, i.e. the kernel of D~1 Then, by Example 1, the operator

b
Gf:= / G(t, 9/(vdr
a

is a compact operator since

b b
i J G(t, t)2dfdr <°°
aa

in this case.

Remark. The Green function G(t, t) of D is a continuous function satisfying
the equation DG{t, =0 if z~t for any fixed t with certain boundary
conditions. It can be proved that the integral operator with kernel G(t, t)
is the inverse operator of D (Gohberg and Goldberg 1981, §1V.5).

Example 4. Let us consider the Green function G of the Dirichlet problem

du dau
wr+ftT -0 "(S)=*

where S is the boundary of an appropriate bounded domain of the (/, x)
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plane. Then the integral operator with kernel G is compact (Riesz and Sz Nagy
1955, Nr 81).

Example 5. Let h=h(t) be a real-valued continuous function on [0, 1]. Then
the multiplication operator

T,.f:= h(t) -f(t)

is a bounded but non-compact operator in L2[0, 1]. In fact, there then exists
a subinterval / such that |/i(r)|>a>0 for /£/. For any orthonormal system
bl in L2(f),

I \h(t)ek(t)-h(t)emt)\2dt > o2 f \ek(t)-emt)\2dt > 2a2
0 1

km=1212,
It follows that the range {Thek; k—1,2,...} of the bounded set {ek;
k=1,2, ..} is not pre-compact.

Example 6. It follows from the previous example that the convolution oper-
ator

Kf:= 1| K(t-T)f(r)dr
0

is not compact in L2[0, for any

oo

K: j |fc(f) dt <°°.
0
Indeed, by the convolution theorem,
[ &(i—9/(¥)dr) (co) = fc(oj)f(co)
0

where ™ denotes the Fourier transform, which is an isomorphic operator
(82.11.1, Example 4).

Example 7. The translation operator
=/(i- v r>0
is not compact in L2[0, °°). In fact,
(UTF\U tg) = (f\g) /;9€L2[0,~)

and hence {Uzek; k=1,2,...} isan orthonormal system for any orthonormal
system {ek; k—1,2, ...}. But any orthonormal system is a bounded non-
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compact set since

Ikll = 1 lk-ej =2 K,m= 1,2, —

Example 8. The identity operator / is a non-compact operator in an infinite-
dimensional Hilbert space (consider the range of a bounded non-compact
subset).

It follows from Example 8 that an operator T and its inverse T~1 cannot be
compact at the same time in an infinite-dimensional Hilbert space. In fact,
if both T and I'-1 are compact operators, then T~1T=TT~1=1 is also
compact, by 4.5.1.1 (a) which is impossible according to Example 8. Thus we
have also obtained the following.

4.5.2.1 Theorem. 2=0 belongs to the continuous spectrum of every compact
operator T.

4.5.2.2 Theorem. If T is an operator in a Hilbert space with compact inverse
T~\ then T is necessarily an unbounded operator.

We have seen these phenomena in Examples 2-4; later, in §4.13.11, we
shall use them for the investigation of spectral properties of unbounded opera-
tors.

4.5.3. We now consider the operator equation
Xy-Ty =/ A* 0 (*)

in a Hilbert space XX for compact linear T.
Let A be an operator with finite-dimensional range such that \T—A\\<\V/.\
and B=T—A; then there exists (2/—3)-1 and

by 4.2.3.1; moreover, 2I—T=(U—B)—A and hence
(U-T)W-B)-1=1-AW -B)-*

where A(X1—B)-1 is an operator with finite-dimensional range (see the proof
of 4.4.1.1(a)).
We can therefore solve the operator equation

X+All -Brx =/ 2.9*0 **)
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as in §4.4.2 and there is a 1-1 correspondence between (**) and the original
operator equation (*). If x is a solution of (**), then
y = (XI-B)~Ix

is a solution of (*) and vice versa.
Thus we have obtained a method for solving equation (*) and, together
with 4.4.2.1 and 4.5.2.1, a constructive proof of the following theorem.

4.5.3.1 Theorem. If A”O belongs to the spectrum of the compact operator T,
then Ais an eigenvalue. In this case a solution of the equation (*) exists if

and only if
feN(XI-T*).

A=0 is contained in the continuous spectrum.

4,5.4. A more precise description of the spectrum can be obtained from the
following considerations. Let A0 be fixed and let us construct (**) for
[IT—|| = |IB||<|A0]; then (*) and (**) are also equivalent for |A|=-]AQ in
the sense described in §4.5.3. But, by 4.4.2.1, (**) has only a finite number of
eigenvalues. Hence we obtain the following.

4.5.4.1 Theorem. Let 0<r<||7j|; then
{A: 1A Xdo(T)}

consists of a finite number of eigenvalues.
There is one more common property with the finite-dimensional case.

4.5.4.2 Theorem. If T is compact then
Nx:= {y: (XI—T)y = 0}
is a finite-dimensional subspace of ¥f for every A™O.
Proof. If Nx={0}, then the theorem is obvious. Now let N~{0}', then the
restriction of T to Nxis Xlsince Ty=Xy for yENXx Since the restriction of a

compact operator remains compact, Xl is compact on Nx and, by Example 8,
this is impossible if Nxis infinite dimensional.

4.6 Self-adjoint compact operators
The simplest operators are the projection operators since a projection opera-

tor P is equal to the identity on a closed subspace Jt and zero on the orthogo-
nal complement Jt1. In this section we shall show that the building blocks of
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a self-adjoint operator T are projection operators and thus even more informa-
tion is obtained on the spectrum of T, and hence on the solution of ).y—Ty—f,
than in the general case of compact operators.

4.6.1. We shall show that the spectrum of a self-adjoint compact T contains
‘enough’ eigenvalues in the sense that the linearly independent eigenvectors
form a basis for the range of T as in the finite-dimensional case.

If A is a symmetric matrix, i.e. A*=A, then

A= sup (X*Ax; x*x = 1}

(X is column matrix) is an eigenvalue. The same is essentially true for a com-
pact self-adjoint T.

4.6.1.1 Theorem. For a compact self-adjoint operator T, there exists an eigen-
value A with |A= |||
Proof. For any bounded self-adjoint T,

WTW\ = Sup{\(Tx\x)\: MI = 1}
as we saw in 2.10.2.2. Hence there exists
{*} [(TXK)| - U1

(and M,J|=1); moreover, [|7xJ<||7]].
Since T is compact, there exists a convergent subsequence {TXx,,}.
Let y—\\mTx,, and A”O. If

Txnt-Xxn - 0,

then x,,-*(I/X)y and hence T(I/X)y=y, which means that {is an eigenvalue
with eigenvector vy.
We shall show that Txn—Xxn-+0 if

f=lim (Txnx,,).
In fact,
0*s |[7X-Ax,,[|12= \Tx,,r+ UxnV-2X{Txnxn)
< (17T + [A2M,,P—2A(Txrix) = 2|A|2-28(7X]x,,)

and
2|1A|12—24A(7"xnix) “m0
since (TX,,|X,,)-A.

Remark 1. Ais real since (Txnk,,) is real for a self-adjoint T.
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Remark 2. It can be supposed that {(7x,,|X,,)} is convergent since if this is not
the case then we replace {(7x,,/X,,)} by a convergent subsequence at the very
beginning of the proof.

Now, the counterparts of Theorem 4.1.2.1 are the following.

4.6.1.2 Theorem. If T is a compact self-adjoint operator on a separable Hilbert
space X then there exists a sequence {A*} of real eigenvalues

HI'N N > W *reee** |]] P

with the only possible accumulation point 1=0.

Proof. By the previous theorem, there is a real eigenvalue /n with |Al = |||
By the same procedure as we adopted in the proof of Theorem 4.1.2.1, we can
find a sequence of eigenvalues {?k} with

Nl 3 |A2 s»...s» |AIL> ...
since for the norm of the restricted operators,
mi >W\TK\ =4in +1i = o,

There are two possible cases. If Tk—0 for a certain k, then Thas only a
finite number of eigenvalues. If 770 for all k, then {JA*} is a convergent
infinite sequence and

WTym-Tynv = lAnymA,yJ* = A +AN

if ykENK; *=1,2, ..., where Nkis the eigenspace corresponding to the eigen-
value ).k.

{>8 is orthogonal, by Theorem 4.1.2.1, T is compact and we can suppose
that By j = 1. Hence there is a convergent subsequence {Tyk}, which implies
that the limit of {JAfd} cannot be different from 0.

4.6.13 Theorem. Every compact self-adjoint T can be represented in the form
Tx = 42:1*K(x\yK)yK XE£XK ™)
where {At,y*; *=1,2, ...} are related pairs of eigenvalues and eigenvectors

with |ly»|| = I.
Proof. By the procedure adopted in the proof of 4.1.2.1,

m m
X-*Z_&X\yK)YK’\T and Tx-kglk(x\yk)ykéiJ’\m.
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Moreover,

Tx- Z KRAYKYK= T (x- Z (XKW = Tm{x - Z, (x\yKyK-

Hence
m

Tx= Z 11‘IK(X\YK)YK

if Tm=0. For the case where Tn™ 0 for all m,

m m
Ikx- 2 wyyen < lirj |[X-g  (*1n)n]| < \TIMI = |AJ lull
by 46.1.1 and 2.21 (*). Moreover, by Theorem 4.6.1.2, Am—-O.

4.6.2. Theorem 4.6.1.3 can be formuled as the decomposition of a self-adjoint
compact operator into projection operators. First we shall show that there is
an orthogonal decomposition of XX into the eigenspaces of I if I is self-
adjoint.

4.6.2.1 Definition. Let Jtk, k=1,2, ... be pairwise orthogonal subspaces of
X, ie NTka>X and if z~Jiz~JdI1lj, inj then (z(|z»)=0. Then

g
is defined as the linear space of the sums
*2:i Zk'*\;IhUJ2<°° ZkEJ (K.

4.6.2.2 Theorem. If
= {x: TX= 0}

and Jik is the eigenspace corresponding to the Ath eigenvalue ?k, then

/:?:04

Remark. A similar decomposition to a finite number of eigenspaces can be
seen in the proof of 4.1.2.1. Moreover, a more detailed form of 4.6.1 (*) is

Tx:k2:I |2=1W y k)yki
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where {yki; /=1,2, ..., k(i)} is an orthonormal basis for Jfk (see also the
proof of 4.1.2.1).
Proof. For the decomposition
® () a K
X = (*- k2:1 i2:| (x\)’b|))’|<,q+k:21 i:21 (X\YKAYH (*)
where we have, by 4.6.1.3,
@ f0 @ ki)

T{x-k2 2|L|JVIL|YbI)= Tx-2 2I Wwysgyu = 0.
=1i= *=1 i=

Moreover,

oo

>* O Ky
(2, 2, QYKH (- 2 2" (ykyKj.)) = o /= 1,2,

o=l i=|

Hence (*) is the unique decomposition
Y=nN©Nn

where =® since, by definition,

oo k(i) oo

k2_I 2 (X\YN)YKE® J1-
—l i—1 k=1

4.6.2.3 Theorem. Let Pk be the projection onto jWk; k=1,2, .. and let PQ
be the projection onto the null space JO of T. Then

T=,
=1
Proof. We can write
«0
Pk = 2  Pki

where Pki is the projection onto the one-dimensional subspace generated by
yki, and hence
PkiX = (x\yki)yki XEYP.

Now it is obvious from 4.6.1.3 that

Tx = él K pkx XEYP

and we have only to show that

2P

is a convergent series in B(2K) (i.e. that it is convergent in the operator norm).
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In fact, by 4.6.2.2,

iwiHliA*|[2=in «

and so

lex- '1KP,T 15 1

k=n

= 1 \m kAR

< ARRT [P s
=n

Applying 4.6.1.2, we obtain
r - IV * H|

Remark. The decomposition Pk into projections onto one-dimensional sub-
spaces is not necessary. In fact, it follows from 4.6.2.2 that
00
X = POX+ 2 Pkx
k=1

where Pk is the projection onto Nk and hence 0 for i7j. It follows
that

Tx= 2 KPkx and  [X[l2= i WPlodw*

k=1 k=0
and we can continue the proof as above.
The form
ZhPKk
k=1
of a self-adjoint operator T is called the spectral decomposition of T.

Remark. The result of the previous theorem is essentially the same as 4.6.1.3
but in a more elaborate form. However, the representation of T given in 4.6.2.3
will be the starting point for the spectral representation of the non-compact
case.

4.6.3. We now pose the converse question: when will

ZPPk

K *

be a compact self-adjoint operator?



4 Operator Theory 201

4.63.1 Theorem. If
(i) Pk; k=1,2, ... are projection operators with finite-dimensional range;
(i) PiPj=0 for iVy;
@iii) P&; k=1, 2, ..} is a sequence of real numbers and A*~Q;

then

T =

*:I

is a compact self-adjoint operator of
Proof. In this case,

| zhpkd

k

2 2 mpld<i il
since

iw M tlzil’\ IH ,jZIn «
and hence

N

k=1

is convergent in the operator norm.
t = z X kpk
k=\
is a compact self-adjoint operator since the partial sums
Tn= kZ_IK Pk
are self-adjoint operators with finite-dimensional range.

Remark. Later on we shall see that for complex {Xk; k=1, 2, ...} the above
series defines a compact normal operator.

4.6.4. By applying the results of §4.6.2 to the solution of the equation
XiI—T)y =f X"0 *)

a simpler method can be obtained for a self-adjoint T than for the general case
in 84.5.3. When T is self-adjoint, equation (*) can be given in the form

XPoY+ Z (I~XKPky = Z Pkf

14 Maté
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since
X = k2:0p kX.
Multiplying both sides by the projection PrB we have

a-knpny = pj n=12...

