

# SZÉKFOGLALÓ ELŐADÁSOK A MAGYAR TUDOMÁNYOS AKADÉMIÁN

# Patkós András

# A RÉSZECSKEFIZIKA REJTŐZKÖDŐ SZIMMETRIÁI



fermallo vrabalyainat 32-Sa igy vroit: Terintetes wayy nijoumen vælasstoft tag, a hulsøt tiveteestályába tartozo' dolgozat felolvasásával, hemelyes megnem jelenhetes exchen behulde legfelebb egy e's alatt were foglal; hildowben mig Leketuer eseter, melyelber twalk vidéhen la La'ra megsen mis isloen; gåtoltatuale a hataridøt megtartani: de hællge cluerui e szabály meg nem tartataisait, anny mint ousses shabaly saturdat exotherinde tehinto tieveluserus éngelie figy elucesse terris J. abadein Inditacuyba hozatile teheit, hogy egyelore blight valasztolt & szelfaglalas altal meg nemeri. Hett Anegah nevera hevriay vbåt hitöröftessever, av 1861 sbrig valan tothat a frabalyahra emlitertersenet, jo ovidantinka tilokuoli hivatal oda utasittassik, tibgy evidentiaban tarta's vegett ar njørn vålaszlottakat, mig szelet nem foglattak, a sorozatba tel ne vegye. 613 Keneing Lignond 1, jan. 26. 1865. Montuia Listly Bulling Morsing Josh hörnen Jeldy French rig r. rag Jeldy French rig

Patkós András

# A RÉSZECSKEFIZIKA REJTŐZKÖDŐ SZIMMETRIÁI

### SZÉKFOGLALÓK A MAGYAR TUDOMÁNYOS AKADÉMIÁN

A 2007. május 7-én megválasztott akadémikusok székfoglalói

# Patkós András

# A RÉSZECSKEFIZIKA REJTŐZKÖDŐ SZIMMETRIÁI



Magyar Tudományos Akadémia • 2015

#### Az előadás elhangzott 2007. december 12-én

Sorozatszerkesztő: Bertók Krisztina

Olvasószerkesztő: Laczkó Krisztina

Borító és tipográfia: Auri Grafika

ISSN 1419-8959 ISBN 978-963-508-794-5

© Patkós András

Kiadja a Magyar Tudományos Akadémia Kiadásért felel: Lovász László, az MTA elnöke Felelős szerkesztő: Kindert Judit Nyomdai munkálatok: Kódex Könyvgyártó Kft.

## CAPTATIO BENEVOLANTIE (SZERZŐI MENTEGETŐZÉS)

Örömmel fogadtam az MTA elnökének döntését, amely lehetőséget nyújt arra, hogy a Magyar Tudományos Akadémia rendes tagjaként 2007. december 12-én tartott székfoglaló előadásom szerkesztett változata önálló füzetben megjelenjen. Az egykori előadás számítógépes prezentációját végiglapozva arról győződtem meg, hogy az azóta eltelt időszakban végzett kutatómunkámnak mindmáig szilárd alapját adja a 2001–2007 között megvalósított tudományos programom. A lehetőséggel éppen azért kívánok élni, mert az előadás óta eltelt közel hét év a közhiedelem szerint elegendő idő volt majdnem az összes sejtem cseréjére, még inkább az akkor bemutatott eredmények lényeges továbbfejlesztésére.

Érdemes vállalkozásnak tűnik tehát az egykori előadás anyagának a technikai részletekre is utaló részletességű bemutatása. A technikaitudományos részletek elmondása annál inkább is indokolt, minthogy (az MTA lehetőségeit illető kishitűségem okán) az előadásnak a részecskefizikai elmélet felfedezéstörténetére vonatkozó részét, szélesebb olvasói körre számítva, 2008-ban már publikáltam [1]. Ott igyekeztem áttekintést adni a részecskefizikai szimmetriák teljes köréről. Most, a szakma és az érdeklődő egyetemi hallgatók figyelmében bízva, a kvantumtérelmélet ún. funkcionális technikáiról matematikailag formalizáltabb ismeretekkel szeretném "megkínálni" az olvasót. A részletesebb bemutatás okán egyetlen közelítő szimmetria, a *királis* szimmetria tárgyalására összpontosítom a figyelmem.

A dolgozat a választott témaköri fókuszon belül követi a székfoglaló előadás szerkezetét, de több kérdéskörben utal a 2007 óta elért eredményeimre is. A történeti áttekintést a 20. századi részecskefizika nagy alakjainak fényképei helyett alapvető dolgozataik gondolati magvának bemutatása képviseli a következő fejezetben. Ezt követően az erős kölcsönhatás effektív alacsony energiás modelljeinek megoldásában a kutatócsoportunkban követett kutatási iránnyal elért eredményeket tárgyalom. A perturbációszámításon túltekintő két megoldási módszert ismertetek. Mindkettőben elsőként a spontán szimmetriasértő alapállapotra vezető megoldások bemutatásával foglalkozom. Ezt követi a véges hőmérséklet és véges barionsűrűség hatására bekövetkező alapállapot-változások (fázisátalakulások) területén végzett vizsgálataink ismertetése. A záró fejezetben elhagyom az elméleti paraméterek (csatolási erősségek) mért értékeivel meghatározott világunkat. A csatolások hangolásával megvizsgálom milyen változáson esnének át az erős kölcsönhatás jelenségei a csatolási paraméterek más értékeivel jellemezhető, de szintén létezhetőnek tűnő világokban.

## A RÉSZECSKEFIZIKAI SZIMMETRIÁK ÉS MODELLEK TÖRTÉNETE

A téridőtől független belső szimmetria első példája Heisenberg javaslata volt 1932-ben [2] a protonnak és a neutronnak a magerő töltésfüggetlenségét értelmező, egységes kvantummechanikai objektumba foglalására:

$$|N\rangle = a_p|p\rangle + a_n|n\rangle, \qquad |a_p|^2 + |a_n|^2 = 1.$$
 (1)

A nukleon  $|N\rangle$ állapotvektorának normatartó SU(2) transzformációi nincsenek hatással az erős kölcsönhatások dinamikáját meghatározó Hamiltonoperátorra:

$$U|N\rangle = e^{i\alpha^{j}\frac{\tau^{j}}{2}} \begin{pmatrix} a_{p} \\ a_{n} \end{pmatrix}, \qquad UH_{N}U^{\dagger} = H_{N}.$$
 (2)

Itt  $\tau^j/2$ , j = 1, 2, 3 az SU(2) izospincsoport generátorait jelöli. Ennek

a globális szimmetriának az érvényességét Cassen és Condon [3], majd Wigner Jenő [4] igazolta, következményeit a magreakciók kísérletben mért hatáskeresztmetszeteivel összevetve. Az izospinszimmetria a természetben úgy valósul meg, hogy a nukleonmentes "vákuum"-állapot invariáns:

$$U|0> = |0>.$$
 (3)

A magerő kialakulását Yukawa az elektrodinamika mintáját követve valamilyen erőtér kvantumainak a nukleonok közötti cseréjére igyekezett visszavezetni. 1935-ben feltételezte az elektron és a proton között félúton lévő tömegű mezonnak, a pionnak a létezését [5]. A töltésfüggetlenség elvét 1938ban Kemmer terjesztette ki a magerőt közvetítő erőterekre, azaz feltételezte a pozitív és a negatív töltésű mellett a semleges pionok létezését is [6]. Végül (ismert bonyodalmak után) 1947-ben a kozmikus sugárzás részecskéinek kölcsönhatásában keletkező részecskék között fedezték fel Yukawa hipotetikus erőtérkvantumait.

Az erősen kölcsönható kvantumterek történetének következő lépése a növekvő nukleonszámú atommagok tulajdonságainak végtelen mérethez tartó extrapolációjával kialakított, véges nukleonsűrűséggel és energiasűrűséggel jellemzett *maganyag* leírására született  $\sigma$ -modell [7], amellyel Johnson és Teller 1955-ben a nukleonok közötti vonzó Yukawa-potenciált mezonterek kvantumainak a cseréjére vezette vissza:

$$L_{JT} = \bar{N}(x) \left( i\gamma_{\mu}\partial^{\mu} - m_{N} \right) N(x) - \frac{1}{2}\sigma(x) \left( \Box + m_{\sigma}^{2} \right) \sigma(x) - g\sigma(x)\bar{N}(x)N(x).$$
(4)

Ez a Lagrange-sűrűség az  $m_N$  tömegű nukleonok Dirac-egyenletét adó első tag mellett az  $m_\sigma$  tömegű skalár  $\sigma$  részecske (második tag) és a kettő közötti g erősségű kölcsönhatást megadó harmadik, ún. Yukawa-tagot tartalmazza. Meg kell jegyezni, hogy a magerők taszító törzsének értelmezésére egy tömeges (véges hatósugarú) vektormezonnal való kölcsönhatást is bevezettek, de ez a jelen téma szempontjából érdektelen. Fontosabb kérdés, hogy miért nem szerepeltették a kísérletileg akkor már jól ismert pionokat? Valószínűleg a pszeudoskalár pionokhoz kapcsolódó bonyolultabb kölcsönhatási Lagrange-sűrűséget kívánták elkerülni. Ezt a hiányosságot alább Gell-Mann és Lévy  $\sigma$ -modelljének bemutatásakor pótoljuk.

A jelen elemzés szempontjából (4) azért érdekes, mert a véges sűrűségű maganyag ún. átlagtér tárgyalásában lépett fel először a nukleonantinukleon kondenzátumként értelmezhető várható érték, amely az erős kölcsönhatások megértésének egyik kulcsobjektuma. E kondenzátumnak a kapcsolatát azonban valamely rejtőzködő szimmetriával további 5–6 év elteltével ismerték csak fel.

A Heisenberg-képben a következő mozgásegyenletek érvényesek az operátorokra:

$$(\Box + m_{\sigma}^2)\sigma(x) - g\bar{N}(x)N(x) = 0, \qquad (i\gamma_{\mu}\partial^{\mu} - m_N + g\sigma(x))N(x) = 0.$$
(5)

Tételezzük fel, hogy a kvantumelmélet megoldásaként a  $\sigma(x)$  térnek homogén időfüggetlen várható értéke van. (A várható értéket a szokásos  $\langle ... \rangle$  jelöléssel tüntetjük fel.) Ebből azonnal látszik, hogy hatására a nukleonok maganyagbeli tömege megváltozik a vákuumbeli értékhez képest:

$$\langle \sigma(x) \rangle = \Sigma, \qquad m_{eff} = m_N - g\Sigma.$$
 (6)

A megoldás konstrukciójához az  $E^2 = k^2 + m_{eff}^2$  diszperziós relációt kielégítő nukleonállapotokkal feltöltjük a neutronok és a protonok Fermi-gömbjét a maganyag  $\rho_N$  sűrűsége által meghatározott  $k_N^F$  Fermi-impulzusig:

$$\rho_N = 4 \int \frac{d^3k}{(2\pi)^3} \Theta(k_N^F - k) = \frac{2}{3\pi^2} k_N^{F3}, \tag{7}$$

ahol a(2S+1)(2I+1)=4szorzóval figyelembe vettük a nukleonok spin és izospin szerinti elfajulását. A maganyag sűrűségére a Weizsäcker-

cseppmodell képletéből extrapolált érték használható a Fermi-impulzus fizikai értékének a meghatározására. Miután egyszerű számítással egy k impulzusú módusban:  $\langle \bar{N}N \rangle_k = m_{eff}/E$ , így végül az átlagteret meghatározó "gap"-egyenlet a következő:

$$m_{\sigma}^{2}\Sigma = \frac{2g}{\pi^{2}}m_{eff}\int_{0}^{k_{N}^{F}} dk \frac{k^{2}}{(k^{2}+m_{eff}^{2})^{1/2}}.$$
(8)

Ennek az egyenletnek  $\Sigma = 0$  megoldása csak  $k_N^F = 0$  esetén áll fenn, tehát a maganyag véges sűrűségét véges amplitudójú barion- (nukleon)kondenzátummal is jellemezhetjük. A kondenzátumot tartalmazó alapállapot ebben a modellben az elmélet szimmetriájától függetlenül, a véges nukleonsűrűség hatására alakul ki.

A barionkondenzátum *spontán* kialakulásának lehetőségét az erős kölcsönhatások gerjesztésmentes  $|0\rangle$  alapállapotában Yoichiro Nambu vetette fel elsőként 1960-ban [8]. A nukleonok teljes tömegét a skalár átlagtérből kívánta származtatni. Nulla induló tömeg esetén a szabad nukleonok Lagrange-sűrűsége két tag összegére írható szét:

$$L_N = \bar{N}(x)i\gamma_\mu\partial^\mu N(x) = \bar{N}_L(x)i\gamma_\mu\partial^\mu N_L(x) + \bar{N}_R(x)i\gamma_\mu\partial^\mu N_R(x), \quad (9)$$

ahol

$$N_L = \frac{1 - \gamma_5}{2}N, \qquad N_R = \frac{1 + \gamma_5}{2}N.$$
 (10)

Ezen a két tagon egymástól függetlenül végezhető el egy-egy SU(2) csoportelemmel valamilyen szimmetriaművelet. Ezt a szimmetriát expliciten sérti az  $m_N \bar{N}(x)N(x)$  tömegtag. Ha az unitér transzformációs mátrixokat

$$U_L = e^{i\Theta_{L_j}\tau^j}, \qquad U_R = e^{i\Theta_{R_j}\tau^j}$$
(11)

alakban írjuk, a nukleon tér transzformációja

$$N(x) \to \left(\frac{1-\gamma_5}{2}e^{i\Theta_{Lj}\tau^j} + \frac{1+\gamma_5}{2}e^{i\Theta_{Rj}\tau^j}\right)N(x) \tag{12}$$

PATKÓS ANDRÁS: A RÉSZECSKEFIZIKA REJTŐZKÖDŐ SZIMMETRIÁI

alakú lesz, és ezt át lehet rendezni a  $\Theta_{Vj} = (\Theta_L + \Theta_R)/2, \Theta_{Aj} = (\Theta_R - \Theta_L)/2$ új paraméterek használatával az

$$N(x) \to e^{i\Theta_{Vj}\tau^j + i\gamma_5\Theta_{Aj}\tau^j}N(x) \tag{13}$$

alakra. Az átrendezett szimmetriát  $SU_V(2) \times SU_A(2)$  vektor-axiálvektor szimmetriaként említik. Az  $\bar{N}_i \mathcal{M}_{ij} N_j$  tömegtag transzformációja a kombinált infinitezimális  $\delta \Theta_A$ ,  $\delta \Theta_V$  paraméterekkel jellemzett művelet hatására a következő:

$$\delta L_{mass} = i\bar{N}(x) \left[ \delta \Theta_{Vj}[\tau_j, \mathcal{M}]_- - \delta \Theta_{Aj}[\tau^j, \mathcal{M}]_+ \right] N(x).$$
(14)

Ha  $\mathcal{M} \sim I$  (egzakt izoszimmetria), akkor csak az axiális transzformáció szimmetriája sérül, azaz az explicit szimmetriasértést követő tömeggenerálás az  $SU_V(2) \times SU_A(2) \rightarrow SU_V(2)$  szimmetriacsökkenést okozza.

A skalártérrel való (4) Yukawa-kölcsönhatás viszont általánosítható úgy, hogy az  $SU(2) \times SU(2)$  királis szimmetria érvényesüljön:

$$L_{Yukawa} = -g\left(\bar{N}_L(x)M(x)N_R(x) + \bar{N}_R(x)M^{\dagger}(x)N_L(x)\right), \qquad (15)$$

amennyiben az M(x) mezonmátrixra az

$$M \to U_L M(x) U_R^{\dagger}, \qquad M = \sigma(x) + i\eta(x) + (a_{0j}(x) + i\pi_j(x))\tau^j \tag{16}$$

transzformációs szabályt és parametrizációt írjuk elő. (Az egyes komponensek betűjelei egybeesnek a részecskefizikai táblázatban szereplő azon rezonanciák jelével, amelyek tulajdonságai a legközelebb állnak a szimmetria feltevéséből következő szabályszerűségekhez.)