If Ais a regular value, then there is a unique solutiony of (*) for every )\ K .
In this case,

Pny =jzrj-pnf n=1,2,..

and hence

Y= 2,PkY = 20t PIT-

If Xis an eigenvalue, i.e. A= 4, then there exists a solutiony of (y) if and
only if /€Nn by 4.5.3.1. In this case P;/=0 and, on the same grounds
as in the case of a regular value,

= Z-yK k f
Y= Z:y

- P
] ] i A~~Ak
is a solution of (*).

4.7 Compact normal operators and the first step towards the
representation of non-normal operators

In this section we shall extend the representation 4.6.1 (*) to compact nor-
mal operators, and we shall also derive a useful representation for any compact
operator.

4.7.1. Every bounded linear operator has the following decomposition into

self-adjoint operators:
mlmr* nr_T*

T=m % -+ -~ !
If T is also a normal operator, then this decomposition has the following prop-
erties in common with complex numbers.

4.7.1.1 Theorem. The bounded linear operator is normal, i.e.

RS IEES J-"*rp

if and only if T=A+iB, where A and B are self-adjoint operators with
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AB=BA. Then
TT* = A 4 B2

Pi oof.
TT* = (A+iB)(A—iB) = A2+B2+i(BA-AB)
T*T= (A-iB)(A +iB) = A2+B2+\(AB-BA)
and hence the following are equivalent:
(8) TT*=T*T;
(b) AB=BA\
(c) TT*=A2+B2

4.7.1.2 Theorem. If Xis an eigenvalue of T, with a=Re X B=1m X then a
is an eigenvalue of A and B is an eigenvalue of B.

Proof. If x”)X is an eigenvector of T belonging to X then (applying also
4.1.2.2)

AX = -A(T+TH)x = AX+X)x = (X

and,

Bx = -jr-(T- T*)x

-L (X-X)x = Bx.
Based on the connections between A, B and T the following can be proved.

4.7.1.3 Theorem. Let T be a compact normal operator of a Hilbert space XX .
Then

T—k2=T Pk

where {Xk\ k=1, 2, ...} is the sequence of all eigenvalues of T and Pkis the
projection onto X;k. (See, for example, Naylor and Sell 1982, §86.10-11.)

4.7.2. T*T is a positive operator for every linear operator T since
(T*Tx\x) = (TxX\Tx) > 0

and hence, by 4.6.1 (*) and the Remark following 4.1.2.1, we have, for every
compact operator T,

T*Tx = 2 Bk(x\xk)xk
k=1

where xK} are the related pairs of eigenvalues and eigenvectors of T*T.

14*
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4.7.2.1 Theorem. For every compact operator T,

Tx= 2. Nk(xX\Y £X *
X Zi K(X\YK)XK X ™)

where xkis the eigenvector of T*Tandy* is the eigenvector of TT*, both belong-
ing to the eigenvalue p\.
Proof. Let yk be the eigenvector of TT* and

xk — T *YK Nk* 0
K
then

{xK\xj = —(T*yRT*ynm = - | — (yRTT*ym
kT NkNT

= A (yKyj=0 if k~Am.
K

Hence {m.,} is also an orthogonal system.

If {MJis not complete, then we add {zk} by the Gram-Schmidt process so
that {v*} and {zk} together form an orthonormal basis for >X. Obviously,
{rdc(T*X)+t and hence Tzk=0 since

R(T*)X = N(T**) and T =T

can be proved as (**) in 4.1.1.4.
It follows that

Tx=T (E (X\xK) xk+ 2K (x\zK)zK = 2K (X\xK Txk
= 2 ~{X\XKRTT*yK = 2 WUK(X\XKYK.
K WK K

Remark. It follows from the representation (*) that every compact operator T
in a Hilbert space XX (or mapping a Hilbert space »Xn into another Hilbert
space XKr) is the uniform limit of operators with finite-dimensional range.

4.8 Hilbert Schmidt operators

In this section we shall define operators in an arbitrary separable Hilbert space
that are the counterparts of integral operators in LZa. b] with square integrable
kernel.
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4.8.1. Besides the (uniform) operator norm there is the natural norm

m i, = (// [*fT)*dTdt)m
a

a

for integral operators with square integrable kernel k. We learned in Example
1 of §4.2.3 that |/1la>11/1|.
Let us denote the set of such integral operators with norm | . ||2 by HS(L2.

4811 Theorem, (a) HS(L2 forms a subalgebra ofB(LZ); e if7\, 72EHS(L2
and a, B are scalars, then a7i+/?raEHS(L2 and J21/1C HS(L2.

U] ot Gy
(c) If TEHS(LY, then r*GHS(L2 and ||I]|2=||*||2.
(d) HS(L2 is a Banach space.

PFOOf For any /£L 2[a, b],

b b
TiT2f:= | kft,s)[f kfs,x)f{i)dx]ds
a a

b b
= J (/ KI(t,s)k2(s,x)ds] f(r)dz.

a a

Hence TXTr is also an integral operator with kernel

b
k(t, ©) = J ki(t,s)k.i(s,T)ds.

a

Moreover, by the Cauchy inequality,

b b b

\f kft, s)k2(s, ) ds|2«; f \kft, r)|]2dr J \kfs, r)|2dr

a a a
and hence k=Kk(t, x) is also a square integrable kernel and (b) is also satis-
fied. (c) follows from Example 2 of §2.10.1 since

b b b b
J 3 |k(@i, ®2dxdi = J I \K(T, i)|2dtdx.

a a a a

Finally, L2([a, b]X[a, b]) is a Banach space (see, for example, Example 6
of 8 1.6.1) and hence, from the definition of | . |[2, HS(L2 is also a Banach
space, since || . ||2is equal to the norm of the kernel in L2([a, b] X [a, b]).

An algebra that is also a Banach space with a norm satisfying inequality (b)
of the previous theorem is called a Banach algebra. The Banach algebra HS(L2
can be described completely in Hilbert space terms.
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4.8.1.2 Theorem. The operator K of LZa, b] has the form

b
Kf=J k(t, ©/(0dt

a

with square integrable kernel k=k(t, 1) if and only if

2qIM 2 *)

for every orthonormal basis {eR.
The sum (*) is independent of the choice of the orthonormal basis and

pifl, = (Lo KR

Proof. For any orthonormal basis {ek},

WKek™ = 2 \(KeK\gj)\*
j=i

since {KekK\ej) is the /th Fourier coefficient of Kekwith respect to the orthonor-
mal system {ek} and hence

2 \\Kekv =_2 2 \(KeKej)\*. =
k=1 =i j =1 ( J) ( )
Now let K be an integral operator. Then

b b
(KeKej) = J 1 K(t,x)ek(x)ej(i)dxdt

a a

so that (Kek\ej) are the Fourier coefficients of k=k(t, ¥ with respect to the
complete orthonormal system e*(t)ed/); k=1, 2, ...,/= 1,2, ... and hence

2 2 \{KeKej)|2= / | JAT(¢,T)2dTdi < -.
*=1>=1 a a

Conversely, if (* *) is finite, i.e.

t?ZI \\KekV

then by the Riesz-Fischer Theorem (see, for example, 1.6.1, Example 6) there
exists &EL2([tf, b\X[a, h]) suchthat

b b
(Kekej)= f J K(t, x)ek(x)ej(t) dt dt
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and hence

[KeK (t)= J K(t, r)et(r) dz

a

for the orthonormal basis {ek}. It follows that

[KFI(0

[ K(t, T)r(tydt

a

for every /6L Za, b] since

~
|

= k2_ (fleKek
and the operator K is continuous.

4.8.2. We now define the subalgebra HS("f) of B(>K) for any separable Hil-
bert space X.

4.8.2.1 Definition. The linear operator T of X is called a Hilbert-Schmidt
operator if

2 . WTekv
t=i

for an orthonormal basis {eKk}.
If T is a Hilbert-Schmidt operator, then

imi2: = (c(;:iIIM 212

is called the Hilbert-Schmidt norm. The set of Hilbert-Schmidt operators of XX
is denoted by HS(").

4.8.2.2 Theorem. The Hilbert-Schmidt norm is independent of the choice of
the orthonormal basis {ek} and

ury = (_2“2\|CTek‘ej) \y>m
j*=1 fc=
Proof. Let {ek}t and {mpk} be two different orthonormal bases in >X. Then

N74112= 2 \(Tekap 2

since (Tet\g>j) is the /th Fourier coefficient of Tek with respect to the ortho-
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normal basis {cpj}. Hence

WTeklm = 2.2 . KTek<j)\>
s & jzi )

= =N >
2,2 1Ne>)j2= 7 Ir>

and for ek= (pk; k—1,2,...,

k2\|\T(pkll2:f 2|\\T*cp|<\\2
= =
We conclude that
2 W\TekV = 2 WTcPkV.
fc=1 k=X

It follows from the definition of the operator norm that for every e>0 there
exists e0EXX with |<0|= 1 such that

mi < me0Q|+e.

If we choose an orthonormal basis {ek} containing eaC>X, then

lInoP+r < 2 WTekv = 1Ll
The important property of || . [|2is that it is a Hilbert space norm.
4.8.2.3 Theorem. If Tu T2£HS(Jf), then
(TXT9:= 2. (T2Tieked
is a scalar product. In particular,

\T[2= (2 (T*TeReyi* = (2 WTe\I\

(I3

Proof.

2 (TiTieke = 2 (eXT7T2EH

2 (TxT2eke = Ly \).
=1

(T\T)”0 and (I'|r)=0 ifand only if T=0 since

(TM):= 2 (T*Tekeh= 2 M 2= W1
= 1
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and it is obvious that the remaining axioms of the scalar product in §2.1.1 are
also satisfied.

4.8.3. We now consider the representation of a Hilbert-Schmidt operator T
by an infinite matrix, as defined in 84.4.3. It follows from the second part of
Theorem 4.8.2.2 that 7T€HS("f) if and only if

1i=1

In fact, it can be proved that these are the Hilbert-Schmidt operators in /2
and every TEHS{34?) is unitarily equivalent to such an operator.

Every Te HS(™f) is compact and hence it also has a representation in the
form

Tx= 2 Jib(X\ehK xeX &)
=i
where {ek} and {p} are orthonormal bases and n*—0 as was shown in §4.7.2.
In fact, if T, is the operator

r - [Tek if K«wn
nk 10 if k>n

then Tnis an operator with finite-dimensional range and
UT-T je |IF-TN2=(2 W 212
K=n+1
We conclude that ||[F—7J-*-0 and hence T is compact. It follows from the

representation (*) that

n=

/f W\Tenlk= 2 Un<PnV= 2 [A412
-1 1 n=1

and hence a compact operator I is a Hilbert-Schmidt operator if and only if

k2_1 42 <0°
in the representation (*).
Based on these representations, the following can be proved.

4.8.3.1 Theorem, (a) HS(~f) forms a subalgebra of B{X).
(i HSpf) with the Hilbert-Schmidt norm | . |2 is a Banach algebra,
(c) If TeHS(~f) then T*eHS(Jf) and ||l|a=||l *]|2.

Remark. If Tell (OK) then LTeHS(jf) also for LeB(>K) and \\bT\\r<
CLUIEHLIM, i.e. is not only a subalgebra but a (two sided) ideal in B(K).
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4.9 Positive operators

We defined positive operators in §2.10.2. and also a natural ordering of self-
adjoint operators similar to the real numbers. We now continue to demonstrate
the similarities between real numbers and self-adjoint operators, as we did in
§84.1.2 and 4.7.2.

4.9.1. Referring to 2.10.2.3, a self-adjoint operator A is said to be positive if

(Ax\x) >0 xEH.

In this case we also write A>0, and for the self-adjoint operators A, B we
define
B » A if B—A > 0.

Throughout this section an operator means a self-adjoint operator. It is obvious
that B>A and O0«A imply

AR > XA and B+C > A+C

for every operator C. Moreover, if A<0 and B”~A then /.B</.A since in

this case,
X((B—A)x\x) < 0.

The most important positive operators are the projectors (projection opera-
tors). For further examples see 4.13.7-8.

First we shall give the analogue of the well-known theorem that a mono-
tonically decreasing sequence {a,} of real numbers bounded from below is
convergent.
4.9.1.1 Theorem. If {T,} is a sequence of self-adjoint operators such that

7yJs*T2r»...> Tna»..;;» B
then there exists TEB(XK) such that
\imTnx = Tx XEX.
Proof. By subtracting B and dividing by |[|7j—B]|, we may assume that
0 7« n=1,2,...
which means that
0 < (Tnx\x) < (x\x) xZ.yP ™)

and so
[173 = sup {(7>[x); Il = 1} < L
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Moreover, also for n<m,

0 < {Tnx\x)-{Tmx\x) < (x|x) (**)
and so
Wn-TJ cl. (***)

We assert that {T,,x) is a Cauchy sequence for every Xx£XX. Applying
21438 to T—Tn—Tm and y=(Tn—Tmx, we have

((MTn-T mx\(Tn-T M xf < ((Tn- TMx\X){(Tn-T nfx\(Tn- Tmx).
Moreover, by (**) and (***),
((Mn-TYX\(Tn-T mx) ¢ (Tn—Tmx\(Tn—Tmx) ¢ (x|x).
Thus we have
WTx -T 1T ¢ ((Fx 1) —TmX|X))|[X]|2
and so {Tnx} is a Cauchy sequence for every x£>X (see also 4.13.18). Let

Tx = \\mTnx XEX.
Then

(Tx\y) = lim (Tnx\y) = lim (x\T,,y) = (xX\Ty) X, YA XK
and hence T is self-adjoint. Moreover, it follows from (*) that
Oc (Tx\x)C (XlX)

and so (I’llcl. It is obvious that I" is a linear operator.

Remark 1. There is a similar theorem for an increasing sequence {7),} of
operators, with the same proof.

Remark 2. If T,x-*Tx for every X£)>X then we say that Tn—T strongly
(or pointwise). If |FA4—I||—0 then T,~*T strongly also, but the converse
is not true.