Az *M*-tér dinamikáját egyszerűen definiálhatjuk, figyelembe véve, hogy  $SU(N) \times SU(N)$  szimmetria esetén N - 1 független invariáns képezhető:  $Tr(M^{\dagger}M)^n$ , n = 1, ..., N - 1. Ezért a nemritka mezonok effektív elméletében

egyedül csak a ${\rm Tr}(M^\dagger M)=2(\sigma^2+\eta^2+a_{0j}^2+\pi_j^2)$ invariánstól függhet a lokális energiasűrűség:

$$L_{M} = \frac{1}{4} \operatorname{Tr} \left( \partial_{\mu} M^{\dagger}(x) \partial^{\mu} M(x) - \mu^{2} M^{\dagger}(x) M(x) \right) - \frac{\lambda}{16} \left( \operatorname{Tr} (M^{\dagger}(x) M(x)) \right)^{2}$$
  
$$= \frac{1}{2} \left[ \partial_{\mu} \sigma \partial^{\mu} \sigma + \partial_{\mu} \eta \partial^{\mu} \eta + \partial_{\mu} a_{0j} \partial^{\mu} a_{0j} + \partial_{\mu} \pi_{j} \partial^{\mu} \pi_{j} - \mu^{2} (\sigma^{2} + \eta^{2} + a_{0j}^{2} + \pi_{j}^{2}) \right]$$
  
$$- \frac{\lambda}{4} \left( \sigma^{2} + \eta^{2} + a_{0j}^{2} + \pi_{j}^{2} \right)^{2}.$$
 (17)

A mezondinamikának önmagában O(8) ortogonális szimmetriája van. A potenciál stabilitásához kötelező előírás  $\lambda > 0$ , viszont megengedett a  $\mu^2 < 0$ eset is. Ekkor a potenciál minimuma nem az origóban van. A megvalósuló minimum "iránya" választható a  $\sigma$  térnek, nagysága a  $\Sigma$  átlagtérnek. A Yukawa-tagból leolvasható, hogy a spontán irányválasztással a nukleonoknak  $M_N = g\Sigma$  tömege generálódott, és bekövetkezett a fentebb jelzett szimmetriaredukció.

A mezonspektrum könnyebb tagjait ( $\sigma$ ,  $\pi$ ) tartva meg, továbbá a királis nukleonprojekciók explicit (10) kifejezéseit használva, Gell-Mann és Lévy [9] lineáris szigma-modelljére jutunk:

$$L_{\sigma} = \bar{N}(x)i\gamma_{\mu}\partial^{\mu}N(x) + \frac{1}{2}\left[(\partial_{\mu}\sigma)^{2} + (\partial_{\mu}\pi_{j})^{2} - \mu^{2}(\sigma^{2} + \pi_{j}^{2})\right]$$
(18)  
$$- \frac{\lambda}{4}(\sigma^{2} + \pi_{j}^{2})^{2} - g\bar{N}(x)\left(\sigma(x) + i\gamma_{5}\tau^{j}\pi_{j}(x)\right)N(x).$$

A szimmetriasértés után a  $\sigma$ -mező tömeget nyer:

$$\sigma_{min}^2 = -\frac{\lambda}{\mu^2}, \qquad m_\sigma^2 = -2\lambda\mu^2, \tag{19}$$

ugyanakkor a pionok zérus tömegűek lesznek. Ez Goldstone tételének [10] megnyilvánulása ebben a modellben. Összefoglalva: látjuk, hogy az erős kölcsönhatás Nambu által javasolt közelítő királis szimmetriája képes értelmezni a pionok és a nukleonok közötti tömeghierarchiát. A pionok véges tömegét a szimmetria explicit (a Lagrange-sűrűségben megjelenő) sértésével lehet figyelembe venni.

A továbbiakban a királis szimmetriasértés kvantumszintű tárgyalására fókuszálunk, ezért főként a mezondinamikára korlátozzuk vizsgálódásunkat. Megemlítjük, hogy a tiszta piondinamikához is eljuthatunk a lineáris szigma-modellből, ha a mezonmátrixot

$$M(x) = S(x)e^{i\tau^{j}\pi_{j}(x)/2F} \equiv S(x)U(x), \qquad U(x) \in SU(2)$$
(20)

alakban nemlineárisan parametrizáljuk. Ekkor a mezonok potenciális energiája csak S(x)-től függ, azaz a  $\pi$ -terek csak a deriváltakat tartalmazó ("kinetikus") részben jelennek meg:

$$L_{kin} = \frac{1}{2} \partial_{\mu} S(x) \partial^{\mu} S(x) + \frac{1}{4} S^2(x) \operatorname{tr} \partial_{\mu} U^{\dagger} \partial^{\mu} U.$$
(21)

Ha a modellt olyan tartományban oldjuk meg, ahol a nehéz S(x) tér alig ingadozik az  $s_0$  átlagérték körül, akkor a pionterekre erősen nemlineáris elméletet kapunk:

$$L_{\pi} = \frac{s_0^2}{4} \text{tr} \partial_{\mu} U^{\dagger} \partial^{\mu} U.$$
 (22)

Ennek az elméletnek nagy előnye, hogy egzakt kapcsolat állítható fel közte és a fundamentális kvantumkromodinamika között. Hátránya viszont, hogy csak a sértett fázisban van értelmezve, ezért a királis szimmetriasértés megszűnésével járó fázisátalakulás nem tanulmányozható ebben a keretben.

A másik irányban igyekezve továbblépni, megpróbálkozhatunk a mezonterek dinamikájának figyelembevételével a nukleonterekre korlátozódó elméletben. Tudva, hogy a mezonok kvantumainak cseréje negyedfokú, nemlokális kölcsönhatást generál a fermionok között, az eredményt elég általánosan a következő alakban várjuk:

$$S = \int dx \bar{N}(x) i\gamma_{\mu} \partial^{\mu} N(x) - g^2 \int dx \int dy (\bar{N}_L(x) N_R(x)) K(x,y) (\bar{N}_R(y) N_L(y)),$$
(23)

ahol K(x, y) a nukleon-nukleon kölcsönhatásnak a mezoncseréből származó magfüggvénye. Ez az alak, amely őrzi az eredeti modell királis szimmetriáját, Nambu és Jona-Lasinio effektív nukleonmodelljének [11] nem lokális változata.

# A SZIMMETRIASÉRTÉS KVANTUMDINAMIKÁJA

A királis szimmetriasértés mechanizmusának elméleti vizsgálatában az elméleti modellek dinamikájának perturbatív kezelése nem ad kielégítő eredményt, mivel a mezonspektrumhoz igazított csatolási értékek nagysága megkérdőjelezi a csatolások hatványa szerinti sorfejtés alkalmasságát. A 2002-től végzett kutatásaink meghatározó technikája a perturbatív sorok részleges felösszegzése volt. A felösszegzés során külön figyelmet fordítottunk a perturbációszámításon túllépő elméleti tárgyalás renormalizálhatóságának bizonyítására, mert csak ez biztosítja eredményeink érzéketlenségét a közbenső paraméterként bevezetésre kerülő maximális impulzus (levágás) értékére.

A szimmetriasértés tárgyalásának technikai vetületével foglalkozik a következő három fejezet. E fejezetben a csatolási állandó(k) értékének nagyságára érzéketlen módszert mutatok be: a mezonok száma (a *flavorszám*) reciprokának hatványa szerint haladó sorfejtést. Alább T = 0 hőmérsékleten tárgyalom az alapállapot és gerjesztéseinek tulajdonságait. A véges hőmérsékleten és barionsűrűségen fellépő jelenségekkel foglalkozik a következő fejezet, majd a perturbációszámítás *optimalizált* változatával nyert eredményekről lesz szó.

#### A nagy N sorfejtés

A következőkben a lineáris  $\sigma$ -modell mezonszektorát vizsgálom, abban az esetben, amikor a modell O(N) szimmetriájának dimenziója  $N \rightarrow \infty$ . A tárgyalás elvi részében a [12, 16, 17] közlemények módszerét követem, és mutatok be néhány nemzetközi visszhangot kiváltó eredményt. A véges hőmérsékleten bekövetkező jelenségeket a [12, 13, 14] közleményekben vizsgáltuk. A mezonszektorhoz kvarktereket csatolva, a modellt kiterjesztettük véges barionsűrűség vizsgálatára is [15], amelyet szintén a nagy flavorszám határesetében oldottunk meg.

Az euklidészi metrikájú mezonmodell Lagrange-sűrűsége a következő:

$$L_M = \frac{1}{2} \left[ \partial_n \varphi^a \partial_n \varphi^a + m^2 \varphi^a \varphi^a \right] + \frac{\lambda}{24N} \varphi^a \varphi^a \varphi^b \varphi^b - \sqrt{N} h \varphi^1.$$
(24)

Az indexek változási tartománya: n = 1, ..., d, a = 1, ..., N. A h külső tér explicit szimmetriasértést képvisel, amelynek hatása a rendszer potenciális energiájának minimumát az a = 1 irányba húzza el az origóból.

Elsőként az explicit sértésnek megfelelően

$$\varphi^a = (\sqrt{N}v + \sigma, \pi^l), \quad l = 2, ..., N$$
(25)

alakban parametrizált háttéren határozzuk meg v egyenletét a kvantumfluktuációk figyelembevételével. A homogén kondenzátum írásmódját úgy választottuk, hogy  $v^2 \sim O(1)$  esetén a modell potenciális energiasűrűségének mindhárom tagja egyaránt a szabadsági fokok számával arányos O(N) járulékot adjon. A Lagrange-sűrűségben a  $\sigma$ -ban lineáris tag együtthatójának várható értéke eltűnik, ha v stabil értékét választjuk:

$$\sqrt{N}v\left[m^2 + \frac{\lambda}{6}v^2 + \frac{\lambda}{6N}\left(\langle\sigma^2\rangle + \langle\pi^l\pi^l\rangle\right) - \frac{h}{v}\right] = 0.$$
 (26)

Ezt az egyenletet szokás *állapotegyenlet*nek nevezni. Kihasználjuk, hogy a meghatározandó várható értékek az érintett terek propagátoraival kapcsolhatók össze:

$$\langle \sigma^2 \rangle + \langle \pi^l \pi^l \rangle = G_\sigma(x, x) + (N - 1)G_\pi(x, x).$$
(27)

 $N \rightarrow \infty$ esetén az állapotegyenletben csak a pionpropagátor jelenik meg:

$$m^{2} + \frac{\lambda}{6}v^{2} + \frac{\lambda}{6}G_{\pi}(x,x) - \frac{h}{v} = 0.$$
 (28)

A pionpropagátor inverze a (25) eltolás után adódó hatás pionterek szerinti második deriváltjának várható értékeként kapható meg:

$$G_{\pi}^{-1}(x,y) = \left[ -\Box + m^2 + \frac{\lambda}{6}v^2 + \frac{\lambda}{6N} \left( \langle \sigma^2(x) \rangle + \langle (\pi^l(x))^2 \rangle \right) \right] \delta(x-y), \quad (29)$$

amelynek a Fourier-transzformáltja $N \to \infty\text{-re}$  a

$$G_{\pi}^{-1}(p) \equiv p^2 + M_G^2 = p^2 + m^2 + \frac{\lambda}{6}v^2 + \frac{\lambda}{6}G_{\pi}(x, x)$$
(30)

alakot ölti. Az állapotegyenlettel kombinálva kiolvasható, hogy

$$M_G^2 = \frac{h}{v},\tag{31}$$

és ez a modellnek erre a közelítő megoldására a Goldstone-tétel érvényességét demonstrálja.

Mindkét egyenletet renormalizálni kell a

$$G_{\pi}(x,x) = \int \frac{d^d k}{(2\pi)^d} \frac{1}{k^2 + M_G^2} \equiv T(M_G)$$
(32)

integrál divergenciája miatt. A levágástól kvadratikusan, illetve logaritmikusan függő divergenciáknak önálló definíciókat adva, egy normalizációs skála  $(M_0)$  bevezetése után a divergens járulékokat leválasztva, definiálhatjuk az ún. *tadpole*-integrál véges részét  $(T^F(M_G))$ :

$$G_{\pi}(x,x) = \int_{k} G_{\pi}(k) = T_{d}^{(2)} + (M_{0}^{2} - M_{G}^{2})T_{d}^{(0)} + T^{F}(M_{G}),$$
  

$$T_{d}^{(2)} = \int_{k} \frac{1}{k^{2} + M_{0}^{2}}, \qquad T_{d}^{(0)} = \int_{k} \frac{1}{(k^{2} + M_{0}^{2})^{2}}.$$
(33)

A renormalizáció eljárása a leválasztott divergenciáknak a beolvasztását jelenti az elméletet jellemző csatolási állandókba. Ehhez a (26) állapotegyenlet nem nulla *v*-t adó tényezőjét alkalmasan átírjuk:

$$\frac{1}{6}(T^F(M_G) + v^2) + \left[\frac{m^2}{\lambda} + \frac{1}{6}\left(T_d^{(2)} + M_0^2 T_d^{(0)}\right)\right] - M_G^2\left[\frac{1}{\lambda} + \frac{1}{6}T_d^{(0)}\right] = 0.$$
(34)

Definiálva a  $(\lambda_R,m_R^2)$ renormalizált csatolásokat

$$\frac{m_R^2}{\lambda_R} = \frac{m^2}{\lambda} + \frac{1}{6} \left( T_d^{(2)} + M_0^2 T_d^{(0)} \right), \qquad \frac{1}{\lambda_R} = \frac{1}{\lambda} + \frac{1}{6} T_d^{(0)}$$
(35)

felírható a véges (renormalizált) állapotegyenlet, amelynek megoldása meghatározza $v^2{\rm -et}$  [12]:

$$\frac{1}{6}(T^F(M_G) + v^2) + \frac{m_R^2}{\lambda_R} - \frac{1}{\lambda_R}M_G^2 = 0.$$
(36)

Ez a pusztán alkalminak látszó renormalizációs előírás a perturbatív ellentagok nyelvén a

$$\lambda_R \equiv \lambda \left( 1 + \sum_{n=1}^{\infty} \delta \lambda_n \right), \qquad m_R^2 = m^2 + \sum_{n=1}^{\infty} \lambda^n \delta m_n \tag{37}$$

végtelen összeggel vagy annak részösszegével kell, hogy értelmezhető legyen. A (35) összefüggések átrendezéséből azt látjuk, hogy definícióink valóban egy végtelenellentag-felösszegzésnek felelnek meg:

$$\delta\lambda_n = \left(-\frac{\lambda}{6}T_d^{(0)}\right)^n, \qquad \delta m_n = \frac{1}{6}\left[T_d^{(2)} + (M_0^2 - m^2)T_d^{(0)}\right] \left(-\frac{1}{6}T_d^{(0)}\right)^{n-1}.$$
(38)

A végtelenellentag-renormalizáció fizikai értelmezéséhez alább a  $\sigma$ -tér és a  $\varphi\varphi$ -kompozit tér sajátenergiáját meghatározó végtelen pionbuboréksor adható majd támaszul a Feynman-diagramok nyelvén. (A végtelen ellentagsor generálását és felösszegzésének egy iteratív eljárását részletesen kidolgozva bemutattuk egy  $O(N) \times Z_2$  szimmetriájú skalár tereket tartalmazó elmélet példáján [19]. Az O(N) modell tetszőleges N-re történő renormalizációját a 2PI formalizmus keretében kéthurok-szintig elvégeztük [20].)

A nagy N sorfejtés módszerének alkalmazásakor hatékony eljárás egy önálló dinamikával nem bíró *segédtér* használata. Az  $\alpha(x)$  mezővel kibővített (24) hatás a következő alakú:

$$S = \int d^d x \left[ \frac{1}{2} \left( (\partial_m \varphi^a)^2 + m^2 (\varphi^a)^2 \right) - \frac{1}{2} \alpha^2 + \frac{1}{2} \alpha \sqrt{\frac{\lambda}{3N}} (\varphi^a)^2 - \sqrt{N} h \sigma \right].$$
(39)

A hatás variálásából  $\alpha$ -ra adódó lokális algebrai egyenletet megoldva és visszahelyettesítve visszakapjuk a Lagrange-sűrűség eredeti, a  $\varphi^a$  mezonterek negyedfokú kölcsönhatását tartalmazó tagját. A (25) eltolás alkalmazása és az  $\hat{\alpha} = \sqrt{\lambda/(3N)}\alpha$  átskálázás után az  $\hat{\alpha}$  szerinti variáció várható értékével adódó

$$-\frac{3N}{\lambda}\hat{\alpha} + \frac{1}{2}\left[Nv^2 + G_{\sigma\sigma}(x,x) + (N-1)G_{\pi}(x,x)\right] = 0$$
(40)

egyenletet *nyeregponti egyenlet*nek hívják, miután a segédváltozó "potenciálja" az  $\hat{\alpha}$  változó mentén instabil. Itt  $G_{\sigma\sigma}$  a csatolt  $\alpha - \sigma$  szektor 2 × 2-es propagátor mátrixának megfelelő elemét jelöli. A nyeregponti egyenlet párja a pionpropagátor, amely a segédtér révén igen egyszerű lesz (a nyeregponti egyenlet megoldása térben állandó  $\hat{\alpha}$ -t ad):

$$G_{\pi}^{-1}(k) = k^2 + m^2 + \hat{\alpha} \equiv k^2 + M_G^2.$$
(41)

Az állapotegyenletnek az előzőnél pontosabb alakját kapjuk meg a hatás

 $\sigma$  szerinti variációjának várható értékét képezve:

$$\sqrt{N}v\left[m^2 + \hat{\alpha} - \frac{h}{v}\right] + G_{\hat{\alpha}\sigma}(x, x) = 0.$$
(42)

Alább megmutatjuk, hogy az  $\hat{\alpha} - \sigma$  propagátormátrix minden eleme  $\mathcal{O}(N^0)$ , ezért mind  $G_{\sigma\sigma}$ , mind  $G_{\hat{\alpha}\sigma}$  elhagyható a vezető rendű megoldásból. Az  $N = \infty$  határesetben érvényes egyenletekbe beírva az  $\hat{\alpha} = M_G^2 - m^2$  kifejezést, a nyeregponti egyenletet az előző tárgyalás állapotegyenletével azonos módon lehet renormalizálni.

Az újdonságot a vezető rendű tárgyalás ezen változatában az hozza, hogy a piontérre elvégezve a funkcionális integrálást, meghatározható az  $\hat{\alpha} - \sigma$  szektor propagátora is. Az integrálás után kapott hatás  $\hat{\alpha}$  és  $\sigma$  funkcionálja:

$$S = \int d^{d}x \Big[ \frac{1}{2} (\partial_{m}\sigma)^{2} + \frac{1}{2}m^{2}[Nv^{2} + 2\sqrt{N}v\sigma + \sigma^{2}] - \sqrt{N}h(\sqrt{N}v + \sigma) \\ - \frac{3N}{2\lambda}\hat{\alpha}^{2} + \frac{1}{2}\hat{\alpha}[Nv^{2} + 2\sqrt{N}v\sigma + \sigma^{2}] \Big] + \frac{N}{2}\text{Tr}\log(-\Box + m^{2} + \hat{\alpha}).$$
(43)

Ebből kétszeri funkcionálderiválással kapható meg az  $\hat{\alpha} - \sigma$  szektor inverz propagátormátrixa:

$$\mathcal{G}^{-1}(x,y) = \begin{pmatrix} -\frac{3N}{\lambda}\delta(x-y) - \frac{N}{2}D_{\pi}(x-y)D_{\pi}(y-x) & \sqrt{N}v\delta(x-y) \\ \sqrt{N}v\delta(x-y) & D_{\pi}^{-1}(x-y) \end{pmatrix},$$
(44)

ahol  $D_{\pi}^{-1}(x-y) = (-\Box + M_G^2)\delta(x-y)$ . (Itt a kompozit gerjesztés dinamikájának a  $\sigma$ -térhez csatolt tárgyalását [16] módszerét kölcsönözve mutatom be.) A pionbuborék, azaz  $D_{\pi}(x-y)D_{\pi}(y-x)$  Fourier-transzformáltja logaritmikusan divergens, divergenciáját a korábban már bevezetett  $T_d^{(0)}$  adja:

$$I(q, M_G) = \int d^d \xi D_\pi(\xi) D_\pi(-\xi) e^{-iq\xi} = T_d^{(0)} + I^F(q, M_G).$$
(45)

Ennek segítségével írva fel és invertálva a propagátormátrixot, annak minden eleme véges lesz a  $\lambda$  csatolás (35) egyenletben megadott renormalizációs összefüggését használva. Az invertálás eredménye alapján egyértelmű, hogy a segédtér és  $\sigma$  azonos spektrummal rendelkeznek:

$$G_{\sigma\sigma}(q) = \frac{1 + \frac{\lambda_R}{6} I^F(q, M_G)}{D_{\pi}^{-1}(q)(1 + \frac{\lambda_R}{6} I^F(q, M_G)) + \frac{\lambda_R}{3} v^2},$$
  

$$G_{\hat{\alpha}\hat{\alpha}}(q) = -\frac{\lambda_R}{3} \frac{D_{\pi}^{-1}(q)}{D_{\pi}^{-1}(q)(1 + \frac{\lambda_R}{6} I^F(q, M_G)) + \frac{\lambda_R}{3} v^2}.$$
(46)

Ezt a jelenséget hívják hibridizációnak.

A  $\sigma$  részecske sajátenergiájának végtelen sor alakjában írása rávilágít a nagy N sorfejtés nem perturbatív renormalizációjának felösszegzési hátterére:

$$[G_{\sigma\sigma}(p)]^{-1} = p^2 + M_G^2 + \frac{\lambda_R}{3} v^2 \sum_{n=0}^{\infty} \left( -\frac{\lambda_R}{6} I^F(p, M_G) \right)^n.$$
(47)

Ezt a végtelen összeget a pionbuborékok végtelen sora adja a  $\sigma$ -propagátorba (1. ábra).



1. ábra. A  $\sigma$ -tér sajátenergiás járulékainak Feynman-diagramjai. Az első két diagram a piontömeget meghatározó tadpole-járulékot, valamint a külső térrel arányos végtelen sor n = 0 tagját ábrázolja, a továbbiak a végtelen összeg n > 0 indexű tagjait képviselik. (A [13]-ban közölt ábrán  $\Phi$ -vel jelöltük a v kondenzátumot)

#### Gerjesztési spektrum

A pszeudo-Goldstone-pionok explicit szimmetriasértéssel generált tömegét a mérésekből származó bemenő paraméterként kezelik. A kondenzátum nagyságát a pion gyenge bomlási állandójának kísérleti értékével kapcsolják össze:  $v_0\sqrt{N} = f_{\pi}$ . Az explicit szimmetriasértés erősségére ezzel a  $h = m_{G0}^2 f_{\pi} / \sqrt{N}$  kifejezés kapható. A reális világra N = 4. Ezekkel az adatokkal kifejezve a renormalizált elmélet tömegparaméterét a tadpole-integrál explicit kifejezésével, a következő összefüggés adódik [12]:

$$m_R^2 = -\frac{\lambda_R}{6N} f_\pi^2 + m_{G0}^2 \left( 1 - \frac{\lambda_R}{96\pi^2} \ln \frac{m_{G0}^2}{M_0^2} \right).$$
(48)

Ez az egyenlet a  $\sigma$  gerjesztés tömegét meghatározó (52) kifejezéssel együtt renormalizációs invarianciát mutat. Ez a kijelentés azt jelenti, hogy az  $M_0$  renormalizációs skála megváltoztatásakor lehetséges olyan új  $\lambda_R(M_0), m_R^2(M_0)$  választás, amely ugyanezeket a megoldásokat adja. A királis határesetben  $\lambda_R$  változása  $m_R^2$  hangolását igényli.

Ugyanakkor, ha a  $\sigma$  tömegét adott  $(\lambda_R, m_R^2)$  pontban meghatározzuk  $m_{G0} \neq 0$ -ra és a királis határesetben is, akkor a fenti egyenletből látszik, hogy két különböző fizikai megoldást csak különböző  $M_0$  választással adhat. Ez persze más  $\sigma$ -tömeget is eredményez, amint az a 2. ábrán alább látható is.

A (46) képletek Minkowski-metrikára átfolytatott alakjában a nevező eltűnése határozza meg a skalárszektorban fellépő gerjesztések tömegét. Az euklidészi képletek visszafolytatása után az

$$iG_{\sigma\sigma}^{-1}(p_0) = p_0^2 - m_{G0}^2 - \frac{\lambda_R}{3N} f_\pi^2 \frac{1}{1 - \frac{\lambda_R}{6} I^F(p_0, m_{G0})} = 0$$
(49)

egyenlet gyöke adja a keresett tömeget [13]. A gyök kereséséhez szükség van a véges buborékintegrál T = 0-n érvényes, analitikusan megadható kifejezésére, amit a  $p_0 > 2m_{G0}$  kétrészecskés bomlási küszöb felett kell használni:

$$I^{F}(p_{0}, m_{G0}) = \frac{1}{16\pi^{2}} \left[ \ln \frac{m_{G0}^{2}}{M_{0}^{2}} - \sqrt{1-x} \ln \frac{\sqrt{1-x}-1}{\sqrt{1-x}+x} \right], \qquad x = \frac{m_{G0}^{2}}{p_{0}^{2}}.$$
(50)

Ennek a kifejezésnek véges királis határértéke van:

$$I^{F}(p_{0},0) = \frac{1}{16\pi^{2}} \ln \frac{-p_{0}^{2}}{M_{0}^{2}}.$$
(51)

A gyökök komplexek. A fizikai  $\sigma$ -pólus  $m_{\sigma}$  tömegét és  $\Gamma_{\sigma}$  szélességét az egyszerűsített alakú egyenlet megoldásával az  $m_{G0} = 0$  királis határesetben a

$$p_0 = M_0 e^{-i\varphi_0}, \qquad m_\sigma = M_0 \cos\varphi_0, \qquad \Gamma_\sigma = M_0 \sin\varphi_0 \tag{52}$$

alakban kerestük. (A komplex gyök a második Riemann-levélen helyezkedik el a 0 <  $\varphi_0 < \pi/2$  megkötés teljesülését megkövetelve.) Ezzel a paraméterezéssel a komplex egyenlet gyöke  $M_0/f_{\pi}$ -t és  $\varphi_0$ -t határozza meg  $\lambda_R$  adott értékére. Véges piontömeg esetén

$$p_0 = 2m_{G0} + \bar{M}_0 e^{-i\bar{\varphi}_0} \tag{53}$$

parametrizációval kerestük a gyököt, ahol  $\overline{M}_0, \overline{\varphi}_0$ -ból egyszerű geometriai megfontolással kifejezhető  $M_0$  és  $\varphi_0$ , majd ezekből  $M_\sigma, \Gamma_\sigma$ . A 2. ábrán megadjuk ezen mennyiségek változását  $\lambda_R$ -rel a királis limeszben és a fizikai piontömeg választása esetén is. Megjegyzendő, hogy a megfelelő görbéken ugyanazon bemenő renormalizált paraméterek mellett a fentebb elmondottak szerint más  $M_0$ -t kell használni.

Az egyenletnek van egy nevezetes nem fizikai gyöke, amely tisztán imaginárius:  $p_0 = iM_L$ . A tachionikus *Landau-pólus* energiaskálája felső korlátot ad az elmélet használhatóságára. A 2. ábrán  $\ln(M_L/m_{\sigma})$  görbéje is látható. (Valójában nem nulla hőmérséklet esetén  $M_L$  enyhén függ a hőmérséklettől, ezért az ábrán inkább egy sáv, mintsem egyetlen görbe látható.) Szubjektív választással a hányados alsó értékét 4-5-nek választva, szeparálhatjuk a fizikai tartományt a Landau-skálától. Ez  $\lambda_R$ -re felső korlátot ad.



2. ábra. A  $\sigma$ -propagátor komplex pólusának valós  $(M_{\sigma})$  és képzetes  $(\Gamma_{\sigma})$  része T = 0 hőmérsékleten a királis határesetben, illetve a kísérleti piontömegre vezető explicit szimmetriasértésre. A tisztán imaginárius Landau-pólus  $(iM_L)$  erősségét is mutatjuk  $M_{\sigma}$  arányában, amely felülről korlátozza  $\lambda_R$  lehetséges értékeit. (A [12] közleményből)

#### Kiterjesztés a kvark-mezon elméletre [15]

A nem nulla barionszámmal jellemezhető szabadsági fokokat a modern elméletben kvarkokkal jelenítik meg. Ezért a (24)-t kiegészítő fermionszektor Lagrange-sűrűségét (4) helyett a kvarkokkal írjuk fel (euklidészi metrikában), mégpedig úgy, hogy a pionok Yukawa-csatolását is bevezetjük:

$$L_Q = \bar{q}(x) \left[ \gamma_m \partial_m + \frac{g}{\sqrt{N}} \left( \sigma(x) + i\gamma_5 \sqrt{2N_f} T^a \pi^a(x) \right) \right] q(x).$$
 (54)

Itt q(x) az u és d kvarkokból álló izodublett vektor kiterjesztése  $N_f$ dimenzióssá,  $N = N_f^2 - 1$  pedig az  $SU(N_f)$  csoport generátorainak a száma. Minden kvarkkomponens  $N_c$  színdegenerációt mutat, amit a kvarkterekre vett spúrképzésnél szorzóként kell figyelembe venni. A Yukawakölcsönhatás fermion- $\sigma$  csatolását N olyan hatványával skálázzuk, hogy a királis szimmetria spontán sérüléséből származó konsztituens kvarktömeg a nagy N határesetben véges legyen. A konsztituens tömeget megkülönböztetik a Lagrange-sűrűség paramétereként szereplőtől [18]. Az előbbit a nukleontömeg harmadára szokás beállítani, míg az explicit királis szimmetria sérülését jellemző  $m_q$  értéke a nem ritka kvarkokra 4–7 MeV. Ez világossá teszi, hogy a spontán szimmetriasértés hatása dominál. Alább feltételezzük, hogy a teljes kvarktömeg a királis szimmetria spontán sérüléséből származik:

$$m_Q = gv. \tag{55}$$

A kvarkterekre a funkcionális integrálás elvégezhető, amelynek az eredménye módosítja a mezonhatás  $S_M$  hatásfüggvényét:

$$\Delta S_M = -N_c \operatorname{Tr} \log \left[ \gamma_m \partial_m + \frac{g}{\sqrt{N}} \left( \sigma(x) + i \gamma_5 \sqrt{2N_f} T^a \pi^a(x) \right) \right].$$
 (56)

E kifejezés megfelelő funkcionális deriváltjai, a ( $\sigma = \sqrt{N}v$ ,  $\pi = 0$ ) helyen számítva, egészítik ki a pion- és  $\sigma$ -propagátorok kifejezéseit. A kiegészített (26) állapotegyenletbe a Yukawa-csatolás révén a kvarkpropagátorral számolt tadpole-integrál is járulékot ad:

$$\sqrt{N}v\left[m^2 + \frac{\lambda}{6}v^2 + \frac{\lambda}{6N}\left(\langle\sigma^2\rangle + \langle\pi^i\pi^i\rangle\right) - \frac{h}{v}\right] - \frac{gN_cN_f}{\sqrt{N}}\operatorname{Tr}\left(\gamma_m\partial_m + m_Q\right)^{-1} = 0$$
(57)

Ez a járulék 1/ $\sqrt{N}$ -nel el van nyomva a vezető járulékhoz képest, de a nagy N sorfejtésben megelőzi a mezonikus járulék következő  $\mathcal{O}(1/N)$  rendjét. Nulla hőmérsékleten a kvarktadpole alakilag azonos a bozonikussal, leszámítva azt a szabadságot, amely megengedi a fermionikus normalizációs skálára a bozonikus  $M_{0B}$ -től eltérő érték választását:

$$\operatorname{Tr}\left(\gamma_m\partial_m + m_Q\right)^{-1} = 4m_Q T(m_Q).$$
(58)

PATKÓS ANDRÁS: A RÉSZECSKEFIZIKA REJTŐZKÖDŐ SZIMMETRIÁI

Később megmutatjuk, itt csak figyelmeztetünk, hogy véges hőmérsékleten a kvarkok és a mezonok tadpole-integrálja lényegesen eltérő alakú.