4.9.2. Our main result in this section is the following.
4.9.2.1 Theorem. Let I' be a positive operator and
To= 1 Tl = T,++(T-T n=0,1,....

Then the sequence {T,} is strongly convergent.
If lim T,,x:=Sx; x£)X, then S>0 and

S2=T.

Sis called the square root of T.
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Proof. If T,—S, then
S=S+y(7-S2
and hence S2=T (see also 4.13.19). Moreover, Tm; m= 1,2, ... are poly-
nomials of T and hence
T, Tk—TKTn nkK=132 ...

We may also suppose that I'<J since for any self-adjoint T, [<||[||/.
We shall prove that

Tn Tn+ls» 0O n=12, ..

and the convergence will follow from 4.9.1.1.
First we shall prove that 1—T,, is a polynomial of I—T>0 with positive

coefficients. In fact,
I-TI=j(1-T) *)
and

=Tl = 1-Tn-~(T-T2

=1-T,,~[(1-T*)-(1-T)]

= ([-rj[/-i-(/+r,)]+ 1(/-1)

= i-(/-r,)) 2+ -i(/-1). (**)

Now, if we suppose that 1—T,, is a polynomial of I—T with positive coeffi-
cients, then obviously (1—T,,)2 also has this property and hence I—T,+1 is
also a polynomial of 1—T with positive coefficients, by induction.

It also follows from (*) and (**), by induction, that

I-Tn#l n—o0, 1, ..

and hence Tn+l>0. Finally, also from (**),
Tn-Tn+tl= (I-Tn+)-(1-T,) - £[(1-Try-(1-T My]
=A[(-TR+(i-T,,-Im -T n-(i-Tn_D].

In view of (*), it follows that Tn—Tn+l is also a polynomial of I —T with
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positive coefficients and so
Tn-Tnml> 0
(see 4.13.20).

Remark. It can also be proved that the square root S is unique if it is required
to be positive.

The operator S is called a commutant of T if

ST = TS.

4.9.2.2 Definition. An operator S is called a bicommutant of T if
TL = LT implies SL = LS beB(K).

We note that if S' is a bicommutant, then it is also a commutant of T.

Remark. The usual definition of the commutant is a little different. The corn-
mutant of T is called the set ¥ of all operators such that

ST =TS sey
and there is a similar difference between the usual definition of the bicommu-
tant and that given above.

It follows from the recurrence formula for the construction of the square
root that if S2=T then

ST =TS
and we also have the following theorem.
4.9.2.3 Theorem. The square root S of a positive operator I" is a bicommutant

of T.
Proof. If LfB(je) and LT—TL then

LTl = LTn+£(LT+LT*)

and hence LTn+1=T,+1L if LTn—T,L. But it is obvious that LTO—LI=
= IL=TOL. We conclude that each Tn; n=1,2, ... is a bicommutant of T
and hence we also have

S\ Sx = IimT,Xx

4.9.3. As an application of the results of the previous subsection, we give the
analogue of the multiplication law of inequalities for positive operators.



214 Hilbert Space Methods in Science and Engineering

4.9.3.1 Theorem. If AB—BA then
A>0 B3»0=yIBSO0.
Proof. Let S be the square root of B\ then

(ABx\x) = L4SSx[;t) = (5/15x|x) = (st5x|5x) > 0.

4.10 Invariant subspaces and projection operators

To every invariant subspace J1 of an operator T we can construct a projector
PM, as we saw in §2.10.3. There is an intimate connection between T and
the family of projection operators of all invariant subspaces of T.

4.10.1. There is a certain commutation relation between T and the projector
Pjc of an invariant subspace Jt of T.

4.10.1.1 Theorem. Pm is the projector of an invariant subspace JI of T if
and only if
TPM = PMTPM. (*)

Proof. It follows by definition (see §2.10.3) that
N = {Pmx, x£X).

If 1 is an invariant subspace of T then TPmx”~J1 and hence PMTPMx=
= TPMX for every x£XX. IfJ1 is not an invariant subspace, then there exists
X~XK such that TPmx$/1 and hence TPMx APMTPMX.

4.10.1.2 Theorem. If 1 is an invariant subspace of T, then the orthogonal
complement J1 x is an invariant subspace of T*.

Proof. By the previous theorem, J1 is an invariant subspace of T if and only if
TPm=Pm TPM and, passing to the adjoint operators, we obtain

PmT* = PMT*PM. * *)
From §2.10.3, we see that
b =1-PmX
and substituting into (**) we obtain
V-Pm® ¢t*=(1-P")T*(1-P M)

and hence
= PMA*PA~T*P X+,
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Now let I be a self-adjoint operator and let J1 be an invariant subspace of T.
Then it follows from the previous theorem that the orthogonal complement
is also an invariant subspace of T and hence we have

TPm = P«T
instead of (*).

4.10.2. There is a natural partial ordering of projection operators:

Pm ~ Pjt iff PMX c PjfX

i.e. the range of Pm is a subset of the range of Pjr-
In 2.10.2.4 we defined an ordering for arbitrary self-adjoint operators T, S:

T*sS iff S—T>0

We shall show that these two kinds of ordering are the same for projection
operators.

4.10.2.1 Theorem. For the projection operators Pm, Pm the following are
equivalent:

(i) PIXK 3 PMX
(i) PIPM = Pm
(ifi) Pjf—Pm > 0.
Proof. It is obvious that (i)-o-(ii). If P1PM=PM then
(Py~Pm)2= Fjt~Pm
and hence PX—PM> 0. Conversely, if PX—PM” 0, then
1-Pn~1-Pwm
and hence
W{1-Pn)PmxI = {{1-Pn)Pmx\Pmx) < {{1-Pm)Pmx\Pmx) = 0.
Hence we conclude that
(1—Pn)Pm —0
i-e- PM~PnPm-

4.10.3. The most important and frequently used properties of projections,
connected with their ordering, are as follows.

4.10.3.1. Suppose that {PM} form an ordered set. Then

if Pn> Pjt

{I=Pm)Pm = {P" Pm otherwise.
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4,10.3.2. If Pa*sPb*sPc<Pd then

{P»~P* P° = PC and pb= pi

(P -P\(P -P \= if =
{ld Ic){Fb Fa) to otherwise.

The proofs of these theorems are obvious. A more serious property is the

following.

4.10.3.3. If Pv»Pu then P>x«Pwm is a projector onto
pn > ® pmrx

i.e. onto the orthogonal complement of Pm>X in Pv K
Proof. By 4.10.2.1 (see also 4.13.42),

(Pr~PuY —Pnr+Pm~2PrPm —Pjr—Pu

and P,~Pm is self-adjoint. Hence Pr Pm is a projector. Let SP be the
subspace corresponding to PX—PM by 2.10.3.1; then

PNXK = PMXK®EP

Pl —pr~puy+pn ana (ij*Pjt)Pjt—o.

since

*4.11 Non-compact self-adjoint operators

The spectral representation of a compact self-adjoint operator T is based on
the existence of an orthonormal basis in >X consisting of eigenvectors of T.
However, in the case of a non-compact self-adjoint operator T it may occur
that there is no eigenvalue at all, as we have seen in Example 1 of §4.3.1 and
Example 5 of §4.5.2.

In this section we shall introduce an operator-valued Riemann integral and
show how the spectral representation of compact self-adjoint operators can
be extended to the non-compact case.

4.11.1. The spectrum of a compact self-adjoint operator T consists of {0}
and eigenvalues in the interval (—|l"||, +[|7j]) of the real line. Moreover,
the spectral radius is ||7j| since there is an eigenvalue Awith |A=||7j| for a
compact self-adjoint T. The spectrum of a non-compact self-adjoint T is
also a non-void subset of (—]||T||, +||7j]); however, it may happen that there
are no eigenvalues.

An introductory result is the following.
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4.11.1.1 Theorem. If Tis a self-adjoint operator of )X, then Ais a regular value
of T if and only if there exists (£>0)
W(r=AT)jcl > XaxK.

The proof can be found as exercises in 4.13.22 and 4.13.23.

4.11.1.2 Theorem. Let m and M be the lower and upper bounds of T (see
2.10.2.5); then o(T) is a non-empty subset of the interval [m, M]. Moreover,
m,M£o(T).*
Proof. If X—a+il3, then
W(T-M)x\2 = (Tx—Ixx—iRx\Tx—ax—ilx) = ||7x—ax||2+/?2||x||]2 > )R[]x||2
and hence Ais a regular value of T if /0. If 9> M, then
IKT-ANX]IIX]] > MTx-XxWx\ = [ (x]x)-(1*[x)| > (F-M)][|x]|2

and hence Ais a regular value of T. Similarly, if X<m then Ais also a regular
value. m,M£0o(T) can be proved as in Theorem 4.6.1.1.

4.11.2. In the case of a compact T, the spectral representation has the form

T= f(z;iﬂ*j'l 4€[-imi; +Uryy. ™)

In the non-compact case the spectrum may fill the whole of [m, M] as, for
example, in the case of multiplication operators, and the analogue of (*)
should be

M
T= 1 kdP(X).

m

What is the meaning of this integral when P(f) is a projection operator, also

including O and I, for every Aand how should we choose {P{/)\ Xd[rn, M}}
for I?
Let us consider a partition

D= m< &K< <..< 4, !< ¥ =4

of the interval [m, M]. For every such partition we have the ‘Riemann sum’

ZAP (n)-P (h-))

which is a well-defined self-adjoint operator.
The usual definition for a finer partition is as follows:

D=m X< XR<...c XT X< M —4,

* Obviously, M is the supremum and m is the infimum of the corresponding bounds.

15 Maté
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is finer than the original one if {nK} is a subset of {/k}. Now we can give the
following definition.

4.11.2.1 Definition. The Riemann sum

k—

converges to the operator T if for every s>0 there is a partition of an interval
[m, M] such that for any finer partition k=0,1, ..., m],

WT-2K{P (K)-P(K-J)\\"e-

In this case we define

M
T:= 1 IdP(A).

Remark. There is also a strong version of this operator-valued integral:

b
Tx = f ).dP(k)x

a

if for every e>0 and x”)K there is a division of [m, M] such that for any
finer division {I'k},

WTX- ZE((P(K)X—P(K_i)*)H < e
K=

In the case of compact T,
P(X) = 2y K

where Pk is the projection onto the eigenspace NXk and it follows from the
definition 4.11.2.1 of the operator-valued Riemann integral that

2KPk= f AdpP(i)
i.e. in this case,
M
T = | XdP(X).
Thus, the problem of spectral representation for a non-compact self-adjoint
operator T reads as follows.
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Find {P(d); —°0< A-=+°°} such that
(i) if Ae<B then P(a) < P(®), and P(m) =0, P(M) =/

(i) P(A) = 7T(A);
+@
iy F = / SOP(A).

4.11.3. In the case of a compact self-adjoint P,
(r-anp(d)c o Ae[/a,M].

In fact, in this case.

(T—XDP(X) = ~(A,-9)P, Z Pk= 2 (A,-A)P,<0
i=1 ijisi A,SA

where {f} are the eigenvalues of " (with eigenspaces TV and hence PtPk=0
for zV/r. Similarly,

(r-any-e4a)) = 2 (A-A)p,>o0
since every projection operator is positive.

4.11.3.1 Theorem. If 4.11.2 (i) is satisfied and
(T—XDP(X) <0 (T-AN(-P(A)) >0
for every & p£[m, M], then M
PX)T=TP(X) and T = J XdP(X).

m

Proof. The commutation relation is an immediate consequence of
(T—XDP(X) «r 0.

In fact, the product (T-XI1)P(X) is then self-adjoint and the product of the
self-adjoint operators T—XI and P(f) is self-adjoint if and only if

(T-X1)P(X) = P(X)(T-XI)

(see 2.10.2 (ii)); hence P(X) and T are also commutable.
For every partition of the interval [m, M],

(T-XAIXPiXA-PiX™)) = (T-4,,,1N)(/-P(A;_D))(P(AY-P(AL D) > 0
and
& [-r)Ne -P (A ,-1)) = (XII-T)PE)PEH)—P ;i) > 0

15*
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since P(O()—PCATf-j) is a projection operator, by 4.10.3.3, and the product

of two commuting positive operators is also positive (see 4.9.3.1).
It follows that

T -2, BAPXEP(o-0) = 2, cr-~niPiid-Pfo-6) > o

m m
12:1A,(J,(A0-p A_D)-J'= I2:1(Ai/-T)(P(Ai)-P(A i i)>o
and hence
m m

m
Subtracting i2_1- from each side, we obtain

m
0<Tr -2V .Ne -W )

< r’L:&FI 1-A 1 H(P(AD-~ (A ,-D).

Finally we shall shov/ that

m

Iltgll(ﬂ|—ﬂ,_1)(P(Fl4)—P(ﬂ,-_1))|| < mlaxft—V o

and thus the theorem will be proved (see 2.14.43). In fact,

m
< Talx(ﬂ(-A,_l) Ql’(HXH,')-P(Fll D)x|x) = mlax F-A,_DJ|x[|12
since each member of the sum is positive and
plap-p(a._D)=1 *)
Finally, we apply 2.14.43 once more.

Remark. It also turns out in the proof that the ‘upper sum’ and the ‘lower
sum’ have the same limit if the Riemann sums converge to an operator.

4.11.4. It follows from the results of the previous subsection, for the spectral
representation of a self-adjoint T we have to find a set of projectors (P(A);
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Agi?} with the property 4.11.2 (i), that the operator T—XI is negative on the
subspace P{X))XX and positive on the orthogonal complement (I—P(X))>X.

For this purpose we shall define the positive and negative parts of a self-
adjoint operator. If |7 is the square root of T2 then

T+ 1=~ (T+\T\) T-1=A(T-\T\)

are the positive and negative parts of T.
Now let us introduce the notation

Tx:=T-XI

and let Px be the projection onto the null space Nx of Tx, ie. onto
Nx —{x\ Tx x=03}\ then 4.11.2 (i) is satisfied (see 4.13.26). We also have the
following theorem.

4.11.4.1 Theorem. If Px is the projection onto

Ni ={x: Tlx = 0}

then
TXpX<. 0 TXI—PX » 0
and hence we have the spectral representation
+®
T = | XdP(X).

Proof. It follows from 4.9.2.1 that [IA is the strong limit of polynomials of T2
and hence
TXATA = \TATX

First we shall show that
TPX=Tx and TXI-PX=Tt
and secondly that Tf-0 and TX>o0.

TFTX = 1(T +\T)(TAT) = \{T2\T\2 = 0

and hence TAXEPX)XK for every Xx£)XX, i.e.
PXTxx = TxX XEX. @)

It follows that PXTT is self-adjoint since TT is self-adjoint and, from 2.10.2 (i),

that
PXTX = T™XPX
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We conclude that

T,Pk={Ti+Tk)Pk= TkPk= PKTK = TX
and
Tk{1-PK =T +TK—TKPK=n .

For the second part of the statement to be proved

P\TKR=PK{Ti-Tj)=-PKTj —TI
and
\TK\Pk = (Ti-T~k)Pk=-T kPk=-P kTk = —Tk.

Hence Ti*s0 since from 4.9.3.1 it follows that Px\TK\>0. Similarly,
Ti»0 since

0 ~A\TKR{I-PK = {Ti —TK){I—Pj) = Ti-T-k +TkPk= Ti.

* 4,12 Functional calculus

The spectral representation discussed in the previous section can be extended
to real-valued polynomials of a self-adjoint T and more generally to all bicom-
mutants of T, and thus a useful isomorphism is established between the real-
valued continuous functions on the spectrum a(T) and certain subalgebras
of B{Sf).

4.12.1. Let ' be a bounded self-adjoint operator of B(yf) and if

afX) = 2 kX
k=0
then
= *
ag{T) : k2:0 KTk
where T°:=l. Then we have the following.

4.12.1.1 Theorem.
M

Tk= J XdP{X) k=0,1,2,....

m

More generally,
M

a{T) — J q{X)dP{i) *)

where {P(A)} is the set of projection operators defined in 4.11.4.1. Moreover,

0 CON< sup {|#(2)|; bi[m, M]}. (**)
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Proof. Since /’(Aj)—P~"i-i); i—1,2, ...,m are projection operators,

(2 AGIA-P(A-D)k=, 2 ;. Now)-/4V )

and hence this is also valid for the limit. Expression (*) then follows from the
linearity of the integral.

m m

{_2_qW (M"-P2Mi-x))x\x) = '_2 ylwP{1g--P(M-x))AX)

<sup{[?(A); A6<7(N} iZ:(.l(AW -P(Aj_D)x|x)HW I2sup|<7(A)|

(see also 4.11.3 (*)). It follows that

14 ~ )N -1 -)~ sup{li(A)]; Xia(T)}

by 2.14.43, and hence this is also valid for the limit of Riemann sums.

Now let /=/(2) be a continuous real-valued function on [m, M\. Then
there exists a sequence of polynomials q,,(A) such that gn->-f uniformly on
[m, M], ie.

Ul.-/111- -0

and hence, by the inequality (**), there is a self-adjoint operator f(T) such

that
\gn(T)-f(T)\\ “m0.

4.12.1.2 Theorem.

f(T)= f /(A1) dP(A).

m

Remark. For any function/ on [m, M] this integral is defined as the limit of
Riemann sums

5 /(;)Ne )- aar))

i=1
described in 4.11.2.1.
Proof. As in the previous theorem, we can show that

|.U.m (PW-I(AN(P(A)- RIALDXX) ™
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and hence
M

an(m) - | fR)dP(A)

m
in the operator norm.
By methods very similar to what has been used in the previous theorems,
it is easy to prove the following.

4.12.1.3 Theorem. If TEB{YT) is a self-adjoint operator with upper bound M
and lower bound m,/ and g are real-valued continuous functions on [m, M]
and a is a real number, then

(i) If /(A)>0 on [m, M], then AT )s>0;
(i) WI(T) = af(T);

(Hi) (f+g)(T)=F(T)+g(Ty,

(iv) (fg)(T)=1(T)g(T);

(v) f(T) is a bicommutant of T.

The functional calculus above can be extended to certain measurable func-
tions and to complex-valued functions on [m, M\ (Riesz and Sz Nagy 1955,
Nr 129). One of the important features of this extension is that every bicom-
mutant of T can be given in the form f{T) with such functions /.

4.12.2. The spectral representation of a self-adjoint operator can be applied
to the solution of the equation

Ix—Tx =f (*)

also in the case of non-compact T.

If pn—pnft) is a sequence of polynomials uniformly convergent to y=1/t
in [m, M], then by the result of the previous subsection, p,,(A)f tends to the
solution of the equation (*) when A=XI—T and Ais a regular value.

Example. Since

7“ MbT) =r74ub ? r*e° (**>

we have
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and hence the sequence of polynomials

Pn®)'-=r 2 (I-rt)k n=012..

tends to Vi uniformly in every closed subinterval of (0, 2/r).

By the result of the previous subsection, if m>0 and M~=2/r (i.e. r<2/M)
then {pn(A)f} tendsto A~"f, the solution of (*) if A=XI1—T and X is a regu-
lar value.

Remark. It is easy to verify that there is also a recursive form of the sequence
{A,,} of operators tending to (XI—T)~1:

A =rl A+i = (I-r(XI-T)JAn+rl.

4.13 Problems and notes
04.13.1. Prove properties (i)-(v) of §4.1.1.

04.13.2. Prove that if XX is finite dimensional, TEB(>K) and Tx=0 only if
X—0, then

(@) T is onto

(b) T-1 is bounded.

4.13.3. It follows from the considerations in §2.11.2 that if U is a unitary
operator from one Hilbert space XXX onto another XKr, then

(i) {x.} is convergent in XXXif and only if {Ux,,} is convergent in XK\
(i) N<~XKX is compact if and only if UJI is compact;
(iii) TABOKX has an inverse T~IEB(KD) if and only if

UTU~I = nTun*EB(Kr)
has an inverse

(UTU*)-1= uT~Wn*eB(>K2.

04.13.4. Show that a linear operator of 12 is a Hilbert-Schmidt operator if
and only if there exists an infinite matrix A with elements aik obeying the
condition

2 2.lad 2<o0°
i—l k=

1
such that Tx—AX in the sense of §4.4.3.
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04.13.5. Find an infinite matrix which represents a bounded linear operator of
/2 that is not a Hilbert-Schmidt operator.

04.13.6. Does there exist a compact unitary operator other than I'=0?

04.13.7. Show that a linear operator I' of a finite-dimensional space XX is
positive if and only if its matrix representation is positive definite, i.e.

n n
gzlfg_zlailod*k> 0
where {x,}; /=1,2, ..., n is an w-tuple of complex numbers.

Give the condition for the kernel of an integral operator in L2[a, b\ to be a
positive operator.

04.13.8. Show that the multiplication operator
[Tf1(t):=h(t)f(t) [EL 2[a, b]

where h=h(t) is a continuous function, is positive if and only if h(t)s*0
for every t£[a, b],

04.13.9. Show that Theorem 4.7.2.1 is also valid if I" is a compact operator
from Xk into another Hilbert space XXr.

04.13.10. Show that every operator T in the form
Tx := 2 i"**C(Dr*)I'I

where ||xj=|lyj=1 (k=1,2,...) and xk, yk are given vectors and a*—0
is a compact operator.

4.13.11. Let D be an (unbounded) linear operator and let n0~0 such that

(207—D)_1 exists as a compact operator of XX. This is the case for many
‘symmetric’ differential operators. Prove that

Dy = 2 akKY YE®(E>)

where Pk; k=1, 2, ... are the projectors onto the eigenspaces of D. How do
you find {ak; k—1,2, ...}?

04.13.12. Prove that every compact projector P has a finite-dimensional
range.
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4.13.13. Prove that the range of a compact operator is a separable subspace
of XX (in the case where XX is non-separable).

4.13.14. Let M be a subset of a Hilbert space >X. Then Mt<zM is called the
e-net of M if

(a) Jf consists of a finite number of elements;

(b) for every xdJi there is an element zd.Mt such that |jc—z||<e.

Prove that if M is compact, then we can find an e-net Mc<zM for every
e>0.

4.13.15. Prove that the range of a compact operator T is ‘almost finite di-
mensional’ in the sense:

‘For every e>0 there is a finite-dimensional subspace Mez>X such that
for every Xx£XK,

inf {im—Tx\\; mEM) < s|lid].’

04.13.16. Prove that if (AB)-1 and B-1 exist then A-1 also exists. Give A-1
in terms of B and (AB)-1.

4.13.17. (a) Give the square root of a multiplication operator
[rx]1(0:= h(tx(t) XEL2(-°°, +=)
where h(t) is a continuous function with h(t)>0 for every t
(b) Give the square root of a positive definite matrix A (i.e. find the matrix
B such that B2=A).
(c) Give the square root of a Hilbert-Schmidt operator in LZa, b].
04.13.18. Show that if
Tl  T2>...» Tn B
for the self-adjoint operators B, T,,; n=1, 2, ... then the (numerical) sequence
{(Fx[x)}; x£X n—1.2, .
is convergent.
4.13.19. IfT, Tn, S, S,\ n=1, 2, ... are bounded linear operators of a Hilbert
space > and
Tnx-+TX S,,X -* Sx XEX

then
S, X “mT Sx XEX.
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This theorem follows from the inequality
NMITAx-IF34 < ||r,,S,,Xx-r,SX|| + |[rn"Sx-rSx||
A WTAWSNX - S X\ + WTnS x-T Sx\\

since IT,\ is bounded by the uniform boundedness principle (see the Appendix
8A.2.2.1).

How can we prove the theorem without referring to the uniform bounded-
ness?

4.13.20. If T~O, then T">0; n—2,3,... also. In fact, for n=2k,
(T2*1*) = (Tkx\Tkx) > 0
and for n=2k+l,

(T2k+IX\x) = (TTkx\Tkx) > 0

since T>0. Itis easy to show that the sum of positive operators is positive.
Hence if 7V0 then p(T)s*0 for every polynomial p with positive coeffi-
cients.

4.13.21. Prove that I'</ implies T2*sl. Is it also true that in this case,
Tn™\ n=3,4,.7

04.13.22. Show that if there exists an inverse for SEB(Ji?) then
there exists M >0 such that

IS'H > M\X\\, *)
Find such an M.

4.13.23. Show that if4.13.22 (*) holds for a self-adjoint S, then the range of S
is XK (i.e. 5 is onto).

4.13.24. If
ml< A< MI m>20

for the operator A, then J1~1£B(>K) and v&1>0.
Proof. By 4.11.1.1, A~1EB(>K) exists since A»ml (m>0). Moreover,
for a>M,

(od-A)ns*0 n=12,..

by 4.13.20 (or 4.9.3.1) and, applying the Neumann series expansion,

A-1= [ocl-(0d-A)]-1= 2 =T+ W -A)k> 0.
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04.13.25. A more precise statement about the operator A in 4.13.24 is the
following:

Prove this!

4.13.26. Prove that if P(l) is the projection onto
Jin+ ;= {x: Tix = 0}
then P(X)<,P(p) for (See 4.11.4.1)
4.13.27. Prove that if A is an nXn matrix and ldo (A) then
VA~ akkl < ﬁ'fe\aik\ k = 1,2, ..

(see 1.8.26).

04.13.28. Find the eigenvalues and the corresponding eigenvectors of a pro-
jector. Find the spectrum of a projector.

4.13.29. Let T be an operator with finite-dimensional range, i.e. T has the
form

Tx := 2 (x\aK)bk
k=1

where {ak, bk\ k=1, 2, ..., n} are given vectors of ). Find ak, bk\ k=1, 2, ...
such that the spectrum a(T)= {0}.

04.13.30. Does the Volterra operator
[771(0:= / (2 ak(l)bk(T))/(T)dr
0 1
have a finite-dimensional range?

04.13.31. Let A be an «Xu matrix with elements aik (/, k=1,2, ..., n). Let
us consider the Hilbert space >Xn of un-tuples of complex numbers with scalar
product

n
[Hly) = 2 xkh
and the operator defined by

y = AX. *)
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Write the operator (*) in the form

where ak, bxEXX,,.

04.13.32. Prove that the operators in B(>K) with finite-dimensional range
form a subalgebra of B{K')- Moreover, show that they form a (two-sided)
ideal of B(K).

04.13.33. Prove that for any operator with finite-dimensional range,

)., @@ 2, R Ik

Moreover,
\\a®b\\ = |[al| |||

where the norm on the left-hand side is the operator norm.

4.13.34. Let T be defined as
T{xK = {5*/1*} {xkel2

where {24 is a (finite or infinite) sequence of real or complex numbers.
(d) What is the condition for @(I")=/2?
(b) When is T bounded?
(c) When is T compact?
(d) Give the spectrum of T.
04.13.35. Let I be a bounded self-adjoint operator. Prove that
@ T—Xl< 0 if X> U
(b) T-X1~0O if X —H[I;

(©) lim spp [TV = L),

04.13.36. Give a sufficient condition for C such that

N> B =AC s*BC.

04.13.37. If R,,»0 and ||B,,-R||-0, then B>0. Prove this!
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4.13.38. Find g~g(X) such that

M
T+= J g(X)dP(X)

m

where P(/.), T', m, M are as defined in §4.11.

4.13.39. The operator T is called closed if xn-~x and Tx,,—y imply x<i3s{T)
and Tx—y.

Examples.

(i) Every TEB(K) is closed.