A pion sajátenergiájához a kvarkbuborék ad kiegészítést, amely alkalmasan átalakítható az izospin-generátorok tr $T^aT^b = \delta^{ab}/2$  normalizációját, majd a Dirac-algebrát kihasználva:

$$G_{\pi}^{-1}(k) = Z_{\pi}k^{2} + m^{2} + \frac{\lambda}{6} \left( v^{2} + \int_{q} G_{\pi}(q) \right) - \frac{g^{2}N_{f}N_{c}}{N} \int_{q} \operatorname{tr}_{D}D_{F}(q)\gamma_{5}D_{F}(q+k)\gamma_{5} = Z_{\pi}k^{2} + m^{2} + \frac{\lambda}{6} \left( v^{2} + T(M_{G}) \right) - \frac{4g^{2}N_{f}N_{c}}{N} \left[ T(m_{Q}) - \frac{1}{2}k^{2}I(k,m_{Q}) \right],$$
(59)

ahol  $D_F(q)$  a szabad,  $m_Q$  tömegű Dirac-propagátor,  $I(m_Q)$  nulla hőmérsékleten a bozonikus integrállal azonos buborékintegrál, amelyet az  $m_Q$  kvarktömeggel kell kiszámítani. Miután a kvarkbuborék járuléka impulzusfüggő divergenciát hoz be, be kellett vezetni a  $Z_{\pi}$  hullámfüggvény renormalizációs állandót. A renormalizált állapotegyenletet a pionpropagátorral összehasonlítva kapjuk meg a Goldstone-bozon tömegének a kvark-mezon elméletben érvényes kifejezését:

$$M_G^2 = \frac{h}{v}.$$
(60)

Az állapotegyenlet renormalizációjához a csatolások  $O(1/\sqrt{N})$  nagyságrendű ellencsatolásos módosulását várjuk (erre a körülményre az 1/2 index használatával utalunk). A végtelen (37) ellentag-felösszegzést  $v^2$  együtthatója esetében ki kell egészíteni egy  $\sim g^4$  taggal, miközben  $T^F(M_G)$ , illetve  $M_G^2$  együtthatója továbbra is (37) és (38) szerint renormalizálódik. A későbbiek szempontjából fontos annak kiemelése, hogy arról az ellentagról van szó, amelyik a potenciálban a  $v^4$ -nel arányos tag csatolását határozza meg. Ugyanez az ellentag végesíti a pionpropagátorban a  $v^2$ -tel arányos csatolást, azaz  $\lambda_{v^2\pi\pi}$ -t. Az ellencsatolások képletei:

$$\delta m_{1/2}^2 = \frac{4g^2 N_c N_f}{N} (T_d^{(2)} + M_{0F}^2 T_d^{(0)}), \qquad \delta \lambda_{v^4}^{(1/2)} = \delta \lambda_{v^2 \pi \pi}^{(1/2)} = -\frac{24g^4 N_c N_f}{N} T_d^{(0)}. \tag{61}$$

A pionpropagátor inverze  $k^2$ -tel arányos részének renormalizációját, a  $Z_\pi=1+\delta Z_{\pi,1/2}$ felbontást használva, a

$$\delta Z_{\pi,1/2} = -\frac{2g^2 N_c N_f}{N} T_d^{(0)} \tag{62}$$

választással érjük el.

A véges  $\mathcal{O}(1/\sqrt{N})$  pontosságú egyenletek a következők:

$$M_{G}^{2} = m_{R}^{2} + \frac{\lambda}{6} \left( v_{R}^{2} + T^{F}(M_{G}) \right) - \frac{4g^{2}N_{c}N_{f}}{N} T^{F}(m_{Q}),$$
  

$$G_{\pi}^{-1}(k) = k^{2} \left( 1 - \frac{2g^{2}N_{c}N_{f}}{N} I^{F}(k, m_{Q}) \right) + M_{G}^{2}.$$
(63)

A  $\sigma$ -tér propagátorához adott kvarkbuborék-járulék figyelembevétele a következő inverz propagátor-mátrixra vezet a segédteres formalizmus  $\alpha - \sigma$  szektorában, a piontérre történt integrálás után:

$$\mathcal{G}^{-1}(q) = \begin{pmatrix} -\frac{3N}{\lambda} - \frac{N}{2}I_{\pi}^{F}(q) & \sqrt{N}v \\ \sqrt{N}v & G_{\pi}^{-1}(q) + \frac{8g^{4}N_{c}N_{f}}{N}v^{2}I^{F}(q,m_{Q}) \end{pmatrix}, \quad (64)$$

ahol  $I_{\pi}^{F}(q)$  a kvarkbuborékkal módosított  $G_{\pi}$  pionpropagátorral számolt, renormalizált pionbuborék. Renormalizációjának alaposabb bemutatása bonyolultabb (és nehezebben áttekinthető) megfontolást igényelne, ezért közelítő tárgyalására az eredeti  $M_{G}$  tömegű egyszerű pólusnak megfelelő propagátort használjuk az  $\alpha \alpha$  mátrixelem  $I_{\pi}^{F}$  mennyiségében. A  $\sigma \sigma$  mátrixelem renormalizációja a  $Z_{\sigma} = Z_{\pi}$  ellentag mellett a  $\lambda_{v^2\sigma\sigma}$  csatoláshoz igényel önálló ellentagcsatolást:

$$\delta\lambda_{v^{2}\sigma\sigma}^{(1/2)} = -\frac{72g^{4}N_{c}N_{f}}{N}T_{d}^{(0)}.$$
(65)

A  $\delta \lambda_{v^2 \sigma \sigma} \neq \delta \lambda_{v^2 \pi \pi}$  eltérés nem váratlan, hiszen a Yukawa-csatolás sérti a  $(\sigma, \pi^a)$  terek belső O(N) szimmetriáját. A  $\sigma$ -tér propagátorának reciprokára ebből a mátrixból

$$[G_{\sigma\sigma}(q)]^{-1} = G_{\pi}^{-1}(q) + \frac{8g^4 N_c N_f}{N} v^2 I^F(q, m_Q) + \frac{\lambda}{3} v^2 \frac{1}{1 + \frac{\lambda}{6} I^F(q, M_G)}$$
(66)

adódik [15].

A propagátort Minkowski-téridőre folytatva találjuk meg a gerjesztési spektrumot. Az elfolytatás "szabályai":

$$G_{\sigma\sigma}^{-1} \to -iG_{\sigma\sigma}^{-1}, \qquad p^2 \to -p^2, \qquad I^F(q,M) \to -I^F(q,M),$$
(67)

ahol az euklidészi metrikájúak a bal, míg a Minkowski-metrikával számolt mennyiségek a nyilak jobb oldalán állnak. Az átfolytatott  $\sigma$ -propagátor ennek alapján:

$$iG_{\sigma\sigma}^{-1}(q) = iG_{\pi}^{-1}(q) - \frac{\lambda}{3}v^2 \frac{1}{1 - \frac{\lambda}{6}I^F(q, M_G)} + \frac{8g^4 N_c N_f}{N}v^2 I^F(q, m_Q), \quad (68)$$

ahol megint szükség van a buborékintegrál (50)-ben megadott explicit alakjára.

A buborékintegrál értelmezése kiterjeszthető a Im  $q_0 > 0$  tartományra. A gerjesztések jellemzésére a spektrális függvény használható, amelyet a  $\mathbf{q} = 0$ ,  $q_0 = \omega + i\epsilon$  rendszerben az alábbi szabállyal lehet kiszámítani:

$$\rho_{\sigma}(\omega) = \frac{1}{\pi} \lim_{\epsilon \to 0} \operatorname{Im} \left[ i G_{\sigma\sigma}(\omega + i\epsilon, 0) \right].$$
(69)



3. ábra. A  $\sigma$ -gerjesztés spektrálfüggvénye T = 0 hőmérsékleten a kvark-mezon elméletben, az  $M_{0B}$  és  $M_{0F}$  normalizációs pontok három különböző értékpárjára, az  $\eta$  viszonyszám rögzített értéke mellett. (A [15] közleményből)

A 3. ábrán látható, hogy egy aszimmetrikus kiszélesedésű és elég elnyúlt függvény adódik, amelyet nem lehet egy olyan határozott nyugalmi energiájú gerjesztéssel azonosítani, amelyhez Dirac-delta spektrális függvény tartozna. A spektrálfüggvény részletei függenek a választott normalizációs skáláktól ( $M_{0B}, M_{0F}$ ). Az ábrán  $\eta = \ln(M_{0B}/M_{0F}) = -0,25$  rögzített értéke mellett  $M_{0B}$  három értékére ábrázoltuk a spektrálfüggvényt. A maximum helyzete elég jól egybevág a Particle Data Group által elfogadott tömegtartománnyal, de a szélessége nagyjából fele a  $\sigma$  részecske jelenlegi kísérleti adatának.

### KIRÁLIS SZIMMETRIA HELYREÁLLÁSA VÉGES HŐMÉRSÉKLETEN ÉS SŰRŰSÉGEN

Véges T hőmérsékleten a (36) állapotegyenletet a piontadpole véges hőmérsékletű részével egészítjük ki:

$$M_{G}^{2}(T) = m_{R}^{2} + \frac{\lambda_{R}}{6}v^{2}(T) + \frac{\lambda_{R}}{96\pi^{2}}M_{G}^{2}(T)\ln\frac{M_{G}^{2}(T)e}{M_{0}^{2}} + \frac{\lambda_{R}T^{2}}{12\pi}\int_{M_{G}(T)/T}^{\infty}dy(e^{y}-1)^{-1}(y^{2}-M_{G}^{2}(T)/T^{2})^{1/2}.$$
 (70)

A renormalizált  $\lambda_R$  csatolást és az  $M_0$  renormalizációs skálát T = 0-n rögzítve, bevezetve a dimenziótlan  $\mu(T) = M_G(T)/M_G(0)$  és a  $\tau = T/M_G(0)$ mennyiségeket (aminek persze csak explicit szimmetriasértés esetén van értelme), képezhető az állapotegyenlet  $T \neq 0$  és T = 0 esetre érvényes alakjainak különbsége:

$$\mu^{2} - 1 = \frac{\lambda_{R}\tau^{2}}{12\pi} \int_{\mu/\tau}^{\infty} dy (e^{y} - 1)^{-1} (y^{2} - \mu^{2}/\tau^{2})^{1/2} + \frac{\lambda_{R}v_{0}^{2}}{6M_{G}^{2}(0)} \left(\frac{1}{\mu^{4}} - 1\right) + \frac{\lambda_{R}}{96\pi^{2}} \left[ (\mu^{2} - 1) \ln \frac{M_{G}^{2}(0)e}{M_{0}^{2}} + \mu^{2} \ln \mu^{2} \right].$$
(71)

Ebben a képletben fenomenológiai információként használható a pion tömege ( $M_G(0)$ ) és gyenge bomlási állandója  $f_{\pi} = \sqrt{N}v_0 = 2v_0$ . Tehát ezzel az egyenlettel meghatározható  $\mu(\tau)$ , azaz a Goldstone-bozon tömegének hőmérsékletfüggése.

A Goldstone-tömeg folyamatosan növekszik a hőmérséklet minden határon túli növelésével. A királis határesetben ( $M_G(T) = 0$  a sértett fázisban) viszont az átskálázatlan egyenletből az integrál elvégzésével egyszerű egyenletet kapunk, amely szerint a  $v(T) \neq 0$  megoldás már véges  $T_c$  hőmérsékleten folytonosan eltűnik. A királis esetre a

$$\frac{v^2(T)}{v_0^2} = \left(1 - \frac{T^2}{12v_0^2}\right) \to T_c^2 = 12v_0^2 \tag{72}$$

egyenletet kapjuk. A  $T_c$  felett csak a v(T) = 0 megoldás marad meg, tehát másodrendű fázisátalakulás zajlik le, ahol a jelen tárgyalás a rendparaméternek átlagtérjellegű hatványfüggést követő nullához tartását eredményezi.

A  $\sigma$ -csatorna spektrális függvényének hőmérsékletfüggését a  $G_{\sigma\sigma}$ propagátor hőmérsékleti korrekciójával lehet követni. Az egyszerűség kedvéért a h = 0 esetet tanulmányozzuk:

$$iG_{\sigma\sigma}^{-1}(p_0,T) = p_0^2 - \frac{\lambda_R}{3}v^2(T)\frac{1}{1 - \frac{\lambda_R}{6}I^F(p_0,M_G=0,T)},$$
(73)

ahol a pionbuborék már korábban szerepelt (vö. (51)) nulla hőmérsékletű kifejezését a fizikai  $p_0$ -tartományban definiált

$$I^{F}(p_{0}, M_{G} = 0, T) = I^{F}(p_{0}, M_{G} = 0, T = 0) + \int \frac{d^{3}q}{(2\pi)^{3}} \frac{1}{4\omega_{1}\omega_{2}} \left\{ (n_{1} + n_{2}) \left[ \frac{1}{p_{0} - \omega_{1} - \omega_{2} + i\epsilon} - \frac{1}{p_{0} + \omega_{1} + \omega_{2} + i\epsilon} \right] \right\}$$
(74)  
$$-(n_{1} - n_{2}) \left[ \frac{1}{p_{0} - \omega_{1} + \omega_{2} + i\epsilon} - \frac{1}{p_{0} + \omega_{1} - \omega_{2} + i\epsilon} \right] \right\}$$

kifejezéssé egészítjük ki ( $n_i$  a megfelelő energiaértéknél kiszámolt Bose– Einstein-eloszlást jelenti), továbá  $\omega_1 = |\mathbf{q}|, \omega_2 = |\mathbf{q} + \mathbf{p}|$ . A 4. ábrán a (69) definícióval a (73) alapján és (74) felhasználásával számolt spektrálfüggvény hőmérsékletfüggését érzékeltető görbesor látható.

Milyen változást hoz a kvarkbuborék és a véges bariokémiai potenciál figyelembevétele?