(ii) The differentiation operator in L2[0, 1] is closed. This follows from
the following sequence of inequalities:

1 t t
J Xn(t)-xn(0)- f y(r)drj2di<; max {|x,,(/)-*,,(())- J y(T)dr|2; fE[O, 1]}

0 0 0

= maxjjJ "--ix, (T)-y(r)jdrj ; i€[0, 1]|

</ dr

04.13.40. Let L be an unbounded linear operator with domain in the Hilbert
space X. Also, let TEB(K) be a right inverse of L, i.e.

LTX = X x4 K.
Prove that L is a closed operator if the operator TL is bounded.

This is the case for many differential operators.

413.41. If Ji=SP®Ji for the linear subspaces JI, ¥ and Jf of X, then
we write
Se=JiQJI and Jf = PFQJI.

This means that
xMHf iff x$.Jt and (x|n)=0 for every n£Ji\
XEX iff xEJS and (x|s)=0 for every

04.13.42. Prove that if P/IXX~)PMXK, then PAPM=PMPX, where Pv,
PM are projection operators.
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4.13.43. Let Ur be the right shift in 12:

Ur{HK = {0, b, &+i,
We shall show that A=1 is in the spectrum of Ur. For every x:= {ckfj2
(I - UI’)X = {{X, ooo}

and hence, if y.= {f]k is in the range of 1—Ur, then
K2:1q K= 0 &)

and so the range is a proper subspace of 12 Moreover, if (/—Ur)x=0 then
x=9 and hence the inverse (/—Ur)~" exists as a possibly unbounded, not
everywhere defined operator. If

fl for k< N

~lo for k> N
then

1 for k=1
fk=m—1 for k= N+1 **)
(@] elsewhere

for y=(1—Unx. It follows that (/—Qr_1 is unbounded since (/—Un~Y=x,
lj|| = /2" and |jd|=iVY2 i.e. (/—Cl)-1 sends a bounded set into an unbound-
ed one.

Finally, we shall show that the range of —Ur is dense in 12 Let y£/2 satis-
fying (*) and yNkil2 satisfying (**) for wW=1, 2, .... Then, by easy calcu-
lation,

Wy+ 2%1kYK\* = 12 ik\2+ 2 M*
k=2 *=1 k=N+1

and the right-hand side can be as small as we please if N is large enough since
(*) holds and y£12
Thus we have proved that the range of 1—Ur is dense in the subspace satis-
fying (*).
Now let z£/2 be arbitrary, and let e>0 and M>0 be sufficiently
large that

where z:={£K). Then y:= {rjk}, where

for Kk N
tik— —a/M for N < K« M
0 for M =<K
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has the property (*) if

*
1
R

Moreover,

R A (R Y AW AL

and the right-hand side can be as small as we please if M is large enough.
It can be shown by similar calculations that X——1 is also in the spectrum
of Ur.

04.13.44. Let P, Pr, Ps be projection operators. Prove that

N LA if P*>Pr>Ps
Pr(P-P =1 if P'<P'<P\
What happens when Prs»/2>P\?

4.13.45. A linear operator I' of a finite-dimensional Hilbert space always
has an eigenvalue and hence it has a (one-dimensional) invariant subspace
(see 84.1.1). The existence of a closed invariant subspace for every linear oper-
ator of an infinite-dimensional Hilbert space >X has not yet been proved.

Now, let us suppose that a linear operator T of the infinite-dimensional Hil-
bert space XX has a property which implies the existence of a (closed) invariant
non-trivial subspace Jic~)XX for T. Moreover, suppose that this property is
inherited by the restriction of T onto J1. (Such a property might be, for
example, that T is compact or that T is self-adjoint.) Let PM be the projector
onto the (closed) invariant subspace Jt, Then the set of invariant subspaces
has the following properties.

(i) For every J1 there exists an invariant subspace XX such that
1-Pm< 1-P,,.

@iy If (1—+PM)z=0 for every N1, then z=0.
(Property (ii) is equivalent to saying that the common part of the invariant
subspaces is {0}.)

16 Mité



Causal Operators

A fundamental principle of input-output systems is that the output depends
only on the ‘past’ of the input. This is called the causality principle. The tran-
sition operators of systems satisfying the causality principle are called causal
operators. The object of this chapter is to present a mathematical theory for
causal operators. We shall investigate the fundamental properties of causal
operators and the connections with other possible properties such as time
invariance, passivity and stability.

5.1 Causal operators in L2spaces

The values of a ‘time function’ x=x(t) could be real or complex numbers,
matrices, functions etc, but in this section the values are supposed to be real
or complex numbers only, since the formalism is simplified but all the main
problems remain the same in this case.

5.1.1. The mathematical expression of the causality principle is as follows.
Let Q be one of the following ‘time structures’:

(a) the real line;

(b) the 0 half of the real line;
(c) the natural numbers;

(d) 0, 1, £2,....

5.1.1.1 Definition. Let X be a linear space of functions defined on Q and let T
be an operator of X. Then T is causal if from

[(t) = #(© for t<t
it follows that
[771(v) = [Tg]l(® for t<t

where t is any fixed point in Q.
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Notice that causality is defined also for unbounded or even non-linear
operators.
Let us define

for T<t .
for t» t *)

and Et=1—E'. [E‘; tEQ} are called truncation operators.

Remark. E' is also represented by multiplication with

for ¢« <t
®) - for >t

It is easy to show that {Eu t£EQ} and {E,\ tf i3} are projection operators.
Moreover, T is causal if and only if from

E'f = E'g
it follows that
E'Tf

E'Tg.

5.1.1.2 Theorem. Each of the following properties for a linear operator T of
X =L2(R) is equivalent to the causality of T:

(i) E,T=E,TEt;
(i) TE,=E,TEt-
(iii) E,)K\—{E,x; x£XX} is an invariant subspace of T for every tj Q.

Proof. Let T be causal. It follows from the definition of E* that E'(1—E{) -0,
which means that

E'il-E~AXx™ 0 X ex
and hence
E,T(I-E)x=0 X E£XK

since T is causal. But the latter equality is exactly the same as (i).
Conversely, if (i) is satisfied and E'x —E 1y, then

E'Tx =E'TE'X=E'TE'y = E'Ty

which means exactly that T is causal.
Thus we have proved that (i) is satisfied if and only if I" is a causal operator.
For the equivalence of (i) and (ii), substitute Et=1—Et in (i) and
Et=1—E* in (ii). For the equivalence of (ii) and (iii) we refer to 4.10.1.1.
The most important examples of causal operators are the following.

i6*
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Example 1. In the case where Q is {t: t>0} or the real line, every Volterra
operator in L2(fl) is causal. Indeed, if /(¥)=0 for 1</ then

t

f K(t, x)f(z) dr = 0.
0

Example 2. The Volterra operators in the discrete case, i.e. when Q is a set of
integers, are those operators that are represented by a lower triangular matrix

an = 0 for i<j.

Indeed, in this case,

i
yt= N <ikkk=0 if xk=0, for K«sT.
k= —6

Example 3. The (right) translation operators
U,J:=f(*-to) io>0

and hence the operators in the form

kéfl(.ku’k

are also causal. In fact, if /(r)=0 for t then
/(i0—) =0 for «~t0"t, e

/(Mo 1) =0 for t< t+t0.

Example 4. For any bounded function a—a(t), the multiplication operator

[raf](t):= a(t)f(t)

is obviously causal.

Most of the above examples are characteristic in the sense that an operator
represented by a finite or infinite matrix is causal if and only if the matrix is
lower triangular and an integral operator is causal if and only if it is a Volterra
operator. (As an easy exercise, prove these!)

5.1.2. Some of the important classes of operators are ‘automatically’ causal.

5.1.2.1 Definition. The operator T is called time invariant if

UTtT = TuUt i6l2
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where Ut is the translation operator
[UXx](9:= x(z-1).

U, is an isometry, i.e. |[t/fijd = |lid for every xE£L2(R) and, in the cases
5.1.1(a) and (a), U, is a unitary operator. A fundamental connection between
the truncation operators {Et\ Q} and {Ut\ tEQ] s

Et+TU, = UtEx t, t€i2 *)

which is easy to verify.

5.1.2.2 Theorem. If T is time invariant and
{Etox\ xEL2(R)}

is an invariant subspace of T, then {Etx; x£L2(Q)} is also an invariant
subspace for /<iO0.
If {Ut; t(iQ) consists of unitary operators and hence U-~Il exists (in this
case [/€1=(/_)), then {Etx; xEL2(.Q)} is an invariant subspace for every
Q and hence T is causal.
Proof. It follows from the (ii)o(iii) part of Theorem 5.1.1.2 that

TEt = EIOTEIO.

Multiplying both sidesfrom the right by Us and applying (*) for E,oand Us,
we obtain
USTEt0 s = UaEBSTEt0-s

if we are careful enough to ensure that t0—sdQ. Since Us has a left inverse
in any case, the proof is complete.

5.1.2.3 Definition. The operator T in X = L2(i2) is passive if
(EX\Tx)+(Tx\E,x) > 0.

Remark. For the case where Q is the real line, this means that

1
Re ( J x(T)[Tx](®)drj s*0

and, in any case, the above definition has the following meaning: ‘the energy
supplied by the transition x—Tx is positive’.

5.1.2.4 Theorem. If the linear operator I of = L2(i2) is passive then it is
also causal.
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Proof. In this case the bilinear functional

BT(f,g):=(Etf\Tg)+(Tf\Etg)
is positive and hence, by 2.9.2, the Cauchy inequality

\BT{f g)I*< BT(f, f)BT(g, 9) (*)
is valid. Thus if £'/=0, then BT(f,f)=0 and hence BT(f,g)—0 for every
g£L2(Q). This means that

(E‘Tf\g) = (Tf\E'g) = (E'fITg)+ (TF\E’g) = 0

for every g£L2(i2) and hence E‘Tf=0, i.e. T is causal.

5.1.3. The set of causal operators in L2(0) form a closed subalgebra of B(yd).
In fact, if K and L are causal operators then

E’(KL) = (E'K)L = (E'KE")L = £'E(£'££") = (E'KE) LE' = E'KLE"'
and hence KL is also causal. Similarly, aK+RL is causal for any scalars a, 18

and, if {£,; n=1,2,...} is a sequence of scalar operators and Kn-*K in
operator norm (or even strongly!), then

£'E =£'££" tea
since in this case
E'Knx - E'Kx and E'KnE'x - E'KE'X
for every Xx£L2(R).

However, the adjoint T* of a causal operator is not causal in general and the
same holds, if it exists, for the inverse operator T~x Some of the important
problems of causal operators originate from these ‘instabilities’.

Let us begin with the adjoint operator T*. The adjoint of a lower triangular
matrix is an upper triangular one. Moreover, we proved in 4.10.1.2 that if JI
is an invariant subspace of T then the orthogonal complement of JI is an

invariant subspace of T*. Motivated by these considerations, we have the
following definition.

5.1.3.1 Definition. Let X be a linear space of functions defined on Q and let T
be an operator of X. Then T is called anticausal if from

/M = g(r) for X>t
it follows that

[T(T) = [Tg]l(x) for X> t

where t is any fixed point in Q.
The counterpart of Theorem 5.1.1.2 is the following.
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5.1.3.2 Theorem. Each of the following properties for a linear operator T of
K = L2(I2) is equivalent to the anticausality of T:

iy E, T=EtTH-

iy TE=E"TH;

(iii) E*X  {E'X; x£X) is an invariant subspace of T for every t£ Q.

If we interchange Et and E* in the proof of 5.1.1.2 then we obtain the proof
of the above theorem.

If T is causal, then T* is anticausal and vice versa. The diagonal matrices
represent those operators for a ‘discrete’ Q (i.e. if £2={0, £ 1, £2, ...} or a
subset of it) that are both causal and anticausal. These operators are called
memoriless. The multiplication operator of Example 4 is also memoriless.

It follows front these definitions that the causal self-adjoint operators are
memoriless operators.

5.1.4. It is easy to verify by an algorithm giving the inverse matrix that the
inverse of a lower triangular matrix is also lower triangular. The situation is
quite different in the general L2case. The most simple example of this is the
translation operator U, in L2(— +°°), when (/(1=t/_,= Ut* is an anti-
causal operator.

The block diagram of the simplest feedback system is shown in figure 5.1;
it is characterised by the following system of equations:

y = Kh
h -- Fy+u

fig. 5.1

where y, h, uEL2(R) and K, F are bounded linear operators of L2(fi). It
follows that

(I-FK)h =n

(I-KF)y = Ku

and hence, handy are uniquely determined by the input nif and only if | —FK
and I—KF, respectively, have a left inverse. By the causality principle we claim
that the transition operators u~*y and u—h should be also causal, and this
is satisfied when I—FK and 1—KF, respectively, have a causal inverse.
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Now we shall show that there is a class S(,/d) of causal operators such
that F,KES(3tf) guarantees that (/—FK)~l and (/—KFfil are causal
operators. These operators will be called strictly causal.

5.1.4.1 Definition. A causal operator T is called strictly causal if for every
e>0 there exists a partition of Q such that for any finer partition,
N=U<..<t,
WATAN < e
A =Eh-E™i i=12 ,m

Roughly speaking, if the transition operator of a system is strictly causal,
then the value y{t) of the output depends only on the ‘strict’ past of the input.

where

Example 1. Every Hilbert-Schmidt Volterra operator is strictly causal. In
fact, let I2 be the real line and let " be a Hilbert-Schmidt Volterra operator of
L2(R); then

Ty:= 1 k(t, r)y(r)dr
with
+@® +@®
/ [ \Kk(t, r)|2drdr (*)
In this case,
W m = -0/(0 -3 ™ Lwto"" """
0 ¢ for t< ?._!
, [ k(t,x)/(t) dr for m_x< TI<ij
[rM/Kko {
J k(t, ©/(v)dt for »<st
I
0 fort< ?,!
[ATAY](0 = f k(t, ©/(©dr for t{ < i, X
»(-i
0 for if< i
Hence
WwAY <w A% = | Jw *idtdr

(for the meaning of || . |2 in this case, see §4.8.1).
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Now, considering (*), the right-hand side of this inequality can be as small
as we please if the partition is fine enough.