Elsőként a kémiai potenciált nullának tekintjük. A fermiontadpole véges hőmérsékletű kiegészítése ellenkező előjelű a (70) képlet jobb oldalán megje-



4. ábra. A  $\sigma$ -gerjesztés módosított spektrálfüggvényének hőmérsékletfüggése a királis határesetben ( $\rho_1$  =  $(1 - \exp(-p_0/2T)\rho_\sigma(p_0, T))$ , a [12] közleményből)

lenő bozonjárulékhoz képest, továbbá Bose-Einstein-eloszlás helyett Fermi-Dirac-eloszlásfüggvény szerepel benne:

$$T^{F}(M_{Q}, T, M_{0F}) = T^{F}(M_{Q}, 0, M_{0F}) - \frac{T^{2}}{2\pi^{2}} \int_{M_{Q}/T}^{\infty} dy (e^{y} + 1)^{-1} (y^{2} - M_{Q}^{2}(T)/T^{2})^{1/2}.$$
(75)

A királis határesetben ( $M_G = 0$ ) a sértett szimmetriájú tartomány határán v = 0 írható, amellyel persze  $m_Q = 0$  is fennáll. Ezzel a kritikus hőmérséklet egyenlete:

$$m_R^2 + \frac{\lambda_R}{6} \frac{T_c^2}{12} + \frac{g^2 N_c T_c^2}{\pi^2} \int_0^\infty dy y (e^y + 1)^{-1} = 0,$$
(76)

amelyből az integrál elvégzése után  $T_c$  egyenlete a következő:

$$m_R^2 + \left(\frac{\lambda_R}{6} + g^2 N_c\right) \frac{T_c^2}{12} = 0.$$
 (77)

30

Véges kémiai potenciál esetén a (76) egyenlet bal oldalának integráljában megjelenik a  $z = e^{\mu/T}$  fugacitás, minthogy az  $(e^y + 1)^{-1} \rightarrow [(ze^y + 1)^{-1} + (e^y/z + 1)^{-1}]/2$  cserét kell elvégezni. A Fermi–Dirac-integrálások az integrandus *z* hatványai szerinti sorfejtésével felcserélve végzendők el, amelynek eredménye a kritikus pont meghatározásában a következő:

$$m_R^2 + \frac{\lambda_R}{72}T_c^2 - \frac{g^2 T_c^2 N_c}{2\pi^2} [\operatorname{Li}_2(-z) + \operatorname{Li}_2(-1/z)] = 0,$$
(78)

ahol Li<sub>2</sub> az l = 2 indexű polilogaritmus függvény. Ebből a  $T_c(\mu)$  fügvény határozható meg, miután a renormalizált csatolások értékét rögzítettük. Ez egy kritikus vonal, amely ott ér véget, ahol az effektív potenciál ~  $v^4$  tagjának együtthatója előjelet vált. Ez az állapotegyentletben a  $v^2$ -tel arányos tag, amelynek meghatározását követően annak eltűnése feltételéből megkapható a trikritikus pont hőmérséklete:

$$\frac{\lambda_R}{6} + \frac{g^4 N_c}{4\pi^2} \left[ \left( \frac{\partial}{\partial n} \left( \operatorname{Li}_n(-z) + \operatorname{Li}_n(-1/z) \right) \right)_{|n=0} - \ln \frac{\operatorname{const.} \times T_{TCP}}{M_0 B} \right] = 0.$$
(79)

Az 5. ábrán a  $T - \mu$  síkban ábrázoljuk a TCP-ben végződő kritikus vonalat, amely  $\mu > \mu_{TCP}$ -re elsőrendű átalakulási vonalban folytatódik.



5. ábra. A  $T - \mu$  síkbeli fázisdiagram ( $M_{0B} = 886$  MeV,  $\eta = 0$ ). A trikitikus ponttól (TCP) balra másodrendű fázisátalakulási vonal választja el a sértett királis szimetriájú fázist (a görbe alatt) a helyreállt királis szimmetriájútól (a görbe felett). (A [15] közleményből)

## A PERTURBÁCIÓSZÁMÍTÁS OPTIMALIZÁCIÓJA ÉS ALKALMAZÁSAI

A perturbatív sorok konvergenciájának sebességét az egymást követő tagok amplitúdójának relatív nagysága alapján becsülik meg. Ez adta az ötletet, hogy a soron következő korrekció nagyságát, a renormalizálási feltétel megválasztásának szabadságával élve, minimalizálják, azaz a kiválasztott mennyiségre a lehető legjobban felgyorsítsák a perturbációs becslés látszólagos konvergenciáját [21, 22, 23].

Az alapgondolat egyszerű. A (17) modell tömegtagjába egy variációsan meghatározandó tömeget vezetnek be az eredeti $\mu^2$  paraméter helyett:

$$L_{mass} = -\frac{1}{4}m^{2} \text{tr} M^{\dagger} M + \frac{1}{4}(-\mu^{2} + m^{2}) \text{tr} M^{\dagger} M \equiv -\frac{1}{4}m^{2} \text{tr} M^{\dagger} M + \frac{1}{2}\Delta m^{2} \text{tr} M^{\dagger} M.$$
(80)

A perturbációszámításban a skalárterek propagátoraiban az  $m^2 > 0$  mennyiséget használják, míg a  $\Delta m^2$ -tel arányos járulékot ellentagként kezelik. Ennek az is előnye, hogy a sértett szimmetriájú fázisban a  $\mu^2 < 0$  (rossz előjelű) tömegparaméterrel konstruált propagátorok az impulzusok bizonyos tartományában tachionikus természetűvé válnak, ami a módosított tömegtaggal elkerülhető.  $m^2$  meghatározására általában azt szokás előírni, hogy valamelyik tér propagátorában szereplő tömeg ne kapjon korrekciót a klasszikus Lagrange-sűrűségből kiolvasható kifejezéséhez a perturbációszámítás első rendjében. Ez a választott mennyiségre éppen a *leggyorsabb látszólagos konvergenciát* (LLK) biztosító követelmény. Ugyanakkor világos, hogy a konvergencia felgyorsítása nem vonatkozhat univerzálisan az összes fizikai mennyiségre.

# Optimalizált perturbációszámítás az $SU(3)_L \times SU(3)_R$ mezonmodellben

Alább a királis mezonmátrix modellben  $N_f = 3$  kvarkfajta esetére mutatom be az optimális perturbációszámítás (OPT) alkalmazását az erősen kölcsönható részek termodinamikai jellemzőinek kiszámítására. Szép Zsolt és Herpay Tamás [24] munkájára támaszkodom, amely továbbfejlesztette korábbi közös munkánkat [25]. Szép Zsolt és Kovács Péter 2007-ben kiterjesztették az OPT-t alkalmazó tárgyalást az  $N_f = 3$  kvark-mezon modell véges kémiai potenciál melletti termodinamikájára [26].

A háromféle kvarkot tartalmazó elmélet Lagrange-sűrűsége a két kvarkízt tartalmazóhoz képest két független negyedfokú  $U(3)_L \times U(3)_R$  invariánst tartalmaz, továbbá szerepel benne a szimmetriát  $SU(3)_L \times SU(3)_R$ -ra redukáló köbös tag a mezonmátrix determinánsának alakjában. Az ún.'t Hooftdeterminánst [27] az  $U_A(1)$  szimmetriát sértő kvantumanomália erősségével meghatározott g csatolás nagysága jellemzi. A nem ritka kondenzátum mellett fellép ritka mezonkondenzátum is, ezért kétféle explicit szimmetriasértő tagot vezetnek be. Mindezekkel a kiegészítésekkel a Lagrange-sűrűségre Chan és Haymaker 1973-ban a következő kifejezést javasolta [28]:

$$L(M) = \frac{1}{2} \operatorname{tr}(\partial_{\mu} M^{\dagger} \partial^{\mu} M - \mu^{2} M^{\dagger} M) - f_{1} \left(\operatorname{tr}(M^{\dagger} M)\right)^{2} - f_{2} \operatorname{tr}(M^{\dagger} M)^{2} - g \left(\operatorname{det}(M) + \operatorname{det}(M^{\dagger})\right) + \epsilon_{x} \sigma_{x} + \epsilon_{y} \sigma_{y},$$

$$(81)$$

ahol a mezonmátrixot a Gell-Mann-mátrixokkal és az U(3) csoport egységmátrixszal arányos kilencedik  $\lambda_0$  generátorával feszítik ki. A 0 - 8 "síkban" ortogonális transzformációval azonban áttérnek a "ritka (y) nem ritka (x)" bázisra, amelyben változatlan  $\lambda_1$ - $\lambda_7$  Gell-Mann-mátrixokkal a mezonmátrix a következő explicit paraméterezéssel adható meg:

$$M = \frac{1}{\sqrt{2}} \sum_{i=1}^{7} (\sigma_i + i\pi_i)\lambda_i + \frac{1}{\sqrt{2}} \text{diag}(\sigma_x + i\pi_x, \sigma_x + i\pi_x, \sqrt{2}(\sigma_y + i\pi_y)).$$
(82)

Az elmélet nyolc paramétere úgy határozható meg, hogy az 1-hurok-szinten kiszámított fizikai mennyiségeket fenomenológiai értékeikkel teszik egyenlővé. Látni fogjuk, hogy az LLK követelményének évényesítése a szóban forgó mennyiségekre önálló egyenlet(ek)re vezet.

A pion- és a kaonpropagátorok inverzei a megfelelő sajátenergiafüggvényekkel a következő alakúak:

$$iD_{\pi}(p)^{-1} = Z_{\pi}(p^2 - m_{\pi}^2 - \Sigma_{\pi}(p^2, m_i, \kappa)),$$
  

$$iD_K(p)^{-1} = Z_K(p^2 - m_K^2 - \Sigma_K(p^2, m_i, \kappa)),$$
(83)

ahol a sajátenergiákat  $Z_{\pi}\Sigma_{\pi}$ , illetve  $Z_{K}\Sigma_{K}$  adja.  $m_{\pi}^{2}, m_{K}^{2}$  a fagráfszintű tömegnégyzetek, amelyeket  $\langle \sigma_{x} \rangle = x, \langle \sigma_{y} \rangle = y$  kondenzátumok feltételezésével számolunk ki. Ezek a mennyiségek a  $p^{2}$  impulzustól, a hurkokban előforduló összes mezon  $m_{i}$  tömegétől, valamint a hurokdiagramok renormalizációja során bevezetett  $\kappa$  renormalizációs impulzusskálától függenek. A  $\Sigma_{\pi}$ és  $\Sigma_{K}$  mennyiségeket közelítőleg a

$$\Sigma_{\pi}(p^{2}, m_{i}, \kappa) \approx \Sigma_{\pi}(m_{\pi}^{2}, m_{i}, \kappa) + \frac{\partial \Sigma_{\pi}}{\partial p^{2}}\Big|_{m_{\pi}^{2}}(p^{2} - m_{\pi}^{2}),$$
  
$$\Sigma_{K}(p^{2}, m_{i}, \kappa) \approx \Sigma_{K}(m_{K}^{2}, m_{i}, \kappa) + \frac{\partial \Sigma_{K}}{\partial p^{2}}\Big|_{m_{K}^{2}}(p^{2} - m_{K}^{2})$$
(84)

kifejtéssel reprezentálva a propagátorok inverzei, miután a hullámfüggvény renormalizációs állandókat a

$$Z_{\pi}^{-1} = 1 - \frac{\partial \Sigma_{\pi}}{\partial p^2} \Big|_{m_{\pi}^2}, \qquad Z_K^{-1} = 1 - \frac{\partial \Sigma_K}{\partial p^2} \Big|_{m_K^2}$$
(85)

(számításaink szintjén véges [!]) kifejezésekkel azonosítjuk, a következő kifejezésekbe mennek át:

$$iD_{\pi}(p)^{-1} = p^{2} - m_{\pi}^{2} - Z_{\pi}\Sigma_{\pi}(m_{\pi}^{2}, m_{i}, \kappa),$$
  

$$iD_{K}(p)^{-1} = p^{2} - m_{K}^{2} - Z_{K}\Sigma_{K}(m_{K}^{2}, m_{i}, \kappa).$$
(86)

Azt a követelményt állítjuk, hogy a pionnak és a kaonnak a fenomenológiai tömegeit már a fagráfszintű kifejezésük megadja, és az 1-hurokkorrekciók (lásd 6. ábra első két sorát) járuléka legyen nulla. Ez 4 (!) egyenletet jelent:

$$M_{\pi}^{2} = m_{\pi}^{2} = m^{2} + 2(2f_{1} + f_{2})x^{2} + 4f_{1}y^{2} + 2gy,$$
  

$$M_{K}^{2} = m_{K}^{2} = m^{2} + 2(2f_{1} + f_{2})(x^{2} + y^{2}) + 2f_{2}y^{2} - \sqrt{2}x(2f_{2}y - g),$$
  

$$0 = \Sigma_{\pi}(m_{\pi}^{2}, m_{i}, \kappa) = \Sigma_{K}(m_{K}^{2}, m_{i}, \kappa).$$
(87)

A 6. ábra alapján szeparáljuk a sajátenergia kifejezésében a szigorúan 1-hurok- és az "ellentag"-jellegű járulékokat. Ekkor az előző egyenletsor utolsó két darabja kicsit részletesebben írható:

$$Z_{\pi}\Sigma_{\pi}(m_{\pi}^{2}, m_{i}, \kappa) = Z_{\pi}\Sigma_{\pi}^{(1-loop)}(m_{\pi}^{2}, m_{i}, \kappa) - m^{2} + \mu^{2} = 0,$$
  

$$Z_{K}\Sigma_{K}(m_{K}^{2}, m_{i}, \kappa) = Z_{K}\Sigma_{K}^{(1-loop)}(m_{K}^{2}, m_{i}, \kappa) - m^{2} + \mu^{2} = 0.$$
 (88)

Ezzel a pion és a kaon tömegére vonatkozó gapegyenleteket kapunk (felhasználva  $m^2$ -nek az első két egyenletből adódó alakját):

$$m_{K}^{2} = \mu^{2} + 2(2f_{1} + f_{2})(x^{2} + y^{2}) + 2f_{2}y^{2} -\sqrt{2}x(2f_{2}y - g) + Z_{K}\Sigma_{K}^{(1-loop)}(m_{K}^{2}, m_{i}, \kappa), m_{\pi}^{2} = \mu^{2} + 2(2f_{1} + f_{2})x^{2} + 4f_{1}y^{2} + 2gy + Z_{\pi}\Sigma_{\pi}^{(1-loop)}(m_{\pi}^{2}, m_{i}, \kappa).$$
(89)

A többi mezon  $m_i$  tömege a belső vonalak propagátoraiban a megfelelő fagráfszintű kifejezésekkel adott. A pion/kaon tömegének kifejezését

6. ábra. A pion-, a kaon- és az  $\eta$  terek sajátenergiájába 1-hurok-szinten járulékot adó Feynman-diagramok. A belső vonalakon a fagráfszintű tömegekkel terjednek a mezonok, a sávozott vertexcsomó az optimalizációból származó "ellentagjárulékot" jelöli. (A [24] közleményből)

használva ezekben  $m^2 \rightarrow m_{\pi}^2/m_K^2$  helyettesítést lehet végezni, amellyel az  $m_i \rightarrow m_i(m_{\pi}^2)$ , illetve  $m_i \rightarrow m_i(m_K^2)$  függést is figyelembe vehetjük a pion/kaon gapegyenletében. Természetesen az 1-hurok-kifejezéseket renormalizálni kell ( $\Sigma_{\pi}^{(1-loop)} \rightarrow \Sigma_{\pi}^{(1-loop),R}, \Sigma_{K}^{(1-loop)} \rightarrow \Sigma_{K}^{(1-loop),R}$ ). Miután perturbatív számítást végzünk, a köbös és kvartikus kölcsönhatást tartalmazó elmélet renormalizálhatósága a skalárterek perturbatív renormalizációjának általános elméletéből nyilvánvaló. A hivatkozott [24, 25] cikkekben a csatolási állandók renormalizációját részletes képletekkel megadtuk.

További két egyenletet szolgáltat a pion- és kaoncsatornabeli két Wardazonosság. Az 1-pont- (x, y) függvényeket a p = 0 impulzusú 2-pont- $(D_{\pi}(0), D_{K}(0))$  függvényekkel összekötő azonosságok újfent azért biztosan érvényesek, mert a perturbációszámítással összhangban vannak, már az LLK követelményének kirovását megelőzve:

$$\epsilon_x = m_\pi^2 x, \qquad \epsilon_y = m_K^2 \left(\frac{1}{\sqrt{2}}x + y\right) - \frac{1}{\sqrt{2}}m_\pi^2 x. \tag{90}$$

Továbbá kiróható a két PCAC-reláció is:

$$f_{\pi}m_{\pi}^2 = \sqrt{Z_{\pi}}\epsilon_x, \qquad f_K m_K^2 = \sqrt{\frac{Z_K}{2}}\epsilon_y + \sqrt{Z_{\pi}}\epsilon_x. \tag{91}$$

Az  $m^2$  "effektív" tömegparaméter bevezetésével immár 8+1 paramétert kell meghatározni. Ezért az  $\eta$ -mezon tömegére vonatkozó egyenletet is fel kell írni. Ez hosszú képletet eredményez, mivel az 1-hurok-szinten kiszámolt  $2 \times 2$ -es  $\eta - \eta'$  tömegmátrix kisebbik sajátértékét kell azonosítani a kísérleti tömeggel (lásd [24] (17) képletét!).