Example 2. If Q={0, 1, 2, n) and T is an operator represented by an
nXn matrix, then T is strictly causal if and only if
aik=0 for i K

i.e. the nXn matrix is lower triangular with zero diagonal elements.
In fact, in this case there is nofiner partition than t~i (i=I, 2, ..., ri) and

A'X = [E'-E} Ix = Xi&i

where xt is the zth member of the infinite sequence xfl2 and efiP with 1
in the .th position and 0 in all other positions. Moreover,

TAX = Xt;
where i; is the 2th column of the matrix T and, finally,

A'TA'X = nr,-"e;.
Hence

WAITAX\ = N iy.
It follows that T is strictly causal if and only if tkk=Q (k=\, 2, ..., n), i.e.
the diagonal elements of the matrix T are 0.

Example 3. The multiplication operator on L2(—°°, +°°), which is both
causal and anticausal, is not strictly causal. To show this, let

[Tf](t) = R(0/(0 /€ L2(— +co)
where h is a bounded continuous function:

ATAf = /~(0/(0 if tE[tt-i, t]
J 10 elsewhere

by a computation similar to that in the previous example. Hence for every
e>0,

U'TA'fh = ( / |A(0/(012di]12< £
U-i

if the partition is fine enough. However, this does not holdfor the norm of the
operator A'TAl In fact, let

U= i/n h(td * 0
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and
if /E[(/—N)/n, i/n]
elsewhere.

Then ||gja=1 and
U'TAgJI = n /"™\h()\2dt > inflh(012> 4 1*(OI2
(I-y/n 2

if nis large enough, since h=h(t) is a continuous function. On the other hand,
for every partition of the interval [0, 1] we can find a finer partition with t—ijn.

The main theories concerning strictly causal operators, including causal
invertibility, will be discussed in §5.3.

5.2 Causality in a Hilbert space

The material in the previous section has perhaps been presented in a more
abstract form than is strictly necessary; however, in this abstract form there
is an immediate extension of the theorems for causal operators to more gen-
eral Hilbert spaces.

5.2.1. Let us consider a general Hilbert space XX instead of L2(fl) and a one-
parameter set (P“; /6/1} of projection operators of XX totally ordered in the
sense that for every pair Ps, P’

either Ps< P* or P*< P5
instead of the truncation operators defined in 5.1.1 (*).
5.2.1.1 Definition. The linear operator T of XX is causal with respect to {P"\
/eny if from
P‘x =P'y tEA, X,yEX

it follows that
P’Tx = P'Ty.

It is easy to check that with the exception of 5.1.2.1 and 5.1.2.2, everything
that we have said about causal operators in §5.1 remains valid in this more
general case.

5.2.2. Let us consider an rknhs XX (R) with 3)=Q. Then the causality,
defined by 5.1.1.1, can be expressed by the kernel R=R(s, t) as follows.
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The operator T of X (K) is causal if from
(A)19(.,0) = (*(-)11(.,0) for t*s
it follows that
(PYK )IR(. 0) = (Ir*IC.)IR (. 0) for t*=]

where s is any fixed point in Q.

5.2.2.1 Theorem. A linear operator T is causal if and only if

{A(C0 t j}
i.e. the orthogonal complement of each linear space generated by {R (., t);
is an invariant subspace of T.
Proof. Let the linear operator T be causal and let f(t)=0 for every t*zs;
then fE{R (.,t); /«si}-1 and Tf(t)=0 for every hence we also have
TMR(.,t), t<s}\

Conversely, if {/?(., t); /cr}-1 for every s is an invariant subspace of the
linear operator T and f(t)=g{t) for tcs, then f—gd{R(mt); i<i}x
and hence T(f-g)=Tf-Tgd {/?(., t); Lsj}1, i.e.

0= (Tf()—Tg(N\R(., 0) = {TF()\R(., ))—Tg()\R(., 0)
= (TF)(t)-[Tgl(t) /I<i.

Now, let Ps be the projection operator onto

{R(.,0; t< 4

i.e. onto the closed subspace generated by {R( ., t)\ /«.?}. Then it follows
from 5.2.1.1 and 5.1.1.2, that the linear operator T of an rkns XX (P) is causal
(in the sense of 5.1.1.1) if and only if it is causal with respect to Ps; s£Q.

Remark. 5.2.2.1 can also be derived from 5.1.1.2.

5.2.2.2 Theorem. {Ps; has the following properties:

(i) PYKO =/(0 for i< i;
@ii)) If gd™(R) and g(t)=f(t) for t*zs, then |lg|| s*I|PY]];
(iii) f{t) = g(t) for t< s if and only if P4 = Psg.

Proof.
PJ:=f-P°f and (/(.)-PY(.)|IK(.,0) = 0O if *><

by the definition of Ps; hence (i) is satisfied. By applying the projection prin-
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ciple (2.4.1.3 or 2.5.4.2), we obtain (ii). The proof of (iii) is left to the reader as
a simple exercise.

Remark If /EL2(0), then the truncated/ also belongs to L2(fl), but this is

t RKHS. If the k | then f (fr
mary Loan i o such that Eswmouzen;nw%fcgﬁﬁ of e n?ﬁhe tausd
iy rby i truncafion operaiors 0 an e W CONGNL L o
5.2.2.2 (i)-(iii) are common properties for L2(fl) and W|th 6

Now we can say something about the form of a causal operator in an rkhs.
If I"is a linear operator of X (K), then

[TH](0) = (THCIR( 03 = (OT*R(. 0
and hence T is represented by the scalar product with
]) T*R(.b
called the keme| Of the Operator It follows that T is causal if and only if

TE{*(.,]); t<s}N=>TM~™(.,t); t*ss}t.
Hence
{K(.,0; £ {Y (., 0; trs}™

and, from the definition of the orthogonal complement,
W70, 0. e {R( 0 t<n
ror 8VETY SEQ.

Example 1 Let us consider the rkhs )K(S) in Example 3 of 83.3.1, with
kernel

i
R(S, 0= / (i- O+(j- O+dt.

operator of to be causal
Recall that XX{B) consists of functions/ on [0, 1] with

We computei&for and the condition for the kernel of a linear

/W [0, 1] /(0) = I'(0) = 0

M =(/ 12tk

and

Hence

~ P &mo, ]
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| WA)2WA) o <
. [i"/1(0=1/(0 for

by the minimum property (ii) of Psf in Theorem 5.2.2.2. Now, applying the
identity

j\t-x )+ )dx =/ (t-x)F(x)dx = f f'(z) dt = /(/)

and
di 17°(j) if
since [Psf]" is continuous and [/3J]" (0—0 for we have
[77](0= IV wdr+ //*(*) dt =/(*) + (**)/'(*)

if set and [PS](t)=f(t) if s>t on the basis of property (i) in Theorem
5.2.Z22.

Remark. It is easy to see that the above result also derives from the fact that
the operators {P*\ s£[0, 1]} are unitarily equivalent to the truncation opera-

tors {£s; s€[0, 1]} of L2[0, 1].

If $~(s, t) is the kernel of a linear operator T of Jf(S), then from the defi-
nition of scalar product in

(n)\r(.,t))= f& rbm ob -
0 0z
We shall show that

-7?—2r- -(ei)=0 for >t **
ol ) (**)
In fact, it follows from (*) and 5.1.1.2 that if T is causal then

gy =0 for t€ s~rj Njg(r)dT = 0 for [BS, geLdo, 1
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i.e. for

S/ (i~ (T,0)fwdT=0 S~APU], i€[0,1]
and hence (**) holds.

Remark. It follows from the definition of Jif(S) and the kernel .T(x, t) of T
that for every fixed /€[0, 1].

NN (g 1)EL2[O, 1 and 3T{z,t)"{S).
Hence if

/ =0

5

for every g€L2[0,1], then this is true in particular for g (. ., t) and
hence dT"{., i)=0 on [s, 1]

If (**) holds then

t) = 2T\, t) for €=t
oT

since SF(., 0 is a continuous function at z—t; moreover,

3T(s,i) = / -~-3T(z,t)dz

t oo\ S

= [ f-~(z,t)dz + | 2Tt t)dt

0 t
=Y (t, t)+(s—t)y'(t, t) for
where (as before)
dT'(t, t) :=-jL<r(x,t)

at z=1t

Example 2. The rknhs with kernel
R(s, t) = sup (j, t) s, t£]0, 1]

plays an important role in the study of Wiener stochastic processes. By cotpu-
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tations similar to those in the previous example we obtain

psf \Vf (O for

J () for t>5
and for the kernel of a causal T,

for T< 1
for T>/

in the case of X{K) with kernel R(s, /)=sup(s, t) (s, /£[O, 1]).

Example 3. If we define strictly causal operators in Jtif(S) and in the r« s
of the Wiener processes as in 5.1.4.1 (with obvious modifications) then it turns

out that a linear operator T of an r« x5 is strictly causal if
00
and
11 2
[ I -p- ~"0,0 djdi<”o,
0O 0 <«

respectively.

*5.3 Strictly causal operators

Certain Volterra integral operators and their ‘discrete analogues’ are the most
important examples of strictly causal operators in L2-spaces. Strictly causal
operators in a general Hilbert space XX have a representation similar to the
Volterra integral operator. Moreover, XI—T has a causal inverse for every
2*0 if I is strictly causal.

53.1. Let {P*; tEA} be a one-parameter set of projection operators, as
defined in 85.2.1. Then a finite sequence

0< P2<:...< Pm< | (*)

is called a partition, where for i*/ (0 and I are, respectively, the zero
and identity operators and the abbreviation P ‘:=P ‘< has been used).

0< Pri< P'2<...< P'k 1
is called a finer partition than (*) if

(Pf; /=12 ..mbc {P";i=12 ... K.
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Remark 1. 0 and | are not necessarily contained in {P'; t£/1}; however,
a partition always contains 0 and / as minimal and maximal elements.

Remark 2. The totally ordered {Pf; t*A) defines an ordering in A in the
obvious manner

s-cto Ps P’ and Ps~™ P'.

Hence we shall sometimes write instead of Ps*eP‘
We are now ready to define strict causality.

53.1.1 Definition. Let I' be a causal operator with respect to {P1; tdA).
Then T is called strictly causal if for every e>0 there exists a partition such
that for any finer partition,

WAITAN < e
where

Al=P\ Antl= 1—P" and Al:=P1P‘1;
i=23,..,n
An important norm estimate for the representations of strictly causal

operators is the following.

5.3.1.2 Theorem.

11"z AKTAK\ = max WAKT AK\
k—1 k

Proof. Applying 4.10.3.3 and 4.10.3.2, we have

M == WEA kW= “2WAkar *)
and so
n+1l n4-1
>1\_Zi AKTAKX\2 = t;i \AKT A kx\\2 (**)
Moreover,
ft-f-1 n4-1

izi WAKT Akx\\2 = izi WAKT Ak(Akx)\\2

N+ 1 T+ 1

<z WAKT ARW\AKWZ2 - mzx\\AKT AR Z WAKx\\2 (***)

i=i ki=i

Comparing (*), (**) and (***), we have

"z AKTAkxIR< max|M*7\d*||2IW12
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and hence

\}(‘_‘%AkTAk\\*z max{\AKTAK\;, k= 1,2, ..., n+1}.
On the other hand, if the fth member on the left-hand side has the largest
norm, i.e.

VATAN = max \AKT d*||; fc=1,2,...,n+1}
then from 4.10.3.3

| ARTAKAY) = ATAY

and hence, considering also (**),

WATAN = sup{\AITANW; M = 1}= \X—Z. AKTA%

5.3.2. For the ‘integral representation’ of strictly causal operators we generalise
the operator-valued Riemann integral introduced in §4.11.2.

Let L=L(t) (tEA) be an operator-valued function and let us consider the
‘Riemann sum’

2 1L(tKAK *)
»3

corresponding to the partition
P2=£..< 1

where Ak {k=1,2, ..., u+1) are defined in 5.3.1.1.

5.3.2.1 Definition. The Riemann sums (*) converge to the operator T if for
every e>0 there exists a partition such that for any finer partition, we have

m
I T-2W )A " K\~=e.
=1

(*) is called the upper sum. If we substitute L (tk™)) in place of L(tK, then we
obtain the corresponding lower sum. If the upper and lower sums converge
to the same limit T, then we call this the integral of L=L(t) and denote it by

T= ] L(t)dPl.

A
Remark. There is also a strong version of this integral, similar to 4.11.2.1.

17 Maté
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5.3.2.2 Theorem. The causal linear operator T is strictly causal if and only if

T —f P,TdP\
n

Proof. It is easy to check that every linear operator T can be partitioned as
follows:

T = "£ (Pi~1TAI+AITAI+PIiTAI).

i=1
If T is causal then
Pi~1ITAi= PX'Tpi~l(pi-p D=0 (**)

since -
PI“].(PI-Pi- ) = pi-1—pi-i = 0
and hence
[[r- "z PiTAIl= \\Z ATA'W = wax \ATTA%
i=1 1=1 " i
It follows from 5.3.1.1 and 5.3.2.1 that T is strictly causal if and only if the
Riemann sums

n+l

!
i, (P.TU

converge to the operator T.

We still have to show that the upper and lower integrals are the same.
It follows from (**) that for a causal operator T,

T = 7 A'TAAPITAL= .7 (Pi-P i~<)TAi+(1-P)TAi= *2 Pt-fTAL
E| i ¢ ) (1-PD i

since Pk:=1—Pk\ k=1,2,....

We conclude that every causal operator T is equal to the lower integral of P, T
and T is strictly causal if and only if it is also equal to the upper integral of Pt T,
that is, if the theorem holds.