Zárásul érdemes megjegyezni, hogy az OPT-követelményből származó gapegyenletek  $m_{\pi}^2$ -re, illetve  $m_K^2$ -re teljesen hasonló struktúrájúak, mint a vezető nagy N közelítésben az O(N) modellben  $M_G^2$ -re kapott (36) egyenlet. Az eltérés csak az, hogy a sajátenergiában ott egyetlen tadpole-járulék lép fel, amit az O(N) modell egyszerűbb csoportszerkezete, illetve a nagy N határeset indokol. Természetesen, a nagy N közelítés valamely véges rendjéhez hasonlóan, az LLK követelményével meghatározott egyenletrendszernek csak a csatolási tér egy részében van megoldása, azaz nem biztosított, hogy az ( $m_{\pi}, m_K, m_{\eta}$ ) tömegek és ( $f_{\pi}, f_K$ ) bomlási állandók fenomenológiai értékeit választva, létezik megoldásuk. Fenomenológiai alkalmazásnál igyekezni kell azzal a lehető legreálisabb bemenő paraméterválasztással dolgozni, amelyhez az egyenletek megoldásával sikeresen található fizikailag értelmes csatolási állandó együttes.

#### A termodinamikai kiterjesztés

A pion és a kaon tömegének hőmérsékletfüggését ismerve a (90) egyenletből megkapható a rendparaméterek *T*-függése. A kérdéses tömegeket véges hőmérsékleten is a (89) gapegyenletekből határozták meg, a véges hőmérsékletű sajátenergiák kifejezését használva. A T = 0 és a  $T \neq 0$  járulékokat szétválasztják:

$$\Sigma_M(p^2 = m_\pi^2, m_i, \kappa) = \Sigma_M^{(T=0)}(p^2 = m_\pi^2, m_i, \kappa) + \Sigma_M^{(T)}(p^2 = m_\pi^2, m_i, \kappa),$$

$$M = \pi, K,$$
(92)

és azzal a közelítéssel élnek, hogy a sajátenergia  $T \neq 0$  részét nem a tömeghéjon, hanem a  $p_0 = 0$  pontban számolják. Ennek gyakorlatias előnye, hogy a különböző tömegű propagátorokkal definiált renormalizált buborékintegrál kifejezése renormalizált tadpole-integrálok kombinációjába megy át:

$$I^{F}(p=0,m_{1},m_{2}) = \frac{T^{F}(m_{1},T) - T^{F}(m_{2},T)}{m_{2}^{2} - m_{1}^{2}}.$$
(93)

Ezért írható a gapegyenletekre ( $M = \pi, K$ ):

$$m_{\pi}^{2} = \mu^{2} + 2(2f_{1} + f_{2})x^{2} + 4f_{1}y^{2} + 2gy + Z_{\pi}\Sigma_{\pi}^{(1-loop,T=0)}(m_{\pi}^{2}, m_{i}(m_{\pi}), \kappa) + \sum_{\alpha=\pi_{i},\sigma_{i}} c_{\alpha}^{\pi}T^{F}(m_{i}(m_{\pi}), T \neq 0), m_{K}^{2} = \mu^{2} + 2(2f_{1} + f_{2})x^{2} + 4f_{1}y^{2} + 2gy - \sqrt{2}x(2f_{2}y - g) + Z_{K}\Sigma_{K}^{(1-loop,T=0)}(m_{K}^{2}, m_{i}(m_{K}), \kappa) + \sum_{\alpha=\pi_{i},\sigma_{i}} c_{\alpha}^{K}T^{F}(m_{i}(m_{K}), T \neq 0)$$
(94)

expliciten meghatározható  $c^{\pi}_{\alpha}, c^{K}_{\alpha}$  együtthatókkal.

Miután ezeket az egyenleteket megoldottuk, ismerjük a rendparaméterek x(T), y(T) hőmérsékletfüggését is. Ezek után az összes elemi tér tömegének hőmérsékleti változását is megadhatjuk például a fagráfszintű képleteikbe a hőmérsékletfüggő rendparamétereket, továbbá az optimalizáló tömegparamétert,  $m^2(T)$ -t helyettesítve be. Utóbbi  $m_{\pi}^2(T)$  (87)-ben megadott alakjából olvasható ki. A rendparaméterek és a mezontömegek hőmérsékletfüggése látható a 7. ábrán.



7. ábra. A nem ritka és a ritka kondenzátumoknak (bal oldal), továbbá a paritáspartner mezonpárok tömegeinek (jobb oldal) *T*-függése. A kondenzátumokat (1000, 1300) MeV tartományból vett renormalizációs skálákkal határozták meg, míg a tömegekre az 1200 MeV-es renormalizációs skálaérték választása melletti viselkedést mutatja be az ábra. (A [24] közleményből)

#### Kiterjesztés a kvark-mezon modellre

Az  $N_f$  kvarkot tartalmazó elmélet Yukawa-csatolásában már korábban használt a flavorszámmal való skálázást expliciten feltüntető csatolást (lásd (54))  $N_f = 3$  esetére módosított formában használjuk a fentebb leírt bázisban:

$$L_Q = \bar{q}(x) \left(\gamma_m \partial^m - g_F M_5\right) q(x),$$
  

$$M_5 = \frac{1}{\sqrt{2}} \sum_{i=1}^7 (\sigma_i + i\gamma_5 \pi_i) \lambda_i$$
  

$$+ \frac{1}{2} \operatorname{diag} \left(\sigma_x + i\gamma_5 \pi_x, \sigma_x + i\gamma_5 \pi_x, \sqrt{2}(\sigma_y + i\gamma_5 \pi_y)\right).$$
(95)

Ennek az effektív elméletnek 9 paramétere van:  $\mu^2$ ,  $f_1$ ,  $f_2$ , g,  $g_F$ ,  $\epsilon_x$ ,  $\epsilon_y$ , x, y. Továbbá a renormalizáció folyamatában fellép a bozonikus és a fermionikus renomalizációs skála:  $M_{0B}$ ,  $M_{0F}$ . Az optimalizációt jellemző  $m^2$  effektív tömegparamétert meghatározó gapegyenlet a tizedik. Ezeket a paramétereket T = 0 és zérus barionsűrűség ( $\mu_B = 0$ ) mellett kell beállítani, és az ily módon teljesen meghatározott elméleti keretben lehet jóslatokat tenni az erős kölcsönhatás alapállapotának viselkedésére véges hőmérsékleten és véges barionsűrűségen. A korábbi tapasztalatnak megfelelően  $\sigma_x$  és  $\sigma_y$  kondenzátuma tömeget generál a kvarkoknak:

$$M_u = M_d = \frac{g_F}{2}x, \qquad M_s = \frac{g_F}{\sqrt{2}}y. \tag{96}$$

Ez a konsztituens kvarkokra vonatkozó  $M_u = M_d = M_N/3$  és  $M_s = (M_\Lambda + M_\Sigma)/2 - 2M_u$ összefüggéseket használva 2 összefüggést ad x, y és  $g_F$  között. A harmadikat a pion gyenge bomlására érvényes faszintű PCAC-reláció:  $x = f_{\pi}$  szolgáltatja.

Az O(N) szimmetriájú modellel egyezően az állapotegyenletek a kvarkok  $\langle \bar{q}q \rangle$ -val jelölt tadpole-integráljaival egészülnek ki:

$$0 = -\epsilon_x - m_0^2 x + 2gxy + 4f_1xy^2 + 2(2f_1 + f_2)x^3 + \sum_{\alpha_i\alpha_j} t_{\alpha_i\alpha_j}^x \langle \alpha_i\alpha_j \rangle + \frac{g_F}{2} (\langle \bar{u}u \rangle + \langle \bar{d}d \rangle),$$
  
$$0 = -\epsilon_y - m_0^2 y + gx^2 + 4f_1x^2y + 4(f_1 + f_2)y^3 + \sum_{\alpha_i\alpha_j} t_{\alpha_i\alpha_j}^y \langle \alpha_i\alpha_j \rangle + \frac{g_F}{\sqrt{2}} \langle \bar{s}s \rangle.$$
(97)

Ezekben az egyenletekben  $\sum_{\alpha_i \alpha_j} t^z_{\alpha_i \alpha_j} \langle \alpha_i \alpha_j \rangle$  a mezonok tadpole-járulékát jelöli,  $\alpha$  a  $\sigma$ ,  $\pi$ , z pedig az x, y értékeket veheti fel, a  $t^z_{\alpha_i \alpha_j}$  együttható az egyes tadpole-integrálokhoz tartozó súlyfaktor. Ez a két egyenlet az explicit szimmetriasértés erősségét jellemző  $\epsilon_x, \epsilon_y$  mennyiségek meghatározására használható. A fermionok renormalizált tadpole-integráljainak explicit kifejezése a következő (vö. (58)):

$$\langle \bar{q}q \rangle = 4M_q T^F(M_q) = 4M_q \left( \frac{M_q^2}{16\pi^2} \ln \frac{M_q^2}{M_{0F}^2} - \frac{1}{2\pi^2} \int_{M_q} d\omega \sqrt{\omega^2 - M_q^2} n_{FD}(\omega) \right)$$
(98)

ahol  $M_{0F}$  a fermionikus integrálok renormalizációjához választott skála,  $n_{FD}$  pedig a véges hőmérsékletű járulékot jellemző Fermi–Dirac-eloszlás.

Amennyiben  $\mu_q = \mu_B/3$  bariokémiai potenciálon kívánjuk vizsgálni a rendszert, akkor az  $n_{FD}(\omega) \rightarrow [n_{FD}(\omega + \mu_q) + n_{FD}(\omega - \mu_q)]/2$  helyettesítést kell alkalmazni, ahogyan azt (77) alatt már megtettük.

A további paraméterek rögzítésére a kvark-mezon modell esetében is a pszeudoskalár mezonspektrumot, azaz a pion, a kaon és az  $\eta$  tömegét használtuk. A pion esetében azonban pólustömeg helyett az  $m_{\pi}^2 = -iG_{\pi}^{-1}(p=0)$ egyszerűsített definíciót kényszerültünk alkalmazni, ugyanis a pion pólustömegére és az x kondenzátumra vonatkozó egyenleteknek a fermionikus kiterjesztés esetén bizonyos hőmérséklet felett nem volt egyidejű megoldása. A kaonra és az  $\eta$ -ra továbbra is a pólustömeget illesztettük a lehető legközelebb a részecskefizikai kísérleti értékekhez. A pionra és a kaonra ez esetben is előírtuk az LLK követelményét. Az így adódó 5 egyenlet, kiegészülve a (96) és (97) egyenletekkel, éppen elegendő a 9+1 paraméter meghatározására.

A pion tömegét megadó egyenlet két egyenletre bomlik az LLKkritérium alkalmazásával:

$$M_{\pi}^{2} \equiv m_{\pi}^{2} = m^{2} + (4f_{1} + 2f_{2})x^{2} + 4f_{1}y^{2} + 2gy,$$
  

$$0 = m_{0}^{2} - m^{2} + \Sigma_{\pi}(p = 0, m_{i}, M_{u}).$$
(99)

A  $\Sigma_{\pi}$  sajátenergiás függvény p = 0-beli kifejezéséhez a nem ritka u-kvark vagy d-kvark ad járulékot:  $\Sigma_{\pi}^{F}(p=0) = -2g_{F}^{2}T_{F}(M_{u})$ . A 6. ábrán grafikusan adtuk meg a mezonok  $\Sigma_{\pi}^{B}(p=0)$  járulékát. Az első egyenletből  $m^{2}$ -et a piontömeggel és a többi csatolási állandó kifejezésével megadhatjuk. Ezután az összes mezon tömegének faszintű kifejezésében ezzel cserélhetjük le  $m^{2}$ -t. Ezek szerepelnek a sajátenergia 1-hurok-járulékainak mezonpropagátoraiban. Ezt a cserét (99) második egyenletében végrehajtva gapegyenlet adódik  $m_{\pi}^{2}$ -re.

PATKÓS ANDRÁS: A RÉSZECSKEFIZIKA REJTŐZKÖDŐ SZIMMETRIÁI

Hasonlóan két egyenletet ad az LLK-kritérium alkalmazásával a kaontömeg kifejezése:

$$M_K^2 \equiv m_K^2 = m^2 + 2(2f_1 + f_2)(x^2 + y^2) + 2f_2y^2 - \sqrt{2}x(2f_2y - g),$$
  

$$0 = m_0^2 - m^2 + \operatorname{Re}\left\{\Sigma_K(p^2 = M_K^2, m_i)\right\},$$
(100)

amelyhez egy ritka–nemritka kvarkhurok  $p^2 = m_K^2$  helyen vett kifejezése adja a fermionikus járulékot. Kifejezése a renormalizált tadpole-  $(T^F)$  és buborék- $(I^F)$  függvényekkel a következő:

$$\Sigma_K^F(p^2 = m_K^2) = -g_F^2 \left[ T^F(M_u) + T^F(M_s) - (m_K^2 - (M_u - M_s)^2) I^F(p^2 = m_K^2, M_u, M_s) \right].$$
(101)

Végül az ötödik egyenletet az  $\eta$ -mezon 1-hurok-szinten számolt tömegének a mért értékkel való egybeesési követelménye jelenti:

$$M_{\eta}^{2} = \frac{1}{2} \operatorname{Re} \left\{ m_{\eta_{xx}}^{2} + \Sigma_{\eta_{xx}}(m_{i}) + m_{\eta_{yy}}^{2} + \Sigma_{\eta_{yy}}(m_{i}) - \sqrt{(m_{\eta_{xx}}^{2} + \Sigma_{\eta_{xx}}(m_{i}) - m_{\eta_{yy}}^{2} - \Sigma_{\eta_{yy}}(m_{i}))^{2} + 4(m_{\eta_{xy}}^{2} + \Sigma_{\eta_{xy}}(m_{i}))^{2}} \right\}.$$
(102)

A hosszú képlet az 2x2-es  $\eta - \eta'$  keveredési mátrix diagonalizálával adódó kisebb tömeget jelenti. A  $\Sigma_{\eta_{zz'}}, \ (z,z':x,y)$  mátrix abban szereplő minden elemét a  $p^2 = M_\eta^2$ helyen kell kiszámítani. A fermionikus járulékot ez esetben egy tisztán ritka kvarkhurok  $p^2 = M_\eta^2$ külső impulzusnál kiszámított értéke adja.

A paraméterek meghatározásához rögzíteni kell az  $M_{0B}$ ,  $M_{0F}$  renormalizációs skálákat. A két mennyiség alkotta síkon végighaladva vizsgáltunk egy olyan (bizonyos fokig önkényesen választott) mérőszámot, amely az összes megjósolt tömegérték ( $\eta'$ ,  $a_0$ ,  $f_0$ ,  $\sigma$ ,  $\kappa$ ) és fizikai értékeik eltérésének együttes nagyságát jellemzi. Ezt minimalizálja az  $M_{0B} = 1210 MeV$ ,  $M_{0F} = 520 MeV$  választás. Vizsgálható a kondenzátumok nagyságának függése  $\mu_q = \mu_B/3$ -tól. A változás érzékeny a normalizációs skálák megválasztására. A fenti választás mellett egy elsőrendű fázisátalakulás következik be T = 0-n, amely összhangban van a közelfogadott fizikai képpel. Ha a hőmérséklet függvényében vizsgáljuk a rendparaméterek változását  $\mu_q = 0$ -n, analitikus változást ("crossover"-t) tapasztalunk. Ez is egyezik a legtöbb eddig elvégzett vizsgálat eredményével. A két tengelyen mutatott viselkedés ismeretéből levonható az, hogy a  $\mu_q$ -tengelyen bekövetkező elsőrendű átalakulás folytatódik a  $T - \mu_B$  sík belseje irányában, de a  $\mu_q = 0$  tengelyre nem érkezik meg: a királis szimmetria fázisdiagramjában léteznie kell egy kritikus végpontnak (CEP) a  $T - \mu_B$  síkban. Ezt a végpontot a rendparaméterek változását a  $T - \mu_B$  sík belsejében letapogatva sikerült is megtalálni. Az elsőrendű átalakulási vonalat és a végpont körüli skálázás fő irányát mutatom be a 8. ábrán.