Remark. We have also shown in the proof that for a causal operator T,

T ="z Pi-iTA (**%)

1=
for every partition
O«c P1*: P2=c...< Pn« I

It is easy to show that for an arbitrary linear operator T, PAMTALis always
causal and hence the right-hand side of (* **) is causal for every partition.
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5.3.3.  We now turn to the causal inverse problem. First let us consider a very
simple case. Since the Neumann series is convergent for

|A > |intSL|L;? [T TM

(see 4.2.3.1 and 4.3.2.2) and the limit of causal operators is again a causal
operator, we have the following.

5.3.3.1 Theorem. For every causal operator T there exists a causal inverse
(A/-I)-1if
|A > limsup L, M1

For the case of a strictly causal operator we begin with a partition of a linear
operator T by the projection operators A‘; i=I, 2, ..., u+ . By straightfor-
ward calculations we can show that, for every linear T,

n+1 n+1

T.- 2 2 alaj.
7=1 i=i
In fact, for every Xx£Jif,
n+1 n+1l n+1
2 A'TAIX = TAjx and 2 TAjx =T 2 AX = Tx.
i=i 7=1 7=1

5.3.3.2 Theorem. If the linear operator T is causal, then

n+1 n+l n+l

t=2 [0Ta+2 2 a‘taj
7= 7=i £=T7+i
and for the second term,
n+l n+1 ;
(2 2 a‘tdj)nl=o. *)
7=1 1=7+1

Proof. If i</ and T is causal, then

A'TAJ= (Pi—P*~D)TAJ= PiTPiAJ-P i~1TPi- 1AJ

and ) o
pkAj = pk(pj_pi-1)=pk_pk _ o
if kcj—I, by 4.10.2.1. For the second part of the theorem, observe that
1 pil > \A‘T2Am if j =k
Hence
n+1 n+1 n+1l n+1
(2 2 ATAX = 2 2 A'T2AJ
7=1 1=7+1 7=2 i=7+i

1
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i.e. the terms containing Al disappear in the square. Moreover, the terms
containing A2 disappear in the cube, and so on.

Remark. If " is a linear operator represented by an nXn matrix A, then for
the finest partition, A'TA]j is represented by the nXn matrix A,y with

_iatd for n=1i, K=j
a'k 10 elsewhere
i.e. the /th element in the ith row is atJ and all other elements are 0.
In this case the content of our theorem is the obvious partition of a trian-
gular matrix into diagonal and ‘strict’ triangular matrices and the fact that
a ‘strict’ triangular matrix U with n rowns and n columns has the property

unt=o.

From the foregoing it is clear that if T is causal and for the finest partition
we have
ATA*=0 i= 1,2,.., 9+l
then [A - T)~1EB(K) and (A/—)-1 is a causal operator for every A™O

since
«4-1 n+1
u-Tt =al-2 2 (a‘taj)
J=1li=j+1
and the Neumann series is finite in this case because of (*). We shall show
that this is also valid for every strictly causal T.

5.3.33 Theorem. If T is strictly causal, then (M—T)~1€B(>K) and (A/—)-1
is a causal operator for every XxO.
Proof. If T is strictly causal then for every A”O there exists a partition such

that
WAITAN < |A

and hence, by 5.3.1.2, 53.3.1 and 4.2.3.1, if

B=11- 2"1A'TA!
i—X

then B~1£B()K) and causal.
is in the form of a Neumann series with members in the form
yA‘TKA* and

ALA'T KAY) = {A'TKA}NA] i,j=12, ..
by simple calculations; hence

AjB~' = B~'AJ.
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Now, if we apply the identity

n+1 n+1 n+l n+1
B-2 2 ATAJ=B(1--2 2 AB-'TA)
)=1 i=j+1 =1 i=j+1
the theorem is clear since, by the considerations preceding 5.3.3.3, the second
term on the right-hand side is also invertible with causal inverse.

*5.4 Automatic continuity of causal operators

We showed in 5.1.2.4 that every passive operator is causal. In this section we
shall show that a passive operator is also continuous and that the same holds
for time-invariant causal operators.

5.4.1. The following continuity principle is fundamental to the investigations
of this section.

5.4.1.1 Theorem. If T is an everywhere-defined linear operator in a Banach
space Band {La\ af£A} is aset of bounded linear operators of B satisfying the
conditions

(@) if Lxz=0 for every af£/l, then z=9;

(b) LXT is a bounded linear operator of B for every af Ji;
then T is also bounded.
Proof. We shall show that I" is a closed operator and, by applying the closed-
graph theorem, which says that an everywhere-defined closed operator of a
Banach space is bounded, the proof is complete.

It follows from the definition of a closed operator (see 4.13.39) that if the
linear operator T is closed, then

xn—s0  and Txn—y=>y = 9 *)

since T9=9 in this case. First we shall show that if T is everywhere defined
then the converse is also true. Let (*) be satisfied for the linear operator T and
zn-*z, Tzn—w. Then z,—z—0 and 7\zn—z)—w—Tz and hence, by (*),

w—Tz = 0.
Now, if xn--0 and Txn-+y, then
LxTxn= Lx(Tx,,) - Lxy

and also
LfTxn- 9
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since LfT is a bounded operator for every af£J/1. It follows that
Lxy = 9 atn
and hence y—9, i.e. (*) is satisfied.

In a finite-dimensional XX every linear operator is continuous, as we saw in
8 1.7.3. We shall therefore assume in the remainder of this section that X is
infinite dimensional and [PZ1 id A} is ‘large enough’ in the following sense:

(i) if P‘z=e for every tEA, then z—9;
(ii) for every t£1 there exists 1 with P‘<Ps (P*~PS.

5.4.2. The proof that a passive operator is always causal was built on the
simple observation that passivity, in Hilbert space language, means that the
bilinear functional BT defined in 5.1.2.4 is positive. A deeper investigation
concerning BT will prove that a passive operator is also continuous.

It follows from 5.1.2.4 () and from

BT(f,9)>\(TAP,g)\-\(PtATg)\
\(P'TRAG\ ~ BT(f ) I12BT(g, gy* + [(/IP'T)|
< BAT f)lI2BAg, g)lI2+ (f\fy/2(Tg\Tgy f

Hence, introducing

that

R(f):= [(P'T N2+ (/)12
S(0) = 2{P*Tdg)I12+(79\Tg)1z
we obtain, by straightforward calculations,

\(PTf\g)\ < R(f)S(g).
We now define

340 =-wy(P*TN8) f*6.

It follows that {Fs(g); fs60} is bounded for every g<IMJ with bound inde-
pendent off. Hence, by the uniform boundedness principle (see the Appendix,
A.2.2.1), {||f/||;f~9) is bounded, ie. there exists 0 such that

W\ M f*9
and hence

which means that

WPTIW= sup {|(Pfr/|g)|; M = 1} < MR(f). (*)
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Remark. Although it is not indicated, M depends on t.
We assert that for every operator P'T there exists C=C, such that

JNZL < ¢ f *e.
i J
For the proof of this inequality, note that
o<1 (HN IP'TFV'*IIn» +1011

() PTRND

-~ 1/ '

and hence

From (*) it follows that

V\PTTW . Hefr/1112 -, ,,

7] /112
whence
HANH s w iy
i (
We have now proved that P'T is a bounded operator for every tEA. If we
apply 5.4.1.1, the theorem is also proved.

5.4.3. Every causal operator is continuous on at least one invariant subspace
P ,>K. More precisely, the following theorem holds.

5.4.3.1 Theorem. If

(@) T is a linear operator of XX (i.e. everywhere defined);
(b) TI"is causal with respect to [Ps; s£ /1} satisfying conditions 5.4.1 (i), (ii);

then there exists an invariant subspace P,>K such that T restricted to P,)K
is bounded.
Proof. We shall prove that if for every t£A there exists sEA such that PsT
is unbounded on P,>K, then we can construct X0£)XX so that xa™B)(T)
and hence T is not an everywhere-defined operator. By this contradiction it
will be proved that there exists an invariant subspace PrK of T such that
every operator PST (s£ /1) is bounded on P, XK.

Applying 5.4.1.1, we conclude that T is also bounded on P,X.

The construction of x0EX, which constitutes the basis of the proof is the
following. For /JE N1 there exists s#*J1 such that PST is unbounded on P/XK
and hence there exists Ptixx such that

113401 = 1 and IPLTPAXT > 1
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For t2=si there exists s2EA such that P'2T is unbounded on P”B and hence
there exists P,rx2 such that

WP,M - 1 and WP*--TP,rx2\ > 2*(2+x\\T P tIXI\).

Moreover, it can be supposed that i2<i2 since
[IPS]| = |[PSP S -¢c WPNiZ|| for s < s2.
The following abbreviations will be used hereafter:
PA:=Pk PSk:=Pk.

For any integer k>0 and tk+i=sk there exists jfctl such that p k+1T is un-
bounded on PkYP and hence there exists Pkxk such that

Pl = 1 -r*+ > sk
and

IPk+1TPkxK\ > 2k[k+ R jr P31 ) »

Now, it is obvious that
@ 1

*9 = jg:_iA/J(pkx/\/\

i.e. the infinite series on the right-hand side is convergent. We shall show that
for any integer N >0,

Wrpes > N
and hence x0$3)(T). In fact,

Lol > [|PN+L7X0)
*2 A J* +1TPKXk+ -L p "+1TPMKK+i*+1T Z ~Pk*K -

Consider the right-hand side of the equation; for the first term,

* g < *
21 4 PN+1TPk*k 2 4.r WTPKXKW

and for the third term

PN+1T 2 -IkPkxk= PN+1T Z 4rP N+1Pkxk= 0

k=N+1 Z k=N+1 z
since T is causal,

PN+1Pk= PN+1(1-PK = 0 for k>N +1
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We conclude that

lirxol! > + P n+lTPnxn+ 2 -~ P N+1T Pkxk
>N NPATPAM - 40 ¢ WTPkxK\

> (n+ 4 \WTPkxK\)- B FA*J = N.

Remark. It is obvious that if X = 1P(ii)) or XX =) (K) with 9)=Q, then
54.1 (i) and (ii) are satisfied. Moreover, P,X is infinite dimensional for
every tEA in these cases.

5.4.4. Now let I' be a causal time-invariant operator of L2(R); we then have a
much more powerful result.

5.4.4.1 Theorem. A causal time-invariant linear operator T of L2(fl) is con-
tinuous.
Proof. Let tOEQ; then for every x£L2(i2) and i</0,

WTPX\\ = Wb-tTPtXl = \WTU,a tPA\ = ||7B 4 0_x|l. *)

Here we have applied 5.1.2.1 (*) and the fact that Ut is an isometry (i.e.
lE/X|| = |X|| for every tE£Q, X£X).

It follows from 5.4.3.1 that T is bounded on an invariant subspace P,0K;
hence

\1p,en,0,x\\ < ||r|jo1134,,-,*n = mGi utl,p&Xi=imioM (**)

where ||I"]|0is the norm of T restricted to PlaXX. By comparing (*) and (**)
we obtain the continuity of T on P,>XX for every Q
If i>/0, then P,XKc.P~)XX and hence

Ve p,x\< imuiAoAXxii - muiAxii.

We therefore conclude that 74s bounded by ||I']|0 on tU P, >K. Moreover,
ea

t1J P, is dense in X if XX = L2(R).

ea

Remark. To extend our theorem from L2(fl) to other Hilbert spaces we have
the problem of defining {Up, tEA} in such a way that 5.1.2.1 (*) is satisfied
if the truncation operators [E'\ t£R} are replaced by {Pr; tEA}.
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5.4.5. One of the important features of the ‘automatic’ continuity theorems is
the following. The simplest stability concept is that a system is stable if a
bounded input implies a bounded output. If the bound is measured in L2
norm, i.e. a signal x=x(t) is bounded if

4-co

j|x(t)]2dt -coo

(for simplicity, Q is the real line), then this means that the transition operator
T of the system is an (everywhere-defined) operator of L2(fi). However, we
can only apply Hilbert space theory in the case where I is a bounded operator.

Our theorem about time-invariant causal operators therefore says that the
Hilbert space theory can be applied for every time-invariant input-output
system that is stable in this simple sense.

A more sophisticated stability concept is connected with the time structure.
E‘Tx, the part of the output before a certain time t, is always bounded; how-
ever, it ‘blows up’ after a time if the system is not stable. The mathematical
expression of this property is that the L2norm of E‘Tx is finite for every t
and x6L2(fi) and T is stable if \E*Tx\\<M, i.e. there is a common bound
for every t. Investigations of this stability can be found, for example, in Desoer
and Vidysagar 1975, pp 169-86 and Feintuch and Saeks 1982, pp 173-9.
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Al The adjoint T* of an unbounded operator T

A.1.1. If Tis a bounded operator but is not everywhere defined in the Hilbert
space then we have two cases.

(&) The domain 2){T) of T is dense in XX . There is then a unique extension T
onto X via continuity as follows. For every x£>X there exists {x,,}; xnE3i(T)
such that x,,—x and hence Txn-»y£X since T is continuous. We define
Tx=y. (Itis obvious that y= Iiﬁ1 Tx,, is the same for every {x,,} tending to

x and hence there is only one extended T.)
(b) The domain S>(T) is not dense in XX . There is then a unique extension

onto the closure of S{T), and S>(T) as a closed subspace of a Hilbert
space XX is also a Hilbert space in itself.

We conclude that a bounded linear operator can always be considered as
an operator on a Hilbert space.

A.1.2. Let I be a linear operator with dense domain 2{T). Then the adjoint
T* is defined by

(T*y\x) = (y\Tx) yt®(T*); Xe®(T)
as in the case of bounded T. More precisely, 2{T*) is the subspace
(y: X (y\Tx) is a continuous functional on &{T)}

and T*y is the functional that associates the number (y|Tx) to X£S)(T);
Remark 1. T*y£X exists by the Riesz-Fréchet Theorem.