8. ábra. A kvark-mezon modell fázisdiagramja a  $T = \mu$ -síkban. A barionszám szuszceptibilitásskálázási tulajdonsága alapján a kritikus végpont az Ising-modell univerzalitási osztályába sorolható. (A [26] közleményből)

## A LEHETSÉGES VILÁGOK FÁZISDIAGRAMJA

A kvantumkromodinamika számítógépes megoldása során a kvarkok tömege bemenő adatként változtatható az explicit királis szimmetriasértés erősségével. Ily módon kirajzolhatók az  $(m_{u,d} - m_s)$  síkon azon tartományok, amelyekben a királis szimmetria helyreállása elsőrendű fázisátalakulással történik, illetve ahol analitikus "crossover" jellegű az átalakulás. A kétféle tartományt elválasztó határon másodrendű (folytonos) fázisátalakulás megy végbe. A nem nulla bariokémiai potenciálon végzett vizsgálatokra kiterjesztve a számításokat háromdimenziós tartományokat elválasztó másodrendű átalakulási felületek rajzolhatók ki. Ezeket a térképeket nevezem e fejezet címében "lehetséges világokra" vonatkozó ismereteknek, hiszen a kvarktömegek aktuális értékei mögött nem ismerünk semmiféle mélyebb dinamikai okot.

A kvantumtérelméletek numerikus megoldásában jelenleg csak a  $\mu_B = 0$  tartományban rendelkeznek megbízható eredményekkel, ezért jelentős az érdeklődés az effektív modellekkel elvégzett, itt bemutatott nem perturbatív számításokból kapott fázisdiagramok iránt. Ezekben az  $m_{u,d}, m_s$ paraméterek helyett a pion és a kaon tömege által alkotott ( $m_{\pi}^2 - m_K^2$ ) síkban vizsgálandó a fázisdiagram, amit aztán kiegészíthetünk a  $\mu_B$  iránnyal. Csoportunk publikációit megelőzően az effektív modellek paramétereit meghatározó egyenletekben egyszerűen e két tömegnégyzet értékét változtatva, a többi bemenő fizikai mennyiség változatlan értéke mellett vizsgálták a királis szimmetria helyreállásának a módját. Mi mutattunk rá, hogy  $m_{\eta}^2, m_{\eta'}^2, f_{\pi}, f_K$ , továbbá a kvarkok konsztituens tömegének értéke ( $M_{u,d}, M_s$ ) is változik a két könnyű Goldstone-mezon tömegének hangolásával. Ezt a kapcsolatot mutatom be röviden, mielőtt a jelzett fázisdiagramok ismertetésére térnék rá. A jelzett függést T = 0 hőmérsékleten úgy kaptuk meg, hogy lineáris szigma-modellünktől az  $SU(3) \times SU(3)$  szimmetriájú nemlineáris szigmamodell [29] megoldásával egyező eredményeket követeltünk meg. Ez utóbbi modell alacsony energián a QCD Goldstone-bozonjai dinamikáját egzaktul (a közvetlen kromodinamikai számításokkal teljes egyezésben) adja meg. Ebben a modellben kiszámítható például az  $f_{\pi}(m_K^2, m_{\pi}^2), f_K(m_K^2, m_{\pi}^2)$  függvénykapcsolat. Hasonlóan vizsgálható az  $\eta - \eta'$  keveredési mátrix adatainak  $m_{\pi}^2, m_K^2$  függése is [30]. Röviden bemutatom e kapcsolatok származtatását, majd első lépésben ezeket a használom aztán a lineáris modell megfelelő mennyiségeire  $\mu_B = 0$  esetén.

A királis perturbációszámítás (ChPT) a nemlineáris szigma-modell f csatolási paraméterének inverz hatványai szerinti sorban állítja elő a fizikai mennyiségeket. (Az f szimbólum a megszokott jelölése a nemlineáris  $\sigma$  modell (22) Lagrange-sűrűségében szereplő  $s_0$ -nak.) A tömegfüggések megállapítására  $O(1/f^2)$  pontosságú eredményeket használtunk. A pszeudoskalár mezonok tömegnégyzetei és gyenge bomlási állandói kifejezésében megjelennek a tömegfüggetlen ún. királis konstansok ( $L_i$ , i = 4, .5, ..., 9), valamint a kvarkok *lagrange-i* tömegparamétereivel közvetlenül kapcsolatba hozható két állandó:  $A = Bm_{u,d}$ ,  $q = m_s/m_{u,d}$ . A királis konstansok értékeit elegendő számú fizikai mennyiség fizikai pontbeli kifejezéseit a fenomenológiai értékekkel egyenlővé téve származtatják. Továbbá, az 1-hurok-ChPTjárulékokat jellemző ún. királis logaritmusok skálájaként jelentkezik az  $M_0$  normalizációs skála, amelynek értékét egyezményesen  $4\pi f_{\pi}$ -nek választják, tehát "örökli"  $f_{\pi}$  tömegfüggését.

Nézzük először  $f_{\pi}$  és  $f_K$  tömegfüggését a következő négy ChPTeredmény felhasználásával:

$$m_{\pi}^{2} = 2A \\ \left[1 + \frac{1}{f^{2}} \left(\mu_{\pi} - \frac{1}{3}\mu_{\eta} + 16A(2L_{8} - L_{5}) + 16A(2 + q)(2L_{6} - L_{4})\right)\right], \\ m_{K}^{2} = A(1 + q) \\ \left[1 + \frac{1}{f^{2}} \left(\frac{2}{3}\mu_{\eta} + 8A(1 + q)(2L_{8} - L_{5}) + 16A(2 + q)(2L_{6} - L_{4})\right)\right], \\ f_{\pi} = f \left[1 + \frac{1}{f^{2}} \left(-2\mu_{\pi} - \mu_{K} + 8AL_{5} + 8A(2 + q)L_{4}\right)\right], \\ f_{K} = f \left[1 + \frac{1}{f^{2}} \left(-\frac{3}{4}(\mu_{\pi} + \mu_{\eta} + 2\mu_{K}) + 4A(1 + q)L_{5} + 8A(2 + q)L_{4}\right)\right],$$
(103)

ahol  $\mu_{PS} = m_{PS}^2 \ln(m_{PS}^2/M_0^2)/(32\pi^2)$  az említett királis logaritmusok kifejezése. Az első két összefüggést arra használják, hogy  $\mathcal{O}(1/f^2)$  pontossággal meghatározzák A és q tömegfüggését, majd ezeket behelyettesítve a második két egyenletbe, a két bomlási állandó tömegfüggésére jutunk:

$$f_{\pi} = f \left[ 1 - \frac{1}{f^2} (2\mu_{\pi} + \mu_K - 4m_{\pi}^2 (L_4 + L_5) - 8m_K^2 L_4) \right],$$
  

$$f_K = f \left[ 1 - \frac{1}{f^2} \left( \frac{3}{4} (\mu_{\pi} + \mu_{\eta} + 2\mu_K) - 4m_{\pi}^2 L_4 - 4m_K^2 (L_5 + 2L_4) \right) \right].$$
(104)

Ebben az összefüggésben az  $\eta$ -tömeg is szerepel, de elegendő vezetőrendű  $(\mathcal{O}(f^0))$  kifejezését használni, ami éppen a Gell-Mann–Okubo-összefüggés:  $(4m_K^2 - m_\pi^2)/3$ . A hullámfüggvény renormalizációjának tömegfüggését elhanyagolva a (104) képleteket használhatjuk (91) segítségével az explicit szimmetriasértő források ( $\epsilon_x, \epsilon_y$ ) tömegfüggésének meghatározására. Ezt követően mód van a kondenzátumok tömegfüggésének megadására a (90) összefüggést használva.

A lineáris szigma-modell további csatolási állandóit a pszeudoskalár tömegek fagráfszintű kifejezéseiből ki lehet fejezni:

$$f_{2} = \frac{(6f_{K} - 3f_{\pi})m_{K}^{2} - (2f_{K} + f_{\pi})m_{\pi}^{2} - 2(f_{K} - f_{\pi})M_{\eta}^{2}}{4(f_{K} - f_{\pi})(8f_{K}^{2} - 8f_{K}f_{\pi} + 3f_{\pi}^{2})},$$

$$g = \frac{2f_{K}m_{K}^{2} + 2(f_{K} - f_{\pi})m_{\pi}^{2} - (2f_{K} - f_{\pi})M_{\eta}^{2}}{\sqrt{2}(8f_{K}^{2} - 8f_{K}f_{\pi} + 3f_{\pi}^{2})},$$

$$M^{2} \equiv -\mu_{0}^{2} + 4f_{1}(x^{2} + y^{2})$$

$$= \frac{1}{2}M_{\eta}^{2} + \frac{g}{\sqrt{2}}(2f_{K} - f_{\pi}) - 2f_{2}(f_{\pi}(f_{\pi} - 2f_{K}) + 2f_{K}^{2}).$$
 (105)

Ebben a képletsorban  $M_{\eta}^2$  az  $\eta - \eta'$  kevert tömegmátrix spúrja, amelyre újabb királis konstansok  $(v_0^{(2)}, v_2^{(2)}, v_3^{(0)})$  segítségével [31]-ből vehető át  $\mathcal{O}(1/f^2)$  pontosságú kifejezés:

$$M_{\eta}^{2} = 2m_{K}^{2} - 3v_{0}^{(2)} + 2(2m_{K}^{2} + m_{\pi}^{2})(3v_{2}^{(2)} - v_{3}^{(1)}) + \frac{1}{f^{2}} \left[ 8v_{0}^{(2)}(2m_{K}^{2} + m_{\pi}^{2})(L_{5} + 3L_{4}) + m_{\pi}^{2}(\mu_{\eta} - 3\mu_{\pi}) - 4m_{K}^{2}\mu_{\eta} + \frac{16}{3}(6L_{8} - 3L_{5} + 8L_{7})(m_{\pi}^{2} - m_{K}^{2})^{2} + \frac{32}{3}L_{6}(m_{\pi}^{4} - 2m_{K}^{4} + m_{K}^{2}m_{\pi}^{2}) + \frac{16}{3}L_{7}(m_{\pi}^{2} + 2m_{K}^{2})^{2} \right].$$
(106)

A megmaradó feladat  $M^2$  szétbontásával  $f_1$  és  $\mu_0^2$  tömegfüggésének meghatározása. Erre kénytelenek vagyunk a kevéssé ismert skalárszektorra vonatkozó valamilyen feltevést tenni. Egyik általunk kidolgozott lehetőség, hogy a skalárszektorra is megköveteljük a Gell-Mann–Okubo-relációt, ami ebben a szektorban  $4m_\kappa^2 = m_{a_0}^2 + 3m_{\sigma_{88}}^2$  alakú (az utolsó tag a keveredő  $\sigma_0$  és  $\sigma_8$  tömegmátrixának "88" eleme). Ez a valamelyest önkényes követelmény az

$$f_1^{(GMO)} = \frac{4m_\pi^2(f_\pi + 2f_K) + 8M_\eta^2(f_K - f_\pi) - 12m_K^2(2f_K - f_\pi)}{32(3f_\pi^2 - 8f_\pi f_K + 8f_K^2)(f_K - f_\pi)},$$

PATKÓS ANDRÁS: A RÉSZECSKEFIZIKA REJTŐZKÖDŐ SZIMMETRIÁI

$$\mu_0^{2(GMO)} = f_1^{(GMO)} (6f_\pi^2 - 8f_\pi f_K + 8f_K^2) - M^2$$
(107)

parametrizációra vezet. Más feltevésekkel is foglalkoztunk, amelynek eredményei alapján elmondható, hogy a kritikus másodrendű átalakulási görbe nem mutatkozott e feltételre túl érzékenynek.

A 9. és 10. ábrán bemutatott görbesorozat a fenti konstrukcióból létrejövő tömegfüggést mutatja be a lineáris szigma-modell különböző paramétereire. Jól látszik, hogy valamennyi paraméter lényeges változást mutat, ezért nem hihetőek a korábbi megközelítésben nyert eredmények, amelyek kizárólag az  $m_{\pi}^2$  és  $m_K^2$  tömegek explicit megjelenéséből származó változást vették figyelembe.



9. ábra. A bal oldalon az x, y rendparaméterek, valamint az  $\epsilon_y$  szimmetriasértő forrásnak  $m_{\pi}^2 = 0$  esetben számított  $m_K^2$  függését mutatja, a jobb oldalon ugyanerre az esetre  $f_2, g, M^2$  változása látható. (A [25] közleményből)

T = 0-n a leírt módon rögzített csatolásokkal lehet vizsgálni a királis szimmetria helyreállásának módját véges hőmérsékleten az  $m_{\pi}^2 - m_K^2$  sík minden egyes pontjában. A korábban követett alfejezetben,  $\mu_B = 0$ -ra a fizikai pont paramétereivel elvégzett tárgyalás ismételhető meg az  $m_K - m_{\pi}$ síkot végigpásztázva. A 11. ábra az  $N_f = 3$  mezonelmélet keretei között, az l-lel jelölt renomalizációs skála különböző választásaira mutatja a fázishatárt az elsőrendű és a "crossover" átalakulások tartományai között. [Van köztük



10. ábra. A bal oldalon a szétválasztott  $f_1$  és  $\mu_0^2$ , a jobb oldalon a fagráfszinten számolt skalár mezontömegek  $(a_0, \kappa)$  függése látszik  $m_K^2$ -től az  $m_{\pi} = 0$  esetben. (A [25] közleményből)



11. ábra. A királis rend megszűnésének fázisdiagramja a ritka és a nem ritka kvark tömegparaméterei alkotta síkban. A királis határeset ( $m_{\pi} = m_{K} = 0$ ) környezete elsőrendű átalakulást mutat. A határoló másodrendű átalakulási vonalat különböző normalizációs skála értékre számoltuk ki. (A [24] közleményből)

egy görbe (a "Veneziano formula" feliratú), amely az  $U_A(1)$  anomálián alapulva adja meg  $m_\eta$  kapcsolatát a pion és a kaon tömegével, ami tartalmaz egy, az anomáliát tükröző, gluonokból származó, kvarktömegre érzéketlen-

nek vélhető járulékot is. Ennek a megközelítésnek a bemutatása meghaladja az előadás terjedelmi korlátait.]

A kis  $m_{\pi}$ , nagy  $m_K$  tartományban a fázishatár függetlennek tűnik a renormalizációs skála megválasztásától. Ebben a tartományban elég nagy megbízhatósággal egy elméletileg megalapozott [32] skálázó viselkedést lehet illeszteni a fázishatár görbéjére:

$$m_K^2(\text{határ}) = m_K^2|_{TCP} + \frac{1}{2}m_\pi^2 - \alpha m_\pi^{4/5}.$$
 (108)

Itt  $m_K^2|_{TCP}$  az  $m_\pi = 0$  tengelyen várt trikritikus ponthoz (TCP) tartozó kaontömeg, amelynek nagyságára 1,7–1,8 GeV adódott, a kritikus görbének a sík belső pontjaira a modellből számított koordinátáit extrapolálva az  $m_\pi = 0$ tengelyhez. A trikritikus pont létezésének és értéke becsülhető nagyságának javarészt modellfüggetlen elemzése található Jakovác és Szép újabb publikációjában [33]. Az  $m_\pi = m_K$  "diagonálison" az egyenletek elfajultak, közvetlen számítás a kritikus pont helyzetére nem végezhető. Ehhez közeledve már nagyon érzékeny a határ a normalizációs skála választására: a szemmel történő extrapolációból az origótól (90, 130) MeV távolságra tehető a kritikus pont, ami magasabb a lineáris szigma-modell kvantumkorrekciók nélküli tárgyalásából nyerhető becslésnél és a rácsszimulációs előzetes adatoknál is.