Remark 2. The condition that 2>{T) is dense in XX is not a serious restriction
since it is always satisfied in the Hilbert space (T)£ X.
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Example 1. Let
rr, d
with domain
®(T) = {y: /€L*[0,1], j40) = 0}.

(Here and in what follows we use dy/dt andy" interchangeably for the derivative
of y.) Then, integrating by parts, we obtain

[y'(t)z(t)dt =~ f y(t)z'(t) dt
0 0
if z’£L.2[0, 1] and z(I)=0. Moreover,

i/ /(0Z(0 d7aS A z |lj]I2

it follows that

{z: 1€ L2[0, 1], z(1) = 0} ¢ ®(T*)
and

T z-= gtz (*)

on this subset. We shall show that (*) is the form of the adjoint operator T*
for every z£Q)(T*) and

S>(T*) = {z: /6 L2[0, 1], z(l) = O}

In fact, by the Riesz-Fréchet theorem, z£3)(T*) if and only if there exists
Z*EL2[0, 1] such that

i _ i _
é y'(t)Z(t)dt=g y(t)z+(t)dt ye@(T). (**)

We can write
**(0=— f zjr)dx
and, integrating by parts,
[ FO("~r /[ z*(r)dr)di = f y'(t) f z*(¥drdt (***)
for y£S)(T). Comparing (**) and (***), we have

i
2(t) = f z(r)dr
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since T maps 3(T) onto L2[0, 1]. It follows that

1
o

—~z- " and z(l
di * 0

if Zi3(T*).

Remark 1. Here and in what follows, derivative means weak derivative in
the sense of § 3.9.3. If we restrict ourselves to

®(T) = {y: /€LS[0, 1],3(0) = O}

then weak derivatives can be avoided; however, the meaning of

2%0)=* ~-/ Zjr)dr
remains problematic for certain z*£L2[0, 1].
Remark 2. We can also write

* 0 — d J/ *

z*( =174 2 (X)dr

but this form does not yield the derived result.
To give 3 (T*) precisely is the main difficulty in determining T* for an

unbounded T.

Example 2. If

with domain
®(T) = {y: /€ L2[0, 1], y(0) = O}
and i=Y—1, then we compute, as in the previous example, that
J \y'{t)z(t) &t = J y(t)(iz'(t))dt
0 0
if z'iL2[0,1 and z(1)=0 and
T*z = i-j-z ®(T*) = {z: z'eL2[0, 1], z(1) = 0}.

However, 7VT* in this case since 3s(T*)A22{T). (In other words, T is
only identical to its formal adjoint (see §3.9.3).)
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Example 3. Let

= ary

with domain

LT) = {y: y"eL20, 1], j(0) = 7(2) = O}.

Again, integrating by parts we obtain
[oy"(t)z(t)dt = j y(t)z"(t) dt
(o] 0

if z"€L2[0, 1] and z(1)=z(0)=0. Moreover,
I /y?{t)z(t)dt\s. -~-z JIj'lII*

It follows that

{z: z" a2, 1],z(0) = z(l) = 0} ¢ Q(T*)
and
* _ d2
- iz *)
on this subset. We shall show that (*-) is the form of the adjoint operator T*
for every z£2)(T*) and

WwT*) = {z: L2[0, 1], z(0) = z(l) = O}

In fact, by the Riesz-Fréchet theorem, zd!3(T*) if and only if there exists
z*£L.2[0, 1] such that
i - i
é y"(Dz(t)dt =3 y(t)z*(t)dt yE@(T). (**)

Let

b (f-1) 0<T
Then, by immediate calculation, we see that

dg 1
2*N = ~dF /| k(* T)z*(T)dT

and, integrating by parts,

f Yo-~r J K@, myze(myaxjar = F y"(t) f k(i, o)yz*(e)ydrar (»+x)
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for y£S)(T). Comparing (**) and (***), we have

|
2(t) = 1 &G, T)z*(r)dT
0

since T maps @(T) onto L2[0, 1]. It follows that
AT z = z+ and z(0)=z() =0
if ZE9{T*).
A.l.2.1 Theorem. T* is a linear closed operator.
Proof. For X,yEQ>(T*), z£3>(T), A pE®, we have
(T*(Xx+py)\z) = (2x+py\T z) = A(X|rz) + Ir(y|72)

= 2(T*x\z)+p(T*y\z) = (JIT*x+pT*y\z)

and hence
T*(XX+py) = Al*x+/*:I"*y

since 9)(T) is dense. For the second part of the theorem, let x,,—x and
T*x,,-~h; then

(h\z) = IiH1(r*xriz) = lim (x,,\Tz) - (x|"2)
and hence x£~(IM*) and T*x—h.

Remark. Observe that in the proof we did not assume that T is either linear
or closed.

A.1.3. The set of pairs [x,y]; X,y £>K of a Hilbert space XX forms a linear
space when we define addition by

[*i. Ji] + V2 yg := [X]+X2, Yr+y.Jd
and product by A as
A[X, y] = [AX AY] xI5x2, yl5y2, x, y€"™, AEP
and a Hilbert space when we define the scalar product
([, TilIEs>yj) w= (Mp+(yily2.
The linear subspace of elements
[x, 0] and [0, y] X, ye X

forms a closed subspace isomorphic with XX and the Hilbert space of pairs
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{[x,yl; X y£XX) is therefore called the orthogonal direct sum >XX®© X.
Some properties of operators in XK can be expressed in a simple way by XX @ X .

Recall that the graph of an operator is the set of pairs [x, Tx] and so the
graph ofa linear operator T, with domain and range in )X, is a linear subspace
of XK © XK. It is easy to show that the following theorem is true.

A.1.3.1 Theorem. The linear operator T is closed if and only if its graph

=[x Tx]; xe@(T)

is a closed linear subspace of XX ®)XX.

The following connection exists between the graph of T and its adjoint T*.
Let us define

VIX vyl = Iy, -x] X, yBX.
Then V is an isometry of XX © )X and V2= —I. It is easy to verify that
Ar=[P>T]x *)

if " is a closed operator.

A.1.3.2 Theorem. If T is closed, then !3(T*) is dense in X.
Proof. It is obvious that the statement ‘@(T*) is dense’ is the same as
AN(T*)1={9}). So let h"Q>{T*)x, and we shall prove that h=9. In fact,

([0, h\[T*g, -g]) = 0 9E®(T*), hE@(T™).

But this means that
[{hM VA

and so, from the identity (*),

[0, h]dyT
ie. h=T9=9.

Remark. Observe that in the proof we did not assume that T is linear, only
that T9=9.

A.2 The uniform boundedness principle

A.2.1. A Banach space has the following property.

A.2.1.1 Theorem. Let B be a Banach space and let "2k; k=1,2,... bean in-
finite sequence of closed subsets, such that

B= 0O&K-
k—
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Then there exists k such that 2fk contains an open sphere. This is the Baire
principle.
Proof. Recall that an open sphere with centre x,, and radius r is the subset

Sf(x0, r) := {x: [|x-x0| < /}
of B.
For the proof we shall suppose that none of the closed sets 3%, k=1, 2, ...
contains an open sphere and we shall reach a contradiction.
If Jfj does not contain an open sphere then

£P(x0, 1) ¢
and hence for x~fif{xu, 1), x&&k, we have
P(xIt /) with Ty-=12 suchthat if{xx 1y)c

where is the complement of the closed set and is therefore open (see
1511 and 1.5.1.4). Moreover, we may suppose that

Y (xK Ty) ¢ ST(x0, 1).
Since also does not contain an open sphere,
SP(xi, Ty) ¢ 2£2
and hence for x2(f?(xi, 1y), x26S2, we have
if (x2, 1Y) with 1y< 1/22 such that if (x2, 1y) ¢ 2£f

where Sf2 is the complement of the closed set and is therefore open. More-
over, we may suppose that

54* ., r) c £f(xl, 1y).
Continuing this process, we obtain a sequence
Sf{xo, 1) [V if{xx, r03...9 Sf{xn, r,) =>...

and for m>n,

et L1

Hence the sequence (x,,) of the centres is convergent. Let limx,,=x X£B.
Since B is a Banach (i.e. complete) space and

xeSf(xnr,,) n—1,2,...

but ¥ (xn, r,)M2rk=0 if n>k and hence x$£fk, k—1,2,....
Thus we have the contradiction

xEB and x$ U £fk.

k=1

18 Maté
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A.2.2. The uniform boundedness principle says that if we have a set {Ta;a £ J1}
of linear operators and {Txx; ad/1} is bounded for every xd£f(6, 1) then
it is uniformly bounded on the unit sphere Y (9, 1), i.e. there is a common

bound for
{T.x\ a£N ,x£Y (8, 1}

In other words, we have the following theorem.

A.2.2.1 Theorem. If {Tx\ ad J/1} is a (one-parameter) set of bounded linear
operators and {|77id; a£N} is bounded for each x€B, then there is a
common bound M and
Irj <M
Proof. Let
&k= {x: \DoA\ N k}; kK= 1,2,....

Then each 2£k is closed and

B = \*]:I z k
since, by our condition, {||7x11; a£J1} is bounded by a certain K for every
XEB.
It follows from the foregoing theorem that there exists 2£k containing an
open sphere £f(xk, rQ. This means that for a certain K

IF.XJ < Kk and ||x-Xx]j < rk implies [[lax|| < kK ™

for every a£Jl1. It follows that
if |x—xj<r* then I'T(x—xK)|| <2k" or, equivalently,

X
Fall

Remark 1. Observe that the bound k of {UTxL, ad /1} depends on x£B,
i.e. k=k{x).

Remark 2. The theorem remains valid if I" is a linear operator from one
Banach space Bxinto another Banach space B2, with the same proof.

The uniform boundedness principle has important consequences. Some of
them are as follows.
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A.2.2.2 Theorem. If I" is a linear operator defined by

Iirr1n7’,,x::7’x xEB
where Tn; n=\, 2, ... are bounded linear operators, then T is also bounded.
This is the Banach-Steinhaus Theorem.

Proof. Now {||I,.x||; n=1,2, ...} is bounded for every x£B since a con-
vergent sequence is bounded. Hence, by the previous theorem, |7J < M and so

IM < M||X|| n= 12 ...
It follows that
T = Tiglrrx (1™ M [ ]].

Again, let {Tp, oc£/1} be a set of bounded linear operators, but let the index
set J1 be totally ordered. Then {T”x} is called convergent and

limTax my
a
iffor every £>0 there exists aOf£ /1 suchthat
Wy-Tax\\ <e if a> a0.
(Compare with 4.11.2.1 and 5.3.2.1)
An immediate generalisation of Theorem A.2.2.2 is the following.
A.2.2.3 Theorem. Let

(a) {Tax} (a6J1) be convergent for each x£3>, where 2> is a dense subset
of the Banach space B:
(b) {HXL} (a™A) be bounded for every Xx£B.

Then the linear operator T defined by
X = Iiéttn?’\x xe2t (**)
is bounded and (extending all over B) 7x:Iigw Tax for every x£B.
Proof. By A.2.2.1, {lilg|}is bounded, i.e. \TX\<M and hence, as in A.2.2.2,
P =1im {[r,x{[< MIlx]| xeSt
and so there is a unique extension of T onto B by A.1.1. It is easy to show that
(**) also holds for every x£B.
*A.2.2.4 Theorem. If

(a) Txx-+0 forevery x£S>, where 3t is a dense subset of the Banach space B;
(b) {1} (a€n) is bounded for every x£B
then Txx-*9 uniformly, i.e. sup | Tax\\ -»0.

18«
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Proof. Applying the previous theorem for T=0, we conclude that Tax -*)
for every xfB. As in the proof of A.2.2.1, we conclude that

iir~xj < k and \\Wx—xk\ < rk implies [TV7 < K
and hence, if \\x—xK\<rk, then W\Tx{x—x*)||[<2&. Thus for every e>0,

LTa(x-x* )| < e
if
lix-xt] < €= srki2k

(independent of a).

A.3 The closed graph theorem

In our approach, the closed graph theorem will be derived from the uniform
boundedness principle and the connections between T and T*.

Another approach can be found in Gohberg and Goldberg (1981), where the
closed graph theorem is derived immediately from the Baire principle and the
uniform boundedness principle is proved afterwards, using the closed graph
theorem.

Theorem. If I" is a closed operator and 9){T) —XK, i.e. everywhere defined in
the Hilbert space XX, then T is bounded.

Proof. First we shall show that if 0){T)=>K then T* is a bounded operator
on 2>(T*). In fact, if ljdd-cl, xxe®{T*\ then

Iy IPx) | = [(7>k)| < \TW y ex

i.e. the functionals {T*x% are bounded by \TW for every yeXX. Applying
the uniform boundedness principle, it follows that

WT*xal < M.

T* is also a closed operator, by A.1.2.1, and&(T*) is also closed for a bounded
and closed operator T*. In fact, if xre&>(T*) and X, then {T*x,} is
also convergent since T* is bounded and xe2>(T*) since T* is closed.
It follows from A.1.3.2 that Q)(T*) is also dense in XX, and so X —2{T%*).
To summarise, T*eB(>K) and consequently T**=(T*)*eB(>K); more-
over, T**=T.

Remark. Using the usual definition of the adjoint T* of linear operators T in
Banach spaces, the proof also works when I" is a Banach space operator.
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The aim of this book is to make Hilbert space theory accessible to
applied mathematicians, engineers and scientists. Based on the
author's courses on functional analysis for engineering students, all
that is assumed is a knowledge of linear algebra and analysis.

Hilbert Space Methods in Science and Engineering covers the
theoretical fundamentals, the geometry of Hilbert spaces, reproduc-
ing kernel Hilbert spaces, operator theory including causal operators.
The construction of mathematical models using Hilbert space theory
is emphasised, and the results which follow from these models are
evaluated. In particular, mathematical models based on reproducing
kernel Hilbert spaces and causal operators are presented here at an
introductory level for the first time.
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