A fázisdiagram kiterjesztése  $\mu_B$ -irányba a ritka és a nem ritka kondenzátum egyenletének a pion gapegyenletével szinkronban történő megoldását igényli. A (97) egyenletekben expliciten kiírva a mezon- és a kvarktadpolejárulékokat a megoldandó egyenletek a következők:

$$0 = -\epsilon_x + m^2 x + 2gxy + 4f_1 xy^2 + 2(2f_1 + f_2)x^3 + \sum_i t_i^x T^F(m_i(m_\pi), T) - 4M_u T^F(M_u, T),$$

$$0 = -\epsilon_y + m^2 y + gx^2 + 4f_1 x^2 y + 4(f_1 + f_2) y^3 + \sum_i t_i^y T^F(m_i(m_\pi), T) - 2\sqrt{2}M_s T^F(M_s, T),$$
  
$$m_\pi^2 = -\mu_0^2 + 2(f_2 + 2f_1) x^2 + 4f_1 y^2 + 2gy + \Sigma_\pi(p = 0, m_i(m_\pi), M_u).$$
(109)

Ezekben az egyenletekben már a határozott tömegsajátértékkel jellemezhető mezonok járulékai szerepelnek, de nem vezettük be az azonos tömegű izomultiplettek degenerációját kifejező faktort.

A korábbi csatolásokon túl most szükség van a *konsztituens* kvarktömegek függésére  $m_{\pi}^2$ -től és  $m_K^2$ -től. A [26] cikk a nukleonokra kiterjesztett ChPT-vel nyert nukleontömegeket [34] egyszerű additív kvarkmodell réven kapcsolta a kvarkok tömegéhez:

$$M_{u,d} = \frac{1}{3}M_N, \qquad M_s = \frac{1}{2}(M_\Lambda + M_\Sigma) - 2M_u.$$
 (110)

A *B* barion tömegképlete a mezonok tömegnégyzeteivel kifejezve [34] alapján  $O(1/f^2)$  pontossággal a következő:

$$M_B = M_b - 2b_0(m_\pi^2 + m_K^2) + b_d \gamma^D + b_F \gamma^F - \frac{1}{24\pi f^2} \left( \alpha_B^\pi m_\pi^3 + \alpha_B^K m_K^3 + \alpha_B^\eta m_\eta^2 \right).$$
(111)

Ebben a képletben a *B* alsó index végigfut a barion oktett izomultiplettjein  $(N, \Sigma, \Lambda, \chi)$ , míg  $M_b, b_0, b_D, b_F, \alpha_B^{\pi}, \alpha_B^K, \alpha_B^{\eta}$  a királis barionmodell legalacsonyabb rendű Lagrange-sűrűségének csatolásaiból származtatható mennyiségek, amelyeket a fizikai pont barionadatai segítségével lehet számszerűsíteni. Végül

$$\gamma_{N}^{D} = \gamma_{\chi}^{D} = -4m_{K}^{2}, \qquad \gamma_{\Sigma}^{D} = -4m_{\pi}^{2}, \qquad \gamma_{\Lambda}^{D} = -4m_{\eta}^{2}, \gamma_{N}^{F} = -\gamma_{\chi}^{F} = 4(m_{K}^{2} - m_{\pi}^{2}), \qquad \gamma_{\Sigma}^{F} = \gamma_{\Lambda}^{F} = 0.$$
(112)

PATKÓS ANDRÁS: A RÉSZECSKEFIZIKA REJTŐZKÖDŐ SZIMMETRIÁI

Ezzel a (109) egyenletrendszer megoldásához szükséges  $m_{\pi}^2, m_{K}^2$ hangolást az összes konstansra megadó, határozott eljárás áll rendelkezésre. Az elsőrendű átalakulás pontjait az *x*-kondenzátum többértékűvé válása jelzi. Megszűnése rajzolja ki a  $\mu_B, m_{\pi}^2, m_K^2$  háromdimenziós térben a másodrendű átalakulási felületet. Ezt mutatja a 12. ábra. (Az  $m_{\pi} = m_K$  "fal" ez esetben sem érhető el, mivel az egyenletek degenerációja miatt ott a megoldás eltűnik, de simasági feltevéssel lehetséges az extrapoláció.)



12. ábra. A királis rend megszűnésének fázisdiagramja az  $(m_\pi^2 - m_K^2 - \mu_B)$  térben. (A [26] közleményből)

A másodrendű felület majdnem merőlegesen nő ki a  $\mu_B = 0$  síkból. Utána elhajlik a  $\mu_B$ -tengelytől, így a fizikai pontra emelt merőleges átdöfi. Ez a pont a fizikai QCD nagy  $\mu_B$ -értékekre várt elsőrendű átalakulási vonalának kritikus végpontjára a lineáris szigma-modell számításaiból kapott becslés:  $\mu_B^{CEP} \approx 895 \, MeV, T^{CEP} \approx 75 \, MeV$ . Ez jócskán eltér a QCD numerikus szimulációjával nyert eddigi becsléstől, de a véges bariokémiai potenciállal nyerhető szimulációs eredmények korrektsége még eléggé vitatott.

# BEFEJEZÉS

Előadásomban a 2001–2007 között folytatott kutatásaimnak azt a szeletét mutattam be, amely az erősen kölcsönható anyag királis fázisdiagramjának a véges hőmérséklet és a véges barionsűrűség hatására elkülönülő tartományai feltérképezését tartotta céljának. A nagyenergiás nehézion-kísérletek értelmezésében az egyensúlyi fázisok minél részletesebb jellemzése mellett fontos a valós idejű dinamika elméleti tárgyalása. Megemlítem, hogy az előadás anyaga kiválogatásában figyelembe vett 6 évben aktív kutatást folytattunk e vizsgálatok területén is [35, 36, 37, 38, 39], de a bemutatás homogenitása érdekében e munkák eredményeinek ismertetéséről lemondtam.

Az eltelt idő lehetővé teszi, hogy röviden kitérjek azokra az újabb eredményekre, amelyeket a bemutatott munkák alapoztak meg. A 2PI-formalizmus (kétrészecske irreducibilis diagramok) alkalmazása éppen az évezredfordulón újult meg [40], amely munkák hatékony algoritmussá fej-lesztésében csoportunk egyik doktorandusza is lényeges szerepet játszott Erasmus-diákként végzett kutatásaival. E kapcsolat révén is természetes volt tehát, hogy a figyelmünket megragadta a perturbációs sor ezen újraösszegzésének kérdésköre. Kezdeti "betanuló" vizsgálódásaink [19, 41, 42, 20] után, ezt az irányzatot Szép Zsolt és francia partnerei együttműködése révén integráltuk technikai eszköztárunkba. A 2PI-technika hatékony felhasználásának példái azok a nagy N sorfejtés kapcsán már említett munkáink, amelyekkel ellentagos formalizmusban kidolgoztuk az O(N)-modell nagy N sorfejtése vezető utáni (NLO) rendjének renormalizálhatóságát [16, 17]. A 2PI-egyenletek megoldási eljárásai fejlesztésének egyik gyorsan fejlődő irányzata az egzakt renormalizációs csoport (ERG) egyenleteinek használata.

A jelen dolgozat írásának időszakában az ERG vizsgálata áll érdeklődésünk előterében.

Végül, mint az előadáson is történt, köszönetet szeretnék mondani mindazoknak a kollégáknak, akik kemény munkája és fizikai intuíciója nélkül elképzelhetetlen lett volna mindannak a kutatási programnak az elvégzése, amelyről az előző fejezetekben beszámoltam. Ebben az időszakban szerzett PhD-fokozatot és vált nemzetközileg is ismert kutatóvá Szép Zsolt, Borsányi Szabolcs és Sexty Dénes. Szép Zsolt eredményesen kapcsolódott be a témavezetői munkákba, amelynek során tudományos fokozatot szerzett Herpay Tamás és Kovács Péter. Az időszak végén csatlakozott hozzánk doktoranduszként Fejős Gergely, aki azóta szintén megszerezte PhD-fokozatát.

Hadd soroljam fel azokat a külföldi barátainkat, akikkel kutatásaink során intenzív szakmai kapcsolatot alakítottunk ki. Különösen doktoranduszaink tanulmányútjainak fogadásával, workshopjaink diszkusszióiban való gyakori részvételével járult hozzá eredményeinkhez Jürgen Berges (Heidelberg), Jan Smit (Amsterdam) és Jens-Olof Andersen (Trondheim). Jelenleg is nagyon szoros a munkakapcsolatunk Urko Reinosával (Palaiseau) és Julien Serreau-val (Párizs).

Két kollégámat-barátomat kiemelten szeretném megemlíteni. Jakovác Antal önálló kutatási programjának megvalósítása közben folyamatos diszkussziópartnerünk volt. Több cikkben vállalt társszerzői közreműködést, és végül 2012-ben, nagy örömömre, egyetemi tanári pályázatával véglegesen elkötelezte magát csoportunk programja mellett. Szépfalusy Péter kezdeményező szerepvállalása nélkül a bemutatott kutatási program talán nem is jött volna létre, de mindenképpen más irányban fejlődött volna. A nagy N kifejtés alkalmazásával elért eredményeink valójában az O(N)-szimmetrikus statisztikus fizikai rendszerek fázisátalakulásainak kutatásában általa elért, nemzetközileg is kiemelkedő eredmények részecskefizikai "átültetéseként" értékelhetők. Azzal a gesztusával, hogy felkért MTA-támogatású csoportjának vezetésére 2001 és 2006 között, megteremtette programunk megvalósításának intézményi hátterét is.

# KÖSZÖNETNYILVÁNÍTÁS

Ez az összefoglaló áttekintés tisztelgés Szépfalusy Péter professzori és emberi kiválósága előtt. Megköszönöm Jakovác Antalnak és Szép Zsoltnak a dolgozat első változatának kritikus szemű elolvasása nyomán tett javaslataikat.

# IRODALOMJEGYZÉK

| [1]  | Patkós András, <i>A részecskefizika rejtőzködő szimmetriái</i> , Fizikai Szemle LVIII (2008)<br>126–131. |
|------|----------------------------------------------------------------------------------------------------------|
| [2]  | W. Heisenberg, Z. f. Physik 77 (1932) 1.                                                                 |
| [3]  | B. Cassen and E. V. Condon, Phys. Rev. 50 (1936) 846.                                                    |
| [4]  | E. P. Wigner, Phys. Rev. <b>51</b> (1937) 106.                                                           |
| [5]  | H. Yukawa, Proc. PhysMath. Soc. of Japan 17 (1935) 48.                                                   |
| [6]  | N. Kemmer, Proc. Roy. Soc. (London) A166 (1938) 127.                                                     |
| [7]  | M. H. Johnson and E. Teller, Phys. Rev. 98 (1955) 783.                                                   |
| [8]  | Y. Nambu, Phys. Rev. Letters, <b>4</b> (1960) 380.                                                       |
| [9]  | M. Gell-Mann and M. Lévy, Nuovo Cim. 16 (1960) 705.                                                      |
| [10] | J. Goldstone, Nuovo Cim. <b>19</b> (1961) 154.                                                           |
| [11] | Y. Nambu and G. Jona-Lasinio, Phys. Rev. <b>122</b> (1961) 345; <i>ibid.</i> Phys. Rev. 124 (1961) 246.  |
| [12] | A. Patkós, Zs. Szép and P. Szépfalusy, Phys.Lett. B537 (2002) 77.                                        |
| [13] | A. Patkós, Zs. Szép and P. Szépfalusy, Phys.Rev. D66 (2002) 116004.                                      |
| [14] | A. Patkós, Zs. Szép and P. Szépfalusy, Phys.Rev. D68 (2003) 047701.                                      |
| [15] | A. Jakovác, A. Patkós, Zs. Szép and P. Szépfalusy, Phys.Lett. B582 (2004) 179.                           |

| G. Fejős, A. Patkós and Zs. Szép, Phys.Rev. D80 (2009) 025015.                             |
|--------------------------------------------------------------------------------------------|
| G. Fejős, A. Patkós and Zs. Szép, Phys.Rev. D90 (2014).                                    |
| Patkós András, Mekkora a kvarkok tömege?, Fizikai Szemle, LXIII (2013) 368373.             |
| A. Patkós and Zs. Szép, Phys. Lett. B642 (2006) 384.                                       |
| A. Patkós and Zs. Szép, Nucl. Phys. A811 (2008) 329.                                       |
| S. Chiku and T. Hatsuda, Phys. Rev. D58 (1998) 076001.                                     |
| A. Okopinska, Phys. Rev. D36, 2415 1987.                                                   |
| N. Banerjee and S. Mallik, Phys. Rev. D43, 3368 1991.                                      |
| T. Herpay and Zs. Szép, Phys. Rev. D74 (2006) 025008.                                      |
| T. Herpay, A. Patkós, Zs. Szép and P. Szépfalusy, Phys. Rev. D71 (2005) 125017.            |
| P. Kovács and Zs. Szép, Phys. Rev. D75 (2007) 025015.                                      |
| G. 't Hooft, Phys. Rev. D14 (1976) 3432, (E) ibid. 18 (1978) 2199.                         |
| LH. Chan and R.W. Haymaker, Phys. Rev. D7 (1973) 402.                                      |
| J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 465.                                   |
| P. Siklódy-Herrera, J.I. Latorre, P. Pascual and J. Taron, Phys. Lett. B419 (1998) 326.    |
| B. Borasoy and S. Wetzel, Phys. Rev. D63 (2001) 074019.                                    |
| Y. Hatta and T. Ikeda, Phys. Rev. D67 (2003) 014028.                                       |
| A. Jakovác and Zs. Szép, Phys. Rev. D82 (2010) 125038.                                     |
| V. Bernard, N. Kaiser and UG. Meissner, Int. J. Mod. Phys. E4 (1995) 193.                  |
| Sz. Borsányi, A. Patkós, D. Sexty, Zs. Szép, Phys. Rev. D64 (2001) 125011.                 |
| Sz. Borsányi, A. Patkós, D. Sexty, Phys. Rev. D66 (2002) 025014.                           |
| Sz. Borsányi, A. Patkós and D. Sexty, Phys. Rev. D68 (2003) 063512.                        |
| D. Sexty and A. Patkós, Phys. Rev. D71 (2005) 025020.                                      |
| D. Sexty and A. Patkós, JHEP 0510 (2005) 054.                                              |
| J. Berges, Sz. Borsányi, J. Serreau and U. Reinosa, Ann. Phys. (Amsterdam) 320 (2005) 344. |
| A. Patkós and Zs. Szép, Europhys. Lett. <b>79</b> (2007) 51001.                            |
| G. Fejős, A. Patkós and Zs. Szép, Nucl. Phys. A <b>803</b> (2008) 115.                     |
|                                                                                            |

Erdy to for for for the Bodhradohor Dochradohor of the for the Wentel Sustan, 44 Jabian Gabook Nagy Fanosph Terintetes Wagy gyüles! Arany Same Junia fernallo szabalyainak 32-Sa tay szot: Minden ujørmen vælæsstoft tag, a hulsøt rivete level, asztályába tartozó dolgozat felolvasásával, vægy kemelyes megnem jelenhetes eseten behulde sevel, legfelebb egy e's alatt secret foglal; hilowben mig Leketuer ereter, melyelben hvält videten la valaszlata megsen mis istoen: lok gåtoltatuak a hataridøt megtartam: de hællge Lag elverni e skabaly meg ven fartabaisat, anny Less, wind ousses shabily sa fundat eröffennet torinte A lieve l'even cuyebre figy elmesse termina I. aladein Inditoenyba horatik teheit, hogy egyelöre a at will segtelen.

